xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_main.c (revision 476e23f5cbed863924829b363535cdb9234c2892)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_ipa_obj_mgmt_api.h>
21 #include <qdf_types.h>
22 #include <qdf_lock.h>
23 #include <qdf_net_types.h>
24 #include <qdf_lro.h>
25 #include <qdf_module.h>
26 #include <hal_hw_headers.h>
27 #include <hal_api.h>
28 #include <hif.h>
29 #include <htt.h>
30 #include <wdi_event.h>
31 #include <queue.h>
32 #include "dp_types.h"
33 #include "dp_rings.h"
34 #include "dp_internal.h"
35 #include "dp_tx.h"
36 #include "dp_tx_desc.h"
37 #include "dp_rx.h"
38 #ifdef DP_RATETABLE_SUPPORT
39 #include "dp_ratetable.h"
40 #endif
41 #include <cdp_txrx_handle.h>
42 #include <wlan_cfg.h>
43 #include <wlan_utility.h>
44 #include "cdp_txrx_cmn_struct.h"
45 #include "cdp_txrx_stats_struct.h"
46 #include "cdp_txrx_cmn_reg.h"
47 #include <qdf_util.h>
48 #include "dp_peer.h"
49 #include "htt_stats.h"
50 #include "dp_htt.h"
51 #ifdef WLAN_SUPPORT_RX_FISA
52 #include <wlan_dp_fisa_rx.h>
53 #endif
54 #include "htt_ppdu_stats.h"
55 #include "qdf_mem.h"   /* qdf_mem_malloc,free */
56 #include "cfg_ucfg_api.h"
57 #include <wlan_module_ids.h>
58 #ifdef QCA_MULTIPASS_SUPPORT
59 #include <enet.h>
60 #endif
61 
62 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
63 #include "cdp_txrx_flow_ctrl_v2.h"
64 #else
65 
66 static inline void
67 cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
68 {
69 	return;
70 }
71 #endif
72 #ifdef WIFI_MONITOR_SUPPORT
73 #include <dp_mon.h>
74 #endif
75 #include "dp_ipa.h"
76 #ifdef FEATURE_WDS
77 #include "dp_txrx_wds.h"
78 #endif
79 #ifdef WLAN_SUPPORT_MSCS
80 #include "dp_mscs.h"
81 #endif
82 #ifdef WLAN_SUPPORT_MESH_LATENCY
83 #include "dp_mesh_latency.h"
84 #endif
85 #ifdef WLAN_SUPPORT_SCS
86 #include "dp_scs.h"
87 #endif
88 #ifdef ATH_SUPPORT_IQUE
89 #include "dp_txrx_me.h"
90 #endif
91 #if defined(DP_CON_MON)
92 #ifndef REMOVE_PKT_LOG
93 #include <pktlog_ac_api.h>
94 #include <pktlog_ac.h>
95 #endif
96 #endif
97 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
98 #include <wlan_dp_swlm.h>
99 #endif
100 #ifdef WLAN_DP_PROFILE_SUPPORT
101 #include <wlan_dp_main.h>
102 #endif
103 #ifdef CONFIG_SAWF_DEF_QUEUES
104 #include "dp_sawf.h"
105 #endif
106 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
107 #include "dp_rx_tag.h"
108 #endif
109 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
110 #include <target_if_dp.h>
111 #endif
112 #include "qdf_ssr_driver_dump.h"
113 
114 #ifdef WLAN_SUPPORT_DPDK
115 #include <dp_dpdk.h>
116 #endif
117 
118 #ifdef QCA_DP_ENABLE_TX_COMP_RING4
119 #define TXCOMP_RING4_NUM 3
120 #else
121 #define TXCOMP_RING4_NUM WBM2SW_TXCOMP_RING4_NUM
122 #endif
123 
124 #if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
125 #define SET_PEER_REF_CNT_ONE(_peer) \
126 	qdf_atomic_set(&(_peer)->ref_cnt, 1)
127 #else
128 #define SET_PEER_REF_CNT_ONE(_peer)
129 #endif
130 
131 #ifdef WLAN_SYSFS_DP_STATS
132 /* sysfs event wait time for firmware stat request unit milliseconds */
133 #define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
134 #endif
135 
136 #ifdef QCA_DP_TX_FW_METADATA_V2
137 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
138 		HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
139 #else
140 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
141 		HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
142 #endif
143 #define MLD_MODE_INVALID 0xFF
144 
145 QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
146 			MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
147 
148 QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
149 			MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
150 
151 void dp_configure_arch_ops(struct dp_soc *soc);
152 qdf_size_t dp_get_soc_context_size(uint16_t device_id);
153 
154 /*
155  * The max size of cdp_peer_stats_param_t is limited to 16 bytes.
156  * If the buffer size is exceeding this size limit,
157  * dp_txrx_get_peer_stats is to be used instead.
158  */
159 QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
160 			(sizeof(cdp_peer_stats_param_t) <= 16));
161 
162 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
163 /*
164  * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
165  * also should be updated accordingly
166  */
167 QDF_COMPILE_TIME_ASSERT(num_intr_grps,
168 			HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
169 
170 /*
171  * HIF_EVENT_HIST_MAX should always be power of 2
172  */
173 QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
174 			(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
175 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
176 
177 /*
178  * If WLAN_CFG_INT_NUM_CONTEXTS is changed,
179  * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
180  */
181 QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
182 			WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
183 			WLAN_CFG_INT_NUM_CONTEXTS);
184 
185 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc);
186 static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
187 static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
188 
189 static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
190 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
191 static void dp_pdev_srng_free(struct dp_pdev *pdev);
192 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
193 
194 static inline
195 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
196 				struct cdp_pdev_attach_params *params);
197 
198 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
199 
200 static QDF_STATUS
201 dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
202 		   HTC_HANDLE htc_handle,
203 		   qdf_device_t qdf_osdev,
204 		   uint8_t pdev_id);
205 
206 static QDF_STATUS
207 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
208 
209 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
210 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
211 
212 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
213 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
214 				       uint8_t pdev_id,
215 				       int force);
216 static struct dp_soc *
217 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
218 	      struct cdp_soc_attach_params *params);
219 static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
220 					      uint8_t vdev_id,
221 					      uint8_t *peer_mac_addr,
222 					      enum cdp_peer_type peer_type);
223 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
224 				       uint8_t vdev_id,
225 				       uint8_t *peer_mac, uint32_t bitmap,
226 				       enum cdp_peer_type peer_type);
227 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
228 				bool unmap_only,
229 				bool mlo_peers_only);
230 #ifdef ENABLE_VERBOSE_DEBUG
231 bool is_dp_verbose_debug_enabled;
232 #endif
233 
234 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
235 static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
236 static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
237 			   bool enable);
238 static inline void
239 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
240 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats);
241 static inline void
242 dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
243 #endif
244 
245 #ifdef DP_UMAC_HW_RESET_SUPPORT
246 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
247 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
248 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
249 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
250 #endif
251 
252 #define MON_VDEV_TIMER_INIT 0x1
253 #define MON_VDEV_TIMER_RUNNING 0x2
254 
255 #define DP_MCS_LENGTH (6*MAX_MCS)
256 
257 #define DP_CURR_FW_STATS_AVAIL 19
258 #define DP_HTT_DBG_EXT_STATS_MAX 256
259 #define DP_MAX_SLEEP_TIME 100
260 #ifndef QCA_WIFI_3_0_EMU
261 #define SUSPEND_DRAIN_WAIT 500
262 #else
263 #define SUSPEND_DRAIN_WAIT 3000
264 #endif
265 
266 #ifdef IPA_OFFLOAD
267 /* Exclude IPA rings from the interrupt context */
268 #define TX_RING_MASK_VAL	0xb
269 #define RX_RING_MASK_VAL	0x7
270 #else
271 #define TX_RING_MASK_VAL	0xF
272 #define RX_RING_MASK_VAL	0xF
273 #endif
274 
275 #define STR_MAXLEN	64
276 
277 #define RNG_ERR		"SRNG setup failed for"
278 
279 /**
280  * enum dp_stats_type - Select the type of statistics
281  * @STATS_FW: Firmware-based statistic
282  * @STATS_HOST: Host-based statistic
283  * @STATS_TYPE_MAX: maximum enumeration
284  */
285 enum dp_stats_type {
286 	STATS_FW = 0,
287 	STATS_HOST = 1,
288 	STATS_TYPE_MAX = 2,
289 };
290 
291 /**
292  * enum dp_fw_stats - General Firmware statistics options
293  * @TXRX_FW_STATS_INVALID: statistic is not available
294  */
295 enum dp_fw_stats {
296 	TXRX_FW_STATS_INVALID	= -1,
297 };
298 
299 /*
300  * dp_stats_mapping_table - Firmware and Host statistics
301  * currently supported
302  */
303 #ifndef WLAN_SOFTUMAC_SUPPORT
304 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
305 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
306 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
307 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
308 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
309 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
310 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
311 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
312 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
313 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
314 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
315 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
316 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
317 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
318 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
319 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
320 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
321 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
322 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
323 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
324 	/* Last ENUM for HTT FW STATS */
325 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
326 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
327 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
328 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
329 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
330 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
331 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
332 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
333 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
334 	{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
335 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
336 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
337 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
338 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
339 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
340 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
341 	{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
342 	{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
343 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
344 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
345 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID},
346 	{TXRX_FW_STATS_INVALID, TXRX_PEER_STATS},
347 };
348 #else
349 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
350 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
351 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
352 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
353 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
354 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
355 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
356 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
357 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
358 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
359 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
360 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
361 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
362 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
363 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
364 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
365 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
366 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
367 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
368 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
369 	/* Last ENUM for HTT FW STATS */
370 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
371 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
372 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
373 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
374 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
375 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
376 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
377 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
378 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
379 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
380 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
381 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
382 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
383 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
384 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
385 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
386 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
387 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
388 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
389 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
390 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
391 };
392 #endif
393 
394 /* MCL specific functions */
395 #if defined(DP_CON_MON)
396 
397 #ifdef IPA_OFFLOAD
398 /**
399  * dp_get_num_rx_contexts() - get number of RX contexts
400  * @soc_hdl: cdp opaque soc handle
401  *
402  * Return: number of RX contexts
403  */
404 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
405 {
406 	int num_rx_contexts;
407 	uint32_t reo_ring_map;
408 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
409 
410 	reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
411 
412 	switch (soc->arch_id) {
413 	case CDP_ARCH_TYPE_BE:
414 		/* 2 REO rings are used for IPA */
415 		reo_ring_map &=  ~(BIT(3) | BIT(7));
416 
417 		break;
418 	case CDP_ARCH_TYPE_LI:
419 		/* 1 REO ring is used for IPA */
420 		reo_ring_map &=  ~BIT(3);
421 		break;
422 	default:
423 		dp_err("unknown arch_id 0x%x", soc->arch_id);
424 		QDF_BUG(0);
425 	}
426 	/*
427 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
428 	 * in future
429 	 */
430 	num_rx_contexts = qdf_get_hweight32(reo_ring_map);
431 
432 	return num_rx_contexts;
433 }
434 #else
435 #ifdef WLAN_SOFTUMAC_SUPPORT
436 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
437 {
438 	uint32_t rx_rings_config;
439 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
440 
441 	rx_rings_config = wlan_cfg_get_rx_rings_mapping(soc->wlan_cfg_ctx);
442 	/*
443 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
444 	 * in future
445 	 */
446 	return qdf_get_hweight32(rx_rings_config);
447 }
448 #else
449 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
450 {
451 	int num_rx_contexts;
452 	uint32_t reo_config;
453 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
454 
455 	reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
456 	/*
457 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
458 	 * in future
459 	 */
460 	num_rx_contexts = qdf_get_hweight32(reo_config);
461 
462 	return num_rx_contexts;
463 }
464 #endif /* WLAN_SOFTUMAC_SUPPORT */
465 #endif
466 
467 #endif
468 
469 #ifdef FEATURE_MEC
470 void dp_peer_mec_flush_entries(struct dp_soc *soc)
471 {
472 	unsigned int index;
473 	struct dp_mec_entry *mecentry, *mecentry_next;
474 
475 	TAILQ_HEAD(, dp_mec_entry) free_list;
476 	TAILQ_INIT(&free_list);
477 
478 	if (!soc->mec_hash.mask)
479 		return;
480 
481 	if (!soc->mec_hash.bins)
482 		return;
483 
484 	if (!qdf_atomic_read(&soc->mec_cnt))
485 		return;
486 
487 	qdf_spin_lock_bh(&soc->mec_lock);
488 	for (index = 0; index <= soc->mec_hash.mask; index++) {
489 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
490 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
491 					   hash_list_elem, mecentry_next) {
492 			    dp_peer_mec_detach_entry(soc, mecentry, &free_list);
493 			}
494 		}
495 	}
496 	qdf_spin_unlock_bh(&soc->mec_lock);
497 
498 	dp_peer_mec_free_list(soc, &free_list);
499 }
500 
501 /**
502  * dp_print_mec_stats() - Dump MEC entries in table
503  * @soc: Datapath soc handle
504  *
505  * Return: none
506  */
507 static void dp_print_mec_stats(struct dp_soc *soc)
508 {
509 	int i;
510 	uint32_t index;
511 	struct dp_mec_entry *mecentry = NULL, *mec_list;
512 	uint32_t num_entries = 0;
513 
514 	DP_PRINT_STATS("MEC Stats:");
515 	DP_PRINT_STATS("   Entries Added   = %d", soc->stats.mec.added);
516 	DP_PRINT_STATS("   Entries Deleted = %d", soc->stats.mec.deleted);
517 
518 	if (!qdf_atomic_read(&soc->mec_cnt))
519 		return;
520 
521 	mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
522 	if (!mec_list) {
523 		dp_peer_warn("%pK: failed to allocate mec_list", soc);
524 		return;
525 	}
526 
527 	DP_PRINT_STATS("MEC Table:");
528 	for (index = 0; index <= soc->mec_hash.mask; index++) {
529 		qdf_spin_lock_bh(&soc->mec_lock);
530 		if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
531 			qdf_spin_unlock_bh(&soc->mec_lock);
532 			continue;
533 		}
534 
535 		TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
536 			      hash_list_elem) {
537 			qdf_mem_copy(&mec_list[num_entries], mecentry,
538 				     sizeof(*mecentry));
539 			num_entries++;
540 		}
541 		qdf_spin_unlock_bh(&soc->mec_lock);
542 	}
543 
544 	if (!num_entries) {
545 		qdf_mem_free(mec_list);
546 		return;
547 	}
548 
549 	for (i = 0; i < num_entries; i++) {
550 		DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
551 			       " is_active = %d pdev_id = %d vdev_id = %d",
552 			       i,
553 			       QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
554 			       mec_list[i].is_active,
555 			       mec_list[i].pdev_id,
556 			       mec_list[i].vdev_id);
557 	}
558 	qdf_mem_free(mec_list);
559 }
560 #else
561 static void dp_print_mec_stats(struct dp_soc *soc)
562 {
563 }
564 #endif
565 
566 static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
567 				 uint8_t vdev_id,
568 				 uint8_t *peer_mac,
569 				 uint8_t *mac_addr,
570 				 enum cdp_txrx_ast_entry_type type,
571 				 uint32_t flags)
572 {
573 	int ret = -1;
574 	QDF_STATUS status = QDF_STATUS_SUCCESS;
575 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
576 						       peer_mac, 0, vdev_id,
577 						       DP_MOD_ID_CDP);
578 
579 	if (!peer) {
580 		dp_peer_debug("Peer is NULL!");
581 		return ret;
582 	}
583 
584 	status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
585 				 peer,
586 				 mac_addr,
587 				 type,
588 				 flags);
589 	if ((status == QDF_STATUS_SUCCESS) ||
590 	    (status == QDF_STATUS_E_ALREADY) ||
591 	    (status == QDF_STATUS_E_AGAIN))
592 		ret = 0;
593 
594 	dp_hmwds_ast_add_notify(peer, mac_addr,
595 				type, status, false);
596 
597 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
598 
599 	return ret;
600 }
601 
602 static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
603 						uint8_t vdev_id,
604 						uint8_t *peer_mac,
605 						uint8_t *wds_macaddr,
606 						uint32_t flags)
607 {
608 	int status = -1;
609 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
610 	struct dp_ast_entry  *ast_entry = NULL;
611 	struct dp_peer *peer;
612 
613 	if (soc->ast_offload_support)
614 		return status;
615 
616 	peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
617 				      peer_mac, 0, vdev_id,
618 				      DP_MOD_ID_CDP);
619 
620 	if (!peer) {
621 		dp_peer_debug("Peer is NULL!");
622 		return status;
623 	}
624 
625 	qdf_spin_lock_bh(&soc->ast_lock);
626 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
627 						    peer->vdev->pdev->pdev_id);
628 
629 	if (ast_entry) {
630 		status = dp_peer_update_ast(soc,
631 					    peer,
632 					    ast_entry, flags);
633 	}
634 	qdf_spin_unlock_bh(&soc->ast_lock);
635 
636 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
637 
638 	return status;
639 }
640 
641 /**
642  * dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
643  * @soc:		Datapath SOC handle
644  * @peer:		DP peer
645  * @arg:		callback argument
646  *
647  * Return: None
648  */
649 static void
650 dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
651 {
652 	struct dp_ast_entry *ast_entry = NULL;
653 	struct dp_ast_entry *tmp_ast_entry;
654 
655 	DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
656 		if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
657 		    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
658 			dp_peer_del_ast(soc, ast_entry);
659 	}
660 }
661 
662 /**
663  * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
664  * @soc_hdl:		Datapath SOC handle
665  * @wds_macaddr:	WDS entry MAC Address
666  * @peer_mac_addr:	WDS entry MAC Address
667  * @vdev_id:		id of vdev handle
668  *
669  * Return: QDF_STATUS
670  */
671 static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
672 					 uint8_t *wds_macaddr,
673 					 uint8_t *peer_mac_addr,
674 					 uint8_t vdev_id)
675 {
676 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
677 	struct dp_ast_entry *ast_entry = NULL;
678 	struct dp_peer *peer;
679 	struct dp_pdev *pdev;
680 	struct dp_vdev *vdev;
681 
682 	if (soc->ast_offload_support)
683 		return QDF_STATUS_E_FAILURE;
684 
685 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
686 
687 	if (!vdev)
688 		return QDF_STATUS_E_FAILURE;
689 
690 	pdev = vdev->pdev;
691 
692 	if (peer_mac_addr) {
693 		peer = dp_peer_find_hash_find(soc, peer_mac_addr,
694 					      0, vdev->vdev_id,
695 					      DP_MOD_ID_CDP);
696 		if (!peer) {
697 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
698 			return QDF_STATUS_E_FAILURE;
699 		}
700 
701 		qdf_spin_lock_bh(&soc->ast_lock);
702 		dp_peer_reset_ast_entries(soc, peer, NULL);
703 		qdf_spin_unlock_bh(&soc->ast_lock);
704 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
705 	} else if (wds_macaddr) {
706 		qdf_spin_lock_bh(&soc->ast_lock);
707 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
708 							    pdev->pdev_id);
709 
710 		if (ast_entry) {
711 			if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
712 			    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
713 				dp_peer_del_ast(soc, ast_entry);
714 		}
715 		qdf_spin_unlock_bh(&soc->ast_lock);
716 	}
717 
718 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
719 	return QDF_STATUS_SUCCESS;
720 }
721 
722 /**
723  * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
724  * @soc_hdl:		Datapath SOC handle
725  * @vdev_id:		id of vdev object
726  *
727  * Return: QDF_STATUS
728  */
729 static QDF_STATUS
730 dp_wds_reset_ast_table_wifi3(struct cdp_soc_t  *soc_hdl,
731 			     uint8_t vdev_id)
732 {
733 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
734 
735 	if (soc->ast_offload_support)
736 		return QDF_STATUS_SUCCESS;
737 
738 	qdf_spin_lock_bh(&soc->ast_lock);
739 
740 	dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
741 			    DP_MOD_ID_CDP);
742 	qdf_spin_unlock_bh(&soc->ast_lock);
743 
744 	return QDF_STATUS_SUCCESS;
745 }
746 
747 /**
748  * dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
749  * @soc:		Datapath SOC
750  * @peer:		Datapath peer
751  * @arg:		arg to callback
752  *
753  * Return: None
754  */
755 static void
756 dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
757 {
758 	struct dp_ast_entry *ase = NULL;
759 	struct dp_ast_entry *temp_ase;
760 
761 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
762 		if ((ase->type ==
763 			CDP_TXRX_AST_TYPE_STATIC) ||
764 			(ase->type ==
765 			 CDP_TXRX_AST_TYPE_SELF) ||
766 			(ase->type ==
767 			 CDP_TXRX_AST_TYPE_STA_BSS))
768 			continue;
769 		dp_peer_del_ast(soc, ase);
770 	}
771 }
772 
773 /**
774  * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
775  * @soc_hdl:		Datapath SOC handle
776  *
777  * Return: None
778  */
779 static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t  *soc_hdl)
780 {
781 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
782 
783 	qdf_spin_lock_bh(&soc->ast_lock);
784 
785 	dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
786 			    DP_MOD_ID_CDP);
787 
788 	qdf_spin_unlock_bh(&soc->ast_lock);
789 	dp_peer_mec_flush_entries(soc);
790 }
791 
792 #if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
793 /**
794  * dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
795  * @soc: Datapath SOC
796  * @peer: Datapath peer
797  *
798  * Return: None
799  */
800 static void
801 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
802 {
803 	struct dp_ast_entry *ase = NULL;
804 	struct dp_ast_entry *temp_ase;
805 
806 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
807 		if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
808 			soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
809 								      ase->mac_addr.raw,
810 								      ase->vdev_id);
811 		}
812 	}
813 }
814 #elif defined(FEATURE_AST)
815 static void
816 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
817 {
818 }
819 #endif
820 
821 /**
822  * dp_peer_check_ast_offload() - check ast offload support is enable or not
823  * @soc: soc handle
824  *
825  * Return: false in case of IPA and true/false in IPQ case
826  *
827  */
828 #if defined(IPA_OFFLOAD) && defined(QCA_WIFI_QCN9224)
829 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
830 {
831 	return false;
832 }
833 #else
834 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
835 {
836 	if (soc->ast_offload_support)
837 		return true;
838 
839 	return false;
840 }
841 #endif
842 
843 /**
844  * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
845  *                                       and return ast entry information
846  *                                       of first ast entry found in the
847  *                                       table with given mac address
848  * @soc_hdl: data path soc handle
849  * @ast_mac_addr: AST entry mac address
850  * @ast_entry_info: ast entry information
851  *
852  * Return: true if ast entry found with ast_mac_addr
853  *          false if ast entry not found
854  */
855 static bool dp_peer_get_ast_info_by_soc_wifi3
856 	(struct cdp_soc_t *soc_hdl,
857 	 uint8_t *ast_mac_addr,
858 	 struct cdp_ast_entry_info *ast_entry_info)
859 {
860 	struct dp_ast_entry *ast_entry = NULL;
861 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
862 	struct dp_peer *peer = NULL;
863 
864 	if (dp_peer_check_ast_offload(soc))
865 		return false;
866 
867 	qdf_spin_lock_bh(&soc->ast_lock);
868 
869 	ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
870 	if ((!ast_entry) ||
871 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
872 		qdf_spin_unlock_bh(&soc->ast_lock);
873 		return false;
874 	}
875 
876 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
877 				     DP_MOD_ID_AST);
878 	if (!peer) {
879 		qdf_spin_unlock_bh(&soc->ast_lock);
880 		return false;
881 	}
882 
883 	ast_entry_info->type = ast_entry->type;
884 	ast_entry_info->pdev_id = ast_entry->pdev_id;
885 	ast_entry_info->vdev_id = ast_entry->vdev_id;
886 	ast_entry_info->peer_id = ast_entry->peer_id;
887 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
888 		     &peer->mac_addr.raw[0],
889 		     QDF_MAC_ADDR_SIZE);
890 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
891 	qdf_spin_unlock_bh(&soc->ast_lock);
892 	return true;
893 }
894 
895 /**
896  * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
897  *                                          and return ast entry information
898  *                                          if mac address and pdev_id matches
899  * @soc_hdl: data path soc handle
900  * @ast_mac_addr: AST entry mac address
901  * @pdev_id: pdev_id
902  * @ast_entry_info: ast entry information
903  *
904  * Return: true if ast entry found with ast_mac_addr
905  *          false if ast entry not found
906  */
907 static bool dp_peer_get_ast_info_by_pdevid_wifi3
908 		(struct cdp_soc_t *soc_hdl,
909 		 uint8_t *ast_mac_addr,
910 		 uint8_t pdev_id,
911 		 struct cdp_ast_entry_info *ast_entry_info)
912 {
913 	struct dp_ast_entry *ast_entry;
914 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
915 	struct dp_peer *peer = NULL;
916 
917 	if (soc->ast_offload_support)
918 		return false;
919 
920 	qdf_spin_lock_bh(&soc->ast_lock);
921 
922 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
923 						    pdev_id);
924 
925 	if ((!ast_entry) ||
926 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
927 		qdf_spin_unlock_bh(&soc->ast_lock);
928 		return false;
929 	}
930 
931 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
932 				     DP_MOD_ID_AST);
933 	if (!peer) {
934 		qdf_spin_unlock_bh(&soc->ast_lock);
935 		return false;
936 	}
937 
938 	ast_entry_info->type = ast_entry->type;
939 	ast_entry_info->pdev_id = ast_entry->pdev_id;
940 	ast_entry_info->vdev_id = ast_entry->vdev_id;
941 	ast_entry_info->peer_id = ast_entry->peer_id;
942 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
943 		     &peer->mac_addr.raw[0],
944 		     QDF_MAC_ADDR_SIZE);
945 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
946 	qdf_spin_unlock_bh(&soc->ast_lock);
947 	return true;
948 }
949 
950 /**
951  * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
952  *                            with given mac address
953  * @soc_handle: data path soc handle
954  * @mac_addr: AST entry mac address
955  * @callback: callback function to called on ast delete response from FW
956  * @cookie: argument to be passed to callback
957  *
958  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
959  *          is sent
960  *          QDF_STATUS_E_INVAL false if ast entry not found
961  */
962 static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
963 					       uint8_t *mac_addr,
964 					       txrx_ast_free_cb callback,
965 					       void *cookie)
966 
967 {
968 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
969 	struct dp_ast_entry *ast_entry = NULL;
970 	txrx_ast_free_cb cb = NULL;
971 	void *arg = NULL;
972 
973 	if (soc->ast_offload_support)
974 		return -QDF_STATUS_E_INVAL;
975 
976 	qdf_spin_lock_bh(&soc->ast_lock);
977 	ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
978 	if (!ast_entry) {
979 		qdf_spin_unlock_bh(&soc->ast_lock);
980 		return -QDF_STATUS_E_INVAL;
981 	}
982 
983 	if (ast_entry->callback) {
984 		cb = ast_entry->callback;
985 		arg = ast_entry->cookie;
986 	}
987 
988 	ast_entry->callback = callback;
989 	ast_entry->cookie = cookie;
990 
991 	/*
992 	 * if delete_in_progress is set AST delete is sent to target
993 	 * and host is waiting for response should not send delete
994 	 * again
995 	 */
996 	if (!ast_entry->delete_in_progress)
997 		dp_peer_del_ast(soc, ast_entry);
998 
999 	qdf_spin_unlock_bh(&soc->ast_lock);
1000 	if (cb) {
1001 		cb(soc->ctrl_psoc,
1002 		   dp_soc_to_cdp_soc(soc),
1003 		   arg,
1004 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1005 	}
1006 	return QDF_STATUS_SUCCESS;
1007 }
1008 
1009 /**
1010  * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
1011  *                                   table if mac address and pdev_id matches
1012  * @soc_handle: data path soc handle
1013  * @mac_addr: AST entry mac address
1014  * @pdev_id: pdev id
1015  * @callback: callback function to called on ast delete response from FW
1016  * @cookie: argument to be passed to callback
1017  *
1018  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1019  *          is sent
1020  *          QDF_STATUS_E_INVAL false if ast entry not found
1021  */
1022 
1023 static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
1024 						uint8_t *mac_addr,
1025 						uint8_t pdev_id,
1026 						txrx_ast_free_cb callback,
1027 						void *cookie)
1028 
1029 {
1030 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1031 	struct dp_ast_entry *ast_entry;
1032 	txrx_ast_free_cb cb = NULL;
1033 	void *arg = NULL;
1034 
1035 	if (soc->ast_offload_support)
1036 		return -QDF_STATUS_E_INVAL;
1037 
1038 	qdf_spin_lock_bh(&soc->ast_lock);
1039 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
1040 
1041 	if (!ast_entry) {
1042 		qdf_spin_unlock_bh(&soc->ast_lock);
1043 		return -QDF_STATUS_E_INVAL;
1044 	}
1045 
1046 	if (ast_entry->callback) {
1047 		cb = ast_entry->callback;
1048 		arg = ast_entry->cookie;
1049 	}
1050 
1051 	ast_entry->callback = callback;
1052 	ast_entry->cookie = cookie;
1053 
1054 	/*
1055 	 * if delete_in_progress is set AST delete is sent to target
1056 	 * and host is waiting for response should not sent delete
1057 	 * again
1058 	 */
1059 	if (!ast_entry->delete_in_progress)
1060 		dp_peer_del_ast(soc, ast_entry);
1061 
1062 	qdf_spin_unlock_bh(&soc->ast_lock);
1063 
1064 	if (cb) {
1065 		cb(soc->ctrl_psoc,
1066 		   dp_soc_to_cdp_soc(soc),
1067 		   arg,
1068 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1069 	}
1070 	return QDF_STATUS_SUCCESS;
1071 }
1072 
1073 /**
1074  * dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
1075  *                                 table if HMWDS rem-addr command is issued
1076  *
1077  * @soc_handle: data path soc handle
1078  * @vdev_id: vdev id
1079  * @wds_macaddr: AST entry mac address to delete
1080  * @type: cdp_txrx_ast_entry_type to send to FW
1081  * @delete_in_fw: flag to indicate AST entry deletion in FW
1082  *
1083  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1084  *         is sent
1085  *         QDF_STATUS_E_INVAL false if ast entry not found
1086  */
1087 static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
1088 					      uint8_t vdev_id,
1089 					      uint8_t *wds_macaddr,
1090 					      uint8_t type,
1091 					      uint8_t delete_in_fw)
1092 {
1093 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1094 
1095 	if (soc->ast_offload_support) {
1096 		dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
1097 					 delete_in_fw);
1098 		return QDF_STATUS_SUCCESS;
1099 	}
1100 
1101 	return -QDF_STATUS_E_INVAL;
1102 }
1103 
1104 #ifdef FEATURE_AST
1105 /**
1106  * dp_print_mlo_ast_stats() - Print AST stats for MLO peers
1107  *
1108  * @soc: core DP soc context
1109  *
1110  * Return: void
1111  */
1112 static void dp_print_mlo_ast_stats(struct dp_soc *soc)
1113 {
1114 	if (soc->arch_ops.print_mlo_ast_stats)
1115 		soc->arch_ops.print_mlo_ast_stats(soc);
1116 }
1117 
1118 void
1119 dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1120 {
1121 	struct dp_ast_entry *ase, *tmp_ase;
1122 	uint32_t num_entries = 0;
1123 	char type[CDP_TXRX_AST_TYPE_MAX][10] = {
1124 			"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
1125 			"DA", "HMWDS_SEC", "MLD"};
1126 
1127 	DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
1128 	    DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
1129 		    " peer_mac_addr = "QDF_MAC_ADDR_FMT
1130 		    " peer_id = %u"
1131 		    " type = %s"
1132 		    " next_hop = %d"
1133 		    " is_active = %d"
1134 		    " ast_idx = %d"
1135 		    " ast_hash = %d"
1136 		    " delete_in_progress = %d"
1137 		    " pdev_id = %d"
1138 		    " vdev_id = %d",
1139 		    ++num_entries,
1140 		    QDF_MAC_ADDR_REF(ase->mac_addr.raw),
