xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_main.c (revision 54ab05a36f58e470e5b322a774385b90ea47f785)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_ipa_obj_mgmt_api.h>
21 #include <qdf_types.h>
22 #include <qdf_lock.h>
23 #include <qdf_net_types.h>
24 #include <qdf_lro.h>
25 #include <qdf_module.h>
26 #include <hal_hw_headers.h>
27 #include <hal_api.h>
28 #include <hif.h>
29 #include <htt.h>
30 #include <wdi_event.h>
31 #include <queue.h>
32 #include "dp_types.h"
33 #include "dp_rings.h"
34 #include "dp_internal.h"
35 #include "dp_tx.h"
36 #include "dp_tx_desc.h"
37 #include "dp_rx.h"
38 #ifdef DP_RATETABLE_SUPPORT
39 #include "dp_ratetable.h"
40 #endif
41 #include <cdp_txrx_handle.h>
42 #include <wlan_cfg.h>
43 #include <wlan_utility.h>
44 #include "cdp_txrx_cmn_struct.h"
45 #include "cdp_txrx_stats_struct.h"
46 #include "cdp_txrx_cmn_reg.h"
47 #include <qdf_util.h>
48 #include "dp_peer.h"
49 #include "htt_stats.h"
50 #include "dp_htt.h"
51 #ifdef WLAN_SUPPORT_RX_FISA
52 #include <wlan_dp_fisa_rx.h>
53 #endif
54 #include "htt_ppdu_stats.h"
55 #include "qdf_mem.h"   /* qdf_mem_malloc,free */
56 #include "cfg_ucfg_api.h"
57 #include <wlan_module_ids.h>
58 #ifdef QCA_MULTIPASS_SUPPORT
59 #include <enet.h>
60 #endif
61 
62 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
63 #include "cdp_txrx_flow_ctrl_v2.h"
64 #else
65 
66 static inline void
67 cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
68 {
69 	return;
70 }
71 #endif
72 #ifdef WIFI_MONITOR_SUPPORT
73 #include <dp_mon.h>
74 #endif
75 #include "dp_ipa.h"
76 #ifdef FEATURE_WDS
77 #include "dp_txrx_wds.h"
78 #endif
79 #ifdef WLAN_SUPPORT_MSCS
80 #include "dp_mscs.h"
81 #endif
82 #ifdef WLAN_SUPPORT_MESH_LATENCY
83 #include "dp_mesh_latency.h"
84 #endif
85 #ifdef WLAN_SUPPORT_SCS
86 #include "dp_scs.h"
87 #endif
88 #ifdef ATH_SUPPORT_IQUE
89 #include "dp_txrx_me.h"
90 #endif
91 #if defined(DP_CON_MON)
92 #ifndef REMOVE_PKT_LOG
93 #include <pktlog_ac_api.h>
94 #include <pktlog_ac.h>
95 #endif
96 #endif
97 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
98 #include <wlan_dp_swlm.h>
99 #endif
100 #ifdef WLAN_DP_PROFILE_SUPPORT
101 #include <wlan_dp_main.h>
102 #endif
103 #ifdef CONFIG_SAWF_DEF_QUEUES
104 #include "dp_sawf.h"
105 #endif
106 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
107 #include "dp_rx_tag.h"
108 #endif
109 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
110 #include <target_if_dp.h>
111 #endif
112 
113 #if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
114 #define SET_PEER_REF_CNT_ONE(_peer) \
115 	qdf_atomic_set(&(_peer)->ref_cnt, 1)
116 #else
117 #define SET_PEER_REF_CNT_ONE(_peer)
118 #endif
119 
120 #ifdef WLAN_SYSFS_DP_STATS
121 /* sysfs event wait time for firmware stat request unit milliseconds */
122 #define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
123 #endif
124 
125 #ifdef QCA_DP_TX_FW_METADATA_V2
126 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
127 		HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
128 #else
129 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
130 		HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
131 #endif
132 
133 QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
134 			MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
135 
136 QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
137 			MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
138 
139 void dp_configure_arch_ops(struct dp_soc *soc);
140 qdf_size_t dp_get_soc_context_size(uint16_t device_id);
141 
142 /*
143  * The max size of cdp_peer_stats_param_t is limited to 16 bytes.
144  * If the buffer size is exceeding this size limit,
145  * dp_txrx_get_peer_stats is to be used instead.
146  */
147 QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
148 			(sizeof(cdp_peer_stats_param_t) <= 16));
149 
150 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
151 /*
152  * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
153  * also should be updated accordingly
154  */
155 QDF_COMPILE_TIME_ASSERT(num_intr_grps,
156 			HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
157 
158 /*
159  * HIF_EVENT_HIST_MAX should always be power of 2
160  */
161 QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
162 			(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
163 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
164 
165 /*
166  * If WLAN_CFG_INT_NUM_CONTEXTS is changed,
167  * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
168  */
169 QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
170 			WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
171 			WLAN_CFG_INT_NUM_CONTEXTS);
172 
173 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc);
174 static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
175 static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
176 
177 static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
178 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
179 static void dp_pdev_srng_free(struct dp_pdev *pdev);
180 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
181 
182 static inline
183 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
184 				struct cdp_pdev_attach_params *params);
185 
186 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
187 
188 static QDF_STATUS
189 dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
190 		   HTC_HANDLE htc_handle,
191 		   qdf_device_t qdf_osdev,
192 		   uint8_t pdev_id);
193 
194 static QDF_STATUS
195 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
196 
197 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
198 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
199 
200 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
201 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
202 				       uint8_t pdev_id,
203 				       int force);
204 static struct dp_soc *
205 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
206 	      struct cdp_soc_attach_params *params);
207 static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
208 					      uint8_t vdev_id,
209 					      uint8_t *peer_mac_addr,
210 					      enum cdp_peer_type peer_type);
211 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
212 				       uint8_t vdev_id,
213 				       uint8_t *peer_mac, uint32_t bitmap,
214 				       enum cdp_peer_type peer_type);
215 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
216 				bool unmap_only,
217 				bool mlo_peers_only);
218 #ifdef ENABLE_VERBOSE_DEBUG
219 bool is_dp_verbose_debug_enabled;
220 #endif
221 
222 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
223 static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
224 static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
225 			   bool enable);
226 static inline void
227 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
228 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats);
229 static inline void
230 dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
231 #endif
232 
233 #ifdef DP_UMAC_HW_RESET_SUPPORT
234 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
235 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
236 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
237 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
238 #endif
239 
240 #define MON_VDEV_TIMER_INIT 0x1
241 #define MON_VDEV_TIMER_RUNNING 0x2
242 
243 #define DP_MCS_LENGTH (6*MAX_MCS)
244 
245 #define DP_CURR_FW_STATS_AVAIL 19
246 #define DP_HTT_DBG_EXT_STATS_MAX 256
247 #define DP_MAX_SLEEP_TIME 100
248 #ifndef QCA_WIFI_3_0_EMU
249 #define SUSPEND_DRAIN_WAIT 500
250 #else
251 #define SUSPEND_DRAIN_WAIT 3000
252 #endif
253 
254 #ifdef IPA_OFFLOAD
255 /* Exclude IPA rings from the interrupt context */
256 #define TX_RING_MASK_VAL	0xb
257 #define RX_RING_MASK_VAL	0x7
258 #else
259 #define TX_RING_MASK_VAL	0xF
260 #define RX_RING_MASK_VAL	0xF
261 #endif
262 
263 #define STR_MAXLEN	64
264 
265 #define RNG_ERR		"SRNG setup failed for"
266 
267 /**
268  * enum dp_stats_type - Select the type of statistics
269  * @STATS_FW: Firmware-based statistic
270  * @STATS_HOST: Host-based statistic
271  * @STATS_TYPE_MAX: maximum enumeration
272  */
273 enum dp_stats_type {
274 	STATS_FW = 0,
275 	STATS_HOST = 1,
276 	STATS_TYPE_MAX = 2,
277 };
278 
279 /**
280  * enum dp_fw_stats - General Firmware statistics options
281  * @TXRX_FW_STATS_INVALID: statistic is not available
282  */
283 enum dp_fw_stats {
284 	TXRX_FW_STATS_INVALID	= -1,
285 };
286 
287 /*
288  * dp_stats_mapping_table - Firmware and Host statistics
289  * currently supported
290  */
291 #ifndef WLAN_SOFTUMAC_SUPPORT
292 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
293 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
294 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
295 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
296 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
297 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
298 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
299 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
300 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
301 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
302 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
303 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
304 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
305 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
306 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
307 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
308 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
309 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
310 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
311 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
312 	/* Last ENUM for HTT FW STATS */
313 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
314 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
315 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
316 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
317 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
318 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
319 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
320 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
321 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
322 	{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
323 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
324 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
325 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
326 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
327 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
328 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
329 	{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
330 	{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
331 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
332 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
333 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID},
334 	{TXRX_FW_STATS_INVALID, TXRX_PEER_STATS},
335 };
336 #else
337 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
338 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
339 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
340 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
341 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
342 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
343 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
344 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
345 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
346 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
347 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
348 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
349 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
350 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
351 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
352 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
353 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
354 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
355 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
356 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
357 	/* Last ENUM for HTT FW STATS */
358 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
359 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
360 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
361 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
362 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
363 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
364 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
365 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
366 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
367 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
368 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
369 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
370 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
371 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
372 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
373 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
374 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
375 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
376 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
377 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
378 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
379 };
380 #endif
381 
382 /* MCL specific functions */
383 #if defined(DP_CON_MON)
384 
385 #ifdef IPA_OFFLOAD
386 /**
387  * dp_get_num_rx_contexts() - get number of RX contexts
388  * @soc_hdl: cdp opaque soc handle
389  *
390  * Return: number of RX contexts
391  */
392 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
393 {
394 	int num_rx_contexts;
395 	uint32_t reo_ring_map;
396 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
397 
398 	reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
399 
400 	switch (soc->arch_id) {
401 	case CDP_ARCH_TYPE_BE:
402 		/* 2 REO rings are used for IPA */
403 		reo_ring_map &=  ~(BIT(3) | BIT(7));
404 
405 		break;
406 	case CDP_ARCH_TYPE_LI:
407 		/* 1 REO ring is used for IPA */
408 		reo_ring_map &=  ~BIT(3);
409 		break;
410 	default:
411 		dp_err("unknown arch_id 0x%x", soc->arch_id);
412 		QDF_BUG(0);
413 	}
414 	/*
415 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
416 	 * in future
417 	 */
418 	num_rx_contexts = qdf_get_hweight32(reo_ring_map);
419 
420 	return num_rx_contexts;
421 }
422 #else
423 #ifdef WLAN_SOFTUMAC_SUPPORT
424 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
425 {
426 	uint32_t rx_rings_config;
427 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
428 
429 	rx_rings_config = wlan_cfg_get_rx_rings_mapping(soc->wlan_cfg_ctx);
430 	/*
431 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
432 	 * in future
433 	 */
434 	return qdf_get_hweight32(rx_rings_config);
435 }
436 #else
437 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
438 {
439 	int num_rx_contexts;
440 	uint32_t reo_config;
441 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
442 
443 	reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
444 	/*
445 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
446 	 * in future
447 	 */
448 	num_rx_contexts = qdf_get_hweight32(reo_config);
449 
450 	return num_rx_contexts;
451 }
452 #endif /* WLAN_SOFTUMAC_SUPPORT */
453 #endif
454 
455 #endif
456 
457 #ifdef FEATURE_MEC
458 void dp_peer_mec_flush_entries(struct dp_soc *soc)
459 {
460 	unsigned int index;
461 	struct dp_mec_entry *mecentry, *mecentry_next;
462 
463 	TAILQ_HEAD(, dp_mec_entry) free_list;
464 	TAILQ_INIT(&free_list);
465 
466 	if (!soc->mec_hash.mask)
467 		return;
468 
469 	if (!soc->mec_hash.bins)
470 		return;
471 
472 	if (!qdf_atomic_read(&soc->mec_cnt))
473 		return;
474 
475 	qdf_spin_lock_bh(&soc->mec_lock);
476 	for (index = 0; index <= soc->mec_hash.mask; index++) {
477 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
478 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
479 					   hash_list_elem, mecentry_next) {
480 			    dp_peer_mec_detach_entry(soc, mecentry, &free_list);
481 			}
482 		}
483 	}
484 	qdf_spin_unlock_bh(&soc->mec_lock);
485 
486 	dp_peer_mec_free_list(soc, &free_list);
487 }
488 
489 /**
490  * dp_print_mec_stats() - Dump MEC entries in table
491  * @soc: Datapath soc handle
492  *
493  * Return: none
494  */
495 static void dp_print_mec_stats(struct dp_soc *soc)
496 {
497 	int i;
498 	uint32_t index;
499 	struct dp_mec_entry *mecentry = NULL, *mec_list;
500 	uint32_t num_entries = 0;
501 
502 	DP_PRINT_STATS("MEC Stats:");
503 	DP_PRINT_STATS("   Entries Added   = %d", soc->stats.mec.added);
504 	DP_PRINT_STATS("   Entries Deleted = %d", soc->stats.mec.deleted);
505 
506 	if (!qdf_atomic_read(&soc->mec_cnt))
507 		return;
508 
509 	mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
510 	if (!mec_list) {
511 		dp_peer_warn("%pK: failed to allocate mec_list", soc);
512 		return;
513 	}
514 
515 	DP_PRINT_STATS("MEC Table:");
516 	for (index = 0; index <= soc->mec_hash.mask; index++) {
517 		qdf_spin_lock_bh(&soc->mec_lock);
518 		if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
519 			qdf_spin_unlock_bh(&soc->mec_lock);
520 			continue;
521 		}
522 
523 		TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
524 			      hash_list_elem) {
525 			qdf_mem_copy(&mec_list[num_entries], mecentry,
526 				     sizeof(*mecentry));
527 			num_entries++;
528 		}
529 		qdf_spin_unlock_bh(&soc->mec_lock);
530 	}
531 
532 	if (!num_entries) {
533 		qdf_mem_free(mec_list);
534 		return;
535 	}
536 
537 	for (i = 0; i < num_entries; i++) {
538 		DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
539 			       " is_active = %d pdev_id = %d vdev_id = %d",
540 			       i,
541 			       QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
542 			       mec_list[i].is_active,
543 			       mec_list[i].pdev_id,
544 			       mec_list[i].vdev_id);
545 	}
546 	qdf_mem_free(mec_list);
547 }
548 #else
549 static void dp_print_mec_stats(struct dp_soc *soc)
550 {
551 }
552 #endif
553 
554 static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
555 				 uint8_t vdev_id,
556 				 uint8_t *peer_mac,
557 				 uint8_t *mac_addr,
558 				 enum cdp_txrx_ast_entry_type type,
559 				 uint32_t flags)
560 {
561 	int ret = -1;
562 	QDF_STATUS status = QDF_STATUS_SUCCESS;
563 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
564 						       peer_mac, 0, vdev_id,
565 						       DP_MOD_ID_CDP);
566 
567 	if (!peer) {
568 		dp_peer_debug("Peer is NULL!");
569 		return ret;
570 	}
571 
572 	status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
573 				 peer,
574 				 mac_addr,
575 				 type,
576 				 flags);
577 	if ((status == QDF_STATUS_SUCCESS) ||
578 	    (status == QDF_STATUS_E_ALREADY) ||
579 	    (status == QDF_STATUS_E_AGAIN))
580 		ret = 0;
581 
582 	dp_hmwds_ast_add_notify(peer, mac_addr,
583 				type, status, false);
584 
585 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
586 
587 	return ret;
588 }
589 
590 static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
591 						uint8_t vdev_id,
592 						uint8_t *peer_mac,
593 						uint8_t *wds_macaddr,
594 						uint32_t flags)
595 {
596 	int status = -1;
597 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
598 	struct dp_ast_entry  *ast_entry = NULL;
599 	struct dp_peer *peer;
600 
601 	if (soc->ast_offload_support)
602 		return status;
603 
604 	peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
605 				      peer_mac, 0, vdev_id,
606 				      DP_MOD_ID_CDP);
607 
608 	if (!peer) {
609 		dp_peer_debug("Peer is NULL!");
610 		return status;
611 	}
612 
613 	qdf_spin_lock_bh(&soc->ast_lock);
614 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
615 						    peer->vdev->pdev->pdev_id);
616 
617 	if (ast_entry) {
618 		status = dp_peer_update_ast(soc,
619 					    peer,
620 					    ast_entry, flags);
621 	}
622 	qdf_spin_unlock_bh(&soc->ast_lock);
623 
624 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
625 
626 	return status;
627 }
628 
629 /**
630  * dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
631  * @soc:		Datapath SOC handle
632  * @peer:		DP peer
633  * @arg:		callback argument
634  *
635  * Return: None
636  */
637 static void
638 dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
639 {
640 	struct dp_ast_entry *ast_entry = NULL;
641 	struct dp_ast_entry *tmp_ast_entry;
642 
643 	DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
644 		if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
645 		    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
646 			dp_peer_del_ast(soc, ast_entry);
647 	}
648 }
649 
650 /**
651  * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
652  * @soc_hdl:		Datapath SOC handle
653  * @wds_macaddr:	WDS entry MAC Address
654  * @peer_mac_addr:	WDS entry MAC Address
655  * @vdev_id:		id of vdev handle
656  *
657  * Return: QDF_STATUS
658  */
659 static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
660 					 uint8_t *wds_macaddr,
661 					 uint8_t *peer_mac_addr,
662 					 uint8_t vdev_id)
663 {
664 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
665 	struct dp_ast_entry *ast_entry = NULL;
666 	struct dp_peer *peer;
667 	struct dp_pdev *pdev;
668 	struct dp_vdev *vdev;
669 
670 	if (soc->ast_offload_support)
671 		return QDF_STATUS_E_FAILURE;
672 
673 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
674 
675 	if (!vdev)
676 		return QDF_STATUS_E_FAILURE;
677 
678 	pdev = vdev->pdev;
679 
680 	if (peer_mac_addr) {
681 		peer = dp_peer_find_hash_find(soc, peer_mac_addr,
682 					      0, vdev->vdev_id,
683 					      DP_MOD_ID_CDP);
684 		if (!peer) {
685 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
686 			return QDF_STATUS_E_FAILURE;
687 		}
688 
689 		qdf_spin_lock_bh(&soc->ast_lock);
690 		dp_peer_reset_ast_entries(soc, peer, NULL);
691 		qdf_spin_unlock_bh(&soc->ast_lock);
692 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
693 	} else if (wds_macaddr) {
694 		qdf_spin_lock_bh(&soc->ast_lock);
695 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
696 							    pdev->pdev_id);
697 
698 		if (ast_entry) {
699 			if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
700 			    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
701 				dp_peer_del_ast(soc, ast_entry);
702 		}
703 		qdf_spin_unlock_bh(&soc->ast_lock);
704 	}
705 
706 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
707 	return QDF_STATUS_SUCCESS;
708 }
709 
710 /**
711  * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
712  * @soc_hdl:		Datapath SOC handle
713  * @vdev_id:		id of vdev object
714  *
715  * Return: QDF_STATUS
716  */
717 static QDF_STATUS
718 dp_wds_reset_ast_table_wifi3(struct cdp_soc_t  *soc_hdl,
719 			     uint8_t vdev_id)
720 {
721 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
722 
723 	if (soc->ast_offload_support)
724 		return QDF_STATUS_SUCCESS;
725 
726 	qdf_spin_lock_bh(&soc->ast_lock);
727 
728 	dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
729 			    DP_MOD_ID_CDP);
730 	qdf_spin_unlock_bh(&soc->ast_lock);
731 
732 	return QDF_STATUS_SUCCESS;
733 }
734 
735 /**
736  * dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
737  * @soc:		Datapath SOC
738  * @peer:		Datapath peer
739  * @arg:		arg to callback
740  *
741  * Return: None
742  */
743 static void
744 dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
745 {
746 	struct dp_ast_entry *ase = NULL;
747 	struct dp_ast_entry *temp_ase;
748 
749 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
750 		if ((ase->type ==
751 			CDP_TXRX_AST_TYPE_STATIC) ||
752 			(ase->type ==
753 			 CDP_TXRX_AST_TYPE_SELF) ||
754 			(ase->type ==
755 			 CDP_TXRX_AST_TYPE_STA_BSS))
756 			continue;
757 		dp_peer_del_ast(soc, ase);
758 	}
759 }
760 
761 /**
762  * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
763  * @soc_hdl:		Datapath SOC handle
764  *
765  * Return: None
766  */
767 static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t  *soc_hdl)
768 {
769 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
770 
771 	qdf_spin_lock_bh(&soc->ast_lock);
772 
773 	dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
774 			    DP_MOD_ID_CDP);
775 
776 	qdf_spin_unlock_bh(&soc->ast_lock);
777 	dp_peer_mec_flush_entries(soc);
778 }
779 
780 #if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
781 /**
782  * dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
783  * @soc: Datapath SOC
784  * @peer: Datapath peer
785  *
786  * Return: None
787  */
788 static void
789 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
790 {
791 	struct dp_ast_entry *ase = NULL;
792 	struct dp_ast_entry *temp_ase;
793 
794 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
795 		if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
796 			soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
797 								      ase->mac_addr.raw,
798 								      ase->vdev_id);
799 		}
800 	}
801 }
802 #elif defined(FEATURE_AST)
803 static void
804 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
805 {
806 }
807 #endif
808 
809 /**
810  * dp_peer_check_ast_offload() - check ast offload support is enable or not
811  * @soc: soc handle
812  *
813  * Return: false in case of IPA and true/false in IPQ case
814  *
815  */
816 #if defined(IPA_OFFLOAD) && defined(QCA_WIFI_QCN9224)
817 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
818 {
819 	return false;
820 }
821 #else
822 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
823 {
824 	if (soc->ast_offload_support)
825 		return true;
826 
827 	return false;
828 }
829 #endif
830 
831 /**
832  * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
833  *                                       and return ast entry information
834  *                                       of first ast entry found in the
835  *                                       table with given mac address
836  * @soc_hdl: data path soc handle
837  * @ast_mac_addr: AST entry mac address
838  * @ast_entry_info: ast entry information
839  *
840  * Return: true if ast entry found with ast_mac_addr
841  *          false if ast entry not found
842  */
843 static bool dp_peer_get_ast_info_by_soc_wifi3
844 	(struct cdp_soc_t *soc_hdl,
845 	 uint8_t *ast_mac_addr,
846 	 struct cdp_ast_entry_info *ast_entry_info)
847 {
848 	struct dp_ast_entry *ast_entry = NULL;
849 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
850 	struct dp_peer *peer = NULL;
851 
852 	if (dp_peer_check_ast_offload(soc))
853 		return false;
854 
855 	qdf_spin_lock_bh(&soc->ast_lock);
856 
857 	ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
858 	if ((!ast_entry) ||
859 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
860 		qdf_spin_unlock_bh(&soc->ast_lock);
861 		return false;
862 	}
863 
864 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
865 				     DP_MOD_ID_AST);
866 	if (!peer) {
867 		qdf_spin_unlock_bh(&soc->ast_lock);
868 		return false;
869 	}
870 
871 	ast_entry_info->type = ast_entry->type;
872 	ast_entry_info->pdev_id = ast_entry->pdev_id;
873 	ast_entry_info->vdev_id = ast_entry->vdev_id;
874 	ast_entry_info->peer_id = ast_entry->peer_id;
875 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
876 		     &peer->mac_addr.raw[0],
877 		     QDF_MAC_ADDR_SIZE);
878 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
879 	qdf_spin_unlock_bh(&soc->ast_lock);
880 	return true;
881 }
882 
883 /**
884  * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
885  *                                          and return ast entry information
886  *                                          if mac address and pdev_id matches
887  * @soc_hdl: data path soc handle
888  * @ast_mac_addr: AST entry mac address
889  * @pdev_id: pdev_id
890  * @ast_entry_info: ast entry information
891  *
892  * Return: true if ast entry found with ast_mac_addr
893  *          false if ast entry not found
894  */
895 static bool dp_peer_get_ast_info_by_pdevid_wifi3
896 		(struct cdp_soc_t *soc_hdl,
897 		 uint8_t *ast_mac_addr,
898 		 uint8_t pdev_id,
899 		 struct cdp_ast_entry_info *ast_entry_info)
900 {
901 	struct dp_ast_entry *ast_entry;
902 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
903 	struct dp_peer *peer = NULL;
904 
905 	if (soc->ast_offload_support)
906 		return false;
907 
908 	qdf_spin_lock_bh(&soc->ast_lock);
909 
910 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
911 						    pdev_id);
912 
913 	if ((!ast_entry) ||
914 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
915 		qdf_spin_unlock_bh(&soc->ast_lock);
916 		return false;
917 	}
918 
919 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
920 				     DP_MOD_ID_AST);
921 	if (!peer) {
922 		qdf_spin_unlock_bh(&soc->ast_lock);
923 		return false;
924 	}
925 
926 	ast_entry_info->type = ast_entry->type;
927 	ast_entry_info->pdev_id = ast_entry->pdev_id;
928 	ast_entry_info->vdev_id = ast_entry->vdev_id;
929 	ast_entry_info->peer_id = ast_entry->peer_id;
930 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
931 		     &peer->mac_addr.raw[0],
932 		     QDF_MAC_ADDR_SIZE);
933 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
934 	qdf_spin_unlock_bh(&soc->ast_lock);
935 	return true;
936 }
937 
938 /**
939  * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
940  *                            with given mac address
941  * @soc_handle: data path soc handle
942  * @mac_addr: AST entry mac address
943  * @callback: callback function to called on ast delete response from FW
944  * @cookie: argument to be passed to callback
945  *
946  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
947  *          is sent
948  *          QDF_STATUS_E_INVAL false if ast entry not found
949  */
950 static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
951 					       uint8_t *mac_addr,
952 					       txrx_ast_free_cb callback,
953 					       void *cookie)
954 
955 {
956 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
957 	struct dp_ast_entry *ast_entry = NULL;
958 	txrx_ast_free_cb cb = NULL;
959 	void *arg = NULL;
960 
961 	if (soc->ast_offload_support)
962 		return -QDF_STATUS_E_INVAL;
963 
964 	qdf_spin_lock_bh(&soc->ast_lock);
965 	ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
966 	if (!ast_entry) {
967 		qdf_spin_unlock_bh(&soc->ast_lock);
968 		return -QDF_STATUS_E_INVAL;
969 	}
970 
971 	if (ast_entry->callback) {
972 		cb = ast_entry->callback;
973 		arg = ast_entry->cookie;
974 	}
975 
976 	ast_entry->callback = callback;
977 	ast_entry->cookie = cookie;
978 
979 	/*
980 	 * if delete_in_progress is set AST delete is sent to target
981 	 * and host is waiting for response should not send delete
982 	 * again
983 	 */
984 	if (!ast_entry->delete_in_progress)
985 		dp_peer_del_ast(soc, ast_entry);
986 
987 	qdf_spin_unlock_bh(&soc->ast_lock);
988 	if (cb) {
989 		cb(soc->ctrl_psoc,
990 		   dp_soc_to_cdp_soc(soc),
991 		   arg,
992 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
993 	}
994 	return QDF_STATUS_SUCCESS;
995 }
996 
997 /**
998  * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
999  *                                   table if mac address and pdev_id matches
1000  * @soc_handle: data path soc handle
1001  * @mac_addr: AST entry mac address
1002  * @pdev_id: pdev id
1003  * @callback: callback function to called on ast delete response from FW
1004  * @cookie: argument to be passed to callback
1005  *
1006  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1007  *          is sent
1008  *          QDF_STATUS_E_INVAL false if ast entry not found
1009  */
1010 
1011 static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
1012 						uint8_t *mac_addr,
1013 						uint8_t pdev_id,
1014 						txrx_ast_free_cb callback,
1015 						void *cookie)
1016 
1017 {
1018 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1019 	struct dp_ast_entry *ast_entry;
1020 	txrx_ast_free_cb cb = NULL;
1021 	void *arg = NULL;
1022 
1023 	if (soc->ast_offload_support)
1024 		return -QDF_STATUS_E_INVAL;
1025 
1026 	qdf_spin_lock_bh(&soc->ast_lock);
1027 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
1028 
1029 	if (!ast_entry) {
1030 		qdf_spin_unlock_bh(&soc->ast_lock);
1031 		return -QDF_STATUS_E_INVAL;
1032 	}
1033 
1034 	if (ast_entry->callback) {
1035 		cb = ast_entry->callback;
1036 		arg = ast_entry->cookie;
1037 	}
1038 
1039 	ast_entry->callback = callback;
1040 	ast_entry->cookie = cookie;
1041 
1042 	/*
1043 	 * if delete_in_progress is set AST delete is sent to target
1044 	 * and host is waiting for response should not sent delete
1045 	 * again
1046 	 */
1047 	if (!ast_entry->delete_in_progress)
1048 		dp_peer_del_ast(soc, ast_entry);
1049 
1050 	qdf_spin_unlock_bh(&soc->ast_lock);
1051 
1052 	if (cb) {
1053 		cb(soc->ctrl_psoc,
1054 		   dp_soc_to_cdp_soc(soc),
1055 		   arg,
1056 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1057 	}
1058 	return QDF_STATUS_SUCCESS;
1059 }
1060 
1061 /**
1062  * dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
1063  *                                 table if HMWDS rem-addr command is issued
1064  *
1065  * @soc_handle: data path soc handle
1066  * @vdev_id: vdev id
1067  * @wds_macaddr: AST entry mac address to delete
1068  * @type: cdp_txrx_ast_entry_type to send to FW
1069  * @delete_in_fw: flag to indicate AST entry deletion in FW
1070  *
1071  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1072  *         is sent
1073  *         QDF_STATUS_E_INVAL false if ast entry not found
1074  */
1075 static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
1076 					      uint8_t vdev_id,
1077 					      uint8_t *wds_macaddr,
1078 					      uint8_t type,
1079 					      uint8_t delete_in_fw)
1080 {
1081 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1082 
1083 	if (soc->ast_offload_support) {
1084 		dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
1085 					 delete_in_fw);
1086 		return QDF_STATUS_SUCCESS;
1087 	}
1088 
1089 	return -QDF_STATUS_E_INVAL;
1090 }
1091 
1092 #ifdef FEATURE_AST
1093 /**
1094  * dp_print_mlo_ast_stats() - Print AST stats for MLO peers
1095  *
1096  * @soc: core DP soc context
1097  *
1098  * Return: void
1099  */
1100 static void dp_print_mlo_ast_stats(struct dp_soc *soc)
1101 {
1102 	if (soc->arch_ops.print_mlo_ast_stats)
1103 		soc->arch_ops.print_mlo_ast_stats(soc);
1104 }
1105 
1106 void
1107 dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1108 {
1109 	struct dp_ast_entry *ase, *tmp_ase;
1110 	uint32_t num_entries = 0;
1111 	char type[CDP_TXRX_AST_TYPE_MAX][10] = {
1112 			"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
1113 			"DA", "HMWDS_SEC", "MLD"};
1114 
1115 	DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
1116 	    DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
1117 		    " peer_mac_addr = "QDF_MAC_ADDR_FMT
1118 		    " peer_id = %u"
1119 		    " type = %s"
1120 		    " next_hop = %d"
1121 		    " is_active = %d"
1122 		    " ast_idx = %d"
1123 		    " ast_hash = %d"
1124 		    " delete_in_progress = %d"
1125 		    " pdev_id = %d"
1126 		    " vdev_id = %d",
1127 		    ++num_entries,
1128 		    QDF_MAC_ADDR_REF(ase->mac_addr.raw),
1129 		    QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1130 		    ase->peer_id,
1131 		    type[ase->type],
1132 		    ase->next_hop,
1133 		    ase->is_active,
1134 		    ase->ast_idx,
1135 		    ase->ast_hash_value,
1136 		    ase->delete_in_progress,
1137 		    ase->pdev_id,
1138 		    ase->vdev_id);
1139 	}
1140 }
1141 
1142 void dp_print_ast_stats(struct dp_soc *soc)
1143 {
1144 	DP_PRINT_STATS("AST Stats:");
1145 	DP_PRINT_STATS("	Entries Added   = %d", soc->stats.ast.added);
1146 	DP_PRINT_STATS("	Entries Deleted = %d", soc->stats.ast.deleted);
1147 	DP_PRINT_STATS("	Entries Agedout = %d", soc->stats.ast.aged_out);
1148 	DP_PRINT_STATS("	Entries MAP ERR  = %d", soc->stats.ast.map_err);
1149 	DP_PRINT_STATS("	Entries Mismatch ERR  = %d",
1150 		       soc->stats.ast.ast_mismatch);
1151 
1152 	DP_PRINT_STATS("AST Table:");
1153 
1154 	qdf_spin_lock_bh(&soc->ast_lock);
1155 
1156 	dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
1157 			    DP_MOD_ID_GENERIC_STATS);
1158 
1159 	qdf_spin_unlock_bh(&soc->ast_lock);
1160 
1161 	dp_print_mlo_ast_stats(soc);
1162 }
1163 #else
1164 void dp_print_ast_stats(struct dp_soc *soc)
1165 {
1166 	DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
1167 	return;
1168 }
1169 #endif
1170 
1171 /**
1172  * dp_print_peer_info() - Dump peer info
1173  * @soc: Datapath soc handle
1174  * @peer: Datapath peer handle
1175  * @arg: argument to iter function
1176  *
1177  * Return: void
1178  */
1179 static void
1180 dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1181 {
1182 	struct dp_txrx_peer *txrx_peer = NULL;
1183 
1184 	txrx_peer = dp_get_txrx_peer(peer);
1185 	if (!txrx_peer)
1186 		return;
1187 
1188 	DP_PRINT_STATS(" peer id = %d"
1189 		       " peer_mac_addr = "QDF_MAC_ADDR_FMT
1190 		       " nawds_enabled = %d"
1191 		       " bss_peer = %d"
1192 		       " wds_enabled = %d"
1193 		       " tx_cap_enabled = %d"
1194 		       " rx_cap_enabled = %d",
1195 		       peer->peer_id,
1196 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1197 		       txrx_peer->nawds_enabled,
1198 		       txrx_peer->bss_peer,
1199 		       txrx_peer->wds_enabled,
1200 		       dp_monitor_is_tx_cap_enabled(peer),
1201 		       dp_monitor_is_rx_cap_enabled(peer));
1202 }
1203 
1204 /**
1205  * dp_print_peer_table() - Dump all Peer stats
1206  * @vdev: Datapath Vdev handle
1207  *
1208  * Return: void
1209  */
1210 static void dp_print_peer_table(struct dp_vdev *vdev)
1211 {
1212 	DP_PRINT_STATS("Dumping Peer Table  Stats:");
1213 	dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
1214 			     DP_MOD_ID_GENERIC_STATS);
1215 }
1216 
1217 #ifdef DP_MEM_PRE_ALLOC
1218 
1219 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1220 			   size_t ctxt_size)
1221 {
1222 	void *ctxt_mem;
1223 
1224 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
1225 		dp_warn("dp_prealloc_get_context null!");
1226 		goto dynamic_alloc;
1227 	}
1228 
1229 	ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
1230 								ctxt_size);
1231 
1232 	if (ctxt_mem)
1233 		goto end;
1234 
1235 dynamic_alloc:
1236 	dp_info("switch to dynamic-alloc for type %d, size %zu",
1237 		ctxt_type, ctxt_size);
1238 	ctxt_mem = qdf_mem_malloc(ctxt_size);
1239 end:
1240 	return ctxt_mem;
1241 }
1242 
1243 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1244 			 void *vaddr)
1245 {
1246 	QDF_STATUS status;
1247 
1248 	if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
1249 		status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
1250 								ctxt_type,
1251 								vaddr);
1252 	} else {
1253 		dp_warn("dp_prealloc_put_context null!");
1254 		status = QDF_STATUS_E_NOSUPPORT;
1255 	}
1256 
1257 	if (QDF_IS_STATUS_ERROR(status)) {
1258 		dp_info("Context type %d not pre-allocated", ctxt_type);
1259 		qdf_mem_free(vaddr);
1260 	}
1261 }
1262 
1263 static inline
1264 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1265 					   struct dp_srng *srng,
1266 					   uint32_t ring_type)
1267 {
1268 	void *mem;
1269 
1270 	qdf_assert(!srng->is_mem_prealloc);
1271 
1272 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
1273 		dp_warn("dp_prealloc_get_consistent is null!");
1274 		goto qdf;
1275 	}
1276 
1277 	mem =
1278 		soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
1279 						(&srng->alloc_size,
1280 						 &srng->base_vaddr_unaligned,
1281 						 &srng->base_paddr_unaligned,
1282 						 &srng->base_paddr_aligned,
1283 						 DP_RING_BASE_ALIGN, ring_type);
1284 
1285 	if (mem) {
1286 		srng->is_mem_prealloc = true;
1287 		goto end;
1288 	}
1289 qdf:
1290 	mem =  qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1291 						&srng->base_vaddr_unaligned,
1292 						&srng->base_paddr_unaligned,
1293 						&srng->base_paddr_aligned,
1294 						DP_RING_BASE_ALIGN);
1295 end:
1296 	dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
1297 		srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
1298 		srng, ring_type, srng->alloc_size, srng->num_entries);
1299 	return mem;
1300 }
1301 
1302 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1303 					       struct dp_srng *srng)
1304 {
1305 	if (srng->is_mem_prealloc) {
1306 		if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
1307 			dp_warn("dp_prealloc_put_consistent is null!");
1308 			QDF_BUG(0);
1309 			return;
1310 		}
1311 		soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
1312 						(srng->alloc_size,
1313 						 srng->base_vaddr_unaligned,
1314 						 srng->base_paddr_unaligned);
1315 
1316 	} else {
1317 		qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1318 					srng->alloc_size,
1319 					srng->base_vaddr_unaligned,
1320 					srng->base_paddr_unaligned, 0);
1321 	}
1322 }
1323 
1324 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
1325 				   enum qdf_dp_desc_type desc_type,
1326 				   struct qdf_mem_multi_page_t *pages,
1327 				   size_t element_size,
1328 				   uint32_t element_num,
1329 				   qdf_dma_context_t memctxt,
1330 				   bool cacheable)
1331 {
1332 	if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
1333 		dp_warn("dp_get_multi_pages is null!");
1334 		goto qdf;
1335 	}
1336 
1337 	pages->num_pages = 0;
1338 	pages->is_mem_prealloc = 0;
1339 	soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
1340 						element_size,
1341 						element_num,
1342 						pages,
1343 						cacheable);
1344 	if (pages->num_pages)
1345 		goto end;
1346 
1347 qdf:
1348 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
1349 				  element_num, memctxt, cacheable);
1350 end:
1351 	dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
1352 		pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
1353 		desc_type, (int)element_size, element_num, cacheable);
1354 }
1355 
1356 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
1357 				  enum qdf_dp_desc_type desc_type,
1358 				  struct qdf_mem_multi_page_t *pages,
1359 				  qdf_dma_context_t memctxt,
1360 				  bool cacheable)
1361 {
1362 	if (pages->is_mem_prealloc) {
1363 		if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
1364 			dp_warn("dp_put_multi_pages is null!");
1365 			QDF_BUG(0);
1366 			return;
1367 		}
1368 
1369 		soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
1370 		qdf_mem_zero(pages, sizeof(*pages));
1371 	} else {
1372 		qdf_mem_multi_pages_free(soc->osdev, pages,
1373 					 memctxt, cacheable);
1374 	}
1375 }
1376 
1377 #else
1378 
1379 static inline
1380 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1381 					   struct dp_srng *srng,
1382 					   uint32_t ring_type)
1383 
1384 {
1385 	void *mem;
1386 
1387 	mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1388 					       &srng->base_vaddr_unaligned,
1389 					       &srng->base_paddr_unaligned,
1390 					       &srng->base_paddr_aligned,
1391 					       DP_RING_BASE_ALIGN);
1392 	if (mem)
1393 		qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
1394 
1395 	return mem;
1396 }
1397 
1398 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1399 					       struct dp_srng *srng)
1400 {
1401 	qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1402 				srng->alloc_size,
1403 				srng->base_vaddr_unaligned,
1404 				srng->base_paddr_unaligned, 0);
1405 }
1406 
1407 #endif /* DP_MEM_PRE_ALLOC */
1408 
1409 #ifdef QCA_SUPPORT_WDS_EXTENDED
1410 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1411 {
1412 	return vdev->wds_ext_enabled;
1413 }
1414 #else
1415 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1416 {
1417 	return false;
1418 }
1419 #endif
1420 
1421 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
1422 {
1423 	struct dp_vdev *vdev = NULL;
1424 	uint8_t rx_fast_flag = true;
1425 
1426 	/* Check if protocol tagging enable */
1427 	if (pdev->is_rx_protocol_tagging_enabled) {
1428 		rx_fast_flag = false;
1429 		goto update_flag;
1430 	}
1431 
1432 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1433 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1434 		/* Check if any VDEV has NAWDS enabled */
1435 		if (vdev->nawds_enabled) {
1436 			rx_fast_flag = false;
1437 			break;
1438 		}
1439 
1440 		/* Check if any VDEV has multipass enabled */
1441 		if (vdev->multipass_en) {
1442 			rx_fast_flag = false;
1443 			break;
1444 		}
1445 
1446 		/* Check if any VDEV has mesh enabled */
1447 		if (vdev->mesh_vdev) {
1448 			rx_fast_flag = false;
1449 			break;
1450 		}
1451 	}
1452 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1453 
1454 update_flag:
1455 	dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
1456 	pdev->rx_fast_flag = rx_fast_flag;
1457 }
1458 
1459 void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
1460 {
1461 	if (srng->alloc_size && srng->base_vaddr_unaligned) {
1462 		if (!srng->cached) {
1463 			dp_srng_mem_free_consistent(soc, srng);
1464 		} else {
1465 			qdf_mem_free(srng->base_vaddr_unaligned);
1466 		}
1467 		srng->alloc_size = 0;
1468 		srng->base_vaddr_unaligned = NULL;
1469 	}
1470 	srng->hal_srng = NULL;
1471 }
1472 
1473 qdf_export_symbol(dp_srng_free);
1474 
1475 QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
1476 			int ring_num, int mac_id)
1477 {
1478 	return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
1479 					    ring_num, mac_id);
1480 }
1481 
1482 qdf_export_symbol(dp_srng_init);
1483 
1484 QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
1485 			 int ring_type, uint32_t num_entries,
1486 			 bool cached)
1487 {
1488 	hal_soc_handle_t hal_soc = soc->hal_soc;
1489 	uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
1490 	uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
1491 
1492 	if (srng->base_vaddr_unaligned) {
1493 		dp_init_err("%pK: Ring type: %d, is already allocated",
1494 			    soc, ring_type);
1495 		return QDF_STATUS_SUCCESS;
1496 	}
1497 
1498 	num_entries = (num_entries > max_entries) ? max_entries : num_entries;
1499 	srng->hal_srng = NULL;
1500 	srng->alloc_size = num_entries * entry_size;
1501 	srng->num_entries = num_entries;
1502 	srng->cached = cached;
1503 
1504 	if (!cached) {
1505 		srng->base_vaddr_aligned =
1506 		    dp_srng_aligned_mem_alloc_consistent(soc,
1507 							 srng,
1508 							 ring_type);
1509 	} else {
1510 		srng->base_vaddr_aligned = qdf_aligned_malloc(
1511 					&srng->alloc_size,
1512 					&srng->base_vaddr_unaligned,
1513 					&srng->base_paddr_unaligned,
1514 					&srng->base_paddr_aligned,
1515 					DP_RING_BASE_ALIGN);
1516 	}
1517 
1518 	if (!srng->base_vaddr_aligned)
1519 		return QDF_STATUS_E_NOMEM;
1520 
1521 	return QDF_STATUS_SUCCESS;
1522 }
1523 
1524 qdf_export_symbol(dp_srng_alloc);
1525 
1526 void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
1527 		    int ring_type, int ring_num)
1528 {
1529 	if (!srng->hal_srng) {
1530 		dp_init_err("%pK: Ring type: %d, num:%d not setup",
1531 			    soc, ring_type, ring_num);
1532 		return;
1533 	}
1534 
1535 	if (dp_check_umac_reset_in_progress(soc))
1536 		goto srng_cleanup;
1537 
1538 	if (soc->arch_ops.dp_free_ppeds_interrupts)
1539 		soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
1540 						       ring_num);
1541 
1542 srng_cleanup:
1543 	hal_srng_cleanup(soc->hal_soc, srng->hal_srng,
1544 			 dp_check_umac_reset_in_progress(soc));
1545 	srng->hal_srng = NULL;
1546 }
1547 
1548 qdf_export_symbol(dp_srng_deinit);
1549 
1550 /* TODO: Need this interface from HIF */
1551 void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
1552 
1553 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
1554 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
1555 			 hal_ring_handle_t hal_ring_hdl)
1556 {
1557 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
1558 	uint32_t hp, tp;
1559 	uint8_t ring_id;
1560 
1561 	if (!int_ctx)
1562 		return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
1563 
1564 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
1565 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
1566 
1567 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
1568 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
1569 
1570 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
1571 }
1572 
1573 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
1574 			hal_ring_handle_t hal_ring_hdl)
1575 {
1576 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
1577 	uint32_t hp, tp;
1578 	uint8_t ring_id;
1579 
1580 	if (!int_ctx)
1581 		return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
1582 
1583 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
1584 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
1585 
1586 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
1587 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
1588 
1589 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
1590 }
1591 
1592 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
1593 					      uint8_t hist_group_id)
1594 {
1595 	hif_record_event(dp_soc->hif_handle, hist_group_id,
1596 			 0, 0, 0, HIF_EVENT_TIMER_ENTRY);
1597 }
1598 
1599 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
1600 					     uint8_t hist_group_id)
1601 {
1602 	hif_record_event(dp_soc->hif_handle, hist_group_id,
1603 			 0, 0, 0, HIF_EVENT_TIMER_EXIT);
1604 }
1605 #else
1606 
1607 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
1608 					      uint8_t hist_group_id)
1609 {
1610 }
1611 
1612 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
1613 					     uint8_t hist_group_id)
1614 {
1615 }
1616 
1617 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
1618 
1619 enum timer_yield_status
1620 dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
1621 			  uint64_t start_time)
1622 {
1623 	uint64_t cur_time = qdf_get_log_timestamp();
1624 
1625 	if (!work_done)
1626 		return DP_TIMER_WORK_DONE;
1627 
1628 	if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
1629 		return DP_TIMER_TIME_EXHAUST;
1630 
1631 	return DP_TIMER_NO_YIELD;
1632 }
1633 
1634 qdf_export_symbol(dp_should_timer_irq_yield);
1635 
1636 void dp_interrupt_timer(void *arg)
1637 {
1638 	struct dp_soc *soc = (struct dp_soc *) arg;
1639 	struct dp_pdev *pdev = soc->pdev_list[0];
1640 	enum timer_yield_status yield = DP_TIMER_NO_YIELD;
1641 	uint32_t work_done  = 0, total_work_done = 0;
1642 	int budget = 0xffff, i;
1643 	uint32_t remaining_quota = budget;
1644 	uint64_t start_time;
1645 	uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
1646 	uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
1647 	uint32_t lmac_iter;
1648 	int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
1649 	enum reg_wifi_band mon_band;
1650 	int cpu = dp_srng_get_cpu();
1651 
1652 	/*
1653 	 * this logic makes all data path interfacing rings (UMAC/LMAC)
1654 	 * and Monitor rings polling mode when NSS offload is disabled
1655 	 */
1656 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
1657 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
1658 		if (qdf_atomic_read(&soc->cmn_init_done)) {
1659 			for (i = 0; i < wlan_cfg_get_num_contexts(
1660 						soc->wlan_cfg_ctx); i++)
1661 				dp_service_srngs(&soc->intr_ctx[i], 0xffff,
1662 						 cpu);
1663 
1664 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
1665 		}
1666 		return;
1667 	}
1668 
1669 	if (!qdf_atomic_read(&soc->cmn_init_done))
1670 		return;
1671 
1672 	if (dp_monitor_is_chan_band_known(pdev)) {
1673 		mon_band = dp_monitor_get_chan_band(pdev);
1674 		lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
1675 		if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
1676 			dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
1677 			dp_srng_record_timer_entry(soc, dp_intr_id);
1678 		}
1679 	}
1680 
1681 	start_time = qdf_get_log_timestamp();
1682 	dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
1683 
1684 	while (yield == DP_TIMER_NO_YIELD) {
1685 		for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
1686 			if (lmac_iter == lmac_id)
1687 				work_done = dp_monitor_process(soc,
1688 						&soc->intr_ctx[dp_intr_id],
1689 						lmac_iter, remaining_quota);
1690 			else
1691 				work_done =
1692 					dp_monitor_drop_packets_for_mac(pdev,
1693 							     lmac_iter,
1694 							     remaining_quota);
1695 			if (work_done) {
1696 				budget -=  work_done;
1697 				if (budget <= 0) {
1698 					yield = DP_TIMER_WORK_EXHAUST;
1699 					goto budget_done;
1700 				}
1701 				remaining_quota = budget;
1702 				total_work_done += work_done;
1703 			}
1704 		}
1705 
1706 		yield = dp_should_timer_irq_yield(soc, total_work_done,
1707 						  start_time);
1708 		total_work_done = 0;
1709 	}
1710 
1711 budget_done:
1712 	if (yield == DP_TIMER_WORK_EXHAUST ||
1713 	    yield == DP_TIMER_TIME_EXHAUST)
1714 		qdf_timer_mod(&soc->int_timer, 1);
1715 	else
1716 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
1717 
1718 	if (lmac_id != DP_MON_INVALID_LMAC_ID)
1719 		dp_srng_record_timer_exit(soc, dp_intr_id);
1720 }
1721 
1722 #if defined(DP_INTR_POLL_BOTH)
1723 /**
1724  * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
1725  * @txrx_soc: DP SOC handle
1726  *
1727  * Call the appropriate attach function based on the mode of operation.
1728  * This is a WAR for enabling monitor mode.
1729  *
1730  * Return: 0 for success. nonzero for failure.