1141 		    QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1142 		    ase->peer_id,
1143 		    type[ase->type],
1144 		    ase->next_hop,
1145 		    ase->is_active,
1146 		    ase->ast_idx,
1147 		    ase->ast_hash_value,
1148 		    ase->delete_in_progress,
1149 		    ase->pdev_id,
1150 		    ase->vdev_id);
1151 	}
1152 }
1153 
1154 void dp_print_ast_stats(struct dp_soc *soc)
1155 {
1156 	DP_PRINT_STATS("AST Stats:");
1157 	DP_PRINT_STATS("	Entries Added   = %d", soc->stats.ast.added);
1158 	DP_PRINT_STATS("	Entries Deleted = %d", soc->stats.ast.deleted);
1159 	DP_PRINT_STATS("	Entries Agedout = %d", soc->stats.ast.aged_out);
1160 	DP_PRINT_STATS("	Entries MAP ERR  = %d", soc->stats.ast.map_err);
1161 	DP_PRINT_STATS("	Entries Mismatch ERR  = %d",
1162 		       soc->stats.ast.ast_mismatch);
1163 
1164 	DP_PRINT_STATS("AST Table:");
1165 
1166 	qdf_spin_lock_bh(&soc->ast_lock);
1167 
1168 	dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
1169 			    DP_MOD_ID_GENERIC_STATS);
1170 
1171 	qdf_spin_unlock_bh(&soc->ast_lock);
1172 
1173 	dp_print_mlo_ast_stats(soc);
1174 }
1175 #else
1176 void dp_print_ast_stats(struct dp_soc *soc)
1177 {
1178 	DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
1179 	return;
1180 }
1181 #endif
1182 
1183 /**
1184  * dp_print_peer_info() - Dump peer info
1185  * @soc: Datapath soc handle
1186  * @peer: Datapath peer handle
1187  * @arg: argument to iter function
1188  *
1189  * Return: void
1190  */
1191 static void
1192 dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1193 {
1194 	struct dp_txrx_peer *txrx_peer = NULL;
1195 
1196 	txrx_peer = dp_get_txrx_peer(peer);
1197 	if (!txrx_peer)
1198 		return;
1199 
1200 	DP_PRINT_STATS(" peer id = %d"
1201 		       " peer_mac_addr = "QDF_MAC_ADDR_FMT
1202 		       " nawds_enabled = %d"
1203 		       " bss_peer = %d"
1204 		       " wds_enabled = %d"
1205 		       " tx_cap_enabled = %d"
1206 		       " rx_cap_enabled = %d",
1207 		       peer->peer_id,
1208 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1209 		       txrx_peer->nawds_enabled,
1210 		       txrx_peer->bss_peer,
1211 		       txrx_peer->wds_enabled,
1212 		       dp_monitor_is_tx_cap_enabled(peer),
1213 		       dp_monitor_is_rx_cap_enabled(peer));
1214 }
1215 
1216 /**
1217  * dp_print_peer_table() - Dump all Peer stats
1218  * @vdev: Datapath Vdev handle
1219  *
1220  * Return: void
1221  */
1222 static void dp_print_peer_table(struct dp_vdev *vdev)
1223 {
1224 	DP_PRINT_STATS("Dumping Peer Table  Stats:");
1225 	dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
1226 			     DP_MOD_ID_GENERIC_STATS);
1227 }
1228 
1229 #ifdef DP_MEM_PRE_ALLOC
1230 
1231 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1232 			   size_t ctxt_size)
1233 {
1234 	void *ctxt_mem;
1235 
1236 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
1237 		dp_warn("dp_prealloc_get_context null!");
1238 		goto dynamic_alloc;
1239 	}
1240 
1241 	ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
1242 								ctxt_size);
1243 
1244 	if (ctxt_mem)
1245 		goto end;
1246 
1247 dynamic_alloc:
1248 	dp_info("switch to dynamic-alloc for type %d, size %zu",
1249 		ctxt_type, ctxt_size);
1250 	ctxt_mem = qdf_mem_malloc(ctxt_size);
1251 end:
1252 	return ctxt_mem;
1253 }
1254 
1255 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1256 			 void *vaddr)
1257 {
1258 	QDF_STATUS status;
1259 
1260 	if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
1261 		status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
1262 								ctxt_type,
1263 								vaddr);
1264 	} else {
1265 		dp_warn("dp_prealloc_put_context null!");
1266 		status = QDF_STATUS_E_NOSUPPORT;
1267 	}
1268 
1269 	if (QDF_IS_STATUS_ERROR(status)) {
1270 		dp_info("Context type %d not pre-allocated", ctxt_type);
1271 		qdf_mem_free(vaddr);
1272 	}
1273 }
1274 
1275 static inline
1276 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1277 					   struct dp_srng *srng,
1278 					   uint32_t ring_type)
1279 {
1280 	void *mem;
1281 
1282 	qdf_assert(!srng->is_mem_prealloc);
1283 
1284 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
1285 		dp_warn("dp_prealloc_get_consistent is null!");
1286 		goto qdf;
1287 	}
1288 
1289 	mem =
1290 		soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
1291 						(&srng->alloc_size,
1292 						 &srng->base_vaddr_unaligned,
1293 						 &srng->base_paddr_unaligned,
1294 						 &srng->base_paddr_aligned,
1295 						 DP_RING_BASE_ALIGN, ring_type);
1296 
1297 	if (mem) {
1298 		srng->is_mem_prealloc = true;
1299 		goto end;
1300 	}
1301 qdf:
1302 	mem =  qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1303 						&srng->base_vaddr_unaligned,
1304 						&srng->base_paddr_unaligned,
1305 						&srng->base_paddr_aligned,
1306 						DP_RING_BASE_ALIGN);
1307 end:
1308 	dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
1309 		srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
1310 		srng, ring_type, srng->alloc_size, srng->num_entries);
1311 	return mem;
1312 }
1313 
1314 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1315 					       struct dp_srng *srng)
1316 {
1317 	if (srng->is_mem_prealloc) {
1318 		if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
1319 			dp_warn("dp_prealloc_put_consistent is null!");
1320 			QDF_BUG(0);
1321 			return;
1322 		}
1323 		soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
1324 						(srng->alloc_size,
1325 						 srng->base_vaddr_unaligned,
1326 						 srng->base_paddr_unaligned);
1327 
1328 	} else {
1329 		qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1330 					srng->alloc_size,
1331 					srng->base_vaddr_unaligned,
1332 					srng->base_paddr_unaligned, 0);
1333 	}
1334 }
1335 
1336 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
1337 				   enum qdf_dp_desc_type desc_type,
1338 				   struct qdf_mem_multi_page_t *pages,
1339 				   size_t element_size,
1340 				   uint32_t element_num,
1341 				   qdf_dma_context_t memctxt,
1342 				   bool cacheable)
1343 {
1344 	if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
1345 		dp_warn("dp_get_multi_pages is null!");
1346 		goto qdf;
1347 	}
1348 
1349 	pages->num_pages = 0;
1350 	pages->is_mem_prealloc = 0;
1351 	soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
1352 						element_size,
1353 						element_num,
1354 						pages,
1355 						cacheable);
1356 	if (pages->num_pages)
1357 		goto end;
1358 
1359 qdf:
1360 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
1361 				  element_num, memctxt, cacheable);
1362 end:
1363 	dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
1364 		pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
1365 		desc_type, (int)element_size, element_num, cacheable);
1366 }
1367 
1368 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
1369 				  enum qdf_dp_desc_type desc_type,
1370 				  struct qdf_mem_multi_page_t *pages,
1371 				  qdf_dma_context_t memctxt,
1372 				  bool cacheable)
1373 {
1374 	if (pages->is_mem_prealloc) {
1375 		if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
1376 			dp_warn("dp_put_multi_pages is null!");
1377 			QDF_BUG(0);
1378 			return;
1379 		}
1380 
1381 		soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
1382 		qdf_mem_zero(pages, sizeof(*pages));
1383 	} else {
1384 		qdf_mem_multi_pages_free(soc->osdev, pages,
1385 					 memctxt, cacheable);
1386 	}
1387 }
1388 
1389 #else
1390 
1391 static inline
1392 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1393 					   struct dp_srng *srng,
1394 					   uint32_t ring_type)
1395 
1396 {
1397 	void *mem;
1398 
1399 	mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1400 					       &srng->base_vaddr_unaligned,
1401 					       &srng->base_paddr_unaligned,
1402 					       &srng->base_paddr_aligned,
1403 					       DP_RING_BASE_ALIGN);
1404 	if (mem)
1405 		qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
1406 
1407 	return mem;
1408 }
1409 
1410 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1411 					       struct dp_srng *srng)
1412 {
1413 	qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1414 				srng->alloc_size,
1415 				srng->base_vaddr_unaligned,
1416 				srng->base_paddr_unaligned, 0);
1417 }
1418 
1419 #endif /* DP_MEM_PRE_ALLOC */
1420 
1421 #ifdef QCA_SUPPORT_WDS_EXTENDED
1422 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1423 {
1424 	return vdev->wds_ext_enabled;
1425 }
1426 #else
1427 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1428 {
1429 	return false;
1430 }
1431 #endif
1432 
1433 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
1434 {
1435 	struct dp_vdev *vdev = NULL;
1436 	uint8_t rx_fast_flag = true;
1437 
1438 	/* Check if protocol tagging enable */
1439 	if (pdev->is_rx_protocol_tagging_enabled) {
1440 		rx_fast_flag = false;
1441 		goto update_flag;
1442 	}
1443 
1444 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1445 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1446 		/* Check if any VDEV has NAWDS enabled */
1447 		if (vdev->nawds_enabled) {
1448 			rx_fast_flag = false;
1449 			break;
1450 		}
1451 
1452 		/* Check if any VDEV has multipass enabled */
1453 		if (vdev->multipass_en) {
1454 			rx_fast_flag = false;
1455 			break;
1456 		}
1457 
1458 		/* Check if any VDEV has mesh enabled */
1459 		if (vdev->mesh_vdev) {
1460 			rx_fast_flag = false;
1461 			break;
1462 		}
1463 	}
1464 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1465 
1466 update_flag:
1467 	dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
1468 	pdev->rx_fast_flag = rx_fast_flag;
1469 }
1470 
1471 void dp_soc_set_interrupt_mode(struct dp_soc *soc)
1472 {
1473 	uint32_t msi_base_data, msi_vector_start;
1474 	int msi_vector_count, ret;
1475 
1476 	soc->intr_mode = DP_INTR_INTEGRATED;
1477 
1478 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
1479 	    (dp_is_monitor_mode_using_poll(soc) &&
1480 	     soc->cdp_soc.ol_ops->get_con_mode &&
1481 	     soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
1482 		soc->intr_mode = DP_INTR_POLL;
1483 	} else {
1484 		ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1485 						  &msi_vector_count,
1486 						  &msi_base_data,
1487 						  &msi_vector_start);
1488 		if (ret)
1489 			return;
1490 
1491 		soc->intr_mode = DP_INTR_MSI;
1492 	}
1493 }
1494 
1495 static int dp_srng_calculate_msi_group(struct dp_soc *soc,
1496 				       enum hal_ring_type ring_type,
1497 				       int ring_num,
1498 				       int *reg_msi_grp_num,
1499 				       bool nf_irq_support,
1500 				       int *nf_msi_grp_num)
1501 {
1502 	struct wlan_cfg_dp_soc_ctxt *cfg_ctx = soc->wlan_cfg_ctx;
1503 	uint8_t *grp_mask, *nf_irq_mask = NULL;
1504 	bool nf_irq_enabled = false;
1505 	uint8_t wbm2_sw_rx_rel_ring_id;
1506 
1507 	switch (ring_type) {
1508 	case WBM2SW_RELEASE:
1509 		wbm2_sw_rx_rel_ring_id =
1510 			wlan_cfg_get_rx_rel_ring_id(cfg_ctx);
1511 		if (ring_num == wbm2_sw_rx_rel_ring_id) {
1512 			/* dp_rx_wbm_err_process - soc->rx_rel_ring */
1513 			grp_mask = &cfg_ctx->int_rx_wbm_rel_ring_mask[0];
1514 			ring_num = 0;
1515 		} else if (ring_num == WBM2_SW_PPE_REL_RING_ID) {
1516 			grp_mask = &cfg_ctx->int_ppeds_wbm_release_ring_mask[0];
1517 			ring_num = 0;
1518 		}  else { /* dp_tx_comp_handler - soc->tx_comp_ring */
1519 			grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
1520 			nf_irq_mask = dp_srng_get_near_full_irq_mask(soc,
1521 								     ring_type,
1522 								     ring_num);
1523 			if (nf_irq_mask)
1524 				nf_irq_enabled = true;
1525 
1526 			/*
1527 			 * Using ring 4 as 4th tx completion ring since ring 3
1528 			 * is Rx error ring
1529 			 */
1530 			if (ring_num == WBM2SW_TXCOMP_RING4_NUM)
1531 				ring_num = TXCOMP_RING4_NUM;
1532 		}
1533 	break;
1534 
1535 	case REO_EXCEPTION:
1536 		/* dp_rx_err_process - &soc->reo_exception_ring */
1537 		grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
1538 	break;
1539 
1540 	case REO_DST:
1541 		/* dp_rx_process - soc->reo_dest_ring */
1542 		grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
1543 		nf_irq_mask = dp_srng_get_near_full_irq_mask(soc, ring_type,
1544 							     ring_num);
1545 		if (nf_irq_mask)
1546 			nf_irq_enabled = true;
1547 	break;
1548 
1549 	case REO_STATUS:
1550 		/* dp_reo_status_ring_handler - soc->reo_status_ring */
1551 		grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
1552 	break;
1553 
1554 	/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
1555 	case RXDMA_MONITOR_STATUS:
1556 	/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
1557 	case RXDMA_MONITOR_DST:
1558 		/* dp_mon_process */
1559 		grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
1560 	break;
1561 	case TX_MONITOR_DST:
1562 		/* dp_tx_mon_process */
1563 		grp_mask = &soc->wlan_cfg_ctx->int_tx_mon_ring_mask[0];
1564 	break;
1565 	case RXDMA_DST:
1566 		/* dp_rxdma_err_process */
1567 		grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
1568 	break;
1569 
1570 	case RXDMA_BUF:
1571 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
1572 	break;
1573 
1574 	case RXDMA_MONITOR_BUF:
1575 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
1576 	break;
1577 
1578 	case TX_MONITOR_BUF:
1579 		grp_mask = &soc->wlan_cfg_ctx->int_host2txmon_ring_mask[0];
1580 	break;
1581 
1582 	case REO2PPE:
1583 		grp_mask = &soc->wlan_cfg_ctx->int_reo2ppe_ring_mask[0];
1584 	break;
1585 
1586 	case PPE2TCL:
1587 		grp_mask = &soc->wlan_cfg_ctx->int_ppe2tcl_ring_mask[0];
1588 	break;
1589 
1590 	case TCL_DATA:
1591 	/* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */
1592 	case TCL_CMD_CREDIT:
1593 	case REO_CMD:
1594 	case SW2WBM_RELEASE:
1595 	case WBM_IDLE_LINK:
1596 		/* normally empty SW_TO_HW rings */
1597 		return -QDF_STATUS_E_NOENT;
1598 	break;
1599 
1600 	case TCL_STATUS:
1601 	case REO_REINJECT:
1602 		/* misc unused rings */
1603 		return -QDF_STATUS_E_NOENT;
1604 	break;
1605 
1606 	case CE_SRC:
1607 	case CE_DST:
1608 	case CE_DST_STATUS:
1609 		/* CE_rings - currently handled by hif */
1610 	default:
1611 		return -QDF_STATUS_E_NOENT;
1612 	break;
1613 	}
1614 
1615 	*reg_msi_grp_num = dp_srng_find_ring_in_mask(ring_num, grp_mask);
1616 
1617 	if (nf_irq_support && nf_irq_enabled) {
1618 		*nf_msi_grp_num = dp_srng_find_ring_in_mask(ring_num,
1619 							    nf_irq_mask);
1620 	}
1621 
1622 	return QDF_STATUS_SUCCESS;
1623 }
1624 
1625 #if defined(IPA_OFFLOAD) && defined(IPA_WDI3_VLAN_SUPPORT)
1626 static void
1627 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1628 			   int ring_num)
1629 {
1630 	if (wlan_ipa_is_vlan_enabled()) {
1631 		if ((ring_type == REO_DST) &&
1632 		    (ring_num == IPA_ALT_REO_DEST_RING_IDX)) {
1633 			ring_params->msi_addr = 0;
1634 			ring_params->msi_data = 0;
1635 			ring_params->flags &= ~HAL_SRNG_MSI_INTR;
1636 		}
1637 	}
1638 }
1639 #else
1640 static inline void
1641 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1642 			   int ring_num)
1643 {
1644 }
1645 #endif
1646 
1647 void dp_srng_msi_setup(struct dp_soc *soc, struct dp_srng *srng,
1648 		       struct hal_srng_params *ring_params,
1649 		       int ring_type, int ring_num)
1650 {
1651 	int reg_msi_grp_num;
1652 	/*
1653 	 * nf_msi_grp_num needs to be initialized with negative value,
1654 	 * to avoid configuring near-full msi for WBM2SW3 ring
1655 	 */
1656 	int nf_msi_grp_num = -1;
1657 	int msi_data_count;
1658 	int ret;
1659 	uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
1660 	bool nf_irq_support;
1661 	int vector;
1662 
1663 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1664 					  &msi_data_count, &msi_data_start,
1665 					  &msi_irq_start);
1666 
1667 	if (ret)
1668 		return;
1669 
1670 	nf_irq_support = hal_srng_is_near_full_irq_supported(soc->hal_soc,
1671 							     ring_type,
1672 							     ring_num);
1673 	ret = dp_srng_calculate_msi_group(soc, ring_type, ring_num,
1674 					  &reg_msi_grp_num,
1675 					  nf_irq_support,
1676 					  &nf_msi_grp_num);
1677 	if (ret < 0) {
1678 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1679 			     soc, ring_type, ring_num);
1680 		ring_params->msi_addr = 0;
1681 		ring_params->msi_data = 0;
1682 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1683 		return;
1684 	}
1685 
1686 	if (reg_msi_grp_num < 0) {
1687 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1688 			     soc, ring_type, ring_num);
1689 		ring_params->msi_addr = 0;
1690 		ring_params->msi_data = 0;
1691 		goto configure_msi2;
1692 	}
1693 
1694 	if (dp_is_msi_group_number_invalid(soc, reg_msi_grp_num,
1695 					   msi_data_count)) {
1696 		dp_init_warn("%pK: 2 msi_groups will share an msi; msi_group_num %d",
1697 			     soc, reg_msi_grp_num);
1698 		QDF_ASSERT(0);
1699 	}
1700 
1701 	pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
1702 
1703 	ring_params->msi_addr = addr_low;
1704 	ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
1705 	ring_params->msi_data = (reg_msi_grp_num % msi_data_count)
1706 		+ msi_data_start;
1707 	ring_params->flags |= HAL_SRNG_MSI_INTR;
1708 
1709 	dp_ipa_vlan_srng_msi_setup(ring_params, ring_type, ring_num);
1710 
1711 	dp_debug("ring type %u ring_num %u msi->data %u msi_addr %llx",
1712 		 ring_type, ring_num, ring_params->msi_data,
1713 		 (uint64_t)ring_params->msi_addr);
1714 
1715 	vector = msi_irq_start + (reg_msi_grp_num % msi_data_count);
1716 
1717 	/*
1718 	 * During umac reset ppeds interrupts free is not called.
1719 	 * Avoid registering interrupts again.
1720 	 *
1721 	 */
1722 	if (dp_check_umac_reset_in_progress(soc))
1723 		goto configure_msi2;
1724 
1725 	if (soc->arch_ops.dp_register_ppeds_interrupts)
1726 		if (soc->arch_ops.dp_register_ppeds_interrupts(soc, srng,
1727 							       vector,
1728 							       ring_type,
1729 							       ring_num))
1730 			return;
1731 
1732 configure_msi2:
1733 	if (!nf_irq_support) {
1734 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1735 		return;
1736 	}
1737 
1738 	dp_srng_msi2_setup(soc, ring_params, ring_type, ring_num,
1739 			   nf_msi_grp_num);
1740 }
1741 
1742 #ifdef WLAN_DP_PER_RING_TYPE_CONFIG
1743 /**
1744  * dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
1745  * threshold values from the wlan_srng_cfg table for each ring type
1746  * @soc: device handle
1747  * @ring_params: per ring specific parameters
1748  * @ring_type: Ring type
1749  * @ring_num: Ring number for a given ring type
1750  * @num_entries: number of entries to fill
1751  *
1752  * Fill the ring params with the interrupt threshold
1753  * configuration parameters available in the per ring type wlan_srng_cfg
1754  * table.
1755  *
1756  * Return: None
1757  */
1758 void
1759 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1760 				       struct hal_srng_params *ring_params,
1761 				       int ring_type, int ring_num,
1762 				       int num_entries)
1763 {
1764 	uint8_t wbm2_sw_rx_rel_ring_id;
1765 
1766 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1767 
1768 	if (ring_type == REO_DST) {
1769 		ring_params->intr_timer_thres_us =
1770 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1771 		ring_params->intr_batch_cntr_thres_entries =
1772 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1773 	} else if (ring_type == WBM2SW_RELEASE &&
1774 		   (ring_num == wbm2_sw_rx_rel_ring_id)) {
1775 		ring_params->intr_timer_thres_us =
1776 				wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1777 		ring_params->intr_batch_cntr_thres_entries =
1778 				wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1779 	} else {
1780 		ring_params->intr_timer_thres_us =
1781 				soc->wlan_srng_cfg[ring_type].timer_threshold;
1782 		ring_params->intr_batch_cntr_thres_entries =
1783 				soc->wlan_srng_cfg[ring_type].batch_count_threshold;
1784 	}
1785 	ring_params->low_threshold =
1786 			soc->wlan_srng_cfg[ring_type].low_threshold;
1787 	if (ring_params->low_threshold)
1788 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1789 
1790 	dp_srng_configure_nf_interrupt_thresholds(soc, ring_params, ring_type);
1791 }
1792 #else
1793 void
1794 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1795 				       struct hal_srng_params *ring_params,
1796 				       int ring_type, int ring_num,
1797 				       int num_entries)
1798 {
1799 	uint8_t wbm2_sw_rx_rel_ring_id;
1800 	bool rx_refill_lt_disable;
1801 
1802 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1803 
1804 	if (ring_type == REO_DST || ring_type == REO2PPE) {
1805 		ring_params->intr_timer_thres_us =
1806 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1807 		ring_params->intr_batch_cntr_thres_entries =
1808 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1809 	} else if (ring_type == WBM2SW_RELEASE &&
1810 		   (ring_num < wbm2_sw_rx_rel_ring_id ||
1811 		   ring_num == WBM2SW_TXCOMP_RING4_NUM ||
1812 		   ring_num == WBM2_SW_PPE_REL_RING_ID)) {
1813 		ring_params->intr_timer_thres_us =
1814 			wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
1815 		ring_params->intr_batch_cntr_thres_entries =
1816 			wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
1817 	} else if (ring_type == RXDMA_BUF) {
1818 		rx_refill_lt_disable =
1819 			wlan_cfg_get_dp_soc_rxdma_refill_lt_disable
1820 							(soc->wlan_cfg_ctx);
1821 		ring_params->intr_timer_thres_us =
1822 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1823 
1824 		if (!rx_refill_lt_disable) {
1825 			ring_params->low_threshold = num_entries >> 3;
1826 			ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1827 			ring_params->intr_batch_cntr_thres_entries = 0;
1828 		}
1829 	} else {
1830 		ring_params->intr_timer_thres_us =
1831 			wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1832 		ring_params->intr_batch_cntr_thres_entries =
1833 			wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1834 	}
1835 
1836 	/* These rings donot require interrupt to host. Make them zero */
1837 	switch (ring_type) {
1838 	case REO_REINJECT:
1839 	case REO_CMD:
1840 	case TCL_DATA:
1841 	case TCL_CMD_CREDIT:
1842 	case TCL_STATUS:
1843 	case WBM_IDLE_LINK:
1844 	case SW2WBM_RELEASE:
1845 	case SW2RXDMA_NEW:
1846 		ring_params->intr_timer_thres_us = 0;
1847 		ring_params->intr_batch_cntr_thres_entries = 0;
1848 		break;
1849 	case PPE2TCL:
1850 		ring_params->intr_timer_thres_us =
1851 			wlan_cfg_get_int_timer_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1852 		ring_params->intr_batch_cntr_thres_entries =
1853 			wlan_cfg_get_int_batch_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1854 		break;
1855 	case RXDMA_MONITOR_DST:
1856 		ring_params->intr_timer_thres_us =
1857 		  wlan_cfg_get_int_timer_threshold_mon_dest(soc->wlan_cfg_ctx);
1858 		ring_params->intr_batch_cntr_thres_entries =
1859 		  wlan_cfg_get_int_batch_threshold_mon_dest(soc->wlan_cfg_ctx);
1860 		break;
1861 	}
1862 
1863 	/* Enable low threshold interrupts for rx buffer rings (regular and
1864 	 * monitor buffer rings.
1865 	 * TODO: See if this is required for any other ring
1866 	 */
1867 	if ((ring_type == RXDMA_MONITOR_BUF) ||
1868 	    (ring_type == RXDMA_MONITOR_STATUS ||
1869 	    (ring_type == TX_MONITOR_BUF))) {
1870 		/* TODO: Setting low threshold to 1/8th of ring size
1871 		 * see if this needs to be configurable
1872 		 */
1873 		ring_params->low_threshold = num_entries >> 3;
1874 		ring_params->intr_timer_thres_us =
1875 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1876 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1877 		ring_params->intr_batch_cntr_thres_entries = 0;
1878 	}
1879 
1880 	/* During initialisation monitor rings are only filled with
1881 	 * MON_BUF_MIN_ENTRIES entries. So low threshold needs to be set to
1882 	 * a value less than that. Low threshold value is reconfigured again
1883 	 * to 1/8th of the ring size when monitor vap is created.
1884 	 */
1885 	if (ring_type == RXDMA_MONITOR_BUF)
1886 		ring_params->low_threshold = MON_BUF_MIN_ENTRIES >> 1;
1887 
1888 	/* In case of PCI chipsets, we dont have PPDU end interrupts,
1889 	 * so MONITOR STATUS ring is reaped by receiving MSI from srng.
1890 	 * Keep batch threshold as 8 so that interrupt is received for
1891 	 * every 4 packets in MONITOR_STATUS ring
1892 	 */
1893 	if ((ring_type == RXDMA_MONITOR_STATUS) &&
1894 	    (soc->intr_mode == DP_INTR_MSI))
1895 		ring_params->intr_batch_cntr_thres_entries = 4;
1896 }
1897 #endif
1898 
1899 static int dp_process_rxdma_dst_ring(struct dp_soc *soc,
1900 				     struct dp_intr *int_ctx,
1901 				     int mac_for_pdev,
1902 				     int total_budget)
1903 {
1904 	uint32_t target_type;
1905 
1906 	target_type = hal_get_target_type(soc->hal_soc);
1907 	if (target_type == TARGET_TYPE_QCN9160)
1908 		return dp_monitor_process(soc, int_ctx,
1909 					  mac_for_pdev, total_budget);
1910 	else
1911 		return dp_rxdma_err_process(int_ctx, soc, mac_for_pdev,
1912 					    total_budget);
1913 }
1914 
1915 /**
1916  * dp_process_lmac_rings() - Process LMAC rings
1917  * @int_ctx: interrupt context
1918  * @total_budget: budget of work which can be done
1919  *
1920  * Return: work done
1921  */
1922 int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
1923 {
1924 	struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
1925 	struct dp_soc *soc = int_ctx->soc;
1926 	uint32_t remaining_quota = total_budget;
1927 	struct dp_pdev *pdev = NULL;
1928 	uint32_t work_done  = 0;
1929 	int budget = total_budget;
1930 	int ring = 0;
1931 	bool rx_refill_lt_disable;
1932 
1933 	rx_refill_lt_disable =
1934 		wlan_cfg_get_dp_soc_rxdma_refill_lt_disable(soc->wlan_cfg_ctx);
1935 
1936 	/* Process LMAC interrupts */
1937 	for  (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
1938 		int mac_for_pdev = ring;
1939 
1940 		pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
1941 		if (!pdev)
1942 			continue;
1943 		if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
1944 			work_done = dp_monitor_process(soc, int_ctx,
1945 						       mac_for_pdev,
1946 						       remaining_quota);
1947 			if (work_done)
1948 				intr_stats->num_rx_mon_ring_masks++;
1949 			budget -= work_done;
1950 			if (budget <= 0)
1951 				goto budget_done;
1952 			remaining_quota = budget;
1953 		}
1954 
1955 		if (int_ctx->tx_mon_ring_mask & (1 << mac_for_pdev)) {
1956 			work_done = dp_tx_mon_process(soc, int_ctx,
1957 						      mac_for_pdev,
1958 						      remaining_quota);
1959 			if (work_done)
1960 				intr_stats->num_tx_mon_ring_masks++;
1961 			budget -= work_done;
1962 			if (budget <= 0)
1963 				goto budget_done;
1964 			remaining_quota = budget;
1965 		}
1966 
1967 		if (int_ctx->rxdma2host_ring_mask &
1968 				(1 << mac_for_pdev)) {
1969 			work_done = dp_process_rxdma_dst_ring(soc, int_ctx,
1970 							      mac_for_pdev,
1971 							      remaining_quota);
1972 			if (work_done)
1973 				intr_stats->num_rxdma2host_ring_masks++;
1974 			budget -=  work_done;
1975 			if (budget <= 0)
1976 				goto budget_done;
1977 			remaining_quota = budget;
1978 		}
1979 
1980 		if (int_ctx->host2rxdma_ring_mask & (1 << mac_for_pdev)) {
1981 			struct dp_srng *rx_refill_buf_ring;
1982 			struct rx_desc_pool *rx_desc_pool;
1983 
1984 			rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
1985 			if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
1986 				rx_refill_buf_ring =
1987 					&soc->rx_refill_buf_ring[mac_for_pdev];
1988 			else
1989 				rx_refill_buf_ring =
1990 					&soc->rx_refill_buf_ring[pdev->lmac_id];
1991 
1992 			intr_stats->num_host2rxdma_ring_masks++;
1993 
1994 			if (!rx_refill_lt_disable)
1995 				dp_rx_buffers_lt_replenish_simple
1996 							(soc, mac_for_pdev,
1997 							 rx_refill_buf_ring,
1998 							 rx_desc_pool,
1999 							 false);
2000 		}
2001 	}
2002 
2003 	if (int_ctx->host2rxdma_mon_ring_mask)
2004 		dp_rx_mon_buf_refill(int_ctx);
2005 
2006 	if (int_ctx->host2txmon_ring_mask)
2007 		dp_tx_mon_buf_refill(int_ctx);
2008 
2009 budget_done:
2010 	return total_budget - budget;
2011 }
2012 
2013 uint32_t dp_service_srngs_wrapper(void *dp_ctx, uint32_t dp_budget, int cpu)
2014 {
2015 	struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
2016 	struct dp_soc *soc = int_ctx->soc;
2017 
2018 	return soc->arch_ops.dp_service_srngs(dp_ctx, dp_budget, cpu);
2019 }
2020 
2021 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
2022 /**
2023  * dp_soc_interrupt_map_calculate_wifi3_pci_legacy() -
2024  * Calculate interrupt map for legacy interrupts
2025  * @soc: DP soc handle
2026  * @intr_ctx_num: Interrupt context number
2027  * @irq_id_map: IRQ map
2028  * @num_irq_r: Number of interrupts assigned for this context
2029  *
2030  * Return: void
2031  */
2032 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2033 							    int intr_ctx_num,
2034 							    int *irq_id_map,
2035 							    int *num_irq_r)
2036 {
2037 	int j;
2038 	int num_irq = 0;
2039 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2040 					soc->wlan_cfg_ctx, intr_ctx_num);
2041 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2042 					soc->wlan_cfg_ctx, intr_ctx_num);
2043 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2044 					soc->wlan_cfg_ctx, intr_ctx_num);
2045 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2046 					soc->wlan_cfg_ctx, intr_ctx_num);
2047 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2048 					soc->wlan_cfg_ctx, intr_ctx_num);
2049 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2050 					soc->wlan_cfg_ctx, intr_ctx_num);
2051 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2052 					soc->wlan_cfg_ctx, intr_ctx_num);
2053 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2054 					soc->wlan_cfg_ctx, intr_ctx_num);
2055 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2056 					soc->wlan_cfg_ctx, intr_ctx_num);
2057 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2058 					soc->wlan_cfg_ctx, intr_ctx_num);
2059 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2060 					soc->wlan_cfg_ctx, intr_ctx_num);
2061 	soc->intr_mode = DP_INTR_LEGACY_VIRTUAL_IRQ;
2062 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2063 		if (tx_mask & (1 << j))
2064 			irq_id_map[num_irq++] = (wbm2sw0_release - j);
2065 		if (rx_mask & (1 << j))
2066 			irq_id_map[num_irq++] = (reo2sw1_intr - j);
2067 		if (rx_mon_mask & (1 << j))
2068 			irq_id_map[num_irq++] = (rxmon2sw_p0_dest0 - j);
2069 		if (rx_err_ring_mask & (1 << j))
2070 			irq_id_map[num_irq++] = (reo2sw0_intr - j);
2071 		if (rx_wbm_rel_ring_mask & (1 << j))
2072 			irq_id_map[num_irq++] = (wbm2sw5_release - j);
2073 		if (reo_status_ring_mask & (1 << j))
2074 			irq_id_map[num_irq++] = (reo_status - j);
2075 		if (rxdma2host_ring_mask & (1 << j))
2076 			irq_id_map[num_irq++] = (rxdma2sw_dst_ring0 - j);
2077 		if (host2rxdma_ring_mask & (1 << j))
2078 			irq_id_map[num_irq++] = (sw2rxdma_0 - j);
2079 		if (host2rxdma_mon_ring_mask & (1 << j))
2080 			irq_id_map[num_irq++] = (sw2rxmon_src_ring - j);
2081 		if (host2txmon_ring_mask & (1 << j))
2082 			irq_id_map[num_irq++] = sw2txmon_src_ring;
2083 		if (txmon2host_mon_ring_mask & (1 << j))
2084 			irq_id_map[num_irq++] = (txmon2sw_p0_dest0 - j);
2085 	}
2086 	*num_irq_r = num_irq;
2087 }
2088 #else
2089 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2090 							    int intr_ctx_num,
2091 							    int *irq_id_map,
2092 							    int *num_irq_r)
2093 {
2094 }
2095 #endif
2096 
2097 static void
2098 dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc, int intr_ctx_num,
2099 					  int *irq_id_map, int *num_irq_r)
2100 {
2101 	int j;
2102 	int num_irq = 0;
2103 
2104 	int tx_mask =
2105 		wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2106 	int rx_mask =
2107 		wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2108 	int rx_mon_mask =
2109 		wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2110 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2111 					soc->wlan_cfg_ctx, intr_ctx_num);
2112 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2113 					soc->wlan_cfg_ctx, intr_ctx_num);
2114 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2115 					soc->wlan_cfg_ctx, intr_ctx_num);
2116 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2117 					soc->wlan_cfg_ctx, intr_ctx_num);
2118 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2119 					soc->wlan_cfg_ctx, intr_ctx_num);
2120 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2121 					soc->wlan_cfg_ctx, intr_ctx_num);
2122 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2123 					soc->wlan_cfg_ctx, intr_ctx_num);
2124 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2125 					soc->wlan_cfg_ctx, intr_ctx_num);
2126 
2127 	soc->intr_mode = DP_INTR_INTEGRATED;
2128 
2129 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2130 		if (tx_mask & (1 << j)) {
2131 			irq_id_map[num_irq++] =
2132 				(wbm2host_tx_completions_ring1 - j);
2133 		}
2134 
2135 		if (rx_mask & (1 << j)) {
2136 			irq_id_map[num_irq++] =
2137 				(reo2host_destination_ring1 - j);
2138 		}
2139 
2140 		if (rxdma2host_ring_mask & (1 << j)) {
2141 			irq_id_map[num_irq++] =
2142 				rxdma2host_destination_ring_mac1 - j;
2143 		}
2144 
2145 		if (host2rxdma_ring_mask & (1 << j)) {
2146 			irq_id_map[num_irq++] =
2147 				host2rxdma_host_buf_ring_mac1 -	j;
2148 		}
2149 
2150 		if (host2rxdma_mon_ring_mask & (1 << j)) {
2151 			irq_id_map[num_irq++] =
2152 				host2rxdma_monitor_ring1 - j;
2153 		}
2154 
2155 		if (rx_mon_mask & (1 << j)) {
2156 			irq_id_map[num_irq++] =
2157 				ppdu_end_interrupts_mac1 - j;
2158 			irq_id_map[num_irq++] =
2159 				rxdma2host_monitor_status_ring_mac1 - j;
2160 			irq_id_map[num_irq++] =
2161 				rxdma2host_monitor_destination_mac1 - j;
2162 		}
2163 
2164 		if (rx_wbm_rel_ring_mask & (1 << j))
2165 			irq_id_map[num_irq++] = wbm2host_rx_release;
2166 
2167 		if (rx_err_ring_mask & (1 << j))
2168 			irq_id_map[num_irq++] = reo2host_exception;
2169 
2170 		if (reo_status_ring_mask & (1 << j))
2171 			irq_id_map[num_irq++] = reo2host_status;
2172 
2173 		if (host2txmon_ring_mask & (1 << j))
2174 			irq_id_map[num_irq++] = host2tx_monitor_ring1;
2175 
2176 		if (txmon2host_mon_ring_mask & (1 << j)) {
2177 			irq_id_map[num_irq++] =
2178 				(txmon2host_monitor_destination_mac1 - j);
2179 		}
2180 	}
2181 	*num_irq_r = num_irq;
2182 }
2183 
2184 static void
2185 dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc, int intr_ctx_num,
2186 				   int *irq_id_map, int *num_irq_r,
2187 				   int msi_vector_count, int msi_vector_start)
2188 {
2189 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2190 					soc->wlan_cfg_ctx, intr_ctx_num);
2191 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2192 					soc->wlan_cfg_ctx, intr_ctx_num);
2193 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2194 					soc->wlan_cfg_ctx, intr_ctx_num);
2195 	int tx_mon_mask = wlan_cfg_get_tx_mon_ring_mask(
2196 					soc->wlan_cfg_ctx, intr_ctx_num);
2197 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2198 					soc->wlan_cfg_ctx, intr_ctx_num);
2199 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2200 					soc->wlan_cfg_ctx, intr_ctx_num);
2201 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2202 					soc->wlan_cfg_ctx, intr_ctx_num);
2203 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2204 					soc->wlan_cfg_ctx, intr_ctx_num);
2205 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2206 					soc->wlan_cfg_ctx, intr_ctx_num);
2207 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2208 					soc->wlan_cfg_ctx, intr_ctx_num);
2209 	int rx_near_full_grp_1_mask =
2210 		wlan_cfg_get_rx_near_full_grp_1_mask(soc->wlan_cfg_ctx,
2211 						     intr_ctx_num);
2212 	int rx_near_full_grp_2_mask =
2213 		wlan_cfg_get_rx_near_full_grp_2_mask(soc->wlan_cfg_ctx,
2214 						     intr_ctx_num);
2215 	int tx_ring_near_full_mask =
2216 		wlan_cfg_get_tx_ring_near_full_mask(soc->wlan_cfg_ctx,
2217 						    intr_ctx_num);
2218 
2219 	int host2txmon_ring_mask =
2220 		wlan_cfg_get_host2txmon_ring_mask(soc->wlan_cfg_ctx,
2221 						  intr_ctx_num);
2222 	unsigned int vector =
2223 		(intr_ctx_num % msi_vector_count) + msi_vector_start;
2224 	int num_irq = 0;
2225 
2226 	soc->intr_mode = DP_INTR_MSI;
2227 
2228 	if (tx_mask | rx_mask | rx_mon_mask | tx_mon_mask | rx_err_ring_mask |
2229 	    rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask |
2230 	    host2rxdma_ring_mask | host2rxdma_mon_ring_mask |
2231 	    rx_near_full_grp_1_mask | rx_near_full_grp_2_mask |
2232 	    tx_ring_near_full_mask | host2txmon_ring_mask)
2233 		irq_id_map[num_irq++] =
2234 			pld_get_msi_irq(soc->osdev->dev, vector);
2235 
2236 	*num_irq_r = num_irq;
2237 }
2238 
2239 void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
2240 				    int *irq_id_map, int *num_irq)
2241 {
2242 	int msi_vector_count, ret;
2243 	uint32_t msi_base_data, msi_vector_start;
2244 
2245 	if (pld_get_enable_intx(soc->osdev->dev)) {
2246 		return dp_soc_interrupt_map_calculate_wifi3_pci_legacy(soc,
2247 				intr_ctx_num, irq_id_map, num_irq);
2248 	}
2249 
2250 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
2251 					  &msi_vector_count,
2252 					  &msi_base_data,
2253 					  &msi_vector_start);
2254 	if (ret)
2255 		return dp_soc_interrupt_map_calculate_integrated(soc,
2256 				intr_ctx_num, irq_id_map, num_irq);
2257 
2258 	else
2259 		dp_soc_interrupt_map_calculate_msi(soc,
2260 				intr_ctx_num, irq_id_map, num_irq,
2261 				msi_vector_count, msi_vector_start);
2262 }
2263 
2264 void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
2265 {
2266 	if (srng->alloc_size && srng->base_vaddr_unaligned) {
2267 		if (!srng->cached) {
2268 			dp_srng_mem_free_consistent(soc, srng);
2269 		} else {
2270 			qdf_mem_free(srng->base_vaddr_unaligned);
2271 		}
2272 		srng->alloc_size = 0;
2273 		srng->base_vaddr_unaligned = NULL;
2274 	}
2275 	srng->hal_srng = NULL;
2276 }
2277 
2278 qdf_export_symbol(dp_srng_free);
2279 
2280 QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
2281 			int ring_num, int mac_id)
2282 {
2283 	return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
2284 					    ring_num, mac_id);
2285 }
2286 
2287 qdf_export_symbol(dp_srng_init);
2288 
2289 QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
2290 			 int ring_type, uint32_t num_entries,
2291 			 bool cached)
2292 {
2293 	hal_soc_handle_t hal_soc = soc->hal_soc;
2294 	uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
2295 	uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
2296 
2297 	if (srng->base_vaddr_unaligned) {
2298 		dp_init_err("%pK: Ring type: %d, is already allocated",
2299 			    soc, ring_type);
2300 		return QDF_STATUS_SUCCESS;
2301 	}
2302 
2303 	num_entries = (num_entries > max_entries) ? max_entries : num_entries;
2304 	srng->hal_srng = NULL;
2305 	srng->alloc_size = num_entries * entry_size;
2306 	srng->num_entries = num_entries;
2307 	srng->cached = cached;
2308 
2309 	if (!cached) {
2310 		srng->base_vaddr_aligned =
2311 		    dp_srng_aligned_mem_alloc_consistent(soc,
2312 							 srng,
2313 							 ring_type);
2314 	} else {
2315 		srng->base_vaddr_aligned = qdf_aligned_malloc(
2316 					&srng->alloc_size,
2317 					&srng->base_vaddr_unaligned,
2318 					&srng->base_paddr_unaligned,
2319 					&srng->base_paddr_aligned,
2320 					DP_RING_BASE_ALIGN);
2321 	}
2322 
2323 	if (!srng->base_vaddr_aligned)
2324 		return QDF_STATUS_E_NOMEM;
2325 
2326 	return QDF_STATUS_SUCCESS;
2327 }
2328 
2329 qdf_export_symbol(dp_srng_alloc);
2330 
2331 void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
2332 		    int ring_type, int ring_num)
2333 {
2334 	if (!srng->hal_srng) {
2335 		dp_init_err("%pK: Ring type: %d, num:%d not setup",
2336 			    soc, ring_type, ring_num);
2337 		return;
2338 	}
2339 
2340 	if (dp_check_umac_reset_in_progress(soc))
2341 		goto srng_cleanup;
2342 
2343 	if (soc->arch_ops.dp_free_ppeds_interrupts)
2344 		soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
2345 						       ring_num);
2346 
2347 srng_cleanup:
2348 	hal_srng_cleanup(soc->hal_soc, srng->hal_srng,
2349 			 dp_check_umac_reset_in_progress(soc));
2350 	srng->hal_srng = NULL;
2351 }
2352 
2353 qdf_export_symbol(dp_srng_deinit);
2354 
2355 /* TODO: Need this interface from HIF */
2356 void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
2357 
2358 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2359 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2360 			 hal_ring_handle_t hal_ring_hdl)
2361 {
2362 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2363 	uint32_t hp, tp;
2364 	uint8_t ring_id;
2365 
2366 	if (!int_ctx)
2367 		return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2368 
2369 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2370 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2371 
2372 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2373 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
2374 
2375 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2376 }
2377 
2378 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2379 			hal_ring_handle_t hal_ring_hdl)
2380 {
2381 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2382 	uint32_t hp, tp;
2383 	uint8_t ring_id;
2384 
2385 	if (!int_ctx)
2386 		return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2387 
2388 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2389 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2390 
2391 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2392 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
2393 
2394 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2395 }
2396 
2397 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2398 					      uint8_t hist_group_id)
2399 {
2400 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2401 			 0, 0, 0, HIF_EVENT_TIMER_ENTRY);
2402 }
2403 
2404 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2405 					     uint8_t hist_group_id)
2406 {
2407 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2408 			 0, 0, 0, HIF_EVENT_TIMER_EXIT);
2409 }
2410 #else
2411 
2412 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2413 					      uint8_t hist_group_id)
2414 {
2415 }
2416 
2417 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2418 					     uint8_t hist_group_id)
2419 {
2420 }
2421 
2422 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2423 
2424 enum timer_yield_status
2425 dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
2426 			  uint64_t start_time)
2427 {
2428 	uint64_t cur_time = qdf_get_log_timestamp();
2429 
2430 	if (!work_done)
2431 		return DP_TIMER_WORK_DONE;
2432 
2433 	if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
2434 		return DP_TIMER_TIME_EXHAUST;
2435 
2436 	return DP_TIMER_NO_YIELD;
2437 }
2438 
2439 qdf_export_symbol(dp_should_timer_irq_yield);
2440 
2441 void dp_interrupt_timer(void *arg)
2442 {
2443 	struct dp_soc *soc = (struct dp_soc *) arg;
2444 	struct dp_pdev *pdev = soc->pdev_list[0];
2445 	enum timer_yield_status yield = DP_TIMER_NO_YIELD;
2446 	uint32_t work_done  = 0, total_work_done = 0;
2447 	int budget = 0xffff, i;
2448 	uint32_t remaining_quota = budget;
2449 	uint64_t start_time;
2450 	uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
2451 	uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
2452 	uint32_t lmac_iter;
2453 	int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
2454 	enum reg_wifi_band mon_band;
2455 	int cpu = dp_srng_get_cpu();
2456 
2457 	/*
2458 	 * this logic makes all data path interfacing rings (UMAC/LMAC)
2459 	 * and Monitor rings polling mode when NSS offload is disabled
2460 	 */
2461 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
2462 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
2463 		if (qdf_atomic_read(&soc->cmn_init_done)) {
2464 			for (i = 0; i < wlan_cfg_get_num_contexts(
2465 						soc->wlan_cfg_ctx); i++)
2466 				soc->arch_ops.dp_service_srngs(&soc->intr_ctx[i], 0xffff,
2467 							       cpu);
2468 
2469 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2470 		}
2471 		return;
2472 	}
2473 
2474 	if (!qdf_atomic_read(&soc->cmn_init_done))
2475 		return;
2476 
2477 	if (dp_monitor_is_chan_band_known(pdev)) {
2478 		mon_band = dp_monitor_get_chan_band(pdev);
2479 		lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
2480 		if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
2481 			dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
2482 			dp_srng_record_timer_entry(soc, dp_intr_id);
2483 		}
2484 	}
2485 
2486 	start_time = qdf_get_log_timestamp();
2487 	dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
2488 
2489 	while (yield == DP_TIMER_NO_YIELD) {
2490 		for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
2491 			if (lmac_iter == lmac_id)
2492 				work_done = dp_monitor_process(soc,
2493 						&soc->intr_ctx[dp_intr_id],
2494 						lmac_iter, remaining_quota);
2495 			else
2496 				work_done =
2497 					dp_monitor_drop_packets_for_mac(pdev,
2498 							     lmac_iter,
2499 							     remaining_quota);
2500 			if (work_done) {
2501 				budget -=  work_done;
2502 				if (budget <= 0) {
2503 					yield = DP_TIMER_WORK_EXHAUST;
2504 					goto budget_done;
2505 				}
2506 				remaining_quota = budget;
2507 				total_work_done += work_done;
2508 			}
2509 		}
2510 
2511 		yield = dp_should_timer_irq_yield(soc, total_work_done,
2512 						  start_time);
2513 		total_work_done = 0;
2514 	}
2515 
2516 budget_done:
2517 	if (yield == DP_TIMER_WORK_EXHAUST ||
2518 	    yield == DP_TIMER_TIME_EXHAUST)
2519 		qdf_timer_mod(&soc->int_timer, 1);
2520 	else
2521 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2522 
2523 	if (lmac_id != DP_MON_INVALID_LMAC_ID)
2524 		dp_srng_record_timer_exit(soc, dp_intr_id);
2525 }
2526 
2527 /**
2528  * dp_soc_interrupt_detach_wrapper() - wrapper function for interrupt detach
2529  * @txrx_soc: DP SOC handle
2530  *
2531  * Return: None
2532  */
2533 static void dp_soc_interrupt_detach_wrapper(struct cdp_soc_t *txrx_soc)
2534 {
2535 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2536 
2537 	return soc->arch_ops.dp_soc_interrupt_detach(txrx_soc);
2538 }
2539 
2540 #if defined(DP_INTR_POLL_BOTH)
2541 /**
2542  * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
2543  * @txrx_soc: DP SOC handle
2544  *
2545  * Call the appropriate attach function based on the mode of operation.
2546  * This is a WAR for enabling monitor mode.
2547  *
2548  * Return: 0 for success. nonzero for failure.
2549  */
2550 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2551 {
2552 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2553 
2554 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
2555 	    (dp_is_monitor_mode_using_poll(soc) &&
2556 	     soc->cdp_soc.ol_ops->get_con_mode &&
2557 	     soc->cdp_soc.ol_ops->get_con_mode() ==
2558 	     QDF_GLOBAL_MONITOR_MODE)) {
2559 		dp_info("Poll mode");
2560 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2561 	} else {
2562 		dp_info("Interrupt  mode");
2563 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2564 	}
2565 }
2566 #else
2567 #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
2568 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2569 {
2570 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2571 
2572 	return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2573 }
2574 #else
2575 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2576 {
2577 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2578 
2579 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
2580 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2581 	else
2582 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2583 }
2584 #endif
2585 #endif
2586 
2587 void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
2588 {
2589 	uint32_t cookie = 0;
2590 	uint32_t page_idx = 0;
2591 	struct qdf_mem_multi_page_t *pages;
2592 	struct qdf_mem_dma_page_t *dma_pages;
2593 	uint32_t offset = 0;
2594 	uint32_t count = 0;
2595 	uint32_t desc_id = 0;
2596 	void *desc_srng;
2597 	int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
2598 	uint32_t *total_link_descs_addr;
2599 	uint32_t total_link_descs;
2600 	uint32_t scatter_buf_num;
2601 	uint32_t num_entries_per_buf = 0;
2602 	uint32_t rem_entries;
2603 	uint32_t num_descs_per_page;
2604 	uint32_t num_scatter_bufs = 0;
2605 	uint8_t *scatter_buf_ptr;
2606 	void *desc;
2607 
2608 	num_scatter_bufs = soc->num_scatter_bufs;
2609 
2610 	if (mac_id == WLAN_INVALID_PDEV_ID) {
2611 		pages = &soc->link_desc_pages;
2612 		total_link_descs = soc->total_link_descs;
2613 		desc_srng = soc->wbm_idle_link_ring.hal_srng;
2614 	} else {
2615 		pages = dp_monitor_get_link_desc_pages(soc, mac_id);
2616 		/* dp_monitor_get_link_desc_pages returns NULL only
2617 		 * if monitor SOC is  NULL
2618 		 */
2619 		if (!pages) {
2620 			dp_err("can not get link desc pages");
2621 			QDF_ASSERT(0);
2622 			return;
2623 		}
2624 		total_link_descs_addr =
2625 				dp_monitor_get_total_link_descs(soc, mac_id);
2626 		total_link_descs = *total_link_descs_addr;
2627 		desc_srng = dp_monitor_get_link_desc_ring(soc, mac_id);
2628 	}
2629 
2630 	dma_pages = pages->dma_pages;
2631 	do {
2632 		qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
2633 			     pages->page_size);
2634 		page_idx++;
2635 	} while (page_idx < pages->num_pages);
2636 
2637 	if (desc_srng) {
2638 		hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
2639 		page_idx = 0;
2640 		count = 0;
2641 		offset = 0;
2642 
2643 		qdf_assert(pages->num_element_per_page != 0);
2644 		while ((desc = hal_srng_src_get_next(soc->hal_soc,
2645 						     desc_srng)) &&
2646 			(count < total_link_descs)) {
2647 			page_idx = count / pages->num_element_per_page;
2648 			if (desc_id == pages->num_element_per_page)
2649 				desc_id = 0;
2650 
2651 			offset = count % pages->num_element_per_page;
2652 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2653 						  soc->link_desc_id_start);
2654 
2655 			hal_set_link_desc_addr(soc->hal_soc, desc, cookie,
2656 					       dma_pages[page_idx].page_p_addr
2657 					       + (offset * link_desc_size),
2658 					       soc->idle_link_bm_id);
2659 			count++;
2660 			desc_id++;
2661 		}
2662 		hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
2663 	} else {
2664 		/* Populate idle list scatter buffers with link descriptor
2665 		 * pointers
2666 		 */
2667 		scatter_buf_num = 0;
2668 		num_entries_per_buf = hal_idle_scatter_buf_num_entries(
2669 					soc->hal_soc,
2670 					soc->wbm_idle_scatter_buf_size);
2671 
2672 		scatter_buf_ptr = (uint8_t *)(
2673 			soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
2674 		rem_entries = num_entries_per_buf;
2675 		page_idx = 0; count = 0;
2676 		offset = 0;
2677 		num_descs_per_page = pages->num_element_per_page;
2678 
2679 		qdf_assert(num_descs_per_page != 0);
2680 		while (count < total_link_descs) {
2681 			page_idx = count / num_descs_per_page;
2682 			offset = count % num_descs_per_page;
2683 			if (desc_id == pages->num_element_per_page)
2684 				desc_id = 0;
2685 
2686 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2687 						  soc->link_desc_id_start);
2688 			hal_set_link_desc_addr(soc->hal_soc,
2689 					       (void *)scatter_buf_ptr,
2690 					       cookie,
2691 					       dma_pages[page_idx].page_p_addr +
2692 					       (offset * link_desc_size),
2693 					       soc->idle_link_bm_id);
2694 			rem_entries--;
2695 			if (rem_entries) {
2696 				scatter_buf_ptr += link_desc_size;
2697 			} else {
2698 				rem_entries = num_entries_per_buf;
2699 				scatter_buf_num++;
2700 				if (scatter_buf_num >= num_scatter_bufs) {
2701 					scatter_buf_num--;
2702 					break;
2703 				}
2704 
2705 				scatter_buf_ptr = (uint8_t *)
2706 					(soc->wbm_idle_scatter_buf_base_vaddr[
2707 					 scatter_buf_num]);
2708 			}
2709 			count++;
2710 			desc_id++;
2711 		}
2712 		/* Setup link descriptor idle list in HW */
2713 		hal_setup_link_idle_list(soc->hal_soc,
2714 			soc->wbm_idle_scatter_buf_base_paddr,
2715 			soc->wbm_idle_scatter_buf_base_vaddr,
2716 			num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
2717 			(uint32_t)(scatter_buf_ptr -
2718 			(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
2719 			scatter_buf_num])), total_link_descs);
2720 	}
2721 }
2722 
2723 qdf_export_symbol(dp_link_desc_ring_replenish);
2724 
2725 /**
2726  * dp_soc_ppeds_stop() - Stop PPE DS processing
2727  * @soc_handle: DP SOC handle
2728  *
2729  * Return: none
2730  */
2731 static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
2732 {
2733 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2734 
2735 	if (soc->arch_ops.txrx_soc_ppeds_stop)
2736 		soc->arch_ops.txrx_soc_ppeds_stop(soc);
2737 }
2738 
2739 #ifdef ENABLE_VERBOSE_DEBUG
2740 void dp_enable_verbose_debug(struct dp_soc *soc)
2741 {
2742 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2743 
2744 	soc_cfg_ctx = soc->wlan_cfg_ctx;
2745 
2746 	if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
2747 		is_dp_verbose_debug_enabled = true;
2748 
2749 	if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
2750 		hal_set_verbose_debug(true);
2751 	else
2752 		hal_set_verbose_debug(false);
2753 }
2754 #else
2755 void dp_enable_verbose_debug(struct dp_soc *soc)
2756 {
2757 }
2758 #endif
2759 
2760 static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2761 {
2762 	struct cdp_lro_hash_config lro_hash;
2763 	QDF_STATUS status;
2764 
2765 	if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
2766 	    !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
2767 	    !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
2768 		dp_err("LRO, GRO and RX hash disabled");
2769 		return QDF_STATUS_E_FAILURE;
2770 	}
2771 
2772 	qdf_mem_zero(&lro_hash, sizeof(lro_hash));
2773 
2774 	if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
2775 	    wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
2776 		lro_hash.lro_enable = 1;
2777 		lro_hash.tcp_flag = QDF_TCPHDR_ACK;
2778 		lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
2779 			 QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
2780 			 QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
2781 	}
2782 
2783 	soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
2784 
2785 	qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
2786 
2787 	if (!soc->cdp_soc.ol_ops->lro_hash_config) {
2788 		QDF_BUG(0);
2789 		dp_err("lro_hash_config not configured");
2790 		return QDF_STATUS_E_FAILURE;
2791 	}
2792 
2793 	status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
2794 						      pdev->pdev_id,
2795 						      &lro_hash);
2796 	if (!QDF_IS_STATUS_SUCCESS(status)) {
2797 		dp_err("failed to send lro_hash_config to FW %u", status);
2798 		return status;
2799 	}
2800 
2801 	dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
2802 		lro_hash.lro_enable, lro_hash.tcp_flag,
2803 		lro_hash.tcp_flag_mask);
2804 
2805 	dp_info("toeplitz_hash_ipv4:");
2806 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2807 			   lro_hash.toeplitz_hash_ipv4,
2808 			   (sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
2809 			   LRO_IPV4_SEED_ARR_SZ));
2810 
2811 	dp_info("toeplitz_hash_ipv6:");
2812 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2813 			   lro_hash.toeplitz_hash_ipv6,
2814 			   (sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
2815 			   LRO_IPV6_SEED_ARR_SZ));
2816 
2817 	return status;
2818 }
2819 
2820 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
2821 /**
2822  * dp_reap_timer_init() - initialize the reap timer
2823  * @soc: data path SoC handle
2824  *
2825  * Return: void
2826  */
2827 static void dp_reap_timer_init(struct dp_soc *soc)
2828 {
2829 	/*
2830 	 * Timer to reap rxdma status rings.
2831 	 * Needed until we enable ppdu end interrupts
2832 	 */
2833 	dp_monitor_reap_timer_init(soc);
2834 	dp_monitor_vdev_timer_init(soc);
2835 }
2836 
2837 /**
2838  * dp_reap_timer_deinit() - de-initialize the reap timer
2839  * @soc: data path SoC handle
2840  *
2841  * Return: void
2842  */
2843 static void dp_reap_timer_deinit(struct dp_soc *soc)
2844 {
2845 	dp_monitor_reap_timer_deinit(soc);
2846 }
2847 #else
2848 /* WIN use case */
2849 static void dp_reap_timer_init(struct dp_soc *soc)
2850 {
2851 	/* Configure LMAC rings in Polled mode */
2852 	if (soc->lmac_polled_mode) {
2853 		/*
2854 		 * Timer to reap lmac rings.
2855 		 */
2856 		qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
2857 			       dp_service_lmac_rings, (void *)soc,
2858 			       QDF_TIMER_TYPE_WAKE_APPS);
2859 		soc->lmac_timer_init = 1;
2860 		qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
2861 	}
2862 }
2863 
2864 static void dp_reap_timer_deinit(struct dp_soc *soc)
2865 {
2866 	if (soc->lmac_timer_init) {
2867 		qdf_timer_stop(&soc->lmac_reap_timer);
2868 		qdf_timer_free(&soc->lmac_reap_timer);
2869 		soc->lmac_timer_init = 0;
2870 	}
2871 }
2872 #endif
2873 
2874 #ifdef QCA_HOST2FW_RXBUF_RING
2875 /**
2876  * dp_rxdma_ring_alloc() - allocate the RXDMA rings
2877  * @soc: data path SoC handle
2878  * @pdev: Physical device handle
2879  *
2880  * Return: 0 - success, > 0 - failure
2881  */
2882 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2883 {
2884 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2885 	int max_mac_rings;
2886 	int i;
2887 	int ring_size;
2888 
2889 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2890 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2891 	ring_size =  wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
2892 
2893 	for (i = 0; i < max_mac_rings; i++) {
2894 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2895 		if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
2896 				  RXDMA_BUF, ring_size, 0)) {
2897 			dp_init_err("%pK: failed rx mac ring setup", soc);
2898 			return QDF_STATUS_E_FAILURE;
2899 		}
2900 	}
2901 	return QDF_STATUS_SUCCESS;
2902 }
2903 
2904 /**
2905  * dp_rxdma_ring_setup() - configure the RXDMA rings
2906  * @soc: data path SoC handle
2907  * @pdev: Physical device handle
2908  *
2909  * Return: 0 - success, > 0 - failure
2910  */
2911 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2912 {
2913 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2914 	int max_mac_rings;
2915 	int i;
2916 
2917 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2918 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2919 
2920 	for (i = 0; i < max_mac_rings; i++) {
2921 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2922 		if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
2923 				 RXDMA_BUF, 1, i)) {
2924 			dp_init_err("%pK: failed rx mac ring setup", soc);
2925 			return QDF_STATUS_E_FAILURE;
2926 		}
2927 		dp_ssr_dump_srng_register("rx_mac_buf_ring",
2928 					  &pdev->rx_mac_buf_ring[i], i);
2929 	}
2930 	return QDF_STATUS_SUCCESS;
2931 }
2932 
2933 /**
2934  * dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
2935  * @soc: data path SoC handle
2936  * @pdev: Physical device handle
2937  *
2938  * Return: void
2939  */
2940 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2941 {
2942 	int i;
2943 
2944 	for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
2945 		dp_ssr_dump_srng_unregister("rx_mac_buf_ring", i);
2946 		dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
2947 	}
2948 
2949 	dp_reap_timer_deinit(soc);
2950 }
2951 
2952 /**
2953  * dp_rxdma_ring_free() - Free the RXDMA rings
2954  * @pdev: Physical device handle
2955  *
2956  * Return: void
2957  */
2958 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2959 {
2960 	int i;
2961 
2962 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2963 		dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
2964 }
2965 
2966 #else
2967 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2968 {
2969 	return QDF_STATUS_SUCCESS;
2970 }
2971 
2972 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2973 {
2974 	return QDF_STATUS_SUCCESS;
2975 }
2976 
2977 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2978 {
2979 	dp_reap_timer_deinit(soc);
2980 }
2981 
2982 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2983 {
2984 }
2985 #endif
2986 
2987 #ifdef IPA_OFFLOAD
2988 /**
2989  * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
2990  * @soc: data path instance
2991  * @pdev: core txrx pdev context
2992  *
2993  * Return: QDF_STATUS_SUCCESS: success
2994  *         QDF_STATUS_E_RESOURCES: Error return
2995  */
2996 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2997 					   struct dp_pdev *pdev)
2998 {
2999 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3000 	int entries;
3001 
3002 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3003 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3004 		entries =
3005 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3006 
3007 		/* Setup second Rx refill buffer ring */
3008 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3009 				  entries, 0)) {
3010 			dp_init_err("%pK: dp_srng_alloc failed second"
3011 				    "rx refill ring", soc);
3012 			return QDF_STATUS_E_FAILURE;
3013 		}
3014 	}
3015 
3016 	return QDF_STATUS_SUCCESS;
3017 }
3018 
3019 #ifdef IPA_WDI3_VLAN_SUPPORT
3020 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3021 					       struct dp_pdev *pdev)
3022 {
3023 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3024 	int entries;
3025 
3026 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3027 	    wlan_ipa_is_vlan_enabled()) {
3028 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3029 		entries =
3030 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3031 
3032 		/* Setup second Rx refill buffer ring */
3033 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3034 				  entries, 0)) {
3035 			dp_init_err("%pK: alloc failed for 3rd rx refill ring",
3036 				    soc);
3037 			return QDF_STATUS_E_FAILURE;
3038 		}
3039 	}
3040 
3041 	return QDF_STATUS_SUCCESS;
3042 }
3043 
3044 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3045 					      struct dp_pdev *pdev)
3046 {
3047 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3048 	    wlan_ipa_is_vlan_enabled()) {
3049 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3050 				 IPA_RX_ALT_REFILL_BUF_RING_IDX,
3051 				 pdev->pdev_id)) {
3052 			dp_init_err("%pK: init failed for 3rd rx refill ring",
3053 				    soc);
3054 			return QDF_STATUS_E_FAILURE;
3055 		}
3056 	}
3057 
3058 	return QDF_STATUS_SUCCESS;
3059 }
3060 
3061 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3062 						 struct dp_pdev *pdev)
3063 {
3064 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3065 	    wlan_ipa_is_vlan_enabled())
3066 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
3067 }
3068 
3069 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3070 					       struct dp_pdev *pdev)
3071 {
3072 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3073 	    wlan_ipa_is_vlan_enabled())
3074 		dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
3075 }
3076 #else
3077 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3078 					       struct dp_pdev *pdev)
3079 {
3080 	return QDF_STATUS_SUCCESS;
3081 }
3082 
3083 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3084 					      struct dp_pdev *pdev)
3085 {
3086 	return QDF_STATUS_SUCCESS;
3087 }
3088 
3089 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3090 						 struct dp_pdev *pdev)
3091 {
3092 }
3093 
3094 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3095 					       struct dp_pdev *pdev)
3096 {
3097 }
3098 #endif
3099 
3100 /**
3101  * dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
3102  * @soc: data path instance
3103  * @pdev: core txrx pdev context
3104  *
3105  * Return: void
3106  */
3107 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3108 					     struct dp_pdev *pdev)
3109 {
3110 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3111 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
3112 }
3113 
3114 /**
3115  * dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
3116  * @soc: data path instance
3117  * @pdev: core txrx pdev context
3118  *
3119  * Return: QDF_STATUS_SUCCESS: success
3120  *         QDF_STATUS_E_RESOURCES: Error return
3121  */
3122 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3123 					  struct dp_pdev *pdev)
3124 {
3125 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3126 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3127 				 IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
3128 			dp_init_err("%pK: dp_srng_init failed second"
3129 				    "rx refill ring", soc);
3130 			return QDF_STATUS_E_FAILURE;
3131 		}
3132 	}
3133 
3134 	if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3135 		dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
3136 		return QDF_STATUS_E_FAILURE;
3137 	}
3138 
3139 	return QDF_STATUS_SUCCESS;
3140 }
3141 
3142 /**
3143  * dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
3144  * @soc: data path instance
3145  * @pdev: core txrx pdev context
3146  *
3147  * Return: void
3148  */
3149 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3150 					   struct dp_pdev *pdev)
3151 {
3152 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3153 		dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
3154 }
3155 #else
3156 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3157 					   struct dp_pdev *pdev)
3158 {
3159 	return QDF_STATUS_SUCCESS;
3160 }
3161 
3162 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3163 					  struct dp_pdev *pdev)
3164 {
3165 	return QDF_STATUS_SUCCESS;
3166 }
3167 
3168 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3169 					     struct dp_pdev *pdev)
3170 {
3171 }
3172 
3173 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3174 					   struct dp_pdev *pdev)
3175 {
3176 }
3177 
3178 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3179 					       struct dp_pdev *pdev)
3180 {
3181 	return QDF_STATUS_SUCCESS;
3182 }
3183 
3184 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3185 						 struct dp_pdev *pdev)
3186 {
3187 }
3188 
3189 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3190 					       struct dp_pdev *pdev)
3191 {
3192 }
3193 #endif
3194 
3195 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
3196 
3197 /**
3198  * dp_soc_cfg_history_attach() - Allocate and attach datapath config events
3199  *				 history
3200  * @soc: DP soc handle
3201  *
3202  * Return: None
3203  */
3204 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3205 {
3206 	dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
3207 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3208 				   DP_CFG_EVT_HIST_PER_SLOT_MAX,
3209 				   sizeof(struct dp_cfg_event),
3210 				   true, DP_CFG_EVENT_HIST_TYPE);
3211 }
3212 
3213 /**
3214  * dp_soc_cfg_history_detach() - Detach and free DP config events history
3215  * @soc: DP soc handle
3216  *
3217  * Return: none
3218  */
3219 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3220 {
3221 	dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
3222 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3223 				   true, DP_CFG_EVENT_HIST_TYPE);
3224 }
3225 
3226 #else
3227 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3228 {
3229 }
3230 
3231 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3232 {
3233 }
3234 #endif
3235 
3236 #ifdef DP_TX_HW_DESC_HISTORY
3237 /**
3238  * dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
3239  *
3240  * @soc: DP soc handle
3241  *
3242  * Return: None
3243  */
3244 static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3245 {
3246 	dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
3247 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3248 				   DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
3249 				   sizeof(struct dp_tx_hw_desc_evt),
3250 				   true, DP_TX_HW_DESC_HIST_TYPE);
3251 }
3252 
3253 static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3254 {
3255 	dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
3256 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3257 				   true, DP_TX_HW_DESC_HIST_TYPE);
3258 }
3259 
3260 #else /* DP_TX_HW_DESC_HISTORY */
3261 static inline void
3262 dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3263 {
3264 }
3265 
3266 static inline void
3267 dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3268 {
3269 }
3270 #endif /* DP_TX_HW_DESC_HISTORY */
3271 
3272 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
3273 #ifndef RX_DEFRAG_DO_NOT_REINJECT
3274 /**
3275  * dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
3276  *					    history.
3277  * @soc: DP soc handle
3278  *
3279  * Return: None
3280  */
3281 static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3282 {
3283 	soc->rx_reinject_ring_history =
3284 		dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3285 				     sizeof(struct dp_rx_reinject_history));
3286 	if (soc->rx_reinject_ring_history)
3287 		qdf_atomic_init(&soc->rx_reinject_ring_history->index);
3288 }
3289 #else /* RX_DEFRAG_DO_NOT_REINJECT */
3290 static inline void
3291 dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3292 {
3293 }
3294 #endif /* RX_DEFRAG_DO_NOT_REINJECT */
3295 
3296 /**
3297  * dp_soc_rx_history_attach() - Attach the ring history record buffers
3298  * @soc: DP soc structure
3299  *
3300  * This function allocates the memory for recording the rx ring, rx error
3301  * ring and the reinject ring entries. There is no error returned in case
3302  * of allocation failure since the record function checks if the history is
3303  * initialized or not. We do not want to fail the driver load in case of
3304  * failure to allocate memory for debug history.
3305  *
3306  * Return: None
3307  */
3308 static void dp_soc_rx_history_attach(struct dp_soc *soc)
3309 {
3310 	int i;
3311 	uint32_t rx_ring_hist_size;
3312 	uint32_t rx_refill_ring_hist_size;
3313 
3314 	rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
3315 	rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
3316 
3317 	for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
3318 		soc->rx_ring_history[i] = dp_context_alloc_mem(
3319 				soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
3320 		if (soc->rx_ring_history[i])
3321 			qdf_atomic_init(&soc->rx_ring_history[i]->index);
3322 	}
3323 
3324 	soc->rx_err_ring_history = dp_context_alloc_mem(
3325 			soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
3326 	if (soc->rx_err_ring_history)
3327 		qdf_atomic_init(&soc->rx_err_ring_history->index);
3328 
3329 	dp_soc_rx_reinject_ring_history_attach(soc);
3330 
3331 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3332 		soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
3333 						soc,
3334 						DP_RX_REFILL_RING_HIST_TYPE,
3335 						rx_refill_ring_hist_size);
3336 
3337 		if (soc->rx_refill_ring_history[i])
3338 			qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
3339 	}
3340 }
3341 
3342 static void dp_soc_rx_history_detach(struct dp_soc *soc)
3343 {
3344 	int i;
3345 
3346 	for (i = 0; i < MAX_REO_DEST_RINGS; i++)
3347 		dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
3348 				    soc->rx_ring_history[i]);
3349 
3350 	dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
3351 			    soc->rx_err_ring_history);
3352 
3353 	/*
3354 	 * No need for a featurized detach since qdf_mem_free takes
3355 	 * care of NULL pointer.