1731  */
1732 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
1733 {
1734 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
1735 
1736 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
1737 	    (dp_is_monitor_mode_using_poll(soc) &&
1738 	     soc->cdp_soc.ol_ops->get_con_mode &&
1739 	     soc->cdp_soc.ol_ops->get_con_mode() ==
1740 	     QDF_GLOBAL_MONITOR_MODE)) {
1741 		dp_info("Poll mode");
1742 		return dp_soc_attach_poll(txrx_soc);
1743 	} else {
1744 		dp_info("Interrupt  mode");
1745 		return dp_soc_interrupt_attach(txrx_soc);
1746 	}
1747 }
1748 #else
1749 #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
1750 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
1751 {
1752 	return dp_soc_attach_poll(txrx_soc);
1753 }
1754 #else
1755 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
1756 {
1757 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
1758 
1759 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
1760 		return dp_soc_attach_poll(txrx_soc);
1761 	else
1762 		return dp_soc_interrupt_attach(txrx_soc);
1763 }
1764 #endif
1765 #endif
1766 
1767 void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
1768 {
1769 	uint32_t cookie = 0;
1770 	uint32_t page_idx = 0;
1771 	struct qdf_mem_multi_page_t *pages;
1772 	struct qdf_mem_dma_page_t *dma_pages;
1773 	uint32_t offset = 0;
1774 	uint32_t count = 0;
1775 	uint32_t desc_id = 0;
1776 	void *desc_srng;
1777 	int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
1778 	uint32_t *total_link_descs_addr;
1779 	uint32_t total_link_descs;
1780 	uint32_t scatter_buf_num;
1781 	uint32_t num_entries_per_buf = 0;
1782 	uint32_t rem_entries;
1783 	uint32_t num_descs_per_page;
1784 	uint32_t num_scatter_bufs = 0;
1785 	uint8_t *scatter_buf_ptr;
1786 	void *desc;
1787 
1788 	num_scatter_bufs = soc->num_scatter_bufs;
1789 
1790 	if (mac_id == WLAN_INVALID_PDEV_ID) {
1791 		pages = &soc->link_desc_pages;
1792 		total_link_descs = soc->total_link_descs;
1793 		desc_srng = soc->wbm_idle_link_ring.hal_srng;
1794 	} else {
1795 		pages = dp_monitor_get_link_desc_pages(soc, mac_id);
1796 		/* dp_monitor_get_link_desc_pages returns NULL only
1797 		 * if monitor SOC is  NULL
1798 		 */
1799 		if (!pages) {
1800 			dp_err("can not get link desc pages");
1801 			QDF_ASSERT(0);
1802 			return;
1803 		}
1804 		total_link_descs_addr =
1805 				dp_monitor_get_total_link_descs(soc, mac_id);
1806 		total_link_descs = *total_link_descs_addr;
1807 		desc_srng = dp_monitor_get_link_desc_ring(soc, mac_id);
1808 	}
1809 
1810 	dma_pages = pages->dma_pages;
1811 	do {
1812 		qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
1813 			     pages->page_size);
1814 		page_idx++;
1815 	} while (page_idx < pages->num_pages);
1816 
1817 	if (desc_srng) {
1818 		hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
1819 		page_idx = 0;
1820 		count = 0;
1821 		offset = 0;
1822 		while ((desc = hal_srng_src_get_next(soc->hal_soc,
1823 						     desc_srng)) &&
1824 			(count < total_link_descs)) {
1825 			page_idx = count / pages->num_element_per_page;
1826 			if (desc_id == pages->num_element_per_page)
1827 				desc_id = 0;
1828 
1829 			offset = count % pages->num_element_per_page;
1830 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
1831 						  soc->link_desc_id_start);
1832 
1833 			hal_set_link_desc_addr(soc->hal_soc, desc, cookie,
1834 					       dma_pages[page_idx].page_p_addr
1835 					       + (offset * link_desc_size),
1836 					       soc->idle_link_bm_id);
1837 			count++;
1838 			desc_id++;
1839 		}
1840 		hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
1841 	} else {
1842 		/* Populate idle list scatter buffers with link descriptor
1843 		 * pointers
1844 		 */
1845 		scatter_buf_num = 0;
1846 		num_entries_per_buf = hal_idle_scatter_buf_num_entries(
1847 					soc->hal_soc,
1848 					soc->wbm_idle_scatter_buf_size);
1849 
1850 		scatter_buf_ptr = (uint8_t *)(
1851 			soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
1852 		rem_entries = num_entries_per_buf;
1853 		page_idx = 0; count = 0;
1854 		offset = 0;
1855 		num_descs_per_page = pages->num_element_per_page;
1856 
1857 		while (count < total_link_descs) {
1858 			page_idx = count / num_descs_per_page;
1859 			offset = count % num_descs_per_page;
1860 			if (desc_id == pages->num_element_per_page)
1861 				desc_id = 0;
1862 
1863 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
1864 						  soc->link_desc_id_start);
1865 			hal_set_link_desc_addr(soc->hal_soc,
1866 					       (void *)scatter_buf_ptr,
1867 					       cookie,
1868 					       dma_pages[page_idx].page_p_addr +
1869 					       (offset * link_desc_size),
1870 					       soc->idle_link_bm_id);
1871 			rem_entries--;
1872 			if (rem_entries) {
1873 				scatter_buf_ptr += link_desc_size;
1874 			} else {
1875 				rem_entries = num_entries_per_buf;
1876 				scatter_buf_num++;
1877 				if (scatter_buf_num >= num_scatter_bufs)
1878 					break;
1879 				scatter_buf_ptr = (uint8_t *)
1880 					(soc->wbm_idle_scatter_buf_base_vaddr[
1881 					 scatter_buf_num]);
1882 			}
1883 			count++;
1884 			desc_id++;
1885 		}
1886 		/* Setup link descriptor idle list in HW */
1887 		hal_setup_link_idle_list(soc->hal_soc,
1888 			soc->wbm_idle_scatter_buf_base_paddr,
1889 			soc->wbm_idle_scatter_buf_base_vaddr,
1890 			num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
1891 			(uint32_t)(scatter_buf_ptr -
1892 			(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
1893 			scatter_buf_num-1])), total_link_descs);
1894 	}
1895 }
1896 
1897 qdf_export_symbol(dp_link_desc_ring_replenish);
1898 
1899 /**
1900  * dp_soc_ppeds_stop() - Stop PPE DS processing
1901  * @soc_handle: DP SOC handle
1902  *
1903  * Return: none
1904  */
1905 static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
1906 {
1907 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1908 
1909 	if (soc->arch_ops.txrx_soc_ppeds_stop)
1910 		soc->arch_ops.txrx_soc_ppeds_stop(soc);
1911 }
1912 
1913 #ifdef ENABLE_VERBOSE_DEBUG
1914 void dp_enable_verbose_debug(struct dp_soc *soc)
1915 {
1916 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1917 
1918 	soc_cfg_ctx = soc->wlan_cfg_ctx;
1919 
1920 	if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
1921 		is_dp_verbose_debug_enabled = true;
1922 
1923 	if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
1924 		hal_set_verbose_debug(true);
1925 	else
1926 		hal_set_verbose_debug(false);
1927 }
1928 #else
1929 void dp_enable_verbose_debug(struct dp_soc *soc)
1930 {
1931 }
1932 #endif
1933 
1934 static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
1935 {
1936 	struct cdp_lro_hash_config lro_hash;
1937 	QDF_STATUS status;
1938 
1939 	if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
1940 	    !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
1941 	    !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
1942 		dp_err("LRO, GRO and RX hash disabled");
1943 		return QDF_STATUS_E_FAILURE;
1944 	}
1945 
1946 	qdf_mem_zero(&lro_hash, sizeof(lro_hash));
1947 
1948 	if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
1949 	    wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
1950 		lro_hash.lro_enable = 1;
1951 		lro_hash.tcp_flag = QDF_TCPHDR_ACK;
1952 		lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
1953 			 QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
1954 			 QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
1955 	}
1956 
1957 	soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
1958 
1959 	qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
1960 
1961 	if (!soc->cdp_soc.ol_ops->lro_hash_config) {
1962 		QDF_BUG(0);
1963 		dp_err("lro_hash_config not configured");
1964 		return QDF_STATUS_E_FAILURE;
1965 	}
1966 
1967 	status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
1968 						      pdev->pdev_id,
1969 						      &lro_hash);
1970 	if (!QDF_IS_STATUS_SUCCESS(status)) {
1971 		dp_err("failed to send lro_hash_config to FW %u", status);
1972 		return status;
1973 	}
1974 
1975 	dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
1976 		lro_hash.lro_enable, lro_hash.tcp_flag,
1977 		lro_hash.tcp_flag_mask);
1978 
1979 	dp_info("toeplitz_hash_ipv4:");
1980 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1981 			   lro_hash.toeplitz_hash_ipv4,
1982 			   (sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
1983 			   LRO_IPV4_SEED_ARR_SZ));
1984 
1985 	dp_info("toeplitz_hash_ipv6:");
1986 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
1987 			   lro_hash.toeplitz_hash_ipv6,
1988 			   (sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
1989 			   LRO_IPV6_SEED_ARR_SZ));
1990 
1991 	return status;
1992 }
1993 
1994 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
1995 /**
1996  * dp_reap_timer_init() - initialize the reap timer
1997  * @soc: data path SoC handle
1998  *
1999  * Return: void
2000  */
2001 static void dp_reap_timer_init(struct dp_soc *soc)
2002 {
2003 	/*
2004 	 * Timer to reap rxdma status rings.
2005 	 * Needed until we enable ppdu end interrupts
2006 	 */
2007 	dp_monitor_reap_timer_init(soc);
2008 	dp_monitor_vdev_timer_init(soc);
2009 }
2010 
2011 /**
2012  * dp_reap_timer_deinit() - de-initialize the reap timer
2013  * @soc: data path SoC handle
2014  *
2015  * Return: void
2016  */
2017 static void dp_reap_timer_deinit(struct dp_soc *soc)
2018 {
2019 	dp_monitor_reap_timer_deinit(soc);
2020 }
2021 #else
2022 /* WIN use case */
2023 static void dp_reap_timer_init(struct dp_soc *soc)
2024 {
2025 	/* Configure LMAC rings in Polled mode */
2026 	if (soc->lmac_polled_mode) {
2027 		/*
2028 		 * Timer to reap lmac rings.
2029 		 */
2030 		qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
2031 			       dp_service_lmac_rings, (void *)soc,
2032 			       QDF_TIMER_TYPE_WAKE_APPS);
2033 		soc->lmac_timer_init = 1;
2034 		qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
2035 	}
2036 }
2037 
2038 static void dp_reap_timer_deinit(struct dp_soc *soc)
2039 {
2040 	if (soc->lmac_timer_init) {
2041 		qdf_timer_stop(&soc->lmac_reap_timer);
2042 		qdf_timer_free(&soc->lmac_reap_timer);
2043 		soc->lmac_timer_init = 0;
2044 	}
2045 }
2046 #endif
2047 
2048 #ifdef QCA_HOST2FW_RXBUF_RING
2049 /**
2050  * dp_rxdma_ring_alloc() - allocate the RXDMA rings
2051  * @soc: data path SoC handle
2052  * @pdev: Physical device handle
2053  *
2054  * Return: 0 - success, > 0 - failure
2055  */
2056 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2057 {
2058 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2059 	int max_mac_rings;
2060 	int i;
2061 	int ring_size;
2062 
2063 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2064 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2065 	ring_size =  wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
2066 
2067 	for (i = 0; i < max_mac_rings; i++) {
2068 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2069 		if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
2070 				  RXDMA_BUF, ring_size, 0)) {
2071 			dp_init_err("%pK: failed rx mac ring setup", soc);
2072 			return QDF_STATUS_E_FAILURE;
2073 		}
2074 	}
2075 	return QDF_STATUS_SUCCESS;
2076 }
2077 
2078 /**
2079  * dp_rxdma_ring_setup() - configure the RXDMA rings
2080  * @soc: data path SoC handle
2081  * @pdev: Physical device handle
2082  *
2083  * Return: 0 - success, > 0 - failure
2084  */
2085 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2086 {
2087 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2088 	int max_mac_rings;
2089 	int i;
2090 
2091 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2092 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2093 
2094 	for (i = 0; i < max_mac_rings; i++) {
2095 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2096 		if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
2097 				 RXDMA_BUF, 1, i)) {
2098 			dp_init_err("%pK: failed rx mac ring setup", soc);
2099 			return QDF_STATUS_E_FAILURE;
2100 		}
2101 	}
2102 	return QDF_STATUS_SUCCESS;
2103 }
2104 
2105 /**
2106  * dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
2107  * @soc: data path SoC handle
2108  * @pdev: Physical device handle
2109  *
2110  * Return: void
2111  */
2112 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2113 {
2114 	int i;
2115 
2116 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2117 		dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
2118 
2119 	dp_reap_timer_deinit(soc);
2120 }
2121 
2122 /**
2123  * dp_rxdma_ring_free() - Free the RXDMA rings
2124  * @pdev: Physical device handle
2125  *
2126  * Return: void
2127  */
2128 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2129 {
2130 	int i;
2131 
2132 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2133 		dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
2134 }
2135 
2136 #else
2137 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2138 {
2139 	return QDF_STATUS_SUCCESS;
2140 }
2141 
2142 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2143 {
2144 	return QDF_STATUS_SUCCESS;
2145 }
2146 
2147 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2148 {
2149 	dp_reap_timer_deinit(soc);
2150 }
2151 
2152 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2153 {
2154 }
2155 #endif
2156 
2157 #ifdef IPA_OFFLOAD
2158 /**
2159  * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
2160  * @soc: data path instance
2161  * @pdev: core txrx pdev context
2162  *
2163  * Return: QDF_STATUS_SUCCESS: success
2164  *         QDF_STATUS_E_RESOURCES: Error return
2165  */
2166 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2167 					   struct dp_pdev *pdev)
2168 {
2169 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2170 	int entries;
2171 
2172 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
2173 		soc_cfg_ctx = soc->wlan_cfg_ctx;
2174 		entries =
2175 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
2176 
2177 		/* Setup second Rx refill buffer ring */
2178 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
2179 				  entries, 0)) {
2180 			dp_init_err("%pK: dp_srng_alloc failed second"
2181 				    "rx refill ring", soc);
2182 			return QDF_STATUS_E_FAILURE;
2183 		}
2184 	}
2185 
2186 	return QDF_STATUS_SUCCESS;
2187 }
2188 
2189 #ifdef IPA_WDI3_VLAN_SUPPORT
2190 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2191 					       struct dp_pdev *pdev)
2192 {
2193 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2194 	int entries;
2195 
2196 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
2197 	    wlan_ipa_is_vlan_enabled()) {
2198 		soc_cfg_ctx = soc->wlan_cfg_ctx;
2199 		entries =
2200 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
2201 
2202 		/* Setup second Rx refill buffer ring */
2203 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
2204 				  entries, 0)) {
2205 			dp_init_err("%pK: alloc failed for 3rd rx refill ring",
2206 				    soc);
2207 			return QDF_STATUS_E_FAILURE;
2208 		}
2209 	}
2210 
2211 	return QDF_STATUS_SUCCESS;
2212 }
2213 
2214 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2215 					      struct dp_pdev *pdev)
2216 {
2217 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
2218 	    wlan_ipa_is_vlan_enabled()) {
2219 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
2220 				 IPA_RX_ALT_REFILL_BUF_RING_IDX,
2221 				 pdev->pdev_id)) {
2222 			dp_init_err("%pK: init failed for 3rd rx refill ring",
2223 				    soc);
2224 			return QDF_STATUS_E_FAILURE;
2225 		}
2226 	}
2227 
2228 	return QDF_STATUS_SUCCESS;
2229 }
2230 
2231 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2232 						 struct dp_pdev *pdev)
2233 {
2234 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
2235 	    wlan_ipa_is_vlan_enabled())
2236 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
2237 }
2238 
2239 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2240 					       struct dp_pdev *pdev)
2241 {
2242 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
2243 	    wlan_ipa_is_vlan_enabled())
2244 		dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
2245 }
2246 #else
2247 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2248 					       struct dp_pdev *pdev)
2249 {
2250 	return QDF_STATUS_SUCCESS;
2251 }
2252 
2253 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2254 					      struct dp_pdev *pdev)
2255 {
2256 	return QDF_STATUS_SUCCESS;
2257 }
2258 
2259 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2260 						 struct dp_pdev *pdev)
2261 {
2262 }
2263 
2264 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2265 					       struct dp_pdev *pdev)
2266 {
2267 }
2268 #endif
2269 
2270 /**
2271  * dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
2272  * @soc: data path instance
2273  * @pdev: core txrx pdev context
2274  *
2275  * Return: void
2276  */
2277 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2278 					     struct dp_pdev *pdev)
2279 {
2280 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
2281 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
2282 }
2283 
2284 /**
2285  * dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
2286  * @soc: data path instance
2287  * @pdev: core txrx pdev context
2288  *
2289  * Return: QDF_STATUS_SUCCESS: success
2290  *         QDF_STATUS_E_RESOURCES: Error return
2291  */
2292 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2293 					  struct dp_pdev *pdev)
2294 {
2295 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
2296 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
2297 				 IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
2298 			dp_init_err("%pK: dp_srng_init failed second"
2299 				    "rx refill ring", soc);
2300 			return QDF_STATUS_E_FAILURE;
2301 		}
2302 	}
2303 
2304 	if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
2305 		dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
2306 		return QDF_STATUS_E_FAILURE;
2307 	}
2308 
2309 	return QDF_STATUS_SUCCESS;
2310 }
2311 
2312 /**
2313  * dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
2314  * @soc: data path instance
2315  * @pdev: core txrx pdev context
2316  *
2317  * Return: void
2318  */
2319 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2320 					   struct dp_pdev *pdev)
2321 {
2322 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
2323 		dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
2324 }
2325 #else
2326 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2327 					   struct dp_pdev *pdev)
2328 {
2329 	return QDF_STATUS_SUCCESS;
2330 }
2331 
2332 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2333 					  struct dp_pdev *pdev)
2334 {
2335 	return QDF_STATUS_SUCCESS;
2336 }
2337 
2338 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2339 					     struct dp_pdev *pdev)
2340 {
2341 }
2342 
2343 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2344 					   struct dp_pdev *pdev)
2345 {
2346 }
2347 
2348 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2349 					       struct dp_pdev *pdev)
2350 {
2351 	return QDF_STATUS_SUCCESS;
2352 }
2353 
2354 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2355 						 struct dp_pdev *pdev)
2356 {
2357 }
2358 
2359 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
2360 					       struct dp_pdev *pdev)
2361 {
2362 }
2363 #endif
2364 
2365 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
2366 
2367 /**
2368  * dp_soc_cfg_history_attach() - Allocate and attach datapath config events
2369  *				 history
2370  * @soc: DP soc handle
2371  *
2372  * Return: None
2373  */
2374 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
2375 {
2376 	dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
2377 				   DP_CFG_EVT_HIST_MAX_SLOTS,
2378 				   DP_CFG_EVT_HIST_PER_SLOT_MAX,
2379 				   sizeof(struct dp_cfg_event),
2380 				   true, DP_CFG_EVENT_HIST_TYPE);
2381 }
2382 
2383 /**
2384  * dp_soc_cfg_history_detach() - Detach and free DP config events history
2385  * @soc: DP soc handle
2386  *
2387  * Return: none
2388  */
2389 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
2390 {
2391 	dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
2392 				   DP_CFG_EVT_HIST_MAX_SLOTS,
2393 				   true, DP_CFG_EVENT_HIST_TYPE);
2394 }
2395 
2396 #else
2397 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
2398 {
2399 }
2400 
2401 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
2402 {
2403 }
2404 #endif
2405 
2406 #ifdef DP_TX_HW_DESC_HISTORY
2407 /**
2408  * dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
2409  *
2410  * @soc: DP soc handle
2411  *
2412  * Return: None
2413  */
2414 static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
2415 {
2416 	dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
2417 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
2418 				   DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
2419 				   sizeof(struct dp_tx_hw_desc_evt),
2420 				   true, DP_TX_HW_DESC_HIST_TYPE);
2421 }
2422 
2423 static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
2424 {
2425 	dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
2426 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
2427 				   true, DP_TX_HW_DESC_HIST_TYPE);
2428 }
2429 
2430 #else /* DP_TX_HW_DESC_HISTORY */
2431 static inline void
2432 dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
2433 {
2434 }
2435 
2436 static inline void
2437 dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
2438 {
2439 }
2440 #endif /* DP_TX_HW_DESC_HISTORY */
2441 
2442 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
2443 #ifndef RX_DEFRAG_DO_NOT_REINJECT
2444 /**
2445  * dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
2446  *					    history.
2447  * @soc: DP soc handle
2448  *
2449  * Return: None
2450  */
2451 static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
2452 {
2453 	soc->rx_reinject_ring_history =
2454 		dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
2455 				     sizeof(struct dp_rx_reinject_history));
2456 	if (soc->rx_reinject_ring_history)
2457 		qdf_atomic_init(&soc->rx_reinject_ring_history->index);
2458 }
2459 #else /* RX_DEFRAG_DO_NOT_REINJECT */
2460 static inline void
2461 dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
2462 {
2463 }
2464 #endif /* RX_DEFRAG_DO_NOT_REINJECT */
2465 
2466 /**
2467  * dp_soc_rx_history_attach() - Attach the ring history record buffers
2468  * @soc: DP soc structure
2469  *
2470  * This function allocates the memory for recording the rx ring, rx error
2471  * ring and the reinject ring entries. There is no error returned in case
2472  * of allocation failure since the record function checks if the history is
2473  * initialized or not. We do not want to fail the driver load in case of
2474  * failure to allocate memory for debug history.
2475  *
2476  * Return: None
2477  */
2478 static void dp_soc_rx_history_attach(struct dp_soc *soc)
2479 {
2480 	int i;
2481 	uint32_t rx_ring_hist_size;
2482 	uint32_t rx_refill_ring_hist_size;
2483 
2484 	rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
2485 	rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
2486 
2487 	for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
2488 		soc->rx_ring_history[i] = dp_context_alloc_mem(
2489 				soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
2490 		if (soc->rx_ring_history[i])
2491 			qdf_atomic_init(&soc->rx_ring_history[i]->index);
2492 	}
2493 
2494 	soc->rx_err_ring_history = dp_context_alloc_mem(
2495 			soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
2496 	if (soc->rx_err_ring_history)
2497 		qdf_atomic_init(&soc->rx_err_ring_history->index);
2498 
2499 	dp_soc_rx_reinject_ring_history_attach(soc);
2500 
2501 	for (i = 0; i < MAX_PDEV_CNT; i++) {
2502 		soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
2503 						soc,
2504 						DP_RX_REFILL_RING_HIST_TYPE,
2505 						rx_refill_ring_hist_size);
2506 
2507 		if (soc->rx_refill_ring_history[i])
2508 			qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
2509 	}
2510 }
2511 
2512 static void dp_soc_rx_history_detach(struct dp_soc *soc)
2513 {
2514 	int i;
2515 
2516 	for (i = 0; i < MAX_REO_DEST_RINGS; i++)
2517 		dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
2518 				    soc->rx_ring_history[i]);
2519 
2520 	dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
2521 			    soc->rx_err_ring_history);
2522 
2523 	/*
2524 	 * No need for a featurized detach since qdf_mem_free takes
2525 	 * care of NULL pointer.
2526 	 */
2527 	dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
2528 			    soc->rx_reinject_ring_history);
2529 
2530 	for (i = 0; i < MAX_PDEV_CNT; i++)
2531 		dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
2532 				    soc->rx_refill_ring_history[i]);
2533 }
2534 
2535 #else
2536 static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
2537 {
2538 }
2539 
2540 static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
2541 {
2542 }
2543 #endif
2544 
2545 #ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
2546 /**
2547  * dp_soc_mon_status_ring_history_attach() - Attach the monitor status
2548  *					     buffer record history.
2549  * @soc: DP soc handle
2550  *
2551  * This function allocates memory to track the event for a monitor
2552  * status buffer, before its parsed and freed.
2553  *
2554  * Return: None
2555  */
2556 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
2557 {
2558 	soc->mon_status_ring_history = dp_context_alloc_mem(soc,
2559 				DP_MON_STATUS_BUF_HIST_TYPE,
2560 				sizeof(struct dp_mon_status_ring_history));
2561 	if (!soc->mon_status_ring_history) {
2562 		dp_err("Failed to alloc memory for mon status ring history");
2563 		return;
2564 	}
2565 }
2566 
2567 /**
2568  * dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
2569  *					     record history.
2570  * @soc: DP soc handle
2571  *
2572  * Return: None
2573  */
2574 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
2575 {
2576 	dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
2577 			    soc->mon_status_ring_history);
2578 }
2579 #else
2580 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
2581 {
2582 }
2583 
2584 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
2585 {
2586 }
2587 #endif
2588 
2589 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
2590 /**
2591  * dp_soc_tx_history_attach() - Attach the ring history record buffers
2592  * @soc: DP soc structure
2593  *
2594  * This function allocates the memory for recording the tx tcl ring and
2595  * the tx comp ring entries. There is no error returned in case
2596  * of allocation failure since the record function checks if the history is
2597  * initialized or not. We do not want to fail the driver load in case of
2598  * failure to allocate memory for debug history.
2599  *
2600  * Return: None
2601  */
2602 static void dp_soc_tx_history_attach(struct dp_soc *soc)
2603 {
2604 	dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
2605 				   DP_TX_TCL_HIST_MAX_SLOTS,
2606 				   DP_TX_TCL_HIST_PER_SLOT_MAX,
2607 				   sizeof(struct dp_tx_desc_event),
2608 				   true, DP_TX_TCL_HIST_TYPE);
2609 	dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
2610 				   DP_TX_COMP_HIST_MAX_SLOTS,
2611 				   DP_TX_COMP_HIST_PER_SLOT_MAX,
2612 				   sizeof(struct dp_tx_desc_event),
2613 				   true, DP_TX_COMP_HIST_TYPE);
2614 }
2615 
2616 /**
2617  * dp_soc_tx_history_detach() - Detach the ring history record buffers
2618  * @soc: DP soc structure
2619  *
2620  * This function frees the memory for recording the tx tcl ring and
2621  * the tx comp ring entries.
2622  *
2623  * Return: None
2624  */
2625 static void dp_soc_tx_history_detach(struct dp_soc *soc)
2626 {
2627 	dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
2628 				   DP_TX_TCL_HIST_MAX_SLOTS,
2629 				   true, DP_TX_TCL_HIST_TYPE);
2630 	dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
2631 				   DP_TX_COMP_HIST_MAX_SLOTS,
2632 				   true, DP_TX_COMP_HIST_TYPE);
2633 }
2634 
2635 #else
2636 static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
2637 {
2638 }
2639 
2640 static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
2641 {
2642 }
2643 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
2644 
2645 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
2646 QDF_STATUS
2647 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2648 {
2649 	struct dp_rx_fst *rx_fst = NULL;
2650 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
2651 
2652 	/* for Lithium the below API is not registered
2653 	 * hence fst attach happens for each pdev
2654 	 */
2655 	if (!soc->arch_ops.dp_get_rx_fst)
2656 		return dp_rx_fst_attach(soc, pdev);
2657 
2658 	rx_fst = soc->arch_ops.dp_get_rx_fst();
2659 
2660 	/* for BE the FST attach is called only once per
2661 	 * ML context. if rx_fst is already registered
2662 	 * increase the ref count and return.
2663 	 */
2664 	if (rx_fst) {
2665 		soc->rx_fst = rx_fst;
2666 		pdev->rx_fst = rx_fst;
2667 		soc->arch_ops.dp_rx_fst_ref();
2668 	} else {
2669 		ret = dp_rx_fst_attach(soc, pdev);
2670 		if ((ret != QDF_STATUS_SUCCESS) &&
2671 		    (ret != QDF_STATUS_E_NOSUPPORT))
2672 			return ret;
2673 
2674 		soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
2675 		soc->arch_ops.dp_rx_fst_ref();
2676 	}
2677 	return ret;
2678 }
2679 
2680 void
2681 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2682 {
2683 	struct dp_rx_fst *rx_fst = NULL;
2684 
2685 	/* for Lithium the below API is not registered
2686 	 * hence fst detach happens for each pdev
2687 	 */
2688 	if (!soc->arch_ops.dp_get_rx_fst) {
2689 		dp_rx_fst_detach(soc, pdev);
2690 		return;
2691 	}
2692 
2693 	rx_fst = soc->arch_ops.dp_get_rx_fst();
2694 
2695 	/* for BE the FST detach is called only when last
2696 	 * ref count reaches 1.
2697 	 */
2698 	if (rx_fst) {
2699 		if (soc->arch_ops.dp_rx_fst_deref() == 1)
2700 			dp_rx_fst_detach(soc, pdev);
2701 	}
2702 	pdev->rx_fst = NULL;
2703 }
2704 #else
2705 QDF_STATUS
2706 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2707 {
2708 	return QDF_STATUS_SUCCESS;
2709 }
2710 
2711 void
2712 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
2713 {
2714 }
2715 #endif
2716 
2717 /**
2718  * dp_pdev_attach_wifi3() - attach txrx pdev
2719  * @txrx_soc: Datapath SOC handle
2720  * @params: Params for PDEV attach
2721  *
2722  * Return: QDF_STATUS
2723  */
2724 static inline
2725 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
2726 				struct cdp_pdev_attach_params *params)
2727 {
2728 	qdf_size_t pdev_context_size;
2729 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2730 	struct dp_pdev *pdev = NULL;
2731 	uint8_t pdev_id = params->pdev_id;
2732 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2733 	int nss_cfg;
2734 	QDF_STATUS ret;
2735 
2736 	pdev_context_size =
2737 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
2738 	if (pdev_context_size)
2739 		pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
2740 					    pdev_context_size);
2741 
2742 	if (!pdev) {
2743 		dp_init_err("%pK: DP PDEV memory allocation failed",
2744 			    soc);
2745 		goto fail0;
2746 	}
2747 	wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
2748 			  WLAN_MD_DP_PDEV, "dp_pdev");
2749 
2750 	soc_cfg_ctx = soc->wlan_cfg_ctx;
2751 	pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
2752 
2753 	if (!pdev->wlan_cfg_ctx) {
2754 		dp_init_err("%pK: pdev cfg_attach failed", soc);
2755 		goto fail1;
2756 	}
2757 
2758 	pdev->soc = soc;
2759 	pdev->pdev_id = pdev_id;
2760 	soc->pdev_list[pdev_id] = pdev;
2761 
2762 	pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
2763 	soc->pdev_count++;
2764 
2765 	/*sync DP pdev cfg items with profile support after cfg_pdev_attach*/
2766 	wlan_dp_pdev_cfg_sync_profile((struct cdp_soc_t *)soc, pdev_id);
2767 
2768 	/*
2769 	 * set nss pdev config based on soc config
2770 	 */
2771 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
2772 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
2773 					 (nss_cfg & (1 << pdev_id)));
2774 
2775 	/* Allocate memory for pdev srng rings */
2776 	if (dp_pdev_srng_alloc(pdev)) {
2777 		dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
2778 		goto fail2;
2779 	}
2780 
2781 	/* Setup second Rx refill buffer ring */
2782 	if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
2783 		dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
2784 			    soc);
2785 		goto fail3;
2786 	}
2787 
2788 	/* Allocate memory for pdev rxdma rings */
2789 	if (dp_rxdma_ring_alloc(soc, pdev)) {
2790 		dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
2791 		goto fail4;
2792 	}
2793 
2794 	/* Rx specific init */
2795 	if (dp_rx_pdev_desc_pool_alloc(pdev)) {
2796 		dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
2797 		goto fail4;
2798 	}
2799 
2800 	if (dp_monitor_pdev_attach(pdev)) {
2801 		dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
2802 		goto fail5;
2803 	}
2804 
2805 	soc->arch_ops.txrx_pdev_attach(pdev, params);
2806 
2807 	/* Setup third Rx refill buffer ring */
2808 	if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
2809 		dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
2810 			    soc);
2811 		goto fail6;
2812 	}
2813 
2814 	ret = dp_rx_fst_attach_wrapper(soc, pdev);
2815 	if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
2816 		dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
2817 			    soc, pdev_id, ret);
2818 		goto fail7;
2819 	}
2820 
2821 	return QDF_STATUS_SUCCESS;
2822 
2823 fail7:
2824 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
2825 fail6:
2826 	dp_monitor_pdev_detach(pdev);
2827 fail5:
2828 	dp_rx_pdev_desc_pool_free(pdev);
2829 fail4:
2830 	dp_rxdma_ring_free(pdev);
2831 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
2832 fail3:
2833 	dp_pdev_srng_free(pdev);
2834 fail2:
2835 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
2836 fail1:
2837 	soc->pdev_list[pdev_id] = NULL;
2838 	qdf_mem_free(pdev);
2839 fail0:
2840 	return QDF_STATUS_E_FAILURE;
2841 }
2842 
2843 /**
2844  * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
2845  * @pdev: Datapath PDEV handle
2846  *
2847  * This is the last chance to flush all pending dp vdevs/peers,
2848  * some peer/vdev leak case like Non-SSR + peer unmap missing
2849  * will be covered here.
2850  *
2851  * Return: None
2852  */
2853 static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
2854 {
2855 	struct dp_soc *soc = pdev->soc;
2856 	struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
2857 	uint32_t i = 0;
2858 	uint32_t num_vdevs = 0;
2859 	struct dp_vdev *vdev = NULL;
2860 
2861 	if (TAILQ_EMPTY(&soc->inactive_vdev_list))
2862 		return;
2863 
2864 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
2865 	TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
2866 		      inactive_list_elem) {
2867 		if (vdev->pdev != pdev)
2868 			continue;
2869 
2870 		vdev_arr[num_vdevs] = vdev;
2871 		num_vdevs++;
2872 		/* take reference to free */
2873 		dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
2874 	}
2875 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
2876 
2877 	for (i = 0; i < num_vdevs; i++) {
2878 		dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
2879 		dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
2880 	}
2881 }
2882 
2883 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
2884 /**
2885  * dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
2886  *                                          for enable/disable of HW vdev stats
2887  * @soc: Datapath soc handle
2888  * @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
2889  * @enable: flag to represent enable/disable of hw vdev stats
2890  *
2891  * Return: none
2892  */
2893 static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
2894 						   uint8_t pdev_id,
2895 						   bool enable)
2896 {
2897 	/* Check SOC level config for HW offload vdev stats support */
2898 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
2899 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
2900 		return;
2901 	}
2902 
2903 	/* Send HTT command to FW for enable of stats */
2904 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
2905 }
2906 
2907 /**
2908  * dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
2909  * @soc: Datapath soc handle
2910  * @pdev_id: pdev_id (0,1,2)
2911  * @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
2912  *                   cleared on HW
2913  *
2914  * Return: none
2915  */
2916 static
2917 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
2918 					   uint64_t vdev_id_bitmask)
2919 {
2920 	/* Check SOC level config for HW offload vdev stats support */
2921 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
2922 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
2923 		return;
2924 	}
2925 
2926 	/* Send HTT command to FW for reset of stats */
2927 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
2928 					 vdev_id_bitmask);
2929 }
2930 #else
2931 static void
2932 dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
2933 				       bool enable)
2934 {
2935 }
2936 
2937 static
2938 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
2939 					   uint64_t vdev_id_bitmask)
2940 {
2941 }
2942 #endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
2943 
2944 /**
2945  * dp_pdev_deinit() - Deinit txrx pdev
2946  * @txrx_pdev: Datapath PDEV handle
2947  * @force: Force deinit
2948  *
2949  * Return: None
2950  */
2951 static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
2952 {
2953 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
2954 	qdf_nbuf_t curr_nbuf, next_nbuf;
2955 
2956 	if (pdev->pdev_deinit)
2957 		return;
2958 
2959 	dp_tx_me_exit(pdev);
2960 	dp_rx_pdev_buffers_free(pdev);
2961 	dp_rx_pdev_desc_pool_deinit(pdev);
2962 	dp_pdev_bkp_stats_detach(pdev);
2963 	qdf_event_destroy(&pdev->fw_peer_stats_event);
2964 	qdf_event_destroy(&pdev->fw_stats_event);
2965 	qdf_event_destroy(&pdev->fw_obss_stats_event);
2966 	if (pdev->sojourn_buf)
2967 		qdf_nbuf_free(pdev->sojourn_buf);
2968 
2969 	dp_pdev_flush_pending_vdevs(pdev);
2970 	dp_tx_desc_flush(pdev, NULL, true);
2971 
2972 	qdf_spinlock_destroy(&pdev->tx_mutex);
2973 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
2974 
2975 	dp_monitor_pdev_deinit(pdev);
2976 
2977 	dp_pdev_srng_deinit(pdev);
2978 
2979 	dp_ipa_uc_detach(pdev->soc, pdev);
2980 	dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
2981 	dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
2982 	dp_rxdma_ring_cleanup(pdev->soc, pdev);
2983 
2984 	curr_nbuf = pdev->invalid_peer_head_msdu;
2985 	while (curr_nbuf) {
2986 		next_nbuf = qdf_nbuf_next(curr_nbuf);
2987 		dp_rx_nbuf_free(curr_nbuf);
2988 		curr_nbuf = next_nbuf;
2989 	}
2990 	pdev->invalid_peer_head_msdu = NULL;
2991 	pdev->invalid_peer_tail_msdu = NULL;
2992 
2993 	dp_wdi_event_detach(pdev);
2994 	pdev->pdev_deinit = 1;
2995 }
2996 
2997 /**
2998  * dp_pdev_deinit_wifi3() - Deinit txrx pdev
2999  * @psoc: Datapath psoc handle
3000  * @pdev_id: Id of datapath PDEV handle
3001  * @force: Force deinit
3002  *
3003  * Return: QDF_STATUS
3004  */
3005 static QDF_STATUS
3006 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3007 		     int force)
3008 {
3009 	struct dp_pdev *txrx_pdev;
3010 
3011 	txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3012 						       pdev_id);
3013 
3014 	if (!txrx_pdev)
3015 		return QDF_STATUS_E_FAILURE;
3016 
3017 	dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
3018 
3019 	return QDF_STATUS_SUCCESS;
3020 }
3021 
3022 /**
3023  * dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
3024  * @txrx_pdev: Datapath PDEV handle
3025  *
3026  * Return: None
3027  */
3028 static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
3029 {
3030 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3031 
3032 	dp_monitor_tx_capture_debugfs_init(pdev);
3033 
3034 	if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
3035 		dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
3036 	}
3037 }
3038 
3039 /**
3040  * dp_pdev_post_attach_wifi3() - attach txrx pdev post
3041  * @soc: Datapath soc handle
3042  * @pdev_id: pdev id of pdev
3043  *
3044  * Return: QDF_STATUS
3045  */
3046 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
3047 				     uint8_t pdev_id)
3048 {
3049 	struct dp_pdev *pdev;
3050 
3051 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3052 						  pdev_id);
3053 
3054 	if (!pdev) {
3055 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3056 			    (struct dp_soc *)soc, pdev_id);
3057 		return QDF_STATUS_E_FAILURE;
3058 	}
3059 
3060 	dp_pdev_post_attach((struct cdp_pdev *)pdev);
3061 	return QDF_STATUS_SUCCESS;
3062 }
3063 
3064 /**
3065  * dp_pdev_detach() - Complete rest of pdev detach
3066  * @txrx_pdev: Datapath PDEV handle
3067  * @force: Force deinit
3068  *
3069  * Return: None
3070  */
3071 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
3072 {
3073 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3074 	struct dp_soc *soc = pdev->soc;
3075 
3076 	dp_rx_fst_detach_wrapper(soc, pdev);
3077 	dp_pdev_htt_stats_dbgfs_deinit(pdev);
3078 	dp_rx_pdev_desc_pool_free(pdev);
3079 	dp_monitor_pdev_detach(pdev);
3080 	dp_rxdma_ring_free(pdev);
3081 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3082 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3083 	dp_pdev_srng_free(pdev);
3084 
3085 	soc->pdev_count--;
3086 	soc->pdev_list[pdev->pdev_id] = NULL;
3087 
3088 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3089 	wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
3090 			     WLAN_MD_DP_PDEV, "dp_pdev");
3091 	dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
3092 }
3093 
3094 /**
3095  * dp_pdev_detach_wifi3() - detach txrx pdev
3096  * @psoc: Datapath soc handle
3097  * @pdev_id: pdev id of pdev
3098  * @force: Force detach
3099  *
3100  * Return: QDF_STATUS
3101  */
3102 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3103 				       int force)
3104 {
3105 	struct dp_pdev *pdev;
3106 	struct dp_soc *soc = (struct dp_soc *)psoc;
3107 
3108 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3109 						  pdev_id);
3110 
3111 	if (!pdev) {
3112 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3113 			    (struct dp_soc *)psoc, pdev_id);
3114 		return QDF_STATUS_E_FAILURE;
3115 	}
3116 
3117 	soc->arch_ops.txrx_pdev_detach(pdev);
3118 
3119 	dp_pdev_detach((struct cdp_pdev *)pdev, force);
3120 	return QDF_STATUS_SUCCESS;
3121 }
3122 
3123 void dp_soc_print_inactive_objects(struct dp_soc *soc)
3124 {
3125 	struct dp_peer *peer = NULL;
3126 	struct dp_peer *tmp_peer = NULL;
3127 	struct dp_vdev *vdev = NULL;
3128 	struct dp_vdev *tmp_vdev = NULL;
3129 	int i = 0;
3130 	uint32_t count;
3131 
3132 	if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
3133 	    TAILQ_EMPTY(&soc->inactive_vdev_list))
3134 		return;
3135 
3136 	TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
3137 			   inactive_list_elem, tmp_peer) {
3138 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3139 			count = qdf_atomic_read(&peer->mod_refs[i]);
3140 			if (count)
3141 				DP_PRINT_STATS("peer %pK Module id %u ==> %u",
3142 					       peer, i, count);
3143 		}
3144 	}
3145 
3146 	TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
3147 			   inactive_list_elem, tmp_vdev) {
3148 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3149 			count = qdf_atomic_read(&vdev->mod_refs[i]);
3150 			if (count)
3151 				DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
3152 					       vdev, i, count);
3153 		}
3154 	}
3155 	QDF_BUG(0);
3156 }
3157 
3158 /**
3159  * dp_soc_deinit_wifi3() - Deinitialize txrx SOC
3160  * @txrx_soc: Opaque DP SOC handle
3161  *
3162  * Return: None
3163  */
3164 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
3165 {
3166 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3167 
3168 	soc->arch_ops.txrx_soc_deinit(soc);
3169 }
3170 
3171 /**
3172  * dp_soc_detach() - Detach rest of txrx SOC
3173  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
3174  *
3175  * Return: None
3176  */
3177 static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
3178 {
3179 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3180 
3181 	soc->arch_ops.txrx_soc_detach(soc);
3182 
3183 	dp_runtime_deinit();
3184 
3185 	dp_soc_unset_qref_debug_list(soc);
3186 	dp_sysfs_deinitialize_stats(soc);
3187 	dp_soc_swlm_detach(soc);
3188 	dp_soc_tx_desc_sw_pools_free(soc);
3189 	dp_soc_srng_free(soc);
3190 	dp_hw_link_desc_ring_free(soc);
3191 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
3192 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
3193 	dp_soc_tx_hw_desc_history_detach(soc);
3194 	dp_soc_tx_history_detach(soc);
3195 	dp_soc_mon_status_ring_history_detach(soc);
3196 	dp_soc_rx_history_detach(soc);
3197 	dp_soc_cfg_history_detach(soc);
3198 
3199 	if (!dp_monitor_modularized_enable()) {
3200 		dp_mon_soc_detach_wrapper(soc);
3201 	}
3202 
3203 	qdf_mem_free(soc->cdp_soc.ops);
3204 	qdf_mem_common_free(soc);
3205 }
3206 
3207 /**
3208  * dp_soc_detach_wifi3() - Detach txrx SOC
3209  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
3210  *
3211  * Return: None
3212  */
3213 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
3214 {
3215 	dp_soc_detach(txrx_soc);
3216 }
3217 
3218 #ifdef QCA_HOST2FW_RXBUF_RING
3219 #ifdef IPA_WDI3_VLAN_SUPPORT
3220 static inline
3221 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
3222 				 struct dp_pdev *pdev,
3223 				 uint8_t idx)
3224 {
3225 	if (pdev->rx_refill_buf_ring3.hal_srng)
3226 		htt_srng_setup(soc->htt_handle, idx,
3227 			       pdev->rx_refill_buf_ring3.hal_srng,
3228 			       RXDMA_BUF);
3229 }
3230 #else
3231 static inline
3232 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
3233 				 struct dp_pdev *pdev,
3234 				 uint8_t idx)
3235 { }
3236 #endif
3237 
3238 #ifdef WIFI_MONITOR_SUPPORT
3239 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
3240 {
3241 	return dp_local_pkt_capture_tx_config(pdev);
3242 }
3243 #else
3244 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
3245 {
3246 	return QDF_STATUS_SUCCESS;
3247 }
3248 #endif
3249 
3250 /**
3251  * dp_rxdma_ring_config() - configure the RX DMA rings
3252  * @soc: data path SoC handle
3253  *
3254  * This function is used to configure the MAC rings.
3255  * On MCL host provides buffers in Host2FW ring
3256  * FW refills (copies) buffers to the ring and updates
3257  * ring_idx in register
3258  *
3259  * Return: zero on success, non-zero on failure
3260  */
3261 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
3262 {
3263 	int i;
3264 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3265 
3266 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3267 		struct dp_pdev *pdev = soc->pdev_list[i];
3268 
3269 		if (pdev) {
3270 			int mac_id;
3271 			int max_mac_rings =
3272 				 wlan_cfg_get_num_mac_rings
3273 				(pdev->wlan_cfg_ctx);
3274 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
3275 
3276 			htt_srng_setup(soc->htt_handle, i,
3277 				       soc->rx_refill_buf_ring[lmac_id]
3278 				       .hal_srng,
3279 				       RXDMA_BUF);
3280 
3281 			if (pdev->rx_refill_buf_ring2.hal_srng)
3282 				htt_srng_setup(soc->htt_handle, i,
3283 					       pdev->rx_refill_buf_ring2
3284 					       .hal_srng,
3285 					       RXDMA_BUF);
3286 
3287 			dp_rxdma_setup_refill_ring3(soc, pdev, i);
3288 
3289 			dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
3290 			dp_lpc_tx_config(pdev);
3291 			dp_info("pdev_id %d max_mac_rings %d",
3292 			       pdev->pdev_id, max_mac_rings);
3293 
3294 			for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
3295 				int mac_for_pdev =
3296 					dp_get_mac_id_for_pdev(mac_id,
3297 							       pdev->pdev_id);
3298 				/*
3299 				 * Obtain lmac id from pdev to access the LMAC
3300 				 * ring in soc context
3301 				 */
3302 				lmac_id =
3303 				dp_get_lmac_id_for_pdev_id(soc,
3304 							   mac_id,
3305 							   pdev->pdev_id);
3306 				dp_info("mac_id %d", mac_for_pdev);
3307 
3308 				htt_srng_setup(soc->htt_handle, mac_for_pdev,
3309 					 pdev->rx_mac_buf_ring[mac_id]
3310 						.hal_srng,
3311 					 RXDMA_BUF);
3312 
3313 				if (!soc->rxdma2sw_rings_not_supported)
3314 					dp_htt_setup_rxdma_err_dst_ring(soc,
3315 						mac_for_pdev, lmac_id);
3316 
3317 				/* Configure monitor mode rings */
3318 				status = dp_monitor_htt_srng_setup(soc, pdev,
3319 								   lmac_id,
3320 								   mac_for_pdev);
3321 				if (status != QDF_STATUS_SUCCESS) {
3322 					dp_err("Failed to send htt monitor messages to target");
3323 					return status;
3324 				}
3325 
3326 			}
3327 		}
3328 	}
3329 
3330 	dp_reap_timer_init(soc);
3331 	return status;
3332 }
3333 #else
3334 /* This is only for WIN */
3335 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
3336 {
3337 	int i;
3338 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3339 	int mac_for_pdev;
3340 	int lmac_id;
3341 
3342 	/* Configure monitor mode rings */
3343 	dp_monitor_soc_htt_srng_setup(soc);
3344 
3345 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3346 		struct dp_pdev *pdev =  soc->pdev_list[i];
3347 
3348 		if (!pdev)
3349 			continue;
3350 
3351 		mac_for_pdev = i;
3352 		lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
3353 
3354 		if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
3355 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
3356 				       soc->rx_refill_buf_ring[lmac_id].
3357 				       hal_srng, RXDMA_BUF);
3358 
3359 		/* Configure monitor mode rings */
3360 		dp_monitor_htt_srng_setup(soc, pdev,
3361 					  lmac_id,
3362 					  mac_for_pdev);
3363 		if (!soc->rxdma2sw_rings_not_supported)
3364 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
3365 				       soc->rxdma_err_dst_ring[lmac_id].hal_srng,
3366 				       RXDMA_DST);
3367 	}
3368 
3369 	dp_reap_timer_init(soc);
3370 	return status;
3371 }
3372 #endif
3373 
3374 /**
3375  * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
3376  *
3377  * This function is used to configure the FSE HW block in RX OLE on a
3378  * per pdev basis. Here, we will be programming parameters related to
3379  * the Flow Search Table.
3380  *
3381  * @soc: data path SoC handle
3382  *
3383  * Return: zero on success, non-zero on failure
3384  */
3385 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
3386 static QDF_STATUS
3387 dp_rx_target_fst_config(struct dp_soc *soc)
3388 {
3389 	int i;
3390 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3391 
3392 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3393 		struct dp_pdev *pdev = soc->pdev_list[i];
3394 
3395 		/* Flow search is not enabled if NSS offload is enabled */
3396 		if (pdev &&
3397 		    !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
3398 			status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
3399 			if (status != QDF_STATUS_SUCCESS)
3400 				break;
3401 		}
3402 	}
3403 	return status;
3404 }
3405 #else
3406 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
3407 {
3408 	return QDF_STATUS_SUCCESS;
3409 }
3410 #endif
3411 
3412 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3413 static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
3414 {
3415 	return QDF_STATUS_SUCCESS;
3416 }
3417 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3418 
3419 #ifdef WLAN_SUPPORT_PPEDS
3420 /**
3421  * dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
3422  * @soc: DP Tx/Rx handle
3423  *
3424  * Return: QDF_STATUS
3425  */
3426 static
3427 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
3428 {
3429 	struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
3430 	QDF_STATUS status;
3431 
3432 	/*
3433 	 * Program RxDMA to override the reo destination indication
3434 	 * with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
3435 	 * thereby driving the packet to REO2PPE ring.
3436 	 * If the MSDU is spanning more than 1 buffer, then this
3437 	 * override is not done.
3438 	 */
3439 	htt_cfg.override = 1;
3440 	htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
3441 	htt_cfg.multi_buffer_msdu_override_en = 0;
3442 
3443 	/*
3444 	 * Override use_ppe to 0 in RxOLE for the following
3445 	 * cases.