3356 	 */
3357 	dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3358 			    soc->rx_reinject_ring_history);
3359 
3360 	for (i = 0; i < MAX_PDEV_CNT; i++)
3361 		dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
3362 				    soc->rx_refill_ring_history[i]);
3363 }
3364 
3365 #else
3366 static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
3367 {
3368 }
3369 
3370 static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
3371 {
3372 }
3373 #endif
3374 
3375 #ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
3376 /**
3377  * dp_soc_mon_status_ring_history_attach() - Attach the monitor status
3378  *					     buffer record history.
3379  * @soc: DP soc handle
3380  *
3381  * This function allocates memory to track the event for a monitor
3382  * status buffer, before its parsed and freed.
3383  *
3384  * Return: None
3385  */
3386 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3387 {
3388 	soc->mon_status_ring_history = dp_context_alloc_mem(soc,
3389 				DP_MON_STATUS_BUF_HIST_TYPE,
3390 				sizeof(struct dp_mon_status_ring_history));
3391 	if (!soc->mon_status_ring_history) {
3392 		dp_err("Failed to alloc memory for mon status ring history");
3393 		return;
3394 	}
3395 }
3396 
3397 /**
3398  * dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
3399  *					     record history.
3400  * @soc: DP soc handle
3401  *
3402  * Return: None
3403  */
3404 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3405 {
3406 	dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
3407 			    soc->mon_status_ring_history);
3408 }
3409 #else
3410 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3411 {
3412 }
3413 
3414 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3415 {
3416 }
3417 #endif
3418 
3419 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
3420 /**
3421  * dp_soc_tx_history_attach() - Attach the ring history record buffers
3422  * @soc: DP soc structure
3423  *
3424  * This function allocates the memory for recording the tx tcl ring and
3425  * the tx comp ring entries. There is no error returned in case
3426  * of allocation failure since the record function checks if the history is
3427  * initialized or not. We do not want to fail the driver load in case of
3428  * failure to allocate memory for debug history.
3429  *
3430  * Return: None
3431  */
3432 static void dp_soc_tx_history_attach(struct dp_soc *soc)
3433 {
3434 	dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
3435 				   DP_TX_TCL_HIST_MAX_SLOTS,
3436 				   DP_TX_TCL_HIST_PER_SLOT_MAX,
3437 				   sizeof(struct dp_tx_desc_event),
3438 				   true, DP_TX_TCL_HIST_TYPE);
3439 	dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
3440 				   DP_TX_COMP_HIST_MAX_SLOTS,
3441 				   DP_TX_COMP_HIST_PER_SLOT_MAX,
3442 				   sizeof(struct dp_tx_desc_event),
3443 				   true, DP_TX_COMP_HIST_TYPE);
3444 }
3445 
3446 /**
3447  * dp_soc_tx_history_detach() - Detach the ring history record buffers
3448  * @soc: DP soc structure
3449  *
3450  * This function frees the memory for recording the tx tcl ring and
3451  * the tx comp ring entries.
3452  *
3453  * Return: None
3454  */
3455 static void dp_soc_tx_history_detach(struct dp_soc *soc)
3456 {
3457 	dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
3458 				   DP_TX_TCL_HIST_MAX_SLOTS,
3459 				   true, DP_TX_TCL_HIST_TYPE);
3460 	dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
3461 				   DP_TX_COMP_HIST_MAX_SLOTS,
3462 				   true, DP_TX_COMP_HIST_TYPE);
3463 }
3464 
3465 #else
3466 static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
3467 {
3468 }
3469 
3470 static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
3471 {
3472 }
3473 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
3474 
3475 #ifdef DP_RX_MSDU_DONE_FAIL_HISTORY
3476 static void dp_soc_msdu_done_fail_history_attach(struct dp_soc *soc)
3477 {
3478 	soc->msdu_done_fail_hist =
3479 		qdf_mem_malloc(sizeof(struct dp_msdu_done_fail_history));
3480 	if (soc->msdu_done_fail_hist)
3481 		qdf_atomic_init(&soc->msdu_done_fail_hist->index);
3482 }
3483 
3484 static void dp_soc_msdu_done_fail_history_detach(struct dp_soc *soc)
3485 {
3486 	if (soc->msdu_done_fail_hist)
3487 		qdf_mem_free(soc->msdu_done_fail_hist);
3488 }
3489 #else
3490 static inline void dp_soc_msdu_done_fail_history_attach(struct dp_soc *soc)
3491 {
3492 }
3493 
3494 static inline void dp_soc_msdu_done_fail_history_detach(struct dp_soc *soc)
3495 {
3496 }
3497 #endif
3498 
3499 #ifdef DP_RX_PEEK_MSDU_DONE_WAR
3500 static void dp_soc_msdu_done_fail_desc_list_attach(struct dp_soc *soc)
3501 {
3502 	qdf_atomic_init(&soc->msdu_done_fail_desc_list.index);
3503 	qdf_atomic_set(&soc->msdu_done_fail_desc_list.index,
3504 		       DP_MSDU_DONE_FAIL_DESCS_MAX - 1);
3505 }
3506 #else
3507 static void dp_soc_msdu_done_fail_desc_list_attach(struct dp_soc *soc)
3508 {
3509 }
3510 #endif
3511 
3512 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
3513 QDF_STATUS
3514 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3515 {
3516 	struct dp_rx_fst *rx_fst = NULL;
3517 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
3518 
3519 	/* for Lithium the below API is not registered
3520 	 * hence fst attach happens for each pdev
3521 	 */
3522 	if (!soc->arch_ops.dp_get_rx_fst)
3523 		return dp_rx_fst_attach(soc, pdev);
3524 
3525 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3526 
3527 	/* for BE the FST attach is called only once per
3528 	 * ML context. if rx_fst is already registered
3529 	 * increase the ref count and return.
3530 	 */
3531 	if (rx_fst) {
3532 		soc->rx_fst = rx_fst;
3533 		pdev->rx_fst = rx_fst;
3534 		soc->arch_ops.dp_rx_fst_ref();
3535 	} else {
3536 		ret = dp_rx_fst_attach(soc, pdev);
3537 		if ((ret != QDF_STATUS_SUCCESS) &&
3538 		    (ret != QDF_STATUS_E_NOSUPPORT))
3539 			return ret;
3540 
3541 		soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
3542 		soc->arch_ops.dp_rx_fst_ref();
3543 	}
3544 	return ret;
3545 }
3546 
3547 void
3548 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3549 {
3550 	struct dp_rx_fst *rx_fst = NULL;
3551 
3552 	/* for Lithium the below API is not registered
3553 	 * hence fst detach happens for each pdev
3554 	 */
3555 	if (!soc->arch_ops.dp_get_rx_fst) {
3556 		dp_rx_fst_detach(soc, pdev);
3557 		return;
3558 	}
3559 
3560 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3561 
3562 	/* for BE the FST detach is called only when last
3563 	 * ref count reaches 1.
3564 	 */
3565 	if (rx_fst) {
3566 		if (soc->arch_ops.dp_rx_fst_deref() == 1)
3567 			dp_rx_fst_detach(soc, pdev);
3568 	}
3569 	pdev->rx_fst = NULL;
3570 }
3571 #else
3572 QDF_STATUS
3573 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3574 {
3575 	return QDF_STATUS_SUCCESS;
3576 }
3577 
3578 void
3579 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3580 {
3581 }
3582 #endif
3583 
3584 /**
3585  * dp_pdev_attach_wifi3() - attach txrx pdev
3586  * @txrx_soc: Datapath SOC handle
3587  * @params: Params for PDEV attach
3588  *
3589  * Return: QDF_STATUS
3590  */
3591 static inline
3592 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
3593 				struct cdp_pdev_attach_params *params)
3594 {
3595 	qdf_size_t pdev_context_size;
3596 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3597 	struct dp_pdev *pdev = NULL;
3598 	uint8_t pdev_id = params->pdev_id;
3599 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3600 	int nss_cfg;
3601 	QDF_STATUS ret;
3602 
3603 	pdev_context_size =
3604 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
3605 	if (pdev_context_size)
3606 		pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
3607 					    pdev_context_size);
3608 
3609 	if (!pdev) {
3610 		dp_init_err("%pK: DP PDEV memory allocation failed",
3611 			    soc);
3612 		goto fail0;
3613 	}
3614 	wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
3615 			  WLAN_MD_DP_PDEV, "dp_pdev");
3616 
3617 	soc_cfg_ctx = soc->wlan_cfg_ctx;
3618 	pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
3619 
3620 	if (!pdev->wlan_cfg_ctx) {
3621 		dp_init_err("%pK: pdev cfg_attach failed", soc);
3622 		goto fail1;
3623 	}
3624 
3625 	pdev->soc = soc;
3626 	pdev->pdev_id = pdev_id;
3627 	soc->pdev_list[pdev_id] = pdev;
3628 	pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
3629 	soc->pdev_count++;
3630 
3631 	dp_ssr_dump_pdev_register(pdev, pdev_id);
3632 
3633 	/*sync DP pdev cfg items with profile support after cfg_pdev_attach*/
3634 	wlan_dp_pdev_cfg_sync_profile((struct cdp_soc_t *)soc, pdev_id);
3635 
3636 	/*
3637 	 * set nss pdev config based on soc config
3638 	 */
3639 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
3640 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
3641 					 (nss_cfg & (1 << pdev_id)));
3642 
3643 	/* Allocate memory for pdev srng rings */
3644 	if (dp_pdev_srng_alloc(pdev)) {
3645 		dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
3646 		goto fail2;
3647 	}
3648 
3649 	/* Setup second Rx refill buffer ring */
3650 	if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
3651 		dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
3652 			    soc);
3653 		goto fail3;
3654 	}
3655 
3656 	/* Allocate memory for pdev rxdma rings */
3657 	if (dp_rxdma_ring_alloc(soc, pdev)) {
3658 		dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
3659 		goto fail4;
3660 	}
3661 
3662 	/* Rx specific init */
3663 	if (dp_rx_pdev_desc_pool_alloc(pdev)) {
3664 		dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
3665 		goto fail4;
3666 	}
3667 
3668 	if (dp_monitor_pdev_attach(pdev)) {
3669 		dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
3670 		goto fail5;
3671 	}
3672 
3673 	soc->arch_ops.txrx_pdev_attach(pdev, params);
3674 
3675 	/* Setup third Rx refill buffer ring */
3676 	if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3677 		dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
3678 			    soc);
3679 		goto fail6;
3680 	}
3681 
3682 	ret = dp_rx_fst_attach_wrapper(soc, pdev);
3683 	if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
3684 		dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
3685 			    soc, pdev_id, ret);
3686 		goto fail7;
3687 	}
3688 
3689 	return QDF_STATUS_SUCCESS;
3690 
3691 fail7:
3692 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3693 fail6:
3694 	dp_monitor_pdev_detach(pdev);
3695 fail5:
3696 	dp_rx_pdev_desc_pool_free(pdev);
3697 fail4:
3698 	dp_rxdma_ring_free(pdev);
3699 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3700 fail3:
3701 	dp_pdev_srng_free(pdev);
3702 fail2:
3703 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3704 fail1:
3705 	soc->pdev_list[pdev_id] = NULL;
3706 	qdf_mem_free(pdev);
3707 fail0:
3708 	return QDF_STATUS_E_FAILURE;
3709 }
3710 
3711 /**
3712  * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
3713  * @pdev: Datapath PDEV handle
3714  *
3715  * This is the last chance to flush all pending dp vdevs/peers,
3716  * some peer/vdev leak case like Non-SSR + peer unmap missing
3717  * will be covered here.
3718  *
3719  * Return: None
3720  */
3721 static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
3722 {
3723 	struct dp_soc *soc = pdev->soc;
3724 	struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
3725 	uint32_t i = 0;
3726 	uint32_t num_vdevs = 0;
3727 	struct dp_vdev *vdev = NULL;
3728 
3729 	if (TAILQ_EMPTY(&soc->inactive_vdev_list))
3730 		return;
3731 
3732 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
3733 	TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
3734 		      inactive_list_elem) {
3735 		if (vdev->pdev != pdev)
3736 			continue;
3737 
3738 		vdev_arr[num_vdevs] = vdev;
3739 		num_vdevs++;
3740 		/* take reference to free */
3741 		dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
3742 	}
3743 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
3744 
3745 	for (i = 0; i < num_vdevs; i++) {
3746 		dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
3747 		dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
3748 	}
3749 }
3750 
3751 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
3752 /**
3753  * dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
3754  *                                          for enable/disable of HW vdev stats
3755  * @soc: Datapath soc handle
3756  * @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
3757  * @enable: flag to represent enable/disable of hw vdev stats
3758  *
3759  * Return: none
3760  */
3761 static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
3762 						   uint8_t pdev_id,
3763 						   bool enable)
3764 {
3765 	/* Check SOC level config for HW offload vdev stats support */
3766 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3767 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3768 		return;
3769 	}
3770 
3771 	/* Send HTT command to FW for enable of stats */
3772 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
3773 }
3774 
3775 /**
3776  * dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
3777  * @soc: Datapath soc handle
3778  * @pdev_id: pdev_id (0,1,2)
3779  * @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
3780  *                   cleared on HW
3781  *
3782  * Return: none
3783  */
3784 static
3785 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3786 					   uint64_t vdev_id_bitmask)
3787 {
3788 	/* Check SOC level config for HW offload vdev stats support */
3789 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3790 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3791 		return;
3792 	}
3793 
3794 	/* Send HTT command to FW for reset of stats */
3795 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
3796 					 vdev_id_bitmask);
3797 }
3798 #else
3799 static void
3800 dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
3801 				       bool enable)
3802 {
3803 }
3804 
3805 static
3806 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3807 					   uint64_t vdev_id_bitmask)
3808 {
3809 }
3810 #endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
3811 
3812 /**
3813  * dp_pdev_deinit() - Deinit txrx pdev
3814  * @txrx_pdev: Datapath PDEV handle
3815  * @force: Force deinit
3816  *
3817  * Return: None
3818  */
3819 static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
3820 {
3821 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3822 	qdf_nbuf_t curr_nbuf, next_nbuf;
3823 
3824 	if (pdev->pdev_deinit)
3825 		return;
3826 
3827 	dp_tx_me_exit(pdev);
3828 	dp_rx_pdev_buffers_free(pdev);
3829 	dp_rx_pdev_desc_pool_deinit(pdev);
3830 	dp_pdev_bkp_stats_detach(pdev);
3831 	qdf_event_destroy(&pdev->fw_peer_stats_event);
3832 	qdf_event_destroy(&pdev->fw_stats_event);
3833 	qdf_event_destroy(&pdev->fw_obss_stats_event);
3834 	if (pdev->sojourn_buf)
3835 		qdf_nbuf_free(pdev->sojourn_buf);
3836 
3837 	dp_pdev_flush_pending_vdevs(pdev);
3838 	dp_tx_desc_flush(pdev, NULL, true);
3839 
3840 	qdf_spinlock_destroy(&pdev->tx_mutex);
3841 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
3842 
3843 	dp_monitor_pdev_deinit(pdev);
3844 
3845 	dp_pdev_srng_deinit(pdev);
3846 
3847 	dp_ipa_uc_detach(pdev->soc, pdev);
3848 	dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
3849 	dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
3850 	dp_rxdma_ring_cleanup(pdev->soc, pdev);
3851 
3852 	curr_nbuf = pdev->invalid_peer_head_msdu;
3853 	while (curr_nbuf) {
3854 		next_nbuf = qdf_nbuf_next(curr_nbuf);
3855 		dp_rx_nbuf_free(curr_nbuf);
3856 		curr_nbuf = next_nbuf;
3857 	}
3858 	pdev->invalid_peer_head_msdu = NULL;
3859 	pdev->invalid_peer_tail_msdu = NULL;
3860 
3861 	dp_wdi_event_detach(pdev);
3862 	pdev->pdev_deinit = 1;
3863 }
3864 
3865 /**
3866  * dp_pdev_deinit_wifi3() - Deinit txrx pdev
3867  * @psoc: Datapath psoc handle
3868  * @pdev_id: Id of datapath PDEV handle
3869  * @force: Force deinit
3870  *
3871  * Return: QDF_STATUS
3872  */
3873 static QDF_STATUS
3874 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3875 		     int force)
3876 {
3877 	struct dp_pdev *txrx_pdev;
3878 
3879 	txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3880 						       pdev_id);
3881 
3882 	if (!txrx_pdev)
3883 		return QDF_STATUS_E_FAILURE;
3884 
3885 	dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
3886 
3887 	return QDF_STATUS_SUCCESS;
3888 }
3889 
3890 /**
3891  * dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
3892  * @txrx_pdev: Datapath PDEV handle
3893  *
3894  * Return: None
3895  */
3896 static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
3897 {
3898 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3899 
3900 	dp_monitor_tx_capture_debugfs_init(pdev);
3901 
3902 	if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
3903 		dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
3904 	}
3905 }
3906 
3907 /**
3908  * dp_pdev_post_attach_wifi3() - attach txrx pdev post
3909  * @soc: Datapath soc handle
3910  * @pdev_id: pdev id of pdev
3911  *
3912  * Return: QDF_STATUS
3913  */
3914 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
3915 				     uint8_t pdev_id)
3916 {
3917 	struct dp_pdev *pdev;
3918 
3919 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3920 						  pdev_id);
3921 
3922 	if (!pdev) {
3923 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3924 			    (struct dp_soc *)soc, pdev_id);
3925 		return QDF_STATUS_E_FAILURE;
3926 	}
3927 
3928 	dp_pdev_post_attach((struct cdp_pdev *)pdev);
3929 	return QDF_STATUS_SUCCESS;
3930 }
3931 
3932 /**
3933  * dp_pdev_detach() - Complete rest of pdev detach
3934  * @txrx_pdev: Datapath PDEV handle
3935  * @force: Force deinit
3936  *
3937  * Return: None
3938  */
3939 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
3940 {
3941 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3942 	struct dp_soc *soc = pdev->soc;
3943 
3944 	dp_rx_fst_detach_wrapper(soc, pdev);
3945 	dp_pdev_htt_stats_dbgfs_deinit(pdev);
3946 	dp_rx_pdev_desc_pool_free(pdev);
3947 	dp_monitor_pdev_detach(pdev);
3948 	dp_rxdma_ring_free(pdev);
3949 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3950 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3951 	dp_pdev_srng_free(pdev);
3952 
3953 	soc->pdev_count--;
3954 	soc->pdev_list[pdev->pdev_id] = NULL;
3955 
3956 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3957 	wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
3958 			     WLAN_MD_DP_PDEV, "dp_pdev");
3959 	dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
3960 }
3961 
3962 /**
3963  * dp_pdev_detach_wifi3() - detach txrx pdev
3964  * @psoc: Datapath soc handle
3965  * @pdev_id: pdev id of pdev
3966  * @force: Force detach
3967  *
3968  * Return: QDF_STATUS
3969  */
3970 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3971 				       int force)
3972 {
3973 	struct dp_pdev *pdev;
3974 	struct dp_soc *soc = (struct dp_soc *)psoc;
3975 
3976 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3977 						  pdev_id);
3978 
3979 	if (!pdev) {
3980 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3981 			    (struct dp_soc *)psoc, pdev_id);
3982 		return QDF_STATUS_E_FAILURE;
3983 	}
3984 
3985 	dp_ssr_dump_pdev_unregister(pdev_id);
3986 
3987 	soc->arch_ops.txrx_pdev_detach(pdev);
3988 
3989 	dp_pdev_detach((struct cdp_pdev *)pdev, force);
3990 	return QDF_STATUS_SUCCESS;
3991 }
3992 
3993 void dp_soc_print_inactive_objects(struct dp_soc *soc)
3994 {
3995 	struct dp_peer *peer = NULL;
3996 	struct dp_peer *tmp_peer = NULL;
3997 	struct dp_vdev *vdev = NULL;
3998 	struct dp_vdev *tmp_vdev = NULL;
3999 	int i = 0;
4000 	uint32_t count;
4001 
4002 	if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
4003 	    TAILQ_EMPTY(&soc->inactive_vdev_list))
4004 		return;
4005 
4006 	TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
4007 			   inactive_list_elem, tmp_peer) {
4008 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
4009 			count = qdf_atomic_read(&peer->mod_refs[i]);
4010 			if (count)
4011 				DP_PRINT_STATS("peer %pK Module id %u ==> %u",
4012 					       peer, i, count);
4013 		}
4014 	}
4015 
4016 	TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
4017 			   inactive_list_elem, tmp_vdev) {
4018 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
4019 			count = qdf_atomic_read(&vdev->mod_refs[i]);
4020 			if (count)
4021 				DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
4022 					       vdev, i, count);
4023 		}
4024 	}
4025 	QDF_BUG(0);
4026 }
4027 
4028 /**
4029  * dp_soc_deinit_wifi3() - Deinitialize txrx SOC
4030  * @txrx_soc: Opaque DP SOC handle
4031  *
4032  * Return: None
4033  */
4034 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
4035 {
4036 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
4037 
4038 	soc->arch_ops.txrx_soc_deinit(soc);
4039 }
4040 
4041 /**
4042  * dp_soc_detach() - Detach rest of txrx SOC
4043  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4044  *
4045  * Return: None
4046  */
4047 static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
4048 {
4049 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
4050 
4051 	soc->arch_ops.txrx_soc_detach(soc);
4052 
4053 	qdf_ssr_driver_dump_unregister_region("wlan_cfg_ctx");
4054 	qdf_ssr_driver_dump_unregister_region("dp_soc");
4055 	qdf_ssr_driver_dump_unregister_region("tcl_wbm_map_array");
4056 	qdf_nbuf_ssr_unregister_region();
4057 
4058 	dp_runtime_deinit();
4059 
4060 	dp_soc_unset_qref_debug_list(soc);
4061 	dp_sysfs_deinitialize_stats(soc);
4062 	dp_soc_swlm_detach(soc);
4063 	dp_soc_tx_desc_sw_pools_free(soc);
4064 	dp_soc_srng_free(soc);
4065 	dp_hw_link_desc_ring_free(soc);
4066 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
4067 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
4068 	dp_soc_tx_hw_desc_history_detach(soc);
4069 	dp_soc_tx_history_detach(soc);
4070 	dp_soc_mon_status_ring_history_detach(soc);
4071 	dp_soc_rx_history_detach(soc);
4072 	dp_soc_cfg_history_detach(soc);
4073 	dp_soc_msdu_done_fail_history_detach(soc);
4074 
4075 	if (!dp_monitor_modularized_enable()) {
4076 		dp_mon_soc_detach_wrapper(soc);
4077 	}
4078 
4079 	qdf_mem_free(soc->cdp_soc.ops);
4080 	qdf_mem_common_free(soc);
4081 }
4082 
4083 /**
4084  * dp_soc_detach_wifi3() - Detach txrx SOC
4085  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4086  *
4087  * Return: None
4088  */
4089 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
4090 {
4091 	dp_soc_detach(txrx_soc);
4092 }
4093 
4094 #ifdef QCA_HOST2FW_RXBUF_RING
4095 #ifdef IPA_WDI3_VLAN_SUPPORT
4096 static inline
4097 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4098 				 struct dp_pdev *pdev,
4099 				 uint8_t idx)
4100 {
4101 	if (pdev->rx_refill_buf_ring3.hal_srng)
4102 		htt_srng_setup(soc->htt_handle, idx,
4103 			       pdev->rx_refill_buf_ring3.hal_srng,
4104 			       RXDMA_BUF);
4105 }
4106 #else
4107 static inline
4108 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4109 				 struct dp_pdev *pdev,
4110 				 uint8_t idx)
4111 { }
4112 #endif
4113 
4114 #ifdef WIFI_MONITOR_SUPPORT
4115 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4116 {
4117 	return dp_local_pkt_capture_tx_config(pdev);
4118 }
4119 #else
4120 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4121 {
4122 	return QDF_STATUS_SUCCESS;
4123 }
4124 #endif
4125 
4126 /**
4127  * dp_rxdma_ring_config() - configure the RX DMA rings
4128  * @soc: data path SoC handle
4129  *
4130  * This function is used to configure the MAC rings.
4131  * On MCL host provides buffers in Host2FW ring
4132  * FW refills (copies) buffers to the ring and updates
4133  * ring_idx in register
4134  *
4135  * Return: zero on success, non-zero on failure
4136  */
4137 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4138 {
4139 	int i;
4140 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4141 
4142 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4143 		struct dp_pdev *pdev = soc->pdev_list[i];
4144 
4145 		if (pdev) {
4146 			int mac_id;
4147 			int max_mac_rings =
4148 				 wlan_cfg_get_num_mac_rings
4149 				(pdev->wlan_cfg_ctx);
4150 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4151 
4152 			htt_srng_setup(soc->htt_handle, i,
4153 				       soc->rx_refill_buf_ring[lmac_id]
4154 				       .hal_srng,
4155 				       RXDMA_BUF);
4156 
4157 			if (pdev->rx_refill_buf_ring2.hal_srng)
4158 				htt_srng_setup(soc->htt_handle, i,
4159 					       pdev->rx_refill_buf_ring2
4160 					       .hal_srng,
4161 					       RXDMA_BUF);
4162 
4163 			dp_rxdma_setup_refill_ring3(soc, pdev, i);
4164 
4165 			dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
4166 			dp_lpc_tx_config(pdev);
4167 			dp_info("pdev_id %d max_mac_rings %d",
4168 			       pdev->pdev_id, max_mac_rings);
4169 
4170 			for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
4171 				int mac_for_pdev =
4172 					dp_get_mac_id_for_pdev(mac_id,
4173 							       pdev->pdev_id);
4174 				/*
4175 				 * Obtain lmac id from pdev to access the LMAC
4176 				 * ring in soc context
4177 				 */
4178 				lmac_id =
4179 				dp_get_lmac_id_for_pdev_id(soc,
4180 							   mac_id,
4181 							   pdev->pdev_id);
4182 				dp_info("mac_id %d", mac_for_pdev);
4183 
4184 				htt_srng_setup(soc->htt_handle, mac_for_pdev,
4185 					 pdev->rx_mac_buf_ring[mac_id]
4186 						.hal_srng,
4187 					 RXDMA_BUF);
4188 
4189 				if (!soc->rxdma2sw_rings_not_supported)
4190 					dp_htt_setup_rxdma_err_dst_ring(soc,
4191 						mac_for_pdev, lmac_id);
4192 
4193 				/* Configure monitor mode rings */
4194 				status = dp_monitor_htt_srng_setup(soc, pdev,
4195 								   lmac_id,
4196 								   mac_for_pdev);
4197 				if (status != QDF_STATUS_SUCCESS) {
4198 					dp_err("Failed to send htt monitor messages to target");
4199 					return status;
4200 				}
4201 
4202 			}
4203 		}
4204 	}
4205 
4206 	dp_reap_timer_init(soc);
4207 	return status;
4208 }
4209 #else
4210 /* This is only for WIN */
4211 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4212 {
4213 	int i;
4214 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4215 	int mac_for_pdev;
4216 	int lmac_id;
4217 
4218 	/* Configure monitor mode rings */
4219 	dp_monitor_soc_htt_srng_setup(soc);
4220 
4221 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4222 		struct dp_pdev *pdev =  soc->pdev_list[i];
4223 
4224 		if (!pdev)
4225 			continue;
4226 
4227 		mac_for_pdev = i;
4228 		lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4229 
4230 		if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
4231 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4232 				       soc->rx_refill_buf_ring[lmac_id].
4233 				       hal_srng, RXDMA_BUF);
4234 
4235 		/* Configure monitor mode rings */
4236 		dp_monitor_htt_srng_setup(soc, pdev,
4237 					  lmac_id,
4238 					  mac_for_pdev);
4239 		if (!soc->rxdma2sw_rings_not_supported)
4240 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4241 				       soc->rxdma_err_dst_ring[lmac_id].hal_srng,
4242 				       RXDMA_DST);
4243 	}
4244 
4245 	dp_reap_timer_init(soc);
4246 	return status;
4247 }
4248 #endif
4249 
4250 /**
4251  * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
4252  *
4253  * This function is used to configure the FSE HW block in RX OLE on a
4254  * per pdev basis. Here, we will be programming parameters related to
4255  * the Flow Search Table.
4256  *
4257  * @soc: data path SoC handle
4258  *
4259  * Return: zero on success, non-zero on failure
4260  */
4261 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4262 static QDF_STATUS
4263 dp_rx_target_fst_config(struct dp_soc *soc)
4264 {
4265 	int i;
4266 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4267 
4268 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4269 		struct dp_pdev *pdev = soc->pdev_list[i];
4270 
4271 		/* Flow search is not enabled if NSS offload is enabled */
4272 		if (pdev &&
4273 		    !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
4274 			status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
4275 			if (status != QDF_STATUS_SUCCESS)
4276 				break;
4277 		}
4278 	}
4279 	return status;
4280 }
4281 #else
4282 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
4283 {
4284 	return QDF_STATUS_SUCCESS;
4285 }
4286 #endif
4287 
4288 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4289 static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
4290 {
4291 	return QDF_STATUS_SUCCESS;
4292 }
4293 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4294 
4295 #ifdef WLAN_SUPPORT_PPEDS
4296 /**
4297  * dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
4298  * @soc: DP Tx/Rx handle
4299  *
4300  * Return: QDF_STATUS
4301  */
4302 static
4303 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4304 {
4305 	struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
4306 	QDF_STATUS status;
4307 
4308 	/*
4309 	 * Program RxDMA to override the reo destination indication
4310 	 * with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
4311 	 * thereby driving the packet to REO2PPE ring.
4312 	 * If the MSDU is spanning more than 1 buffer, then this
4313 	 * override is not done.
4314 	 */
4315 	htt_cfg.override = 1;
4316 	htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
4317 	htt_cfg.multi_buffer_msdu_override_en = 0;
4318 
4319 	/*
4320 	 * Override use_ppe to 0 in RxOLE for the following
4321 	 * cases.