3446 	 */
3447 	htt_cfg.intra_bss_override = 1;
3448 	htt_cfg.decap_raw_override = 1;
3449 	htt_cfg.decap_nwifi_override = 1;
3450 	htt_cfg.ip_frag_override = 1;
3451 
3452 	status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
3453 	if (status != QDF_STATUS_SUCCESS)
3454 		dp_err("RxOLE and RxDMA PPE config failed %d", status);
3455 
3456 	return status;
3457 }
3458 
3459 #else
3460 static inline
3461 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
3462 {
3463 	return QDF_STATUS_SUCCESS;
3464 }
3465 
3466 #endif /* WLAN_SUPPORT_PPEDS */
3467 
3468 #ifdef DP_UMAC_HW_RESET_SUPPORT
3469 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
3470 {
3471 	dp_umac_reset_register_rx_action_callback(soc,
3472 					dp_umac_reset_action_trigger_recovery,
3473 					UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
3474 
3475 	dp_umac_reset_register_rx_action_callback(soc,
3476 		dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
3477 
3478 	dp_umac_reset_register_rx_action_callback(soc,
3479 					dp_umac_reset_handle_post_reset,
3480 					UMAC_RESET_ACTION_DO_POST_RESET_START);
3481 
3482 	dp_umac_reset_register_rx_action_callback(soc,
3483 				dp_umac_reset_handle_post_reset_complete,
3484 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
3485 
3486 }
3487 #else
3488 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
3489 {
3490 }
3491 #endif
3492 /**
3493  * dp_soc_attach_target_wifi3() - SOC initialization in the target
3494  * @cdp_soc: Opaque Datapath SOC handle
3495  *
3496  * Return: zero on success, non-zero on failure
3497  */
3498 static QDF_STATUS
3499 dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
3500 {
3501 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
3502 	QDF_STATUS status = QDF_STATUS_SUCCESS;
3503 	struct hal_reo_params reo_params;
3504 
3505 	htt_soc_attach_target(soc->htt_handle);
3506 
3507 	status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
3508 	if (status != QDF_STATUS_SUCCESS) {
3509 		dp_err("Failed to send htt RxOLE and RxDMA messages to target");
3510 		return status;
3511 	}
3512 
3513 	status = dp_rxdma_ring_config(soc);
3514 	if (status != QDF_STATUS_SUCCESS) {
3515 		dp_err("Failed to send htt srng setup messages to target");
3516 		return status;
3517 	}
3518 
3519 	status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
3520 	if (status != QDF_STATUS_SUCCESS) {
3521 		dp_err("Failed to send htt ring config message to target");
3522 		return status;
3523 	}
3524 
3525 	status = dp_soc_umac_reset_init(cdp_soc);
3526 	if (status != QDF_STATUS_SUCCESS &&
3527 	    status != QDF_STATUS_E_NOSUPPORT) {
3528 		dp_err("Failed to initialize UMAC reset");
3529 		return status;
3530 	}
3531 
3532 	dp_register_umac_reset_handlers(soc);
3533 
3534 	status = dp_rx_target_fst_config(soc);
3535 	if (status != QDF_STATUS_SUCCESS &&
3536 	    status != QDF_STATUS_E_NOSUPPORT) {
3537 		dp_err("Failed to send htt fst setup config message to target");
3538 		return status;
3539 	}
3540 
3541 	DP_STATS_INIT(soc);
3542 
3543 	dp_runtime_init(soc);
3544 
3545 	/* Enable HW vdev offload stats if feature is supported */
3546 	dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
3547 
3548 	/* initialize work queue for stats processing */
3549 	qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
3550 
3551 	wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
3552 				       soc->ctrl_psoc);
3553 	/* Setup HW REO */
3554 	qdf_mem_zero(&reo_params, sizeof(reo_params));
3555 
3556 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
3557 		/*
3558 		 * Reo ring remap is not required if both radios
3559 		 * are offloaded to NSS
3560 		 */
3561 
3562 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
3563 						   &reo_params.remap1,
3564 						   &reo_params.remap2))
3565 			reo_params.rx_hash_enabled = true;
3566 		else
3567 			reo_params.rx_hash_enabled = false;
3568 	}
3569 
3570 	/*
3571 	 * set the fragment destination ring
3572 	 */
3573 	dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
3574 
3575 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
3576 		reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
3577 
3578 	reo_params.reo_qref = &soc->reo_qref;
3579 	hal_reo_setup(soc->hal_soc, &reo_params, 1);
3580 
3581 	hal_reo_set_err_dst_remap(soc->hal_soc);
3582 
3583 	soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
3584 
3585 	return QDF_STATUS_SUCCESS;
3586 }
3587 
3588 /**
3589  * dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
3590  * @soc: SoC handle
3591  * @vdev: vdev handle
3592  * @vdev_id: vdev_id
3593  *
3594  * Return: None
3595  */
3596 static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
3597 				   struct dp_vdev *vdev,
3598 				   uint8_t vdev_id)
3599 {
3600 	QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
3601 
3602 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3603 
3604 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
3605 			QDF_STATUS_SUCCESS) {
3606 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
3607 			     soc, vdev, vdev_id);
3608 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3609 		return;
3610 	}
3611 
3612 	if (!soc->vdev_id_map[vdev_id])
3613 		soc->vdev_id_map[vdev_id] = vdev;
3614 	else
3615 		QDF_ASSERT(0);
3616 
3617 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3618 }
3619 
3620 /**
3621  * dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
3622  * @soc: SoC handle
3623  * @vdev: vdev handle
3624  *
3625  * Return: None
3626  */
3627 static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
3628 				      struct dp_vdev *vdev)
3629 {
3630 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3631 	QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
3632 
3633 	soc->vdev_id_map[vdev->vdev_id] = NULL;
3634 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
3635 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3636 }
3637 
3638 /**
3639  * dp_vdev_pdev_list_add() - add vdev into pdev's list
3640  * @soc: soc handle
3641  * @pdev: pdev handle
3642  * @vdev: vdev handle
3643  *
3644  * Return: none
3645  */
3646 static void dp_vdev_pdev_list_add(struct dp_soc *soc,
3647 				  struct dp_pdev *pdev,
3648 				  struct dp_vdev *vdev)
3649 {
3650 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
3651 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
3652 			QDF_STATUS_SUCCESS) {
3653 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
3654 			     soc, vdev);
3655 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
3656 		return;
3657 	}
3658 	/* add this vdev into the pdev's list */
3659 	TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
3660 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
3661 }
3662 
3663 /**
3664  * dp_vdev_pdev_list_remove() - remove vdev from pdev's list
3665  * @soc: SoC handle
3666  * @pdev: pdev handle
3667  * @vdev: VDEV handle
3668  *
3669  * Return: none
3670  */
3671 static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
3672 				     struct dp_pdev *pdev,
3673 				     struct dp_vdev *vdev)
3674 {
3675 	uint8_t found = 0;
3676 	struct dp_vdev *tmpvdev = NULL;
3677 
3678 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
3679 	TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
3680 		if (tmpvdev == vdev) {
3681 			found = 1;
3682 			break;
3683 		}
3684 	}
3685 
3686 	if (found) {
3687 		TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
3688 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
3689 	} else {
3690 		dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
3691 			      soc, vdev, pdev, &pdev->vdev_list);
3692 		QDF_ASSERT(0);
3693 	}
3694 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
3695 }
3696 
3697 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
3698 /**
3699  * dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
3700  * @vdev: Datapath VDEV handle
3701  *
3702  * Return: None
3703  */
3704 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
3705 {
3706 	vdev->osif_rx_eapol = NULL;
3707 }
3708 
3709 /**
3710  * dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
3711  * @vdev: DP vdev handle
3712  * @txrx_ops: Tx and Rx operations
3713  *
3714  * Return: None
3715  */
3716 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
3717 					     struct ol_txrx_ops *txrx_ops)
3718 {
3719 	vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
3720 }
3721 #else
3722 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
3723 {
3724 }
3725 
3726 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
3727 					     struct ol_txrx_ops *txrx_ops)
3728 {
3729 }
3730 #endif
3731 
3732 #ifdef WLAN_FEATURE_11BE_MLO
3733 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
3734 					 struct cdp_vdev_info *vdev_info)
3735 {
3736 	if (vdev_info->mld_mac_addr)
3737 		qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
3738 			     vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
3739 }
3740 
3741 #ifdef WLAN_MLO_MULTI_CHIP
3742 static inline void
3743 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
3744 				 struct cdp_vdev_info *vdev_info)
3745 {
3746 	if (vdev_info->is_bridge_vap)
3747 		vdev->is_bridge_vdev = 1;
3748 
3749 	dp_info("is_bridge_link = %d vdev id = %d chip id = %d",
3750 		vdev->is_bridge_vdev, vdev->vdev_id,
3751 		dp_mlo_get_chip_id(vdev->pdev->soc));
3752 }
3753 #else
3754 static inline void
3755 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
3756 				 struct cdp_vdev_info *vdev_info)
3757 {
3758 }
3759 #endif /* WLAN_MLO_MULTI_CHIP */
3760 
3761 #else
3762 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
3763 					 struct cdp_vdev_info *vdev_info)
3764 {
3765 
3766 }
3767 
3768 static inline void
3769 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
3770 				 struct cdp_vdev_info *vdev_info)
3771 {
3772 }
3773 #endif
3774 
3775 #ifdef DP_TRAFFIC_END_INDICATION
3776 /**
3777  * dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
3778  *                                              related members in VDEV
3779  * @vdev: DP vdev handle
3780  *
3781  * Return: None
3782  */
3783 static inline void
3784 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
3785 {
3786 	qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
3787 }
3788 
3789 /**
3790  * dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
3791  *                                              related members in VDEV
3792  * @vdev: DP vdev handle
3793  *
3794  * Return: None
3795  */
3796 static inline void
3797 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
3798 {
3799 	qdf_nbuf_t nbuf;
3800 
3801 	while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
3802 		qdf_nbuf_free(nbuf);
3803 }
3804 #else
3805 static inline void
3806 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
3807 {}
3808 
3809 static inline void
3810 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
3811 {}
3812 #endif
3813 
3814 #ifdef WLAN_DP_VDEV_NO_SELF_PEER
3815 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
3816 					      struct dp_vdev *vdev)
3817 {
3818 	return false;
3819 }
3820 #else
3821 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
3822 					      struct dp_vdev *vdev)
3823 {
3824 	if (wlan_op_mode_sta == vdev->opmode)
3825 		return true;
3826 
3827 	return false;
3828 }
3829 #endif
3830 
3831 /**
3832  * dp_vdev_attach_wifi3() - attach txrx vdev
3833  * @cdp_soc: CDP SoC context
3834  * @pdev_id: PDEV ID for vdev creation
3835  * @vdev_info: parameters used for vdev creation
3836  *
3837  * Return: status
3838  */
3839 static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
3840 				       uint8_t pdev_id,
3841 				       struct cdp_vdev_info *vdev_info)
3842 {
3843 	int i = 0;
3844 	qdf_size_t vdev_context_size;
3845 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
3846 	struct dp_pdev *pdev =
3847 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3848 						   pdev_id);
3849 	struct dp_vdev *vdev;
3850 	uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
3851 	uint8_t vdev_id = vdev_info->vdev_id;
3852 	enum wlan_op_mode op_mode = vdev_info->op_mode;
3853 	enum wlan_op_subtype subtype = vdev_info->subtype;
3854 	enum QDF_OPMODE qdf_opmode = vdev_info->qdf_opmode;
3855 	uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
3856 
3857 	vdev_context_size =
3858 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
3859 	vdev = qdf_mem_malloc(vdev_context_size);
3860 
3861 	if (!pdev) {
3862 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3863 			    cdp_soc, pdev_id);
3864 		qdf_mem_free(vdev);
3865 		goto fail0;
3866 	}
3867 
3868 	if (!vdev) {
3869 		dp_init_err("%pK: DP VDEV memory allocation failed",
3870 			    cdp_soc);
3871 		goto fail0;
3872 	}
3873 
3874 	wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
3875 			  WLAN_MD_DP_VDEV, "dp_vdev");
3876 
3877 	vdev->pdev = pdev;
3878 	vdev->vdev_id = vdev_id;
3879 	vdev->vdev_stats_id = vdev_stats_id;
3880 	vdev->opmode = op_mode;
3881 	vdev->subtype = subtype;
3882 	vdev->qdf_opmode = qdf_opmode;
3883 	vdev->osdev = soc->osdev;
3884 
3885 	vdev->osif_rx = NULL;
3886 	vdev->osif_rsim_rx_decap = NULL;
3887 	vdev->osif_get_key = NULL;
3888 	vdev->osif_tx_free_ext = NULL;
3889 	vdev->osif_vdev = NULL;
3890 
3891 	vdev->delete.pending = 0;
3892 	vdev->safemode = 0;
3893 	vdev->drop_unenc = 1;
3894 	vdev->sec_type = cdp_sec_type_none;
3895 	vdev->multipass_en = false;
3896 	vdev->wrap_vdev = false;
3897 	dp_vdev_init_rx_eapol(vdev);
3898 	qdf_atomic_init(&vdev->ref_cnt);
3899 	for (i = 0; i < DP_MOD_ID_MAX; i++)
3900 		qdf_atomic_init(&vdev->mod_refs[i]);
3901 
3902 	/* Take one reference for create*/
3903 	qdf_atomic_inc(&vdev->ref_cnt);
3904 	qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
3905 	vdev->num_peers = 0;
3906 #ifdef notyet
3907 	vdev->filters_num = 0;
3908 #endif
3909 	vdev->lmac_id = pdev->lmac_id;
3910 
3911 	qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
3912 
3913 	dp_vdev_update_bridge_vdev_param(vdev, vdev_info);
3914 	dp_vdev_save_mld_addr(vdev, vdev_info);
3915 
3916 	/* TODO: Initialize default HTT meta data that will be used in
3917 	 * TCL descriptors for packets transmitted from this VDEV
3918 	 */
3919 
3920 	qdf_spinlock_create(&vdev->peer_list_lock);
3921 	TAILQ_INIT(&vdev->peer_list);
3922 	dp_peer_multipass_list_init(vdev);
3923 	if ((soc->intr_mode == DP_INTR_POLL) &&
3924 	    wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
3925 		if ((pdev->vdev_count == 0) ||
3926 		    (wlan_op_mode_monitor == vdev->opmode))
3927 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
3928 	} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
3929 		   soc->intr_mode == DP_INTR_MSI &&
3930 		   wlan_op_mode_monitor == vdev->opmode &&
3931 		   !wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx)) {
3932 		/* Timer to reap status ring in mission mode */
3933 		dp_monitor_vdev_timer_start(soc);
3934 	}
3935 
3936 	dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
3937 
3938 	if (wlan_op_mode_monitor == vdev->opmode) {
3939 		if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
3940 			dp_monitor_pdev_set_mon_vdev(vdev);
3941 			return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
3942 		}
3943 		return QDF_STATUS_E_FAILURE;
3944 	}
3945 
3946 	vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
3947 	vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
3948 	vdev->dscp_tid_map_id = 0;
3949 	vdev->mcast_enhancement_en = 0;
3950 	vdev->igmp_mcast_enhanc_en = 0;
3951 	vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
3952 	vdev->prev_tx_enq_tstamp = 0;
3953 	vdev->prev_rx_deliver_tstamp = 0;
3954 	vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
3955 	dp_tx_vdev_traffic_end_indication_attach(vdev);
3956 
3957 	dp_vdev_pdev_list_add(soc, pdev, vdev);
3958 	pdev->vdev_count++;
3959 
3960 	if (wlan_op_mode_sta != vdev->opmode &&
3961 	    wlan_op_mode_ndi != vdev->opmode)
3962 		vdev->ap_bridge_enabled = true;
3963 	else
3964 		vdev->ap_bridge_enabled = false;
3965 	dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
3966 		     cdp_soc, vdev->ap_bridge_enabled);
3967 
3968 	dp_tx_vdev_attach(vdev);
3969 
3970 	dp_monitor_vdev_attach(vdev);
3971 	if (!pdev->is_lro_hash_configured) {
3972 		if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
3973 			pdev->is_lro_hash_configured = true;
3974 		else
3975 			dp_err("LRO hash setup failure!");
3976 	}
3977 
3978 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
3979 	dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
3980 		QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
3981 	DP_STATS_INIT(vdev);
3982 
3983 	if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
3984 		goto fail0;
3985 
3986 	if (dp_vdev_self_peer_required(soc, vdev))
3987 		dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
3988 				     vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
3989 
3990 	dp_pdev_update_fast_rx_flag(soc, pdev);
3991 
3992 	return QDF_STATUS_SUCCESS;
3993 
3994 fail0:
3995 	return QDF_STATUS_E_FAILURE;
3996 }
3997 
3998 #ifndef QCA_HOST_MODE_WIFI_DISABLED
3999 /**
4000  * dp_vdev_fetch_tx_handler() - Fetch Tx handlers
4001  * @vdev: struct dp_vdev *
4002  * @soc: struct dp_soc *
4003  * @ctx: struct ol_txrx_hardtart_ctxt *
4004  */
4005 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4006 					    struct dp_soc *soc,
4007 					    struct ol_txrx_hardtart_ctxt *ctx)
4008 {
4009 	/* Enable vdev_id check only for ap, if flag is enabled */
4010 	if (vdev->mesh_vdev)
4011 		ctx->tx = dp_tx_send_mesh;
4012 	else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4013 		 (vdev->opmode == wlan_op_mode_ap)) {
4014 		ctx->tx = dp_tx_send_vdev_id_check;
4015 		ctx->tx_fast = dp_tx_send_vdev_id_check;
4016 	} else {
4017 		ctx->tx = dp_tx_send;
4018 		ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
4019 	}
4020 
4021 	/* Avoid check in regular exception Path */
4022 	if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4023 	    (vdev->opmode == wlan_op_mode_ap))
4024 		ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
4025 	else
4026 		ctx->tx_exception = dp_tx_send_exception;
4027 }
4028 
4029 /**
4030  * dp_vdev_register_tx_handler() - Register Tx handler
4031  * @vdev: struct dp_vdev *
4032  * @soc: struct dp_soc *
4033  * @txrx_ops: struct ol_txrx_ops *
4034  */
4035 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4036 					       struct dp_soc *soc,
4037 					       struct ol_txrx_ops *txrx_ops)
4038 {
4039 	struct ol_txrx_hardtart_ctxt ctx = {0};
4040 
4041 	dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
4042 
4043 	txrx_ops->tx.tx = ctx.tx;
4044 	txrx_ops->tx.tx_fast = ctx.tx_fast;
4045 	txrx_ops->tx.tx_exception = ctx.tx_exception;
4046 
4047 	dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
4048 		wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
4049 		vdev->opmode, vdev->vdev_id);
4050 }
4051 #else /* QCA_HOST_MODE_WIFI_DISABLED */
4052 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4053 					       struct dp_soc *soc,
4054 					       struct ol_txrx_ops *txrx_ops)
4055 {
4056 }
4057 
4058 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4059 					    struct dp_soc *soc,
4060 					    struct ol_txrx_hardtart_ctxt *ctx)
4061 {
4062 }
4063 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
4064 
4065 /**
4066  * dp_vdev_register_wifi3() - Register VDEV operations from osif layer
4067  * @soc_hdl: Datapath soc handle
4068  * @vdev_id: id of Datapath VDEV handle
4069  * @osif_vdev: OSIF vdev handle
4070  * @txrx_ops: Tx and Rx operations
4071  *
4072  * Return: DP VDEV handle on success, NULL on failure
4073  */
4074 static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
4075 					 uint8_t vdev_id,
4076 					 ol_osif_vdev_handle osif_vdev,
4077 					 struct ol_txrx_ops *txrx_ops)
4078 {
4079 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4080 	struct dp_vdev *vdev =	dp_vdev_get_ref_by_id(soc, vdev_id,
4081 						      DP_MOD_ID_CDP);
4082 
4083 	if (!vdev)
4084 		return QDF_STATUS_E_FAILURE;
4085 
4086 	vdev->osif_vdev = osif_vdev;
4087 	vdev->osif_rx = txrx_ops->rx.rx;
4088 	vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
4089 	vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
4090 	vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
4091 	vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
4092 	vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
4093 	vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
4094 	vdev->osif_get_key = txrx_ops->get_key;
4095 	dp_monitor_vdev_register_osif(vdev, txrx_ops);
4096 	vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
4097 	vdev->tx_comp = txrx_ops->tx.tx_comp;
4098 	vdev->stats_cb = txrx_ops->rx.stats_rx;
4099 	vdev->tx_classify_critical_pkt_cb =
4100 		txrx_ops->tx.tx_classify_critical_pkt_cb;
4101 #ifdef notyet
4102 #if ATH_SUPPORT_WAPI
4103 	vdev->osif_check_wai = txrx_ops->rx.wai_check;
4104 #endif
4105 #endif
4106 #ifdef UMAC_SUPPORT_PROXY_ARP
4107 	vdev->osif_proxy_arp = txrx_ops->proxy_arp;
4108 #endif
4109 	vdev->me_convert = txrx_ops->me_convert;
4110 	vdev->get_tsf_time = txrx_ops->get_tsf_time;
4111 
4112 	dp_vdev_register_rx_eapol(vdev, txrx_ops);
4113 
4114 	dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
4115 
4116 	dp_init_info("%pK: DP Vdev Register success", soc);
4117 
4118 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4119 	return QDF_STATUS_SUCCESS;
4120 }
4121 
4122 #ifdef WLAN_FEATURE_11BE_MLO
4123 void dp_peer_delete(struct dp_soc *soc,
4124 		    struct dp_peer *peer,
4125 		    void *arg)
4126 {
4127 	if (!peer->valid)
4128 		return;
4129 
4130 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4131 			     peer->vdev->vdev_id,
4132 			     peer->mac_addr.raw, 0,
4133 			     peer->peer_type);
4134 }
4135 #else
4136 void dp_peer_delete(struct dp_soc *soc,
4137 		    struct dp_peer *peer,
4138 		    void *arg)
4139 {
4140 	if (!peer->valid)
4141 		return;
4142 
4143 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4144 			     peer->vdev->vdev_id,
4145 			     peer->mac_addr.raw, 0,
4146 			     CDP_LINK_PEER_TYPE);
4147 }
4148 #endif
4149 
4150 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
4151 static uint8_t
4152 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
4153 {
4154 	if (soc->cdp_soc.ol_ops->peer_get_num_mlo_links)
4155 		return soc->cdp_soc.ol_ops->peer_get_num_mlo_links(
4156 				soc->ctrl_psoc,
4157 				peer->vdev->vdev_id,
4158 				peer->mac_addr.raw,
4159 				IS_MLO_DP_MLD_PEER(peer));
4160 
4161 	return 0;
4162 }
4163 
4164 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
4165 {
4166 	if (!peer->valid)
4167 		return;
4168 
4169 	/* skip deleting the SLO peers */
4170 	if (dp_mlo_get_num_link_peer(soc, peer) == 1)
4171 		return;
4172 
4173 	if (IS_MLO_DP_LINK_PEER(peer))
4174 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4175 				     peer->vdev->vdev_id,
4176 				     peer->mac_addr.raw, 0,
4177 				     CDP_LINK_PEER_TYPE);
4178 }
4179 
4180 /**
4181  * dp_mlo_link_peer_flush() - flush all the link peers
4182  * @soc: Datapath soc handle
4183  * @peer: DP peer handle to be checked
4184  *
4185  * Return: None
4186  */
4187 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
4188 {
4189 	int cnt = 0;
4190 	struct dp_peer *link_peer = NULL;
4191 	struct dp_mld_link_peers link_peers_info = {NULL};
4192 
4193 	if (!IS_MLO_DP_MLD_PEER(peer))
4194 		return;
4195 
4196 	/* get link peers with reference */
4197 	dp_get_link_peers_ref_from_mld_peer(soc, peer, &link_peers_info,
4198 					    DP_MOD_ID_CDP);
4199 	for (cnt = 0; cnt < link_peers_info.num_links; cnt++) {
4200 		link_peer = link_peers_info.link_peers[cnt];
4201 		if (!link_peer)
4202 			continue;
4203 
4204 		/* delete all the link peers */
4205 		dp_mlo_peer_delete(link_peer->vdev->pdev->soc, link_peer, NULL);
4206 		/* unmap all the link peers */
4207 		dp_rx_peer_unmap_handler(link_peer->vdev->pdev->soc,
4208 					 link_peer->peer_id,
4209 					 link_peer->vdev->vdev_id,
4210 					 link_peer->mac_addr.raw, 0,
4211 					 DP_PEER_WDS_COUNT_INVALID);
4212 	}
4213 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
4214 }
4215 #else
4216 static uint8_t
4217 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
4218 {
4219 	return 0;
4220 }
4221 
4222 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
4223 {
4224 }
4225 
4226 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
4227 {
4228 }
4229 #endif
4230 /**
4231  * dp_vdev_flush_peers() - Forcibily Flush peers of vdev
4232  * @vdev_handle: Datapath VDEV handle
4233  * @unmap_only: Flag to indicate "only unmap"
4234  * @mlo_peers_only: true if only MLO peers should be flushed
4235  *
4236  * Return: void
4237  */
4238 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
4239 				bool unmap_only,
4240 				bool mlo_peers_only)
4241 {
4242 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
4243 	struct dp_pdev *pdev = vdev->pdev;
4244 	struct dp_soc *soc = pdev->soc;
4245 	struct dp_peer *peer;
4246 	uint32_t i = 0;
4247 
4248 
4249 	if (!unmap_only) {
4250 		if (!mlo_peers_only)
4251 			dp_vdev_iterate_peer_lock_safe(vdev,
4252 						       dp_peer_delete,
4253 						       NULL,
4254 						       DP_MOD_ID_CDP);
4255 		else
4256 			dp_vdev_iterate_peer_lock_safe(vdev,
4257 						       dp_mlo_peer_delete,
4258 						       NULL,
4259 						       DP_MOD_ID_CDP);
4260 	}
4261 
4262 	for (i = 0; i < soc->max_peer_id ; i++) {
4263 		peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
4264 
4265 		if (!peer)
4266 			continue;
4267 
4268 		if (peer->vdev != vdev) {
4269 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
4270 			continue;
4271 		}
4272 
4273 		if (!mlo_peers_only) {
4274 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
4275 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4276 			dp_mlo_link_peer_flush(soc, peer);
4277 			dp_rx_peer_unmap_handler(soc, i,
4278 						 vdev->vdev_id,
4279 						 peer->mac_addr.raw, 0,
4280 						 DP_PEER_WDS_COUNT_INVALID);
4281 			SET_PEER_REF_CNT_ONE(peer);
4282 		} else if (IS_MLO_DP_LINK_PEER(peer) ||
4283 			   IS_MLO_DP_MLD_PEER(peer)) {
4284 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
4285 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4286 
4287 			/* skip deleting the SLO peers */
4288 			if (dp_mlo_get_num_link_peer(soc, peer) ==  1) {
4289 				dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
4290 				continue;
4291 			}
4292 
4293 			dp_mlo_link_peer_flush(soc, peer);
4294 			dp_rx_peer_unmap_handler(soc, i,
4295 						 vdev->vdev_id,
4296 						 peer->mac_addr.raw, 0,
4297 						 DP_PEER_WDS_COUNT_INVALID);
4298 			SET_PEER_REF_CNT_ONE(peer);
4299 		}
4300 
4301 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
4302 	}
4303 }
4304 
4305 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
4306 /**
4307  * dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
4308  * @soc_hdl: Datapath soc handle
4309  * @vdev_stats_id: Address of vdev_stats_id
4310  *
4311  * Return: QDF_STATUS
4312  */
4313 static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
4314 					      uint8_t *vdev_stats_id)
4315 {
4316 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4317 	uint8_t id = 0;
4318 
4319 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
4320 		*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
4321 		return QDF_STATUS_E_FAILURE;
4322 	}
4323 
4324 	while (id < CDP_MAX_VDEV_STATS_ID) {
4325 		if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
4326 			*vdev_stats_id = id;
4327 			return QDF_STATUS_SUCCESS;
4328 		}
4329 		id++;
4330 	}
4331 
4332 	*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
4333 	return QDF_STATUS_E_FAILURE;
4334 }
4335 
4336 /**
4337  * dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
4338  * @soc_hdl: Datapath soc handle
4339  * @vdev_stats_id: vdev_stats_id to reset in dp_soc
4340  *
4341  * Return: none
4342  */
4343 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
4344 					uint8_t vdev_stats_id)
4345 {
4346 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4347 
4348 	if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
4349 	    (vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
4350 		return;
4351 
4352 	qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
4353 }
4354 #else
4355 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
4356 					uint8_t vdev_stats_id)
4357 {}
4358 #endif
4359 /**
4360  * dp_vdev_detach_wifi3() - Detach txrx vdev
4361  * @cdp_soc: Datapath soc handle
4362  * @vdev_id: VDEV Id
4363  * @callback: Callback OL_IF on completion of detach
4364  * @cb_context:	Callback context
4365  *
4366  */
4367 static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
4368 				       uint8_t vdev_id,
4369 				       ol_txrx_vdev_delete_cb callback,
4370 				       void *cb_context)
4371 {
4372 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4373 	struct dp_pdev *pdev;
4374 	struct dp_neighbour_peer *peer = NULL;
4375 	struct dp_peer *vap_self_peer = NULL;
4376 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
4377 						     DP_MOD_ID_CDP);
4378 
4379 	if (!vdev)
4380 		return QDF_STATUS_E_FAILURE;
4381 
4382 	soc->arch_ops.txrx_vdev_detach(soc, vdev);
4383 
4384 	pdev = vdev->pdev;
4385 
4386 	vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
4387 							DP_MOD_ID_CONFIG);
4388 	if (vap_self_peer) {
4389 		qdf_spin_lock_bh(&soc->ast_lock);
4390 		if (vap_self_peer->self_ast_entry) {
4391 			dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
4392 			vap_self_peer->self_ast_entry = NULL;
4393 		}
4394 		qdf_spin_unlock_bh(&soc->ast_lock);
4395 
4396 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
4397 				     vap_self_peer->mac_addr.raw, 0,
4398 				     CDP_LINK_PEER_TYPE);
4399 		dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
4400 	}
4401 
4402 	/*
4403 	 * If Target is hung, flush all peers before detaching vdev
4404 	 * this will free all references held due to missing
4405 	 * unmap commands from Target
4406 	 */
4407 	if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
4408 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
4409 	else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
4410 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
4411 
4412 	/* indicate that the vdev needs to be deleted */
4413 	vdev->delete.pending = 1;
4414 	dp_rx_vdev_detach(vdev);
4415 	/*
4416 	 * move it after dp_rx_vdev_detach(),
4417 	 * as the call back done in dp_rx_vdev_detach()
4418 	 * still need to get vdev pointer by vdev_id.
4419 	 */
4420 	dp_vdev_id_map_tbl_remove(soc, vdev);
4421 
4422 	dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
4423 
4424 	dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
4425 
4426 	dp_tx_vdev_multipass_deinit(vdev);
4427 	dp_tx_vdev_traffic_end_indication_detach(vdev);
4428 
4429 	if (vdev->vdev_dp_ext_handle) {
4430 		qdf_mem_free(vdev->vdev_dp_ext_handle);
4431 		vdev->vdev_dp_ext_handle = NULL;
4432 	}
4433 	vdev->delete.callback = callback;
4434 	vdev->delete.context = cb_context;
4435 
4436 	if (vdev->opmode != wlan_op_mode_monitor)
4437 		dp_vdev_pdev_list_remove(soc, pdev, vdev);
4438 
4439 	pdev->vdev_count--;
4440 	/* release reference taken above for find */
4441 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4442 
4443 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
4444 	TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
4445 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
4446 
4447 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
4448 	dp_info("detach vdev %pK id %d pending refs %d",
4449 		vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
4450 
4451 	/* release reference taken at dp_vdev_create */
4452 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4453 
4454 	return QDF_STATUS_SUCCESS;
4455 }
4456 
4457 #ifdef WLAN_FEATURE_11BE_MLO
4458 /**
4459  * is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
4460  * @vdev: Target DP vdev handle
4461  * @peer: DP peer handle to be checked
4462  * @peer_mac_addr: Target peer mac address
4463  * @peer_type: Target peer type
4464  *
4465  * Return: true - if match, false - not match
4466  */
4467 static inline
4468 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
4469 			  struct dp_peer *peer,
4470 			  uint8_t *peer_mac_addr,
4471 			  enum cdp_peer_type peer_type)
4472 {
4473 	if (peer->bss_peer && (peer->vdev == vdev) &&
4474 	    (peer->peer_type == peer_type) &&
4475 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
4476 			 QDF_MAC_ADDR_SIZE) == 0))
4477 		return true;
4478 
4479 	return false;
4480 }
4481 #else
4482 static inline
4483 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
4484 			  struct dp_peer *peer,
4485 			  uint8_t *peer_mac_addr,
4486 			  enum cdp_peer_type peer_type)
4487 {
4488 	if (peer->bss_peer && (peer->vdev == vdev) &&
4489 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
4490 			 QDF_MAC_ADDR_SIZE) == 0))
4491 		return true;
4492 
4493 	return false;
4494 }
4495 #endif
4496 
4497 static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
4498 						uint8_t *peer_mac_addr,
4499 						enum cdp_peer_type peer_type)
4500 {
4501 	struct dp_peer *peer;
4502 	struct dp_soc *soc = vdev->pdev->soc;
4503 
4504 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
4505 	TAILQ_FOREACH(peer, &soc->inactive_peer_list,
4506 		      inactive_list_elem) {
4507 
4508 		/* reuse bss peer only when vdev matches*/
4509 		if (is_dp_peer_can_reuse(vdev, peer,
4510 					 peer_mac_addr, peer_type)) {
4511 			/* increment ref count for cdp_peer_create*/
4512 			if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
4513 						QDF_STATUS_SUCCESS) {
4514 				TAILQ_REMOVE(&soc->inactive_peer_list, peer,
4515 					     inactive_list_elem);
4516 				qdf_spin_unlock_bh
4517 					(&soc->inactive_peer_list_lock);
4518 				return peer;
4519 			}
4520 		}
4521 	}
4522 
4523 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
4524 	return NULL;
4525 }
4526 
4527 #ifdef FEATURE_AST
4528 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
4529 					       struct dp_pdev *pdev,
4530 					       uint8_t *peer_mac_addr)
4531 {
4532 	struct dp_ast_entry *ast_entry;
4533 
4534 	if (soc->ast_offload_support)
4535 		return;
4536 
4537 	qdf_spin_lock_bh(&soc->ast_lock);
4538 	if (soc->ast_override_support)
4539 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
4540 							    pdev->pdev_id);
4541 	else
4542 		ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
4543 
4544 	if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
4545 		dp_peer_del_ast(soc, ast_entry);
4546 
4547 	qdf_spin_unlock_bh(&soc->ast_lock);
4548 }
4549 #else
4550 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
4551 					       struct dp_pdev *pdev,
4552 					       uint8_t *peer_mac_addr)
4553 {
4554 }
4555 #endif
4556 
4557 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
4558 /**
4559  * dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
4560  * @soc: Datapath soc handle
4561  * @txrx_peer: Datapath peer handle
4562  *
4563  * Return: none
4564  */
4565 static inline
4566 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
4567 				struct dp_txrx_peer *txrx_peer)
4568 {
4569 	txrx_peer->hw_txrx_stats_en =
4570 		wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
4571 }
4572 #else
4573 static inline
4574 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
4575 				struct dp_txrx_peer *txrx_peer)
4576 {
4577 	txrx_peer->hw_txrx_stats_en = 0;
4578 }
4579 #endif
4580 
4581 static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
4582 {
4583 	struct dp_txrx_peer *txrx_peer;
4584 	struct dp_pdev *pdev;
4585 	struct cdp_txrx_peer_params_update params = {0};
4586 
4587 	/* dp_txrx_peer exists for mld peer and legacy peer */
4588 	if (peer->txrx_peer) {
4589 		txrx_peer = peer->txrx_peer;
4590 		peer->txrx_peer = NULL;
4591 		pdev = txrx_peer->vdev->pdev;
4592 
4593 		params.osif_vdev = (void *)peer->vdev->osif_vdev;
4594 		params.peer_mac = peer->mac_addr.raw;
4595 
4596 		dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
4597 				     (void *)&params, peer->peer_id,
4598 				     WDI_NO_VAL, pdev->pdev_id);
4599 
4600 		dp_peer_defrag_rx_tids_deinit(txrx_peer);
4601 		/*
4602 		 * Deallocate the extended stats contenxt
4603 		 */
4604 		dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
4605 		dp_peer_rx_bufq_resources_deinit(txrx_peer);
4606 		dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
4607 		dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
4608 
4609 		qdf_mem_free(txrx_peer);
4610 	}
4611 
4612 	return QDF_STATUS_SUCCESS;
4613 }
4614 
4615 static inline
4616 uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
4617 					  struct dp_peer *peer)
4618 {
4619 	if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
4620 	    IS_MLO_DP_MLD_PEER(peer)) {
4621 		return (DP_MAX_MLO_LINKS + 1);
4622 	}
4623 	return 1;
4624 }
4625 
4626 static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
4627 {
4628 	struct dp_txrx_peer *txrx_peer;
4629 	struct dp_pdev *pdev;
4630 	struct cdp_txrx_peer_params_update params = {0};
4631 	uint8_t stats_arr_size = 0;
4632 
4633 	stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
4634 
4635 	txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
4636 							  (stats_arr_size *
4637 							   sizeof(struct dp_peer_stats)));
4638 
4639 	if (!txrx_peer)
4640 		return QDF_STATUS_E_NOMEM; /* failure */
4641 
4642 	txrx_peer->peer_id = HTT_INVALID_PEER;
4643 	/* initialize the peer_id */
4644 	txrx_peer->vdev = peer->vdev;
4645 	pdev = peer->vdev->pdev;
4646 	txrx_peer->stats_arr_size = stats_arr_size;
4647 
4648 	DP_TXRX_PEER_STATS_INIT(txrx_peer,
4649 				(txrx_peer->stats_arr_size *
4650 				sizeof(struct dp_peer_stats)));
4651 
4652 	if (!IS_DP_LEGACY_PEER(peer))
4653 		txrx_peer->is_mld_peer = 1;
4654 
4655 	dp_wds_ext_peer_init(txrx_peer);
4656 	dp_peer_rx_bufq_resources_init(txrx_peer);
4657 	dp_peer_hw_txrx_stats_init(soc, txrx_peer);
4658 	/*
4659 	 * Allocate peer extended stats context. Fall through in
4660 	 * case of failure as its not an implicit requirement to have
4661 	 * this object for regular statistics updates.
4662 	 */
4663 	if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
4664 					  QDF_STATUS_SUCCESS)
4665 		dp_warn("peer delay_stats ctx alloc failed");
4666 
4667 	/*
4668 	 * Alloctate memory for jitter stats. Fall through in
4669 	 * case of failure as its not an implicit requirement to have
4670 	 * this object for regular statistics updates.
4671 	 */
4672 	if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
4673 					   QDF_STATUS_SUCCESS)
4674 		dp_warn("peer jitter_stats ctx alloc failed");
4675 
4676 	dp_set_peer_isolation(txrx_peer, false);
4677 
4678 	dp_peer_defrag_rx_tids_init(txrx_peer);
4679 
4680 	if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
4681 		dp_warn("peer sawf stats alloc failed");
4682 
4683 	dp_txrx_peer_attach_add(soc, peer, txrx_peer);
4684 
4685 	params.peer_mac = peer->mac_addr.raw;
4686 	params.osif_vdev = (void *)peer->vdev->osif_vdev;
4687 	params.chip_id = dp_mlo_get_chip_id(soc);
4688 	params.pdev_id = peer->vdev->pdev->pdev_id;
4689 
4690 	dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
4691 			     (void *)&params, peer->peer_id,
4692 			     WDI_NO_VAL, params.pdev_id);
4693 
4694 	return QDF_STATUS_SUCCESS;
4695 }
4696 
4697 static inline
4698 void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
4699 {
4700 	if (!txrx_peer)
4701 		return;
4702 
4703 	txrx_peer->tx_failed = 0;
4704 	txrx_peer->comp_pkt.num = 0;
4705 	txrx_peer->comp_pkt.bytes = 0;
4706 	txrx_peer->to_stack.num = 0;
4707 	txrx_peer->to_stack.bytes = 0;
4708 
4709 	DP_TXRX_PEER_STATS_CLR(txrx_peer,
4710 			       (txrx_peer->stats_arr_size *
4711 			       sizeof(struct dp_peer_stats)));
4712 	dp_peer_delay_stats_ctx_clr(txrx_peer);
4713 	dp_peer_jitter_stats_ctx_clr(txrx_peer);
4714 }
4715 
4716 /**
4717  * dp_peer_create_wifi3() - attach txrx peer
4718  * @soc_hdl: Datapath soc handle
4719  * @vdev_id: id of vdev
4720  * @peer_mac_addr: Peer MAC address
4721  * @peer_type: link or MLD peer type
4722  *
4723  * Return: 0 on success, -1 on failure
4724  */
4725 static QDF_STATUS
4726 dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4727 		     uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
4728 {
4729 	struct dp_peer *peer;
4730 	int i;
4731 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
4732 	struct dp_pdev *pdev;
4733 	enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
4734 	struct dp_vdev *vdev = NULL;
4735 
4736 	if (!peer_mac_addr)
4737 		return QDF_STATUS_E_FAILURE;
4738 
4739 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
4740 
4741 	if (!vdev)
4742 		return QDF_STATUS_E_FAILURE;
4743 
4744 	pdev = vdev->pdev;
4745 	soc = pdev->soc;
4746 
4747 	/*
4748 	 * If a peer entry with given MAC address already exists,
4749 	 * reuse the peer and reset the state of peer.
4750 	 */
4751 	peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
4752 
4753 	if (peer) {
4754 		qdf_atomic_init(&peer->is_default_route_set);
4755 		dp_peer_cleanup(vdev, peer);
4756 
4757 		dp_peer_vdev_list_add(soc, vdev, peer);
4758 		dp_peer_find_hash_add(soc, peer);
4759 
4760 		if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
4761 			dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
4762 				 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4763 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4764 			return QDF_STATUS_E_FAILURE;
4765 		}
4766 
4767 		if (IS_MLO_DP_MLD_PEER(peer))
4768 			dp_mld_peer_init_link_peers_info(peer);
4769 
4770 		qdf_spin_lock_bh(&soc->ast_lock);
4771 		dp_peer_delete_ast_entries(soc, peer);
4772 		qdf_spin_unlock_bh(&soc->ast_lock);
4773 
4774 		if ((vdev->opmode == wlan_op_mode_sta) &&
4775 		    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
4776 		     QDF_MAC_ADDR_SIZE)) {
4777 			ast_type = CDP_TXRX_AST_TYPE_SELF;
4778 		}
4779 		dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
4780 
4781 		peer->valid = 1;
4782 		peer->is_tdls_peer = false;
4783 		dp_local_peer_id_alloc(pdev, peer);
4784 
4785 		qdf_spinlock_create(&peer->peer_info_lock);
4786 
4787 		DP_STATS_INIT(peer);
4788 
4789 		/*
4790 		 * In tx_monitor mode, filter may be set for unassociated peer
4791 		 * when unassociated peer get associated peer need to
4792 		 * update tx_cap_enabled flag to support peer filter.
4793 		 */
4794 		if (!IS_MLO_DP_MLD_PEER(peer)) {
4795 			dp_monitor_peer_tx_capture_filter_check(pdev, peer);
4796 			dp_monitor_peer_reset_stats(soc, peer);
4797 		}
4798 
4799 		if (peer->txrx_peer) {
4800 			dp_peer_rx_bufq_resources_init(peer->txrx_peer);
4801 			dp_txrx_peer_stats_clr(peer->txrx_peer);
4802 			dp_set_peer_isolation(peer->txrx_peer, false);
4803 			dp_wds_ext_peer_init(peer->txrx_peer);
4804 			dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
4805 		}
4806 
4807 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
4808 					     peer, vdev, 1);
4809 		dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
4810 			") vdev_ref_cnt "
4811 			"%d peer_ref_cnt: %d",
4812 			vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
4813 			qdf_atomic_read(&vdev->ref_cnt),
4814 			qdf_atomic_read(&peer->ref_cnt));
4815 			dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
4816 
4817 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4818 		return QDF_STATUS_SUCCESS;
4819 	} else {
4820 		/*
4821 		 * When a STA roams from RPTR AP to ROOT AP and vice versa, we
4822 		 * need to remove the AST entry which was earlier added as a WDS
4823 		 * entry.
4824 		 * If an AST entry exists, but no peer entry exists with a given
4825 		 * MAC addresses, we could deduce it as a WDS entry
4826 		 */
4827 		dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
4828 	}
4829 
4830 #ifdef notyet
4831 	peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
4832 		soc->mempool_ol_ath_peer);
4833 #else
4834 	peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
4835 #endif
4836 	wlan_minidump_log(peer,
4837 			  sizeof(*peer),
4838 			  soc->ctrl_psoc,
4839 			  WLAN_MD_DP_PEER, "dp_peer");
4840 	if (!peer) {
4841 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4842 		return QDF_STATUS_E_FAILURE; /* failure */
4843 	}
4844 
4845 	qdf_mem_zero(peer, sizeof(struct dp_peer));
4846 
4847 	/* store provided params */
4848 	peer->vdev = vdev;
4849 
4850 	/* initialize the peer_id */
4851 	peer->peer_id = HTT_INVALID_PEER;
4852 
4853 	qdf_mem_copy(
4854 		&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
4855 
4856 	DP_PEER_SET_TYPE(peer, peer_type);
4857 	if (IS_MLO_DP_MLD_PEER(peer)) {
4858 		if (dp_txrx_peer_attach(soc, peer) !=
4859 				QDF_STATUS_SUCCESS)
4860 			goto fail; /* failure */
4861 
4862 		dp_mld_peer_init_link_peers_info(peer);
4863 	} else if (dp_monitor_peer_attach(soc, peer) !=
4864 				QDF_STATUS_SUCCESS)
4865 		dp_warn("peer monitor ctx alloc failed");
4866 
4867 	TAILQ_INIT(&peer->ast_entry_list);
4868 
4869 	/* get the vdev reference for new peer */
4870 	dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
4871 
4872 	if ((vdev->opmode == wlan_op_mode_sta) &&
4873 	    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
4874 			 QDF_MAC_ADDR_SIZE)) {
4875 		ast_type = CDP_TXRX_AST_TYPE_SELF;
4876 	}
4877 	qdf_spinlock_create(&peer->peer_state_lock);
4878 	dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
4879 	qdf_spinlock_create(&peer->peer_info_lock);
4880 
4881 	/* reset the ast index to flowid table */
4882 	dp_peer_reset_flowq_map(peer);
4883 
4884 	qdf_atomic_init(&peer->ref_cnt);
4885 
4886 	for (i = 0; i < DP_MOD_ID_MAX; i++)
4887 		qdf_atomic_init(&peer->mod_refs[i]);
4888 
4889 	/* keep one reference for attach */
4890 	qdf_atomic_inc(&peer->ref_cnt);
4891 	qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
4892 
4893 	dp_peer_vdev_list_add(soc, vdev, peer);
4894 
4895 	/* TODO: See if hash based search is required */
4896 	dp_peer_find_hash_add(soc, peer);
4897 
4898 	/* Initialize the peer state */
4899 	peer->state = OL_TXRX_PEER_STATE_DISC;
4900 
4901 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
4902 				     peer, vdev, 0);
4903 	dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
4904 		"%d peer_ref_cnt: %d",
4905 		vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
4906 		qdf_atomic_read(&vdev->ref_cnt),
4907 		qdf_atomic_read(&peer->ref_cnt));
4908 	/*
4909 	 * For every peer MAp message search and set if bss_peer
4910 	 */
4911 	if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
4912 			QDF_MAC_ADDR_SIZE) == 0 &&
4913 			(wlan_op_mode_sta != vdev->opmode)) {
4914 		dp_info("vdev bss_peer!!");
4915 		peer->bss_peer = 1;
4916 		if (peer->txrx_peer)
4917 			peer->txrx_peer->bss_peer = 1;
4918 	}
4919 
4920 	if (wlan_op_mode_sta == vdev->opmode &&
4921 	    qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
4922 			QDF_MAC_ADDR_SIZE) == 0) {
4923 		peer->sta_self_peer = 1;
4924 	}
4925 
4926 	if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
4927 		dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
4928 			 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
4929 		goto fail;
4930 	}
4931 
4932 	peer->valid = 1;
4933 	dp_local_peer_id_alloc(pdev, peer);
4934 	DP_STATS_INIT(peer);
4935 
4936 	if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
4937 		dp_warn("peer sawf context alloc failed");
4938 
4939 	dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
4940 
4941 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4942 
4943 	return QDF_STATUS_SUCCESS;
4944 fail:
4945 	qdf_mem_free(peer);
4946 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4947 
4948 	return QDF_STATUS_E_FAILURE;
4949 }
4950 
4951 QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
4952 {
4953 	/* txrx_peer might exist already in peer reuse case */
4954 	if (peer->txrx_peer)
4955 		return QDF_STATUS_SUCCESS;
4956 
4957 	if (dp_txrx_peer_attach(soc, peer) !=
4958 				QDF_STATUS_SUCCESS) {
4959 		dp_err("peer txrx ctx alloc failed");
4960 		return QDF_STATUS_E_FAILURE;
4961 	}
4962 
4963 	return QDF_STATUS_SUCCESS;
4964 }
4965 
4966 #ifdef WLAN_FEATURE_11BE_MLO
4967 static QDF_STATUS dp_mld_peer_change_vdev(struct dp_soc *soc,
4968 					  struct dp_peer *mld_peer,
4969 					  uint8_t new_vdev_id)
4970 {
4971 	struct dp_vdev *prev_vdev;
4972 
4973 	prev_vdev = mld_peer->vdev;
4974 	/* release the ref to original dp_vdev */
4975 	dp_vdev_unref_delete(soc, mld_peer->vdev,
4976 			     DP_MOD_ID_CHILD);
4977 	/*
4978 	 * get the ref to new dp_vdev,
4979 	 * increase dp_vdev ref_cnt
4980 	 */
4981 	mld_peer->vdev = dp_vdev_get_ref_by_id(soc, new_vdev_id,
4982 					       DP_MOD_ID_CHILD);
4983 	mld_peer->txrx_peer->vdev = mld_peer->vdev;
4984 
4985 	dp_info("Change vdev for ML peer " QDF_MAC_ADDR_FMT
4986 		" old vdev %pK id %d new vdev %pK id %d",
4987 		QDF_MAC_ADDR_REF(mld_peer->mac_addr.raw),
4988 		prev_vdev, prev_vdev->vdev_id, mld_peer->vdev, new_vdev_id);
4989 
4990 	dp_cfg_event_record_mlo_setup_vdev_update_evt(
4991 			soc, mld_peer, prev_vdev,
4992 			mld_peer->vdev);
4993 
4994 	return QDF_STATUS_SUCCESS;
4995 }
4996 
4997 QDF_STATUS dp_peer_mlo_setup(
4998 			struct dp_soc *soc,
4999 			struct dp_peer *peer,
5000 			uint8_t vdev_id,
5001 			struct cdp_peer_setup_info *setup_info)
5002 {
5003 	struct dp_peer *mld_peer = NULL;
5004 	struct cdp_txrx_peer_params_update params = {0};
5005 
5006 	/* Non-MLO connection */
5007 	if (!setup_info || !setup_info->mld_peer_mac) {
5008 		/* To handle downgrade scenarios */
5009 		if (peer->vdev->opmode == wlan_op_mode_sta) {
5010 			struct cdp_txrx_peer_params_update params = {0};
5011 
5012 			params.chip_id = dp_mlo_get_chip_id(soc);
5013 			params.pdev_id = peer->vdev->pdev->pdev_id;
5014 			params.osif_vdev = peer->vdev->osif_vdev;
5015 
5016 			dp_wdi_event_handler(
5017 					WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5018 					soc,
5019 					(void *)&params, peer->peer_id,
5020 					WDI_NO_VAL, params.pdev_id);
5021 		}
5022 		return QDF_STATUS_SUCCESS;
5023 	}
5024 
5025 	dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
5026 					   peer, NULL, vdev_id, setup_info);
5027 	dp_info("link peer: " QDF_MAC_ADDR_FMT "mld peer: " QDF_MAC_ADDR_FMT
5028 		"first_link %d, primary_link %d",
5029 		QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5030 		QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
5031 		setup_info->is_first_link,
5032 		setup_info->is_primary_link);
5033 
5034 	/* if this is the first link peer */
5035 	if (setup_info->is_first_link)
5036 		/* create MLD peer */
5037 		dp_peer_create_wifi3((struct cdp_soc_t *)soc,
5038 				     vdev_id,
5039 				     setup_info->mld_peer_mac,
5040 				     CDP_MLD_PEER_TYPE);
5041 
5042 	if (peer->vdev->opmode == wlan_op_mode_sta &&
5043 	    setup_info->is_primary_link) {
5044 		struct cdp_txrx_peer_params_update params = {0};
5045 
5046 		params.chip_id = dp_mlo_get_chip_id(soc);
5047 		params.pdev_id = peer->vdev->pdev->pdev_id;
5048 		params.osif_vdev = peer->vdev->osif_vdev;
5049 
5050 		dp_wdi_event_handler(
5051 				WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5052 				soc,
5053 				(void *)&params, peer->peer_id,
5054 				WDI_NO_VAL, params.pdev_id);
5055 	}
5056 
5057 	peer->first_link = setup_info->is_first_link;
5058 	peer->primary_link = setup_info->is_primary_link;
5059 	mld_peer = dp_mld_peer_find_hash_find(soc,
5060 					      setup_info->mld_peer_mac,
5061 					      0, vdev_id, DP_MOD_ID_CDP);
5062 	if (mld_peer) {
5063 		if (setup_info->is_first_link) {
5064 			/* assign rx_tid to mld peer */
5065 			mld_peer->rx_tid = peer->rx_tid;
5066 			/* no cdp_peer_setup for MLD peer,
5067 			 * set it for addba processing
5068 			 */
5069 			qdf_atomic_set(&mld_peer->is_default_route_set, 1);
5070 		} else {
5071 			/* free link peer original rx_tids mem */
5072 			dp_peer_rx_tids_destroy(peer);
5073 			/* assign mld peer rx_tid to link peer */
5074 			peer->rx_tid = mld_peer->rx_tid;
5075 		}
5076 
5077 		if (setup_info->is_primary_link &&
5078 		    !setup_info->is_first_link) {
5079 			/*
5080 			 * if first link is not the primary link,
5081 			 * then need to change mld_peer->vdev as
5082 			 * primary link dp_vdev is not same one
5083 			 * during mld peer creation.
5084 			 */
5085 			dp_info("Primary link is not the first link. vdev: %pK "
5086 				"vdev_id %d vdev_ref_cnt %d",
5087 				mld_peer->vdev, vdev_id,
5088 				qdf_atomic_read(&mld_peer->vdev->ref_cnt));
5089 
5090 			dp_mld_peer_change_vdev(soc, mld_peer, vdev_id);
5091 
5092 			params.osif_vdev = (void *)peer->vdev->osif_vdev;
5093 			params.peer_mac = mld_peer->mac_addr.raw;
5094 			params.chip_id = dp_mlo_get_chip_id(soc);
5095 			params.pdev_id = peer->vdev->pdev->pdev_id;
5096 
5097 			dp_wdi_event_handler(
5098 					WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
5099 					soc, (void *)&params, peer->peer_id,
5100 					WDI_NO_VAL, params.pdev_id);
5101 		}
5102 
5103 		/* associate mld and link peer */
5104 		dp_link_peer_add_mld_peer(peer, mld_peer);
5105 		dp_mld_peer_add_link_peer(mld_peer, peer);
5106 
5107 		mld_peer->txrx_peer->is_mld_peer = 1;
5108 		dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
5109 	} else {
5110 		peer->mld_peer = NULL;
5111 		dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
5112 		       QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
5113 		return QDF_STATUS_E_FAILURE;
5114 	}
5115 
5116 	return QDF_STATUS_SUCCESS;
5117 }
5118 
5119 /**
5120  * dp_mlo_peer_authorize() - authorize MLO peer
5121  * @soc: soc handle
5122  * @peer: pointer to link peer
5123  *
5124  * Return: void
5125  */
5126 static void dp_mlo_peer_authorize(struct dp_soc *soc,
5127 				  struct dp_peer *peer)
5128 {
5129 	int i;
5130 	struct dp_peer *link_peer = NULL;
5131 	struct dp_peer *mld_peer = peer->mld_peer;
5132 	struct dp_mld_link_peers link_peers_info;
5133 
5134 	if (!mld_peer)
5135 		return;
5136 
5137 	/* get link peers with reference */
5138 	dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
5139 					    &link_peers_info,
5140 					    DP_MOD_ID_CDP);
5141 
5142 	for (i = 0; i < link_peers_info.num_links; i++) {
5143 		link_peer = link_peers_info.link_peers[i];
5144 
5145 		if (!link_peer->authorize) {
5146 			dp_release_link_peers_ref(&link_peers_info,
5147 						  DP_MOD_ID_CDP);
5148 			mld_peer->authorize = false;
5149 			return;
5150 		}
5151 	}
5152 
5153 	/* if we are here all link peers are authorized,
5154 	 * authorize ml_peer also
5155 	 */
5156 	mld_peer->authorize = true;
5157 
5158 	/* release link peers reference */
5159 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5160 }
5161 #endif
5162 
5163 /**
5164  * dp_peer_setup_wifi3_wrapper() - initialize the peer
5165  * @soc_hdl: soc handle object
5166  * @vdev_id : vdev_id of vdev object
5167  * @peer_mac: Peer's mac address
5168  * @setup_info: peer setup info for MLO
5169  *
5170  * Return: QDF_STATUS
5171  */
5172 static QDF_STATUS
5173 dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5174 			    uint8_t *peer_mac,
5175 			    struct cdp_peer_setup_info *setup_info)
5176 {
5177 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5178 
5179 	return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
5180 					     peer_mac, setup_info);
5181 }
5182 
5183 /**
5184  * dp_cp_peer_del_resp_handler() - Handle the peer delete response
5185  * @soc_hdl: Datapath SOC handle
5186  * @vdev_id: id of virtual device object
5187  * @mac_addr: Mac address of the peer
5188  *
5189  * Return: QDF_STATUS
5190  */
5191 static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
5192 					      uint8_t vdev_id,
5193 					      uint8_t *mac_addr)
5194 {
5195 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5196 	struct dp_ast_entry  *ast_entry = NULL;
5197 	txrx_ast_free_cb cb = NULL;
5198 	void *cookie;
5199 
5200 	if (soc->ast_offload_support)
5201 		return QDF_STATUS_E_INVAL;
5202 
5203 	qdf_spin_lock_bh(&soc->ast_lock);
5204 
5205 	ast_entry =
5206 		dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
5207 						vdev_id);
5208 
5209 	/* in case of qwrap we have multiple BSS peers
5210 	 * with same mac address
5211 	 *
5212 	 * AST entry for this mac address will be created
5213 	 * only for one peer hence it will be NULL here
5214 	 */
5215 	if ((!ast_entry || !ast_entry->delete_in_progress) ||
5216 	    (ast_entry->peer_id != HTT_INVALID_PEER)) {
5217 		qdf_spin_unlock_bh(&soc->ast_lock);
5218 		return QDF_STATUS_E_FAILURE;
5219 	}
5220 
5221 	if (ast_entry->is_mapped)
5222 		soc->ast_table[ast_entry->ast_idx] = NULL;
5223 
5224 	DP_STATS_INC(soc, ast.deleted, 1);
5225 	dp_peer_ast_hash_remove(soc, ast_entry);
5226 
5227 	cb = ast_entry->callback;
5228 	cookie = ast_entry->cookie;
5229 	ast_entry->callback = NULL;
5230 	ast_entry->cookie = NULL;
5231 
5232 	soc->num_ast_entries--;
5233 	qdf_spin_unlock_bh(&soc->ast_lock);
5234 
5235 	if (cb) {
5236 		cb(soc->ctrl_psoc,
5237 		   dp_soc_to_cdp_soc(soc),
5238 		   cookie,
5239 		   CDP_TXRX_AST_DELETED);
5240 	}
5241 	qdf_mem_free(ast_entry);
5242 
5243 	return QDF_STATUS_SUCCESS;
5244 }
5245 
5246 #ifdef WLAN_SUPPORT_MSCS
5247 /**
5248  * dp_record_mscs_params() - Record MSCS parameters sent by the STA in
5249  * the MSCS Request to the AP.
5250  * @soc_hdl: Datapath soc handle
5251  * @peer_mac: STA Mac address
5252  * @vdev_id: ID of the vdev handle
5253  * @mscs_params: Structure having MSCS parameters obtained
5254  * from handshake
5255  * @active: Flag to set MSCS active/inactive
5256  *
5257  * The AP makes a note of these parameters while comparing the MSDUs
5258  * sent by the STA, to send the downlink traffic with correct User
5259  * priority.
5260  *
5261  * Return: QDF_STATUS - Success/Invalid
5262  */
5263 static QDF_STATUS
5264 dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
5265 		      uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
5266 		      bool active)
5267 {
5268 	struct dp_peer *peer;
5269 	struct dp_peer *tgt_peer;
5270 	QDF_STATUS status = QDF_STATUS_E_INVAL;
5271 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5272 
5273 	peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
5274 				      DP_MOD_ID_CDP);
5275 
5276 	if (!peer) {
5277 		dp_err("Peer is NULL!");
5278 		goto fail;
5279 	}
5280 
5281 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
5282 	if (!tgt_peer)
5283 		goto fail;
5284 
5285 	if (!active) {
5286 		dp_info("MSCS Procedure is terminated");
5287 		tgt_peer->mscs_active = active;
5288 		goto fail;
5289 	}
5290 
5291 	if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
5292 		/* Populate entries inside IPV4 database first */
5293 		tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
5294 			mscs_params->user_pri_bitmap;
5295 		tgt_peer->mscs_ipv4_parameter.user_priority_limit =
5296 			mscs_params->user_pri_limit;
5297 		tgt_peer->mscs_ipv4_parameter.classifier_mask =
5298 			mscs_params->classifier_mask;
5299 
5300 		/* Populate entries inside IPV6 database */
5301 		tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
5302 			mscs_params->user_pri_bitmap;
5303 		tgt_peer->mscs_ipv6_parameter.user_priority_limit =
5304 			mscs_params->user_pri_limit;
5305 		tgt_peer->mscs_ipv6_parameter.classifier_mask =
5306 			mscs_params->classifier_mask;
5307 		tgt_peer->mscs_active = 1;
5308 		dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
5309 			"\tClassifier_type = %d\tUser priority bitmap = %x\n"
5310 			"\tUser priority limit = %x\tClassifier mask = %x",
5311 			QDF_MAC_ADDR_REF(peer_mac),
5312 			mscs_params->classifier_type,
5313 			tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
5314 			tgt_peer->mscs_ipv4_parameter.user_priority_limit,
5315 			tgt_peer->mscs_ipv4_parameter.classifier_mask);
5316 	}
5317 
5318 	status = QDF_STATUS_SUCCESS;
5319 fail:
5320 	if (peer)
5321 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5322 	return status;
5323 }
5324 #endif
5325 
5326 /**
5327  * dp_get_sec_type() - Get the security type
5328  * @soc: soc handle
5329  * @vdev_id: id of dp handle
5330  * @peer_mac: mac of datapath PEER handle
5331  * @sec_idx:    Security id (mcast, ucast)
5332  *
5333  * return sec_type: Security type
5334  */
5335 static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
5336 			   uint8_t *peer_mac, uint8_t sec_idx)
5337 {
5338 	int sec_type = 0;
5339 	struct dp_peer *peer =
5340 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
5341 						       peer_mac, 0, vdev_id,
5342 						       DP_MOD_ID_CDP);
5343 
5344 	if (!peer) {
5345 		dp_cdp_err("%pK: Peer is NULL!", (struct dp_soc *)soc);
5346 		return sec_type;
5347 	}
5348 
5349 	if (!peer->txrx_peer) {
5350 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5351 		dp_peer_debug("%pK: txrx peer is NULL!", soc);
5352 		return sec_type;
5353 	}
5354 	sec_type = peer->txrx_peer->security[sec_idx].sec_type;
5355 
5356 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5357 	return sec_type;
5358 }
5359 
5360 /**
5361  * dp_peer_authorize() - authorize txrx peer
5362  * @soc_hdl: soc handle
5363  * @vdev_id: id of dp handle
5364  * @peer_mac: mac of datapath PEER handle
5365  * @authorize:
5366  *
5367  * Return: QDF_STATUS
5368  *
5369  */
5370 static QDF_STATUS
5371 dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5372 		  uint8_t *peer_mac, uint32_t authorize)
5373 {
5374 	QDF_STATUS status = QDF_STATUS_SUCCESS;
5375 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5376 	struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
5377 							      0, vdev_id,
5378 							      DP_MOD_ID_CDP);
5379 
5380 	if (!peer) {
5381 		dp_cdp_debug("%pK: Peer is NULL!", soc);
5382 		status = QDF_STATUS_E_FAILURE;
5383 	} else {
5384 		peer->authorize = authorize ? 1 : 0;
5385 		if (peer->txrx_peer)
5386 			peer->txrx_peer->authorize = peer->authorize;
5387 
5388 		if (!peer->authorize)
5389 			dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
5390 
5391 		dp_mlo_peer_authorize(soc, peer);
5392 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5393 	}
5394 
5395 	return status;
5396 }
5397 
5398 /**
5399  * dp_peer_get_authorize() - get peer authorize status
5400  * @soc_hdl: soc handle
5401  * @vdev_id: id of dp handle
5402  * @peer_mac: mac of datapath PEER handle
5403  *
5404  * Return: true is peer is authorized, false otherwise
5405  */
5406 static bool
5407 dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5408 		      uint8_t *peer_mac)
5409 {
5410 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5411 	bool authorize = false;
5412 	struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
5413 						      0, vdev_id,
5414 						      DP_MOD_ID_CDP);
5415 
5416 	if (!peer) {
5417 		dp_cdp_debug("%pK: Peer is NULL!", soc);
5418 		return authorize;
5419 	}
5420 
5421 	authorize = peer->authorize;
5422 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5423 
5424 	return authorize;
5425 }
5426 
5427 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
5428 			  enum dp_mod_id mod_id)
5429 {
5430 	ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
5431 	void *vdev_delete_context = NULL;
5432 	uint8_t vdev_id = vdev->vdev_id;
5433 	struct dp_pdev *pdev = vdev->pdev;
5434 	struct dp_vdev *tmp_vdev = NULL;
5435 	uint8_t found = 0;
5436 
5437 	QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
5438 
5439 	/* Return if this is not the last reference*/
5440 	if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
5441 		return;
5442 
5443 	/*
5444 	 * This should be set as last reference need to released
5445 	 * after cdp_vdev_detach() is called
5446 	 *
5447 	 * if this assert is hit there is a ref count issue
5448 	 */
5449 	QDF_ASSERT(vdev->delete.pending);
5450 
5451 	vdev_delete_cb = vdev->delete.callback;
5452 	vdev_delete_context = vdev->delete.context;
5453 
5454 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
5455 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
5456 
5457 	if (wlan_op_mode_monitor == vdev->opmode) {
5458 		dp_monitor_vdev_delete(soc, vdev);
5459 		goto free_vdev;
5460 	}
5461 
5462 	/* all peers are gone, go ahead and delete it */
5463 	dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
5464 			FLOW_TYPE_VDEV, vdev_id);
5465 	dp_tx_vdev_detach(vdev);
5466 	dp_monitor_vdev_detach(vdev);
5467 
5468 free_vdev:
5469 	qdf_spinlock_destroy(&vdev->peer_list_lock);
5470 
5471 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
5472 	TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
5473 		      inactive_list_elem) {
5474 		if (tmp_vdev == vdev) {
5475 			found = 1;
5476 			break;
5477 		}
5478 	}
5479 	if (found)
5480 		TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
5481 			     inactive_list_elem);
5482 	/* delete this peer from the list */
5483 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
5484 
5485 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
5486 				     vdev);
5487 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
5488 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
5489 	wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
5490 			     WLAN_MD_DP_VDEV, "dp_vdev");
5491 	qdf_mem_free(vdev);
5492 	vdev = NULL;
5493 
5494 	if (vdev_delete_cb)
5495 		vdev_delete_cb(vdev_delete_context);
5496 }
5497 
5498 qdf_export_symbol(dp_vdev_unref_delete);
5499 
5500 void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
5501 {
5502 	struct dp_vdev *vdev = peer->vdev;
5503 	struct dp_pdev *pdev = vdev->pdev;
5504 	struct dp_soc *soc = pdev->soc;
5505 	uint16_t peer_id;
5506 	struct dp_peer *tmp_peer;
5507 	bool found = false;
5508 
5509 	if (mod_id > DP_MOD_ID_RX)
5510 		QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
5511 
5512 	/*
5513 	 * Hold the lock all the way from checking if the peer ref count
5514 	 * is zero until the peer references are removed from the hash
5515 	 * table and vdev list (if the peer ref count is zero).
5516 	 * This protects against a new HL tx operation starting to use the
5517 	 * peer object just after this function concludes it's done being used.
5518 	 * Furthermore, the lock needs to be held while checking whether the
5519 	 * vdev's list of peers is empty, to make sure that list is not modified
5520 	 * concurrently with the empty check.
5521 	 */
5522 	if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
5523 		peer_id = peer->peer_id;
5524 
5525 		/*
5526 		 * Make sure that the reference to the peer in
5527 		 * peer object map is removed
5528 		 */
5529 		QDF_ASSERT(peer_id == HTT_INVALID_PEER);
5530 
5531 		dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
5532 			     QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5533 
5534 		dp_peer_sawf_ctx_free(soc, peer);
5535 
5536 		wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
5537 				     WLAN_MD_DP_PEER, "dp_peer");
5538 
5539 		qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5540 		TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
5541 			      inactive_list_elem) {
5542 			if (tmp_peer == peer) {
5543 				found = 1;
5544 				break;
5545 			}
5546 		}
5547 		if (found)
5548 			TAILQ_REMOVE(&soc->inactive_peer_list, peer,
5549 				     inactive_list_elem);
5550 		/* delete this peer from the list */
5551 		qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5552 		DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
5553 		dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
5554 
5555 		/* cleanup the peer data */
5556 		dp_peer_cleanup(vdev, peer);
5557 
5558 		if (!IS_MLO_DP_MLD_PEER(peer))
5559 			dp_monitor_peer_detach(soc, peer);
5560 
5561 		qdf_spinlock_destroy(&peer->peer_state_lock);
5562 
5563 		dp_txrx_peer_detach(soc, peer);
5564 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
5565 					     peer, vdev, 0);
5566 		qdf_mem_free(peer);
5567 
5568 		/*
5569 		 * Decrement ref count taken at peer create
5570 		 */
5571 		dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
5572 			     vdev, qdf_atomic_read(&vdev->ref_cnt));
5573 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
5574 	}
5575 }
5576 
5577 qdf_export_symbol(dp_peer_unref_delete);
5578 
5579 void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
5580 			       enum dp_mod_id mod_id)
5581 {
5582 	dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
5583 }
5584 
5585 qdf_export_symbol(dp_txrx_peer_unref_delete);
5586 
5587 /**
5588  * dp_peer_delete_wifi3() - Delete txrx peer
5589  * @soc_hdl: soc handle
5590  * @vdev_id: id of dp handle
5591  * @peer_mac: mac of datapath PEER handle
5592  * @bitmap: bitmap indicating special handling of request.
5593  * @peer_type: peer type (link or MLD)
5594  *
5595  */
5596 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
5597 				       uint8_t vdev_id,
5598 				       uint8_t *peer_mac, uint32_t bitmap,
5599 				       enum cdp_peer_type peer_type)
5600 {
5601 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5602 	struct dp_peer *peer;
5603 	struct cdp_peer_info peer_info = { 0 };
5604 	struct dp_vdev *vdev = NULL;
5605 
5606 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
5607 				 false, peer_type);
5608 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
5609 
5610 	/* Peer can be null for monitor vap mac address */
5611 	if (!peer) {
5612 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
5613 			  "%s: Invalid peer\n", __func__);
5614 		return QDF_STATUS_E_FAILURE;
5615 	}
5616 
5617 	if (!peer->valid) {
5618 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5619 		dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
5620 			QDF_MAC_ADDR_REF(peer_mac));
5621 		return QDF_STATUS_E_ALREADY;
5622 	}
5623 
5624 	vdev = peer->vdev;
5625 
5626 	if (!vdev) {
5627 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5628 		return QDF_STATUS_E_FAILURE;
5629 	}
5630 
5631 	peer->valid = 0;
5632 
5633 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
5634 				     vdev, 0);
5635 	dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
5636 		     soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5637 		     qdf_atomic_read(&peer->ref_cnt));
5638 
5639 	dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
5640 
5641 	dp_local_peer_id_free(peer->vdev->pdev, peer);
5642 
5643 	/* Drop all rx packets before deleting peer */
5644 	dp_clear_peer_internal(soc, peer);
5645 
5646 	qdf_spinlock_destroy(&peer->peer_info_lock);
5647 	dp_peer_multipass_list_remove(peer);
5648 
5649 	/* remove the reference to the peer from the hash table */
5650 	dp_peer_find_hash_remove(soc, peer);
5651 
5652 	dp_peer_vdev_list_remove(soc, vdev, peer);
5653 
5654 	dp_peer_mlo_delete(peer);
5655 
5656 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5657 	TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
5658 			  inactive_list_elem);
5659 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5660 
5661 	/*
5662 	 * Remove the reference added during peer_attach.
5663 	 * The peer will still be left allocated until the
5664 	 * PEER_UNMAP message arrives to remove the other
5665 	 * reference, added by the PEER_MAP message.
5666 	 */
5667 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
5668 	/*
5669 	 * Remove the reference taken above
5670 	 */
5671 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5672 
5673 	return QDF_STATUS_SUCCESS;
5674 }
5675 
5676 #ifdef DP_RX_UDP_OVER_PEER_ROAM
5677 static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
5678 					       uint8_t vdev_id,
5679 					       uint8_t *peer_mac,
5680 					       uint32_t auth_status)
5681 {
5682 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5683 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5684 						     DP_MOD_ID_CDP);
5685 	if (!vdev)
5686 		return QDF_STATUS_E_FAILURE;
5687 
5688 	vdev->roaming_peer_status = auth_status;
5689 	qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
5690 		     QDF_MAC_ADDR_SIZE);
5691 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5692 
5693 	return QDF_STATUS_SUCCESS;
5694 }
5695 #endif
5696 /**
5697  * dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
5698  * @soc_hdl: Datapath soc handle
5699  * @vdev_id: virtual interface id
5700  *
5701  * Return: MAC address on success, NULL on failure.
5702  *
5703  */
5704 static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
5705 					   uint8_t vdev_id)
5706 {
5707 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5708 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5709 						     DP_MOD_ID_CDP);
5710 	uint8_t *mac = NULL;
5711 
5712 	if (!vdev)
5713 		return NULL;
5714 
5715 	mac = vdev->mac_addr.raw;
5716 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5717 
5718 	return mac;
5719 }
5720 
5721 /**
5722  * dp_vdev_set_wds() - Enable per packet stats
5723  * @soc_hdl: DP soc handle
5724  * @vdev_id: id of DP VDEV handle
5725  * @val: value
5726  *
5727  * Return: none
5728  */
5729 static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5730 			   uint32_t val)
5731 {
5732 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5733 	struct dp_vdev *vdev =
5734 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
5735 				      DP_MOD_ID_CDP);
5736 
5737 	if (!vdev)
5738 		return QDF_STATUS_E_FAILURE;
5739 
5740 	vdev->wds_enabled = val;
5741 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5742 
5743 	return QDF_STATUS_SUCCESS;
5744 }
5745 
5746 static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
5747 {
5748 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5749 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5750 						     DP_MOD_ID_CDP);
5751 	int opmode;
5752 
5753 	if (!vdev) {
5754 		dp_err_rl("vdev for id %d is NULL", vdev_id);
5755 		return -EINVAL;
5756 	}
5757 	opmode = vdev->opmode;
5758 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5759 
5760 	return opmode;
5761 }
5762 
5763 /**
5764  * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
5765  * @soc_hdl: ol_txrx_soc_handle handle
5766  * @vdev_id: vdev id for which os rx handles are needed
5767  * @stack_fn_p: pointer to stack function pointer
5768  * @osif_vdev_p: pointer to ol_osif_vdev_handle
5769  *
5770  * Return: void
5771  */
5772 static
5773 void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
5774 					  uint8_t vdev_id,
5775 					  ol_txrx_rx_fp *stack_fn_p,
5776 					  ol_osif_vdev_handle *osif_vdev_p)
5777 {
5778 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5779 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5780 						     DP_MOD_ID_CDP);
5781 
5782 	if (qdf_unlikely(!vdev)) {
5783 		*stack_fn_p = NULL;
5784 		*osif_vdev_p = NULL;
5785 		return;
5786 	}
5787 	*stack_fn_p = vdev->osif_rx_stack;
5788 	*osif_vdev_p = vdev->osif_vdev;
5789 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5790 }
5791 
5792 /**
5793  * dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
5794  * @soc_hdl: datapath soc handle
5795  * @vdev_id: virtual device/interface id
5796  *
5797  * Return: Handle to control pdev
5798  */
5799 static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
5800 						struct cdp_soc_t *soc_hdl,
5801 						uint8_t vdev_id)
5802 {
5803 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5804 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5805 						     DP_MOD_ID_CDP);
5806 	struct dp_pdev *pdev;
5807 
5808 	if (!vdev)
5809 		return NULL;
5810 
5811 	pdev = vdev->pdev;
5812 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5813 	return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
5814 }
5815 
5816 int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
5817 {
5818 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
5819 
5820 	return qdf_atomic_read(&pdev->num_tx_outstanding);
5821 }
5822 
5823 /**
5824  * dp_get_peer_mac_from_peer_id() - get peer mac
5825  * @soc: CDP SoC handle
5826  * @peer_id: Peer ID
5827  * @peer_mac: MAC addr of PEER
5828  *
5829  * Return: QDF_STATUS
5830  */
5831 static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
5832 					       uint32_t peer_id,
5833 					       uint8_t *peer_mac)
5834 {
5835 	struct dp_peer *peer;
5836 
5837 	if (soc && peer_mac) {
5838 		peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
5839 					     (uint16_t)peer_id,
5840 					     DP_MOD_ID_CDP);
5841 		if (peer) {
5842 			qdf_mem_copy(peer_mac, peer->mac_addr.raw,
5843 				     QDF_MAC_ADDR_SIZE);
5844 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5845 			return QDF_STATUS_SUCCESS;
5846 		}
5847 	}
5848 
5849 	return QDF_STATUS_E_FAILURE;
5850 }
5851 
5852 #ifdef MESH_MODE_SUPPORT
5853 static
5854 void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
5855 {
5856 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
5857 
5858 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
5859 	vdev->mesh_vdev = val;
5860 	if (val)
5861 		vdev->skip_sw_tid_classification |=
5862 			DP_TX_MESH_ENABLED;
5863 	else
5864 		vdev->skip_sw_tid_classification &=
5865 			~DP_TX_MESH_ENABLED;
5866 }
5867 
5868 /**
5869  * dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
5870  * @vdev_hdl: virtual device object
5871  * @val: value to be set
5872  *
5873  * Return: void
5874  */
5875 static
5876 void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
5877 {
5878 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
5879 
5880 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
5881 	vdev->mesh_rx_filter = val;
5882 }
5883 #endif
5884 
5885 /**
5886  * dp_vdev_set_hlos_tid_override() - to set hlos tid override
5887  * @vdev: virtual device object
5888  * @val: value to be set
5889  *
5890  * Return: void
5891  */
5892 static
5893 void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
5894 {
5895 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
5896 	if (val)
5897 		vdev->skip_sw_tid_classification |=
5898 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
5899 	else
5900 		vdev->skip_sw_tid_classification &=
5901 			~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
5902 }
5903 
5904 /**
5905  * dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
5906  * @vdev_hdl: virtual device object
5907  *
5908  * Return: 1 if this flag is set
5909  */
5910 static
5911 uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
5912 {
5913 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
5914 
5915 	return !!(vdev->skip_sw_tid_classification &
5916 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
5917 }
5918 
5919 #ifdef VDEV_PEER_PROTOCOL_COUNT
5920 static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
5921 					       int8_t vdev_id,
5922 					       bool enable)
5923 {
5924 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5925 	struct dp_vdev *vdev;
5926 
5927 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5928 	if (!vdev)
5929 		return;
5930 
5931 	dp_info("enable %d vdev_id %d", enable, vdev_id);
5932 	vdev->peer_protocol_count_track = enable;
5933 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5934 }
5935 
5936 static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
5937 						   int8_t vdev_id,
5938 						   int drop_mask)
5939 {
5940 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5941 	struct dp_vdev *vdev;
5942 
5943 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5944 	if (!vdev)
5945 		return;
5946 
5947 	dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
5948 	vdev->peer_protocol_count_dropmask = drop_mask;
5949 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5950 }
5951 
5952 static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
5953 						  int8_t vdev_id)
5954 {
5955 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5956 	struct dp_vdev *vdev;
5957 	int peer_protocol_count_track;
5958 
5959 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5960 	if (!vdev)
5961 		return 0;
5962 
5963 	dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
5964 		vdev_id);
5965 	peer_protocol_count_track =
5966 		vdev->peer_protocol_count_track;
5967 
5968 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5969 	return peer_protocol_count_track;
5970 }
5971 
5972 static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
5973 					       int8_t vdev_id)
5974 {
5975 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5976 	struct dp_vdev *vdev;
5977 	int peer_protocol_count_dropmask;
5978 
5979 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5980 	if (!vdev)
5981 		return 0;
5982 
5983 	dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
5984 		vdev_id);
5985 	peer_protocol_count_dropmask =
5986 		vdev->peer_protocol_count_dropmask;
5987 
5988 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5989 	return peer_protocol_count_dropmask;
5990 }
5991 
5992 #endif
5993 
5994 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
5995 {
5996 	uint8_t pdev_count;
5997 
5998 	for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
5999 		if (soc->pdev_list[pdev_count] &&
6000 		    soc->pdev_list[pdev_count] == data)
6001 			return true;
6002 	}
6003 	return false;
6004 }
6005 
6006 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
6007 			     struct cdp_vdev_stats *vdev_stats)
6008 {
6009 	if (!vdev || !vdev->pdev)
6010 		return;
6011 
6012 	dp_update_vdev_ingress_stats(vdev);
6013 
6014 	qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
6015 
6016 	dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
6017 			     DP_MOD_ID_GENERIC_STATS);
6018 
6019 	dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
6020 
6021 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6022 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6023 			     vdev_stats, vdev->vdev_id,
6024 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6025 #endif
6026 }
6027 
6028 void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
6029 {
6030 	struct dp_vdev *vdev = NULL;
6031 	struct dp_soc *soc;
6032 	struct cdp_vdev_stats *vdev_stats =
6033 			qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6034 
6035 	if (!vdev_stats) {
6036 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6037 			   pdev->soc);
6038 		return;
6039 	}
6040 
6041 	soc = pdev->soc;
6042 
6043 	qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
6044 	qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
6045 	qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
6046 	qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
6047 
6048 	if (dp_monitor_is_enable_mcopy_mode(pdev))
6049 		dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
6050 
6051 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
6052 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
6053 
6054 		dp_aggregate_vdev_stats(vdev, vdev_stats);
6055 		dp_update_pdev_stats(pdev, vdev_stats);
6056 		dp_update_pdev_ingress_stats(pdev, vdev);
6057 	}
6058 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
6059 	qdf_mem_free(vdev_stats);
6060 
6061 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6062 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
6063 			     pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
6064 #endif
6065 }
6066 
6067 /**
6068  * dp_vdev_getstats() - get vdev packet level stats
6069  * @vdev_handle: Datapath VDEV handle
6070  * @stats: cdp network device stats structure
6071  *
6072  * Return: QDF_STATUS
6073  */
6074 static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
6075 				   struct cdp_dev_stats *stats)
6076 {
6077 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
6078 	struct dp_pdev *pdev;
6079 	struct dp_soc *soc;
6080 	struct cdp_vdev_stats *vdev_stats;
6081 
6082 	if (!vdev)
6083 		return QDF_STATUS_E_FAILURE;
6084 
6085 	pdev = vdev->pdev;
6086 	if (!pdev)
6087 		return QDF_STATUS_E_FAILURE;
6088 
6089 	soc = pdev->soc;
6090 
6091 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6092 
6093 	if (!vdev_stats) {
6094 		dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6095 		       soc);
6096 		return QDF_STATUS_E_FAILURE;
6097 	}
6098 
6099 	dp_aggregate_vdev_stats(vdev, vdev_stats);
6100 
6101 	stats->tx_packets = vdev_stats->tx.comp_pkt.num;
6102 	stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
6103 
6104 	stats->tx_errors = vdev_stats->tx.tx_failed;
6105 	stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
6106 			    vdev_stats->tx_i.sg.dropped_host.num +
6107 			    vdev_stats->tx_i.mcast_en.dropped_map_error +
6108 			    vdev_stats->tx_i.mcast_en.dropped_self_mac +
6109 			    vdev_stats->tx_i.mcast_en.dropped_send_fail +
6110 			    vdev_stats->tx.nawds_mcast_drop;
6111 
6112 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
6113 		stats->rx_packets = vdev_stats->rx.to_stack.num;
6114 		stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
6115 	} else {
6116 		stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
6117 				    vdev_stats->rx_i.null_q_desc_pkt.num +
6118 				    vdev_stats->rx_i.routed_eapol_pkt.num;
6119 		stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
6120 				  vdev_stats->rx_i.null_q_desc_pkt.bytes +
6121 				  vdev_stats->rx_i.routed_eapol_pkt.bytes;
6122 	}
6123 
6124 	stats->rx_errors = vdev_stats->rx.err.mic_err +
6125 			   vdev_stats->rx.err.decrypt_err +
6126 			   vdev_stats->rx.err.fcserr +
6127 			   vdev_stats->rx.err.pn_err +
6128 			   vdev_stats->rx.err.oor_err +
6129 			   vdev_stats->rx.err.jump_2k_err +
6130 			   vdev_stats->rx.err.rxdma_wifi_parse_err;
6131 
6132 	stats->rx_dropped = vdev_stats->rx.mec_drop.num +
6133 			    vdev_stats->rx.multipass_rx_pkt_drop +
6134 			    vdev_stats->rx.peer_unauth_rx_pkt_drop +
6135 			    vdev_stats->rx.policy_check_drop +
6136 			    vdev_stats->rx.nawds_mcast_drop +
6137 			    vdev_stats->rx.mcast_3addr_drop +
6138 			    vdev_stats->rx.ppeds_drop.num;
6139 
6140 	qdf_mem_free(vdev_stats);
6141 
6142 	return QDF_STATUS_SUCCESS;
6143 }
6144 
6145 /**
6146  * dp_pdev_getstats() - get pdev packet level stats
6147  * @pdev_handle: Datapath PDEV handle
6148  * @stats: cdp network device stats structure
6149  *
6150  * Return: QDF_STATUS
6151  */
6152 static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
6153 			     struct cdp_dev_stats *stats)
6154 {
6155 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6156 
6157 	dp_aggregate_pdev_stats(pdev);
6158 
6159 	stats->tx_packets = pdev->stats.tx.comp_pkt.num;
6160 	stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
6161 
6162 	stats->tx_errors = pdev->stats.tx.tx_failed;
6163 	stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
6164 			    pdev->stats.tx_i.sg.dropped_host.num +
6165 			    pdev->stats.tx_i.mcast_en.dropped_map_error +
6166 			    pdev->stats.tx_i.mcast_en.dropped_self_mac +
6167 			    pdev->stats.tx_i.mcast_en.dropped_send_fail +
6168 			    pdev->stats.tx.nawds_mcast_drop +
6169 			    pdev->stats.tso_stats.dropped_host.num;
6170 
6171 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
6172 		stats->rx_packets = pdev->stats.rx.to_stack.num;
6173 		stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
6174 	} else {
6175 		stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
6176 				    pdev->stats.rx_i.null_q_desc_pkt.num +
6177 				    pdev->stats.rx_i.routed_eapol_pkt.num;
6178 		stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
6179 				  pdev->stats.rx_i.null_q_desc_pkt.bytes +
6180 				  pdev->stats.rx_i.routed_eapol_pkt.bytes;
6181 	}
6182 
6183 	stats->rx_errors = pdev->stats.err.ip_csum_err +
6184 		pdev->stats.err.tcp_udp_csum_err +
6185 		pdev->stats.rx.err.mic_err +
6186 		pdev->stats.rx.err.decrypt_err +
6187 		pdev->stats.rx.err.fcserr +
6188 		pdev->stats.rx.err.pn_err +
6189 		pdev->stats.rx.err.oor_err +
6190 		pdev->stats.rx.err.jump_2k_err +
6191 		pdev->stats.rx.err.rxdma_wifi_parse_err;
6192 	stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
6193 		pdev->stats.dropped.mec +
6194 		pdev->stats.dropped.mesh_filter +
6195 		pdev->stats.dropped.wifi_parse +
6196 		pdev->stats.dropped.mon_rx_drop +
6197 		pdev->stats.dropped.mon_radiotap_update_err +
6198 		pdev->stats.rx.mec_drop.num +
6199 		pdev->stats.rx.ppeds_drop.num +
6200 		pdev->stats.rx.multipass_rx_pkt_drop +
6201 		pdev->stats.rx.peer_unauth_rx_pkt_drop +
6202 		pdev->stats.rx.policy_check_drop +
6203 		pdev->stats.rx.nawds_mcast_drop +
6204 		pdev->stats.rx.mcast_3addr_drop;
6205 }
6206 
6207 /**
6208  * dp_get_device_stats() - get interface level packet stats
6209  * @soc_hdl: soc handle
6210  * @id: vdev_id or pdev_id based on type
6211  * @stats: cdp network device stats structure
6212  * @type: device type pdev/vdev
6213  *
6214  * Return: QDF_STATUS
6215  */
6216 static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
6217 				      struct cdp_dev_stats *stats,
6218 				      uint8_t type)
6219 {
6220 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6221 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
6222 	struct dp_vdev *vdev;
6223 
6224 	switch (type) {
6225 	case UPDATE_VDEV_STATS:
6226 		vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
6227 
6228 		if (vdev) {
6229 			status = dp_vdev_getstats((struct cdp_vdev *)vdev,
6230 						  stats);
6231 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6232 		}
6233 		return status;
6234 	case UPDATE_PDEV_STATS:
6235 		{
6236 			struct dp_pdev *pdev =
6237 				dp_get_pdev_from_soc_pdev_id_wifi3(
6238 						(struct dp_soc *)soc,
6239 						 id);
6240 			if (pdev) {
6241 				dp_pdev_getstats((struct cdp_pdev *)pdev,
6242 						 stats);
6243 				return QDF_STATUS_SUCCESS;
6244 			}
6245 		}
6246 		break;
6247 	default:
6248 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
6249 			"apstats cannot be updated for this input "
6250 			"type %d", type);
6251 		break;
6252 	}
6253 
6254 	return QDF_STATUS_E_FAILURE;
6255 }
6256 
6257 const
6258 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
6259 {
6260 	switch (ring_type) {
6261 	case REO_DST:
6262 		return "Reo_dst";
6263 	case REO_EXCEPTION:
6264 		return "Reo_exception";
6265 	case REO_CMD:
6266 		return "Reo_cmd";
6267 	case REO_REINJECT:
6268 		return "Reo_reinject";
6269 	case REO_STATUS:
6270 		return "Reo_status";
6271 	case WBM2SW_RELEASE:
6272 		return "wbm2sw_release";
6273 	case TCL_DATA:
6274 		return "tcl_data";
6275 	case TCL_CMD_CREDIT:
6276 		return "tcl_cmd_credit";
6277 	case TCL_STATUS:
6278 		return "tcl_status";
6279 	case SW2WBM_RELEASE:
6280 		return "sw2wbm_release";
6281 	case RXDMA_BUF:
6282 		return "Rxdma_buf";
6283 	case RXDMA_DST:
6284 		return "Rxdma_dst";
6285 	case RXDMA_MONITOR_BUF:
6286 		return "Rxdma_monitor_buf";
6287 	case RXDMA_MONITOR_DESC:
6288 		return "Rxdma_monitor_desc";
6289 	case RXDMA_MONITOR_STATUS:
6290 		return "Rxdma_monitor_status";
6291 	case RXDMA_MONITOR_DST:
6292 		return "Rxdma_monitor_destination";
6293 	case WBM_IDLE_LINK:
6294 		return "WBM_hw_idle_link";
6295 	case PPE2TCL:
6296 		return "PPE2TCL";
6297 	case REO2PPE:
6298 		return "REO2PPE";
6299 	case TX_MONITOR_DST:
6300 		return "tx_monitor_destination";
6301 	case TX_MONITOR_BUF:
6302 		return "tx_monitor_buf";
6303 	default:
6304 		dp_err("Invalid ring type: %u", ring_type);
6305 		break;
6306 	}
6307 	return "Invalid";
6308 }
6309 
6310 void dp_print_napi_stats(struct dp_soc *soc)
6311 {
6312 	hif_print_napi_stats(soc->hif_handle);
6313 }
6314 
6315 /**
6316  * dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
6317  * @soc: Datapath soc
6318  * @peer: Datatpath peer
6319  * @arg: argument to iter function
6320  *
6321  * Return: QDF_STATUS
6322  */
6323 static inline void
6324 dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
6325 			    struct dp_peer *peer,
6326 			    void *arg)
6327 {
6328 	struct dp_txrx_peer *txrx_peer = NULL;
6329 	struct dp_peer *tgt_peer = NULL;
6330 	struct cdp_interface_peer_stats peer_stats_intf = {0};
6331 
6332 	peer_stats_intf.rx_avg_snr = CDP_INVALID_SNR;
6333 
6334 	DP_STATS_CLR(peer);
6335 	/* Clear monitor peer stats */
6336 	dp_monitor_peer_reset_stats(soc, peer);
6337 
6338 	/* Clear MLD peer stats only when link peer is primary */
6339 	if (dp_peer_is_primary_link_peer(peer)) {
6340 		tgt_peer = dp_get_tgt_peer_from_peer(peer);
6341 		if (tgt_peer) {
6342 			DP_STATS_CLR(tgt_peer);
6343 			txrx_peer = tgt_peer->txrx_peer;
6344 			dp_txrx_peer_stats_clr(txrx_peer);
6345 		}
6346 	}
6347 
6348 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6349 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
6350 			     &peer_stats_intf,  peer->peer_id,
6351 			     UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
6352 #endif
6353 }
6354 
6355 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
6356 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
6357 {
6358 	int ring;
6359 
6360 	for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
6361 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
6362 					    soc->reo_dest_ring[ring].hal_srng);
6363 }
6364 #else
6365 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
6366 {
6367 }
6368 #endif
6369 
6370 #ifdef WLAN_SUPPORT_PPEDS
6371 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
6372 {
6373 	if (soc->arch_ops.dp_ppeds_clear_stats)
6374 		soc->arch_ops.dp_ppeds_clear_stats(soc);
6375 }
6376 
6377 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
6378 {
6379 	if (soc->arch_ops.dp_txrx_ppeds_clear_rings_stats)
6380 		soc->arch_ops.dp_txrx_ppeds_clear_rings_stats(soc);
6381 }
6382 #else
6383 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
6384 {
6385 }
6386 
6387 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
6388 {
6389 }
6390 #endif
6391 
6392 /**
6393  * dp_txrx_host_stats_clr() - Reinitialize the txrx stats
6394  * @vdev: DP_VDEV handle
6395  * @soc: DP_SOC handle
6396  *
6397  * Return: QDF_STATUS
6398  */
6399 static inline QDF_STATUS
6400 dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
6401 {
6402 	struct dp_vdev *var_vdev = NULL;
6403 
6404 	if (!vdev || !vdev->pdev)
6405 		return QDF_STATUS_E_FAILURE;
6406 
6407 	/*
6408 	 * if NSS offload is enabled, then send message
6409 	 * to NSS FW to clear the stats. Once NSS FW clears the statistics
6410 	 * then clear host statistics.
6411 	 */
6412 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
6413 		if (soc->cdp_soc.ol_ops->nss_stats_clr)
6414 			soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
6415 							   vdev->vdev_id);
6416 	}
6417 
6418 	dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
6419 					      (1 << vdev->vdev_id));
6420 
6421 	DP_STATS_CLR(vdev->pdev);
6422 	DP_STATS_CLR(vdev->pdev->soc);
6423 
6424 	dp_clear_tx_ppeds_stats(soc);
6425 	dp_ppeds_clear_ring_util_stats(soc);
6426 
6427 	hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
6428 
6429 	TAILQ_FOREACH(var_vdev, &vdev->pdev->vdev_list, vdev_list_elem) {
6430 		DP_STATS_CLR(var_vdev);
6431 		dp_vdev_iterate_peer(var_vdev, dp_txrx_host_peer_stats_clr,
6432 				     NULL, DP_MOD_ID_GENERIC_STATS);
6433 	}
6434 
6435 	dp_srng_clear_ring_usage_wm_stats(soc);
6436 
6437 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6438 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6439 			     &vdev->stats,  vdev->vdev_id,
6440 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6441 #endif
6442 	return QDF_STATUS_SUCCESS;
6443 }
6444 
6445 /**
6446  * dp_get_peer_calibr_stats()- Get peer calibrated stats
6447  * @peer: Datapath peer
6448  * @peer_stats: buffer for peer stats
6449  *
6450  * Return: none
6451  */
6452 static inline
6453 void dp_get_peer_calibr_stats(struct dp_peer *peer,
6454 			      struct cdp_peer_stats *peer_stats)
6455 {
6456 	struct dp_peer *tgt_peer;
6457 
6458 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
6459 	if (!tgt_peer)
6460 		return;
6461 
6462 	peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
6463 	peer_stats->tx.tx_bytes_success_last =
6464 				tgt_peer->stats.tx.tx_bytes_success_last;
6465 	peer_stats->tx.tx_data_success_last =
6466 					tgt_peer->stats.tx.tx_data_success_last;
6467 	peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
6468 	peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
6469 	peer_stats->tx.tx_data_ucast_last =
6470 					tgt_peer->stats.tx.tx_data_ucast_last;
6471 	peer_stats->tx.tx_data_ucast_rate =
6472 					tgt_peer->stats.tx.tx_data_ucast_rate;
6473 	peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
6474 	peer_stats->rx.rx_bytes_success_last =
6475 				tgt_peer->stats.rx.rx_bytes_success_last;
6476 	peer_stats->rx.rx_data_success_last =
6477 				tgt_peer->stats.rx.rx_data_success_last;
6478 	peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
6479 	peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
6480 }
6481 
6482 /**
6483  * dp_get_peer_basic_stats()- Get peer basic stats
6484  * @peer: Datapath peer
6485  * @peer_stats: buffer for peer stats
6486  *
6487  * Return: none
6488  */
6489 static inline
6490 void dp_get_peer_basic_stats(struct dp_peer *peer,
6491 			     struct cdp_peer_stats *peer_stats)
6492 {
6493 	struct dp_txrx_peer *txrx_peer;
6494 
6495 	txrx_peer = dp_get_txrx_peer(peer);
6496 	if (!txrx_peer)
6497 		return;
6498 
6499 	peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
6500 	peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
6501 	peer_stats->tx.tx_failed += txrx_peer->tx_failed;
6502 	peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
6503 	peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
6504 }
6505 
6506 #ifdef QCA_ENHANCED_STATS_SUPPORT
6507 /**
6508  * dp_get_peer_per_pkt_stats()- Get peer per pkt stats
6509  * @peer: Datapath peer
6510  * @peer_stats: buffer for peer stats
6511  *
6512  * Return: none
6513  */
6514 static inline
6515 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
6516 			       struct cdp_peer_stats *peer_stats)
6517 {
6518 	struct dp_txrx_peer *txrx_peer;
6519 	struct dp_peer_per_pkt_stats *per_pkt_stats;
6520 	uint8_t inx = 0, link_id = 0;
6521 	struct dp_pdev *pdev;
6522 	struct dp_soc *soc;
6523 	uint8_t stats_arr_size;
6524 
6525 	txrx_peer = dp_get_txrx_peer(peer);
6526 	pdev = peer->vdev->pdev;
6527 
6528 	if (!txrx_peer)
6529 		return;
6530 
6531 	if (!IS_MLO_DP_LINK_PEER(peer)) {
6532 		stats_arr_size = txrx_peer->stats_arr_size;
6533 		for (inx = 0; inx < stats_arr_size; inx++) {
6534 			per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
6535 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6536 		}
6537 	} else {
6538 		soc = pdev->soc;
6539 		link_id = dp_get_peer_hw_link_id(soc, pdev);
6540 		per_pkt_stats =
6541 			&txrx_peer->stats[link_id].per_pkt_stats;
6542 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6543 	}
6544 }
6545 
6546 #ifdef WLAN_FEATURE_11BE_MLO
6547 /**
6548  * dp_get_peer_extd_stats()- Get peer extd stats
6549  * @peer: Datapath peer
6550  * @peer_stats: buffer for peer stats
6551  *
6552  * Return: none
6553  */
6554 static inline
6555 void dp_get_peer_extd_stats(struct dp_peer *peer,
6556 			    struct cdp_peer_stats *peer_stats)
6557 {
6558 	struct dp_soc *soc = peer->vdev->pdev->soc;
6559 
6560 	if (IS_MLO_DP_MLD_PEER(peer)) {
6561 		uint8_t i;
6562 		struct dp_peer *link_peer;
6563 		struct dp_soc *link_peer_soc;
6564 		struct dp_mld_link_peers link_peers_info;
6565 
6566 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
6567 						    &link_peers_info,
6568 						    DP_MOD_ID_CDP);
6569 		for (i = 0; i < link_peers_info.num_links; i++) {
6570 			link_peer = link_peers_info.link_peers[i];
6571 			link_peer_soc = link_peer->vdev->pdev->soc;
6572 			dp_monitor_peer_get_stats(link_peer_soc, link_peer,
6573 						  peer_stats,
6574 						  UPDATE_PEER_STATS);
6575 		}
6576 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
6577 	} else {
6578 		dp_monitor_peer_get_stats(soc, peer, peer_stats,
6579 					  UPDATE_PEER_STATS);
6580 	}
6581 }
6582 #else
6583 static inline
6584 void dp_get_peer_extd_stats(struct dp_peer *peer,
6585 			    struct cdp_peer_stats *peer_stats)
6586 {
6587 	struct dp_soc *soc = peer->vdev->pdev->soc;
6588 
6589 	dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
6590 }
6591 #endif
6592 #else
6593 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
6594 /**
6595  * dp_get_peer_link_id() - Get Link peer Link ID
6596  * @peer: Datapath peer
6597  *
6598  * Return: Link peer Link ID
6599  */
6600 static inline
6601 uint8_t dp_get_peer_link_id(struct dp_peer *peer)
6602 {
6603 	uint8_t link_id;
6604 
6605 	link_id = IS_MLO_DP_LINK_PEER(peer) ? peer->link_id + 1 : 0;
6606 	if (link_id < 1 || link_id > DP_MAX_MLO_LINKS)
6607 		link_id = 0;
6608 
6609 	return link_id;
6610 }
6611 
6612 static inline
6613 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
6614 			       struct cdp_peer_stats *peer_stats)
6615 {
6616 	uint8_t i, index;
6617 	struct dp_mld_link_peers link_peers_info;
6618 	struct dp_txrx_peer *txrx_peer;
6619 	struct dp_peer_per_pkt_stats *per_pkt_stats;
6620 	struct dp_soc *soc = peer->vdev->pdev->soc;
6621 
6622 	txrx_peer = dp_get_txrx_peer(peer);
6623 	if (!txrx_peer)
6624 		return;
6625 
6626 	if (IS_MLO_DP_MLD_PEER(peer)) {
6627 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
6628 						    &link_peers_info,
6629 						    DP_MOD_ID_GENERIC_STATS);
6630 		for (i = 0; i < link_peers_info.num_links; i++) {
6631 			if (i > txrx_peer->stats_arr_size)
6632 				break;
6633 			per_pkt_stats = &txrx_peer->stats[i].per_pkt_stats;
6634 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6635 		}
6636 		dp_release_link_peers_ref(&link_peers_info,
6637 					  DP_MOD_ID_GENERIC_STATS);
6638 	} else {
6639 		index = dp_get_peer_link_id(peer);
6640 		per_pkt_stats = &txrx_peer->stats[index].per_pkt_stats;
6641 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6642 		qdf_mem_copy(&peer_stats->mac_addr,
6643 			     &peer->mac_addr.raw[0],
6644 			     QDF_MAC_ADDR_SIZE);
6645 	}
6646 }
6647 
6648 static inline
6649 void dp_get_peer_extd_stats(struct dp_peer *peer,
6650 			    struct cdp_peer_stats *peer_stats)
6651 {
6652 	uint8_t i, index;
6653 	struct dp_mld_link_peers link_peers_info;
6654 	struct dp_txrx_peer *txrx_peer;
6655 	struct dp_peer_extd_stats *extd_stats;
6656 	struct dp_soc *soc = peer->vdev->pdev->soc;
6657 
6658 	txrx_peer = dp_get_txrx_peer(peer);
6659 	if (qdf_unlikely(!txrx_peer)) {
6660 		dp_err_rl("txrx_peer NULL for peer MAC: " QDF_MAC_ADDR_FMT,
6661 			  QDF_MAC_ADDR_REF(peer->mac_addr.raw));
6662 		return;
6663 	}
6664 
6665 	if (IS_MLO_DP_MLD_PEER(peer)) {
6666 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
6667 						    &link_peers_info,
6668 						    DP_MOD_ID_GENERIC_STATS);
6669 		for (i = 0; i < link_peers_info.num_links; i++) {
6670 			if (i > txrx_peer->stats_arr_size)
6671 				break;
6672 			extd_stats = &txrx_peer->stats[i].extd_stats;
6673 			/* Return aggregated stats for MLD peer */
6674 			DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
6675 		}
6676 		dp_release_link_peers_ref(&link_peers_info,
6677 					  DP_MOD_ID_GENERIC_STATS);
6678 	} else {
6679 		index = dp_get_peer_link_id(peer);
6680 		extd_stats = &txrx_peer->stats[index].extd_stats;
6681 		DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
6682 		qdf_mem_copy(&peer_stats->mac_addr,
6683 			     &peer->mac_addr.raw[0],
6684 			     QDF_MAC_ADDR_SIZE);
6685 	}
6686 }
6687 #else
6688 static inline
6689 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
6690 			       struct cdp_peer_stats *peer_stats)
6691 {
6692 	struct dp_txrx_peer *txrx_peer;
6693 	struct dp_peer_per_pkt_stats *per_pkt_stats;
6694 
6695 	txrx_peer = dp_get_txrx_peer(peer);
6696 	if (!txrx_peer)
6697 		return;
6698 
6699 	per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
6700 	DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
6701 }
6702 
6703 static inline
6704 void dp_get_peer_extd_stats(struct dp_peer *peer,
6705 			    struct cdp_peer_stats *peer_stats)
6706 {
6707 	struct dp_txrx_peer *txrx_peer;
6708 	struct dp_peer_extd_stats *extd_stats;
6709 
6710 	txrx_peer = dp_get_txrx_peer(peer);
6711 	if (qdf_unlikely(!txrx_peer)) {
6712 		dp_err_rl("txrx_peer NULL");
6713 		return;
6714 	}
6715 
6716 	extd_stats = &txrx_peer->stats[0].extd_stats;
6717 	DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
6718 }
6719 #endif
6720 #endif
6721 
6722 /**
6723  * dp_get_peer_tx_per()- Get peer packet error ratio
6724  * @peer_stats: buffer for peer stats
6725  *
6726  * Return: none
6727  */
6728 static inline
6729 void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
6730 {
6731 	if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
6732 		peer_stats->tx.per = qdf_do_div((peer_stats->tx.retries * 100),
6733 				  (peer_stats->tx.tx_success.num +
6734 				   peer_stats->tx.retries));
6735 	else
6736 		peer_stats->tx.per = 0;
6737 }
6738 
6739 void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
6740 {
6741 	dp_get_peer_calibr_stats(peer, peer_stats);
6742 
6743 	dp_get_peer_basic_stats(peer, peer_stats);
6744 
6745 	dp_get_peer_per_pkt_stats(peer, peer_stats);
6746 
6747 	dp_get_peer_extd_stats(peer, peer_stats);
6748 
6749 	dp_get_peer_tx_per(peer_stats);
6750 }
6751 
6752 /**
6753  * dp_get_host_peer_stats()- function to print peer stats
6754  * @soc: dp_soc handle
6755  * @mac_addr: mac address of the peer
6756  *
6757  * Return: QDF_STATUS
6758  */
6759 static QDF_STATUS
6760 dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
6761 {
6762 	struct dp_peer *peer = NULL;
6763 	struct cdp_peer_stats *peer_stats = NULL;
6764 	struct cdp_peer_info peer_info = { 0 };
6765 
6766 	if (!mac_addr) {
6767 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
6768 			  "%s: NULL peer mac addr\n", __func__);
6769 		return QDF_STATUS_E_FAILURE;
6770 	}
6771 
6772 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
6773 				 CDP_WILD_PEER_TYPE);
6774 
6775 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
6776 					 DP_MOD_ID_CDP);
6777 	if (!peer) {
6778 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
6779 			  "%s: Invalid peer\n", __func__);
6780 		return QDF_STATUS_E_FAILURE;
6781 	}
6782 
6783 	peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
6784 	if (!peer_stats) {
6785 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
6786 			  "%s: Memory allocation failed for cdp_peer_stats\n",
6787 			  __func__);
6788 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6789 		return QDF_STATUS_E_NOMEM;
6790 	}
6791 
6792 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
6793 
6794 	dp_get_peer_stats(peer, peer_stats);
6795 	dp_print_peer_stats(peer, peer_stats);
6796 
6797 	dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
6798 			    dp_rx_tid_stats_cb, NULL);
6799 
6800 	qdf_mem_free(peer_stats);
6801 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6802 
6803 	return QDF_STATUS_SUCCESS;
6804 }
6805 
6806 /**
6807  * dp_txrx_stats_help() - Helper function for Txrx_Stats
6808  *
6809  * Return: None
6810  */
6811 static void dp_txrx_stats_help(void)
6812 {
6813 	dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
6814 	dp_info("stats_option:");
6815 	dp_info("  1 -- HTT Tx Statistics");
6816 	dp_info("  2 -- HTT Rx Statistics");
6817 	dp_info("  3 -- HTT Tx HW Queue Statistics");
6818 	dp_info("  4 -- HTT Tx HW Sched Statistics");
6819 	dp_info("  5 -- HTT Error Statistics");
6820 	dp_info("  6 -- HTT TQM Statistics");
6821 	dp_info("  7 -- HTT TQM CMDQ Statistics");
6822 	dp_info("  8 -- HTT TX_DE_CMN Statistics");
6823 	dp_info("  9 -- HTT Tx Rate Statistics");
6824 	dp_info(" 10 -- HTT Rx Rate Statistics");
6825 	dp_info(" 11 -- HTT Peer Statistics");
6826 	dp_info(" 12 -- HTT Tx SelfGen Statistics");
6827 	dp_info(" 13 -- HTT Tx MU HWQ Statistics");
6828 	dp_info(" 14 -- HTT RING_IF_INFO Statistics");
6829 	dp_info(" 15 -- HTT SRNG Statistics");
6830 	dp_info(" 16 -- HTT SFM Info Statistics");
6831 	dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
6832 	dp_info(" 18 -- HTT Peer List Details");
6833 	dp_info(" 20 -- Clear Host Statistics");
6834 	dp_info(" 21 -- Host Rx Rate Statistics");
6835 	dp_info(" 22 -- Host Tx Rate Statistics");
6836 	dp_info(" 23 -- Host Tx Statistics");
6837 	dp_info(" 24 -- Host Rx Statistics");
6838 	dp_info(" 25 -- Host AST Statistics");
6839 	dp_info(" 26 -- Host SRNG PTR Statistics");
6840 	dp_info(" 27 -- Host Mon Statistics");
6841 	dp_info(" 28 -- Host REO Queue Statistics");
6842 	dp_info(" 29 -- Host Soc cfg param Statistics");
6843 	dp_info(" 30 -- Host pdev cfg param Statistics");
6844 	dp_info(" 31 -- Host NAPI stats");
6845 	dp_info(" 32 -- Host Interrupt stats");
6846 	dp_info(" 33 -- Host FISA stats");
6847 	dp_info(" 34 -- Host Register Work stats");
6848 	dp_info(" 35 -- HW REO Queue stats");
6849 	dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
6850 	dp_info(" 37 -- Host SRNG usage watermark stats");
6851 }
6852 
6853 #ifdef DP_UMAC_HW_RESET_SUPPORT
6854 /**
6855  * dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
6856  * @soc: dp soc handle
6857  * @en: ebable/disable
6858  *
6859  * Return: void
6860  */
6861 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
6862 {
6863 	soc->umac_reset_ctx.skel_enable = en;
6864 	dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
6865 		     soc->umac_reset_ctx.skel_enable);
6866 }
6867 
6868 /**
6869  * dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
6870  * @soc: dp soc handle
6871  *
6872  * Return: enable/disable flag
6873  */
6874 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
6875 {
6876 	return soc->umac_reset_ctx.skel_enable;
6877 }
6878 #else
6879 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
6880 {
6881 }
6882 
6883 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
6884 {
6885 	return false;
6886 }
6887 #endif
6888 
6889 #ifndef WLAN_SOFTUMAC_SUPPORT
6890 static void dp_print_reg_write_stats(struct dp_soc *soc)
6891 {
6892 	hal_dump_reg_write_stats(soc->hal_soc);
6893 	hal_dump_reg_write_srng_stats(soc->hal_soc);
6894 }
6895 #else
6896 static void dp_print_reg_write_stats(struct dp_soc *soc)
6897 {
6898 	hif_print_reg_write_stats(soc->hif_handle);
6899 }
6900 #endif
6901 
6902 /**
6903  * dp_print_host_stats()- Function to print the stats aggregated at host
6904  * @vdev: DP_VDEV handle
6905  * @req: host stats type
6906  * @soc: dp soc handler
6907  *
6908  * Return: 0 on success, print error message in case of failure
6909  */
6910 static int
6911 dp_print_host_stats(struct dp_vdev *vdev,
6912 		    struct cdp_txrx_stats_req *req,
6913 		    struct dp_soc *soc)
6914 {
6915 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
6916 	enum cdp_host_txrx_stats type =
6917 			dp_stats_mapping_table[req->stats][STATS_HOST];
6918 
6919 	dp_aggregate_pdev_stats(pdev);
6920 
6921 	switch (type) {
6922 	case TXRX_CLEAR_STATS:
6923 		dp_txrx_host_stats_clr(vdev, soc);
6924 		break;
6925 	case TXRX_RX_RATE_STATS:
6926 		dp_print_rx_rates(vdev);
6927 		break;
6928 	case TXRX_TX_RATE_STATS:
6929 		dp_print_tx_rates(vdev);
6930 		break;
6931 	case TXRX_TX_HOST_STATS:
6932 		dp_print_pdev_tx_stats(pdev);
6933 		dp_print_soc_tx_stats(pdev->soc);
6934 		dp_print_global_desc_count();
6935 		break;
6936 	case TXRX_RX_HOST_STATS:
6937 		dp_print_pdev_rx_stats(pdev);
6938 		dp_print_soc_rx_stats(pdev->soc);
6939 		break;
6940 	case TXRX_AST_STATS:
6941 		dp_print_ast_stats(pdev->soc);
6942 		dp_print_mec_stats(pdev->soc);
6943 		dp_print_peer_table(vdev);
6944 		break;
6945 	case TXRX_SRNG_PTR_STATS:
6946 		dp_print_ring_stats(pdev);
6947 		break;
6948 	case TXRX_RX_MON_STATS:
6949 		dp_monitor_print_pdev_rx_mon_stats(pdev);
6950 		break;
6951 	case TXRX_REO_QUEUE_STATS:
6952 		dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
6953 				       req->peer_addr);
6954 		break;
6955 	case TXRX_SOC_CFG_PARAMS:
6956 		dp_print_soc_cfg_params(pdev->soc);
6957 		break;
6958 	case TXRX_PDEV_CFG_PARAMS:
6959 		dp_print_pdev_cfg_params(pdev);
6960 		break;
6961 	case TXRX_NAPI_STATS:
6962 		dp_print_napi_stats(pdev->soc);
6963 		break;
6964 	case TXRX_SOC_INTERRUPT_STATS:
6965 		dp_print_soc_interrupt_stats(pdev->soc);
6966 		break;
6967 	case TXRX_SOC_FSE_STATS:
6968 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
6969 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
6970 						CDP_FISA_STATS_ID_DUMP_HW_FST);
6971 		break;
6972 	case TXRX_HAL_REG_WRITE_STATS:
6973 		dp_print_reg_write_stats(pdev->soc);
6974 		break;
6975 	case TXRX_SOC_REO_HW_DESC_DUMP:
6976 		dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
6977 					 vdev->vdev_id);
6978 		break;
6979 	case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
6980 		dp_dump_wbm_idle_hptp(pdev->soc, pdev);
6981 		break;
6982 	case TXRX_SRNG_USAGE_WM_STATS:
6983 		/* Dump usage watermark stats for all SRNGs */
6984 		dp_dump_srng_high_wm_stats(soc, 0xFF);
6985 		break;
6986 	case TXRX_PEER_STATS:
6987 		dp_print_per_link_stats((struct cdp_soc_t *)pdev->soc,
6988 					vdev->vdev_id);
6989 		break;
6990 	default:
6991 		dp_info("Wrong Input For TxRx Host Stats");
6992 		dp_txrx_stats_help();
6993 		break;
6994 	}
6995 	return 0;
6996 }
6997 
6998 /**
6999  * dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
7000  * @pdev: pdev handle
7001  * @val: increase in value
7002  *
7003  * Return: void
7004  */
7005 static void
7006 dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
7007 {
7008 	pdev->stats.tid_stats.ingress_stack += val;
7009 }
7010 
7011 /**
7012  * dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
7013  * @pdev: pdev handle
7014  * @val: increase in value
7015  *
7016  * Return: void
7017  */
7018 static void
7019 dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
7020 {
7021 	pdev->stats.tid_stats.osif_drop += val;
7022 }
7023 
7024 /**
7025  * dp_get_fw_peer_stats()- function to print peer stats
7026  * @soc: soc handle
7027  * @pdev_id: id of the pdev handle
7028  * @mac_addr: mac address of the peer
7029  * @cap: Type of htt stats requested
7030  * @is_wait: if set, wait on completion from firmware response
7031  *
7032  * Currently Supporting only MAC ID based requests Only
7033  *	1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
7034  *	2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
7035  *	3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
7036  *
7037  * Return: QDF_STATUS
7038  */
7039 static QDF_STATUS
7040 dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7041 		     uint8_t *mac_addr,
7042 		     uint32_t cap, uint32_t is_wait)
7043 {
7044 	int i;
7045 	uint32_t config_param0 = 0;
7046 	uint32_t config_param1 = 0;
7047 	uint32_t config_param2 = 0;
7048 	uint32_t config_param3 = 0;
7049 	struct dp_pdev *pdev =
7050 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7051 						   pdev_id);
7052 
7053 	if (!pdev)
7054 		return QDF_STATUS_E_FAILURE;
7055 
7056 	HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
7057 	config_param0 |= (1 << (cap + 1));
7058 
7059 	for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
7060 		config_param1 |= (1 << i);
7061 	}
7062 
7063 	config_param2 |= (mac_addr[0] & 0x000000ff);
7064 	config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
7065 	config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
7066 	config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
7067 
7068 	config_param3 |= (mac_addr[4] & 0x000000ff);
7069 	config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
7070 
7071 	if (is_wait) {
7072 		qdf_event_reset(&pdev->fw_peer_stats_event);
7073 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7074 					  config_param0, config_param1,
7075 					  config_param2, config_param3,
7076 					  0, DBG_STATS_COOKIE_DP_STATS, 0);
7077 		qdf_wait_single_event(&pdev->fw_peer_stats_event,
7078 				      DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
7079 	} else {
7080 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7081 					  config_param0, config_param1,
7082 					  config_param2, config_param3,
7083 					  0, DBG_STATS_COOKIE_DEFAULT, 0);
7084 	}
7085 
7086 	return QDF_STATUS_SUCCESS;
7087 
7088 }
7089 
7090 /* This struct definition will be removed from here
7091  * once it get added in FW headers*/
7092 struct httstats_cmd_req {
7093     uint32_t    config_param0;
7094     uint32_t    config_param1;
7095     uint32_t    config_param2;
7096     uint32_t    config_param3;
7097     int cookie;
7098     u_int8_t    stats_id;
7099 };
7100 
7101 /**
7102  * dp_get_htt_stats: function to process the httstas request
7103  * @soc: DP soc handle
7104  * @pdev_id: id of pdev handle
7105  * @data: pointer to request data
7106  * @data_len: length for request data
7107  *
7108  * Return: QDF_STATUS
7109  */
7110 static QDF_STATUS
7111 dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
7112 		 uint32_t data_len)
7113 {
7114 	struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
7115 	struct dp_pdev *pdev =
7116 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7117 						   pdev_id);
7118 
7119 	if (!pdev)
7120 		return QDF_STATUS_E_FAILURE;
7121 
7122 	QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
7123 	dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
7124 				req->config_param0, req->config_param1,
7125 				req->config_param2, req->config_param3,
7126 				req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
7127 
7128 	return QDF_STATUS_SUCCESS;
7129 }
7130 
7131 /**
7132  * dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
7133  * @pdev: DP_PDEV handle
7134  * @prio: tidmap priority value passed by the user
7135  *
7136  * Return: QDF_STATUS_SUCCESS on success
7137  */
7138 static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
7139 						uint8_t prio)
7140 {
7141 	struct dp_soc *soc = pdev->soc;
7142 
7143 	soc->tidmap_prty = prio;
7144 
7145 	hal_tx_set_tidmap_prty(soc->hal_soc, prio);
7146 	return QDF_STATUS_SUCCESS;
7147 }
7148 
7149 /**
7150  * dp_get_peer_param: function to get parameters in peer
7151  * @cdp_soc: DP soc handle
7152  * @vdev_id: id of vdev handle
7153  * @peer_mac: peer mac address
7154  * @param: parameter type to be set
7155  * @val: address of buffer
7156  *
7157  * Return: val
7158  */
7159 static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
7160 				    uint8_t *peer_mac,
7161 				    enum cdp_peer_param_type param,
7162 				    cdp_config_param_type *val)
7163 {
7164 	return QDF_STATUS_SUCCESS;
7165 }
7166 
7167 /**
7168  * dp_set_peer_param: function to set parameters in peer
7169  * @cdp_soc: DP soc handle
7170  * @vdev_id: id of vdev handle
7171  * @peer_mac: peer mac address
7172  * @param: parameter type to be set
7173  * @val: value of parameter to be set
7174  *
7175  * Return: 0 for success. nonzero for failure.