4322 	 */
4323 	htt_cfg.intra_bss_override = 1;
4324 	htt_cfg.decap_raw_override = 1;
4325 	htt_cfg.decap_nwifi_override = 1;
4326 	htt_cfg.ip_frag_override = 1;
4327 
4328 	status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
4329 	if (status != QDF_STATUS_SUCCESS)
4330 		dp_err("RxOLE and RxDMA PPE config failed %d", status);
4331 
4332 	return status;
4333 }
4334 
4335 #else
4336 static inline
4337 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4338 {
4339 	return QDF_STATUS_SUCCESS;
4340 }
4341 
4342 #endif /* WLAN_SUPPORT_PPEDS */
4343 
4344 #ifdef DP_UMAC_HW_RESET_SUPPORT
4345 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4346 {
4347 	dp_umac_reset_register_rx_action_callback(soc,
4348 					dp_umac_reset_action_trigger_recovery,
4349 					UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
4350 
4351 	dp_umac_reset_register_rx_action_callback(soc,
4352 		dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
4353 
4354 	dp_umac_reset_register_rx_action_callback(soc,
4355 					dp_umac_reset_handle_post_reset,
4356 					UMAC_RESET_ACTION_DO_POST_RESET_START);
4357 
4358 	dp_umac_reset_register_rx_action_callback(soc,
4359 				dp_umac_reset_handle_post_reset_complete,
4360 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
4361 
4362 }
4363 #else
4364 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4365 {
4366 }
4367 #endif
4368 /**
4369  * dp_soc_attach_target_wifi3() - SOC initialization in the target
4370  * @cdp_soc: Opaque Datapath SOC handle
4371  *
4372  * Return: zero on success, non-zero on failure
4373  */
4374 static QDF_STATUS
4375 dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
4376 {
4377 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4378 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4379 	struct hal_reo_params reo_params;
4380 
4381 	htt_soc_attach_target(soc->htt_handle);
4382 
4383 	status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
4384 	if (status != QDF_STATUS_SUCCESS) {
4385 		dp_err("Failed to send htt RxOLE and RxDMA messages to target");
4386 		return status;
4387 	}
4388 
4389 	status = dp_rxdma_ring_config(soc);
4390 	if (status != QDF_STATUS_SUCCESS) {
4391 		dp_err("Failed to send htt srng setup messages to target");
4392 		return status;
4393 	}
4394 
4395 	status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
4396 	if (status != QDF_STATUS_SUCCESS) {
4397 		dp_err("Failed to send htt ring config message to target");
4398 		return status;
4399 	}
4400 
4401 	status = dp_soc_umac_reset_init(cdp_soc);
4402 	if (status != QDF_STATUS_SUCCESS &&
4403 	    status != QDF_STATUS_E_NOSUPPORT) {
4404 		dp_err("Failed to initialize UMAC reset");
4405 		return status;
4406 	}
4407 
4408 	dp_register_umac_reset_handlers(soc);
4409 
4410 	status = dp_rx_target_fst_config(soc);
4411 	if (status != QDF_STATUS_SUCCESS &&
4412 	    status != QDF_STATUS_E_NOSUPPORT) {
4413 		dp_err("Failed to send htt fst setup config message to target");
4414 		return status;
4415 	}
4416 
4417 	DP_STATS_INIT(soc);
4418 
4419 	dp_runtime_init(soc);
4420 
4421 	/* Enable HW vdev offload stats if feature is supported */
4422 	dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
4423 
4424 	/* initialize work queue for stats processing */
4425 	qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
4426 
4427 	wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
4428 				       soc->ctrl_psoc);
4429 	/* Setup HW REO */
4430 	qdf_mem_zero(&reo_params, sizeof(reo_params));
4431 
4432 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
4433 		/*
4434 		 * Reo ring remap is not required if both radios
4435 		 * are offloaded to NSS
4436 		 */
4437 
4438 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
4439 						   &reo_params.remap1,
4440 						   &reo_params.remap2))
4441 			reo_params.rx_hash_enabled = true;
4442 		else
4443 			reo_params.rx_hash_enabled = false;
4444 	}
4445 
4446 	/*
4447 	 * set the fragment destination ring
4448 	 */
4449 	dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
4450 
4451 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
4452 		reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
4453 
4454 	reo_params.reo_qref = &soc->reo_qref;
4455 	hal_reo_setup(soc->hal_soc, &reo_params, 1);
4456 
4457 	hal_reo_set_err_dst_remap(soc->hal_soc);
4458 
4459 	soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
4460 
4461 	return QDF_STATUS_SUCCESS;
4462 }
4463 
4464 /**
4465  * dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
4466  * @soc: SoC handle
4467  * @vdev: vdev handle
4468  * @vdev_id: vdev_id
4469  *
4470  * Return: None
4471  */
4472 static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
4473 				   struct dp_vdev *vdev,
4474 				   uint8_t vdev_id)
4475 {
4476 	QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
4477 
4478 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4479 
4480 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4481 			QDF_STATUS_SUCCESS) {
4482 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
4483 			     soc, vdev, vdev_id);
4484 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4485 		return;
4486 	}
4487 
4488 	if (!soc->vdev_id_map[vdev_id])
4489 		soc->vdev_id_map[vdev_id] = vdev;
4490 	else
4491 		QDF_ASSERT(0);
4492 
4493 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4494 }
4495 
4496 /**
4497  * dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
4498  * @soc: SoC handle
4499  * @vdev: vdev handle
4500  *
4501  * Return: None
4502  */
4503 static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
4504 				      struct dp_vdev *vdev)
4505 {
4506 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4507 	QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
4508 
4509 	soc->vdev_id_map[vdev->vdev_id] = NULL;
4510 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4511 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4512 }
4513 
4514 /**
4515  * dp_vdev_pdev_list_add() - add vdev into pdev's list
4516  * @soc: soc handle
4517  * @pdev: pdev handle
4518  * @vdev: vdev handle
4519  *
4520  * Return: none
4521  */
4522 static void dp_vdev_pdev_list_add(struct dp_soc *soc,
4523 				  struct dp_pdev *pdev,
4524 				  struct dp_vdev *vdev)
4525 {
4526 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4527 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4528 			QDF_STATUS_SUCCESS) {
4529 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
4530 			     soc, vdev);
4531 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4532 		return;
4533 	}
4534 	/* add this vdev into the pdev's list */
4535 	TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
4536 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4537 }
4538 
4539 /**
4540  * dp_vdev_pdev_list_remove() - remove vdev from pdev's list
4541  * @soc: SoC handle
4542  * @pdev: pdev handle
4543  * @vdev: VDEV handle
4544  *
4545  * Return: none
4546  */
4547 static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
4548 				     struct dp_pdev *pdev,
4549 				     struct dp_vdev *vdev)
4550 {
4551 	uint8_t found = 0;
4552 	struct dp_vdev *tmpvdev = NULL;
4553 
4554 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4555 	TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
4556 		if (tmpvdev == vdev) {
4557 			found = 1;
4558 			break;
4559 		}
4560 	}
4561 
4562 	if (found) {
4563 		TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
4564 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4565 	} else {
4566 		dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
4567 			      soc, vdev, pdev, &pdev->vdev_list);
4568 		QDF_ASSERT(0);
4569 	}
4570 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4571 }
4572 
4573 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
4574 /**
4575  * dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
4576  * @vdev: Datapath VDEV handle
4577  *
4578  * Return: None
4579  */
4580 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4581 {
4582 	vdev->osif_rx_eapol = NULL;
4583 }
4584 
4585 /**
4586  * dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
4587  * @vdev: DP vdev handle
4588  * @txrx_ops: Tx and Rx operations
4589  *
4590  * Return: None
4591  */
4592 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4593 					     struct ol_txrx_ops *txrx_ops)
4594 {
4595 	vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
4596 }
4597 #else
4598 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4599 {
4600 }
4601 
4602 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4603 					     struct ol_txrx_ops *txrx_ops)
4604 {
4605 }
4606 #endif
4607 
4608 #ifdef WLAN_FEATURE_11BE_MLO
4609 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4610 					 struct cdp_vdev_info *vdev_info)
4611 {
4612 	if (vdev_info->mld_mac_addr)
4613 		qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
4614 			     vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
4615 }
4616 
4617 #ifdef WLAN_MLO_MULTI_CHIP
4618 static inline void
4619 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4620 				 struct cdp_vdev_info *vdev_info)
4621 {
4622 	if (vdev_info->is_bridge_vap)
4623 		vdev->is_bridge_vdev = 1;
4624 
4625 	dp_info("is_bridge_link = %d vdev id = %d chip id = %d",
4626 		vdev->is_bridge_vdev, vdev->vdev_id,
4627 		dp_get_chip_id(vdev->pdev->soc));
4628 }
4629 #else
4630 static inline void
4631 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4632 				 struct cdp_vdev_info *vdev_info)
4633 {
4634 }
4635 #endif /* WLAN_MLO_MULTI_CHIP */
4636 
4637 #else
4638 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4639 					 struct cdp_vdev_info *vdev_info)
4640 {
4641 
4642 }
4643 
4644 static inline void
4645 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4646 				 struct cdp_vdev_info *vdev_info)
4647 {
4648 }
4649 #endif
4650 
4651 #ifdef DP_TRAFFIC_END_INDICATION
4652 /**
4653  * dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
4654  *                                              related members in VDEV
4655  * @vdev: DP vdev handle
4656  *
4657  * Return: None
4658  */
4659 static inline void
4660 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4661 {
4662 	qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
4663 }
4664 
4665 /**
4666  * dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
4667  *                                              related members in VDEV
4668  * @vdev: DP vdev handle
4669  *
4670  * Return: None
4671  */
4672 static inline void
4673 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4674 {
4675 	qdf_nbuf_t nbuf;
4676 
4677 	while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
4678 		qdf_nbuf_free(nbuf);
4679 }
4680 #else
4681 static inline void
4682 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4683 {}
4684 
4685 static inline void
4686 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4687 {}
4688 #endif
4689 
4690 #ifdef WLAN_DP_VDEV_NO_SELF_PEER
4691 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4692 					      struct dp_vdev *vdev)
4693 {
4694 	return false;
4695 }
4696 #else
4697 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4698 					      struct dp_vdev *vdev)
4699 {
4700 	if (wlan_op_mode_sta == vdev->opmode)
4701 		return true;
4702 
4703 	return false;
4704 }
4705 #endif
4706 
4707 /**
4708  * dp_vdev_attach_wifi3() - attach txrx vdev
4709  * @cdp_soc: CDP SoC context
4710  * @pdev_id: PDEV ID for vdev creation
4711  * @vdev_info: parameters used for vdev creation
4712  *
4713  * Return: status
4714  */
4715 static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
4716 				       uint8_t pdev_id,
4717 				       struct cdp_vdev_info *vdev_info)
4718 {
4719 	int i = 0;
4720 	qdf_size_t vdev_context_size;
4721 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4722 	struct dp_pdev *pdev =
4723 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
4724 						   pdev_id);
4725 	struct dp_vdev *vdev;
4726 	uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
4727 	uint8_t vdev_id = vdev_info->vdev_id;
4728 	enum wlan_op_mode op_mode = vdev_info->op_mode;
4729 	enum wlan_op_subtype subtype = vdev_info->subtype;
4730 	enum QDF_OPMODE qdf_opmode = vdev_info->qdf_opmode;
4731 	uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
4732 
4733 	vdev_context_size =
4734 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
4735 	vdev = qdf_mem_malloc(vdev_context_size);
4736 
4737 	if (!pdev) {
4738 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
4739 			    cdp_soc, pdev_id);
4740 		qdf_mem_free(vdev);
4741 		goto fail0;
4742 	}
4743 
4744 	if (!vdev) {
4745 		dp_init_err("%pK: DP VDEV memory allocation failed",
4746 			    cdp_soc);
4747 		goto fail0;
4748 	}
4749 
4750 	wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
4751 			  WLAN_MD_DP_VDEV, "dp_vdev");
4752 
4753 	vdev->pdev = pdev;
4754 	vdev->vdev_id = vdev_id;
4755 	vdev->vdev_stats_id = vdev_stats_id;
4756 	vdev->opmode = op_mode;
4757 	vdev->subtype = subtype;
4758 	vdev->qdf_opmode = qdf_opmode;
4759 	vdev->osdev = soc->osdev;
4760 
4761 	vdev->osif_rx = NULL;
4762 	vdev->osif_rsim_rx_decap = NULL;
4763 	vdev->osif_get_key = NULL;
4764 	vdev->osif_tx_free_ext = NULL;
4765 	vdev->osif_vdev = NULL;
4766 
4767 	vdev->delete.pending = 0;
4768 	vdev->safemode = 0;
4769 	vdev->drop_unenc = 1;
4770 	vdev->sec_type = cdp_sec_type_none;
4771 	vdev->multipass_en = false;
4772 	vdev->wrap_vdev = false;
4773 	dp_vdev_init_rx_eapol(vdev);
4774 	qdf_atomic_init(&vdev->ref_cnt);
4775 	for (i = 0; i < DP_MOD_ID_MAX; i++)
4776 		qdf_atomic_init(&vdev->mod_refs[i]);
4777 
4778 	/* Take one reference for create*/
4779 	qdf_atomic_inc(&vdev->ref_cnt);
4780 	qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
4781 	vdev->num_peers = 0;
4782 #ifdef notyet
4783 	vdev->filters_num = 0;
4784 #endif
4785 	vdev->lmac_id = pdev->lmac_id;
4786 
4787 	qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
4788 
4789 	dp_vdev_update_bridge_vdev_param(vdev, vdev_info);
4790 	dp_vdev_save_mld_addr(vdev, vdev_info);
4791 
4792 	/* TODO: Initialize default HTT meta data that will be used in
4793 	 * TCL descriptors for packets transmitted from this VDEV
4794 	 */
4795 
4796 	qdf_spinlock_create(&vdev->peer_list_lock);
4797 	TAILQ_INIT(&vdev->peer_list);
4798 	dp_peer_multipass_list_init(vdev);
4799 	if ((soc->intr_mode == DP_INTR_POLL) &&
4800 	    wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
4801 		if ((pdev->vdev_count == 0) ||
4802 		    (wlan_op_mode_monitor == vdev->opmode))
4803 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
4804 	} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
4805 		   soc->intr_mode == DP_INTR_MSI &&
4806 		   wlan_op_mode_monitor == vdev->opmode &&
4807 		   !wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx)) {
4808 		/* Timer to reap status ring in mission mode */
4809 		dp_monitor_vdev_timer_start(soc);
4810 	}
4811 
4812 	dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
4813 
4814 	if (wlan_op_mode_monitor == vdev->opmode) {
4815 		if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
4816 			dp_monitor_pdev_set_mon_vdev(vdev);
4817 			return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
4818 		}
4819 		return QDF_STATUS_E_FAILURE;
4820 	}
4821 
4822 	vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4823 	vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4824 	vdev->dscp_tid_map_id = 0;
4825 	vdev->mcast_enhancement_en = 0;
4826 	vdev->igmp_mcast_enhanc_en = 0;
4827 	vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
4828 	vdev->prev_tx_enq_tstamp = 0;
4829 	vdev->prev_rx_deliver_tstamp = 0;
4830 	vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
4831 	dp_tx_vdev_traffic_end_indication_attach(vdev);
4832 
4833 	dp_vdev_pdev_list_add(soc, pdev, vdev);
4834 	pdev->vdev_count++;
4835 
4836 	if (wlan_op_mode_sta != vdev->opmode &&
4837 	    wlan_op_mode_ndi != vdev->opmode)
4838 		vdev->ap_bridge_enabled = true;
4839 	else
4840 		vdev->ap_bridge_enabled = false;
4841 	dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
4842 		     cdp_soc, vdev->ap_bridge_enabled);
4843 
4844 	dp_tx_vdev_attach(vdev);
4845 
4846 	dp_monitor_vdev_attach(vdev);
4847 	if (!pdev->is_lro_hash_configured) {
4848 		if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
4849 			pdev->is_lro_hash_configured = true;
4850 		else
4851 			dp_err("LRO hash setup failure!");
4852 	}
4853 
4854 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
4855 	dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
4856 		QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
4857 	DP_STATS_INIT(vdev);
4858 
4859 	if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
4860 		goto fail0;
4861 
4862 	if (dp_vdev_self_peer_required(soc, vdev))
4863 		dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
4864 				     vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
4865 
4866 	dp_pdev_update_fast_rx_flag(soc, pdev);
4867 
4868 	return QDF_STATUS_SUCCESS;
4869 
4870 fail0:
4871 	return QDF_STATUS_E_FAILURE;
4872 }
4873 
4874 #ifndef QCA_HOST_MODE_WIFI_DISABLED
4875 /**
4876  * dp_vdev_fetch_tx_handler() - Fetch Tx handlers
4877  * @vdev: struct dp_vdev *
4878  * @soc: struct dp_soc *
4879  * @ctx: struct ol_txrx_hardtart_ctxt *
4880  */
4881 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4882 					    struct dp_soc *soc,
4883 					    struct ol_txrx_hardtart_ctxt *ctx)
4884 {
4885 	/* Enable vdev_id check only for ap, if flag is enabled */
4886 	if (vdev->mesh_vdev)
4887 		ctx->tx = dp_tx_send_mesh;
4888 	else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4889 		 (vdev->opmode == wlan_op_mode_ap)) {
4890 		ctx->tx = dp_tx_send_vdev_id_check;
4891 		ctx->tx_fast = dp_tx_send_vdev_id_check;
4892 	} else {
4893 		ctx->tx = dp_tx_send;
4894 		ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
4895 	}
4896 
4897 	/* Avoid check in regular exception Path */
4898 	if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4899 	    (vdev->opmode == wlan_op_mode_ap))
4900 		ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
4901 	else
4902 		ctx->tx_exception = dp_tx_send_exception;
4903 }
4904 
4905 /**
4906  * dp_vdev_register_tx_handler() - Register Tx handler
4907  * @vdev: struct dp_vdev *
4908  * @soc: struct dp_soc *
4909  * @txrx_ops: struct ol_txrx_ops *
4910  */
4911 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4912 					       struct dp_soc *soc,
4913 					       struct ol_txrx_ops *txrx_ops)
4914 {
4915 	struct ol_txrx_hardtart_ctxt ctx = {0};
4916 
4917 	dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
4918 
4919 	txrx_ops->tx.tx = ctx.tx;
4920 	txrx_ops->tx.tx_fast = ctx.tx_fast;
4921 	txrx_ops->tx.tx_exception = ctx.tx_exception;
4922 
4923 	dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
4924 		wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
4925 		vdev->opmode, vdev->vdev_id);
4926 }
4927 #else /* QCA_HOST_MODE_WIFI_DISABLED */
4928 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4929 					       struct dp_soc *soc,
4930 					       struct ol_txrx_ops *txrx_ops)
4931 {
4932 }
4933 
4934 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4935 					    struct dp_soc *soc,
4936 					    struct ol_txrx_hardtart_ctxt *ctx)
4937 {
4938 }
4939 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
4940 
4941 /**
4942  * dp_vdev_register_wifi3() - Register VDEV operations from osif layer
4943  * @soc_hdl: Datapath soc handle
4944  * @vdev_id: id of Datapath VDEV handle
4945  * @osif_vdev: OSIF vdev handle
4946  * @txrx_ops: Tx and Rx operations
4947  *
4948  * Return: DP VDEV handle on success, NULL on failure
4949  */
4950 static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
4951 					 uint8_t vdev_id,
4952 					 ol_osif_vdev_handle osif_vdev,
4953 					 struct ol_txrx_ops *txrx_ops)
4954 {
4955 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4956 	struct dp_vdev *vdev =	dp_vdev_get_ref_by_id(soc, vdev_id,
4957 						      DP_MOD_ID_CDP);
4958 
4959 	if (!vdev)
4960 		return QDF_STATUS_E_FAILURE;
4961 
4962 	vdev->osif_vdev = osif_vdev;
4963 	vdev->osif_rx = txrx_ops->rx.rx;
4964 	vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
4965 	vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
4966 	vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
4967 	vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
4968 	vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
4969 	vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
4970 	vdev->osif_get_key = txrx_ops->get_key;
4971 	dp_monitor_vdev_register_osif(vdev, txrx_ops);
4972 	vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
4973 	vdev->tx_comp = txrx_ops->tx.tx_comp;
4974 	vdev->stats_cb = txrx_ops->rx.stats_rx;
4975 	vdev->tx_classify_critical_pkt_cb =
4976 		txrx_ops->tx.tx_classify_critical_pkt_cb;
4977 #ifdef notyet
4978 #if ATH_SUPPORT_WAPI
4979 	vdev->osif_check_wai = txrx_ops->rx.wai_check;
4980 #endif
4981 #endif
4982 #ifdef UMAC_SUPPORT_PROXY_ARP
4983 	vdev->osif_proxy_arp = txrx_ops->proxy_arp;
4984 #endif
4985 	vdev->me_convert = txrx_ops->me_convert;
4986 	vdev->get_tsf_time = txrx_ops->get_tsf_time;
4987 
4988 	dp_vdev_register_rx_eapol(vdev, txrx_ops);
4989 
4990 	dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
4991 
4992 	dp_init_info("%pK: DP Vdev Register success", soc);
4993 
4994 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4995 	return QDF_STATUS_SUCCESS;
4996 }
4997 
4998 #ifdef WLAN_FEATURE_11BE_MLO
4999 void dp_peer_delete(struct dp_soc *soc,
5000 		    struct dp_peer *peer,
5001 		    void *arg)
5002 {
5003 	if (!peer->valid)
5004 		return;
5005 
5006 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
5007 			     peer->vdev->vdev_id,
5008 			     peer->mac_addr.raw, 0,
5009 			     peer->peer_type);
5010 }
5011 #else
5012 void dp_peer_delete(struct dp_soc *soc,
5013 		    struct dp_peer *peer,
5014 		    void *arg)
5015 {
5016 	if (!peer->valid)
5017 		return;
5018 
5019 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
5020 			     peer->vdev->vdev_id,
5021 			     peer->mac_addr.raw, 0,
5022 			     CDP_LINK_PEER_TYPE);
5023 }
5024 #endif
5025 
5026 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
5027 static uint8_t
5028 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
5029 {
5030 	if (soc->cdp_soc.ol_ops->peer_get_num_mlo_links)
5031 		return soc->cdp_soc.ol_ops->peer_get_num_mlo_links(
5032 				soc->ctrl_psoc,
5033 				peer->vdev->vdev_id,
5034 				peer->mac_addr.raw,
5035 				IS_MLO_DP_MLD_PEER(peer));
5036 
5037 	return 0;
5038 }
5039 
5040 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5041 {
5042 	if (!peer->valid)
5043 		return;
5044 
5045 	/* skip deleting the SLO peers */
5046 	if (dp_mlo_get_num_link_peer(soc, peer) == 1)
5047 		return;
5048 
5049 	if (IS_MLO_DP_LINK_PEER(peer))
5050 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
5051 				     peer->vdev->vdev_id,
5052 				     peer->mac_addr.raw, 0,
5053 				     CDP_LINK_PEER_TYPE);
5054 }
5055 
5056 /**
5057  * dp_mlo_link_peer_flush() - flush all the link peers
5058  * @soc: Datapath soc handle
5059  * @peer: DP peer handle to be checked
5060  *
5061  * Return: None
5062  */
5063 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5064 {
5065 	int cnt = 0;
5066 	struct dp_peer *link_peer = NULL;
5067 	struct dp_mld_link_peers link_peers_info = {NULL};
5068 
5069 	if (!IS_MLO_DP_MLD_PEER(peer))
5070 		return;
5071 
5072 	/* get link peers with reference */
5073 	dp_get_link_peers_ref_from_mld_peer(soc, peer, &link_peers_info,
5074 					    DP_MOD_ID_CDP);
5075 	for (cnt = 0; cnt < link_peers_info.num_links; cnt++) {
5076 		link_peer = link_peers_info.link_peers[cnt];
5077 		if (!link_peer)
5078 			continue;
5079 
5080 		/* delete all the link peers */
5081 		dp_mlo_peer_delete(link_peer->vdev->pdev->soc, link_peer, NULL);
5082 		/* unmap all the link peers */
5083 		dp_rx_peer_unmap_handler(link_peer->vdev->pdev->soc,
5084 					 link_peer->peer_id,
5085 					 link_peer->vdev->vdev_id,
5086 					 link_peer->mac_addr.raw, 0,
5087 					 DP_PEER_WDS_COUNT_INVALID);
5088 	}
5089 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5090 }
5091 #else
5092 static uint8_t
5093 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
5094 {
5095 	return 0;
5096 }
5097 
5098 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5099 {
5100 }
5101 
5102 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5103 {
5104 }
5105 #endif
5106 /**
5107  * dp_vdev_flush_peers() - Forcibily Flush peers of vdev
5108  * @vdev_handle: Datapath VDEV handle
5109  * @unmap_only: Flag to indicate "only unmap"
5110  * @mlo_peers_only: true if only MLO peers should be flushed
5111  *
5112  * Return: void
5113  */
5114 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
5115 				bool unmap_only,
5116 				bool mlo_peers_only)
5117 {
5118 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
5119 	struct dp_pdev *pdev = vdev->pdev;
5120 	struct dp_soc *soc = pdev->soc;
5121 	struct dp_peer *peer;
5122 	uint32_t i = 0;
5123 
5124 
5125 	if (!unmap_only) {
5126 		if (!mlo_peers_only)
5127 			dp_vdev_iterate_peer_lock_safe(vdev,
5128 						       dp_peer_delete,
5129 						       NULL,
5130 						       DP_MOD_ID_CDP);
5131 		else
5132 			dp_vdev_iterate_peer_lock_safe(vdev,
5133 						       dp_mlo_peer_delete,
5134 						       NULL,
5135 						       DP_MOD_ID_CDP);
5136 	}
5137 
5138 	for (i = 0; i < soc->max_peer_id ; i++) {
5139 		peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
5140 
5141 		if (!peer)
5142 			continue;
5143 
5144 		if (peer->vdev != vdev) {
5145 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5146 			continue;
5147 		}
5148 
5149 		if (!mlo_peers_only) {
5150 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5151 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5152 			dp_mlo_link_peer_flush(soc, peer);
5153 			dp_rx_peer_unmap_handler(soc, i,
5154 						 vdev->vdev_id,
5155 						 peer->mac_addr.raw, 0,
5156 						 DP_PEER_WDS_COUNT_INVALID);
5157 			if (!IS_MLO_DP_MLD_PEER(peer))
5158 				SET_PEER_REF_CNT_ONE(peer);
5159 		} else if (IS_MLO_DP_LINK_PEER(peer) ||
5160 			   IS_MLO_DP_MLD_PEER(peer)) {
5161 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5162 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5163 
5164 			/* skip deleting the SLO peers */
5165 			if (dp_mlo_get_num_link_peer(soc, peer) ==  1) {
5166 				dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5167 				continue;
5168 			}
5169 
5170 			dp_mlo_link_peer_flush(soc, peer);
5171 			dp_rx_peer_unmap_handler(soc, i,
5172 						 vdev->vdev_id,
5173 						 peer->mac_addr.raw, 0,
5174 						 DP_PEER_WDS_COUNT_INVALID);
5175 			if (!IS_MLO_DP_MLD_PEER(peer))
5176 				SET_PEER_REF_CNT_ONE(peer);
5177 		}
5178 
5179 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5180 	}
5181 }
5182 
5183 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5184 /**
5185  * dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
5186  * @soc_hdl: Datapath soc handle
5187  * @vdev_stats_id: Address of vdev_stats_id
5188  *
5189  * Return: QDF_STATUS
5190  */
5191 static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5192 					      uint8_t *vdev_stats_id)
5193 {
5194 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5195 	uint8_t id = 0;
5196 
5197 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
5198 		*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5199 		return QDF_STATUS_E_FAILURE;
5200 	}
5201 
5202 	while (id < CDP_MAX_VDEV_STATS_ID) {
5203 		if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
5204 			*vdev_stats_id = id;
5205 			return QDF_STATUS_SUCCESS;
5206 		}
5207 		id++;
5208 	}
5209 
5210 	*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5211 	return QDF_STATUS_E_FAILURE;
5212 }
5213 
5214 /**
5215  * dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
5216  * @soc_hdl: Datapath soc handle
5217  * @vdev_stats_id: vdev_stats_id to reset in dp_soc
5218  *
5219  * Return: none
5220  */
5221 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5222 					uint8_t vdev_stats_id)
5223 {
5224 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5225 
5226 	if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
5227 	    (vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
5228 		return;
5229 
5230 	qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
5231 }
5232 #else
5233 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
5234 					uint8_t vdev_stats_id)
5235 {}
5236 #endif
5237 /**
5238  * dp_vdev_detach_wifi3() - Detach txrx vdev
5239  * @cdp_soc: Datapath soc handle
5240  * @vdev_id: VDEV Id
5241  * @callback: Callback OL_IF on completion of detach
5242  * @cb_context:	Callback context
5243  *
5244  */
5245 static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
5246 				       uint8_t vdev_id,
5247 				       ol_txrx_vdev_delete_cb callback,
5248 				       void *cb_context)
5249 {
5250 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
5251 	struct dp_pdev *pdev;
5252 	struct dp_neighbour_peer *peer = NULL;
5253 	struct dp_peer *vap_self_peer = NULL;
5254 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5255 						     DP_MOD_ID_CDP);
5256 
5257 	if (!vdev)
5258 		return QDF_STATUS_E_FAILURE;
5259 
5260 	soc->arch_ops.txrx_vdev_detach(soc, vdev);
5261 
5262 	pdev = vdev->pdev;
5263 
5264 	vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
5265 							DP_MOD_ID_CONFIG);
5266 	if (vap_self_peer) {
5267 		qdf_spin_lock_bh(&soc->ast_lock);
5268 		if (vap_self_peer->self_ast_entry) {
5269 			dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
5270 			vap_self_peer->self_ast_entry = NULL;
5271 		}
5272 		qdf_spin_unlock_bh(&soc->ast_lock);
5273 
5274 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
5275 				     vap_self_peer->mac_addr.raw, 0,
5276 				     CDP_LINK_PEER_TYPE);
5277 		dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
5278 	}
5279 
5280 	/*
5281 	 * If Target is hung, flush all peers before detaching vdev
5282 	 * this will free all references held due to missing
5283 	 * unmap commands from Target
5284 	 */
5285 	if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
5286 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
5287 	else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
5288 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
5289 
5290 	/* indicate that the vdev needs to be deleted */
5291 	vdev->delete.pending = 1;
5292 	dp_rx_vdev_detach(vdev);
5293 	/*
5294 	 * move it after dp_rx_vdev_detach(),
5295 	 * as the call back done in dp_rx_vdev_detach()
5296 	 * still need to get vdev pointer by vdev_id.
5297 	 */
5298 	dp_vdev_id_map_tbl_remove(soc, vdev);
5299 
5300 	dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
5301 
5302 	dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
5303 
5304 	dp_tx_vdev_multipass_deinit(vdev);
5305 	dp_tx_vdev_traffic_end_indication_detach(vdev);
5306 
5307 	if (vdev->vdev_dp_ext_handle) {
5308 		qdf_mem_free(vdev->vdev_dp_ext_handle);
5309 		vdev->vdev_dp_ext_handle = NULL;
5310 	}
5311 	vdev->delete.callback = callback;
5312 	vdev->delete.context = cb_context;
5313 
5314 	if (vdev->opmode != wlan_op_mode_monitor)
5315 		dp_vdev_pdev_list_remove(soc, pdev, vdev);
5316 
5317 	pdev->vdev_count--;
5318 	/* release reference taken above for find */
5319 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5320 
5321 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
5322 	TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
5323 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
5324 
5325 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
5326 	dp_info("detach vdev %pK id %d pending refs %d",
5327 		vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
5328 
5329 	/* release reference taken at dp_vdev_create */
5330 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
5331 
5332 	return QDF_STATUS_SUCCESS;
5333 }
5334 
5335 #ifdef WLAN_FEATURE_11BE_MLO
5336 /**
5337  * is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
5338  * @vdev: Target DP vdev handle
5339  * @peer: DP peer handle to be checked
5340  * @peer_mac_addr: Target peer mac address
5341  * @peer_type: Target peer type
5342  *
5343  * Return: true - if match, false - not match
5344  */
5345 static inline
5346 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5347 			  struct dp_peer *peer,
5348 			  uint8_t *peer_mac_addr,
5349 			  enum cdp_peer_type peer_type)
5350 {
5351 	if (peer->bss_peer && (peer->vdev == vdev) &&
5352 	    (peer->peer_type == peer_type) &&
5353 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5354 			 QDF_MAC_ADDR_SIZE) == 0))
5355 		return true;
5356 
5357 	return false;
5358 }
5359 #else
5360 static inline
5361 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5362 			  struct dp_peer *peer,
5363 			  uint8_t *peer_mac_addr,
5364 			  enum cdp_peer_type peer_type)
5365 {
5366 	if (peer->bss_peer && (peer->vdev == vdev) &&
5367 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5368 			 QDF_MAC_ADDR_SIZE) == 0))
5369 		return true;
5370 
5371 	return false;
5372 }
5373 #endif
5374 
5375 static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
5376 						uint8_t *peer_mac_addr,
5377 						enum cdp_peer_type peer_type)
5378 {
5379 	struct dp_peer *peer;
5380 	struct dp_soc *soc = vdev->pdev->soc;
5381 
5382 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5383 	TAILQ_FOREACH(peer, &soc->inactive_peer_list,
5384 		      inactive_list_elem) {
5385 
5386 		/* reuse bss peer only when vdev matches*/
5387 		if (is_dp_peer_can_reuse(vdev, peer,
5388 					 peer_mac_addr, peer_type)) {
5389 			/* increment ref count for cdp_peer_create*/
5390 			if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
5391 						QDF_STATUS_SUCCESS) {
5392 				TAILQ_REMOVE(&soc->inactive_peer_list, peer,
5393 					     inactive_list_elem);
5394 				qdf_spin_unlock_bh
5395 					(&soc->inactive_peer_list_lock);
5396 				return peer;
5397 			}
5398 		}
5399 	}
5400 
5401 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5402 	return NULL;
5403 }
5404 
5405 #ifdef FEATURE_AST
5406 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5407 					       struct dp_pdev *pdev,
5408 					       uint8_t *peer_mac_addr)
5409 {
5410 	struct dp_ast_entry *ast_entry;
5411 
5412 	if (soc->ast_offload_support)
5413 		return;
5414 
5415 	qdf_spin_lock_bh(&soc->ast_lock);
5416 	if (soc->ast_override_support)
5417 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
5418 							    pdev->pdev_id);
5419 	else
5420 		ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
5421 
5422 	if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
5423 		dp_peer_del_ast(soc, ast_entry);
5424 
5425 	qdf_spin_unlock_bh(&soc->ast_lock);
5426 }
5427 #else
5428 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5429 					       struct dp_pdev *pdev,
5430 					       uint8_t *peer_mac_addr)
5431 {
5432 }
5433 #endif
5434 
5435 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5436 /**
5437  * dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
5438  * @soc: Datapath soc handle
5439  * @txrx_peer: Datapath peer handle
5440  *
5441  * Return: none
5442  */
5443 static inline
5444 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5445 				struct dp_txrx_peer *txrx_peer)
5446 {
5447 	txrx_peer->hw_txrx_stats_en =
5448 		wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
5449 }
5450 #else
5451 static inline
5452 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5453 				struct dp_txrx_peer *txrx_peer)
5454 {
5455 	txrx_peer->hw_txrx_stats_en = 0;
5456 }
5457 #endif
5458 
5459 static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
5460 {
5461 	struct dp_txrx_peer *txrx_peer;
5462 	struct dp_pdev *pdev;
5463 	struct cdp_txrx_peer_params_update params = {0};
5464 
5465 	/* dp_txrx_peer exists for mld peer and legacy peer */
5466 	if (peer->txrx_peer) {
5467 		txrx_peer = peer->txrx_peer;
5468 		peer->txrx_peer = NULL;
5469 		pdev = txrx_peer->vdev->pdev;
5470 
5471 		if ((peer->vdev->opmode != wlan_op_mode_sta) &&
5472 		    !peer->bss_peer) {
5473 			params.vdev_id = peer->vdev->vdev_id;
5474 			params.peer_mac = peer->mac_addr.raw;
5475 
5476 			dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
5477 					     (void *)&params, peer->peer_id,
5478 					     WDI_NO_VAL, pdev->pdev_id);
5479 		}
5480 
5481 		dp_peer_defrag_rx_tids_deinit(txrx_peer);
5482 		/*
5483 		 * Deallocate the extended stats contenxt
5484 		 */
5485 		dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
5486 		dp_peer_rx_bufq_resources_deinit(txrx_peer);
5487 		dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
5488 		dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
5489 
5490 		qdf_mem_free(txrx_peer);
5491 	}
5492 
5493 	return QDF_STATUS_SUCCESS;
5494 }
5495 
5496 static inline
5497 uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
5498 					  struct dp_peer *peer)
5499 {
5500 	if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
5501 	    IS_MLO_DP_MLD_PEER(peer)) {
5502 		return (DP_MAX_MLO_LINKS + 1);
5503 	}
5504 	return 1;
5505 }
5506 
5507 static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
5508 {
5509 	struct dp_txrx_peer *txrx_peer;
5510 	struct dp_pdev *pdev;
5511 	struct cdp_txrx_peer_params_update params = {0};
5512 	uint8_t stats_arr_size = 0;
5513 
5514 	stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
5515 
5516 	txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
5517 							  (stats_arr_size *
5518 							   sizeof(struct dp_peer_stats)));
5519 
5520 	if (!txrx_peer)
5521 		return QDF_STATUS_E_NOMEM; /* failure */
5522 
5523 	txrx_peer->peer_id = HTT_INVALID_PEER;
5524 	/* initialize the peer_id */
5525 	txrx_peer->vdev = peer->vdev;
5526 	pdev = peer->vdev->pdev;
5527 	txrx_peer->stats_arr_size = stats_arr_size;
5528 
5529 	DP_TXRX_PEER_STATS_INIT(txrx_peer,
5530 				(txrx_peer->stats_arr_size *
5531 				sizeof(struct dp_peer_stats)));
5532 
5533 	if (!IS_DP_LEGACY_PEER(peer))
5534 		txrx_peer->is_mld_peer = 1;
5535 
5536 	dp_wds_ext_peer_init(txrx_peer);
5537 	dp_peer_rx_bufq_resources_init(txrx_peer);
5538 	dp_peer_hw_txrx_stats_init(soc, txrx_peer);
5539 	/*
5540 	 * Allocate peer extended stats context. Fall through in
5541 	 * case of failure as its not an implicit requirement to have
5542 	 * this object for regular statistics updates.
5543 	 */
5544 	if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
5545 					  QDF_STATUS_SUCCESS)
5546 		dp_warn("peer delay_stats ctx alloc failed");
5547 
5548 	/*
5549 	 * Alloctate memory for jitter stats. Fall through in
5550 	 * case of failure as its not an implicit requirement to have
5551 	 * this object for regular statistics updates.
5552 	 */
5553 	if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
5554 					   QDF_STATUS_SUCCESS)
5555 		dp_warn("peer jitter_stats ctx alloc failed");
5556 
5557 	dp_set_peer_isolation(txrx_peer, false);
5558 
5559 	dp_peer_defrag_rx_tids_init(txrx_peer);
5560 
5561 	if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
5562 		dp_warn("peer sawf stats alloc failed");
5563 
5564 	dp_txrx_peer_attach_add(soc, peer, txrx_peer);
5565 
5566 	if ((peer->vdev->opmode == wlan_op_mode_sta) || peer->bss_peer)
5567 		return QDF_STATUS_SUCCESS;
5568 
5569 	params.peer_mac = peer->mac_addr.raw;
5570 	params.vdev_id = peer->vdev->vdev_id;
5571 	params.chip_id = dp_get_chip_id(soc);
5572 	params.pdev_id = peer->vdev->pdev->pdev_id;
5573 
5574 	dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
5575 			     (void *)&params, peer->peer_id,
5576 			     WDI_NO_VAL, params.pdev_id);
5577 
5578 	return QDF_STATUS_SUCCESS;
5579 }
5580 
5581 static inline
5582 void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
5583 {
5584 	if (!txrx_peer)
5585 		return;
5586 
5587 	txrx_peer->tx_failed = 0;
5588 	txrx_peer->comp_pkt.num = 0;
5589 	txrx_peer->comp_pkt.bytes = 0;
5590 	txrx_peer->to_stack.num = 0;
5591 	txrx_peer->to_stack.bytes = 0;
5592 
5593 	DP_TXRX_PEER_STATS_CLR(txrx_peer,
5594 			       (txrx_peer->stats_arr_size *
5595 			       sizeof(struct dp_peer_stats)));
5596 	dp_peer_delay_stats_ctx_clr(txrx_peer);
5597 	dp_peer_jitter_stats_ctx_clr(txrx_peer);
5598 }
5599 
5600 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
5601 /**
5602  * dp_txrx_peer_reset_local_link_id() - Reset local link id
5603  * @txrx_peer: txrx peer handle
5604  *
5605  * Return: None
5606  */
5607 static inline void
5608 dp_txrx_peer_reset_local_link_id(struct dp_txrx_peer *txrx_peer)
5609 {
5610 	int i;
5611 
5612 	for (i = 0; i <= DP_MAX_MLO_LINKS; i++)
5613 		txrx_peer->ll_band[i] = DP_BAND_INVALID;
5614 }
5615 #else
5616 static inline void
5617 dp_txrx_peer_reset_local_link_id(struct dp_txrx_peer *txrx_peer)
5618 {
5619 }
5620 #endif
5621 
5622 /**
5623  * dp_peer_create_wifi3() - attach txrx peer
5624  * @soc_hdl: Datapath soc handle
5625  * @vdev_id: id of vdev
5626  * @peer_mac_addr: Peer MAC address
5627  * @peer_type: link or MLD peer type
5628  *
5629  * Return: 0 on success, -1 on failure
5630  */
5631 static QDF_STATUS
5632 dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5633 		     uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
5634 {
5635 	struct dp_peer *peer;
5636 	int i;
5637 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5638 	struct dp_pdev *pdev;
5639 	enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
5640 	struct dp_vdev *vdev = NULL;
5641 
5642 	if (!peer_mac_addr)
5643 		return QDF_STATUS_E_FAILURE;
5644 
5645 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5646 
5647 	if (!vdev)
5648 		return QDF_STATUS_E_FAILURE;
5649 
5650 	pdev = vdev->pdev;
5651 	soc = pdev->soc;
5652 
5653 	/*
5654 	 * If a peer entry with given MAC address already exists,
5655 	 * reuse the peer and reset the state of peer.
5656 	 */
5657 	peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
5658 
5659 	if (peer) {
5660 		qdf_atomic_init(&peer->is_default_route_set);
5661 		dp_peer_cleanup(vdev, peer);
5662 
5663 		dp_peer_vdev_list_add(soc, vdev, peer);
5664 		dp_peer_find_hash_add(soc, peer);
5665 
5666 		if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5667 			dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5668 				 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5669 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5670 			return QDF_STATUS_E_FAILURE;
5671 		}
5672 
5673 		if (IS_MLO_DP_MLD_PEER(peer))
5674 			dp_mld_peer_init_link_peers_info(peer);
5675 
5676 		qdf_spin_lock_bh(&soc->ast_lock);
5677 		dp_peer_delete_ast_entries(soc, peer);
5678 		qdf_spin_unlock_bh(&soc->ast_lock);
5679 
5680 		if ((vdev->opmode == wlan_op_mode_sta) &&
5681 		    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5682 		     QDF_MAC_ADDR_SIZE)) {
5683 			ast_type = CDP_TXRX_AST_TYPE_SELF;
5684 		}
5685 		dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5686 
5687 		peer->valid = 1;
5688 		peer->is_tdls_peer = false;
5689 		dp_local_peer_id_alloc(pdev, peer);
5690 
5691 		qdf_spinlock_create(&peer->peer_info_lock);
5692 
5693 		DP_STATS_INIT(peer);
5694 
5695 		/*
5696 		 * In tx_monitor mode, filter may be set for unassociated peer
5697 		 * when unassociated peer get associated peer need to
5698 		 * update tx_cap_enabled flag to support peer filter.
5699 		 */
5700 		if (!IS_MLO_DP_MLD_PEER(peer)) {
5701 			dp_monitor_peer_tx_capture_filter_check(pdev, peer);
5702 			dp_monitor_peer_reset_stats(soc, peer);
5703 		}
5704 
5705 		if (peer->txrx_peer) {
5706 			dp_peer_rx_bufq_resources_init(peer->txrx_peer);
5707 			dp_txrx_peer_stats_clr(peer->txrx_peer);
5708 			dp_set_peer_isolation(peer->txrx_peer, false);
5709 			dp_wds_ext_peer_init(peer->txrx_peer);
5710 			dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
5711 			dp_txrx_peer_reset_local_link_id(peer->txrx_peer);
5712 		}
5713 
5714 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5715 					     peer, vdev, 1);
5716 		dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
5717 			") vdev_ref_cnt "
5718 			"%d peer_ref_cnt: %d",
5719 			vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5720 			qdf_atomic_read(&vdev->ref_cnt),
5721 			qdf_atomic_read(&peer->ref_cnt));
5722 			dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5723 
5724 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5725 		return QDF_STATUS_SUCCESS;
5726 	} else {
5727 		/*
5728 		 * When a STA roams from RPTR AP to ROOT AP and vice versa, we
5729 		 * need to remove the AST entry which was earlier added as a WDS
5730 		 * entry.
5731 		 * If an AST entry exists, but no peer entry exists with a given
5732 		 * MAC addresses, we could deduce it as a WDS entry
5733 		 */
5734 		dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
5735 	}
5736 
5737 #ifdef notyet
5738 	peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
5739 		soc->mempool_ol_ath_peer);
5740 #else
5741 	peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
5742 #endif
5743 	wlan_minidump_log(peer,
5744 			  sizeof(*peer),
5745 			  soc->ctrl_psoc,
5746 			  WLAN_MD_DP_PEER, "dp_peer");
5747 	if (!peer) {
5748 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5749 		return QDF_STATUS_E_FAILURE; /* failure */
5750 	}
5751 
5752 	qdf_mem_zero(peer, sizeof(struct dp_peer));
5753 
5754 	/* store provided params */
5755 	peer->vdev = vdev;
5756 
5757 	/* initialize the peer_id */
5758 	peer->peer_id = HTT_INVALID_PEER;
5759 
5760 	qdf_mem_copy(
5761 		&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
5762 
5763 	DP_PEER_SET_TYPE(peer, peer_type);
5764 	if (IS_MLO_DP_MLD_PEER(peer)) {
5765 		if (dp_txrx_peer_attach(soc, peer) !=
5766 				QDF_STATUS_SUCCESS)
5767 			goto fail; /* failure */
5768 
5769 		dp_mld_peer_init_link_peers_info(peer);
5770 	}
5771 
5772 	if (dp_monitor_peer_attach(soc, peer) != QDF_STATUS_SUCCESS)
5773 		dp_warn("peer monitor ctx alloc failed");
5774 
5775 	TAILQ_INIT(&peer->ast_entry_list);
5776 
5777 	/* get the vdev reference for new peer */
5778 	dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
5779 
5780 	if ((vdev->opmode == wlan_op_mode_sta) &&
5781 	    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5782 			 QDF_MAC_ADDR_SIZE)) {
5783 		ast_type = CDP_TXRX_AST_TYPE_SELF;
5784 	}
5785 	qdf_spinlock_create(&peer->peer_state_lock);
5786 	dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5787 	qdf_spinlock_create(&peer->peer_info_lock);
5788 
5789 	/* reset the ast index to flowid table */
5790 	dp_peer_reset_flowq_map(peer);
5791 
5792 	qdf_atomic_init(&peer->ref_cnt);
5793 
5794 	for (i = 0; i < DP_MOD_ID_MAX; i++)
5795 		qdf_atomic_init(&peer->mod_refs[i]);
5796 
5797 	/* keep one reference for attach */
5798 	qdf_atomic_inc(&peer->ref_cnt);
5799 	qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
5800 
5801 	dp_peer_vdev_list_add(soc, vdev, peer);
5802 
5803 	/* TODO: See if hash based search is required */
5804 	dp_peer_find_hash_add(soc, peer);
5805 
5806 	/* Initialize the peer state */
5807 	peer->state = OL_TXRX_PEER_STATE_DISC;
5808 
5809 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5810 				     peer, vdev, 0);
5811 	dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
5812 		"%d peer_ref_cnt: %d",
5813 		vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5814 		qdf_atomic_read(&vdev->ref_cnt),
5815 		qdf_atomic_read(&peer->ref_cnt));
5816 	/*
5817 	 * For every peer MAp message search and set if bss_peer
5818 	 */
5819 	if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5820 			QDF_MAC_ADDR_SIZE) == 0 &&
5821 			(wlan_op_mode_sta != vdev->opmode)) {
5822 		dp_info("vdev bss_peer!!");
5823 		peer->bss_peer = 1;
5824 		if (peer->txrx_peer)
5825 			peer->txrx_peer->bss_peer = 1;
5826 	}
5827 
5828 	if (wlan_op_mode_sta == vdev->opmode &&
5829 	    qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5830 			QDF_MAC_ADDR_SIZE) == 0) {
5831 		peer->sta_self_peer = 1;
5832 	}
5833 
5834 	if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5835 		dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5836 			 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5837 		goto fail;
5838 	}
5839 
5840 	peer->valid = 1;
5841 	dp_local_peer_id_alloc(pdev, peer);
5842 	DP_STATS_INIT(peer);
5843 
5844 	if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
5845 		dp_warn("peer sawf context alloc failed");
5846 
5847 	dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5848 
5849 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5850 
5851 	return QDF_STATUS_SUCCESS;
5852 fail:
5853 	qdf_mem_free(peer);
5854 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5855 
5856 	return QDF_STATUS_E_FAILURE;
5857 }
5858 
5859 QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
5860 {
5861 	/* txrx_peer might exist already in peer reuse case */
5862 	if (peer->txrx_peer)
5863 		return QDF_STATUS_SUCCESS;
5864 
5865 	if (dp_txrx_peer_attach(soc, peer) !=
5866 				QDF_STATUS_SUCCESS) {
5867 		dp_err("peer txrx ctx alloc failed");
5868 		return QDF_STATUS_E_FAILURE;
5869 	}
5870 
5871 	return QDF_STATUS_SUCCESS;
5872 }
5873 
5874 #ifdef WLAN_FEATURE_11BE_MLO
5875 static QDF_STATUS dp_mld_peer_change_vdev(struct dp_soc *soc,
5876 					  struct dp_peer *mld_peer,
5877 					  uint8_t new_vdev_id)
5878 {
5879 	struct dp_vdev *prev_vdev;
5880 
5881 	prev_vdev = mld_peer->vdev;
5882 	/* release the ref to original dp_vdev */
5883 	dp_vdev_unref_delete(soc, mld_peer->vdev,
5884 			     DP_MOD_ID_CHILD);
5885 	/*
5886 	 * get the ref to new dp_vdev,
5887 	 * increase dp_vdev ref_cnt
5888 	 */
5889 	mld_peer->vdev = dp_vdev_get_ref_by_id(soc, new_vdev_id,
5890 					       DP_MOD_ID_CHILD);
5891 	mld_peer->txrx_peer->vdev = mld_peer->vdev;
5892 
5893 	dp_info("Change vdev for ML peer " QDF_MAC_ADDR_FMT
5894 		" old vdev %pK id %d new vdev %pK id %d",
5895 		QDF_MAC_ADDR_REF(mld_peer->mac_addr.raw),
5896 		prev_vdev, prev_vdev->vdev_id, mld_peer->vdev, new_vdev_id);
5897 
5898 	dp_cfg_event_record_mlo_setup_vdev_update_evt(
5899 			soc, mld_peer, prev_vdev,
5900 			mld_peer->vdev);
5901 
5902 	return QDF_STATUS_SUCCESS;
5903 }
5904 
5905 QDF_STATUS dp_peer_mlo_setup(
5906 			struct dp_soc *soc,
5907 			struct dp_peer *peer,
5908 			uint8_t vdev_id,
5909 			struct cdp_peer_setup_info *setup_info)
5910 {
5911 	struct dp_peer *mld_peer = NULL;
5912 	struct cdp_txrx_peer_params_update params = {0};
5913 
5914 	/* Non-MLO connection */
5915 	if (!setup_info || !setup_info->mld_peer_mac) {
5916 		/* To handle downgrade scenarios */
5917 		if (peer->vdev->opmode == wlan_op_mode_sta) {
5918 			struct cdp_txrx_peer_params_update params = {0};
5919 
5920 			params.chip_id = dp_get_chip_id(soc);
5921 			params.pdev_id = peer->vdev->pdev->pdev_id;
5922 			params.vdev_id = peer->vdev->vdev_id;
5923 
5924 			dp_wdi_event_handler(
5925 					WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5926 					soc,
5927 					(void *)&params, peer->peer_id,
5928 					WDI_NO_VAL, params.pdev_id);
5929 		}
5930 		return QDF_STATUS_SUCCESS;
5931 	}
5932 
5933 	dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
5934 					   peer, NULL, vdev_id, setup_info);
5935 
5936 	/* if this is the first link peer */
5937 	if (setup_info->is_first_link)
5938 		/* create MLD peer */
5939 		dp_peer_create_wifi3((struct cdp_soc_t *)soc,
5940 				     vdev_id,
5941 				     setup_info->mld_peer_mac,
5942 				     CDP_MLD_PEER_TYPE);
5943 
5944 	if (peer->vdev->opmode == wlan_op_mode_sta &&
5945 	    setup_info->is_primary_link) {
5946 		struct cdp_txrx_peer_params_update params = {0};
5947 
5948 		params.chip_id = dp_get_chip_id(soc);
5949 		params.pdev_id = peer->vdev->pdev->pdev_id;
5950 		params.vdev_id = peer->vdev->vdev_id;
5951 
5952 		dp_wdi_event_handler(
5953 				WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5954 				soc,
5955 				(void *)&params, peer->peer_id,
5956 				WDI_NO_VAL, params.pdev_id);
5957 	}
5958 
5959 	peer->first_link = setup_info->is_first_link;
5960 	peer->primary_link = setup_info->is_primary_link;
5961 	mld_peer = dp_mld_peer_find_hash_find(soc,
5962 					      setup_info->mld_peer_mac,
5963 					      0, vdev_id, DP_MOD_ID_CDP);
5964 
5965 	dp_info("Peer %pK MAC " QDF_MAC_ADDR_FMT " mld peer %pK MAC "
5966 		QDF_MAC_ADDR_FMT " first_link %d, primary_link %d", peer,
5967 		QDF_MAC_ADDR_REF(peer->mac_addr.raw), mld_peer,
5968 		QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
5969 		peer->first_link,
5970 		peer->primary_link);
5971 
5972 	if (mld_peer) {
5973 		if (setup_info->is_first_link) {
5974 			/* assign rx_tid to mld peer */
5975 			mld_peer->rx_tid = peer->rx_tid;
5976 			/* no cdp_peer_setup for MLD peer,
5977 			 * set it for addba processing
5978 			 */
5979 			qdf_atomic_set(&mld_peer->is_default_route_set, 1);
5980 		} else {
5981 			/* free link peer original rx_tids mem */
5982 			dp_peer_rx_tids_destroy(peer);
5983 			/* assign mld peer rx_tid to link peer */
5984 			peer->rx_tid = mld_peer->rx_tid;
5985 		}
5986 
5987 		if (setup_info->is_primary_link &&
5988 		    !setup_info->is_first_link) {
5989 			/*
5990 			 * if first link is not the primary link,
5991 			 * then need to change mld_peer->vdev as
5992 			 * primary link dp_vdev is not same one
5993 			 * during mld peer creation.
5994 			 */
5995 			dp_info("Primary link is not the first link. vdev: %pK "
5996 				"vdev_id %d vdev_ref_cnt %d",
5997 				mld_peer->vdev, vdev_id,
5998 				qdf_atomic_read(&mld_peer->vdev->ref_cnt));
5999 
6000 			dp_mld_peer_change_vdev(soc, mld_peer, vdev_id);
6001 
6002 			params.vdev_id = peer->vdev->vdev_id;
6003 			params.peer_mac = mld_peer->mac_addr.raw;
6004 			params.chip_id = dp_get_chip_id(soc);
6005 			params.pdev_id = peer->vdev->pdev->pdev_id;
6006 
6007 			dp_wdi_event_handler(
6008 					WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
6009 					soc, (void *)&params, peer->peer_id,
6010 					WDI_NO_VAL, params.pdev_id);
6011 		}
6012 
6013 		/* associate mld and link peer */
6014 		dp_link_peer_add_mld_peer(peer, mld_peer);
6015 		dp_mld_peer_add_link_peer(mld_peer, peer, setup_info->is_bridge_peer);
6016 
6017 		mld_peer->txrx_peer->is_mld_peer = 1;
6018 		dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
6019 	} else {
6020 		peer->mld_peer = NULL;
6021 		dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
6022 		       QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
6023 		return QDF_STATUS_E_FAILURE;
6024 	}
6025 
6026 	return QDF_STATUS_SUCCESS;
6027 }
6028 
6029 /**
6030  * dp_mlo_peer_authorize() - authorize MLO peer
6031  * @soc: soc handle
6032  * @peer: pointer to link peer
6033  *
6034  * Return: void
6035  */
6036 static void dp_mlo_peer_authorize(struct dp_soc *soc,
6037 				  struct dp_peer *peer)
6038 {
6039 	int i;
6040 	struct dp_peer *link_peer = NULL;
6041 	struct dp_peer *mld_peer = peer->mld_peer;
6042 	struct dp_mld_link_peers link_peers_info;
6043 
6044 	if (!mld_peer)
6045 		return;
6046 
6047 	/* get link peers with reference */
6048 	dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
6049 					    &link_peers_info,
6050 					    DP_MOD_ID_CDP);
6051 
6052 	for (i = 0; i < link_peers_info.num_links; i++) {
6053 		link_peer = link_peers_info.link_peers[i];
6054 
6055 		if (!link_peer->authorize) {
6056 			dp_release_link_peers_ref(&link_peers_info,
6057 						  DP_MOD_ID_CDP);
6058 			mld_peer->authorize = false;
6059 			return;
6060 		}
6061 	}
6062 
6063 	/* if we are here all link peers are authorized,
6064 	 * authorize ml_peer also
6065 	 */
6066 	mld_peer->authorize = true;
6067 
6068 	/* release link peers reference */
6069 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
6070 }
6071 #endif
6072 
6073 /**
6074  * dp_peer_setup_wifi3_wrapper() - initialize the peer
6075  * @soc_hdl: soc handle object
6076  * @vdev_id : vdev_id of vdev object
6077  * @peer_mac: Peer's mac address
6078  * @setup_info: peer setup info for MLO
6079  *
6080  * Return: QDF_STATUS
6081  */
6082 static QDF_STATUS
6083 dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6084 			    uint8_t *peer_mac,
6085 			    struct cdp_peer_setup_info *setup_info)
6086 {
6087 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6088 
6089 	return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
6090 					     peer_mac, setup_info);
6091 }
6092 
6093 /**
6094  * dp_cp_peer_del_resp_handler() - Handle the peer delete response
6095  * @soc_hdl: Datapath SOC handle
6096  * @vdev_id: id of virtual device object
6097  * @mac_addr: Mac address of the peer
6098  *
6099  * Return: QDF_STATUS
6100  */
6101 static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
6102 					      uint8_t vdev_id,
6103 					      uint8_t *mac_addr)
6104 {
6105 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6106 	struct dp_ast_entry  *ast_entry = NULL;
6107 	txrx_ast_free_cb cb = NULL;
6108 	void *cookie;
6109 
6110 	if (soc->ast_offload_support)
6111 		return QDF_STATUS_E_INVAL;
6112 
6113 	qdf_spin_lock_bh(&soc->ast_lock);
6114 
6115 	ast_entry =
6116 		dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
6117 						vdev_id);
6118 
6119 	/* in case of qwrap we have multiple BSS peers
6120 	 * with same mac address
6121 	 *
6122 	 * AST entry for this mac address will be created
6123 	 * only for one peer hence it will be NULL here
6124 	 */
6125 	if ((!ast_entry || !ast_entry->delete_in_progress) ||
6126 	    (ast_entry->peer_id != HTT_INVALID_PEER)) {
6127 		qdf_spin_unlock_bh(&soc->ast_lock);
6128 		return QDF_STATUS_E_FAILURE;
6129 	}
6130 
6131 	if (ast_entry->is_mapped)
6132 		soc->ast_table[ast_entry->ast_idx] = NULL;
6133 
6134 	DP_STATS_INC(soc, ast.deleted, 1);
6135 	dp_peer_ast_hash_remove(soc, ast_entry);
6136 
6137 	cb = ast_entry->callback;
6138 	cookie = ast_entry->cookie;
6139 	ast_entry->callback = NULL;
6140 	ast_entry->cookie = NULL;
6141 
6142 	soc->num_ast_entries--;
6143 	qdf_spin_unlock_bh(&soc->ast_lock);
6144 
6145 	if (cb) {
6146 		cb(soc->ctrl_psoc,
6147 		   dp_soc_to_cdp_soc(soc),
6148 		   cookie,
6149 		   CDP_TXRX_AST_DELETED);
6150 	}
6151 	qdf_mem_free(ast_entry);
6152 
6153 	return QDF_STATUS_SUCCESS;
6154 }
6155 
6156 #ifdef WLAN_SUPPORT_MSCS
6157 /**
6158  * dp_record_mscs_params() - Record MSCS parameters sent by the STA in
6159  * the MSCS Request to the AP.
6160  * @soc_hdl: Datapath soc handle
6161  * @peer_mac: STA Mac address
6162  * @vdev_id: ID of the vdev handle
6163  * @mscs_params: Structure having MSCS parameters obtained
6164  * from handshake
6165  * @active: Flag to set MSCS active/inactive
6166  *
6167  * The AP makes a note of these parameters while comparing the MSDUs
6168  * sent by the STA, to send the downlink traffic with correct User
6169  * priority.
6170  *
6171  * Return: QDF_STATUS - Success/Invalid
6172  */
6173 static QDF_STATUS
6174 dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
6175 		      uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
6176 		      bool active)
6177 {
6178 	struct dp_peer *peer;
6179 	struct dp_peer *tgt_peer;
6180 	QDF_STATUS status = QDF_STATUS_E_INVAL;
6181 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6182 
6183 	peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
6184 				      DP_MOD_ID_CDP);
6185 
6186 	if (!peer) {
6187 		dp_err("Peer is NULL!");
6188 		goto fail;
6189 	}
6190 
6191 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
6192 	if (!tgt_peer)
6193 		goto fail;
6194 
6195 	if (!active) {
6196 		dp_info("MSCS Procedure is terminated");
6197 		tgt_peer->mscs_active = active;
6198 		goto fail;
6199 	}
6200 
6201 	if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
6202 		/* Populate entries inside IPV4 database first */
6203 		tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
6204 			mscs_params->user_pri_bitmap;
6205 		tgt_peer->mscs_ipv4_parameter.user_priority_limit =
6206 			mscs_params->user_pri_limit;
6207 		tgt_peer->mscs_ipv4_parameter.classifier_mask =
6208 			mscs_params->classifier_mask;
6209 
6210 		/* Populate entries inside IPV6 database */
6211 		tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
6212 			mscs_params->user_pri_bitmap;
6213 		tgt_peer->mscs_ipv6_parameter.user_priority_limit =
6214 			mscs_params->user_pri_limit;
6215 		tgt_peer->mscs_ipv6_parameter.classifier_mask =
6216 			mscs_params->classifier_mask;
6217 		tgt_peer->mscs_active = 1;
6218 		dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
6219 			"\tClassifier_type = %d\tUser priority bitmap = %x\n"
6220 			"\tUser priority limit = %x\tClassifier mask = %x",
6221 			QDF_MAC_ADDR_REF(peer_mac),
6222 			mscs_params->classifier_type,
6223 			tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
6224 			tgt_peer->mscs_ipv4_parameter.user_priority_limit,
6225 			tgt_peer->mscs_ipv4_parameter.classifier_mask);
6226 	}
6227 
6228 	status = QDF_STATUS_SUCCESS;
6229 fail:
6230 	if (peer)
6231 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6232 	return status;
6233 }
6234 #endif
6235 
6236 /**
6237  * dp_get_sec_type() - Get the security type
6238  * @soc: soc handle
6239  * @vdev_id: id of dp handle
6240  * @peer_mac: mac of datapath PEER handle
6241  * @sec_idx:    Security id (mcast, ucast)
6242  *
6243  * return sec_type: Security type
6244  */
6245 static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
6246 			   uint8_t *peer_mac, uint8_t sec_idx)
6247 {
6248 	int sec_type = 0;
6249 	struct dp_peer *peer =
6250 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
6251 						       peer_mac, 0, vdev_id,
6252 						       DP_MOD_ID_CDP);
6253 
6254 	if (!peer) {
6255 		dp_cdp_err("%pK: Peer is NULL!", (struct dp_soc *)soc);
6256 		return sec_type;
6257 	}
6258 
6259 	if (!peer->txrx_peer) {
6260 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6261 		dp_peer_debug("%pK: txrx peer is NULL!", soc);
6262 		return sec_type;
6263 	}
6264 	sec_type = peer->txrx_peer->security[sec_idx].sec_type;
6265 
6266 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6267 	return sec_type;
6268 }
6269 
6270 /**
6271  * dp_peer_authorize() - authorize txrx peer
6272  * @soc_hdl: soc handle
6273  * @vdev_id: id of dp handle
6274  * @peer_mac: mac of datapath PEER handle
6275  * @authorize:
6276  *
6277  * Return: QDF_STATUS
6278  *
6279  */
6280 static QDF_STATUS
6281 dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6282 		  uint8_t *peer_mac, uint32_t authorize)
6283 {
6284 	QDF_STATUS status = QDF_STATUS_SUCCESS;
6285 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6286 	struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
6287 							      0, vdev_id,
6288 							      DP_MOD_ID_CDP);
6289 
6290 	if (!peer) {
6291 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6292 		status = QDF_STATUS_E_FAILURE;
6293 	} else {
6294 		peer->authorize = authorize ? 1 : 0;
6295 		if (peer->txrx_peer)
6296 			peer->txrx_peer->authorize = peer->authorize;
6297 
6298 		if (!peer->authorize)
6299 			dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
6300 
6301 		dp_mlo_peer_authorize(soc, peer);
6302 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6303 	}
6304 
6305 	return status;
6306 }
6307 
6308 /**
6309  * dp_peer_get_authorize() - get peer authorize status
6310  * @soc_hdl: soc handle
6311  * @vdev_id: id of dp handle
6312  * @peer_mac: mac of datapath PEER handle
6313  *
6314  * Return: true is peer is authorized, false otherwise
6315  */
6316 static bool
6317 dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6318 		      uint8_t *peer_mac)
6319 {
6320 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6321 	bool authorize = false;
6322 	struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
6323 						      0, vdev_id,
6324 						      DP_MOD_ID_CDP);
6325 
6326 	if (!peer) {
6327 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6328 		return authorize;
6329 	}
6330 
6331 	authorize = peer->authorize;
6332 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6333 
6334 	return authorize;
6335 }
6336 
6337 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
6338 			  enum dp_mod_id mod_id)
6339 {
6340 	ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
6341 	void *vdev_delete_context = NULL;
6342 	uint8_t vdev_id = vdev->vdev_id;
6343 	struct dp_pdev *pdev = vdev->pdev;
6344 	struct dp_vdev *tmp_vdev = NULL;
6345 	uint8_t found = 0;
6346 
6347 	QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
6348 
6349 	/* Return if this is not the last reference*/
6350 	if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
6351 		return;
6352 
6353 	/*
6354 	 * This should be set as last reference need to released
6355 	 * after cdp_vdev_detach() is called
6356 	 *
6357 	 * if this assert is hit there is a ref count issue
6358 	 */
6359 	QDF_ASSERT(vdev->delete.pending);
6360 
6361 	vdev_delete_cb = vdev->delete.callback;
6362 	vdev_delete_context = vdev->delete.context;
6363 
6364 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
6365 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6366 
6367 	if (wlan_op_mode_monitor == vdev->opmode) {
6368 		dp_monitor_vdev_delete(soc, vdev);
6369 		goto free_vdev;
6370 	}
6371 
6372 	/* all peers are gone, go ahead and delete it */
6373 	dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
6374 			FLOW_TYPE_VDEV, vdev_id);
6375 	dp_tx_vdev_detach(vdev);
6376 	dp_monitor_vdev_detach(vdev);
6377 
6378 free_vdev:
6379 	qdf_spinlock_destroy(&vdev->peer_list_lock);
6380 
6381 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
6382 	TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
6383 		      inactive_list_elem) {
6384 		if (tmp_vdev == vdev) {
6385 			found = 1;
6386 			break;
6387 		}
6388 	}
6389 	if (found)
6390 		TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
6391 			     inactive_list_elem);
6392 	/* delete this peer from the list */
6393 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
6394 
6395 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
6396 				     vdev);
6397 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
6398 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6399 	wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
6400 			     WLAN_MD_DP_VDEV, "dp_vdev");
6401 	qdf_mem_free(vdev);
6402 	vdev = NULL;
6403 
6404 	if (vdev_delete_cb)
6405 		vdev_delete_cb(vdev_delete_context);
6406 }
6407 
6408 qdf_export_symbol(dp_vdev_unref_delete);
6409 
6410 void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
6411 {
6412 	struct dp_vdev *vdev = peer->vdev;
6413 	struct dp_pdev *pdev = vdev->pdev;
6414 	struct dp_soc *soc = pdev->soc;
6415 	uint16_t peer_id;
6416 	struct dp_peer *tmp_peer;
6417 	bool found = false;
6418 
6419 	if (mod_id > DP_MOD_ID_RX)
6420 		QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
6421 
6422 	/*
6423 	 * Hold the lock all the way from checking if the peer ref count
6424 	 * is zero until the peer references are removed from the hash
6425 	 * table and vdev list (if the peer ref count is zero).
6426 	 * This protects against a new HL tx operation starting to use the
6427 	 * peer object just after this function concludes it's done being used.
6428 	 * Furthermore, the lock needs to be held while checking whether the
6429 	 * vdev's list of peers is empty, to make sure that list is not modified
6430 	 * concurrently with the empty check.
6431 	 */
6432 	if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
6433 		peer_id = peer->peer_id;
6434 
6435 		/*
6436 		 * Make sure that the reference to the peer in
6437 		 * peer object map is removed
6438 		 */
6439 		QDF_ASSERT(peer_id == HTT_INVALID_PEER);
6440 
6441 		dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
6442 			     QDF_MAC_ADDR_REF(peer->mac_addr.raw));
6443 
6444 		dp_peer_sawf_ctx_free(soc, peer);
6445 
6446 		wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
6447 				     WLAN_MD_DP_PEER, "dp_peer");
6448 
6449 		qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6450 		TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
6451 			      inactive_list_elem) {
6452 			if (tmp_peer == peer) {
6453 				found = 1;
6454 				break;
6455 			}
6456 		}
6457 		if (found)
6458 			TAILQ_REMOVE(&soc->inactive_peer_list, peer,
6459 				     inactive_list_elem);
6460 		/* delete this peer from the list */
6461 		qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6462 		DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
6463 		dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
6464 
6465 		/* cleanup the peer data */
6466 		dp_peer_cleanup(vdev, peer);
6467 
6468 		dp_monitor_peer_detach(soc, peer);
6469 
6470 		qdf_spinlock_destroy(&peer->peer_state_lock);
6471 
6472 		dp_txrx_peer_detach(soc, peer);
6473 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
6474 					     peer, vdev, 0);
6475 		qdf_mem_free(peer);
6476 
6477 		/*
6478 		 * Decrement ref count taken at peer create
6479 		 */
6480 		dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
6481 			     vdev, qdf_atomic_read(&vdev->ref_cnt));
6482 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
6483 	}
6484 }
6485 
6486 qdf_export_symbol(dp_peer_unref_delete);
6487 
6488 void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
6489 			       enum dp_mod_id mod_id)
6490 {
6491 	dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
6492 }
6493 
6494 qdf_export_symbol(dp_txrx_peer_unref_delete);
6495 
6496 /**
6497  * dp_peer_delete_wifi3() - Delete txrx peer
6498  * @soc_hdl: soc handle
6499  * @vdev_id: id of dp handle
6500  * @peer_mac: mac of datapath PEER handle
6501  * @bitmap: bitmap indicating special handling of request.
6502  * @peer_type: peer type (link or MLD)
6503  *
6504  */
6505 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
6506 				       uint8_t vdev_id,
6507 				       uint8_t *peer_mac, uint32_t bitmap,
6508 				       enum cdp_peer_type peer_type)
6509 {
6510 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6511 	struct dp_peer *peer;
6512 	struct cdp_peer_info peer_info = { 0 };
6513 	struct dp_vdev *vdev = NULL;
6514 
6515 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
6516 				 false, peer_type);
6517 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
6518 
6519 	/* Peer can be null for monitor vap mac address */
6520 	if (!peer) {
6521 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
6522 			  "%s: Invalid peer\n", __func__);
6523 		return QDF_STATUS_E_FAILURE;
6524 	}
6525 
6526 	if (!peer->valid) {
6527 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6528 		dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
6529 			QDF_MAC_ADDR_REF(peer_mac));
6530 		return QDF_STATUS_E_ALREADY;
6531 	}
6532 
6533 	vdev = peer->vdev;
6534 
6535 	if (!vdev) {
6536 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6537 		return QDF_STATUS_E_FAILURE;
6538 	}
6539 
6540 	peer->valid = 0;
6541 
6542 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
6543 				     vdev, 0);
6544 	dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
6545 		     soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
6546 		     qdf_atomic_read(&peer->ref_cnt));
6547 
6548 	dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
6549 
6550 	dp_local_peer_id_free(peer->vdev->pdev, peer);
6551 
6552 	/* Drop all rx packets before deleting peer */
6553 	dp_clear_peer_internal(soc, peer);
6554 
6555 	qdf_spinlock_destroy(&peer->peer_info_lock);
6556 	dp_peer_multipass_list_remove(peer);
6557 
6558 	/* remove the reference to the peer from the hash table */
6559 	dp_peer_find_hash_remove(soc, peer);
6560 
6561 	dp_peer_vdev_list_remove(soc, vdev, peer);
6562 
6563 	dp_peer_mlo_delete(peer);
6564 
6565 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6566 	TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
6567 			  inactive_list_elem);
6568 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6569 
6570 	/*
6571 	 * Remove the reference added during peer_attach.
6572 	 * The peer will still be left allocated until the
6573 	 * PEER_UNMAP message arrives to remove the other
6574 	 * reference, added by the PEER_MAP message.
6575 	 */
6576 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
6577 	/*
6578 	 * Remove the reference taken above
6579 	 */
6580 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6581 
6582 	return QDF_STATUS_SUCCESS;
6583 }
6584 
6585 #ifdef DP_RX_UDP_OVER_PEER_ROAM
6586 static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
6587 					       uint8_t vdev_id,
6588 					       uint8_t *peer_mac,
6589 					       uint32_t auth_status)
6590 {
6591 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6592 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6593 						     DP_MOD_ID_CDP);
6594 	if (!vdev)
6595 		return QDF_STATUS_E_FAILURE;
6596 
6597 	vdev->roaming_peer_status = auth_status;
6598 	qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
6599 		     QDF_MAC_ADDR_SIZE);
6600 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6601 
6602 	return QDF_STATUS_SUCCESS;
6603 }
6604 #endif
6605 /**
6606  * dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
6607  * @soc_hdl: Datapath soc handle
6608  * @vdev_id: virtual interface id
6609  *
6610  * Return: MAC address on success, NULL on failure.