7176  */
7177 static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
7178 				    uint8_t *peer_mac,
7179 				    enum cdp_peer_param_type param,
7180 				    cdp_config_param_type val)
7181 {
7182 	struct dp_peer *peer =
7183 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
7184 						       peer_mac, 0, vdev_id,
7185 						       DP_MOD_ID_CDP);
7186 	struct dp_txrx_peer *txrx_peer;
7187 
7188 	if (!peer)
7189 		return QDF_STATUS_E_FAILURE;
7190 
7191 	txrx_peer = peer->txrx_peer;
7192 	if (!txrx_peer) {
7193 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7194 		return QDF_STATUS_E_FAILURE;
7195 	}
7196 
7197 	switch (param) {
7198 	case CDP_CONFIG_NAWDS:
7199 		txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
7200 		break;
7201 	case CDP_CONFIG_ISOLATION:
7202 		dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %d, isolation %d",
7203 			QDF_MAC_ADDR_REF(peer_mac), vdev_id,
7204 			val.cdp_peer_param_isolation);
7205 		dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
7206 		break;
7207 	case CDP_CONFIG_IN_TWT:
7208 		txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
7209 		break;
7210 	default:
7211 		break;
7212 	}
7213 
7214 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7215 
7216 	return QDF_STATUS_SUCCESS;
7217 }
7218 
7219 #ifdef WLAN_FEATURE_11BE_MLO
7220 /**
7221  * dp_set_mld_peer_param: function to set parameters in MLD peer
7222  * @cdp_soc: DP soc handle
7223  * @vdev_id: id of vdev handle
7224  * @peer_mac: peer mac address
7225  * @param: parameter type to be set
7226  * @val: value of parameter to be set
7227  *
7228  * Return: 0 for success. nonzero for failure.
7229  */
7230 static QDF_STATUS dp_set_mld_peer_param(struct cdp_soc_t *cdp_soc,
7231 					uint8_t vdev_id,
7232 					uint8_t *peer_mac,
7233 					enum cdp_peer_param_type param,
7234 					cdp_config_param_type val)
7235 {
7236 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
7237 	struct dp_peer *peer;
7238 	struct dp_txrx_peer *txrx_peer;
7239 	QDF_STATUS status = QDF_STATUS_SUCCESS;
7240 
7241 	peer = dp_mld_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
7242 					  DP_MOD_ID_CDP);
7243 	if (!peer)
7244 		return QDF_STATUS_E_FAILURE;
7245 
7246 	txrx_peer = peer->txrx_peer;
7247 	if (!txrx_peer) {
7248 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7249 		return QDF_STATUS_E_FAILURE;
7250 	}
7251 
7252 	switch (param) {
7253 	case CDP_CONFIG_MLD_PEER_VDEV:
7254 		status = dp_mld_peer_change_vdev(soc, peer, val.new_vdev_id);
7255 		break;
7256 	default:
7257 		break;
7258 	}
7259 
7260 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7261 
7262 	return status;
7263 }
7264 
7265 /**
7266  * dp_set_peer_param_wrapper: wrapper function to set parameters in
7267  *			      legacy/link/MLD peer
7268  * @cdp_soc: DP soc handle
7269  * @vdev_id: id of vdev handle
7270  * @peer_mac: peer mac address
7271  * @param: parameter type to be set
7272  * @val: value of parameter to be set
7273  *
7274  * Return: 0 for success. nonzero for failure.
7275  */
7276 static QDF_STATUS
7277 dp_set_peer_param_wrapper(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
7278 			  uint8_t *peer_mac, enum cdp_peer_param_type param,
7279 			  cdp_config_param_type val)
7280 {
7281 	QDF_STATUS status;
7282 
7283 	switch (param) {
7284 	case CDP_CONFIG_MLD_PEER_VDEV:
7285 		status = dp_set_mld_peer_param(cdp_soc, vdev_id, peer_mac,
7286 					       param, val);
7287 		break;
7288 	default:
7289 		status = dp_set_peer_param(cdp_soc, vdev_id, peer_mac,
7290 					   param, val);
7291 		break;
7292 	}
7293 
7294 	return status;
7295 }
7296 #endif
7297 
7298 /**
7299  * dp_get_pdev_param() - function to get parameters from pdev
7300  * @cdp_soc: DP soc handle
7301  * @pdev_id: id of pdev handle
7302  * @param: parameter type to be get
7303  * @val: buffer for value
7304  *
7305  * Return: status
7306  */
7307 static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
7308 				    enum cdp_pdev_param_type param,
7309 				    cdp_config_param_type *val)
7310 {
7311 	struct cdp_pdev *pdev = (struct cdp_pdev *)
7312 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
7313 						   pdev_id);
7314 	if (!pdev)
7315 		return QDF_STATUS_E_FAILURE;
7316 
7317 	switch (param) {
7318 	case CDP_CONFIG_VOW:
7319 		val->cdp_pdev_param_cfg_vow =
7320 				((struct dp_pdev *)pdev)->delay_stats_flag;
7321 		break;
7322 	case CDP_TX_PENDING:
7323 		val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
7324 		break;
7325 	case CDP_FILTER_MCAST_DATA:
7326 		val->cdp_pdev_param_fltr_mcast =
7327 				dp_monitor_pdev_get_filter_mcast_data(pdev);
7328 		break;
7329 	case CDP_FILTER_NO_DATA:
7330 		val->cdp_pdev_param_fltr_none =
7331 				dp_monitor_pdev_get_filter_non_data(pdev);
7332 		break;
7333 	case CDP_FILTER_UCAST_DATA:
7334 		val->cdp_pdev_param_fltr_ucast =
7335 				dp_monitor_pdev_get_filter_ucast_data(pdev);
7336 		break;
7337 	case CDP_MONITOR_CHANNEL:
7338 		val->cdp_pdev_param_monitor_chan =
7339 			dp_monitor_get_chan_num((struct dp_pdev *)pdev);
7340 		break;
7341 	case CDP_MONITOR_FREQUENCY:
7342 		val->cdp_pdev_param_mon_freq =
7343 			dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
7344 		break;
7345 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
7346 		val->cdp_rxdma_buf_ring_size =
7347 			wlan_cfg_get_rx_dma_buf_ring_size(((struct dp_pdev *)pdev)->wlan_cfg_ctx);
7348 		break;
7349 	default:
7350 		return QDF_STATUS_E_FAILURE;
7351 	}
7352 
7353 	return QDF_STATUS_SUCCESS;
7354 }
7355 
7356 /**
7357  * dp_set_pdev_param() - function to set parameters in pdev
7358  * @cdp_soc: DP soc handle
7359  * @pdev_id: id of pdev handle
7360  * @param: parameter type to be set
7361  * @val: value of parameter to be set
7362  *
7363  * Return: 0 for success. nonzero for failure.
7364  */
7365 static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
7366 				    enum cdp_pdev_param_type param,
7367 				    cdp_config_param_type val)
7368 {
7369 	int target_type;
7370 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
7371 	struct dp_pdev *pdev =
7372 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
7373 						   pdev_id);
7374 	enum reg_wifi_band chan_band;
7375 
7376 	if (!pdev)
7377 		return QDF_STATUS_E_FAILURE;
7378 
7379 	target_type = hal_get_target_type(soc->hal_soc);
7380 	switch (target_type) {
7381 	case TARGET_TYPE_QCA6750:
7382 	case TARGET_TYPE_WCN6450:
7383 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
7384 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
7385 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
7386 		break;
7387 	case TARGET_TYPE_KIWI:
7388 	case TARGET_TYPE_MANGO:
7389 	case TARGET_TYPE_PEACH:
7390 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
7391 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
7392 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
7393 		break;
7394 	default:
7395 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
7396 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
7397 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
7398 		break;
7399 	}
7400 
7401 	switch (param) {
7402 	case CDP_CONFIG_TX_CAPTURE:
7403 		return dp_monitor_config_debug_sniffer(pdev,
7404 						val.cdp_pdev_param_tx_capture);
7405 	case CDP_CONFIG_DEBUG_SNIFFER:
7406 		return dp_monitor_config_debug_sniffer(pdev,
7407 						val.cdp_pdev_param_dbg_snf);
7408 	case CDP_CONFIG_BPR_ENABLE:
7409 		return dp_monitor_set_bpr_enable(pdev,
7410 						 val.cdp_pdev_param_bpr_enable);
7411 	case CDP_CONFIG_PRIMARY_RADIO:
7412 		pdev->is_primary = val.cdp_pdev_param_primary_radio;
7413 		break;
7414 	case CDP_CONFIG_CAPTURE_LATENCY:
7415 		pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
7416 		break;
7417 	case CDP_INGRESS_STATS:
7418 		dp_pdev_tid_stats_ingress_inc(pdev,
7419 					      val.cdp_pdev_param_ingrs_stats);
7420 		break;
7421 	case CDP_OSIF_DROP:
7422 		dp_pdev_tid_stats_osif_drop(pdev,
7423 					    val.cdp_pdev_param_osif_drop);
7424 		break;
7425 	case CDP_CONFIG_ENH_RX_CAPTURE:
7426 		return dp_monitor_config_enh_rx_capture(pdev,
7427 						val.cdp_pdev_param_en_rx_cap);
7428 	case CDP_CONFIG_ENH_TX_CAPTURE:
7429 		return dp_monitor_config_enh_tx_capture(pdev,
7430 						val.cdp_pdev_param_en_tx_cap);
7431 	case CDP_CONFIG_HMMC_TID_OVERRIDE:
7432 		pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
7433 		break;
7434 	case CDP_CONFIG_HMMC_TID_VALUE:
7435 		pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
7436 		break;
7437 	case CDP_CHAN_NOISE_FLOOR:
7438 		pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
7439 		break;
7440 	case CDP_TIDMAP_PRTY:
7441 		dp_set_pdev_tidmap_prty_wifi3(pdev,
7442 					      val.cdp_pdev_param_tidmap_prty);
7443 		break;
7444 	case CDP_FILTER_NEIGH_PEERS:
7445 		dp_monitor_set_filter_neigh_peers(pdev,
7446 					val.cdp_pdev_param_fltr_neigh_peers);
7447 		break;
7448 	case CDP_MONITOR_CHANNEL:
7449 		dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
7450 		break;
7451 	case CDP_MONITOR_FREQUENCY:
7452 		chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
7453 		dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
7454 		dp_monitor_set_chan_band(pdev, chan_band);
7455 		break;
7456 	case CDP_CONFIG_BSS_COLOR:
7457 		dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
7458 		break;
7459 	case CDP_SET_ATF_STATS_ENABLE:
7460 		dp_monitor_set_atf_stats_enable(pdev,
7461 					val.cdp_pdev_param_atf_stats_enable);
7462 		break;
7463 	case CDP_CONFIG_SPECIAL_VAP:
7464 		dp_monitor_pdev_config_scan_spcl_vap(pdev,
7465 					val.cdp_pdev_param_config_special_vap);
7466 		dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
7467 		break;
7468 	case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
7469 		dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
7470 				val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
7471 		break;
7472 	case CDP_CONFIG_ENHANCED_STATS_ENABLE:
7473 		pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
7474 		break;
7475 	case CDP_ISOLATION:
7476 		pdev->isolation = val.cdp_pdev_param_isolation;
7477 		break;
7478 	case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
7479 		return dp_monitor_config_undecoded_metadata_capture(pdev,
7480 				val.cdp_pdev_param_undecoded_metadata_enable);
7481 		break;
7482 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
7483 		wlan_cfg_set_rx_dma_buf_ring_size(pdev->wlan_cfg_ctx,
7484 						  val.cdp_rxdma_buf_ring_size);
7485 		break;
7486 	default:
7487 		return QDF_STATUS_E_INVAL;
7488 	}
7489 	return QDF_STATUS_SUCCESS;
7490 }
7491 
7492 #ifdef QCA_UNDECODED_METADATA_SUPPORT
7493 static
7494 QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
7495 					uint8_t pdev_id, uint32_t mask,
7496 					uint32_t mask_cont)
7497 {
7498 	struct dp_pdev *pdev =
7499 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
7500 						   pdev_id);
7501 
7502 	if (!pdev)
7503 		return QDF_STATUS_E_FAILURE;
7504 
7505 	return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
7506 				mask, mask_cont);
7507 }
7508 
7509 static
7510 QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
7511 					uint8_t pdev_id, uint32_t *mask,
7512 					uint32_t *mask_cont)
7513 {
7514 	struct dp_pdev *pdev =
7515 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
7516 						   pdev_id);
7517 
7518 	if (!pdev)
7519 		return QDF_STATUS_E_FAILURE;
7520 
7521 	return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
7522 				mask, mask_cont);
7523 }
7524 #endif
7525 
7526 #ifdef QCA_PEER_EXT_STATS
7527 static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
7528 					  qdf_nbuf_t nbuf)
7529 {
7530 	struct dp_peer *peer = NULL;
7531 	uint16_t peer_id, ring_id;
7532 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
7533 	struct dp_peer_delay_stats *delay_stats = NULL;
7534 
7535 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
7536 	if (peer_id > soc->max_peer_id)
7537 		return;
7538 
7539 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
7540 	if (qdf_unlikely(!peer))
7541 		return;
7542 
7543 	if (qdf_unlikely(!peer->txrx_peer)) {
7544 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7545 		return;
7546 	}
7547 
7548 	if (qdf_likely(peer->txrx_peer->delay_stats)) {
7549 		delay_stats = peer->txrx_peer->delay_stats;
7550 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
7551 		dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
7552 					nbuf);
7553 	}
7554 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7555 }
7556 #else
7557 static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
7558 						 qdf_nbuf_t nbuf)
7559 {
7560 }
7561 #endif
7562 
7563 /**
7564  * dp_calculate_delay_stats() - function to get rx delay stats
7565  * @cdp_soc: DP soc handle
7566  * @vdev_id: id of DP vdev handle
7567  * @nbuf: skb
7568  *
7569  * Return: QDF_STATUS
7570  */
7571 static QDF_STATUS
7572 dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7573 			 qdf_nbuf_t nbuf)
7574 {
7575 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
7576 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
7577 						     DP_MOD_ID_CDP);
7578 
7579 	if (!vdev)
7580 		return QDF_STATUS_SUCCESS;
7581 
7582 	if (vdev->pdev->delay_stats_flag)
7583 		dp_rx_compute_delay(vdev, nbuf);
7584 	else
7585 		dp_rx_update_peer_delay_stats(soc, nbuf);
7586 
7587 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7588 	return QDF_STATUS_SUCCESS;
7589 }
7590 
7591 /**
7592  * dp_get_vdev_param() - function to get parameters from vdev
7593  * @cdp_soc: DP soc handle
7594  * @vdev_id: id of DP vdev handle
7595  * @param: parameter type to get value
7596  * @val: buffer address
7597  *
7598  * Return: status
7599  */
7600 static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7601 				    enum cdp_vdev_param_type param,
7602 				    cdp_config_param_type *val)
7603 {
7604 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
7605 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
7606 						     DP_MOD_ID_CDP);
7607 
7608 	if (!vdev)
7609 		return QDF_STATUS_E_FAILURE;
7610 
7611 	switch (param) {
7612 	case CDP_ENABLE_WDS:
7613 		val->cdp_vdev_param_wds = vdev->wds_enabled;
7614 		break;
7615 	case CDP_ENABLE_MEC:
7616 		val->cdp_vdev_param_mec = vdev->mec_enabled;
7617 		break;
7618 	case CDP_ENABLE_DA_WAR:
7619 		val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
7620 		break;
7621 	case CDP_ENABLE_IGMP_MCAST_EN:
7622 		val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
7623 		break;
7624 	case CDP_ENABLE_MCAST_EN:
7625 		val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
7626 		break;
7627 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
7628 		val->cdp_vdev_param_hlos_tid_override =
7629 			    dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
7630 		break;
7631 	case CDP_ENABLE_PEER_AUTHORIZE:
7632 		val->cdp_vdev_param_peer_authorize =
7633 			    vdev->peer_authorize;
7634 		break;
7635 	case CDP_TX_ENCAP_TYPE:
7636 		val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
7637 		break;
7638 	case CDP_ENABLE_CIPHER:
7639 		val->cdp_vdev_param_cipher_en = vdev->sec_type;
7640 		break;
7641 #ifdef WLAN_SUPPORT_MESH_LATENCY
7642 	case CDP_ENABLE_PEER_TID_LATENCY:
7643 		val->cdp_vdev_param_peer_tid_latency_enable =
7644 			vdev->peer_tid_latency_enabled;
7645 		break;
7646 	case CDP_SET_VAP_MESH_TID:
7647 		val->cdp_vdev_param_mesh_tid =
7648 				vdev->mesh_tid_latency_config.latency_tid;
7649 		break;
7650 #endif
7651 	case CDP_DROP_3ADDR_MCAST:
7652 		val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
7653 		break;
7654 	case CDP_SET_MCAST_VDEV:
7655 		soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
7656 		break;
7657 #ifdef QCA_SUPPORT_WDS_EXTENDED
7658 	case CDP_DROP_TX_MCAST:
7659 		val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
7660 		break;
7661 #endif
7662 
7663 #ifdef MESH_MODE_SUPPORT
7664 	case CDP_MESH_RX_FILTER:
7665 		val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
7666 		break;
7667 	case CDP_MESH_MODE:
7668 		val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
7669 		break;
7670 #endif
7671 	case CDP_ENABLE_NAWDS:
7672 		val->cdp_vdev_param_nawds = vdev->nawds_enabled;
7673 		break;
7674 
7675 	case CDP_ENABLE_WRAP:
7676 		val->cdp_vdev_param_wrap = vdev->wrap_vdev;
7677 		break;
7678 
7679 #ifdef DP_TRAFFIC_END_INDICATION
7680 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
7681 		val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
7682 		break;
7683 #endif
7684 
7685 	default:
7686 		dp_cdp_err("%pK: param value %d is wrong",
7687 			   soc, param);
7688 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7689 		return QDF_STATUS_E_FAILURE;
7690 	}
7691 
7692 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7693 	return QDF_STATUS_SUCCESS;
7694 }
7695 
7696 /**
7697  * dp_set_vdev_param() - function to set parameters in vdev
7698  * @cdp_soc: DP soc handle
7699  * @vdev_id: id of DP vdev handle
7700  * @param: parameter type to get value
7701  * @val: value
7702  *
7703  * Return: QDF_STATUS
7704  */
7705 static QDF_STATUS
7706 dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7707 		  enum cdp_vdev_param_type param, cdp_config_param_type val)
7708 {
7709 	struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
7710 	struct dp_vdev *vdev =
7711 		dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
7712 	uint32_t var = 0;
7713 
7714 	if (!vdev)
7715 		return QDF_STATUS_E_FAILURE;
7716 
7717 	switch (param) {
7718 	case CDP_ENABLE_WDS:
7719 		dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)",
7720 			   dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
7721 		vdev->wds_enabled = val.cdp_vdev_param_wds;
7722 		break;
7723 	case CDP_ENABLE_MEC:
7724 		dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)",
7725 			   dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
7726 		vdev->mec_enabled = val.cdp_vdev_param_mec;
7727 		break;
7728 	case CDP_ENABLE_DA_WAR:
7729 		dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)",
7730 			   dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
7731 		vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
7732 		dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
7733 					     vdev->pdev->soc));
7734 		break;
7735 	case CDP_ENABLE_NAWDS:
7736 		vdev->nawds_enabled = val.cdp_vdev_param_nawds;
7737 		break;
7738 	case CDP_ENABLE_MCAST_EN:
7739 		vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
7740 		break;
7741 	case CDP_ENABLE_IGMP_MCAST_EN:
7742 		vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
7743 		break;
7744 	case CDP_ENABLE_PROXYSTA:
7745 		vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
7746 		break;
7747 	case CDP_UPDATE_TDLS_FLAGS:
7748 		vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
7749 		break;
7750 	case CDP_CFG_WDS_AGING_TIMER:
7751 		var = val.cdp_vdev_param_aging_tmr;
7752 		if (!var)
7753 			qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
7754 		else if (var != vdev->wds_aging_timer_val)
7755 			qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
7756 
7757 		vdev->wds_aging_timer_val = var;
7758 		break;
7759 	case CDP_ENABLE_AP_BRIDGE:
7760 		if (wlan_op_mode_sta != vdev->opmode)
7761 			vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
7762 		else
7763 			vdev->ap_bridge_enabled = false;
7764 		break;
7765 	case CDP_ENABLE_CIPHER:
7766 		vdev->sec_type = val.cdp_vdev_param_cipher_en;
7767 		break;
7768 	case CDP_ENABLE_QWRAP_ISOLATION:
7769 		vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
7770 		break;
7771 	case CDP_UPDATE_MULTIPASS:
7772 		vdev->multipass_en = val.cdp_vdev_param_update_multipass;
7773 		dp_info("vdev %d Multipass enable %d", vdev_id,
7774 			vdev->multipass_en);
7775 		break;
7776 	case CDP_TX_ENCAP_TYPE:
7777 		vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
7778 		break;
7779 	case CDP_RX_DECAP_TYPE:
7780 		vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
7781 		break;
7782 	case CDP_TID_VDEV_PRTY:
7783 		vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
7784 		break;
7785 	case CDP_TIDMAP_TBL_ID:
7786 		vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
7787 		break;
7788 #ifdef MESH_MODE_SUPPORT
7789 	case CDP_MESH_RX_FILTER:
7790 		dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
7791 					   val.cdp_vdev_param_mesh_rx_filter);
7792 		break;
7793 	case CDP_MESH_MODE:
7794 		dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
7795 				      val.cdp_vdev_param_mesh_mode);
7796 		break;
7797 #endif
7798 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
7799 		dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
7800 			val.cdp_vdev_param_hlos_tid_override);
7801 		dp_vdev_set_hlos_tid_override(vdev,
7802 				val.cdp_vdev_param_hlos_tid_override);
7803 		break;
7804 #ifdef QCA_SUPPORT_WDS_EXTENDED
7805 	case CDP_CFG_WDS_EXT:
7806 		if (vdev->opmode == wlan_op_mode_ap)
7807 			vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
7808 		break;
7809 	case CDP_DROP_TX_MCAST:
7810 		dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
7811 			val.cdp_drop_tx_mcast);
7812 		vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
7813 		break;
7814 #endif
7815 	case CDP_ENABLE_PEER_AUTHORIZE:
7816 		vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
7817 		break;
7818 #ifdef WLAN_SUPPORT_MESH_LATENCY
7819 	case CDP_ENABLE_PEER_TID_LATENCY:
7820 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
7821 			val.cdp_vdev_param_peer_tid_latency_enable);
7822 		vdev->peer_tid_latency_enabled =
7823 			val.cdp_vdev_param_peer_tid_latency_enable;
7824 		break;
7825 	case CDP_SET_VAP_MESH_TID:
7826 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
7827 			val.cdp_vdev_param_mesh_tid);
7828 		vdev->mesh_tid_latency_config.latency_tid
7829 				= val.cdp_vdev_param_mesh_tid;
7830 		break;
7831 #endif
7832 #ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
7833 	case CDP_SKIP_BAR_UPDATE_AP:
7834 		dp_info("vdev_id %d skip BAR update: %u", vdev_id,
7835 			val.cdp_skip_bar_update);
7836 		vdev->skip_bar_update = val.cdp_skip_bar_update;
7837 		vdev->skip_bar_update_last_ts = 0;
7838 		break;
7839 #endif
7840 	case CDP_DROP_3ADDR_MCAST:
7841 		dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
7842 			val.cdp_drop_3addr_mcast);
7843 		vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
7844 		break;
7845 	case CDP_ENABLE_WRAP:
7846 		vdev->wrap_vdev = val.cdp_vdev_param_wrap;
7847 		break;
7848 #ifdef DP_TRAFFIC_END_INDICATION
7849 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
7850 		vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
7851 		break;
7852 #endif
7853 #ifdef FEATURE_DIRECT_LINK
7854 	case CDP_VDEV_TX_TO_FW:
7855 		dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
7856 		vdev->to_fw = val.cdp_vdev_tx_to_fw;
7857 		break;
7858 #endif
7859 	case CDP_VDEV_SET_MAC_ADDR:
7860 		dp_info("set mac addr, old mac addr" QDF_MAC_ADDR_FMT
7861 			" new mac addr: " QDF_MAC_ADDR_FMT " for vdev %d",
7862 			QDF_MAC_ADDR_REF(vdev->mac_addr.raw),
7863 			QDF_MAC_ADDR_REF(val.mac_addr), vdev->vdev_id);
7864 		qdf_mem_copy(&vdev->mac_addr.raw[0], val.mac_addr,
7865 			     QDF_MAC_ADDR_SIZE);
7866 		break;
7867 	default:
7868 		break;
7869 	}
7870 
7871 	dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
7872 	dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
7873 
7874 	/* Update PDEV flags as VDEV flags are updated */
7875 	dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
7876 	dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
7877 
7878 	return QDF_STATUS_SUCCESS;
7879 }
7880 
7881 #if defined(FEATURE_WLAN_TDLS) && defined(WLAN_FEATURE_11BE_MLO)
7882 /**
7883  * dp_update_mlo_vdev_for_tdls() - update mlo vdev configuration
7884  *                                 for TDLS
7885  * @cdp_soc: DP soc handle
7886  * @vdev_id: id of DP vdev handle
7887  * @param: parameter type for vdev
7888  * @val: value
7889  *
7890  * If TDLS connection is from secondary vdev, then copy osif_vdev from
7891  * primary vdev to support RX, update TX bank register info for primary
7892  * vdev as well.
7893  * If TDLS connection is from primary vdev, same as before.
7894  *
7895  * Return: None
7896  */
7897 static void
7898 dp_update_mlo_vdev_for_tdls(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7899 			    enum cdp_vdev_param_type param,
7900 			    cdp_config_param_type val)
7901 {
7902 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
7903 	struct dp_peer *peer;
7904 	struct dp_peer *tmp_peer;
7905 	struct dp_peer *mld_peer;
7906 	struct dp_vdev *vdev = NULL;
7907 	struct dp_vdev *pri_vdev = NULL;
7908 	uint8_t pri_vdev_id = CDP_INVALID_VDEV_ID;
7909 
7910 	if (param != CDP_UPDATE_TDLS_FLAGS)
7911 		return;
7912 
7913 	dp_info("update TDLS flag for vdev_id %d, val %d",
7914 		vdev_id, val.cdp_vdev_param_tdls_flags);
7915 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MISC);
7916 	/* only check for STA mode vdev */
7917 	if (!vdev || vdev->opmode != wlan_op_mode_sta) {
7918 		dp_info("vdev is not as expected for TDLS");
7919 		goto comp_ret;
7920 	}
7921 
7922 	/* Find primary vdev_id */
7923 	qdf_spin_lock_bh(&vdev->peer_list_lock);
7924 	TAILQ_FOREACH_SAFE(peer, &vdev->peer_list,
7925 			   peer_list_elem,
7926 			   tmp_peer) {
7927 		if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
7928 					QDF_STATUS_SUCCESS) {
7929 			/* do check only if MLO link peer exist */
7930 			if (IS_MLO_DP_LINK_PEER(peer)) {
7931 				mld_peer = DP_GET_MLD_PEER_FROM_PEER(peer);
7932 				pri_vdev_id = mld_peer->vdev->vdev_id;
7933 				dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
7934 				break;
7935 			}
7936 			dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
7937 		}
7938 	}
7939 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
7940 
7941 	if (pri_vdev_id != CDP_INVALID_VDEV_ID)
7942 		pri_vdev = dp_vdev_get_ref_by_id(soc, pri_vdev_id,
7943 						 DP_MOD_ID_MISC);
7944 
7945 	/* If current vdev is not same as primary vdev */
7946 	if (pri_vdev && pri_vdev != vdev) {
7947 		dp_info("primary vdev [%d] %pK different with vdev [%d] %pK",
7948 			pri_vdev->vdev_id, pri_vdev,
7949 			vdev->vdev_id, vdev);
7950 		/* update osif_vdev to support RX for vdev */
7951 		vdev->osif_vdev = pri_vdev->osif_vdev;
7952 		dp_set_vdev_param(cdp_soc, pri_vdev->vdev_id,
7953 				  CDP_UPDATE_TDLS_FLAGS, val);
7954 	}
7955 
7956 comp_ret:
7957 	if (pri_vdev)
7958 		dp_vdev_unref_delete(soc, pri_vdev, DP_MOD_ID_MISC);
7959 	if (vdev)
7960 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
7961 }
7962 
7963 static QDF_STATUS
7964 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7965 			  enum cdp_vdev_param_type param,
7966 			  cdp_config_param_type val)
7967 {
7968 	dp_update_mlo_vdev_for_tdls(cdp_soc, vdev_id, param, val);
7969 
7970 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
7971 }
7972 #else
7973 static QDF_STATUS
7974 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
7975 			  enum cdp_vdev_param_type param,
7976 			  cdp_config_param_type val)
7977 {
7978 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
7979 }
7980 #endif
7981 
7982 /**
7983  * dp_rx_peer_metadata_ver_update() - update rx peer metadata version and
7984  *                                    corresponding filed shift and mask
7985  * @soc: Handle to DP Soc structure
7986  * @peer_md_ver: RX peer metadata version value
7987  *
7988  * Return: None
7989  */
7990 static void
7991 dp_rx_peer_metadata_ver_update(struct dp_soc *soc, uint8_t peer_md_ver)
7992 {
7993 	dp_info("rx_peer_metadata version %d", peer_md_ver);
7994 
7995 	switch (peer_md_ver) {
7996 	case 0: /* htt_rx_peer_metadata_v0 */
7997 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V0_PEER_ID_S;
7998 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V0_PEER_ID_M;
7999 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V0_VDEV_ID_S;
8000 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V0_VDEV_ID_M;
8001 		break;
8002 	case 1: /* htt_rx_peer_metadata_v1 */
8003 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1_PEER_ID_S;
8004 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1_PEER_ID_M;
8005 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1_VDEV_ID_S;
8006 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1_VDEV_ID_M;
8007 		soc->htt_mld_peer_valid_s =
8008 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_S;
8009 		soc->htt_mld_peer_valid_m =
8010 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_M;
8011 		break;
8012 	case 2: /* htt_rx_peer_metadata_v1a */
8013 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1A_PEER_ID_S;
8014 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1A_PEER_ID_M;
8015 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_S;
8016 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_M;
8017 		soc->htt_mld_peer_valid_s =
8018 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_S;
8019 		soc->htt_mld_peer_valid_m =
8020 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_M;
8021 		break;
8022 	case 3: /* htt_rx_peer_metadata_v1b */
8023 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1B_PEER_ID_S;
8024 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1B_PEER_ID_M;
8025 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_S;
8026 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_M;
8027 		soc->htt_mld_peer_valid_s =
8028 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_S;
8029 		soc->htt_mld_peer_valid_m =
8030 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_M;
8031 		break;
8032 	default:
8033 		dp_err("invliad rx_peer_metadata version %d", peer_md_ver);
8034 		break;
8035 	}
8036 
8037 	soc->rx_peer_metadata_ver = peer_md_ver;
8038 }
8039 
8040 /**
8041  * dp_set_psoc_param: function to set parameters in psoc
8042  * @cdp_soc: DP soc handle
8043  * @param: parameter type to be set
8044  * @val: value of parameter to be set
8045  *
8046  * Return: QDF_STATUS
8047  */
8048 static QDF_STATUS
8049 dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
8050 		  enum cdp_psoc_param_type param, cdp_config_param_type val)
8051 {
8052 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8053 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
8054 
8055 	switch (param) {
8056 	case CDP_ENABLE_RATE_STATS:
8057 		soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
8058 		break;
8059 	case CDP_SET_NSS_CFG:
8060 		wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
8061 					    val.cdp_psoc_param_en_nss_cfg);
8062 		/*
8063 		 * TODO: masked out based on the per offloaded radio
8064 		 */
8065 		switch (val.cdp_psoc_param_en_nss_cfg) {
8066 		case dp_nss_cfg_default:
8067 			break;
8068 		case dp_nss_cfg_first_radio:
8069 		/*
8070 		 * This configuration is valid for single band radio which
8071 		 * is also NSS offload.