6611  *
6612  */
6613 static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
6614 					   uint8_t vdev_id)
6615 {
6616 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6617 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6618 						     DP_MOD_ID_CDP);
6619 	uint8_t *mac = NULL;
6620 
6621 	if (!vdev)
6622 		return NULL;
6623 
6624 	mac = vdev->mac_addr.raw;
6625 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6626 
6627 	return mac;
6628 }
6629 
6630 /**
6631  * dp_vdev_set_wds() - Enable per packet stats
6632  * @soc_hdl: DP soc handle
6633  * @vdev_id: id of DP VDEV handle
6634  * @val: value
6635  *
6636  * Return: none
6637  */
6638 static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6639 			   uint32_t val)
6640 {
6641 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6642 	struct dp_vdev *vdev =
6643 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
6644 				      DP_MOD_ID_CDP);
6645 
6646 	if (!vdev)
6647 		return QDF_STATUS_E_FAILURE;
6648 
6649 	vdev->wds_enabled = val;
6650 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6651 
6652 	return QDF_STATUS_SUCCESS;
6653 }
6654 
6655 static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
6656 {
6657 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6658 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6659 						     DP_MOD_ID_CDP);
6660 	int opmode;
6661 
6662 	if (!vdev) {
6663 		dp_err_rl("vdev for id %d is NULL", vdev_id);
6664 		return -EINVAL;
6665 	}
6666 	opmode = vdev->opmode;
6667 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6668 
6669 	return opmode;
6670 }
6671 
6672 /**
6673  * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
6674  * @soc_hdl: ol_txrx_soc_handle handle
6675  * @vdev_id: vdev id for which os rx handles are needed
6676  * @stack_fn_p: pointer to stack function pointer
6677  * @osif_vdev_p: pointer to ol_osif_vdev_handle
6678  *
6679  * Return: void
6680  */
6681 static
6682 void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
6683 					  uint8_t vdev_id,
6684 					  ol_txrx_rx_fp *stack_fn_p,
6685 					  ol_osif_vdev_handle *osif_vdev_p)
6686 {
6687 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6688 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6689 						     DP_MOD_ID_CDP);
6690 
6691 	if (qdf_unlikely(!vdev)) {
6692 		*stack_fn_p = NULL;
6693 		*osif_vdev_p = NULL;
6694 		return;
6695 	}
6696 	*stack_fn_p = vdev->osif_rx_stack;
6697 	*osif_vdev_p = vdev->osif_vdev;
6698 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6699 }
6700 
6701 /**
6702  * dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
6703  * @soc_hdl: datapath soc handle
6704  * @vdev_id: virtual device/interface id
6705  *
6706  * Return: Handle to control pdev
6707  */
6708 static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
6709 						struct cdp_soc_t *soc_hdl,
6710 						uint8_t vdev_id)
6711 {
6712 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6713 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6714 						     DP_MOD_ID_CDP);
6715 	struct dp_pdev *pdev;
6716 
6717 	if (!vdev)
6718 		return NULL;
6719 
6720 	pdev = vdev->pdev;
6721 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6722 	return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
6723 }
6724 
6725 int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
6726 {
6727 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6728 
6729 	return qdf_atomic_read(&pdev->num_tx_outstanding);
6730 }
6731 
6732 /**
6733  * dp_get_peer_mac_from_peer_id() - get peer mac
6734  * @soc: CDP SoC handle
6735  * @peer_id: Peer ID
6736  * @peer_mac: MAC addr of PEER
6737  *
6738  * Return: QDF_STATUS
6739  */
6740 static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
6741 					       uint32_t peer_id,
6742 					       uint8_t *peer_mac)
6743 {
6744 	struct dp_peer *peer;
6745 
6746 	if (soc && peer_mac) {
6747 		peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
6748 					     (uint16_t)peer_id,
6749 					     DP_MOD_ID_CDP);
6750 		if (peer) {
6751 			qdf_mem_copy(peer_mac, peer->mac_addr.raw,
6752 				     QDF_MAC_ADDR_SIZE);
6753 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6754 			return QDF_STATUS_SUCCESS;
6755 		}
6756 	}
6757 
6758 	return QDF_STATUS_E_FAILURE;
6759 }
6760 
6761 #ifdef MESH_MODE_SUPPORT
6762 static
6763 void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
6764 {
6765 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6766 
6767 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6768 	vdev->mesh_vdev = val;
6769 	if (val)
6770 		vdev->skip_sw_tid_classification |=
6771 			DP_TX_MESH_ENABLED;
6772 	else
6773 		vdev->skip_sw_tid_classification &=
6774 			~DP_TX_MESH_ENABLED;
6775 }
6776 
6777 /**
6778  * dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
6779  * @vdev_hdl: virtual device object
6780  * @val: value to be set
6781  *
6782  * Return: void
6783  */
6784 static
6785 void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
6786 {
6787 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6788 
6789 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6790 	vdev->mesh_rx_filter = val;
6791 }
6792 #endif
6793 
6794 /**
6795  * dp_vdev_set_hlos_tid_override() - to set hlos tid override
6796  * @vdev: virtual device object
6797  * @val: value to be set
6798  *
6799  * Return: void
6800  */
6801 static
6802 void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
6803 {
6804 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6805 	if (val)
6806 		vdev->skip_sw_tid_classification |=
6807 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6808 	else
6809 		vdev->skip_sw_tid_classification &=
6810 			~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6811 }
6812 
6813 /**
6814  * dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
6815  * @vdev_hdl: virtual device object
6816  *
6817  * Return: 1 if this flag is set
6818  */
6819 static
6820 uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
6821 {
6822 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6823 
6824 	return !!(vdev->skip_sw_tid_classification &
6825 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
6826 }
6827 
6828 #ifdef VDEV_PEER_PROTOCOL_COUNT
6829 static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
6830 					       int8_t vdev_id,
6831 					       bool enable)
6832 {
6833 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6834 	struct dp_vdev *vdev;
6835 
6836 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6837 	if (!vdev)
6838 		return;
6839 
6840 	dp_info("enable %d vdev_id %d", enable, vdev_id);
6841 	vdev->peer_protocol_count_track = enable;
6842 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6843 }
6844 
6845 static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6846 						   int8_t vdev_id,
6847 						   int drop_mask)
6848 {
6849 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6850 	struct dp_vdev *vdev;
6851 
6852 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6853 	if (!vdev)
6854 		return;
6855 
6856 	dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
6857 	vdev->peer_protocol_count_dropmask = drop_mask;
6858 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6859 }
6860 
6861 static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
6862 						  int8_t vdev_id)
6863 {
6864 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6865 	struct dp_vdev *vdev;
6866 	int peer_protocol_count_track;
6867 
6868 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6869 	if (!vdev)
6870 		return 0;
6871 
6872 	dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
6873 		vdev_id);
6874 	peer_protocol_count_track =
6875 		vdev->peer_protocol_count_track;
6876 
6877 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6878 	return peer_protocol_count_track;
6879 }
6880 
6881 static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6882 					       int8_t vdev_id)
6883 {
6884 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6885 	struct dp_vdev *vdev;
6886 	int peer_protocol_count_dropmask;
6887 
6888 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6889 	if (!vdev)
6890 		return 0;
6891 
6892 	dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
6893 		vdev_id);
6894 	peer_protocol_count_dropmask =
6895 		vdev->peer_protocol_count_dropmask;
6896 
6897 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6898 	return peer_protocol_count_dropmask;
6899 }
6900 
6901 #endif
6902 
6903 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
6904 {
6905 	uint8_t pdev_count;
6906 
6907 	for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
6908 		if (soc->pdev_list[pdev_count] &&
6909 		    soc->pdev_list[pdev_count] == data)
6910 			return true;
6911 	}
6912 	return false;
6913 }
6914 
6915 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
6916 			     struct cdp_vdev_stats *vdev_stats,
6917 			     enum dp_pkt_xmit_type xmit_type)
6918 {
6919 	if (!vdev || !vdev->pdev)
6920 		return;
6921 
6922 	dp_update_vdev_ingress_stats(vdev);
6923 
6924 	dp_copy_vdev_stats_to_tgt_buf(vdev_stats,
6925 					    &vdev->stats, xmit_type);
6926 	dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
6927 			     DP_MOD_ID_GENERIC_STATS);
6928 
6929 	dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
6930 
6931 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6932 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6933 			     vdev_stats, vdev->vdev_id,
6934 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6935 #endif
6936 }
6937 
6938 void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
6939 {
6940 	struct dp_vdev *vdev = NULL;
6941 	struct dp_soc *soc;
6942 	struct cdp_vdev_stats *vdev_stats =
6943 			qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6944 
6945 	if (!vdev_stats) {
6946 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6947 			   pdev->soc);
6948 		return;
6949 	}
6950 
6951 	soc = pdev->soc;
6952 
6953 	qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
6954 	qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
6955 	qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
6956 	qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
6957 
6958 	if (dp_monitor_is_enable_mcopy_mode(pdev))
6959 		dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
6960 
6961 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
6962 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
6963 
6964 		dp_aggregate_vdev_stats(vdev, vdev_stats, DP_XMIT_TOTAL);
6965 		dp_update_pdev_stats(pdev, vdev_stats);
6966 		dp_update_pdev_ingress_stats(pdev, vdev);
6967 	}
6968 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
6969 	qdf_mem_free(vdev_stats);
6970 
6971 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6972 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
6973 			     pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
6974 #endif
6975 }
6976 
6977 /**
6978  * dp_vdev_getstats() - get vdev packet level stats
6979  * @vdev_handle: Datapath VDEV handle
6980  * @stats: cdp network device stats structure
6981  *
6982  * Return: QDF_STATUS
6983  */
6984 static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
6985 				   struct cdp_dev_stats *stats)
6986 {
6987 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
6988 	struct dp_pdev *pdev;
6989 	struct dp_soc *soc;
6990 	struct cdp_vdev_stats *vdev_stats;
6991 
6992 	if (!vdev)
6993 		return QDF_STATUS_E_FAILURE;
6994 
6995 	pdev = vdev->pdev;
6996 	if (!pdev)
6997 		return QDF_STATUS_E_FAILURE;
6998 
6999 	soc = pdev->soc;
7000 
7001 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
7002 
7003 	if (!vdev_stats) {
7004 		dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
7005 		       soc);
7006 		return QDF_STATUS_E_FAILURE;
7007 	}
7008 
7009 	dp_aggregate_vdev_stats(vdev, vdev_stats, DP_XMIT_LINK);
7010 
7011 	stats->tx_packets = vdev_stats->tx.comp_pkt.num;
7012 	stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
7013 
7014 	stats->tx_errors = vdev_stats->tx.tx_failed;
7015 	stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
7016 			    vdev_stats->tx_i.sg.dropped_host.num +
7017 			    vdev_stats->tx_i.mcast_en.dropped_map_error +
7018 			    vdev_stats->tx_i.mcast_en.dropped_self_mac +
7019 			    vdev_stats->tx_i.mcast_en.dropped_send_fail +
7020 			    vdev_stats->tx.nawds_mcast_drop;
7021 
7022 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
7023 		stats->rx_packets = vdev_stats->rx.to_stack.num;
7024 		stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
7025 	} else {
7026 		stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
7027 				    vdev_stats->rx_i.null_q_desc_pkt.num +
7028 				    vdev_stats->rx_i.routed_eapol_pkt.num;
7029 		stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
7030 				  vdev_stats->rx_i.null_q_desc_pkt.bytes +
7031 				  vdev_stats->rx_i.routed_eapol_pkt.bytes;
7032 	}
7033 
7034 	stats->rx_errors = vdev_stats->rx.err.mic_err +
7035 			   vdev_stats->rx.err.decrypt_err +
7036 			   vdev_stats->rx.err.fcserr +
7037 			   vdev_stats->rx.err.pn_err +
7038 			   vdev_stats->rx.err.oor_err +
7039 			   vdev_stats->rx.err.jump_2k_err +
7040 			   vdev_stats->rx.err.rxdma_wifi_parse_err;
7041 
7042 	stats->rx_dropped = vdev_stats->rx.mec_drop.num +
7043 			    vdev_stats->rx.multipass_rx_pkt_drop +
7044 			    vdev_stats->rx.peer_unauth_rx_pkt_drop +
7045 			    vdev_stats->rx.policy_check_drop +
7046 			    vdev_stats->rx.nawds_mcast_drop +
7047 			    vdev_stats->rx.mcast_3addr_drop +
7048 			    vdev_stats->rx.ppeds_drop.num;
7049 
7050 	qdf_mem_free(vdev_stats);
7051 
7052 	return QDF_STATUS_SUCCESS;
7053 }
7054 
7055 /**
7056  * dp_pdev_getstats() - get pdev packet level stats
7057  * @pdev_handle: Datapath PDEV handle
7058  * @stats: cdp network device stats structure
7059  *
7060  * Return: QDF_STATUS
7061  */
7062 static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
7063 			     struct cdp_dev_stats *stats)
7064 {
7065 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
7066 
7067 	dp_aggregate_pdev_stats(pdev);
7068 
7069 	stats->tx_packets = pdev->stats.tx.comp_pkt.num;
7070 	stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
7071 
7072 	stats->tx_errors = pdev->stats.tx.tx_failed;
7073 	stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
7074 			    pdev->stats.tx_i.sg.dropped_host.num +
7075 			    pdev->stats.tx_i.mcast_en.dropped_map_error +
7076 			    pdev->stats.tx_i.mcast_en.dropped_self_mac +
7077 			    pdev->stats.tx_i.mcast_en.dropped_send_fail +
7078 			    pdev->stats.tx.nawds_mcast_drop +
7079 			    pdev->stats.tso_stats.dropped_host.num;
7080 
7081 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
7082 		stats->rx_packets = pdev->stats.rx.to_stack.num;
7083 		stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
7084 	} else {
7085 		stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
7086 				    pdev->stats.rx_i.null_q_desc_pkt.num +
7087 				    pdev->stats.rx_i.routed_eapol_pkt.num;
7088 		stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
7089 				  pdev->stats.rx_i.null_q_desc_pkt.bytes +
7090 				  pdev->stats.rx_i.routed_eapol_pkt.bytes;
7091 	}
7092 
7093 	stats->rx_errors = pdev->stats.err.ip_csum_err +
7094 		pdev->stats.err.tcp_udp_csum_err +
7095 		pdev->stats.rx.err.mic_err +
7096 		pdev->stats.rx.err.decrypt_err +
7097 		pdev->stats.rx.err.fcserr +
7098 		pdev->stats.rx.err.pn_err +
7099 		pdev->stats.rx.err.oor_err +
7100 		pdev->stats.rx.err.jump_2k_err +
7101 		pdev->stats.rx.err.rxdma_wifi_parse_err;
7102 	stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
7103 		pdev->stats.dropped.mec +
7104 		pdev->stats.dropped.mesh_filter +
7105 		pdev->stats.dropped.wifi_parse +
7106 		pdev->stats.dropped.mon_rx_drop +
7107 		pdev->stats.dropped.mon_radiotap_update_err +
7108 		pdev->stats.rx.mec_drop.num +
7109 		pdev->stats.rx.ppeds_drop.num +
7110 		pdev->stats.rx.multipass_rx_pkt_drop +
7111 		pdev->stats.rx.peer_unauth_rx_pkt_drop +
7112 		pdev->stats.rx.policy_check_drop +
7113 		pdev->stats.rx.nawds_mcast_drop +
7114 		pdev->stats.rx.mcast_3addr_drop;
7115 }
7116 
7117 /**
7118  * dp_get_device_stats() - get interface level packet stats
7119  * @soc_hdl: soc handle
7120  * @id: vdev_id or pdev_id based on type
7121  * @stats: cdp network device stats structure
7122  * @type: device type pdev/vdev
7123  *
7124  * Return: QDF_STATUS
7125  */
7126 static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
7127 				      struct cdp_dev_stats *stats,
7128 				      uint8_t type)
7129 {
7130 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
7131 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
7132 	struct dp_vdev *vdev;
7133 
7134 	switch (type) {
7135 	case UPDATE_VDEV_STATS:
7136 		vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
7137 
7138 		if (vdev) {
7139 			status = dp_vdev_getstats((struct cdp_vdev *)vdev,
7140 						  stats);
7141 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7142 		}
7143 		return status;
7144 	case UPDATE_PDEV_STATS:
7145 		{
7146 			struct dp_pdev *pdev =
7147 				dp_get_pdev_from_soc_pdev_id_wifi3(
7148 						(struct dp_soc *)soc,
7149 						 id);
7150 			if (pdev) {
7151 				dp_pdev_getstats((struct cdp_pdev *)pdev,
7152 						 stats);
7153 				return QDF_STATUS_SUCCESS;
7154 			}
7155 		}
7156 		break;
7157 	default:
7158 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7159 			"apstats cannot be updated for this input "
7160 			"type %d", type);
7161 		break;
7162 	}
7163 
7164 	return QDF_STATUS_E_FAILURE;
7165 }
7166 
7167 const
7168 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
7169 {
7170 	switch (ring_type) {
7171 	case REO_DST:
7172 		return "Reo_dst";
7173 	case REO_EXCEPTION:
7174 		return "Reo_exception";
7175 	case REO_CMD:
7176 		return "Reo_cmd";
7177 	case REO_REINJECT:
7178 		return "Reo_reinject";
7179 	case REO_STATUS:
7180 		return "Reo_status";
7181 	case WBM2SW_RELEASE:
7182 		return "wbm2sw_release";
7183 	case TCL_DATA:
7184 		return "tcl_data";
7185 	case TCL_CMD_CREDIT:
7186 		return "tcl_cmd_credit";
7187 	case TCL_STATUS:
7188 		return "tcl_status";
7189 	case SW2WBM_RELEASE:
7190 		return "sw2wbm_release";
7191 	case RXDMA_BUF:
7192 		return "Rxdma_buf";
7193 	case RXDMA_DST:
7194 		return "Rxdma_dst";
7195 	case RXDMA_MONITOR_BUF:
7196 		return "Rxdma_monitor_buf";
7197 	case RXDMA_MONITOR_DESC:
7198 		return "Rxdma_monitor_desc";
7199 	case RXDMA_MONITOR_STATUS:
7200 		return "Rxdma_monitor_status";
7201 	case RXDMA_MONITOR_DST:
7202 		return "Rxdma_monitor_destination";
7203 	case WBM_IDLE_LINK:
7204 		return "WBM_hw_idle_link";
7205 	case PPE2TCL:
7206 		return "PPE2TCL";
7207 	case REO2PPE:
7208 		return "REO2PPE";
7209 	case TX_MONITOR_DST:
7210 		return "tx_monitor_destination";
7211 	case TX_MONITOR_BUF:
7212 		return "tx_monitor_buf";
7213 	default:
7214 		dp_err("Invalid ring type: %u", ring_type);
7215 		break;
7216 	}
7217 	return "Invalid";
7218 }
7219 
7220 void dp_print_napi_stats(struct dp_soc *soc)
7221 {
7222 	hif_print_napi_stats(soc->hif_handle);
7223 }
7224 
7225 /**
7226  * dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
7227  * @soc: Datapath soc
7228  * @peer: Datatpath peer
7229  * @arg: argument to iter function
7230  *
7231  * Return: QDF_STATUS
7232  */
7233 static inline void
7234 dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
7235 			    struct dp_peer *peer,
7236 			    void *arg)
7237 {
7238 	struct dp_txrx_peer *txrx_peer = NULL;
7239 	struct dp_peer *tgt_peer = NULL;
7240 	struct cdp_interface_peer_stats peer_stats_intf = {0};
7241 
7242 	peer_stats_intf.rx_avg_snr = CDP_INVALID_SNR;
7243 
7244 	DP_STATS_CLR(peer);
7245 	/* Clear monitor peer stats */
7246 	dp_monitor_peer_reset_stats(soc, peer);
7247 
7248 	/* Clear MLD peer stats only when link peer is primary */
7249 	if (dp_peer_is_primary_link_peer(peer)) {
7250 		tgt_peer = dp_get_tgt_peer_from_peer(peer);
7251 		if (tgt_peer) {
7252 			DP_STATS_CLR(tgt_peer);
7253 			txrx_peer = tgt_peer->txrx_peer;
7254 			dp_txrx_peer_stats_clr(txrx_peer);
7255 		}
7256 	}
7257 
7258 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7259 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
7260 			     &peer_stats_intf,  peer->peer_id,
7261 			     UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
7262 #endif
7263 }
7264 
7265 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
7266 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7267 {
7268 	int ring;
7269 
7270 	for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
7271 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
7272 					    soc->reo_dest_ring[ring].hal_srng);
7273 
7274 	for (ring = 0; ring < soc->num_tcl_data_rings; ring++) {
7275 		if (wlan_cfg_get_wbm_ring_num_for_index(
7276 					soc->wlan_cfg_ctx, ring) ==
7277 		    INVALID_WBM_RING_NUM)
7278 			continue;
7279 
7280 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
7281 					soc->tx_comp_ring[ring].hal_srng);
7282 	}
7283 }
7284 #else
7285 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7286 {
7287 }
7288 #endif
7289 
7290 #ifdef WLAN_SUPPORT_PPEDS
7291 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7292 {
7293 	if (soc->arch_ops.dp_ppeds_clear_stats)
7294 		soc->arch_ops.dp_ppeds_clear_stats(soc);
7295 }
7296 
7297 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7298 {
7299 	if (soc->arch_ops.dp_txrx_ppeds_clear_rings_stats)
7300 		soc->arch_ops.dp_txrx_ppeds_clear_rings_stats(soc);
7301 }
7302 #else
7303 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7304 {
7305 }
7306 
7307 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7308 {
7309 }
7310 #endif
7311 
7312 /**
7313  * dp_txrx_host_stats_clr() - Reinitialize the txrx stats
7314  * @vdev: DP_VDEV handle
7315  * @soc: DP_SOC handle
7316  *
7317  * Return: QDF_STATUS
7318  */
7319 static inline QDF_STATUS
7320 dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
7321 {
7322 	struct dp_vdev *var_vdev = NULL;
7323 
7324 	if (!vdev || !vdev->pdev)
7325 		return QDF_STATUS_E_FAILURE;
7326 
7327 	/*
7328 	 * if NSS offload is enabled, then send message
7329 	 * to NSS FW to clear the stats. Once NSS FW clears the statistics
7330 	 * then clear host statistics.
7331 	 */
7332 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
7333 		if (soc->cdp_soc.ol_ops->nss_stats_clr)
7334 			soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
7335 							   vdev->vdev_id);
7336 	}
7337 
7338 	dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
7339 					      (1 << vdev->vdev_id));
7340 
7341 	DP_STATS_CLR(vdev->pdev);
7342 	DP_STATS_CLR(vdev->pdev->soc);
7343 
7344 	dp_clear_tx_ppeds_stats(soc);
7345 	dp_ppeds_clear_ring_util_stats(soc);
7346 
7347 	hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
7348 
7349 	TAILQ_FOREACH(var_vdev, &vdev->pdev->vdev_list, vdev_list_elem) {
7350 		DP_STATS_CLR(var_vdev);
7351 		dp_vdev_iterate_peer(var_vdev, dp_txrx_host_peer_stats_clr,
7352 				     NULL, DP_MOD_ID_GENERIC_STATS);
7353 	}
7354 
7355 	dp_srng_clear_ring_usage_wm_stats(soc);
7356 
7357 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7358 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
7359 			     &vdev->stats,  vdev->vdev_id,
7360 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
7361 #endif
7362 	return QDF_STATUS_SUCCESS;
7363 }
7364 
7365 /**
7366  * dp_get_peer_calibr_stats()- Get peer calibrated stats
7367  * @peer: Datapath peer
7368  * @peer_stats: buffer for peer stats
7369  *
7370  * Return: none
7371  */
7372 static inline
7373 void dp_get_peer_calibr_stats(struct dp_peer *peer,
7374 			      struct cdp_peer_stats *peer_stats)
7375 {
7376 	struct dp_peer *tgt_peer;
7377 
7378 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
7379 	if (!tgt_peer)
7380 		return;
7381 
7382 	peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
7383 	peer_stats->tx.tx_bytes_success_last =
7384 				tgt_peer->stats.tx.tx_bytes_success_last;
7385 	peer_stats->tx.tx_data_success_last =
7386 					tgt_peer->stats.tx.tx_data_success_last;
7387 	peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
7388 	peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
7389 	peer_stats->tx.tx_data_ucast_last =
7390 					tgt_peer->stats.tx.tx_data_ucast_last;
7391 	peer_stats->tx.tx_data_ucast_rate =
7392 					tgt_peer->stats.tx.tx_data_ucast_rate;
7393 	peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
7394 	peer_stats->rx.rx_bytes_success_last =
7395 				tgt_peer->stats.rx.rx_bytes_success_last;
7396 	peer_stats->rx.rx_data_success_last =
7397 				tgt_peer->stats.rx.rx_data_success_last;
7398 	peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
7399 	peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
7400 }
7401 
7402 /**
7403  * dp_get_peer_basic_stats()- Get peer basic stats
7404  * @peer: Datapath peer
7405  * @peer_stats: buffer for peer stats
7406  *
7407  * Return: none
7408  */
7409 static inline
7410 void dp_get_peer_basic_stats(struct dp_peer *peer,
7411 			     struct cdp_peer_stats *peer_stats)
7412 {
7413 	struct dp_txrx_peer *txrx_peer;
7414 
7415 	txrx_peer = dp_get_txrx_peer(peer);
7416 	if (!txrx_peer)
7417 		return;
7418 
7419 	peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
7420 	peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
7421 	peer_stats->tx.tx_failed += txrx_peer->tx_failed;
7422 	peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
7423 	peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
7424 }
7425 
7426 #ifdef QCA_ENHANCED_STATS_SUPPORT
7427 /**
7428  * dp_get_peer_per_pkt_stats()- Get peer per pkt stats
7429  * @peer: Datapath peer
7430  * @peer_stats: buffer for peer stats
7431  *
7432  * Return: none
7433  */
7434 static inline
7435 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7436 			       struct cdp_peer_stats *peer_stats)
7437 {
7438 	struct dp_txrx_peer *txrx_peer;
7439 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7440 	uint8_t inx = 0, link_id = 0;
7441 	struct dp_pdev *pdev;
7442 	struct dp_soc *soc;
7443 	uint8_t stats_arr_size;
7444 
7445 	txrx_peer = dp_get_txrx_peer(peer);
7446 	pdev = peer->vdev->pdev;
7447 
7448 	if (!txrx_peer)
7449 		return;
7450 
7451 	if (!IS_MLO_DP_LINK_PEER(peer)) {
7452 		stats_arr_size = txrx_peer->stats_arr_size;
7453 		for (inx = 0; inx < stats_arr_size; inx++) {
7454 			per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
7455 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7456 		}
7457 	} else {
7458 		soc = pdev->soc;
7459 		link_id = dp_get_peer_hw_link_id(soc, pdev);
7460 		per_pkt_stats =
7461 			&txrx_peer->stats[link_id].per_pkt_stats;
7462 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7463 	}
7464 }
7465 
7466 #ifdef WLAN_FEATURE_11BE_MLO
7467 /**
7468  * dp_get_peer_extd_stats()- Get peer extd stats
7469  * @peer: Datapath peer
7470  * @peer_stats: buffer for peer stats
7471  *
7472  * Return: none
7473  */
7474 static inline
7475 void dp_get_peer_extd_stats(struct dp_peer *peer,
7476 			    struct cdp_peer_stats *peer_stats)
7477 {
7478 	struct dp_soc *soc = peer->vdev->pdev->soc;
7479 
7480 	if (IS_MLO_DP_MLD_PEER(peer)) {
7481 		uint8_t i;
7482 		struct dp_peer *link_peer;
7483 		struct dp_soc *link_peer_soc;
7484 		struct dp_mld_link_peers link_peers_info;
7485 
7486 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7487 						    &link_peers_info,
7488 						    DP_MOD_ID_CDP);
7489 		for (i = 0; i < link_peers_info.num_links; i++) {
7490 			link_peer = link_peers_info.link_peers[i];
7491 			link_peer_soc = link_peer->vdev->pdev->soc;
7492 			dp_monitor_peer_get_stats(link_peer_soc, link_peer,
7493 						  peer_stats,
7494 						  UPDATE_PEER_STATS);
7495 		}
7496 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
7497 	} else {
7498 		dp_monitor_peer_get_stats(soc, peer, peer_stats,
7499 					  UPDATE_PEER_STATS);
7500 	}
7501 }
7502 #else
7503 static inline
7504 void dp_get_peer_extd_stats(struct dp_peer *peer,
7505 			    struct cdp_peer_stats *peer_stats)
7506 {
7507 	struct dp_soc *soc = peer->vdev->pdev->soc;
7508 
7509 	dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
7510 }
7511 #endif
7512 #else
7513 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
7514 static inline
7515 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7516 			       struct cdp_peer_stats *peer_stats)
7517 {
7518 	uint8_t i, index;
7519 	struct dp_mld_link_peers link_peers_info;
7520 	struct dp_txrx_peer *txrx_peer;
7521 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7522 	struct dp_soc *soc = peer->vdev->pdev->soc;
7523 
7524 	txrx_peer = dp_get_txrx_peer(peer);
7525 	if (!txrx_peer)
7526 		return;
7527 
7528 	if (IS_MLO_DP_MLD_PEER(peer)) {
7529 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7530 						    &link_peers_info,
7531 						    DP_MOD_ID_GENERIC_STATS);
7532 		for (i = 0; i < link_peers_info.num_links; i++) {
7533 			if (i > txrx_peer->stats_arr_size)
7534 				break;
7535 			per_pkt_stats = &txrx_peer->stats[i].per_pkt_stats;
7536 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7537 		}
7538 		dp_release_link_peers_ref(&link_peers_info,
7539 					  DP_MOD_ID_GENERIC_STATS);
7540 	} else {
7541 		index = dp_get_peer_link_id(peer);
7542 		per_pkt_stats = &txrx_peer->stats[index].per_pkt_stats;
7543 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7544 		qdf_mem_copy(&peer_stats->mac_addr,
7545 			     &peer->mac_addr.raw[0],
7546 			     QDF_MAC_ADDR_SIZE);
7547 	}
7548 }
7549 
7550 static inline
7551 void dp_get_peer_extd_stats(struct dp_peer *peer,
7552 			    struct cdp_peer_stats *peer_stats)
7553 {
7554 	uint8_t i, index;
7555 	struct dp_mld_link_peers link_peers_info;
7556 	struct dp_txrx_peer *txrx_peer;
7557 	struct dp_peer_extd_stats *extd_stats;
7558 	struct dp_soc *soc = peer->vdev->pdev->soc;
7559 
7560 	txrx_peer = dp_get_txrx_peer(peer);
7561 	if (qdf_unlikely(!txrx_peer)) {
7562 		dp_err_rl("txrx_peer NULL for peer MAC: " QDF_MAC_ADDR_FMT,
7563 			  QDF_MAC_ADDR_REF(peer->mac_addr.raw));
7564 		return;
7565 	}
7566 
7567 	if (IS_MLO_DP_MLD_PEER(peer)) {
7568 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7569 						    &link_peers_info,
7570 						    DP_MOD_ID_GENERIC_STATS);
7571 		for (i = 0; i < link_peers_info.num_links; i++) {
7572 			if (i > txrx_peer->stats_arr_size)
7573 				break;
7574 			extd_stats = &txrx_peer->stats[i].extd_stats;
7575 			/* Return aggregated stats for MLD peer */
7576 			DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7577 		}
7578 		dp_release_link_peers_ref(&link_peers_info,
7579 					  DP_MOD_ID_GENERIC_STATS);
7580 	} else {
7581 		index = dp_get_peer_link_id(peer);
7582 		extd_stats = &txrx_peer->stats[index].extd_stats;
7583 		DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7584 		qdf_mem_copy(&peer_stats->mac_addr,
7585 			     &peer->mac_addr.raw[0],
7586 			     QDF_MAC_ADDR_SIZE);
7587 	}
7588 }
7589 #else
7590 static inline
7591 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7592 			       struct cdp_peer_stats *peer_stats)
7593 {
7594 	struct dp_txrx_peer *txrx_peer;
7595 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7596 
7597 	txrx_peer = dp_get_txrx_peer(peer);
7598 	if (!txrx_peer)
7599 		return;
7600 
7601 	per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
7602 	DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7603 }
7604 
7605 static inline
7606 void dp_get_peer_extd_stats(struct dp_peer *peer,
7607 			    struct cdp_peer_stats *peer_stats)
7608 {
7609 	struct dp_txrx_peer *txrx_peer;
7610 	struct dp_peer_extd_stats *extd_stats;
7611 
7612 	txrx_peer = dp_get_txrx_peer(peer);
7613 	if (qdf_unlikely(!txrx_peer)) {
7614 		dp_err_rl("txrx_peer NULL");
7615 		return;
7616 	}
7617 
7618 	extd_stats = &txrx_peer->stats[0].extd_stats;
7619 	DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7620 }
7621 #endif
7622 #endif
7623 
7624 /**
7625  * dp_get_peer_tx_per()- Get peer packet error ratio
7626  * @peer_stats: buffer for peer stats
7627  *
7628  * Return: none
7629  */
7630 static inline
7631 void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
7632 {
7633 	if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
7634 		peer_stats->tx.per = qdf_do_div((peer_stats->tx.retries * 100),
7635 				  (peer_stats->tx.tx_success.num +
7636 				   peer_stats->tx.retries));
7637 	else
7638 		peer_stats->tx.per = 0;
7639 }
7640 
7641 void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
7642 {
7643 	dp_get_peer_calibr_stats(peer, peer_stats);
7644 
7645 	dp_get_peer_basic_stats(peer, peer_stats);
7646 
7647 	dp_get_peer_per_pkt_stats(peer, peer_stats);
7648 
7649 	dp_get_peer_extd_stats(peer, peer_stats);
7650 
7651 	dp_get_peer_tx_per(peer_stats);
7652 }
7653 
7654 /**
7655  * dp_get_host_peer_stats()- function to print peer stats
7656  * @soc: dp_soc handle
7657  * @mac_addr: mac address of the peer
7658  *
7659  * Return: QDF_STATUS
7660  */
7661 static QDF_STATUS
7662 dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
7663 {
7664 	struct dp_peer *peer = NULL;
7665 	struct cdp_peer_stats *peer_stats = NULL;