8072 		 */
8073 		case dp_nss_cfg_dbdc:
8074 		case dp_nss_cfg_dbtc:
8075 			wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
8076 			wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
8077 			wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
8078 			wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
8079 			break;
8080 		default:
8081 			dp_cdp_err("%pK: Invalid offload config %d",
8082 				   soc, val.cdp_psoc_param_en_nss_cfg);
8083 		}
8084 
8085 			dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
8086 				   , soc);
8087 		break;
8088 	case CDP_SET_PREFERRED_HW_MODE:
8089 		soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
8090 		break;
8091 	case CDP_IPA_ENABLE:
8092 		soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
8093 		break;
8094 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
8095 		wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
8096 				val.cdp_psoc_param_vdev_stats_hw_offload);
8097 		break;
8098 	case CDP_SAWF_ENABLE:
8099 		wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
8100 		break;
8101 	case CDP_UMAC_RST_SKEL_ENABLE:
8102 		dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
8103 		break;
8104 	case CDP_UMAC_RESET_STATS:
8105 		dp_umac_reset_stats_print(soc);
8106 		break;
8107 	case CDP_SAWF_STATS:
8108 		wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
8109 					       val.cdp_sawf_stats);
8110 		break;
8111 	case CDP_CFG_RX_PEER_METADATA_VER:
8112 		dp_rx_peer_metadata_ver_update(
8113 				soc, val.cdp_peer_metadata_ver);
8114 		break;
8115 	case CDP_CFG_TX_DESC_NUM:
8116 		wlan_cfg_set_num_tx_desc(wlan_cfg_ctx,
8117 					 val.cdp_tx_desc_num);
8118 		break;
8119 	case CDP_CFG_TX_EXT_DESC_NUM:
8120 		wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx,
8121 					     val.cdp_tx_ext_desc_num);
8122 		break;
8123 	case CDP_CFG_TX_RING_SIZE:
8124 		wlan_cfg_set_tx_ring_size(wlan_cfg_ctx,
8125 					  val.cdp_tx_ring_size);
8126 		break;
8127 	case CDP_CFG_TX_COMPL_RING_SIZE:
8128 		wlan_cfg_set_tx_comp_ring_size(wlan_cfg_ctx,
8129 					       val.cdp_tx_comp_ring_size);
8130 		break;
8131 	case CDP_CFG_RX_SW_DESC_NUM:
8132 		wlan_cfg_set_dp_soc_rx_sw_desc_num(wlan_cfg_ctx,
8133 						   val.cdp_rx_sw_desc_num);
8134 		break;
8135 	case CDP_CFG_REO_DST_RING_SIZE:
8136 		wlan_cfg_set_reo_dst_ring_size(wlan_cfg_ctx,
8137 					       val.cdp_reo_dst_ring_size);
8138 		break;
8139 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
8140 		wlan_cfg_set_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx,
8141 					val.cdp_rxdma_refill_ring_size);
8142 		break;
8143 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
8144 	case CDP_CFG_RX_REFILL_POOL_NUM:
8145 		wlan_cfg_set_rx_refill_buf_pool_size(wlan_cfg_ctx,
8146 						val.cdp_rx_refill_buf_pool_size);
8147 		break;
8148 #endif
8149 	case CDP_CFG_AST_INDICATION_DISABLE:
8150 		wlan_cfg_set_ast_indication_disable
8151 			(wlan_cfg_ctx, val.cdp_ast_indication_disable);
8152 		break;
8153 	default:
8154 		break;
8155 	}
8156 
8157 	return QDF_STATUS_SUCCESS;
8158 }
8159 
8160 /**
8161  * dp_get_psoc_param: function to get parameters in soc
8162  * @cdp_soc: DP soc handle
8163  * @param: parameter type to be get
8164  * @val: address of buffer
8165  *
8166  * Return: status
8167  */
8168 static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
8169 				    enum cdp_psoc_param_type param,
8170 				    cdp_config_param_type *val)
8171 {
8172 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8173 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx;
8174 
8175 	if (!soc)
8176 		return QDF_STATUS_E_FAILURE;
8177 
8178 	wlan_cfg_ctx = soc->wlan_cfg_ctx;
8179 
8180 	switch (param) {
8181 	case CDP_CFG_PEER_EXT_STATS:
8182 		val->cdp_psoc_param_pext_stats =
8183 			wlan_cfg_is_peer_ext_stats_enabled(wlan_cfg_ctx);
8184 		break;
8185 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
8186 		val->cdp_psoc_param_vdev_stats_hw_offload =
8187 			wlan_cfg_get_vdev_stats_hw_offload_config(wlan_cfg_ctx);
8188 		break;
8189 	case CDP_UMAC_RST_SKEL_ENABLE:
8190 		val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
8191 		break;
8192 	case CDP_TXRX_HAL_SOC_HDL:
8193 		val->hal_soc_hdl = soc->hal_soc;
8194 		break;
8195 	case CDP_CFG_TX_DESC_NUM:
8196 		val->cdp_tx_desc_num = wlan_cfg_get_num_tx_desc(wlan_cfg_ctx);
8197 		break;
8198 	case CDP_CFG_TX_EXT_DESC_NUM:
8199 		val->cdp_tx_ext_desc_num =
8200 			wlan_cfg_get_num_tx_ext_desc(wlan_cfg_ctx);
8201 		break;
8202 	case CDP_CFG_TX_RING_SIZE:
8203 		val->cdp_tx_ring_size = wlan_cfg_tx_ring_size(wlan_cfg_ctx);
8204 		break;
8205 	case CDP_CFG_TX_COMPL_RING_SIZE:
8206 		val->cdp_tx_comp_ring_size =
8207 			wlan_cfg_tx_comp_ring_size(wlan_cfg_ctx);
8208 		break;
8209 	case CDP_CFG_RX_SW_DESC_NUM:
8210 		val->cdp_rx_sw_desc_num =
8211 			wlan_cfg_get_dp_soc_rx_sw_desc_num(wlan_cfg_ctx);
8212 		break;
8213 	case CDP_CFG_REO_DST_RING_SIZE:
8214 		val->cdp_reo_dst_ring_size =
8215 			wlan_cfg_get_reo_dst_ring_size(wlan_cfg_ctx);
8216 		break;
8217 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
8218 		val->cdp_rxdma_refill_ring_size =
8219 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx);
8220 		break;
8221 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
8222 	case CDP_CFG_RX_REFILL_POOL_NUM:
8223 		val->cdp_rx_refill_buf_pool_size =
8224 			wlan_cfg_get_rx_refill_buf_pool_size(wlan_cfg_ctx);
8225 		break;
8226 #endif
8227 	case CDP_CFG_FISA_PARAMS:
8228 		val->fisa_params.fisa_fst_size = wlan_cfg_get_rx_flow_search_table_size(soc->wlan_cfg_ctx);
8229 		val->fisa_params.rx_flow_max_search =
8230 			wlan_cfg_rx_fst_get_max_search(soc->wlan_cfg_ctx);
8231 		val->fisa_params.rx_toeplitz_hash_key =
8232 			wlan_cfg_rx_fst_get_hash_key(soc->wlan_cfg_ctx);
8233 		break;
8234 	case CDP_RX_PKT_TLV_SIZE:
8235 		val->rx_pkt_tlv_size = soc->rx_pkt_tlv_size;
8236 		break;
8237 	default:
8238 		dp_warn("Invalid param: %u", param);
8239 		break;
8240 	}
8241 
8242 	return QDF_STATUS_SUCCESS;
8243 }
8244 
8245 /**
8246  * dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
8247  * @cdp_soc: CDP SOC handle
8248  * @vdev_id: id of DP_VDEV handle
8249  * @map_id:ID of map that needs to be updated
8250  *
8251  * Return: QDF_STATUS
8252  */
8253 static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
8254 						 uint8_t vdev_id,
8255 						 uint8_t map_id)
8256 {
8257 	cdp_config_param_type val;
8258 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8259 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8260 						     DP_MOD_ID_CDP);
8261 	if (vdev) {
8262 		vdev->dscp_tid_map_id = map_id;
8263 		val.cdp_vdev_param_dscp_tid_map_id = map_id;
8264 		soc->arch_ops.txrx_set_vdev_param(soc,
8265 						  vdev,
8266 						  CDP_UPDATE_DSCP_TO_TID_MAP,
8267 						  val);
8268 		/* Update flag for transmit tid classification */
8269 		if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
8270 			vdev->skip_sw_tid_classification |=
8271 				DP_TX_HW_DSCP_TID_MAP_VALID;
8272 		else
8273 			vdev->skip_sw_tid_classification &=
8274 				~DP_TX_HW_DSCP_TID_MAP_VALID;
8275 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8276 		return QDF_STATUS_SUCCESS;
8277 	}
8278 
8279 	return QDF_STATUS_E_FAILURE;
8280 }
8281 
8282 #ifdef DP_RATETABLE_SUPPORT
8283 static int dp_txrx_get_ratekbps(int preamb, int mcs,
8284 				int htflag, int gintval)
8285 {
8286 	uint32_t rix;
8287 	uint16_t ratecode;
8288 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
8289 
8290 	return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
8291 			       (uint8_t)preamb, 1, punc_mode,
8292 			       &rix, &ratecode);
8293 }
8294 #else
8295 static int dp_txrx_get_ratekbps(int preamb, int mcs,
8296 				int htflag, int gintval)
8297 {
8298 	return 0;
8299 }
8300 #endif
8301 
8302 /**
8303  * dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
8304  * @soc: DP soc handle
8305  * @pdev_id: id of DP pdev handle
8306  * @pdev_stats: buffer to copy to
8307  *
8308  * Return: status success/failure
8309  */
8310 static QDF_STATUS
8311 dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
8312 		       struct cdp_pdev_stats *pdev_stats)
8313 {
8314 	struct dp_pdev *pdev =
8315 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8316 						   pdev_id);
8317 	if (!pdev)
8318 		return QDF_STATUS_E_FAILURE;
8319 
8320 	dp_aggregate_pdev_stats(pdev);
8321 
8322 	qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
8323 	return QDF_STATUS_SUCCESS;
8324 }
8325 
8326 /**
8327  * dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
8328  * @vdev: DP vdev handle
8329  * @buf: buffer containing specific stats structure
8330  *
8331  * Return: void
8332  */
8333 static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
8334 					 void *buf)
8335 {
8336 	struct cdp_tx_ingress_stats *host_stats = NULL;
8337 
8338 	if (!buf) {
8339 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
8340 		return;
8341 	}
8342 	host_stats = (struct cdp_tx_ingress_stats *)buf;
8343 
8344 	DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
8345 			 host_stats->mcast_en.mcast_pkt.num,
8346 			 host_stats->mcast_en.mcast_pkt.bytes);
8347 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
8348 		     host_stats->mcast_en.dropped_map_error);
8349 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
8350 		     host_stats->mcast_en.dropped_self_mac);
8351 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
8352 		     host_stats->mcast_en.dropped_send_fail);
8353 	DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
8354 		     host_stats->mcast_en.ucast);
8355 	DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
8356 		     host_stats->mcast_en.fail_seg_alloc);
8357 	DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
8358 		     host_stats->mcast_en.clone_fail);
8359 }
8360 
8361 /**
8362  * dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
8363  * @vdev: DP vdev handle
8364  * @buf: buffer containing specific stats structure
8365  *
8366  * Return: void
8367  */
8368 static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
8369 					      void *buf)
8370 {
8371 	struct cdp_tx_ingress_stats *host_stats = NULL;
8372 
8373 	if (!buf) {
8374 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
8375 		return;
8376 	}
8377 	host_stats = (struct cdp_tx_ingress_stats *)buf;
8378 
8379 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_rcvd,
8380 		     host_stats->igmp_mcast_en.igmp_rcvd);
8381 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_ucast_converted,
8382 		     host_stats->igmp_mcast_en.igmp_ucast_converted);
8383 }
8384 
8385 /**
8386  * dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
8387  * @soc_hdl: DP soc handle
8388  * @vdev_id: id of DP vdev handle
8389  * @buf: buffer containing specific stats structure
8390  * @stats_id: stats type
8391  *
8392  * Return: QDF_STATUS
8393  */
8394 static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
8395 						 uint8_t vdev_id,
8396 						 void *buf,
8397 						 uint16_t stats_id)
8398 {
8399 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8400 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8401 						     DP_MOD_ID_CDP);
8402 
8403 	if (!vdev) {
8404 		dp_cdp_err("%pK: Invalid vdev handle", soc);
8405 		return QDF_STATUS_E_FAILURE;
8406 	}
8407 
8408 	switch (stats_id) {
8409 	case DP_VDEV_STATS_PKT_CNT_ONLY:
8410 		break;
8411 	case DP_VDEV_STATS_TX_ME:
8412 		dp_txrx_update_vdev_me_stats(vdev, buf);
8413 		dp_txrx_update_vdev_igmp_me_stats(vdev, buf);
8414 		break;
8415 	default:
8416 		qdf_info("Invalid stats_id %d", stats_id);
8417 		break;
8418 	}
8419 
8420 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8421 	return QDF_STATUS_SUCCESS;
8422 }
8423 
8424 /**
8425  * dp_txrx_get_peer_stats() - will return cdp_peer_stats
8426  * @soc: soc handle
8427  * @vdev_id: id of vdev handle
8428  * @peer_mac: mac of DP_PEER handle
8429  * @peer_stats: buffer to copy to
8430  *
8431  * Return: status success/failure
8432  */
8433 static QDF_STATUS
8434 dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
8435 		       uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
8436 {
8437 	struct dp_peer *peer = NULL;
8438 	struct cdp_peer_info peer_info = { 0 };
8439 
8440 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
8441 				 CDP_WILD_PEER_TYPE);
8442 
8443 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
8444 					 DP_MOD_ID_CDP);
8445 
8446 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
8447 
8448 	if (!peer)
8449 		return QDF_STATUS_E_FAILURE;
8450 
8451 	dp_get_peer_stats(peer, peer_stats);
8452 
8453 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8454 
8455 	return QDF_STATUS_SUCCESS;
8456 }
8457 
8458 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
8459 /**
8460  * dp_get_per_link_peer_stats() - Get per link stats
8461  * @peer: DP peer
8462  * @peer_stats: buffer to copy to
8463  * @peer_type: Peer type
8464  * @num_link: Number of ML links
8465  *
8466  * Return: status success/failure
8467  */
8468 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
8469 				      struct cdp_peer_stats *peer_stats,
8470 				      enum cdp_peer_type peer_type,
8471 				      uint8_t num_link)
8472 {
8473 	uint8_t i, index = 0;
8474 	struct dp_peer *link_peer;
8475 	struct dp_mld_link_peers link_peers_info;
8476 	struct cdp_peer_stats *stats;
8477 	struct dp_soc *soc = peer->vdev->pdev->soc;
8478 
8479 	dp_get_peer_calibr_stats(peer, peer_stats);
8480 	dp_get_peer_basic_stats(peer, peer_stats);
8481 	dp_get_peer_tx_per(peer_stats);
8482 
8483 	if (IS_MLO_DP_MLD_PEER(peer)) {
8484 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
8485 						    &link_peers_info,
8486 						    DP_MOD_ID_GENERIC_STATS);
8487 		for (i = 0; i < link_peers_info.num_links; i++) {
8488 			link_peer = link_peers_info.link_peers[i];
8489 			if (qdf_unlikely(!link_peer))
8490 				continue;
8491 			if (index > num_link) {
8492 				dp_err("Request stats for %d link(s) is less than total link(s) %d",
8493 				       num_link, link_peers_info.num_links);
8494 				break;
8495 			}
8496 			stats = &peer_stats[index];
8497 			dp_get_peer_per_pkt_stats(link_peer, stats);
8498 			dp_get_peer_extd_stats(link_peer, stats);
8499 			index++;
8500 		}
8501 		dp_release_link_peers_ref(&link_peers_info,
8502 					  DP_MOD_ID_GENERIC_STATS);
8503 	} else {
8504 		dp_get_peer_per_pkt_stats(peer, peer_stats);
8505 		dp_get_peer_extd_stats(peer, peer_stats);
8506 	}
8507 	return QDF_STATUS_SUCCESS;
8508 }
8509 #else
8510 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
8511 				      struct cdp_peer_stats *peer_stats,
8512 				      enum cdp_peer_type peer_type,
8513 				      uint8_t num_link)
8514 {
8515 	dp_err("Per link stats not supported");
8516 	return QDF_STATUS_E_INVAL;
8517 }
8518 #endif
8519 
8520 /**
8521  * dp_txrx_get_per_link_peer_stats() - Get per link peer stats
8522  * @soc: soc handle
8523  * @vdev_id: id of vdev handle
8524  * @peer_mac: peer mac address
8525  * @peer_stats: buffer to copy to
8526  * @peer_type: Peer type
8527  * @num_link: Number of ML links
8528  *
8529  * NOTE: For peer_type = CDP_MLD_PEER_TYPE peer_stats should point to
8530  *       buffer of size = (sizeof(*peer_stats) * num_link)
8531  *
8532  * Return: status success/failure
8533  */
8534 static QDF_STATUS
8535 dp_txrx_get_per_link_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
8536 				uint8_t *peer_mac,
8537 				struct cdp_peer_stats *peer_stats,
8538 				enum cdp_peer_type peer_type, uint8_t num_link)
8539 {
8540 	QDF_STATUS status;
8541 	struct dp_peer *peer = NULL;
8542 	struct cdp_peer_info peer_info = { 0 };
8543 
8544 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
8545 				 peer_type);
8546 
8547 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
8548 					 DP_MOD_ID_GENERIC_STATS);
8549 	if (!peer)
8550 		return QDF_STATUS_E_FAILURE;
8551 
8552 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
8553 
8554 	status = dp_get_per_link_peer_stats(peer, peer_stats, peer_type,
8555 					    num_link);
8556 
8557 	dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS);
8558 
8559 	return status;
8560 }
8561 
8562 /**
8563  * dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
8564  * @soc: soc handle
8565  * @vdev_id: vdev_id of vdev object
8566  * @peer_mac: mac address of the peer
8567  * @type: enum of required stats
8568  * @buf: buffer to hold the value
8569  *
8570  * Return: status success/failure
8571  */
8572 static QDF_STATUS
8573 dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
8574 			     uint8_t *peer_mac, enum cdp_peer_stats_type type,
8575 			     cdp_peer_stats_param_t *buf)
8576 {
8577 	QDF_STATUS ret;
8578 	struct dp_peer *peer = NULL;
8579 	struct cdp_peer_info peer_info = { 0 };
8580 
8581 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
8582 				 CDP_WILD_PEER_TYPE);
8583 
8584 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
8585 				         DP_MOD_ID_CDP);
8586 
8587 	if (!peer) {
8588 		dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
8589 			    soc, QDF_MAC_ADDR_REF(peer_mac));
8590 		return QDF_STATUS_E_FAILURE;
8591 	}
8592 
8593 	if (type >= cdp_peer_per_pkt_stats_min &&
8594 	    type < cdp_peer_per_pkt_stats_max) {
8595 		ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
8596 	} else if (type >= cdp_peer_extd_stats_min &&
8597 		   type < cdp_peer_extd_stats_max) {
8598 		ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
8599 	} else {
8600 		dp_err("%pK: Invalid stat type requested", soc);
8601 		ret = QDF_STATUS_E_FAILURE;
8602 	}
8603 
8604 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8605 
8606 	return ret;
8607 }
8608 
8609 /**
8610  * dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
8611  * @soc_hdl: soc handle
8612  * @vdev_id: id of vdev handle
8613  * @peer_mac: mac of DP_PEER handle
8614  *
8615  * Return: QDF_STATUS
8616  */
8617 #ifdef WLAN_FEATURE_11BE_MLO
8618 static QDF_STATUS
8619 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
8620 			 uint8_t *peer_mac)
8621 {
8622 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8623 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
8624 	struct dp_peer *peer =
8625 			dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
8626 						       vdev_id, DP_MOD_ID_CDP);
8627 
8628 	if (!peer)
8629 		return QDF_STATUS_E_FAILURE;
8630 
8631 	DP_STATS_CLR(peer);
8632 	dp_txrx_peer_stats_clr(peer->txrx_peer);
8633 
8634 	if (IS_MLO_DP_MLD_PEER(peer)) {
8635 		uint8_t i;
8636 		struct dp_peer *link_peer;
8637 		struct dp_soc *link_peer_soc;
8638 		struct dp_mld_link_peers link_peers_info;
8639 
8640 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
8641 						    &link_peers_info,
8642 						    DP_MOD_ID_CDP);
8643 		for (i = 0; i < link_peers_info.num_links; i++) {
8644 			link_peer = link_peers_info.link_peers[i];
8645 			link_peer_soc = link_peer->vdev->pdev->soc;
8646 
8647 			DP_STATS_CLR(link_peer);
8648 			dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
8649 		}
8650 
8651 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
8652 	} else {
8653 		dp_monitor_peer_reset_stats(soc, peer);
8654 	}
8655 
8656 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8657 
8658 	return status;
8659 }
8660 #else
8661 static QDF_STATUS
8662 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
8663 			 uint8_t *peer_mac)
8664 {
8665 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8666 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
8667 						      peer_mac, 0, vdev_id,
8668 						      DP_MOD_ID_CDP);
8669 
8670 	if (!peer)
8671 		return QDF_STATUS_E_FAILURE;
8672 
8673 	DP_STATS_CLR(peer);
8674 	dp_txrx_peer_stats_clr(peer->txrx_peer);
8675 	dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
8676 
8677 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8678 
8679 	return status;
8680 }
8681 #endif
8682 
8683 /**
8684  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
8685  * @soc_hdl: CDP SoC handle
8686  * @vdev_id: vdev Id
8687  * @buf: buffer for vdev stats
8688  * @is_aggregate: are aggregate stats being collected
8689  *
8690  * Return: QDF_STATUS
8691  */
8692 QDF_STATUS
8693 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
8694 		       void *buf, bool is_aggregate)
8695 {
8696 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
8697 	struct cdp_vdev_stats *vdev_stats;
8698 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8699 						     DP_MOD_ID_CDP);
8700 
8701 	if (!vdev)
8702 		return QDF_STATUS_E_RESOURCES;
8703 
8704 	vdev_stats = (struct cdp_vdev_stats *)buf;
8705 
8706 	if (is_aggregate) {
8707 		dp_aggregate_vdev_stats(vdev, buf);
8708 	} else {
8709 		qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
8710 	}
8711 
8712 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8713 	return QDF_STATUS_SUCCESS;
8714 }
8715 
8716 /**
8717  * dp_get_total_per() - get total per
8718  * @soc: DP soc handle
8719  * @pdev_id: id of DP_PDEV handle
8720  *
8721  * Return: % error rate using retries per packet and success packets
8722  */
8723 static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
8724 {
8725 	struct dp_pdev *pdev =
8726 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8727 						   pdev_id);
8728 
8729 	if (!pdev)
8730 		return 0;
8731 
8732 	dp_aggregate_pdev_stats(pdev);
8733 	if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
8734 		return 0;
8735 	return qdf_do_div((pdev->stats.tx.retries * 100),
8736 		((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
8737 }
8738 
8739 /**
8740  * dp_txrx_stats_publish() - publish pdev stats into a buffer
8741  * @soc: DP soc handle
8742  * @pdev_id: id of DP_PDEV handle
8743  * @buf: to hold pdev_stats
8744  *
8745  * Return: int
8746  */
8747 static int
8748 dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
8749 		      struct cdp_stats_extd *buf)
8750 {
8751 	struct cdp_txrx_stats_req req = {0,};
8752 	QDF_STATUS status;
8753 	struct dp_pdev *pdev =
8754 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8755 						   pdev_id);
8756 
8757 	if (!pdev)
8758 		return TXRX_STATS_LEVEL_OFF;
8759 
8760 	if (pdev->pending_fw_stats_response)
8761 		return TXRX_STATS_LEVEL_OFF;
8762 
8763 	dp_aggregate_pdev_stats(pdev);
8764 
8765 	pdev->pending_fw_stats_response = true;
8766 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
8767 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
8768 	pdev->fw_stats_tlv_bitmap_rcvd = 0;
8769 	qdf_event_reset(&pdev->fw_stats_event);
8770 	dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
8771 				req.param1, req.param2, req.param3, 0,
8772 				req.cookie_val, 0);
8773 
8774 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
8775 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
8776 	dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
8777 				req.param1, req.param2, req.param3, 0,
8778 				req.cookie_val, 0);
8779 
8780 	status =
8781 		qdf_wait_single_event(&pdev->fw_stats_event, DP_MAX_SLEEP_TIME);
8782 
8783 	if (status != QDF_STATUS_SUCCESS) {
8784 		if (status == QDF_STATUS_E_TIMEOUT)
8785 			qdf_debug("TIMEOUT_OCCURS");
8786 		pdev->pending_fw_stats_response = false;
8787 		return TXRX_STATS_LEVEL_OFF;
8788 	}
8789 	qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
8790 	pdev->pending_fw_stats_response = false;
8791 
8792 	return TXRX_STATS_LEVEL;
8793 }
8794 
8795 /**
8796  * dp_get_obss_stats() - Get Pdev OBSS stats from Fw
8797  * @soc: DP soc handle
8798  * @pdev_id: id of DP_PDEV handle
8799  * @buf: to hold pdev obss stats
8800  * @req: Pointer to CDP TxRx stats
8801  *
8802  * Return: status
8803  */
8804 static QDF_STATUS
8805 dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
8806 		  struct cdp_pdev_obss_pd_stats_tlv *buf,
8807 		  struct cdp_txrx_stats_req *req)
8808 {
8809 	QDF_STATUS status;
8810 	struct dp_pdev *pdev =
8811 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8812 						   pdev_id);
8813 
8814 	if (!pdev)
8815 		return QDF_STATUS_E_INVAL;
8816 
8817 	if (pdev->pending_fw_obss_stats_response)
8818 		return QDF_STATUS_E_AGAIN;
8819 
8820 	pdev->pending_fw_obss_stats_response = true;
8821 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
8822 	req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
8823 	qdf_event_reset(&pdev->fw_obss_stats_event);
8824 	status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
8825 					   req->param1, req->param2,
8826 					   req->param3, 0, req->cookie_val,
8827 					   req->mac_id);
8828 	if (QDF_IS_STATUS_ERROR(status)) {
8829 		pdev->pending_fw_obss_stats_response = false;
8830 		return status;
8831 	}
8832 	status =
8833 		qdf_wait_single_event(&pdev->fw_obss_stats_event,
8834 				      DP_MAX_SLEEP_TIME);
8835 
8836 	if (status != QDF_STATUS_SUCCESS) {
8837 		if (status == QDF_STATUS_E_TIMEOUT)
8838 			qdf_debug("TIMEOUT_OCCURS");
8839 		pdev->pending_fw_obss_stats_response = false;
8840 		return QDF_STATUS_E_TIMEOUT;
8841 	}
8842 	qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
8843 		     sizeof(struct cdp_pdev_obss_pd_stats_tlv));
8844 	pdev->pending_fw_obss_stats_response = false;
8845 	return status;
8846 }
8847 
8848 /**
8849  * dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
8850  * @soc: DP soc handle
8851  * @pdev_id: id of DP_PDEV handle
8852  * @req: Pointer to CDP TxRx stats request mac_id will be
8853  *	 pre-filled and should not be overwritten
8854  *
8855  * Return: status
8856  */
8857 static QDF_STATUS
8858 dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
8859 			    struct cdp_txrx_stats_req *req)
8860 {
8861 	struct dp_pdev *pdev =
8862 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8863 						   pdev_id);
8864 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
8865 
8866 	if (!pdev)
8867 		return QDF_STATUS_E_INVAL;
8868 
8869 	/*
8870 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
8871 	 * from param0 to param3 according to below rule:
8872 	 *
8873 	 * PARAM:
8874 	 *   - config_param0 : start_offset (stats type)
8875 	 *   - config_param1 : stats bmask from start offset
8876 	 *   - config_param2 : stats bmask from start offset + 32
8877 	 *   - config_param3 : stats bmask from start offset + 64
8878 	 */
8879 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
8880 	req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
8881 	req->param1 = 0x00000001;
8882 
8883 	return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
8884 				  req->param1, req->param2, req->param3, 0,
8885 				cookie_val, req->mac_id);
8886 }
8887 
8888 /**
8889  * dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
8890  * @soc_handle: soc handle
8891  * @pdev_id: id of DP_PDEV handle
8892  * @map_id: ID of map that needs to be updated
8893  * @tos: index value in map
8894  * @tid: tid value passed by the user
8895  *
8896  * Return: QDF_STATUS
8897  */
8898 static QDF_STATUS
8899 dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
8900 			       uint8_t pdev_id,
8901 			       uint8_t map_id,
8902 			       uint8_t tos, uint8_t tid)
8903 {
8904 	uint8_t dscp;
8905 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
8906 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
8907 
8908 	if (!pdev)
8909 		return QDF_STATUS_E_FAILURE;
8910 
8911 	dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
8912 	pdev->dscp_tid_map[map_id][dscp] = tid;
8913 
8914 	if (map_id < soc->num_hw_dscp_tid_map)
8915 		hal_tx_update_dscp_tid(soc->hal_soc, tid,
8916 				       map_id, dscp);
8917 	else
8918 		return QDF_STATUS_E_FAILURE;
8919 
8920 	return QDF_STATUS_SUCCESS;
8921 }
8922 
8923 #ifdef WLAN_SYSFS_DP_STATS
8924 /**
8925  * dp_sysfs_event_trigger() - Trigger event to wait for firmware
8926  * stats request response.
8927  * @soc: soc handle
8928  * @cookie_val: cookie value
8929  *
8930  * Return: QDF_STATUS
8931  */
8932 static QDF_STATUS
8933 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
8934 {
8935 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8936 	/* wait for firmware response for sysfs stats request */
8937 	if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
8938 		if (!soc) {
8939 			dp_cdp_err("soc is NULL");
8940 			return QDF_STATUS_E_FAILURE;
8941 		}
8942 		/* wait for event completion */
8943 		status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
8944 					       WLAN_SYSFS_STAT_REQ_WAIT_MS);
8945 		if (status == QDF_STATUS_SUCCESS)
8946 			dp_cdp_info("sysfs_txrx_fw_request_done event completed");
8947 		else if (status == QDF_STATUS_E_TIMEOUT)
8948 			dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
8949 		else
8950 			dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
8951 	}
8952 
8953 	return status;
8954 }
8955 #else /* WLAN_SYSFS_DP_STATS */
8956 static QDF_STATUS
8957 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
8958 {
8959 	return QDF_STATUS_SUCCESS;
8960 }
8961 #endif /* WLAN_SYSFS_DP_STATS */
8962 
8963 /**
8964  * dp_fw_stats_process() - Process TXRX FW stats request.
8965  * @vdev: DP VDEV handle
8966  * @req: stats request
8967  *
8968  * Return: QDF_STATUS
8969  */
8970 static QDF_STATUS
8971 dp_fw_stats_process(struct dp_vdev *vdev,
8972 		    struct cdp_txrx_stats_req *req)
8973 {
8974 	struct dp_pdev *pdev = NULL;
8975 	struct dp_soc *soc = NULL;
8976 	uint32_t stats = req->stats;
8977 	uint8_t mac_id = req->mac_id;
8978 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
8979 
8980 	if (!vdev) {
8981 		DP_TRACE(NONE, "VDEV not found");
8982 		return QDF_STATUS_E_FAILURE;
8983 	}
8984 
8985 	pdev = vdev->pdev;
8986 	if (!pdev) {
8987 		DP_TRACE(NONE, "PDEV not found");
8988 		return QDF_STATUS_E_FAILURE;
8989 	}
8990 
8991 	soc = pdev->soc;
8992 	if (!soc) {
8993 		DP_TRACE(NONE, "soc not found");
8994 		return QDF_STATUS_E_FAILURE;
8995 	}
8996 
8997 	/* In case request is from host sysfs for displaying stats on console */
8998 	if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
8999 		cookie_val = DBG_SYSFS_STATS_COOKIE;
9000 
9001 	/*
9002 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9003 	 * from param0 to param3 according to below rule:
9004 	 *
9005 	 * PARAM:
9006 	 *   - config_param0 : start_offset (stats type)
9007 	 *   - config_param1 : stats bmask from start offset
9008 	 *   - config_param2 : stats bmask from start offset + 32
9009 	 *   - config_param3 : stats bmask from start offset + 64
9010 	 */
9011 	if (req->stats == CDP_TXRX_STATS_0) {
9012 		req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
9013 		req->param1 = 0xFFFFFFFF;
9014 		req->param2 = 0xFFFFFFFF;
9015 		req->param3 = 0xFFFFFFFF;
9016 	} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
9017 		req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
9018 	}
9019 
9020 	if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
9021 		dp_h2t_ext_stats_msg_send(pdev,
9022 					  HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
9023 					  req->param0, req->param1, req->param2,
9024 					  req->param3, 0, cookie_val,
9025 					  mac_id);
9026 	} else {
9027 		dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
9028 					  req->param1, req->param2, req->param3,
9029 					  0, cookie_val, mac_id);
9030 	}
9031 
9032 	dp_sysfs_event_trigger(soc, cookie_val);
9033 
9034 	return QDF_STATUS_SUCCESS;
9035 }
9036 
9037 /**
9038  * dp_txrx_stats_request - function to map to firmware and host stats
9039  * @soc_handle: soc handle
9040  * @vdev_id: virtual device ID
9041  * @req: stats request
9042  *
9043  * Return: QDF_STATUS
9044  */
9045 static
9046 QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
9047 				 uint8_t vdev_id,
9048 				 struct cdp_txrx_stats_req *req)
9049 {
9050 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
9051 	int host_stats;
9052 	int fw_stats;
9053 	enum cdp_stats stats;
9054 	int num_stats;
9055 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9056 						     DP_MOD_ID_CDP);
9057 	QDF_STATUS status = QDF_STATUS_E_INVAL;
9058 
9059 	if (!vdev || !req) {
9060 		dp_cdp_err("%pK: Invalid vdev/req instance", soc);
9061 		status = QDF_STATUS_E_INVAL;
9062 		goto fail0;
9063 	}
9064 
9065 	if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
9066 		dp_err("Invalid mac_id: %u request", req->mac_id);
9067 		status = QDF_STATUS_E_INVAL;
9068 		goto fail0;
9069 	}
9070 
9071 	stats = req->stats;
9072 	if (stats >= CDP_TXRX_MAX_STATS) {
9073 		status = QDF_STATUS_E_INVAL;
9074 		goto fail0;
9075 	}
9076 
9077 	/*
9078 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
9079 	 *			has to be updated if new FW HTT stats added
9080 	 */
9081 	if (stats > CDP_TXRX_STATS_HTT_MAX)
9082 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
9083 
9084 	num_stats  = QDF_ARRAY_SIZE(dp_stats_mapping_table);
9085 
9086 	if (stats >= num_stats) {
9087 		dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
9088 		status = QDF_STATUS_E_INVAL;
9089 		goto fail0;
9090 	}
9091 
9092 	req->stats = stats;
9093 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
9094 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
9095 
9096 	dp_info("stats: %u fw_stats_type: %d host_stats: %d",
9097 		stats, fw_stats, host_stats);
9098 
9099 	if (fw_stats != TXRX_FW_STATS_INVALID) {
9100 		/* update request with FW stats type */
9101 		req->stats = fw_stats;
9102 		status = dp_fw_stats_process(vdev, req);
9103 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
9104 			(host_stats <= TXRX_HOST_STATS_MAX))
9105 		status = dp_print_host_stats(vdev, req, soc);
9106 	else
9107 		dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
9108 fail0:
9109 	if (vdev)
9110 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9111 	return status;
9112 }
9113 
9114 /**
9115  * dp_soc_notify_asserted_soc() - API to notify asserted soc info
9116  * @psoc: CDP soc handle
9117  *
9118  * Return: QDF_STATUS
9119  */
9120 static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
9121 {
9122 	struct dp_soc *soc = (struct dp_soc *)psoc;
9123 
9124 	if (!soc) {
9125 		dp_cdp_err("%pK: soc is NULL", soc);
9126 		return QDF_STATUS_E_INVAL;
9127 	}
9128 
9129 	return dp_umac_reset_notify_asserted_soc(soc);
9130 }
9131 
9132 /**
9133  * dp_txrx_dump_stats() -  Dump statistics
9134  * @psoc: CDP soc handle
9135  * @value: Statistics option
9136  * @level: verbosity level
9137  */
9138 static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
9139 				     enum qdf_stats_verbosity_level level)
9140 {
9141 	struct dp_soc *soc =
9142 		(struct dp_soc *)psoc;
9143 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9144 
9145 	if (!soc) {
9146 		dp_cdp_err("%pK: soc is NULL", soc);
9147 		return QDF_STATUS_E_INVAL;
9148 	}
9149 
9150 	switch (value) {
9151 	case CDP_TXRX_PATH_STATS:
9152 		dp_txrx_path_stats(soc);
9153 		dp_print_soc_interrupt_stats(soc);
9154 		dp_print_reg_write_stats(soc);
9155 		dp_pdev_print_tx_delay_stats(soc);
9156 		/* Dump usage watermark stats for core TX/RX SRNGs */
9157 		dp_dump_srng_high_wm_stats(soc, (1 << REO_DST));
9158 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
9159 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
9160 						CDP_FISA_STATS_ID_ERR_STATS);
9161 		break;
9162 
9163 	case CDP_RX_RING_STATS:
9164 		dp_print_per_ring_stats(soc);
9165 		break;
9166 
9167 	case CDP_TXRX_TSO_STATS:
9168 		dp_print_tso_stats(soc, level);
9169 		break;
9170 
9171 	case CDP_DUMP_TX_FLOW_POOL_INFO:
9172 		if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
9173 			cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
9174 		else
9175 			dp_tx_dump_flow_pool_info_compact(soc);
9176 		break;
9177 
9178 	case CDP_DP_NAPI_STATS:
9179 		dp_print_napi_stats(soc);
9180 		break;
9181 
9182 	case CDP_TXRX_DESC_STATS:
9183 		/* TODO: NOT IMPLEMENTED */
9184 		break;
9185 
9186 	case CDP_DP_RX_FISA_STATS:
9187 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
9188 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
9189 						CDP_FISA_STATS_ID_DUMP_SW_FST);
9190 		break;
9191 
9192 	case CDP_DP_SWLM_STATS:
9193 		dp_print_swlm_stats(soc);
9194 		break;
9195 
9196 	case CDP_DP_TX_HW_LATENCY_STATS:
9197 		dp_pdev_print_tx_delay_stats(soc);
9198 		break;
9199 
9200 	default:
9201 		status = QDF_STATUS_E_INVAL;
9202 		break;
9203 	}
9204 
9205 	return status;
9206 
9207 }
9208 
9209 #ifdef WLAN_SYSFS_DP_STATS
9210 static
9211 void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
9212 			    uint32_t *stat_type)
9213 {
9214 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
9215 	*stat_type = soc->sysfs_config->stat_type_requested;
9216 	*mac_id   = soc->sysfs_config->mac_id;
9217 
9218 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
9219 }
9220 
9221 static
9222 void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
9223 				       uint32_t curr_len,
9224 				       uint32_t max_buf_len,
9225 				       char *buf)
9226 {
9227 	qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
9228 	/* set sysfs_config parameters */
9229 	soc->sysfs_config->buf = buf;
9230 	soc->sysfs_config->curr_buffer_length = curr_len;
9231 	soc->sysfs_config->max_buffer_length = max_buf_len;
9232 	qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
9233 }
9234 
9235 static
9236 QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
9237 			       char *buf, uint32_t buf_size)
9238 {
9239 	uint32_t mac_id = 0;
9240 	uint32_t stat_type = 0;
9241 	uint32_t fw_stats = 0;
9242 	uint32_t host_stats = 0;
9243 	enum cdp_stats stats;
9244 	struct cdp_txrx_stats_req req;
9245 	uint32_t num_stats;
9246 	struct dp_soc *soc = NULL;
9247 
9248 	if (!soc_hdl) {
9249 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
9250 		return QDF_STATUS_E_INVAL;
9251 	}
9252 
9253 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
9254 
9255 	if (!soc) {
9256 		dp_cdp_err("%pK: soc is NULL", soc);
9257 		return QDF_STATUS_E_INVAL;
9258 	}
9259 
9260 	dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
9261 
9262 	stats = stat_type;
9263 	if (stats >= CDP_TXRX_MAX_STATS) {
9264 		dp_cdp_info("sysfs stat type requested is invalid");
9265 		return QDF_STATUS_E_INVAL;
9266 	}
9267 	/*
9268 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
9269 	 *			has to be updated if new FW HTT stats added
9270 	 */
9271 	if (stats > CDP_TXRX_MAX_STATS)
9272 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
9273 
9274 	num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
9275 
9276 	if (stats >= num_stats) {
9277 		dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
9278 				soc, stats, num_stats);
9279 		return QDF_STATUS_E_INVAL;
9280 	}
9281 
9282 	/* build request */
9283 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
9284 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
9285 
9286 	req.stats = stat_type;
9287 	req.mac_id = mac_id;
9288 	/* request stats to be printed */
9289 	qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
9290 
9291 	if (fw_stats != TXRX_FW_STATS_INVALID) {
9292 		/* update request with FW stats type */
9293 		req.cookie_val = DBG_SYSFS_STATS_COOKIE;
9294 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
9295 			(host_stats <= TXRX_HOST_STATS_MAX)) {
9296 		req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
9297 		soc->sysfs_config->process_id = qdf_get_current_pid();
9298 		soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
9299 	}
9300 
9301 	dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
9302 
9303 	dp_txrx_stats_request(soc_hdl, mac_id, &req);
9304 	soc->sysfs_config->process_id = 0;
9305 	soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
9306 
9307 	dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
9308 
9309 	qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
9310 	return QDF_STATUS_SUCCESS;
9311 }
9312 
9313 static
9314 QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
9315 				  uint32_t stat_type, uint32_t mac_id)
9316 {
9317 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9318 
9319 	if (!soc_hdl) {
9320 		dp_cdp_err("%pK: soc is NULL", soc);
9321 		return QDF_STATUS_E_INVAL;
9322 	}
9323 
9324 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
9325 
9326 	soc->sysfs_config->stat_type_requested = stat_type;
9327 	soc->sysfs_config->mac_id = mac_id;
9328 
9329 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
9330 
9331 	return QDF_STATUS_SUCCESS;
9332 }
9333 
9334 static
9335 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
9336 {
9337 	struct dp_soc *soc;
9338 	QDF_STATUS status;
9339 
9340 	if (!soc_hdl) {
9341 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
9342 		return QDF_STATUS_E_INVAL;
9343 	}
9344 
9345 	soc = soc_hdl;
9346 
9347 	soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
9348 	if (!soc->sysfs_config) {
9349 		dp_cdp_err("failed to allocate memory for sysfs_config no memory");
9350 		return QDF_STATUS_E_NOMEM;
9351 	}
9352 
9353 	status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
9354 	/* create event for fw stats request from sysfs */
9355 	if (status != QDF_STATUS_SUCCESS) {
9356 		dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
9357 		qdf_mem_free(soc->sysfs_config);
9358 		soc->sysfs_config = NULL;
9359 		return QDF_STATUS_E_FAILURE;
9360 	}
9361 
9362 	qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
9363 	qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
9364 	qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
9365 
9366 	return QDF_STATUS_SUCCESS;
9367 }
9368 
9369 static
9370 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
9371 {
9372 	struct dp_soc *soc;
9373 	QDF_STATUS status;
9374 
9375 	if (!soc_hdl) {
9376 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
9377 		return QDF_STATUS_E_INVAL;
9378 	}
9379 
9380 	soc = soc_hdl;
9381 	if (!soc->sysfs_config) {
9382 		dp_cdp_err("soc->sysfs_config is NULL");
9383 		return QDF_STATUS_E_FAILURE;
9384 	}
9385 
9386 	status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
9387 	if (status != QDF_STATUS_SUCCESS)
9388 		dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
9389 
9390 	qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
9391 	qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
9392 	qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
9393 
9394 	qdf_mem_free(soc->sysfs_config);
9395 
9396 	return QDF_STATUS_SUCCESS;
9397 }
9398 
9399 #else /* WLAN_SYSFS_DP_STATS */
9400 
9401 static
9402 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
9403 {
9404 	return QDF_STATUS_SUCCESS;
9405 }
9406 
9407 static
9408 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
9409 {
9410 	return QDF_STATUS_SUCCESS;
9411 }
9412 #endif /* WLAN_SYSFS_DP_STATS */
9413 
9414 /**
9415  * dp_txrx_clear_dump_stats() - clear dumpStats
9416  * @soc_hdl: soc handle
9417  * @pdev_id: pdev ID
9418  * @value: stats option
9419  *
9420  * Return: 0 - Success, non-zero - failure
9421  */
9422 static
9423 QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
9424 				    uint8_t value)
9425 {
9426 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9427 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9428 
9429 	if (!soc) {
9430 		dp_err("soc is NULL");
9431 		return QDF_STATUS_E_INVAL;
9432 	}
9433 
9434 	switch (value) {
9435 	case CDP_TXRX_TSO_STATS:
9436 		dp_txrx_clear_tso_stats(soc);
9437 		break;
9438 
9439 	case CDP_DP_TX_HW_LATENCY_STATS:
9440 		dp_pdev_clear_tx_delay_stats(soc);
9441 		break;
9442 
9443 	default:
9444 		status = QDF_STATUS_E_INVAL;
9445 		break;
9446 	}
9447 
9448 	return status;
9449 }
9450 
9451 static QDF_STATUS
9452 dp_txrx_get_interface_stats(struct cdp_soc_t *soc_hdl,
9453 			    uint8_t vdev_id,
9454 			    void *buf,
9455 			    bool is_aggregate)
9456 {
9457 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9458 
9459 	if (soc && soc->arch_ops.dp_get_interface_stats)
9460 		return soc->arch_ops.dp_get_interface_stats(soc_hdl,
9461 							    vdev_id,
9462 							    buf,
9463 							    is_aggregate);
9464 	return QDF_STATUS_E_FAILURE;
9465 }
9466 
9467 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
9468 /**
9469  * dp_update_flow_control_parameters() - API to store datapath
9470  *                            config parameters
9471  * @soc: soc handle
9472  * @params: ini parameter handle
9473  *
9474  * Return: void
9475  */
9476 static inline
9477 void dp_update_flow_control_parameters(struct dp_soc *soc,
9478 				struct cdp_config_params *params)
9479 {
9480 	soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
9481 					params->tx_flow_stop_queue_threshold;
9482 	soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
9483 					params->tx_flow_start_queue_offset;
9484 }
9485 #else
9486 static inline
9487 void dp_update_flow_control_parameters(struct dp_soc *soc,
9488 				struct cdp_config_params *params)
9489 {
9490 }
9491 #endif
9492 
9493 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
9494 /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
9495 #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
9496 
9497 /* Max packet limit for RX REAP Loop (dp_rx_process) */
9498 #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
9499 
9500 static
9501 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
9502 					struct cdp_config_params *params)
9503 {
9504 	soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
9505 				params->tx_comp_loop_pkt_limit;
9506 
9507 	if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
9508 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
9509 	else
9510 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
9511 
9512 	soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
9513 				params->rx_reap_loop_pkt_limit;
9514 
9515 	if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
9516 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
9517 	else
9518 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
9519 
9520 	soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
9521 				params->rx_hp_oos_update_limit;
9522 
9523 	dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
9524 		soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
9525 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
9526 		soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
9527 		soc->wlan_cfg_ctx->rx_enable_eol_data_check,
9528 		soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
9529 }
9530 
9531 #else
9532 static inline
9533 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
9534 					struct cdp_config_params *params)
9535 { }
9536 
9537 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
9538 
9539 /**
9540  * dp_update_config_parameters() - API to store datapath
9541  *                            config parameters
9542  * @psoc: soc handle
9543  * @params: ini parameter handle
9544  *
9545  * Return: status
9546  */
9547 static
9548 QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
9549 				struct cdp_config_params *params)
9550 {
9551 	struct dp_soc *soc = (struct dp_soc *)psoc;
9552 
9553 	if (!(soc)) {
9554 		dp_cdp_err("%pK: Invalid handle", soc);
9555 		return QDF_STATUS_E_INVAL;
9556 	}
9557 
9558 	soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
9559 	soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
9560 	soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
9561 	soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
9562 				params->p2p_tcp_udp_checksumoffload;
9563 	soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
9564 				params->nan_tcp_udp_checksumoffload;
9565 	soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
9566 				params->tcp_udp_checksumoffload;
9567 	soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
9568 	soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
9569 	soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
9570 
9571 	dp_update_rx_soft_irq_limit_params(soc, params);
9572 	dp_update_flow_control_parameters(soc, params);
9573 
9574 	return QDF_STATUS_SUCCESS;
9575 }
9576 
9577 static struct cdp_wds_ops dp_ops_wds = {
9578 	.vdev_set_wds = dp_vdev_set_wds,
9579 #ifdef WDS_VENDOR_EXTENSION
9580 	.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
9581 	.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
9582 #endif
9583 };
9584 
9585 /**
9586  * dp_txrx_data_tx_cb_set() - set the callback for non standard tx
9587  * @soc_hdl: datapath soc handle
9588  * @vdev_id: virtual interface id
9589  * @callback: callback function
9590  * @ctxt: callback context
9591  *
9592  */
9593 static void
9594 dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9595 		       ol_txrx_data_tx_cb callback, void *ctxt)
9596 {
9597 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9598 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9599 						     DP_MOD_ID_CDP);
9600 
9601 	if (!vdev)
9602 		return;
9603 
9604 	vdev->tx_non_std_data_callback.func = callback;
9605 	vdev->tx_non_std_data_callback.ctxt = ctxt;
9606 
9607 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9608 }
9609 
9610 /**
9611  * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
9612  * @soc: datapath soc handle
9613  * @pdev_id: id of datapath pdev handle
9614  *
9615  * Return: opaque pointer to dp txrx handle
9616  */
9617 static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
9618 {
9619 	struct dp_pdev *pdev =
9620 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9621 						   pdev_id);
9622 	if (qdf_unlikely(!pdev))
9623 		return NULL;
9624 
9625 	return pdev->dp_txrx_handle;
9626 }
9627 
9628 /**
9629  * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
9630  * @soc: datapath soc handle
9631  * @pdev_id: id of datapath pdev handle
9632  * @dp_txrx_hdl: opaque pointer for dp_txrx_handle
9633  *
9634  * Return: void
9635  */
9636 static void
9637 dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
9638 			   void *dp_txrx_hdl)
9639 {
9640 	struct dp_pdev *pdev =
9641 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9642 						   pdev_id);
9643 
9644 	if (!pdev)
9645 		return;
9646 
9647 	pdev->dp_txrx_handle = dp_txrx_hdl;
9648 }
9649 
9650 /**
9651  * dp_vdev_get_dp_ext_handle() - get dp handle from vdev
9652  * @soc_hdl: datapath soc handle
9653  * @vdev_id: vdev id
9654  *
9655  * Return: opaque pointer to dp txrx handle
9656  */
9657 static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
9658 				       uint8_t vdev_id)
9659 {
9660 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9661 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9662 						     DP_MOD_ID_CDP);
9663 	void *dp_ext_handle;
9664 
9665 	if (!vdev)
9666 		return NULL;
9667 	dp_ext_handle = vdev->vdev_dp_ext_handle;
9668 
9669 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9670 	return dp_ext_handle;
9671 }
9672 
9673 /**
9674  * dp_vdev_set_dp_ext_handle() - set dp handle in vdev
9675  * @soc_hdl: datapath soc handle
9676  * @vdev_id: vdev id
9677  * @size: size of advance dp handle
9678  *
9679  * Return: QDF_STATUS
9680  */
9681 static QDF_STATUS
9682 dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
9683 			  uint16_t size)
9684 {
9685 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9686 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9687 						     DP_MOD_ID_CDP);
9688 	void *dp_ext_handle;
9689 
9690 	if (!vdev)
9691 		return QDF_STATUS_E_FAILURE;
9692 
9693 	dp_ext_handle = qdf_mem_malloc(size);
9694 
9695 	if (!dp_ext_handle) {
9696 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9697 		return QDF_STATUS_E_FAILURE;
9698 	}
9699 
9700 	vdev->vdev_dp_ext_handle = dp_ext_handle;
9701 
9702 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9703 	return QDF_STATUS_SUCCESS;
9704 }
9705 
9706 /**
9707  * dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
9708  *			      connection for this vdev
9709  * @soc_hdl: CDP soc handle
9710  * @vdev_id: vdev ID
9711  * @action: Add/Delete action
9712  *
9713  * Return: QDF_STATUS.
9714  */
9715 static QDF_STATUS
9716 dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9717 		       enum vdev_ll_conn_actions action)
9718 {
9719 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9720 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9721 						     DP_MOD_ID_CDP);
9722 
9723 	if (!vdev) {
9724 		dp_err("LL connection action for invalid vdev %d", vdev_id);
9725 		return QDF_STATUS_E_FAILURE;
9726 	}
9727 
9728 	switch (action) {
9729 	case CDP_VDEV_LL_CONN_ADD:
9730 		vdev->num_latency_critical_conn++;
9731 		break;
9732 
9733 	case CDP_VDEV_LL_CONN_DEL:
9734 		vdev->num_latency_critical_conn--;
9735 		break;
9736 
9737 	default:
9738 		dp_err("LL connection action invalid %d", action);
9739 		break;
9740 	}
9741 
9742 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9743 	return QDF_STATUS_SUCCESS;
9744 }
9745 
9746 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
9747 /**
9748  * dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
9749  * @soc_hdl: CDP Soc handle
9750  * @value: Enable/Disable value
9751  *
9752  * Return: QDF_STATUS
9753  */
9754 static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
9755 					 uint8_t value)
9756 {
9757 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9758 
9759 	if (!soc->swlm.is_init) {
9760 		dp_err("SWLM is not initialized");
9761 		return QDF_STATUS_E_FAILURE;
9762 	}
9763 
9764 	soc->swlm.is_enabled = !!value;
9765 
9766 	return QDF_STATUS_SUCCESS;
9767 }
9768 
9769 /**
9770  * dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
9771  * @soc_hdl: CDP Soc handle
9772  *
9773  * Return: QDF_STATUS
9774  */
9775 static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
9776 {
9777 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9778 
9779 	return soc->swlm.is_enabled;
9780 }
9781 #endif
9782 
9783 /**
9784  * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
9785  * @soc_handle: datapath soc handle
9786  *
9787  * Return: opaque pointer to external dp (non-core DP)
9788  */
9789 static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
9790 {
9791 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9792 
9793 	return soc->external_txrx_handle;
9794 }
9795 
9796 /**
9797  * dp_soc_set_dp_txrx_handle() - set external dp handle in soc
9798  * @soc_handle: datapath soc handle
9799  * @txrx_handle: opaque pointer to external dp (non-core DP)
9800  *
9801  * Return: void
9802  */
9803 static void
9804 dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
9805 {
9806 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9807 
9808 	soc->external_txrx_handle = txrx_handle;
9809 }
9810 
9811 /**
9812  * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
9813  * @soc_hdl: datapath soc handle
9814  * @pdev_id: id of the datapath pdev handle
9815  * @lmac_id: lmac id
9816  *
9817  * Return: QDF_STATUS
9818  */
9819 static QDF_STATUS
9820 dp_soc_map_pdev_to_lmac
9821 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
9822 	 uint32_t lmac_id)
9823 {
9824 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9825 
9826 	wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
9827 				pdev_id,
9828 				lmac_id);
9829 
9830 	/*Set host PDEV ID for lmac_id*/
9831 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
9832 			      pdev_id,
9833 			      lmac_id);
9834 
9835 	return QDF_STATUS_SUCCESS;
9836 }
9837 
9838 /**
9839  * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
9840  * @soc_hdl: datapath soc handle
9841  * @pdev_id: id of the datapath pdev handle
9842  * @lmac_id: lmac id
9843  *
9844  * In the event of a dynamic mode change, update the pdev to lmac mapping
9845  *
9846  * Return: QDF_STATUS
9847  */
9848 static QDF_STATUS
9849 dp_soc_handle_pdev_mode_change
9850 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
9851 	 uint32_t lmac_id)
9852 {
9853 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9854 	struct dp_vdev *vdev = NULL;
9855 	uint8_t hw_pdev_id, mac_id;
9856 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
9857 								  pdev_id);
9858 	int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
9859 
9860 	if (qdf_unlikely(!pdev))
9861 		return QDF_STATUS_E_FAILURE;
9862 
9863 	pdev->lmac_id = lmac_id;
9864 	pdev->target_pdev_id =
9865 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
9866 	dp_info("mode change %d %d", pdev->pdev_id, pdev->lmac_id);
9867 
9868 	/*Set host PDEV ID for lmac_id*/
9869 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
9870 			      pdev->pdev_id,
9871 			      lmac_id);
9872 
9873 	hw_pdev_id =
9874 		dp_get_target_pdev_id_for_host_pdev_id(soc,
9875 						       pdev->pdev_id);
9876 
9877 	/*
9878 	 * When NSS offload is enabled, send pdev_id->lmac_id
9879 	 * and pdev_id to hw_pdev_id to NSS FW
9880 	 */
9881 	if (nss_config) {
9882 		mac_id = pdev->lmac_id;
9883 		if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
9884 			soc->cdp_soc.ol_ops->
9885 				pdev_update_lmac_n_target_pdev_id(
9886 				soc->ctrl_psoc,
9887 				&pdev_id, &mac_id, &hw_pdev_id);
9888 	}
9889 
9890 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
9891 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
9892 		DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
9893 					       hw_pdev_id);
9894 		vdev->lmac_id = pdev->lmac_id;
9895 	}
9896 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
9897 
9898 	return QDF_STATUS_SUCCESS;
9899 }
9900 
9901 /**
9902  * dp_soc_set_pdev_status_down() - set pdev down/up status
9903  * @soc: datapath soc handle
9904  * @pdev_id: id of datapath pdev handle
9905  * @is_pdev_down: pdev down/up status
9906  *
9907  * Return: QDF_STATUS
9908  */
9909 static QDF_STATUS
9910 dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
9911 			    bool is_pdev_down)
9912 {
9913 	struct dp_pdev *pdev =
9914 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9915 						   pdev_id);
9916 	if (!pdev)
9917 		return QDF_STATUS_E_FAILURE;
9918 
9919 	pdev->is_pdev_down = is_pdev_down;
9920 	return QDF_STATUS_SUCCESS;
9921 }
9922 
9923 /**
9924  * dp_get_cfg_capabilities() - get dp capabilities
9925  * @soc_handle: datapath soc handle
9926  * @dp_caps: enum for dp capabilities
9927  *
9928  * Return: bool to determine if dp caps is enabled
9929  */
9930 static bool
9931 dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
9932 			enum cdp_capabilities dp_caps)
9933 {
9934 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9935 
9936 	return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
9937 }
9938 
9939 #ifdef FEATURE_AST
9940 static QDF_STATUS
9941 dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9942 		       uint8_t *peer_mac)
9943 {
9944 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9945 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9946 	struct dp_peer *peer =
9947 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
9948 					       DP_MOD_ID_CDP);
9949 
9950 	/* Peer can be null for monitor vap mac address */
9951 	if (!peer) {
9952 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
9953 			  "%s: Invalid peer\n", __func__);
9954 		return QDF_STATUS_E_FAILURE;
9955 	}
9956 
9957 	dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
9958 
9959 	qdf_spin_lock_bh(&soc->ast_lock);
9960 	dp_peer_send_wds_disconnect(soc, peer);
9961 	dp_peer_delete_ast_entries(soc, peer);
9962 	qdf_spin_unlock_bh(&soc->ast_lock);
9963 
9964 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9965 	return status;
9966 }
9967 #endif
9968 
9969 #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
9970 /**
9971  * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
9972  * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
9973  * @soc: cdp_soc handle
9974  * @pdev_id: id of cdp_pdev handle
9975  * @protocol_type: protocol type for which stats should be displayed
9976  *
9977  * Return: none
9978  */
9979 static inline void
9980 dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t  *soc, uint8_t pdev_id,
9981 				   uint16_t protocol_type)
9982 {
9983 }
9984 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
9985 
9986 #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
9987 /**
9988  * dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
9989  * applied to the desired protocol type packets
9990  * @soc: soc handle
9991  * @pdev_id: id of cdp_pdev handle
9992  * @enable_rx_protocol_tag: bitmask that indicates what protocol types
9993  * are enabled for tagging. zero indicates disable feature, non-zero indicates
9994  * enable feature
9995  * @protocol_type: new protocol type for which the tag is being added
9996  * @tag: user configured tag for the new protocol
9997  *
9998  * Return: Success
9999  */
10000 static inline QDF_STATUS
10001 dp_update_pdev_rx_protocol_tag(struct cdp_soc_t  *soc, uint8_t pdev_id,
10002 			       uint32_t enable_rx_protocol_tag,
10003 			       uint16_t protocol_type,
10004 			       uint16_t tag)
10005 {
10006 	return QDF_STATUS_SUCCESS;
10007 }
10008 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
10009 
10010 #ifndef WLAN_SUPPORT_RX_FLOW_TAG
10011 /**
10012  * dp_set_rx_flow_tag() - add/delete a flow
10013  * @cdp_soc: CDP soc handle
10014  * @pdev_id: id of cdp_pdev handle
10015  * @flow_info: flow tuple that is to be added to/deleted from flow search table
10016  *
10017  * Return: Success
10018  */
10019 static inline QDF_STATUS
10020 dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
10021 		   struct cdp_rx_flow_info *flow_info)
10022 {
10023 	return QDF_STATUS_SUCCESS;
10024 }
10025 /**
10026  * dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
10027  * given flow 5-tuple
10028  * @cdp_soc: soc handle
10029  * @pdev_id: id of cdp_pdev handle
10030  * @flow_info: flow 5-tuple for which stats should be displayed
10031  *
10032  * Return: Success
10033  */
10034 static inline QDF_STATUS
10035 dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
10036 			  struct cdp_rx_flow_info *flow_info)
10037 {
10038 	return QDF_STATUS_SUCCESS;
10039 }
10040 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
10041 
10042 static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t  *soc_hdl,
10043 					   uint32_t max_peers,
10044 					   uint32_t max_ast_index,
10045 					   uint8_t peer_map_unmap_versions)
10046 {
10047 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10048 	QDF_STATUS status;
10049 
10050 	soc->max_peers = max_peers;
10051 
10052 	wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
10053 
10054 	status = soc->arch_ops.txrx_peer_map_attach(soc);
10055 	if (!QDF_IS_STATUS_SUCCESS(status)) {
10056 		dp_err("failure in allocating peer tables");
10057 		return QDF_STATUS_E_FAILURE;
10058 	}
10059 
10060 	dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u",
10061 		max_peers, soc->max_peer_id, max_ast_index);
10062 
10063 	status = dp_peer_find_attach(soc);
10064 	if (!QDF_IS_STATUS_SUCCESS(status)) {
10065 		dp_err("Peer find attach failure");
10066 		goto fail;
10067 	}
10068 
10069 	soc->peer_map_unmap_versions = peer_map_unmap_versions;
10070 	soc->peer_map_attach_success = TRUE;
10071 
10072 	return QDF_STATUS_SUCCESS;
10073 fail:
10074 	soc->arch_ops.txrx_peer_map_detach(soc);
10075 
10076 	return status;
10077 }
10078 
10079 static QDF_STATUS dp_soc_set_param(struct cdp_soc_t  *soc_hdl,
10080 				   enum cdp_soc_param_t param,
10081 				   uint32_t value)
10082 {
10083 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10084 
10085 	switch (param) {
10086 	case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
10087 		soc->num_msdu_exception_desc = value;
10088 		dp_info("num_msdu exception_desc %u",
10089 			value);
10090 		break;
10091 	case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
10092 		if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
10093 			soc->fst_in_cmem = !!value;
10094 		dp_info("FW supports CMEM FSE %u", value);
10095 		break;
10096 	case DP_SOC_PARAM_MAX_AST_AGEOUT:
10097 		soc->max_ast_ageout_count = value;
10098 		dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
10099 		break;
10100 	case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
10101 		soc->eapol_over_control_port = value;
10102 		dp_info("Eapol over control_port:%d",
10103 			soc->eapol_over_control_port);
10104 		break;
10105 	case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
10106 		soc->multi_peer_grp_cmd_supported = value;
10107 		dp_info("Multi Peer group command support:%d",
10108 			soc->multi_peer_grp_cmd_supported);
10109 		break;
10110 	case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
10111 		soc->features.rssi_dbm_conv_support = value;
10112 		dp_info("Rssi dbm conversion support:%u",
10113 			soc->features.rssi_dbm_conv_support);
10114 		break;
10115 	case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
10116 		soc->features.umac_hw_reset_support = value;
10117 		dp_info("UMAC HW reset support :%u",
10118 			soc->features.umac_hw_reset_support);
10119 		break;
10120 	default:
10121 		dp_info("not handled param %d ", param);
10122 		break;
10123 	}
10124 
10125 	return QDF_STATUS_SUCCESS;
10126 }
10127 
10128 static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
10129 				      void *stats_ctx)
10130 {
10131 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10132 
10133 	soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
10134 }
10135 
10136 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
10137 /**
10138  * dp_peer_flush_rate_stats_req() - Flush peer rate stats
10139  * @soc: Datapath SOC handle
10140  * @peer: Datapath peer
10141  * @arg: argument to iter function
10142  *
10143  * Return: QDF_STATUS
10144  */
10145 static void
10146 dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
10147 			     void *arg)
10148 {
10149 	/* Skip self peer */
10150 	if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
10151 			 QDF_MAC_ADDR_SIZE))
10152 		return;
10153 
10154 	dp_wdi_event_handler(
10155 		WDI_EVENT_FLUSH_RATE_STATS_REQ,
10156 		soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
10157 		peer->peer_id,
10158 		WDI_NO_VAL, peer->vdev->pdev->pdev_id);
10159 }
10160 
10161 /**
10162  * dp_flush_rate_stats_req() - Flush peer rate stats in pdev
10163  * @soc_hdl: Datapath SOC handle
10164  * @pdev_id: pdev_id
10165  *
10166  * Return: QDF_STATUS
10167  */
10168 static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
10169 					  uint8_t pdev_id)
10170 {
10171 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10172 	struct dp_pdev *pdev =
10173 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10174 						   pdev_id);
10175 	if (!pdev)
10176 		return QDF_STATUS_E_FAILURE;
10177 
10178 	dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
10179 			     DP_MOD_ID_CDP);
10180 
10181 	return QDF_STATUS_SUCCESS;
10182 }
10183 #else
10184 static inline QDF_STATUS
10185 dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
10186 			uint8_t pdev_id)
10187 {
10188 	return QDF_STATUS_SUCCESS;
10189 }
10190 #endif
10191 
10192 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
10193 #ifdef WLAN_FEATURE_11BE_MLO
10194 /**
10195  * dp_get_peer_extd_rate_link_stats() - function to get peer
10196  *				extended rate and link stats
10197  * @soc_hdl: dp soc handler
10198  * @mac_addr: mac address of peer
10199  *
10200  * Return: QDF_STATUS
10201  */
10202 static QDF_STATUS
10203 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
10204 {
10205 	uint8_t i;
10206 	struct dp_peer *link_peer;
10207 	struct dp_soc *link_peer_soc;
10208 	struct dp_mld_link_peers link_peers_info;
10209 	struct dp_peer *peer = NULL;
10210 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10211 	struct cdp_peer_info peer_info = { 0 };
10212 
10213 	if (!mac_addr) {
10214 		dp_err("NULL peer mac addr");
10215 		return QDF_STATUS_E_FAILURE;
10216 	}
10217 
10218 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
10219 				 CDP_WILD_PEER_TYPE);
10220 
10221 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
10222 	if (!peer) {
10223 		dp_err("Peer is NULL");
10224 		return QDF_STATUS_E_FAILURE;
10225 	}
10226 
10227 	if (IS_MLO_DP_MLD_PEER(peer)) {
10228 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
10229 						    &link_peers_info,
10230 						    DP_MOD_ID_CDP);
10231 		for (i = 0; i < link_peers_info.num_links; i++) {
10232 			link_peer = link_peers_info.link_peers[i];
10233 			link_peer_soc = link_peer->vdev->pdev->soc;
10234 			dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
10235 					     link_peer_soc,
10236 					     dp_monitor_peer_get_peerstats_ctx
10237 					     (link_peer_soc, link_peer),
10238 					     link_peer->peer_id,
10239 					     WDI_NO_VAL,
10240 					     link_peer->vdev->pdev->pdev_id);
10241 		}
10242 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
10243 	} else {
10244 		dp_wdi_event_handler(
10245 				WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
10246 				dp_monitor_peer_get_peerstats_ctx(soc, peer),
10247 				peer->peer_id,
10248 				WDI_NO_VAL, peer->vdev->pdev->pdev_id);
10249 	}
10250 
10251 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
10252 	return QDF_STATUS_SUCCESS;
10253 }
10254 #else
10255 static QDF_STATUS
10256 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
10257 {
10258 	struct dp_peer *peer = NULL;
10259 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10260 
10261 	if (!mac_addr) {
10262 		dp_err("NULL peer mac addr");
10263 		return QDF_STATUS_E_FAILURE;
10264 	}
10265 
10266 	peer = dp_peer_find_hash_find(soc, mac_addr, 0,
10267 				      DP_VDEV_ALL, DP_MOD_ID_CDP);
10268 	if (!peer) {
10269 		dp_err("Peer is NULL");
10270 		return QDF_STATUS_E_FAILURE;
10271 	}
10272 
10273 	dp_wdi_event_handler(
10274 			WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
10275 			dp_monitor_peer_get_peerstats_ctx(soc, peer),
10276 			peer->peer_id,
10277 			WDI_NO_VAL, peer->vdev->pdev->pdev_id);
10278 
10279 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
10280 	return QDF_STATUS_SUCCESS;
10281 }
10282 #endif
10283 #else
10284 static inline QDF_STATUS
10285 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
10286 {
10287 	return QDF_STATUS_SUCCESS;
10288 }
10289 #endif
10290 
10291 static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
10292 				       uint8_t vdev_id,
10293 				       uint8_t *mac_addr)
10294 {
10295 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10296 	struct dp_peer *peer;
10297 	void *peerstats_ctx = NULL;
10298 
10299 	if (mac_addr) {
10300 		peer = dp_peer_find_hash_find(soc, mac_addr,
10301 					      0, vdev_id,
10302 					      DP_MOD_ID_CDP);
10303 		if (!peer)
10304 			return NULL;
10305 
10306 		if (!IS_MLO_DP_MLD_PEER(peer))
10307 			peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
10308 									  peer);
10309 
10310 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
10311 	}
10312 
10313 	return peerstats_ctx;
10314 }
10315 
10316 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
10317 static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
10318 					   uint8_t pdev_id,
10319 					   void *buf)
10320 {
10321 	 dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
10322 			      (struct dp_soc *)soc, buf, HTT_INVALID_PEER,
10323 			      WDI_NO_VAL, pdev_id);
10324 	return QDF_STATUS_SUCCESS;
10325 }
10326 #else
10327 static inline QDF_STATUS
10328 dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
10329 			 uint8_t pdev_id,
10330 			 void *buf)
10331 {
10332 	return QDF_STATUS_SUCCESS;
10333 }
10334 #endif
10335 
10336 static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
10337 {
10338 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10339 
10340 	return soc->rate_stats_ctx;
10341 }
10342 
10343 /**
10344  * dp_get_cfg() - get dp cfg
10345  * @soc: cdp soc handle
10346  * @cfg: cfg enum
10347  *
10348  * Return: cfg value
10349  */
10350 static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
10351 {
10352 	struct dp_soc *dpsoc = (struct dp_soc *)soc;
10353 	uint32_t value = 0;
10354 
10355 	switch (cfg) {
10356 	case cfg_dp_enable_data_stall:
10357 		value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
10358 		break;
10359 	case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
10360 		value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
10361 		break;
10362 	case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
10363 		value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
10364 		break;
10365 	case cfg_dp_enable_ip_tcp_udp_checksum_offload:
10366 		value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
10367 		break;
10368 	case cfg_dp_disable_legacy_mode_csum_offload:
10369 		value = dpsoc->wlan_cfg_ctx->
10370 					legacy_mode_checksumoffload_disable;
10371 		break;
10372 	case cfg_dp_tso_enable:
10373 		value = dpsoc->wlan_cfg_ctx->tso_enabled;
10374 		break;
10375 	case cfg_dp_lro_enable:
10376 		value = dpsoc->wlan_cfg_ctx->lro_enabled;
10377 		break;
10378 	case cfg_dp_gro_enable:
10379 		value = dpsoc->wlan_cfg_ctx->gro_enabled;
10380 		break;
10381 	case cfg_dp_tc_based_dyn_gro_enable:
10382 		value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
10383 		break;
10384 	case cfg_dp_tc_ingress_prio:
10385 		value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
10386 		break;
10387 	case cfg_dp_sg_enable:
10388 		value = dpsoc->wlan_cfg_ctx->sg_enabled;
10389 		break;
10390 	case cfg_dp_tx_flow_start_queue_offset:
10391 		value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
10392 		break;
10393 	case cfg_dp_tx_flow_stop_queue_threshold:
10394 		value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
10395 		break;
10396 	case cfg_dp_disable_intra_bss_fwd:
10397 		value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
10398 		break;
10399 	case cfg_dp_pktlog_buffer_size:
10400 		value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
10401 		break;
10402 	case cfg_dp_wow_check_rx_pending:
10403 		value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
10404 		break;
10405 	case cfg_dp_local_pkt_capture:
10406 		value = wlan_cfg_get_local_pkt_capture(dpsoc->wlan_cfg_ctx);
10407 		break;
10408 	default:
10409 		value =  0;
10410 	}
10411 
10412 	return value;
10413 }
10414 
10415 #ifdef PEER_FLOW_CONTROL
10416 /**
10417  * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
10418  * @soc_handle: datapath soc handle
10419  * @pdev_id: id of datapath pdev handle
10420  * @param: ol ath params
10421  * @value: value of the flag
10422  * @buff: Buffer to be passed
10423  *
10424  * Implemented this function same as legacy function. In legacy code, single
10425  * function is used to display stats and update pdev params.
10426  *
10427  * Return: 0 for success. nonzero for failure.
10428  */
10429 static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
10430 					       uint8_t pdev_id,
10431 					       enum _dp_param_t param,
10432 					       uint32_t value, void *buff)
10433 {
10434 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10435 	struct dp_pdev *pdev =
10436 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10437 						   pdev_id);
10438 
10439 	if (qdf_unlikely(!pdev))
10440 		return 1;
10441 
10442 	soc = pdev->soc;
10443 	if (!soc)
10444 		return 1;
10445 
10446 	switch (param) {
10447 #ifdef QCA_ENH_V3_STATS_SUPPORT
10448 	case DP_PARAM_VIDEO_DELAY_STATS_FC:
10449 		if (value)
10450 			pdev->delay_stats_flag = true;
10451 		else
10452 			pdev->delay_stats_flag = false;
10453 		break;
10454 	case DP_PARAM_VIDEO_STATS_FC:
10455 		qdf_print("------- TID Stats ------\n");
10456 		dp_pdev_print_tid_stats(pdev);
10457 		qdf_print("------ Delay Stats ------\n");
10458 		dp_pdev_print_delay_stats(pdev);
10459 		qdf_print("------ Rx Error Stats ------\n");
10460 		dp_pdev_print_rx_error_stats(pdev);
10461 		break;
10462 #endif
10463 	case DP_PARAM_TOTAL_Q_SIZE:
10464 		{
10465 			uint32_t tx_min, tx_max;
10466 
10467 			tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
10468 			tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
10469 
10470 			if (!buff) {
10471 				if ((value >= tx_min) && (value <= tx_max)) {
10472 					pdev->num_tx_allowed = value;
10473 				} else {
10474 					dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
10475 						   soc, tx_min, tx_max);
10476 					break;
10477 				}
10478 			} else {
10479 				*(int *)buff = pdev->num_tx_allowed;
10480 			}
10481 		}
10482 		break;
10483 	default:
10484 		dp_tx_info("%pK: not handled param %d ", soc, param);
10485 		break;
10486 	}
10487 
10488 	return 0;
10489 }
10490 #endif
10491 
10492 #ifdef DP_UMAC_HW_RESET_SUPPORT
10493 /**
10494  * dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
10495  * @soc: dp soc handle
10496  *
10497  * Return: void
10498  */
10499 static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
10500 {
10501 	struct dp_intr_bkp *intr_bkp;
10502 	struct dp_intr *intr_ctx;
10503 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
10504 	int i;
10505 
10506 	intr_bkp =
10507 	(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
10508 			num_ctxt);
10509 
10510 	qdf_assert_always(intr_bkp);
10511 
10512 	soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
10513 	for (i = 0; i < num_ctxt; i++) {
10514 		intr_ctx = &soc->intr_ctx[i];
10515 
10516 		intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
10517 		intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
10518 		intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
10519 		intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
10520 		intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
10521 		intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
10522 		intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
10523 		intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
10524 		intr_bkp->host2rxdma_mon_ring_mask =
10525 					intr_ctx->host2rxdma_mon_ring_mask;
10526 		intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
10527 
10528 		intr_ctx->tx_ring_mask = 0;
10529 		intr_ctx->rx_ring_mask = 0;
10530 		intr_ctx->rx_mon_ring_mask = 0;
10531 		intr_ctx->rx_err_ring_mask = 0;
10532 		intr_ctx->rx_wbm_rel_ring_mask = 0;
10533 		intr_ctx->reo_status_ring_mask = 0;
10534 		intr_ctx->rxdma2host_ring_mask = 0;
10535 		intr_ctx->host2rxdma_ring_mask = 0;
10536 		intr_ctx->host2rxdma_mon_ring_mask = 0;
10537 		intr_ctx->tx_mon_ring_mask = 0;
10538 
10539 		intr_bkp++;
10540 	}
10541 }
10542 
10543 /**
10544  * dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
10545  * @soc: dp soc handle
10546  *
10547  * Return: void
10548  */
10549 static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
10550 {
10551 	struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
10552 	struct dp_intr_bkp *intr_bkp_base = intr_bkp;
10553 	struct dp_intr *intr_ctx;
10554 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
10555 	int i;
10556 
10557 	if (!intr_bkp)
10558 		return;
10559 
10560 	for (i = 0; i < num_ctxt; i++) {
10561 		intr_ctx = &soc->intr_ctx[i];
10562 
10563 		intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
10564 		intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
10565 		intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
10566 		intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
10567 		intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
10568 		intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
10569 		intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
10570 		intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
10571 		intr_ctx->host2rxdma_mon_ring_mask =
10572 			intr_bkp->host2rxdma_mon_ring_mask;
10573 		intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
10574 
10575 		intr_bkp++;
10576 	}
10577 
10578 	qdf_mem_free(intr_bkp_base);
10579 	soc->umac_reset_ctx.intr_ctx_bkp = NULL;
10580 }
10581 
10582 /**
10583  * dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
10584  * @soc: dp soc handle
10585  *
10586  * Return: void
10587  */
10588 static void dp_resume_tx_hardstart(struct dp_soc *soc)
10589 {
10590 	struct dp_vdev *vdev;
10591 	struct ol_txrx_hardtart_ctxt ctxt = {0};
10592 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
10593 	int i;
10594 
10595 	for (i = 0; i < MAX_PDEV_CNT; i++) {
10596 		struct dp_pdev *pdev = soc->pdev_list[i];
10597 
10598 		if (!pdev)
10599 			continue;
10600 
10601 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10602 			uint8_t vdev_id = vdev->vdev_id;
10603 
10604 			dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
10605 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
10606 								    vdev_id,
10607 								    &ctxt);
10608 		}
10609 	}
10610 }
10611 
10612 /**
10613  * dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
10614  * @soc: dp soc handle
10615  *
10616  * Return: void
10617  */
10618 static void dp_pause_tx_hardstart(struct dp_soc *soc)
10619 {
10620 	struct dp_vdev *vdev;
10621 	struct ol_txrx_hardtart_ctxt ctxt;
10622 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
10623 	int i;
10624 
10625 	ctxt.tx = &dp_tx_drop;
10626 	ctxt.tx_fast = &dp_tx_drop;
10627 	ctxt.tx_exception = &dp_tx_exc_drop;
10628 
10629 	for (i = 0; i < MAX_PDEV_CNT; i++) {
10630 		struct dp_pdev *pdev = soc->pdev_list[i];
10631 
10632 		if (!pdev)
10633 			continue;
10634 
10635 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10636 			uint8_t vdev_id = vdev->vdev_id;
10637 
10638 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
10639 								    vdev_id,
10640 								    &ctxt);
10641 		}
10642 	}
10643 }
10644 
10645 /**
10646  * dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
10647  * @soc: dp soc handle
10648  *
10649  * Return: void
10650  */
10651 static inline
10652 void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
10653 {
10654 	soc->notify_fw_callback = NULL;
10655 }
10656 
10657 /**
10658  * dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
10659  * @soc: dp soc handle
10660  *
10661  * Return: void
10662  */
10663 static inline
10664 void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
10665 {
10666 	/* Some Cpu(s) is processing the umac rings*/
10667 	if (soc->service_rings_running)
10668 		return;
10669 
10670 	/* Notify the firmware that Umac pre reset is complete */
10671 	dp_umac_reset_notify_action_completion(soc,
10672 					       UMAC_RESET_ACTION_DO_PRE_RESET);
10673 
10674 	/* Unregister the callback */
10675 	dp_unregister_notify_umac_pre_reset_fw_callback(soc);
10676 }
10677 
10678 /**
10679  * dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
10680  * @soc: dp soc handle
10681  *
10682  * Return: void
10683  */
10684 static inline
10685 void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
10686 {
10687 	soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
10688 }
10689 
10690 #ifdef DP_UMAC_HW_HARD_RESET
10691 /**
10692  * dp_set_umac_regs() - Reinitialize host umac registers
10693  * @soc: dp soc handle
10694  *
10695  * Return: void
10696  */
10697 static void dp_set_umac_regs(struct dp_soc *soc)
10698 {
10699 	int i;
10700 	struct hal_reo_params reo_params;
10701 
10702 	qdf_mem_zero(&reo_params, sizeof(reo_params));
10703 
10704 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
10705 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
10706 						   &reo_params.remap1,
10707 						   &reo_params.remap2))
10708 			reo_params.rx_hash_enabled = true;
10709 		else
10710 			reo_params.rx_hash_enabled = false;
10711 	}
10712 
10713 	reo_params.reo_qref = &soc->reo_qref;
10714 	hal_reo_setup(soc->hal_soc, &reo_params, 0);
10715 
10716 	soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
10717 
10718 	for (i = 0; i < PCP_TID_MAP_MAX; i++)
10719 		hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
10720 
10721 	for (i = 0; i < MAX_PDEV_CNT; i++) {
10722 		struct dp_vdev *vdev = NULL;
10723 		struct dp_pdev *pdev = soc->pdev_list[i];
10724 
10725 		if (!pdev)
10726 			continue;
10727 
10728 		for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
10729 			hal_tx_set_dscp_tid_map(soc->hal_soc,
10730 						pdev->dscp_tid_map[i], i);
10731 
10732 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10733 			soc->arch_ops.dp_bank_reconfig(soc, vdev);
10734 			soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
10735 								      vdev);
10736 		}
10737 	}
10738 }
10739 #else
10740 static void dp_set_umac_regs(struct dp_soc *soc)
10741 {
10742 }
10743 #endif
10744 
10745 /**
10746  * dp_reinit_rings() - Reinitialize host managed rings
10747  * @soc: dp soc handle
10748  *
10749  * Return: QDF_STATUS
10750  */
10751 static void dp_reinit_rings(struct dp_soc *soc)
10752 {
10753 	unsigned long end;
10754 
10755 	dp_soc_srng_deinit(soc);
10756 	dp_hw_link_desc_ring_deinit(soc);
10757 
10758 	/* Busy wait for 2 ms to make sure the rings are in idle state
10759 	 * before we enable them again
10760 	 */
10761 	end = jiffies + msecs_to_jiffies(2);
10762 	while (time_before(jiffies, end))
10763 		;
10764 
10765 	dp_hw_link_desc_ring_init(soc);
10766 	dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
10767 	dp_soc_srng_init(soc);
10768 }
10769 
10770 /**
10771  * dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
10772  * @soc: dp soc handle
10773  *
10774  * Return: QDF_STATUS
10775  */
10776 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
10777 {
10778 	enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
10779 
10780 	return dp_umac_reset_notify_action_completion(soc, action);
10781 }
10782 
10783 #ifdef WLAN_SUPPORT_PPEDS
10784 /**
10785  * dp_umac_reset_service_handle_n_notify_done()
10786  *	Handle Umac pre reset for direct switch
10787  * @soc: dp soc handle
10788  *
10789  * Return: QDF_STATUS
10790  */
10791 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
10792 {
10793 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
10794 	    !soc->arch_ops.txrx_soc_ppeds_service_status_update ||
10795 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
10796 		goto non_ppeds;
10797 
10798 	/*
10799 	 * Check if ppeds is enabled on SoC.
10800 	 */
10801 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
10802 		goto non_ppeds;
10803 
10804 	/*
10805 	 * Start the UMAC pre reset done service.
10806 	 */
10807 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
10808 
10809 	dp_register_notify_umac_pre_reset_fw_callback(soc);
10810 
10811 	soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
10812 
10813 	dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
10814 
10815 	/*
10816 	 * UMAC pre reset service complete
10817 	 */
10818 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
10819 
10820 	soc->umac_reset_ctx.nbuf_list = NULL;
10821 	return QDF_STATUS_SUCCESS;
10822 
10823 non_ppeds:
10824 	dp_register_notify_umac_pre_reset_fw_callback(soc);
10825 	dp_check_n_notify_umac_prereset_done(soc);
10826 	soc->umac_reset_ctx.nbuf_list = NULL;
10827 	return QDF_STATUS_SUCCESS;
10828 }
10829 
10830 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
10831 							 qdf_nbuf_t *nbuf_list)
10832 {
10833 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
10834 	    !soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
10835 		return;
10836 
10837 	/*
10838 	 * Deinit of PPEDS Tx desc rings.
10839 	 */
10840 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
10841 		soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
10842 }
10843 
10844 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
10845 {
10846 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
10847 	    !soc->arch_ops.txrx_soc_ppeds_start ||
10848 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_start)
10849 		return;
10850 
10851 	/*
10852 	 * Start PPEDS node and enable interrupt.
10853 	 */
10854 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
10855 		soc->arch_ops.txrx_soc_ppeds_start(soc);
10856 		soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
10857 	}
10858 }
10859 #else
10860 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
10861 {
10862 	dp_register_notify_umac_pre_reset_fw_callback(soc);
10863 	dp_check_n_notify_umac_prereset_done(soc);
10864 	soc->umac_reset_ctx.nbuf_list = NULL;
10865 	return QDF_STATUS_SUCCESS;
10866 }
10867 
10868 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
10869 							 qdf_nbuf_t *nbuf_list)
10870 {
10871 }
10872 
10873 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
10874 {
10875 }
10876 #endif
10877 
10878 /**
10879  * dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
10880  * @soc: dp soc handle
10881  *
10882  * Return: QDF_STATUS
10883  */
10884 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
10885 {
10886 	dp_reset_interrupt_ring_masks(soc);
10887 
10888 	dp_pause_tx_hardstart(soc);
10889 	dp_pause_reo_send_cmd(soc);
10890 	dp_umac_reset_service_handle_n_notify_done(soc);
10891 	return QDF_STATUS_SUCCESS;
10892 }
10893 
10894 /**
10895  * dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
10896  * @soc: dp soc handle
10897  *
10898  * Return: QDF_STATUS
10899  */
10900 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
10901 {
10902 	if (!soc->umac_reset_ctx.skel_enable) {
10903 		qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
10904 
10905 		dp_set_umac_regs(soc);
10906 
10907 		dp_reinit_rings(soc);
10908 
10909 		dp_rx_desc_reuse(soc, nbuf_list);
10910 
10911 		dp_cleanup_reo_cmd_module(soc);
10912 
10913 		dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
10914 
10915 		dp_tx_desc_pool_cleanup(soc, nbuf_list);
10916 
10917 		dp_reset_tid_q_setup(soc);
10918 	}
10919 
10920 	return dp_umac_reset_notify_action_completion(soc,
10921 					UMAC_RESET_ACTION_DO_POST_RESET_START);
10922 }
10923 
10924 /**
10925  * dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
10926  *						interrupt from FW
10927  * @soc: dp soc handle
10928  *
10929  * Return: QDF_STATUS
10930  */
10931 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
10932 {
10933 	QDF_STATUS status;
10934 	qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
10935 
10936 	soc->umac_reset_ctx.nbuf_list = NULL;
10937 
10938 	dp_resume_reo_send_cmd(soc);
10939 
10940 	dp_umac_reset_ppeds_start(soc);
10941 
10942 	dp_restore_interrupt_ring_masks(soc);
10943 
10944 	dp_resume_tx_hardstart(soc);
10945 
10946 	status = dp_umac_reset_notify_action_completion(soc,
10947 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
10948 
10949 	while (nbuf_list) {
10950 		qdf_nbuf_t nbuf = nbuf_list->next;
10951 
10952 		qdf_nbuf_free(nbuf_list);
10953 		nbuf_list = nbuf;
10954 	}
10955 
10956 	dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
10957 			   "trigger done : %u us prereset : %u us\n"
10958 			   "postreset : %u us \n postreset complete: %u us \n",
10959 			   soc,
10960 			   soc->umac_reset_ctx.ts.trigger_done -
10961 			   soc->umac_reset_ctx.ts.trigger_start,
10962 			   soc->umac_reset_ctx.ts.pre_reset_done -
10963 			   soc->umac_reset_ctx.ts.pre_reset_start,
10964 			   soc->umac_reset_ctx.ts.post_reset_done -
10965 			   soc->umac_reset_ctx.ts.post_reset_start,
10966 			   soc->umac_reset_ctx.ts.post_reset_complete_done -
10967 			   soc->umac_reset_ctx.ts.post_reset_complete_start);
10968 
10969 	return status;
10970 }
10971 #endif
10972 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
10973 static void
10974 dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
10975 {
10976 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10977 
10978 	soc->wlan_cfg_ctx->pkt_capture_mode = val;
10979 }
10980 #endif
10981 
10982 #ifdef HW_TX_DELAY_STATS_ENABLE
10983 /**
10984  * dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
10985  * @soc_hdl: DP soc handle
10986  * @vdev_id: vdev id
10987  * @value: value
10988  *
10989  * Return: None
10990  */
10991 static void
10992 dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
10993 				      uint8_t vdev_id,
10994 				      uint8_t value)
10995 {
10996 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10997 	struct dp_vdev *vdev = NULL;
10998 
10999 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11000 	if (!vdev)
11001 		return;
11002 
11003 	vdev->hw_tx_delay_stats_enabled = value;
11004 
11005 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11006 }
11007 
11008 /**
11009  * dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
11010  * @soc_hdl: DP soc handle
11011  * @vdev_id: vdev id
11012  *
11013  * Return: 1 if enabled, 0 if disabled
11014  */
11015 static uint8_t
11016 dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
11017 				     uint8_t vdev_id)
11018 {
11019 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11020 	struct dp_vdev *vdev;
11021 	uint8_t ret_val = 0;
11022 
11023 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11024 	if (!vdev)
11025 		return ret_val;
11026 
11027 	ret_val = vdev->hw_tx_delay_stats_enabled;
11028 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11029 
11030 	return ret_val;
11031 }
11032 #endif
11033 
11034 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
11035 static void
11036 dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
11037 			     uint8_t vdev_id,
11038 			     bool mlo_peers_only)
11039 {
11040 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
11041 	struct dp_vdev *vdev;
11042 
11043 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11044 
11045 	if (!vdev)
11046 		return;
11047 
11048 	dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
11049 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11050 }
11051 #endif
11052 #ifdef QCA_GET_TSF_VIA_REG
11053 /**
11054  * dp_get_tsf_time() - get tsf time
11055  * @soc_hdl: Datapath soc handle
11056  * @tsf_id: TSF identifier
11057  * @mac_id: mac_id
11058  * @tsf: pointer to update tsf value
11059  * @tsf_sync_soc_time: pointer to update tsf sync time
11060  *
11061  * Return: None.
11062  */
11063 static inline void
11064 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
11065 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
11066 {
11067 	hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
11068 			 tsf, tsf_sync_soc_time);
11069 }
11070 #else
11071 static inline void
11072 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
11073 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
11074 {
11075 }
11076 #endif
11077 
11078 /**
11079  * dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
11080  * @soc_hdl: Datapath soc handle
11081  * @mac_id: mac_id
11082  * @value: pointer to update tsf2 offset value
11083  *
11084  * Return: None.
11085  */
11086 static inline void
11087 dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
11088 			uint64_t *value)
11089 {
11090 	hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
11091 }
11092 
11093 /**
11094  * dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
11095  * @soc_hdl: Datapath soc handle
11096  * @value: pointer to update tqm offset value
11097  *
11098  * Return: None.
11099  */
11100 static inline void
11101 dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
11102 {
11103 	hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
11104 }
11105 
11106 /**
11107  * dp_set_tx_pause() - Pause or resume tx path
11108  * @soc_hdl: Datapath soc handle
11109  * @flag: set or clear is_tx_pause
11110  *
11111  * Return: None.
11112  */
11113 static inline
11114 void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
11115 {
11116 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11117 
11118 	soc->is_tx_pause = flag;
11119 }
11120 
11121 static inline uint64_t dp_rx_fisa_get_cmem_base(struct cdp_soc_t *soc_hdl,
11122 						uint64_t size)
11123 {
11124 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11125 
11126 	if (soc->arch_ops.dp_get_fst_cmem_base)
11127 		return soc->arch_ops.dp_get_fst_cmem_base(soc, size);
11128 
11129 	return 0;
11130 }
11131 
11132 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
11133 /**
11134  * dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
11135  *                                      ILP configuration
11136  * @soc_hdl: CDP SOC handle
11137  * @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
11138  * @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
11139  *
11140  * This function will check: (a) TX ILP INI configuration,
11141  * (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
11142  * only if both (a) and (b) condition is met, then TX ILP feature is
11143  * considered to be enabled.
11144  *
11145  * Return: Final updated TX ILP enable result in dp_soc,
11146  *         true is enabled, false is not
11147  */
11148 static
11149 bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
11150 				      uint8_t num_msdu_idx_map,
11151 				      uint8_t *msdu_idx_map_arr)
11152 {
11153 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11154 	bool enable_tx_ilp = false;
11155 
11156 	/**
11157 	 * Check INI configuration firstly, if it's disabled,
11158 	 * then keep feature disabled.
11159 	 */
11160 	if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
11161 		dp_info("TX ILP INI is disabled already");
11162 		goto update_tx_ilp;
11163 	}
11164 
11165 	/* Check if the msdu index to qtype map table is valid */
11166 	if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
11167 		dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
11168 			num_msdu_idx_map, msdu_idx_map_arr);
11169 		goto update_tx_ilp;
11170 	}
11171 
11172 	dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
11173 		HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
11174 		msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
11175 
11176 	if (HTT_MSDU_QTYPE_USER_SPECIFIED ==
11177 	    msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
11178 		enable_tx_ilp = true;
11179 
11180 update_tx_ilp:
11181 	soc->tx_ilp_enable = enable_tx_ilp;
11182 	dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
11183 
11184 	return soc->tx_ilp_enable;
11185 }
11186 #endif
11187 
11188 static struct cdp_cmn_ops dp_ops_cmn = {
11189 	.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
11190 	.txrx_vdev_attach = dp_vdev_attach_wifi3,
11191 	.txrx_vdev_detach = dp_vdev_detach_wifi3,
11192 	.txrx_pdev_attach = dp_pdev_attach_wifi3,
11193 	.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
11194 	.txrx_pdev_detach = dp_pdev_detach_wifi3,
11195 	.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
11196 	.txrx_peer_create = dp_peer_create_wifi3,
11197 	.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
11198 #ifdef FEATURE_AST
11199 	.txrx_peer_teardown = dp_peer_teardown_wifi3,
11200 #else
11201 	.txrx_peer_teardown = NULL,
11202 #endif
11203 	.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
11204 	.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
11205 	.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
11206 	.txrx_peer_get_ast_info_by_pdev =
11207 		dp_peer_get_ast_info_by_pdevid_wifi3,
11208 	.txrx_peer_ast_delete_by_soc =
11209 		dp_peer_ast_entry_del_by_soc,
11210 	.txrx_peer_ast_delete_by_pdev =
11211 		dp_peer_ast_entry_del_by_pdev,
11212 	.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
11213 	.txrx_peer_delete = dp_peer_delete_wifi3,
11214 #ifdef DP_RX_UDP_OVER_PEER_ROAM
11215 	.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
11216 #endif
11217 	.txrx_vdev_register = dp_vdev_register_wifi3,
11218 	.txrx_soc_detach = dp_soc_detach_wifi3,
11219 	.txrx_soc_deinit = dp_soc_deinit_wifi3,
11220 	.txrx_soc_init = dp_soc_init_wifi3,
11221 #ifndef QCA_HOST_MODE_WIFI_DISABLED
11222 	.txrx_tso_soc_attach = dp_tso_soc_attach,
11223 	.txrx_tso_soc_detach = dp_tso_soc_detach,
11224 	.tx_send = dp_tx_send,
11225 	.tx_send_exc = dp_tx_send_exception,
11226 #endif
11227 	.set_tx_pause = dp_set_tx_pause,
11228 	.txrx_pdev_init = dp_pdev_init_wifi3,
11229 	.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
11230 	.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
11231 	.txrx_ath_getstats = dp_get_device_stats,
11232 #ifndef WLAN_SOFTUMAC_SUPPORT
11233 	.addba_requestprocess = dp_addba_requestprocess_wifi3,
11234 	.addba_responsesetup = dp_addba_responsesetup_wifi3,
11235 	.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
11236 	.delba_process = dp_delba_process_wifi3,
11237 	.set_addba_response = dp_set_addba_response,
11238 	.flush_cache_rx_queue = NULL,
11239 	.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
11240 #endif
11241 	/* TODO: get API's for dscp-tid need to be added*/
11242 	.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
11243 	.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
11244 	.txrx_get_total_per = dp_get_total_per,
11245 	.txrx_stats_request = dp_txrx_stats_request,
11246 	.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
11247 	.display_stats = dp_txrx_dump_stats,
11248 	.notify_asserted_soc = dp_soc_notify_asserted_soc,
11249 	.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
11250 	.txrx_intr_detach = dp_soc_interrupt_detach,
11251 	.txrx_ppeds_stop = dp_soc_ppeds_stop,
11252 	.set_key_sec_type = dp_set_key_sec_type_wifi3,
11253 	.update_config_parameters = dp_update_config_parameters,
11254 	/* TODO: Add other functions */
11255 	.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
11256 	.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
11257 	.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
11258 	.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
11259 	.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
11260 	.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
11261 	.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
11262 	.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
11263 	.handle_mode_change = dp_soc_handle_pdev_mode_change,
11264 	.set_pdev_status_down = dp_soc_set_pdev_status_down,
11265 	.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
11266 	.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
11267 	.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
11268 	.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
11269 	.set_soc_param = dp_soc_set_param,
11270 	.txrx_get_os_rx_handles_from_vdev =
11271 					dp_get_os_rx_handles_from_vdev_wifi3,
11272 #ifndef WLAN_SOFTUMAC_SUPPORT
11273 	.set_pn_check = dp_set_pn_check_wifi3,
11274 	.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
11275 	.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
11276 	.delba_tx_completion = dp_delba_tx_completion_wifi3,
11277 	.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
11278 	.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
11279 #endif
11280 	.get_dp_capabilities = dp_get_cfg_capabilities,
11281 	.txrx_get_cfg = dp_get_cfg,
11282 	.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
11283 	.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
11284 	.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
11285 	.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
11286 	.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
11287 
11288 	.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
11289 #ifdef QCA_MULTIPASS_SUPPORT
11290 	.set_vlan_groupkey = dp_set_vlan_groupkey,
11291 #endif
11292 	.get_peer_mac_list = dp_get_peer_mac_list,
11293 	.get_peer_id = dp_get_peer_id,
11294 #ifdef QCA_SUPPORT_WDS_EXTENDED
11295 	.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
11296 	.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
11297 #endif /* QCA_SUPPORT_WDS_EXTENDED */
11298 
11299 #if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
11300 	.txrx_drain = dp_drain_txrx,
11301 #endif
11302 #if defined(FEATURE_RUNTIME_PM)
11303 	.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
11304 #endif
11305 #ifdef WLAN_SYSFS_DP_STATS
11306 	.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
11307 	.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
11308 #endif /* WLAN_SYSFS_DP_STATS */
11309 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
11310 	.set_pkt_capture_mode = dp_set_pkt_capture_mode,
11311 #endif
11312 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
11313 	.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
11314 #endif
11315 	.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
11316 	.txrx_umac_reset_init = dp_soc_umac_reset_init,
11317 	.txrx_get_tsf_time = dp_get_tsf_time,
11318 	.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
11319 	.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
11320 #ifdef WLAN_SUPPORT_RX_FISA
11321 	.get_fst_cmem_base = dp_rx_fisa_get_cmem_base,
11322 #endif
11323 };
11324 
11325 static struct cdp_ctrl_ops dp_ops_ctrl = {
11326 	.txrx_peer_authorize = dp_peer_authorize,
11327 	.txrx_peer_get_authorize = dp_peer_get_authorize,
11328 #ifdef VDEV_PEER_PROTOCOL_COUNT
11329 	.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
11330 	.txrx_set_peer_protocol_drop_mask =
11331 		dp_enable_vdev_peer_protocol_drop_mask,
11332 	.txrx_is_peer_protocol_count_enabled =
11333 		dp_is_vdev_peer_protocol_count_enabled,
11334 	.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
11335 #endif
11336 	.txrx_set_vdev_param = dp_set_vdev_param_wrapper,
11337 	.txrx_set_psoc_param = dp_set_psoc_param,
11338 	.txrx_get_psoc_param = dp_get_psoc_param,
11339 #ifndef WLAN_SOFTUMAC_SUPPORT
11340 	.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
11341 	.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
11342 #endif
11343 	.txrx_get_sec_type = dp_get_sec_type,
11344 	.txrx_wdi_event_sub = dp_wdi_event_sub,
11345 	.txrx_wdi_event_unsub = dp_wdi_event_unsub,
11346 	.txrx_set_pdev_param = dp_set_pdev_param,
11347 	.txrx_get_pdev_param = dp_get_pdev_param,
11348 #ifdef WLAN_FEATURE_11BE_MLO
11349 	.txrx_set_peer_param = dp_set_peer_param_wrapper,
11350 #else
11351 	.txrx_set_peer_param = dp_set_peer_param,
11352 #endif
11353 	.txrx_get_peer_param = dp_get_peer_param,
11354 #ifdef VDEV_PEER_PROTOCOL_COUNT
11355 	.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
11356 #endif
11357 #ifdef WLAN_SUPPORT_MSCS
11358 	.txrx_record_mscs_params = dp_record_mscs_params,
11359 #endif
11360 	.set_key = dp_set_michael_key,
11361 	.txrx_get_vdev_param = dp_get_vdev_param,
11362 	.calculate_delay_stats = dp_calculate_delay_stats,
11363 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
11364 	.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
11365 #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
11366 	.txrx_dump_pdev_rx_protocol_tag_stats =
11367 				dp_dump_pdev_rx_protocol_tag_stats,
11368 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
11369 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
11370 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
11371 	.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
11372 	.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
11373 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
11374 #ifdef QCA_MULTIPASS_SUPPORT
11375 	.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
11376 #endif /*QCA_MULTIPASS_SUPPORT*/
11377 #if defined(WLAN_FEATURE_TSF_UPLINK_DELAY) || defined(WLAN_CONFIG_TX_DELAY)
11378 	.txrx_set_delta_tsf = dp_set_delta_tsf,
11379 #endif
11380 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
11381 	.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
11382 	.txrx_get_uplink_delay = dp_get_uplink_delay,
11383 #endif
11384 #ifdef QCA_UNDECODED_METADATA_SUPPORT
11385 	.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
11386 	.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
11387 #endif
11388 	.txrx_peer_flush_frags = dp_peer_flush_frags,
11389 #ifdef DP_UMAC_HW_RESET_SUPPORT
11390 	.get_umac_reset_in_progress_state = dp_get_umac_reset_in_progress_state,
11391 #endif
11392 #ifdef WLAN_SUPPORT_RX_FISA
11393 	.txrx_fisa_config = dp_fisa_config,
11394 #endif
11395 };
11396 
11397 static struct cdp_me_ops dp_ops_me = {
11398 #ifndef QCA_HOST_MODE_WIFI_DISABLED
11399 #ifdef ATH_SUPPORT_IQUE
11400 	.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
11401 	.tx_me_free_descriptor = dp_tx_me_free_descriptor,
11402 	.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
11403 #endif
11404 #endif
11405 };
11406 
11407 static struct cdp_host_stats_ops dp_ops_host_stats = {
11408 	.txrx_per_peer_stats = dp_get_host_peer_stats,
11409 	.get_fw_peer_stats = dp_get_fw_peer_stats,
11410 	.get_htt_stats = dp_get_htt_stats,
11411 	.txrx_stats_publish = dp_txrx_stats_publish,
11412 	.txrx_get_vdev_stats  = dp_txrx_get_vdev_stats,
11413 	.txrx_get_peer_stats = dp_txrx_get_peer_stats,
11414 	.txrx_get_soc_stats = dp_txrx_get_soc_stats,
11415 	.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
11416 	.txrx_get_per_link_stats = dp_txrx_get_per_link_peer_stats,
11417 	.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
11418 	.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
11419 #if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
11420 	.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
11421 	.txrx_get_vdev_stats  = dp_ipa_txrx_get_vdev_stats,
11422 	.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
11423 #endif
11424 	.txrx_get_ratekbps = dp_txrx_get_ratekbps,
11425 	.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
11426 	.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
11427 	.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
11428 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
11429 	.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
11430 	.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
11431 #endif
11432 #ifdef WLAN_TX_PKT_CAPTURE_ENH
11433 	.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
11434 	.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
11435 #endif /* WLAN_TX_PKT_CAPTURE_ENH */
11436 #ifdef HW_TX_DELAY_STATS_ENABLE
11437 	.enable_disable_vdev_tx_delay_stats =
11438 				dp_enable_disable_vdev_tx_delay_stats,
11439 	.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
11440 #endif
11441 	.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
11442 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
11443 	.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
11444 	.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
11445 	.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
11446 	.txrx_peer_deter_stats = dp_get_peer_deter_stats,
11447 	.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
11448 #endif
11449 	.txrx_get_peer_extd_rate_link_stats =
11450 					dp_get_peer_extd_rate_link_stats,
11451 	.get_pdev_obss_stats = dp_get_obss_stats,
11452 	.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
11453 	.txrx_get_interface_stats  = dp_txrx_get_interface_stats,
11454 	/* TODO */
11455 };
11456 
11457 static struct cdp_raw_ops dp_ops_raw = {
11458 	/* TODO */
11459 };
11460 
11461 #ifdef PEER_FLOW_CONTROL
11462 static struct cdp_pflow_ops dp_ops_pflow = {
11463 	dp_tx_flow_ctrl_configure_pdev,
11464 };
11465 #endif
11466 
11467 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
11468 static struct cdp_cfr_ops dp_ops_cfr = {
11469 	.txrx_get_cfr_rcc = dp_get_cfr_rcc,
11470 	.txrx_set_cfr_rcc = dp_set_cfr_rcc,
11471 	.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
11472 	.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
11473 };
11474 #endif
11475 
11476 #ifdef WLAN_SUPPORT_MSCS
11477 static struct cdp_mscs_ops dp_ops_mscs = {
11478 	.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
11479 };
11480 #endif
11481 
11482 #ifdef WLAN_SUPPORT_MESH_LATENCY
11483 static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
11484 	.mesh_latency_update_peer_parameter =
11485 		dp_mesh_latency_update_peer_parameter,
11486 };
11487 #endif
11488 
11489 #ifdef WLAN_SUPPORT_SCS
11490 static struct cdp_scs_ops dp_ops_scs = {
11491 	.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
11492 };
11493 #endif
11494 
11495 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
11496 static struct cdp_fse_ops dp_ops_fse = {
11497 	.fse_rule_add = dp_rx_sfe_add_flow_entry,
11498 	.fse_rule_delete = dp_rx_sfe_delete_flow_entry,
11499 };
11500 #endif
11501 
11502 #ifdef CONFIG_SAWF_DEF_QUEUES
11503 static struct cdp_sawf_ops dp_ops_sawf = {
11504 	.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
11505 	.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
11506 	.sawf_def_queues_get_map_report =
11507 		dp_sawf_def_queues_get_map_report,
11508 #ifdef CONFIG_SAWF_STATS
11509 	.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
11510 	.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
11511 	.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
11512 	.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
11513 	.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
11514 	.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
11515 	.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
11516 	.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
11517 	.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
11518 	.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
11519 	.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
11520 	.peer_config_ul = dp_sawf_peer_config_ul,
11521 	.swaf_peer_sla_configuration = dp_swaf_peer_sla_configuration,
11522 	.sawf_peer_flow_count = dp_sawf_peer_flow_count,
11523 #endif
11524 };
11525 #endif
11526 
11527 #ifdef DP_TX_TRACKING
11528 
11529 #define DP_TX_COMP_MAX_LATENCY_MS 60000
11530 /**
11531  * dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
11532  * @tx_desc: tx descriptor
11533  *
11534  * Calculate time latency for tx completion per pkt and trigger self recovery
11535  * when the delay is more than threshold value.
11536  *
11537  * Return: True if delay is more than threshold
11538  */
11539 static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
11540 {
11541 	uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
11542 	qdf_ktime_t current_time = qdf_ktime_real_get();
11543 	qdf_ktime_t timestamp = tx_desc->timestamp;
11544 
11545 	if (dp_tx_pkt_tracepoints_enabled()) {
11546 		if (!timestamp)
11547 			return false;
11548 
11549 		time_latency = qdf_ktime_to_ms(current_time) -
11550 				qdf_ktime_to_ms(timestamp);
11551 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
11552 			dp_err_rl("enqueued: %llu ms, current : %llu ms",
11553 				  timestamp, current_time);
11554 			return true;
11555 		}
11556 	} else {
11557 		if (!timestamp_tick)
11558 			return false;
11559 
11560 		current_time = qdf_system_ticks();
11561 		time_latency = qdf_system_ticks_to_msecs(current_time -
11562 							 timestamp_tick);
11563 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
11564 			dp_err_rl("enqueued: %u ms, current : %u ms",
11565 				  qdf_system_ticks_to_msecs(timestamp_tick),
11566 				  qdf_system_ticks_to_msecs(current_time));
11567 			return true;
11568 		}
11569 	}
11570 
11571 	return false;
11572 }
11573 
11574 void dp_find_missing_tx_comp(struct dp_soc *soc)
11575 {
11576 	uint8_t i;
11577 	uint32_t j;
11578 	uint32_t num_desc, page_id, offset;
11579 	uint16_t num_desc_per_page;
11580 	struct dp_tx_desc_s *tx_desc = NULL;
11581 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
11582 
11583 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
11584 		tx_desc_pool = &soc->tx_desc[i];
11585 		if (!(tx_desc_pool->pool_size) ||
11586 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
11587 		    !(tx_desc_pool->desc_pages.cacheable_pages))
11588 			continue;
11589 
11590 		num_desc = tx_desc_pool->pool_size;
11591 		num_desc_per_page =
11592 			tx_desc_pool->desc_pages.num_element_per_page;
11593 		for (j = 0; j < num_desc; j++) {
11594 			page_id = j / num_desc_per_page;
11595 			offset = j % num_desc_per_page;
11596 
11597 			if (qdf_unlikely(!(tx_desc_pool->
11598 					 desc_pages.cacheable_pages)))
11599 				break;
11600 
11601 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
11602 			if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
11603 				continue;
11604 			} else if (tx_desc->magic ==
11605 				   DP_TX_MAGIC_PATTERN_INUSE) {
11606 				if (dp_tx_comp_delay_check(tx_desc)) {
11607 					dp_err_rl("Tx completion not rcvd for id: %u",
11608 						  tx_desc->id);
11609 					if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
11610 						tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
11611 						dp_err_rl("Freed tx_desc %u",
11612 							  tx_desc->id);
11613 						dp_tx_comp_free_buf(soc,
11614 								    tx_desc,
11615 								    false);
11616 						dp_tx_desc_release(soc, tx_desc,
11617 								   i);
11618 						DP_STATS_INC(soc,
11619 							     tx.tx_comp_force_freed, 1);
11620 					}
11621 				}
11622 			} else {
11623 				dp_err_rl("tx desc %u corrupted, flags: 0x%x",
11624 					  tx_desc->id, tx_desc->flags);
11625 			}
11626 		}
11627 	}
11628 }
11629 #else
11630 inline void dp_find_missing_tx_comp(struct dp_soc *soc)
11631 {
11632 }
11633 #endif
11634 
11635 #ifdef FEATURE_RUNTIME_PM
11636 /**
11637  * dp_runtime_suspend() - ensure DP is ready to runtime suspend
11638  * @soc_hdl: Datapath soc handle
11639  * @pdev_id: id of data path pdev handle
11640  *
11641  * DP is ready to runtime suspend if there are no pending TX packets.
11642  *
11643  * Return: QDF_STATUS
11644  */
11645 static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
11646 {
11647 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11648 	struct dp_pdev *pdev;
11649 	int32_t tx_pending;
11650 
11651 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11652 	if (!pdev) {
11653 		dp_err("pdev is NULL");
11654 		return QDF_STATUS_E_INVAL;
11655 	}
11656 
11657 	/* Abort if there are any pending TX packets */
11658 	tx_pending = dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev));
11659 	if (tx_pending) {
11660 		dp_info_rl("%pK: Abort suspend due to pending TX packets %d",
11661 			   soc, tx_pending);
11662 		dp_find_missing_tx_comp(soc);
11663 		/* perform a force flush if tx is pending */
11664 		soc->arch_ops.dp_update_ring_hptp(soc, true);
11665 		qdf_atomic_set(&soc->tx_pending_rtpm, 0);
11666 
11667 		return QDF_STATUS_E_AGAIN;
11668 	}
11669 
11670 	if (dp_runtime_get_refcount(soc)) {
11671 		dp_init_info("refcount: %d", dp_runtime_get_refcount(soc));
11672 
11673 		return QDF_STATUS_E_AGAIN;
11674 	}
11675 
11676 	if (soc->intr_mode == DP_INTR_POLL)
11677 		qdf_timer_stop(&soc->int_timer);
11678 
11679 	return QDF_STATUS_SUCCESS;
11680 }
11681 
11682 #define DP_FLUSH_WAIT_CNT 10
11683 #define DP_RUNTIME_SUSPEND_WAIT_MS 10
11684 /**
11685  * dp_runtime_resume() - ensure DP is ready to runtime resume
11686  * @soc_hdl: Datapath soc handle
11687  * @pdev_id: id of data path pdev handle
11688  *
11689  * Resume DP for runtime PM.
11690  *
11691  * Return: QDF_STATUS
11692  */
11693 static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
11694 {
11695 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11696 	int suspend_wait = 0;
11697 
11698 	if (soc->intr_mode == DP_INTR_POLL)
11699 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
11700 
11701 	/*
11702 	 * Wait until dp runtime refcount becomes zero or time out, then flush
11703 	 * pending tx for runtime suspend.
11704 	 */
11705 	while (dp_runtime_get_refcount(soc) &&
11706 	       suspend_wait < DP_FLUSH_WAIT_CNT) {
11707 		qdf_sleep(DP_RUNTIME_SUSPEND_WAIT_MS);
11708 		suspend_wait++;
11709 	}
11710 
11711 	soc->arch_ops.dp_update_ring_hptp(soc, false);
11712 	qdf_atomic_set(&soc->tx_pending_rtpm, 0);
11713 
11714 	return QDF_STATUS_SUCCESS;
11715 }
11716 #endif /* FEATURE_RUNTIME_PM */
11717 
11718 /**
11719  * dp_tx_get_success_ack_stats() - get tx success completion count
11720  * @soc_hdl: Datapath soc handle
11721  * @vdev_id: vdev identifier
11722  *
11723  * Return: tx success ack count
11724  */
11725 static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
11726 					    uint8_t vdev_id)
11727 {
11728 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11729 	struct cdp_vdev_stats *vdev_stats = NULL;
11730 	uint32_t tx_success;
11731 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
11732 						     DP_MOD_ID_CDP);
11733 
11734 	if (!vdev) {
11735 		dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
11736 		return 0;
11737 	}
11738 
11739 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
11740 	if (!vdev_stats) {
11741 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
11742 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11743 		return 0;
11744 	}
11745 
11746 	dp_aggregate_vdev_stats(vdev, vdev_stats);
11747 
11748 	tx_success = vdev_stats->tx.tx_success.num;
11749 	qdf_mem_free(vdev_stats);
11750 
11751 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11752 	return tx_success;
11753 }
11754 
11755 #ifdef WLAN_SUPPORT_DATA_STALL
11756 /**
11757  * dp_register_data_stall_detect_cb() - register data stall callback
11758  * @soc_hdl: Datapath soc handle
11759  * @pdev_id: id of data path pdev handle
11760  * @data_stall_detect_callback: data stall callback function
11761  *
11762  * Return: QDF_STATUS Enumeration
11763  */
11764 static
11765 QDF_STATUS dp_register_data_stall_detect_cb(
11766 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
11767 			data_stall_detect_cb data_stall_detect_callback)
11768 {
11769 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11770 	struct dp_pdev *pdev;
11771 
11772 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11773 	if (!pdev) {
11774 		dp_err("pdev NULL!");
11775 		return QDF_STATUS_E_INVAL;
11776 	}
11777 
11778 	pdev->data_stall_detect_callback = data_stall_detect_callback;
11779 	return QDF_STATUS_SUCCESS;
11780 }
11781 
11782 /**
11783  * dp_deregister_data_stall_detect_cb() - de-register data stall callback
11784  * @soc_hdl: Datapath soc handle
11785  * @pdev_id: id of data path pdev handle
11786  * @data_stall_detect_callback: data stall callback function
11787  *
11788  * Return: QDF_STATUS Enumeration
11789  */
11790 static
11791 QDF_STATUS dp_deregister_data_stall_detect_cb(
11792 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
11793 			data_stall_detect_cb data_stall_detect_callback)
11794 {
11795 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11796 	struct dp_pdev *pdev;
11797 
11798 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11799 	if (!pdev) {
11800 		dp_err("pdev NULL!");
11801 		return QDF_STATUS_E_INVAL;
11802 	}
11803 
11804 	pdev->data_stall_detect_callback = NULL;
11805 	return QDF_STATUS_SUCCESS;
11806 }
11807 
11808 /**
11809  * dp_txrx_post_data_stall_event() - post data stall event
11810  * @soc_hdl: Datapath soc handle
11811  * @indicator: Module triggering data stall
11812  * @data_stall_type: data stall event type
11813  * @pdev_id: pdev id
11814  * @vdev_id_bitmap: vdev id bitmap
11815  * @recovery_type: data stall recovery type
11816  *
11817  * Return: None
11818  */
11819 static void
11820 dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
11821 			      enum data_stall_log_event_indicator indicator,
11822 			      enum data_stall_log_event_type data_stall_type,
11823 			      uint32_t pdev_id, uint32_t vdev_id_bitmap,
11824 			      enum data_stall_log_recovery_type recovery_type)
11825 {
11826 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11827 	struct data_stall_event_info data_stall_info;
11828 	struct dp_pdev *pdev;
11829 
11830 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11831 	if (!pdev) {
11832 		dp_err("pdev NULL!");
11833 		return;
11834 	}
11835 
11836 	if (!pdev->data_stall_detect_callback) {
11837 		dp_err("data stall cb not registered!");
11838 		return;
11839 	}
11840 
11841 	dp_info("data_stall_type: %x pdev_id: %d",
11842 		data_stall_type, pdev_id);
11843 
11844 	data_stall_info.indicator = indicator;
11845 	data_stall_info.data_stall_type = data_stall_type;
11846 	data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
11847 	data_stall_info.pdev_id = pdev_id;
11848 	data_stall_info.recovery_type = recovery_type;
11849 
11850 	pdev->data_stall_detect_callback(&data_stall_info);
11851 }
11852 #endif /* WLAN_SUPPORT_DATA_STALL */
11853 
11854 #ifdef WLAN_FEATURE_STATS_EXT
11855 /**
11856  * dp_txrx_ext_stats_request() - request dp txrx extended stats request
11857  * @soc_hdl: soc handle
11858  * @pdev_id: pdev id
11859  * @req: stats request
11860  *
11861  * Return: QDF_STATUS
11862  */
11863 static QDF_STATUS
11864 dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
11865 			  struct cdp_txrx_ext_stats *req)
11866 {
11867 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11868 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11869 	int i = 0;
11870 	int tcl_ring_full = 0;
11871 
11872 	if (!pdev) {
11873 		dp_err("pdev is null");
11874 		return QDF_STATUS_E_INVAL;
11875 	}
11876 
11877 	dp_aggregate_pdev_stats(pdev);
11878 
11879 	for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
11880 		tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
11881 
11882 	req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
11883 	req->tx_msdu_overflow = tcl_ring_full;
11884 	/* Error rate at LMAC */
11885 	req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
11886 				pdev->stats.err.fw_reported_rxdma_error;
11887 	/* only count error source from RXDMA */
11888 	req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
11889 
11890 	/* Error rate at above the MAC */
11891 	req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
11892 	req->rx_mpdu_missed = pdev->stats.err.reo_error;
11893 
11894 	dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
11895 		"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
11896 		"rx_mpdu_missed = %u, rx_mpdu_error = %u",
11897 		req->tx_msdu_enqueue,
11898 		req->tx_msdu_overflow,
11899 		req->rx_mpdu_received,
11900 		req->rx_mpdu_delivered,
11901 		req->rx_mpdu_missed,
11902 		req->rx_mpdu_error);
11903 
11904 	return QDF_STATUS_SUCCESS;
11905 }
11906 
11907 #endif /* WLAN_FEATURE_STATS_EXT */
11908 
11909 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
11910 /**
11911  * dp_mark_first_wakeup_packet() - set flag to indicate that
11912  *    fw is compatible for marking first packet after wow wakeup
11913  * @soc_hdl: Datapath soc handle
11914  * @pdev_id: id of data path pdev handle
11915  * @value: 1 for enabled/ 0 for disabled
11916  *
11917  * Return: None
11918  */
11919 static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
11920 					uint8_t pdev_id, uint8_t value)
11921 {
11922 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11923 	struct dp_pdev *pdev;
11924 
11925 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11926 	if (!pdev) {
11927 		dp_err("pdev is NULL");
11928 		return;
11929 	}
11930 
11931 	pdev->is_first_wakeup_packet = value;
11932 }
11933 #endif
11934 
11935 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
11936 /**
11937  * dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
11938  * @soc_hdl: Opaque handle to the DP soc object
11939  * @vdev_id: VDEV identifier
11940  * @mac: MAC address of the peer
11941  * @ac: access category mask
11942  * @tid: TID mask
11943  * @policy: Flush policy
11944  *
11945  * Return: 0 on success, errno on failure
11946  */
11947 static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
11948 					uint8_t vdev_id, uint8_t *mac,
11949 					uint8_t ac, uint32_t tid,
11950 					enum cdp_peer_txq_flush_policy policy)
11951 {
11952 	struct dp_soc *soc;
11953 
11954 	if (!soc_hdl) {
11955 		dp_err("soc is null");
11956 		return -EINVAL;
11957 	}
11958 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
11959 	return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
11960 					       mac, ac, tid, policy);
11961 }
11962 #endif
11963 
11964 #ifdef CONNECTIVITY_PKTLOG
11965 /**
11966  * dp_register_packetdump_callback() - registers
11967  *  tx data packet, tx mgmt. packet and rx data packet
11968  *  dump callback handler.
11969  *
11970  * @soc_hdl: Datapath soc handle
11971  * @pdev_id: id of data path pdev handle
11972  * @dp_tx_packetdump_cb: tx packetdump cb
11973  * @dp_rx_packetdump_cb: rx packetdump cb
11974  *
11975  * This function is used to register tx data pkt, tx mgmt.
11976  * pkt and rx data pkt dump callback
11977  *
11978  * Return: None
11979  *
11980  */
11981 static inline
11982 void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
11983 				     ol_txrx_pktdump_cb dp_tx_packetdump_cb,
11984 				     ol_txrx_pktdump_cb dp_rx_packetdump_cb)
11985 {
11986 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11987 	struct dp_pdev *pdev;
11988 
11989 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
11990 	if (!pdev) {
11991 		dp_err("pdev is NULL!");
11992 		return;
11993 	}
11994 
11995 	pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
11996 	pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
11997 }
11998 
11999 /**
12000  * dp_deregister_packetdump_callback() - deregidters
12001  *  tx data packet, tx mgmt. packet and rx data packet
12002  *  dump callback handler
12003  * @soc_hdl: Datapath soc handle
12004  * @pdev_id: id of data path pdev handle
12005  *
12006  * This function is used to deregidter tx data pkt.,
12007  * tx mgmt. pkt and rx data pkt. dump callback
12008  *
12009  * Return: None
12010  *
12011  */
12012 static inline
12013 void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
12014 				       uint8_t pdev_id)
12015 {
12016 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12017 	struct dp_pdev *pdev;
12018 
12019 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12020 	if (!pdev) {
12021 		dp_err("pdev is NULL!");
12022 		return;
12023 	}
12024 
12025 	pdev->dp_tx_packetdump_cb = NULL;
12026 	pdev->dp_rx_packetdump_cb = NULL;
12027 }
12028 #endif
12029 
12030 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
12031 /**
12032  * dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
12033  * @soc_hdl: Datapath soc handle
12034  * @high: whether the bus bw is high or not
12035  *
12036  * Return: void
12037  */
12038 static void
12039 dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
12040 {
12041 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12042 
12043 	soc->high_throughput = high;
12044 }
12045 
12046 /**
12047  * dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
12048  * @soc_hdl: Datapath soc handle
12049  *
12050  * Return: bool
12051  */
12052 static bool
12053 dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
12054 {
12055 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12056 
12057 	return soc->high_throughput;
12058 }
12059 #endif
12060 
12061 #ifdef DP_PEER_EXTENDED_API
12062 static struct cdp_misc_ops dp_ops_misc = {
12063 #ifdef FEATURE_WLAN_TDLS
12064 	.tx_non_std = dp_tx_non_std,
12065 #endif /* FEATURE_WLAN_TDLS */
12066 	.get_opmode = dp_get_opmode,
12067 #ifdef FEATURE_RUNTIME_PM
12068 	.runtime_suspend = dp_runtime_suspend,
12069 	.runtime_resume = dp_runtime_resume,
12070 #endif /* FEATURE_RUNTIME_PM */
12071 	.get_num_rx_contexts = dp_get_num_rx_contexts,
12072 	.get_tx_ack_stats = dp_tx_get_success_ack_stats,
12073 #ifdef WLAN_SUPPORT_DATA_STALL
12074 	.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
12075 	.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
12076 	.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
12077 #endif
12078 
12079 #ifdef WLAN_FEATURE_STATS_EXT
12080 	.txrx_ext_stats_request = dp_txrx_ext_stats_request,
12081 #ifndef WLAN_SOFTUMAC_SUPPORT
12082 	.request_rx_hw_stats = dp_request_rx_hw_stats,
12083 	.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
12084 #endif
12085 #endif /* WLAN_FEATURE_STATS_EXT */
12086 	.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
12087 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
12088 	.set_swlm_enable = dp_soc_set_swlm_enable,
12089 	.is_swlm_enabled = dp_soc_is_swlm_enabled,
12090 #endif
12091 	.display_txrx_hw_info = dp_display_srng_info,
12092 #ifndef WLAN_SOFTUMAC_SUPPORT
12093 	.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
12094 #endif
12095 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
12096 	.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
12097 #endif
12098 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
12099 	.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
12100 #endif
12101 #ifdef CONNECTIVITY_PKTLOG
12102 	.register_pktdump_cb = dp_register_packetdump_callback,
12103 	.unregister_pktdump_cb = dp_deregister_packetdump_callback,
12104 #endif
12105 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
12106 	.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
12107 	.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
12108 #endif
12109 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
12110 	.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
12111 #endif
12112 };
12113 #endif
12114 
12115 #ifdef DP_FLOW_CTL
12116 static struct cdp_flowctl_ops dp_ops_flowctl = {
12117 	/* WIFI 3.0 DP implement as required. */
12118 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
12119 #ifndef WLAN_SOFTUMAC_SUPPORT
12120 	.flow_pool_map_handler = dp_tx_flow_pool_map,
12121 	.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
12122 #endif /*WLAN_SOFTUMAC_SUPPORT */
12123 	.register_pause_cb = dp_txrx_register_pause_cb,
12124 	.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
12125 	.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
12126 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
12127 };
12128 
12129 static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
12130 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
12131 };
12132 #endif
12133 
12134 #ifdef IPA_OFFLOAD
12135 static struct cdp_ipa_ops dp_ops_ipa = {
12136 	.ipa_get_resource = dp_ipa_get_resource,
12137 	.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
12138 	.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
12139 	.ipa_op_response = dp_ipa_op_response,
12140 	.ipa_register_op_cb = dp_ipa_register_op_cb,
12141 	.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
12142 	.ipa_get_stat = dp_ipa_get_stat,
12143 	.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
12144 	.ipa_enable_autonomy = dp_ipa_enable_autonomy,
12145 	.ipa_disable_autonomy = dp_ipa_disable_autonomy,
12146 	.ipa_setup = dp_ipa_setup,
12147 	.ipa_cleanup = dp_ipa_cleanup,
12148 	.ipa_setup_iface = dp_ipa_setup_iface,
12149 	.ipa_cleanup_iface = dp_ipa_cleanup_iface,
12150 	.ipa_enable_pipes = dp_ipa_enable_pipes,
12151 	.ipa_disable_pipes = dp_ipa_disable_pipes,
12152 	.ipa_set_perf_level = dp_ipa_set_perf_level,
12153 	.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
12154 	.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
12155 	.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
12156 	.ipa_rx_buf_smmu_pool_mapping = dp_ipa_rx_buf_pool_smmu_mapping,
12157 	.ipa_set_smmu_mapped = dp_ipa_set_smmu_mapped,
12158 	.ipa_get_smmu_mapped = dp_ipa_get_smmu_mapped,
12159 #ifdef QCA_ENHANCED_STATS_SUPPORT
12160 	.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
12161 #endif
12162 #ifdef IPA_OPT_WIFI_DP
12163 	.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
12164 	.ipa_pcie_link_up = dp_ipa_pcie_link_up,
12165 	.ipa_pcie_link_down = dp_ipa_pcie_link_down,
12166 #endif
12167 #ifdef IPA_WDS_EASYMESH_FEATURE
12168 	.ipa_ast_create = dp_ipa_ast_create,
12169 #endif
12170 	.ipa_get_wdi_version = dp_ipa_get_wdi_version,
12171 };
12172 #endif
12173 
12174 #ifdef DP_POWER_SAVE
12175 static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12176 {
12177 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12178 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12179 	int timeout = SUSPEND_DRAIN_WAIT;
12180 	int drain_wait_delay = 50; /* 50 ms */
12181 	int32_t tx_pending;
12182 
12183 	if (qdf_unlikely(!pdev)) {
12184 		dp_err("pdev is NULL");
12185 		return QDF_STATUS_E_INVAL;
12186 	}
12187 
12188 	/* Abort if there are any pending TX packets */
12189 	while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
12190 		qdf_sleep(drain_wait_delay);
12191 		if (timeout <= 0) {
12192 			dp_info("TX frames are pending %d, abort suspend",
12193 				tx_pending);
12194 			dp_find_missing_tx_comp(soc);
12195 			return QDF_STATUS_E_TIMEOUT;
12196 		}
12197 		timeout = timeout - drain_wait_delay;
12198 	}
12199 
12200 	if (soc->intr_mode == DP_INTR_POLL)
12201 		qdf_timer_stop(&soc->int_timer);
12202 
12203 	/* Stop monitor reap timer and reap any pending frames in ring */
12204 	dp_monitor_reap_timer_suspend(soc);
12205 
12206 	return QDF_STATUS_SUCCESS;
12207 }
12208 
12209 static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12210 {
12211 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12212 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12213 
12214 	if (qdf_unlikely(!pdev)) {
12215 		dp_err("pdev is NULL");
12216 		return QDF_STATUS_E_INVAL;
12217 	}
12218 
12219 	if (soc->intr_mode == DP_INTR_POLL)
12220 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
12221 
12222 	/* Start monitor reap timer */
12223 	dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
12224 
12225 	soc->arch_ops.dp_update_ring_hptp(soc, false);
12226 
12227 	return QDF_STATUS_SUCCESS;
12228 }
12229 
12230 /**
12231  * dp_process_wow_ack_rsp() - process wow ack response
12232  * @soc_hdl: datapath soc handle
12233  * @pdev_id: data path pdev handle id
12234  *
12235  * Return: none
12236  */
12237 static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12238 {
12239 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12240 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12241 
12242 	if (qdf_unlikely(!pdev)) {
12243 		dp_err("pdev is NULL");
12244 		return;
12245 	}
12246 
12247 	/*
12248 	 * As part of wow enable FW disables the mon status ring and in wow ack
12249 	 * response from FW reap mon status ring to make sure no packets pending
12250 	 * in the ring.
12251 	 */
12252 	dp_monitor_reap_timer_suspend(soc);
12253 }
12254 
12255 /**
12256  * dp_process_target_suspend_req() - process target suspend request
12257  * @soc_hdl: datapath soc handle
12258  * @pdev_id: data path pdev handle id
12259  *
12260  * Return: none
12261  */
12262 static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
12263 					  uint8_t pdev_id)
12264 {
12265 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12266 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12267 
12268 	if (qdf_unlikely(!pdev)) {
12269 		dp_err("pdev is NULL");
12270 		return;
12271 	}
12272 
12273 	/* Stop monitor reap timer and reap any pending frames in ring */
12274 	dp_monitor_reap_timer_suspend(soc);
12275 }
12276 
12277 static struct cdp_bus_ops dp_ops_bus = {
12278 	.bus_suspend = dp_bus_suspend,
12279 	.bus_resume = dp_bus_resume,
12280 	.process_wow_ack_rsp = dp_process_wow_ack_rsp,
12281 	.process_target_suspend_req = dp_process_target_suspend_req
12282 };
12283 #endif
12284 
12285 #ifdef DP_FLOW_CTL
12286 static struct cdp_throttle_ops dp_ops_throttle = {
12287 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
12288 };
12289 
12290 static struct cdp_cfg_ops dp_ops_cfg = {
12291 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
12292 };
12293 #endif
12294 
12295 #ifdef DP_PEER_EXTENDED_API
12296 static struct cdp_ocb_ops dp_ops_ocb = {
12297 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
12298 };
12299 
12300 static struct cdp_mob_stats_ops dp_ops_mob_stats = {
12301 	.clear_stats = dp_txrx_clear_dump_stats,
12302 };
12303 
12304 static struct cdp_peer_ops dp_ops_peer = {
12305 	.register_peer = dp_register_peer,
12306 	.clear_peer = dp_clear_peer,
12307 	.find_peer_exist = dp_find_peer_exist,
12308 	.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
12309 	.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
12310 	.peer_state_update = dp_peer_state_update,
12311 	.get_vdevid = dp_get_vdevid,
12312 	.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
12313 	.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
12314 	.get_peer_state = dp_get_peer_state,
12315 	.peer_flush_frags = dp_peer_flush_frags,
12316 	.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
12317 };
12318 #endif
12319 
12320 static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
12321 {
12322 	soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
12323 	soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
12324 	soc->cdp_soc.ops->me_ops = &dp_ops_me;
12325 	soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
12326 	soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
12327 	soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
12328 #ifdef PEER_FLOW_CONTROL
12329 	soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
12330 #endif /* PEER_FLOW_CONTROL */
12331 #ifdef DP_PEER_EXTENDED_API
12332 	soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
12333 	soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
12334 	soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
12335 	soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
12336 #endif
12337 #ifdef DP_FLOW_CTL
12338 	soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
12339 	soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
12340 	soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
12341 	soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
12342 #endif
12343 #ifdef IPA_OFFLOAD
12344 	soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
12345 #endif
12346 #ifdef DP_POWER_SAVE
12347 	soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
12348 #endif
12349 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
12350 	soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
12351 #endif
12352 #ifdef WLAN_SUPPORT_MSCS
12353 	soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
12354 #endif
12355 #ifdef WLAN_SUPPORT_MESH_LATENCY
12356 	soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
12357 #endif
12358 #ifdef CONFIG_SAWF_DEF_QUEUES
12359 	soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
12360 #endif
12361 #ifdef WLAN_SUPPORT_SCS
12362 	soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
12363 #endif
12364 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12365 	soc->cdp_soc.ops->fse_ops = &dp_ops_fse;
12366 #endif
12367 };
12368 
12369 #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
12370 	defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
12371 	defined(QCA_WIFI_QCA5332)
12372 
12373 /**
12374  * dp_soc_attach_wifi3() - Attach txrx SOC
12375  * @ctrl_psoc: Opaque SOC handle from control plane
12376  * @params: SOC attach params
12377  *
12378  * Return: DP SOC handle on success, NULL on failure
12379  */
12380 struct cdp_soc_t *
12381 dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
12382 		    struct cdp_soc_attach_params *params)
12383 {
12384 	struct dp_soc *dp_soc = NULL;
12385 
12386 	dp_soc = dp_soc_attach(ctrl_psoc, params);
12387 
12388 	return dp_soc_to_cdp_soc_t(dp_soc);
12389 }
12390 
12391 static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
12392 {
12393 	int lmac_id;
12394 
12395 	for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
12396 		/*Set default host PDEV ID for lmac_id*/
12397 		wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
12398 				      INVALID_PDEV_ID, lmac_id);
12399 	}
12400 }
12401 
12402 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc)
12403 {
12404 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
12405 
12406 	if (max_list_size == 0)
12407 		return;
12408 
12409 	qdf_mem_free(soc->list_shared_qaddr_del);
12410 	qdf_mem_free(soc->reo_write_list);
12411 	qdf_mem_free(soc->list_qdesc_addr_free);
12412 	qdf_mem_free(soc->list_qdesc_addr_alloc);
12413 }
12414 
12415 static void dp_soc_set_qref_debug_list(struct dp_soc *soc)
12416 {
12417 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
12418 
12419 	if (max_list_size == 0)
12420 		return;
12421 
12422 	soc->list_shared_qaddr_del =
12423 			(struct test_qaddr_del *)
12424 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
12425 					       max_list_size);
12426 	soc->reo_write_list =
12427 			(struct test_qaddr_del *)
12428 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
12429 					       max_list_size);
12430 	soc->list_qdesc_addr_free =
12431 			(struct test_mem_free *)
12432 				qdf_mem_malloc(sizeof(struct test_mem_free) *
12433 					       max_list_size);
12434 	soc->list_qdesc_addr_alloc =
12435 			(struct test_mem_free *)
12436 				qdf_mem_malloc(sizeof(struct test_mem_free) *
12437 					       max_list_size);
12438 }
12439 
12440 static uint32_t
12441 dp_get_link_desc_id_start(uint16_t arch_id)
12442 {
12443 	switch (arch_id) {
12444 	case CDP_ARCH_TYPE_LI:
12445 	case CDP_ARCH_TYPE_RH:
12446 		return LINK_DESC_ID_START_21_BITS_COOKIE;
12447 	case CDP_ARCH_TYPE_BE:
12448 		return LINK_DESC_ID_START_20_BITS_COOKIE;
12449 	default:
12450 		dp_err("unknown arch_id 0x%x", arch_id);
12451 		QDF_BUG(0);
12452 		return LINK_DESC_ID_START_21_BITS_COOKIE;
12453 	}
12454 }
12455 
12456 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
12457 static inline
12458 void dp_soc_init_tx_ilp(struct dp_soc *soc)
12459 {
12460 	soc->tx_ilp_enable = false;
12461 }
12462 #else
12463 static inline
12464 void dp_soc_init_tx_ilp(struct dp_soc *soc)
12465 {
12466 }
12467 #endif
12468 
12469 /**
12470  * dp_soc_attach() - Attach txrx SOC
12471  * @ctrl_psoc: Opaque SOC handle from control plane
12472  * @params: SOC attach params
12473  *
12474  * Return: DP SOC handle on success, NULL on failure
12475  */
12476 static struct dp_soc *
12477 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
12478 	      struct cdp_soc_attach_params *params)
12479 {
12480 	struct dp_soc *soc =  NULL;
12481 	uint16_t arch_id;
12482 	struct hif_opaque_softc *hif_handle = params->hif_handle;
12483 	qdf_device_t qdf_osdev = params->qdf_osdev;
12484 	struct ol_if_ops *ol_ops = params->ol_ops;
12485 	uint16_t device_id = params->device_id;
12486 
12487 	if (!hif_handle) {
12488 		dp_err("HIF handle is NULL");
12489 		goto fail0;
12490 	}
12491 	arch_id = cdp_get_arch_type_from_devid(device_id);
12492 	soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
12493 	if (!soc) {
12494 		dp_err("DP SOC memory allocation failed");
12495 		goto fail0;
12496 	}
12497 
12498 	dp_info("soc memory allocated %pK", soc);
12499 	soc->hif_handle = hif_handle;
12500 	soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
12501 	if (!soc->hal_soc)
12502 		goto fail1;
12503 
12504 	hif_get_cmem_info(soc->hif_handle,
12505 			  &soc->cmem_base,
12506 			  &soc->cmem_total_size);
12507 	soc->cmem_avail_size = soc->cmem_total_size;
12508 	soc->device_id = device_id;
12509 	soc->cdp_soc.ops =
12510 		(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
12511 	if (!soc->cdp_soc.ops)
12512 		goto fail1;
12513 
12514 	dp_soc_txrx_ops_attach(soc);
12515 	soc->cdp_soc.ol_ops = ol_ops;
12516 	soc->ctrl_psoc = ctrl_psoc;
12517 	soc->osdev = qdf_osdev;
12518 	soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
12519 	dp_soc_init_tx_ilp(soc);
12520 	hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
12521 			    &soc->rx_mon_pkt_tlv_size);
12522 	soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
12523 						       params->mlo_chip_id);
12524 	soc->features.dmac_cmn_src_rxbuf_ring_enabled =
12525 		hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
12526 	soc->arch_id = arch_id;
12527 	soc->link_desc_id_start =
12528 			dp_get_link_desc_id_start(soc->arch_id);
12529 	dp_configure_arch_ops(soc);
12530 
12531 	/* Reset wbm sg list and flags */
12532 	dp_rx_wbm_sg_list_reset(soc);
12533 
12534 	dp_soc_cfg_history_attach(soc);
12535 	dp_soc_tx_hw_desc_history_attach(soc);
12536 	dp_soc_rx_history_attach(soc);
12537 	dp_soc_mon_status_ring_history_attach(soc);
12538 	dp_soc_tx_history_attach(soc);
12539 	wlan_set_srng_cfg(&soc->wlan_srng_cfg);
12540 	soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
12541 	if (!soc->wlan_cfg_ctx) {
12542 		dp_err("wlan_cfg_ctx failed");
12543 		goto fail2;
12544 	}
12545 
12546 	/*sync DP soc cfg items with profile support after cfg_soc_attach*/
12547 	wlan_dp_soc_cfg_sync_profile((struct cdp_soc_t *)soc);
12548 
12549 	soc->arch_ops.soc_cfg_attach(soc);
12550 
12551 	if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
12552 		dp_err("failed to allocate link desc pool banks");
12553 		goto fail3;
12554 	}
12555 
12556 	if (dp_hw_link_desc_ring_alloc(soc)) {
12557 		dp_err("failed to allocate link_desc_ring");
12558 		goto fail4;
12559 	}
12560 
12561 	if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
12562 								 params))) {
12563 		dp_err("unable to do target specific attach");
12564 		goto fail5;
12565 	}
12566 
12567 	if (dp_soc_srng_alloc(soc)) {
12568 		dp_err("failed to allocate soc srng rings");
12569 		goto fail6;
12570 	}
12571 
12572 	if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
12573 		dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
12574 		goto fail7;
12575 	}
12576 
12577 	if (!dp_monitor_modularized_enable()) {
12578 		if (dp_mon_soc_attach_wrapper(soc)) {
12579 			dp_err("failed to attach monitor");
12580 			goto fail8;
12581 		}
12582 	}
12583 
12584 	if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
12585 				       &soc->reo_qref)
12586 	    != QDF_STATUS_SUCCESS) {
12587 		dp_err("unable to setup reo shared qaddr");
12588 		goto fail9;
12589 	}
12590 
12591 	if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
12592 		dp_err("failed to initialize dp stats sysfs file");
12593 		dp_sysfs_deinitialize_stats(soc);
12594 	}
12595 
12596 	dp_soc_swlm_attach(soc);
12597 	dp_soc_set_interrupt_mode(soc);
12598 	dp_soc_set_def_pdev(soc);
12599 	dp_soc_set_qref_debug_list(soc);
12600 
12601 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
12602 		qdf_dma_mem_stats_read(),
12603 		qdf_heap_mem_stats_read(),
12604 		qdf_skb_total_mem_stats_read());
12605 
12606 	return soc;
12607 fail9:
12608 	if (!dp_monitor_modularized_enable())
12609 		dp_mon_soc_detach_wrapper(soc);
12610 fail8:
12611 	dp_soc_tx_desc_sw_pools_free(soc);
12612 fail7:
12613 	dp_soc_srng_free(soc);
12614 fail6:
12615 	soc->arch_ops.txrx_soc_detach(soc);
12616 fail5:
12617 	dp_hw_link_desc_ring_free(soc);
12618 fail4:
12619 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
12620 fail3:
12621 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
12622 fail2:
12623 	qdf_mem_free(soc->cdp_soc.ops);
12624 fail1:
12625 	qdf_mem_common_free(soc);
12626 fail0:
12627 	return NULL;
12628 }
12629 
12630 void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
12631 			struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
12632 			struct hif_opaque_softc *hif_handle,
12633 			HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
12634 			struct ol_if_ops *ol_ops, uint16_t device_id)
12635 {
12636 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
12637 
12638 	return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
12639 }
12640 
12641 #endif
12642 
12643 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
12644 {
12645 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
12646 		return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
12647 
12648 	/* Typically for MCL as there only 1 PDEV*/
12649 	return soc->pdev_list[0];
12650 }
12651 
12652 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
12653 				     int *max_mac_rings)
12654 {
12655 	bool dbs_enable = false;
12656 
12657 	if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
12658 		dbs_enable = soc->cdp_soc.ol_ops->
12659 				is_hw_dbs_capable((void *)soc->ctrl_psoc);
12660 
12661 	*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
12662 	dp_info("dbs_enable %d, max_mac_rings %d",
12663 		dbs_enable, *max_mac_rings);
12664 }
12665 
12666 qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
12667 
12668 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
12669 /**
12670  * dp_get_cfr_rcc() - get cfr rcc config
12671  * @soc_hdl: Datapath soc handle
12672  * @pdev_id: id of objmgr pdev
12673  *
12674  * Return: true/false based on cfr mode setting
12675  */
12676 static
12677 bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12678 {
12679 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12680 	struct dp_pdev *pdev = NULL;
12681 
12682 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12683 	if (!pdev) {
12684 		dp_err("pdev is NULL");
12685 		return false;
12686 	}
12687 
12688 	return pdev->cfr_rcc_mode;
12689 }
12690 
12691 /**
12692  * dp_set_cfr_rcc() - enable/disable cfr rcc config
12693  * @soc_hdl: Datapath soc handle
12694  * @pdev_id: id of objmgr pdev
12695  * @enable: Enable/Disable cfr rcc mode
12696  *
12697  * Return: none
12698  */
12699 static
12700 void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
12701 {
12702 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12703 	struct dp_pdev *pdev = NULL;
12704 
12705 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12706 	if (!pdev) {
12707 		dp_err("pdev is NULL");
12708 		return;
12709 	}
12710 
12711 	pdev->cfr_rcc_mode = enable;
12712 }
12713 
12714 /**
12715  * dp_get_cfr_dbg_stats - Get the debug statistics for CFR
12716  * @soc_hdl: Datapath soc handle
12717  * @pdev_id: id of data path pdev handle
12718  * @cfr_rcc_stats: CFR RCC debug statistics buffer
12719  *
12720  * Return: none
12721  */
12722 static inline void
12723 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12724 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats)
12725 {
12726 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12727 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12728 
12729 	if (!pdev) {
12730 		dp_err("pdev is NULL");
12731 		return;
12732 	}
12733 
12734 	qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
12735 		     sizeof(struct cdp_cfr_rcc_stats));
12736 }
12737 
12738 /**
12739  * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
12740  * @soc_hdl: Datapath soc handle
12741  * @pdev_id: id of data path pdev handle
12742  *
12743  * Return: none
12744  */
12745 static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
12746 				   uint8_t pdev_id)
12747 {
12748 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12749 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12750 
12751 	if (!pdev) {
12752 		dp_err("dp pdev is NULL");
12753 		return;
12754 	}
12755 
12756 	qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
12757 }
12758 #endif
12759 
12760 /**
12761  * dp_bucket_index() - Return index from array
12762  *
12763  * @delay: delay measured
12764  * @array: array used to index corresponding delay
12765  * @delay_in_us: flag to indicate whether the delay in ms or us
12766  *
12767  * Return: index
12768  */
12769 static uint8_t
12770 dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
12771 {
12772 	uint8_t i = CDP_DELAY_BUCKET_0;
12773 	uint32_t thr_low, thr_high;
12774 
12775 	for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
12776 		thr_low = array[i];
12777 		thr_high = array[i + 1];
12778 
12779 		if (delay_in_us) {
12780 			thr_low = thr_low * USEC_PER_MSEC;
12781 			thr_high = thr_high * USEC_PER_MSEC;
12782 		}
12783 		if (delay >= thr_low && delay <= thr_high)
12784 			return i;
12785 	}
12786 	return (CDP_DELAY_BUCKET_MAX - 1);
12787 }
12788 
12789 #ifdef HW_TX_DELAY_STATS_ENABLE
12790 /*
12791  * cdp_fw_to_hw_delay_range
12792  * Fw to hw delay ranges in milliseconds
12793  */
12794 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
12795 	0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
12796 #else
12797 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
12798 	0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
12799 #endif
12800 
12801 /*
12802  * cdp_sw_enq_delay_range
12803  * Software enqueue delay ranges in milliseconds
12804  */
12805 static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
12806 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
12807 
12808 /*
12809  * cdp_intfrm_delay_range
12810  * Interframe delay ranges in milliseconds
12811  */
12812 static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
12813 	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
12814 
12815 /**
12816  * dp_fill_delay_buckets() - Fill delay statistics bucket for each
12817  *				type of delay
12818  * @tstats: tid tx stats
12819  * @rstats: tid rx stats
12820  * @delay: delay in ms
12821  * @tid: tid value
12822  * @mode: type of tx delay mode
12823  * @ring_id: ring number
12824  * @delay_in_us: flag to indicate whether the delay in ms or us
12825  *
12826  * Return: pointer to cdp_delay_stats structure
12827  */
12828 static struct cdp_delay_stats *
12829 dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
12830 		      struct cdp_tid_rx_stats *rstats, uint32_t delay,
12831 		      uint8_t tid, uint8_t mode, uint8_t ring_id,
12832 		      bool delay_in_us)
12833 {
12834 	uint8_t delay_index = 0;
12835 	struct cdp_delay_stats *stats = NULL;
12836 
12837 	/*
12838 	 * Update delay stats in proper bucket
12839 	 */
12840 	switch (mode) {
12841 	/* Software Enqueue delay ranges */
12842 	case CDP_DELAY_STATS_SW_ENQ:
12843 		if (!tstats)
12844 			break;
12845 
12846 		delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
12847 					      delay_in_us);
12848 		tstats->swq_delay.delay_bucket[delay_index]++;
12849 		stats = &tstats->swq_delay;
12850 		break;
12851 
12852 	/* Tx Completion delay ranges */
12853 	case CDP_DELAY_STATS_FW_HW_TRANSMIT:
12854 		if (!tstats)
12855 			break;
12856 
12857 		delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
12858 					      delay_in_us);
12859 		tstats->hwtx_delay.delay_bucket[delay_index]++;
12860 		stats = &tstats->hwtx_delay;
12861 		break;
12862 
12863 	/* Interframe tx delay ranges */
12864 	case CDP_DELAY_STATS_TX_INTERFRAME:
12865 		if (!tstats)
12866 			break;
12867 
12868 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
12869 					      delay_in_us);
12870 		tstats->intfrm_delay.delay_bucket[delay_index]++;
12871 		stats = &tstats->intfrm_delay;
12872 		break;
12873 
12874 	/* Interframe rx delay ranges */
12875 	case CDP_DELAY_STATS_RX_INTERFRAME:
12876 		if (!rstats)
12877 			break;
12878 
12879 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
12880 					      delay_in_us);
12881 		rstats->intfrm_delay.delay_bucket[delay_index]++;
12882 		stats = &rstats->intfrm_delay;
12883 		break;
12884 
12885 	/* Ring reap to indication to network stack */
12886 	case CDP_DELAY_STATS_REAP_STACK:
12887 		if (!rstats)
12888 			break;
12889 
12890 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
12891 					      delay_in_us);
12892 		rstats->to_stack_delay.delay_bucket[delay_index]++;
12893 		stats = &rstats->to_stack_delay;
12894 		break;
12895 	default:
12896 		dp_debug("Incorrect delay mode: %d", mode);
12897 	}
12898 
12899 	return stats;
12900 }
12901 
12902 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
12903 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
12904 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
12905 			   bool delay_in_us)
12906 {
12907 	struct cdp_delay_stats *dstats = NULL;
12908 
12909 	/*
12910 	 * Delay ranges are different for different delay modes
12911 	 * Get the correct index to update delay bucket
12912 	 */
12913 	dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
12914 				       ring_id, delay_in_us);
12915 	if (qdf_unlikely(!dstats))
12916 		return;
12917 
12918 	if (delay != 0) {
12919 		/*
12920 		 * Compute minimum,average and maximum
12921 		 * delay
12922 		 */
12923 		if (delay < dstats->min_delay)
12924 			dstats->min_delay = delay;
12925 
12926 		if (delay > dstats->max_delay)
12927 			dstats->max_delay = delay;
12928 
12929 		/*
12930 		 * Average over delay measured till now
12931 		 */
12932 		if (!dstats->avg_delay)
12933 			dstats->avg_delay = delay;
12934 		else
12935 			dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
12936 	}
12937 }
12938 
12939 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
12940 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
12941 			      u_int16_t mac_cnt, bool limit)
12942 {
12943 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
12944 	struct dp_vdev *vdev =
12945 		dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
12946 	struct dp_peer *peer;
12947 	uint16_t new_mac_cnt = 0;
12948 
12949 	if (!vdev)
12950 		return new_mac_cnt;
12951 
12952 	if (limit && (vdev->num_peers > mac_cnt)) {
12953 		dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
12954 		return 0;
12955 	}
12956 
12957 	qdf_spin_lock_bh(&vdev->peer_list_lock);
12958 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
12959 		if (peer->bss_peer)
12960 			continue;
12961 		if (new_mac_cnt < mac_cnt) {
12962 			WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
12963 			new_mac_cnt++;
12964 		}
12965 	}
12966 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
12967 	dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
12968 	return new_mac_cnt;
12969 }
12970 
12971 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
12972 {
12973 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
12974 						       mac, 0, vdev_id,
12975 						       DP_MOD_ID_CDP);
12976 	uint16_t peer_id = HTT_INVALID_PEER;
12977 
12978 	if (!peer) {
12979 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
12980 		return peer_id;
12981 	}
12982 
12983 	peer_id = peer->peer_id;
12984 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
12985 	return peer_id;
12986 }
12987 
12988 #ifdef QCA_SUPPORT_WDS_EXTENDED
12989 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
12990 				  uint8_t vdev_id,
12991 				  uint8_t *mac,
12992 				  ol_txrx_rx_fp rx,
12993 				  ol_osif_peer_handle osif_peer)
12994 {
12995 	struct dp_txrx_peer *txrx_peer = NULL;
12996 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
12997 						       mac, 0, vdev_id,
12998 						       DP_MOD_ID_CDP);
12999 	QDF_STATUS status = QDF_STATUS_E_INVAL;
13000 
13001 	if (!peer) {
13002 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
13003 		return status;
13004 	}
13005 
13006 	txrx_peer = dp_get_txrx_peer(peer);
13007 	if (!txrx_peer) {
13008 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13009 		return status;
13010 	}
13011 
13012 	if (rx) {
13013 		if (txrx_peer->osif_rx) {
13014 			status = QDF_STATUS_E_ALREADY;
13015 		} else {
13016 			txrx_peer->osif_rx = rx;
13017 			status = QDF_STATUS_SUCCESS;
13018 		}
13019 	} else {
13020 		if (txrx_peer->osif_rx) {
13021 			txrx_peer->osif_rx = NULL;
13022 			status = QDF_STATUS_SUCCESS;
13023 		} else {
13024 			status = QDF_STATUS_E_ALREADY;
13025 		}
13026 	}
13027 
13028 	txrx_peer->wds_ext.osif_peer = osif_peer;
13029 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13030 
13031 	return status;
13032 }
13033 
13034 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
13035 				ol_txrx_soc_handle soc,
13036 				uint8_t vdev_id,
13037 				uint8_t *mac,
13038 				ol_osif_peer_handle *osif_peer)
13039 {
13040 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
13041 	struct dp_txrx_peer *txrx_peer = NULL;
13042 	struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
13043 						      mac, 0, vdev_id,
13044 						      DP_MOD_ID_CDP);
13045 
13046 	if (!peer) {
13047 		dp_cdp_debug("%pK: Peer is NULL!", dp_soc);
13048 		return QDF_STATUS_E_INVAL;
13049 	}
13050 
13051 	txrx_peer = dp_get_txrx_peer(peer);
13052 	if (!txrx_peer) {
13053 		dp_cdp_debug("%pK: TXRX Peer is NULL!", dp_soc);
13054 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13055 		return QDF_STATUS_E_INVAL;
13056 	}
13057 
13058 	*osif_peer = txrx_peer->wds_ext.osif_peer;
13059 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13060 
13061 	return QDF_STATUS_SUCCESS;
13062 }
13063 #endif /* QCA_SUPPORT_WDS_EXTENDED */
13064 
13065 /**
13066  * dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
13067  *			   monitor rings
13068  * @pdev: Datapath pdev handle
13069  *
13070  */
13071 static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
13072 {
13073 	struct dp_soc *soc = pdev->soc;
13074 	uint8_t i;
13075 
13076 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
13077 		dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
13078 			       RXDMA_BUF,
13079 			       pdev->lmac_id);
13080 
13081 	if (!soc->rxdma2sw_rings_not_supported) {
13082 		for (i = 0;
13083 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
13084 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
13085 								 pdev->pdev_id);
13086 
13087 			wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
13088 							base_vaddr_unaligned,
13089 					     soc->rxdma_err_dst_ring[lmac_id].
13090 								alloc_size,
13091 					     soc->ctrl_psoc,
13092 					     WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
13093 					     "rxdma_err_dst");
13094 			dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
13095 				       RXDMA_DST, lmac_id);
13096 		}
13097 	}
13098 
13099 
13100 }
13101 
13102 /**
13103  * dp_pdev_srng_init() - initialize all pdev srng rings including
13104  *			   monitor rings
13105  * @pdev: Datapath pdev handle
13106  *
13107  * Return: QDF_STATUS_SUCCESS on success
13108  *	   QDF_STATUS_E_NOMEM on failure
13109  */
13110 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
13111 {
13112 	struct dp_soc *soc = pdev->soc;
13113 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
13114 	uint32_t i;
13115 
13116 	soc_cfg_ctx = soc->wlan_cfg_ctx;
13117 
13118 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
13119 		if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
13120 				 RXDMA_BUF, 0, pdev->lmac_id)) {
13121 			dp_init_err("%pK: dp_srng_init failed rx refill ring",
13122 				    soc);
13123 			goto fail1;
13124 		}
13125 	}
13126 
13127 	/* LMAC RxDMA to SW Rings configuration */
13128 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
13129 		/* Only valid for MCL */
13130 		pdev = soc->pdev_list[0];
13131 
13132 	if (!soc->rxdma2sw_rings_not_supported) {
13133 		for (i = 0;
13134 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
13135 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
13136 								 pdev->pdev_id);
13137 			struct dp_srng *srng =
13138 				&soc->rxdma_err_dst_ring[lmac_id];
13139 
13140 			if (srng->hal_srng)
13141 				continue;
13142 
13143 			if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
13144 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
13145 					    soc);
13146 				goto fail1;
13147 			}
13148 			wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
13149 						base_vaddr_unaligned,
13150 					  soc->rxdma_err_dst_ring[lmac_id].
13151 						alloc_size,
13152 					  soc->ctrl_psoc,
13153 					  WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
13154 					  "rxdma_err_dst");
13155 		}
13156 	}
13157 	return QDF_STATUS_SUCCESS;
13158 
13159 fail1:
13160 	dp_pdev_srng_deinit(pdev);
13161 	return QDF_STATUS_E_NOMEM;
13162 }
13163 
13164 /**
13165  * dp_pdev_srng_free() - free all pdev srng rings including monitor rings
13166  * @pdev: Datapath pdev handle
13167  *
13168  */
13169 static void dp_pdev_srng_free(struct dp_pdev *pdev)
13170 {
13171 	struct dp_soc *soc = pdev->soc;
13172 	uint8_t i;
13173 
13174 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
13175 		dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
13176 
13177 	if (!soc->rxdma2sw_rings_not_supported) {
13178 		for (i = 0;
13179 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
13180 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
13181 								 pdev->pdev_id);
13182 
13183 			dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
13184 		}
13185 	}
13186 }
13187 
13188 /**
13189  * dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
13190  *			  monitor rings
13191  * @pdev: Datapath pdev handle
13192  *
13193  * Return: QDF_STATUS_SUCCESS on success
13194  *	   QDF_STATUS_E_NOMEM on failure
13195  */
13196 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
13197 {
13198 	struct dp_soc *soc = pdev->soc;
13199 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
13200 	uint32_t ring_size;
13201 	uint32_t i;
13202 
13203 	soc_cfg_ctx = soc->wlan_cfg_ctx;
13204 
13205 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
13206 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
13207 		if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
13208 				  RXDMA_BUF, ring_size, 0)) {
13209 			dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
13210 				    soc);
13211 			goto fail1;
13212 		}
13213 	}
13214 
13215 	ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
13216 	/* LMAC RxDMA to SW Rings configuration */
13217 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
13218 		/* Only valid for MCL */
13219 		pdev = soc->pdev_list[0];
13220 
13221 	if (!soc->rxdma2sw_rings_not_supported) {
13222 		for (i = 0;
13223 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
13224 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
13225 								 pdev->pdev_id);
13226 			struct dp_srng *srng =
13227 				&soc->rxdma_err_dst_ring[lmac_id];
13228 
13229 			if (srng->base_vaddr_unaligned)
13230 				continue;
13231 
13232 			if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
13233 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
13234 					    soc);
13235 				goto fail1;
13236 			}
13237 		}
13238 	}
13239 
13240 	return QDF_STATUS_SUCCESS;
13241 fail1:
13242 	dp_pdev_srng_free(pdev);
13243 	return QDF_STATUS_E_NOMEM;
13244 }
13245 
13246 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
13247 /**
13248  * dp_init_link_peer_stats_enabled() - Init link_peer_stats as per config
13249  * @pdev: DP pdev
13250  *
13251  * Return: None
13252  */
13253 static inline void
13254 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
13255 {
13256 	pdev->link_peer_stats = wlan_cfg_is_peer_link_stats_enabled(
13257 						pdev->soc->wlan_cfg_ctx);
13258 }
13259 #else
13260 static inline void
13261 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
13262 {
13263 }
13264 #endif
13265 
13266 static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
13267 				      HTC_HANDLE htc_handle,
13268 				      qdf_device_t qdf_osdev,
13269 				      uint8_t pdev_id)
13270 {
13271 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
13272 	int nss_cfg;
13273 	void *sojourn_buf;
13274 
13275 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
13276 	struct dp_pdev *pdev = soc->pdev_list[pdev_id];
13277 
13278 	soc_cfg_ctx = soc->wlan_cfg_ctx;
13279 	pdev->soc = soc;
13280 	pdev->pdev_id = pdev_id;
13281 
13282 	/*
13283 	 * Variable to prevent double pdev deinitialization during
13284 	 * radio detach execution .i.e. in the absence of any vdev.
13285 	 */
13286 	pdev->pdev_deinit = 0;
13287 
13288 	if (dp_wdi_event_attach(pdev)) {
13289 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
13290 			  "dp_wdi_evet_attach failed");
13291 		goto fail0;
13292 	}
13293 
13294 	if (dp_pdev_srng_init(pdev)) {
13295 		dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
13296 		goto fail1;
13297 	}
13298 
13299 	/* Initialize descriptors in TCL Rings used by IPA */
13300 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
13301 		hal_tx_init_data_ring(soc->hal_soc,
13302 				      soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
13303 		dp_ipa_hal_tx_init_alt_data_ring(soc);
13304 	}
13305 
13306 	/*
13307 	 * Initialize command/credit ring descriptor
13308 	 * Command/CREDIT ring also used for sending DATA cmds
13309 	 */
13310 	dp_tx_init_cmd_credit_ring(soc);
13311 
13312 	dp_tx_pdev_init(pdev);
13313 
13314 	/*
13315 	 * set nss pdev config based on soc config
13316 	 */
13317 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
13318 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
13319 					 (nss_cfg & (1 << pdev_id)));
13320 	pdev->target_pdev_id =
13321 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
13322 
13323 	if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
13324 	    pdev->lmac_id == PHYB_2G_LMAC_ID) {
13325 		pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
13326 	}
13327 
13328 	/* Reset the cpu ring map if radio is NSS offloaded */
13329 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
13330 		dp_soc_reset_cpu_ring_map(soc);
13331 		dp_soc_reset_intr_mask(soc);
13332 	}
13333 
13334 	/* Reset the cpu ring map if radio is NSS offloaded */
13335 	dp_soc_reset_ipa_vlan_intr_mask(soc);
13336 
13337 	TAILQ_INIT(&pdev->vdev_list);
13338 	qdf_spinlock_create(&pdev->vdev_list_lock);
13339 	pdev->vdev_count = 0;
13340 	pdev->is_lro_hash_configured = 0;
13341 
13342 	qdf_spinlock_create(&pdev->tx_mutex);
13343 	pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
13344 	pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
13345 	pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
13346 
13347 	DP_STATS_INIT(pdev);
13348 
13349 	dp_local_peer_id_pool_init(pdev);
13350 
13351 	dp_dscp_tid_map_setup(pdev);
13352 	dp_pcp_tid_map_setup(pdev);
13353 
13354 	/* set the reo destination during initialization */
13355 	dp_pdev_set_default_reo(pdev);
13356 
13357 	qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
13358 
13359 	pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
13360 			      sizeof(struct cdp_tx_sojourn_stats), 0, 4,
13361 			      TRUE);
13362 
13363 	if (!pdev->sojourn_buf) {
13364 		dp_init_err("%pK: Failed to allocate sojourn buf", soc);
13365 		goto fail2;
13366 	}
13367 	sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
13368 	qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
13369 
13370 	qdf_event_create(&pdev->fw_peer_stats_event);
13371 	qdf_event_create(&pdev->fw_stats_event);
13372 	qdf_event_create(&pdev->fw_obss_stats_event);
13373 
13374 	pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
13375 	pdev->num_tx_spl_allowed =
13376 		wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
13377 	pdev->num_reg_tx_allowed =
13378 		pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
13379 	if (dp_rxdma_ring_setup(soc, pdev)) {
13380 		dp_init_err("%pK: RXDMA ring config failed", soc);
13381 		goto fail3;
13382 	}
13383 
13384 	if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
13385 		goto fail3;
13386 
13387 	if (dp_ipa_ring_resource_setup(soc, pdev))
13388 		goto fail4;
13389 
13390 	if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
13391 		dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
13392 		goto fail4;
13393 	}
13394 
13395 	if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
13396 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
13397 			  FL("dp_pdev_bkp_stats_attach failed"));
13398 		goto fail5;
13399 	}
13400 
13401 	if (dp_monitor_pdev_init(pdev)) {
13402 		dp_init_err("%pK: dp_monitor_pdev_init failed", soc);
13403 		goto fail6;
13404 	}
13405 
13406 	/* initialize sw rx descriptors */
13407 	dp_rx_pdev_desc_pool_init(pdev);
13408 	/* allocate buffers and replenish the RxDMA ring */
13409 	dp_rx_pdev_buffers_alloc(pdev);
13410 
13411 	dp_init_tso_stats(pdev);
13412 	dp_init_link_peer_stats_enabled(pdev);
13413 
13414 	pdev->rx_fast_flag = false;
13415 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
13416 		qdf_dma_mem_stats_read(),
13417 		qdf_heap_mem_stats_read(),
13418 		qdf_skb_total_mem_stats_read());
13419 
13420 	return QDF_STATUS_SUCCESS;
13421 fail6:
13422 	dp_pdev_bkp_stats_detach(pdev);
13423 fail5:
13424 	dp_ipa_uc_detach(soc, pdev);
13425 fail4:
13426 	dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
13427 fail3:
13428 	dp_rxdma_ring_cleanup(soc, pdev);
13429 	qdf_nbuf_free(pdev->sojourn_buf);
13430 fail2:
13431 	qdf_spinlock_destroy(&pdev->tx_mutex);
13432 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
13433 	dp_pdev_srng_deinit(pdev);
13434 fail1:
13435 	dp_wdi_event_detach(pdev);
13436 fail0:
13437 	return QDF_STATUS_E_FAILURE;
13438 }
13439 
13440 /**
13441  * dp_pdev_init_wifi3() - Init txrx pdev
13442  * @txrx_soc:
13443  * @htc_handle: HTC handle for host-target interface
13444  * @qdf_osdev: QDF OS device
13445  * @pdev_id: pdev Id
13446  *
13447  * Return: QDF_STATUS
13448  */
13449 static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
13450 				     HTC_HANDLE htc_handle,
13451 				     qdf_device_t qdf_osdev,
13452 				     uint8_t pdev_id)
13453 {
13454 	return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
13455 }
13456 
13457 #ifdef FEATURE_DIRECT_LINK
13458 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
13459 						 uint8_t pdev_id)
13460 {
13461 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13462 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13463 
13464 	if (!pdev) {
13465 		dp_err("DP pdev is NULL");
13466 		return NULL;
13467 	}
13468 
13469 	if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
13470 			  RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
13471 		dp_err("SRNG alloc failed for rx_refill_buf_ring4");
13472 		return NULL;
13473 	}
13474 
13475 	if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
13476 			 RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
13477 		dp_err("SRNG init failed for rx_refill_buf_ring4");
13478 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
13479 		return NULL;
13480 	}
13481 
13482 	if (htt_srng_setup(soc->htt_handle, pdev_id,
13483 			   pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
13484 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
13485 			       DIRECT_LINK_REFILL_RING_IDX);
13486 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
13487 		return NULL;
13488 	}
13489 
13490 	return &pdev->rx_refill_buf_ring4;
13491 }
13492 
13493 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
13494 					uint8_t pdev_id)
13495 {
13496 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13497 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13498 
13499 	if (!pdev) {
13500 		dp_err("DP pdev is NULL");
13501 		return;
13502 	}
13503 
13504 	dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
13505 	dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
13506 }
13507 #endif
13508 
13509 #ifdef QCA_MULTIPASS_SUPPORT
13510 QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
13511 				uint16_t vlan_id, uint16_t group_key)
13512 {
13513 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13514 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
13515 						     DP_MOD_ID_TX_MULTIPASS);
13516 	QDF_STATUS status;
13517 
13518 	dp_info("Try: vdev_id %d, vdev %pK, multipass_en %d, vlan_id %d, group_key %d",
13519 		vdev_id, vdev, vdev ? vdev->multipass_en : 0, vlan_id,
13520 		group_key);
13521 	if (!vdev || !vdev->multipass_en) {
13522 		status = QDF_STATUS_E_INVAL;
13523 		goto fail;
13524 	}
13525 
13526 	if (!vdev->iv_vlan_map) {
13527 		uint16_t vlan_map_size = (sizeof(uint16_t)) * DP_MAX_VLAN_IDS;
13528 
13529 		vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
13530 		if (!vdev->iv_vlan_map) {
13531 			QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
13532 			status = QDF_STATUS_E_NOMEM;
13533 			goto fail;
13534 		}
13535 
13536 		/*
13537 		 * 0 is invalid group key.
13538 		 * Initilalize array with invalid group keys.
13539 		 */
13540 		qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
13541 	}
13542 
13543 	if (vlan_id >= DP_MAX_VLAN_IDS) {
13544 		status = QDF_STATUS_E_INVAL;
13545 		goto fail;
13546 	}
13547 
13548 	dp_info("Successful setting: vdev_id %d, vlan_id %d, group_key %d",
13549 		vdev_id, vlan_id, group_key);
13550 	vdev->iv_vlan_map[vlan_id] = group_key;
13551 	status = QDF_STATUS_SUCCESS;
13552 fail:
13553 	if (vdev)
13554 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
13555 	return status;
13556 }
13557 
13558 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
13559 {
13560 	struct vlan_ethhdr veth_hdr;
13561 	struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
13562 
13563 	/*
13564 	 * Extract VLAN header of 4 bytes:
13565 	 * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4],
13566 	 *		   EtherType[2], Payload}
13567 	 * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02
13568 	 *		    08 00 45 00 00...
13569 	 * After Removal  : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00
13570 	 *		    00...
13571 	 */
13572 	qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
13573 	qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
13574 	veh = (struct vlan_ethhdr *)nbuf->data;
13575 	qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
13576 }
13577 
13578 void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
13579 {
13580 	struct dp_txrx_peer *txrx_peer = NULL;
13581 
13582 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
13583 	TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
13584 		qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
13585 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
13586 
13587 	if (vdev->iv_vlan_map) {
13588 		qdf_mem_free(vdev->iv_vlan_map);
13589 		vdev->iv_vlan_map = NULL;
13590 	}
13591 
13592 	qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
13593 }
13594 
13595 void dp_peer_multipass_list_init(struct dp_vdev *vdev)
13596 {
13597 	/*
13598 	 * vdev->iv_vlan_map is allocated when the first configuration command
13599 	 * is issued to avoid unnecessary allocation for regular mode VAP.
13600 	 */
13601 	TAILQ_INIT(&vdev->mpass_peer_list);
13602 	qdf_spinlock_create(&vdev->mpass_peer_mutex);
13603 }
13604 #endif /* QCA_MULTIPASS_SUPPORT */
13605