7666 	struct cdp_peer_info peer_info = { 0 };
7667 
7668 	if (!mac_addr) {
7669 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7670 			  "%s: NULL peer mac addr\n", __func__);
7671 		return QDF_STATUS_E_FAILURE;
7672 	}
7673 
7674 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
7675 				 CDP_WILD_PEER_TYPE);
7676 
7677 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
7678 					 DP_MOD_ID_CDP);
7679 	if (!peer) {
7680 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7681 			  "%s: Invalid peer\n", __func__);
7682 		return QDF_STATUS_E_FAILURE;
7683 	}
7684 
7685 	peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
7686 	if (!peer_stats) {
7687 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7688 			  "%s: Memory allocation failed for cdp_peer_stats\n",
7689 			  __func__);
7690 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7691 		return QDF_STATUS_E_NOMEM;
7692 	}
7693 
7694 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
7695 
7696 	dp_get_peer_stats(peer, peer_stats);
7697 	dp_print_peer_stats(peer, peer_stats);
7698 
7699 	dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
7700 			    dp_rx_tid_stats_cb, NULL);
7701 
7702 	qdf_mem_free(peer_stats);
7703 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7704 
7705 	return QDF_STATUS_SUCCESS;
7706 }
7707 
7708 /**
7709  * dp_txrx_stats_help() - Helper function for Txrx_Stats
7710  *
7711  * Return: None
7712  */
7713 static void dp_txrx_stats_help(void)
7714 {
7715 	dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
7716 	dp_info("stats_option:");
7717 	dp_info("  1 -- HTT Tx Statistics");
7718 	dp_info("  2 -- HTT Rx Statistics");
7719 	dp_info("  3 -- HTT Tx HW Queue Statistics");
7720 	dp_info("  4 -- HTT Tx HW Sched Statistics");
7721 	dp_info("  5 -- HTT Error Statistics");
7722 	dp_info("  6 -- HTT TQM Statistics");
7723 	dp_info("  7 -- HTT TQM CMDQ Statistics");
7724 	dp_info("  8 -- HTT TX_DE_CMN Statistics");
7725 	dp_info("  9 -- HTT Tx Rate Statistics");
7726 	dp_info(" 10 -- HTT Rx Rate Statistics");
7727 	dp_info(" 11 -- HTT Peer Statistics");
7728 	dp_info(" 12 -- HTT Tx SelfGen Statistics");
7729 	dp_info(" 13 -- HTT Tx MU HWQ Statistics");
7730 	dp_info(" 14 -- HTT RING_IF_INFO Statistics");
7731 	dp_info(" 15 -- HTT SRNG Statistics");
7732 	dp_info(" 16 -- HTT SFM Info Statistics");
7733 	dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
7734 	dp_info(" 18 -- HTT Peer List Details");
7735 	dp_info(" 20 -- Clear Host Statistics");
7736 	dp_info(" 21 -- Host Rx Rate Statistics");
7737 	dp_info(" 22 -- Host Tx Rate Statistics");
7738 	dp_info(" 23 -- Host Tx Statistics");
7739 	dp_info(" 24 -- Host Rx Statistics");
7740 	dp_info(" 25 -- Host AST Statistics");
7741 	dp_info(" 26 -- Host SRNG PTR Statistics");
7742 	dp_info(" 27 -- Host Mon Statistics");
7743 	dp_info(" 28 -- Host REO Queue Statistics");
7744 	dp_info(" 29 -- Host Soc cfg param Statistics");
7745 	dp_info(" 30 -- Host pdev cfg param Statistics");
7746 	dp_info(" 31 -- Host NAPI stats");
7747 	dp_info(" 32 -- Host Interrupt stats");
7748 	dp_info(" 33 -- Host FISA stats");
7749 	dp_info(" 34 -- Host Register Work stats");
7750 	dp_info(" 35 -- HW REO Queue stats");
7751 	dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
7752 	dp_info(" 37 -- Host SRNG usage watermark stats");
7753 }
7754 
7755 #ifdef DP_UMAC_HW_RESET_SUPPORT
7756 /**
7757  * dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
7758  * @soc: dp soc handle
7759  * @en: ebable/disable
7760  *
7761  * Return: void
7762  */
7763 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7764 {
7765 	soc->umac_reset_ctx.skel_enable = en;
7766 	dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
7767 		     soc->umac_reset_ctx.skel_enable);
7768 }
7769 
7770 /**
7771  * dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
7772  * @soc: dp soc handle
7773  *
7774  * Return: enable/disable flag
7775  */
7776 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7777 {
7778 	return soc->umac_reset_ctx.skel_enable;
7779 }
7780 #else
7781 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7782 {
7783 }
7784 
7785 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7786 {
7787 	return false;
7788 }
7789 #endif
7790 
7791 #ifndef WLAN_SOFTUMAC_SUPPORT
7792 static void dp_print_reg_write_stats(struct dp_soc *soc)
7793 {
7794 	hal_dump_reg_write_stats(soc->hal_soc);
7795 	hal_dump_reg_write_srng_stats(soc->hal_soc);
7796 }
7797 #else
7798 static void dp_print_reg_write_stats(struct dp_soc *soc)
7799 {
7800 	hif_print_reg_write_stats(soc->hif_handle);
7801 }
7802 #endif
7803 
7804 /**
7805  * dp_print_host_stats()- Function to print the stats aggregated at host
7806  * @vdev: DP_VDEV handle
7807  * @req: host stats type
7808  * @soc: dp soc handler
7809  *
7810  * Return: 0 on success, print error message in case of failure
7811  */
7812 static int
7813 dp_print_host_stats(struct dp_vdev *vdev,
7814 		    struct cdp_txrx_stats_req *req,
7815 		    struct dp_soc *soc)
7816 {
7817 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
7818 	enum cdp_host_txrx_stats type =
7819 			dp_stats_mapping_table[req->stats][STATS_HOST];
7820 
7821 	dp_aggregate_pdev_stats(pdev);
7822 
7823 	switch (type) {
7824 	case TXRX_CLEAR_STATS:
7825 		dp_txrx_host_stats_clr(vdev, soc);
7826 		break;
7827 	case TXRX_RX_RATE_STATS:
7828 		dp_print_rx_rates(vdev);
7829 		break;
7830 	case TXRX_TX_RATE_STATS:
7831 		dp_print_tx_rates(vdev);
7832 		break;
7833 	case TXRX_TX_HOST_STATS:
7834 		dp_print_pdev_tx_stats(pdev);
7835 		dp_print_soc_tx_stats(pdev->soc);
7836 		dp_print_global_desc_count();
7837 		dp_print_vdev_mlo_mcast_tx_stats(vdev);
7838 		break;
7839 	case TXRX_RX_HOST_STATS:
7840 		dp_print_pdev_rx_stats(pdev);
7841 		dp_print_soc_rx_stats(pdev->soc);
7842 		break;
7843 	case TXRX_AST_STATS:
7844 		dp_print_ast_stats(pdev->soc);
7845 		dp_print_mec_stats(pdev->soc);
7846 		dp_print_peer_table(vdev);
7847 		if (soc->arch_ops.dp_mlo_print_ptnr_info)
7848 			soc->arch_ops.dp_mlo_print_ptnr_info(vdev);
7849 		break;
7850 	case TXRX_SRNG_PTR_STATS:
7851 		dp_print_ring_stats(pdev);
7852 		break;
7853 	case TXRX_RX_MON_STATS:
7854 		dp_monitor_print_pdev_rx_mon_stats(pdev);
7855 		break;
7856 	case TXRX_REO_QUEUE_STATS:
7857 		dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
7858 				       req->peer_addr);
7859 		break;
7860 	case TXRX_SOC_CFG_PARAMS:
7861 		dp_print_soc_cfg_params(pdev->soc);
7862 		break;
7863 	case TXRX_PDEV_CFG_PARAMS:
7864 		dp_print_pdev_cfg_params(pdev);
7865 		break;
7866 	case TXRX_NAPI_STATS:
7867 		dp_print_napi_stats(pdev->soc);
7868 		break;
7869 	case TXRX_SOC_INTERRUPT_STATS:
7870 		dp_print_soc_interrupt_stats(pdev->soc);
7871 		break;
7872 	case TXRX_SOC_FSE_STATS:
7873 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
7874 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
7875 						CDP_FISA_STATS_ID_DUMP_HW_FST);
7876 		break;
7877 	case TXRX_HAL_REG_WRITE_STATS:
7878 		dp_print_reg_write_stats(pdev->soc);
7879 		break;
7880 	case TXRX_SOC_REO_HW_DESC_DUMP:
7881 		dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
7882 					 vdev->vdev_id);
7883 		break;
7884 	case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
7885 		dp_dump_wbm_idle_hptp(pdev->soc, pdev);
7886 		break;
7887 	case TXRX_SRNG_USAGE_WM_STATS:
7888 		/* Dump usage watermark stats for all SRNGs */
7889 		dp_dump_srng_high_wm_stats(soc, DP_SRNG_WM_MASK_ALL);
7890 		break;
7891 	case TXRX_PEER_STATS:
7892 		dp_print_per_link_stats((struct cdp_soc_t *)pdev->soc,
7893 					vdev->vdev_id);
7894 		break;
7895 	default:
7896 		dp_info("Wrong Input For TxRx Host Stats");
7897 		dp_txrx_stats_help();
7898 		break;
7899 	}
7900 	return 0;
7901 }
7902 
7903 /**
7904  * dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
7905  * @pdev: pdev handle
7906  * @val: increase in value
7907  *
7908  * Return: void
7909  */
7910 static void
7911 dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
7912 {
7913 	pdev->stats.tid_stats.ingress_stack += val;
7914 }
7915 
7916 /**
7917  * dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
7918  * @pdev: pdev handle
7919  * @val: increase in value
7920  *
7921  * Return: void
7922  */
7923 static void
7924 dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
7925 {
7926 	pdev->stats.tid_stats.osif_drop += val;
7927 }
7928 
7929 /**
7930  * dp_get_fw_peer_stats()- function to print peer stats
7931  * @soc: soc handle
7932  * @pdev_id: id of the pdev handle
7933  * @mac_addr: mac address of the peer
7934  * @cap: Type of htt stats requested
7935  * @is_wait: if set, wait on completion from firmware response
7936  *
7937  * Currently Supporting only MAC ID based requests Only
7938  *	1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
7939  *	2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
7940  *	3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
7941  *
7942  * Return: QDF_STATUS
7943  */
7944 static QDF_STATUS
7945 dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7946 		     uint8_t *mac_addr,
7947 		     uint32_t cap, uint32_t is_wait)
7948 {
7949 	int i;
7950 	uint32_t config_param0 = 0;
7951 	uint32_t config_param1 = 0;
7952 	uint32_t config_param2 = 0;
7953 	uint32_t config_param3 = 0;
7954 	struct dp_pdev *pdev =
7955 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7956 						   pdev_id);
7957 
7958 	if (!pdev)
7959 		return QDF_STATUS_E_FAILURE;
7960 
7961 	HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
7962 	config_param0 |= (1 << (cap + 1));
7963 
7964 	for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
7965 		config_param1 |= (1 << i);
7966 	}
7967 
7968 	config_param2 |= (mac_addr[0] & 0x000000ff);
7969 	config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
7970 	config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
7971 	config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
7972 
7973 	config_param3 |= (mac_addr[4] & 0x000000ff);
7974 	config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
7975 
7976 	if (is_wait) {
7977 		qdf_event_reset(&pdev->fw_peer_stats_event);
7978 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7979 					  config_param0, config_param1,
7980 					  config_param2, config_param3,
7981 					  0, DBG_STATS_COOKIE_DP_STATS, 0);
7982 		qdf_wait_single_event(&pdev->fw_peer_stats_event,
7983 				      DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
7984 	} else {
7985 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7986 					  config_param0, config_param1,
7987 					  config_param2, config_param3,
7988 					  0, DBG_STATS_COOKIE_DEFAULT, 0);
7989 	}
7990 
7991 	return QDF_STATUS_SUCCESS;
7992 
7993 }
7994 
7995 /* This struct definition will be removed from here
7996  * once it get added in FW headers*/
7997 struct httstats_cmd_req {
7998     uint32_t    config_param0;
7999     uint32_t    config_param1;
8000     uint32_t    config_param2;
8001     uint32_t    config_param3;
8002     int cookie;
8003     u_int8_t    stats_id;
8004 };
8005 
8006 /**
8007  * dp_get_htt_stats: function to process the httstas request
8008  * @soc: DP soc handle
8009  * @pdev_id: id of pdev handle
8010  * @data: pointer to request data
8011  * @data_len: length for request data
8012  *
8013  * Return: QDF_STATUS
8014  */
8015 static QDF_STATUS
8016 dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
8017 		 uint32_t data_len)
8018 {
8019 	struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
8020 	struct dp_pdev *pdev =
8021 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
8022 						   pdev_id);
8023 
8024 	if (!pdev)
8025 		return QDF_STATUS_E_FAILURE;
8026 
8027 	QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
8028 	dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
8029 				req->config_param0, req->config_param1,
8030 				req->config_param2, req->config_param3,
8031 				req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
8032 
8033 	return QDF_STATUS_SUCCESS;
8034 }
8035 
8036 /**
8037  * dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
8038  * @pdev: DP_PDEV handle
8039  * @prio: tidmap priority value passed by the user
8040  *
8041  * Return: QDF_STATUS_SUCCESS on success
8042  */
8043 static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
8044 						uint8_t prio)
8045 {
8046 	struct dp_soc *soc = pdev->soc;
8047 
8048 	soc->tidmap_prty = prio;
8049 
8050 	hal_tx_set_tidmap_prty(soc->hal_soc, prio);
8051 	return QDF_STATUS_SUCCESS;
8052 }
8053 
8054 /**
8055  * dp_get_peer_param: function to get parameters in peer
8056  * @cdp_soc: DP soc handle
8057  * @vdev_id: id of vdev handle
8058  * @peer_mac: peer mac address
8059  * @param: parameter type to be set
8060  * @val: address of buffer
8061  *
8062  * Return: val
8063  */
8064 static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8065 				    uint8_t *peer_mac,
8066 				    enum cdp_peer_param_type param,
8067 				    cdp_config_param_type *val)
8068 {
8069 	return QDF_STATUS_SUCCESS;
8070 }
8071 
8072 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
8073 static inline void
8074 dp_check_map_link_id_band(struct dp_peer *peer)
8075 {
8076 	if (peer->link_id_valid)
8077 		dp_map_link_id_band(peer);
8078 }
8079 
8080 /**
8081  * dp_map_local_link_id_band() - map local link id band
8082  * @peer: dp peer handle
8083  *
8084  * Return: None
8085  */
8086 static inline
8087 void dp_map_local_link_id_band(struct dp_peer *peer)
8088 {
8089 	struct dp_txrx_peer *txrx_peer = NULL;
8090 	enum dp_bands band;
8091 
8092 	txrx_peer = dp_get_txrx_peer(peer);
8093 	if (txrx_peer && peer->local_link_id) {
8094 		band = dp_freq_to_band(peer->freq);
8095 		txrx_peer->ll_band[peer->local_link_id] = band;
8096 	} else {
8097 		dp_info("txrx_peer NULL or local link id not set: %u "
8098 			QDF_MAC_ADDR_FMT, peer->local_link_id,
8099 			QDF_MAC_ADDR_REF(peer->mac_addr.raw));
8100 	}
8101 }
8102 #else
8103 static inline void
8104 dp_check_map_link_id_band(struct dp_peer *peer)
8105 {
8106 }
8107 
8108 static inline
8109 void dp_map_local_link_id_band(struct dp_peer *peer)
8110 {
8111 }
8112 #endif
8113 
8114 /**
8115  * dp_set_peer_freq() - Set peer frequency
8116  * @cdp_soc: DP soc handle
8117  * @vdev_id: id of vdev handle
8118  * @peer_mac: peer mac address
8119  * @param: parameter type to be set
8120  * @val: value of parameter to be set
8121  *
8122  * Return: QDF_STATUS_SUCCESS for success. error code for failure.
8123  */
8124 static inline QDF_STATUS
8125 dp_set_peer_freq(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8126 		 uint8_t *peer_mac, enum cdp_peer_param_type param,
8127 		 cdp_config_param_type val)
8128 {
8129 	struct dp_peer *peer = NULL;
8130 	struct cdp_peer_info peer_info = { 0 };
8131 
8132 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
8133 				 false, CDP_LINK_PEER_TYPE);
8134 
8135 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)cdp_soc,
8136 					 &peer_info, DP_MOD_ID_CDP);
8137 	if (!peer) {
8138 		dp_err("peer NULL,MAC " QDF_MAC_ADDR_FMT ", vdev_id %u",
8139 		       QDF_MAC_ADDR_REF(peer_mac), vdev_id);
8140 
8141 		return QDF_STATUS_E_FAILURE;
8142 	}
8143 
8144 	peer->freq = val.cdp_peer_param_freq;
8145 	dp_check_map_link_id_band(peer);
8146 	dp_map_local_link_id_band(peer);
8147 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8148 
8149 	dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %u, frequency %u",
8150 		QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8151 		peer->freq);
8152 
8153 	return QDF_STATUS_SUCCESS;
8154 }
8155 
8156 /**
8157  * dp_set_peer_param: function to set parameters in peer
8158  * @cdp_soc: DP soc handle
8159  * @vdev_id: id of vdev handle
8160  * @peer_mac: peer mac address
8161  * @param: parameter type to be set
8162  * @val: value of parameter to be set
8163  *
8164  * Return: 0 for success. nonzero for failure.
8165  */
8166 static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8167 				    uint8_t *peer_mac,
8168 				    enum cdp_peer_param_type param,
8169 				    cdp_config_param_type val)
8170 {
8171 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8172 	struct dp_peer *peer =
8173 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
8174 						       peer_mac, 0, vdev_id,
8175 						       DP_MOD_ID_CDP);
8176 	struct dp_txrx_peer *txrx_peer;
8177 
8178 	if (!peer)
8179 		return QDF_STATUS_E_FAILURE;
8180 
8181 	txrx_peer = peer->txrx_peer;
8182 	if (!txrx_peer) {
8183 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8184 		return QDF_STATUS_E_FAILURE;
8185 	}
8186 
8187 	switch (param) {
8188 	case CDP_CONFIG_NAWDS:
8189 		txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
8190 		break;
8191 	case CDP_CONFIG_ISOLATION:
8192 		dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %d, isolation %d",
8193 			QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8194 			val.cdp_peer_param_isolation);
8195 		dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
8196 		break;
8197 	case CDP_CONFIG_IN_TWT:
8198 		txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
8199 		break;
8200 	case CDP_CONFIG_PEER_FREQ:
8201 		status =  dp_set_peer_freq(cdp_soc, vdev_id,
8202 					   peer_mac, param, val);
8203 		break;
8204 	default:
8205 		break;
8206 	}
8207 
8208 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8209 
8210 	return status;
8211 }
8212 
8213 #ifdef WLAN_FEATURE_11BE_MLO
8214 /**
8215  * dp_set_mld_peer_param: function to set parameters in MLD peer
8216  * @cdp_soc: DP soc handle
8217  * @vdev_id: id of vdev handle
8218  * @peer_mac: peer mac address
8219  * @param: parameter type to be set
8220  * @val: value of parameter to be set
8221  *
8222  * Return: 0 for success. nonzero for failure.
8223  */
8224 static QDF_STATUS dp_set_mld_peer_param(struct cdp_soc_t *cdp_soc,
8225 					uint8_t vdev_id,
8226 					uint8_t *peer_mac,
8227 					enum cdp_peer_param_type param,
8228 					cdp_config_param_type val)
8229 {
8230 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8231 	struct dp_peer *peer;
8232 	struct dp_txrx_peer *txrx_peer;
8233 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8234 
8235 	peer = dp_mld_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
8236 					  DP_MOD_ID_CDP);
8237 	if (!peer)
8238 		return QDF_STATUS_E_FAILURE;
8239 
8240 	txrx_peer = peer->txrx_peer;
8241 	if (!txrx_peer) {
8242 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8243 		return QDF_STATUS_E_FAILURE;
8244 	}
8245 
8246 	switch (param) {
8247 	case CDP_CONFIG_MLD_PEER_VDEV:
8248 		status = dp_mld_peer_change_vdev(soc, peer, val.new_vdev_id);
8249 		break;
8250 	default:
8251 		break;
8252 	}
8253 
8254 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8255 
8256 	return status;
8257 }
8258 
8259 /**
8260  * dp_set_peer_param_wrapper: wrapper function to set parameters in
8261  *			      legacy/link/MLD peer
8262  * @cdp_soc: DP soc handle
8263  * @vdev_id: id of vdev handle
8264  * @peer_mac: peer mac address
8265  * @param: parameter type to be set
8266  * @val: value of parameter to be set
8267  *
8268  * Return: 0 for success. nonzero for failure.
8269  */
8270 static QDF_STATUS
8271 dp_set_peer_param_wrapper(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8272 			  uint8_t *peer_mac, enum cdp_peer_param_type param,
8273 			  cdp_config_param_type val)
8274 {
8275 	QDF_STATUS status;
8276 
8277 	switch (param) {
8278 	case CDP_CONFIG_MLD_PEER_VDEV:
8279 		status = dp_set_mld_peer_param(cdp_soc, vdev_id, peer_mac,
8280 					       param, val);
8281 		break;
8282 	default:
8283 		status = dp_set_peer_param(cdp_soc, vdev_id, peer_mac,
8284 					   param, val);
8285 		break;
8286 	}
8287 
8288 	return status;
8289 }
8290 #endif
8291 
8292 /**
8293  * dp_get_pdev_param() - function to get parameters from pdev
8294  * @cdp_soc: DP soc handle
8295  * @pdev_id: id of pdev handle
8296  * @param: parameter type to be get
8297  * @val: buffer for value
8298  *
8299  * Return: status
8300  */
8301 static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8302 				    enum cdp_pdev_param_type param,
8303 				    cdp_config_param_type *val)
8304 {
8305 	struct cdp_pdev *pdev = (struct cdp_pdev *)
8306 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8307 						   pdev_id);
8308 	if (!pdev)
8309 		return QDF_STATUS_E_FAILURE;
8310 
8311 	switch (param) {
8312 	case CDP_CONFIG_VOW:
8313 		val->cdp_pdev_param_cfg_vow =
8314 				((struct dp_pdev *)pdev)->vow_stats;
8315 		break;
8316 	case CDP_TX_PENDING:
8317 		val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
8318 		break;
8319 	case CDP_FILTER_MCAST_DATA:
8320 		val->cdp_pdev_param_fltr_mcast =
8321 				dp_monitor_pdev_get_filter_mcast_data(pdev);
8322 		break;
8323 	case CDP_FILTER_NO_DATA:
8324 		val->cdp_pdev_param_fltr_none =
8325 				dp_monitor_pdev_get_filter_non_data(pdev);
8326 		break;
8327 	case CDP_FILTER_UCAST_DATA:
8328 		val->cdp_pdev_param_fltr_ucast =
8329 				dp_monitor_pdev_get_filter_ucast_data(pdev);
8330 		break;
8331 	case CDP_MONITOR_CHANNEL:
8332 		val->cdp_pdev_param_monitor_chan =
8333 			dp_monitor_get_chan_num((struct dp_pdev *)pdev);
8334 		break;
8335 	case CDP_MONITOR_FREQUENCY:
8336 		val->cdp_pdev_param_mon_freq =
8337 			dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
8338 		break;
8339 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8340 		val->cdp_rxdma_buf_ring_size =
8341 			wlan_cfg_get_rx_dma_buf_ring_size(((struct dp_pdev *)pdev)->wlan_cfg_ctx);
8342 		break;
8343 	case CDP_CONFIG_DELAY_STATS:
8344 		val->cdp_pdev_param_cfg_delay_stats =
8345 				((struct dp_pdev *)pdev)->delay_stats_flag;
8346 		break;
8347 	default:
8348 		return QDF_STATUS_E_FAILURE;
8349 	}
8350 
8351 	return QDF_STATUS_SUCCESS;
8352 }
8353 
8354 /**
8355  * dp_set_pdev_param() - function to set parameters in pdev
8356  * @cdp_soc: DP soc handle
8357  * @pdev_id: id of pdev handle
8358  * @param: parameter type to be set
8359  * @val: value of parameter to be set
8360  *
8361  * Return: 0 for success. nonzero for failure.
8362  */
8363 static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8364 				    enum cdp_pdev_param_type param,
8365 				    cdp_config_param_type val)
8366 {
8367 	int target_type;
8368 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8369 	struct dp_pdev *pdev =
8370 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8371 						   pdev_id);
8372 	enum reg_wifi_band chan_band;
8373 
8374 	if (!pdev)
8375 		return QDF_STATUS_E_FAILURE;
8376 
8377 	target_type = hal_get_target_type(soc->hal_soc);
8378 	switch (target_type) {
8379 	case TARGET_TYPE_QCA6750:
8380 	case TARGET_TYPE_WCN6450:
8381 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8382 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8383 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8384 		break;
8385 	case TARGET_TYPE_KIWI:
8386 	case TARGET_TYPE_MANGO:
8387 	case TARGET_TYPE_PEACH:
8388 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8389 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8390 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8391 		break;
8392 	default:
8393 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
8394 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8395 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8396 		break;
8397 	}
8398 
8399 	switch (param) {
8400 	case CDP_CONFIG_TX_CAPTURE:
8401 		return dp_monitor_config_debug_sniffer(pdev,
8402 						val.cdp_pdev_param_tx_capture);
8403 	case CDP_CONFIG_DEBUG_SNIFFER:
8404 		return dp_monitor_config_debug_sniffer(pdev,
8405 						val.cdp_pdev_param_dbg_snf);
8406 	case CDP_CONFIG_BPR_ENABLE:
8407 		return dp_monitor_set_bpr_enable(pdev,
8408 						 val.cdp_pdev_param_bpr_enable);
8409 	case CDP_CONFIG_PRIMARY_RADIO:
8410 		pdev->is_primary = val.cdp_pdev_param_primary_radio;
8411 		break;
8412 	case CDP_CONFIG_CAPTURE_LATENCY:
8413 		pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
8414 		break;
8415 	case CDP_INGRESS_STATS:
8416 		dp_pdev_tid_stats_ingress_inc(pdev,
8417 					      val.cdp_pdev_param_ingrs_stats);
8418 		break;
8419 	case CDP_OSIF_DROP:
8420 		dp_pdev_tid_stats_osif_drop(pdev,
8421 					    val.cdp_pdev_param_osif_drop);
8422 		break;
8423 	case CDP_CONFIG_ENH_RX_CAPTURE:
8424 		return dp_monitor_config_enh_rx_capture(pdev,
8425 						val.cdp_pdev_param_en_rx_cap);
8426 	case CDP_CONFIG_ENH_TX_CAPTURE:
8427 		return dp_monitor_config_enh_tx_capture(pdev,
8428 						val.cdp_pdev_param_en_tx_cap);
8429 	case CDP_CONFIG_HMMC_TID_OVERRIDE:
8430 		pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
8431 		break;
8432 	case CDP_CONFIG_HMMC_TID_VALUE:
8433 		pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
8434 		break;
8435 	case CDP_CHAN_NOISE_FLOOR:
8436 		pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
8437 		break;
8438 	case CDP_TIDMAP_PRTY:
8439 		dp_set_pdev_tidmap_prty_wifi3(pdev,
8440 					      val.cdp_pdev_param_tidmap_prty);
8441 		break;
8442 	case CDP_FILTER_NEIGH_PEERS:
8443 		dp_monitor_set_filter_neigh_peers(pdev,
8444 					val.cdp_pdev_param_fltr_neigh_peers);
8445 		break;
8446 	case CDP_MONITOR_CHANNEL:
8447 		dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
8448 		break;
8449 	case CDP_MONITOR_FREQUENCY:
8450 		chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
8451 		dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
8452 		dp_monitor_set_chan_band(pdev, chan_band);
8453 		break;
8454 	case CDP_CONFIG_BSS_COLOR:
8455 		dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
8456 		break;
8457 	case CDP_SET_ATF_STATS_ENABLE:
8458 		dp_monitor_set_atf_stats_enable(pdev,
8459 					val.cdp_pdev_param_atf_stats_enable);
8460 		break;
8461 	case CDP_CONFIG_SPECIAL_VAP:
8462 		dp_monitor_pdev_config_scan_spcl_vap(pdev,
8463 					val.cdp_pdev_param_config_special_vap);
8464 		dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
8465 		break;
8466 	case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
8467 		dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
8468 				val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
8469 		break;
8470 	case CDP_CONFIG_ENHANCED_STATS_ENABLE:
8471 		pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
8472 		break;
8473 	case CDP_ISOLATION:
8474 		pdev->isolation = val.cdp_pdev_param_isolation;
8475 		break;
8476 	case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
8477 		return dp_monitor_config_undecoded_metadata_capture(pdev,
8478 				val.cdp_pdev_param_undecoded_metadata_enable);
8479 		break;
8480 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8481 		wlan_cfg_set_rx_dma_buf_ring_size(pdev->wlan_cfg_ctx,
8482 						  val.cdp_rxdma_buf_ring_size);
8483 		break;
8484 	case CDP_CONFIG_VOW:
8485 		pdev->vow_stats = val.cdp_pdev_param_cfg_vow;
8486 		break;
8487 	default:
8488 		return QDF_STATUS_E_INVAL;
8489 	}
8490 	return QDF_STATUS_SUCCESS;
8491 }
8492 
8493 #ifdef QCA_UNDECODED_METADATA_SUPPORT
8494 static
8495 QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8496 					uint8_t pdev_id, uint32_t mask,
8497 					uint32_t mask_cont)
8498 {
8499 	struct dp_pdev *pdev =
8500 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8501 						   pdev_id);
8502 
8503 	if (!pdev)
8504 		return QDF_STATUS_E_FAILURE;
8505 
8506 	return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
8507 				mask, mask_cont);
8508 }
8509 
8510 static
8511 QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8512 					uint8_t pdev_id, uint32_t *mask,
8513 					uint32_t *mask_cont)
8514 {
8515 	struct dp_pdev *pdev =
8516 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8517 						   pdev_id);
8518 
8519 	if (!pdev)
8520 		return QDF_STATUS_E_FAILURE;
8521 
8522 	return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
8523 				mask, mask_cont);
8524 }
8525 #endif
8526 
8527 #ifdef QCA_PEER_EXT_STATS
8528 static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8529 					  qdf_nbuf_t nbuf)
8530 {
8531 	struct dp_peer *peer = NULL;
8532 	uint16_t peer_id, ring_id;
8533 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
8534 	struct dp_peer_delay_stats *delay_stats = NULL;
8535 
8536 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
8537 	if (peer_id > soc->max_peer_id)
8538 		return;
8539 
8540 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
8541 	if (qdf_unlikely(!peer))
8542 		return;
8543 
8544 	if (qdf_unlikely(!peer->txrx_peer)) {
8545 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8546 		return;
8547 	}
8548 
8549 	if (qdf_likely(peer->txrx_peer->delay_stats)) {
8550 		delay_stats = peer->txrx_peer->delay_stats;
8551 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
8552 		dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
8553 					nbuf);
8554 	}
8555 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8556 }
8557 #else
8558 static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8559 						 qdf_nbuf_t nbuf)
8560 {
8561 }
8562 #endif
8563 
8564 /**
8565  * dp_calculate_delay_stats() - function to get rx delay stats
8566  * @cdp_soc: DP soc handle
8567  * @vdev_id: id of DP vdev handle
8568  * @nbuf: skb
8569  *
8570  * Return: QDF_STATUS
8571  */
8572 static QDF_STATUS
8573 dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8574 			 qdf_nbuf_t nbuf)
8575 {
8576 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8577 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8578 						     DP_MOD_ID_CDP);
8579 
8580 	if (!vdev)
8581 		return QDF_STATUS_SUCCESS;
8582 
8583 	if (vdev->pdev->delay_stats_flag)
8584 		dp_rx_compute_delay(vdev, nbuf);
8585 	else
8586 		dp_rx_update_peer_delay_stats(soc, nbuf);
8587 
8588 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8589 	return QDF_STATUS_SUCCESS;
8590 }
8591 
8592 /**
8593  * dp_get_vdev_param() - function to get parameters from vdev
8594  * @cdp_soc: DP soc handle
8595  * @vdev_id: id of DP vdev handle
8596  * @param: parameter type to get value
8597  * @val: buffer address
8598  *
8599  * Return: status
8600  */
8601 static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8602 				    enum cdp_vdev_param_type param,
8603 				    cdp_config_param_type *val)
8604 {
8605 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8606 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8607 						     DP_MOD_ID_CDP);
8608 
8609 	if (!vdev)
8610 		return QDF_STATUS_E_FAILURE;
8611 
8612 	switch (param) {
8613 	case CDP_ENABLE_WDS:
8614 		val->cdp_vdev_param_wds = vdev->wds_enabled;
8615 		break;
8616 	case CDP_ENABLE_MEC:
8617 		val->cdp_vdev_param_mec = vdev->mec_enabled;
8618 		break;
8619 	case CDP_ENABLE_DA_WAR:
8620 		val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
8621 		break;
8622 	case CDP_ENABLE_IGMP_MCAST_EN:
8623 		val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
8624 		break;
8625 	case CDP_ENABLE_MCAST_EN:
8626 		val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
8627 		break;
8628 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8629 		val->cdp_vdev_param_hlos_tid_override =
8630 			    dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
8631 		break;
8632 	case CDP_ENABLE_PEER_AUTHORIZE:
8633 		val->cdp_vdev_param_peer_authorize =
8634 			    vdev->peer_authorize;
8635 		break;
8636 	case CDP_TX_ENCAP_TYPE:
8637 		val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
8638 		break;
8639 	case CDP_ENABLE_CIPHER:
8640 		val->cdp_vdev_param_cipher_en = vdev->sec_type;
8641 		break;
8642 #ifdef WLAN_SUPPORT_MESH_LATENCY
8643 	case CDP_ENABLE_PEER_TID_LATENCY:
8644 		val->cdp_vdev_param_peer_tid_latency_enable =
8645 			vdev->peer_tid_latency_enabled;
8646 		break;
8647 	case CDP_SET_VAP_MESH_TID:
8648 		val->cdp_vdev_param_mesh_tid =
8649 				vdev->mesh_tid_latency_config.latency_tid;
8650 		break;
8651 #endif
8652 	case CDP_DROP_3ADDR_MCAST:
8653 		val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
8654 		break;
8655 	case CDP_SET_MCAST_VDEV:
8656 		soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
8657 		break;
8658 #ifdef QCA_SUPPORT_WDS_EXTENDED
8659 	case CDP_DROP_TX_MCAST:
8660 		val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
8661 		break;
8662 #endif
8663 
8664 #ifdef MESH_MODE_SUPPORT
8665 	case CDP_MESH_RX_FILTER:
8666 		val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
8667 		break;
8668 	case CDP_MESH_MODE:
8669 		val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
8670 		break;
8671 #endif
8672 	case CDP_ENABLE_NAWDS:
8673 		val->cdp_vdev_param_nawds = vdev->nawds_enabled;
8674 		break;
8675 
8676 	case CDP_ENABLE_WRAP:
8677 		val->cdp_vdev_param_wrap = vdev->wrap_vdev;
8678 		break;
8679 
8680 #ifdef DP_TRAFFIC_END_INDICATION
8681 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8682 		val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
8683 		break;
8684 #endif
8685 
8686 	default:
8687 		dp_cdp_err("%pK: param value %d is wrong",
8688 			   soc, param);
8689 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8690 		return QDF_STATUS_E_FAILURE;
8691 	}
8692 
8693 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8694 	return QDF_STATUS_SUCCESS;
8695 }
8696 
8697 /**
8698  * dp_set_vdev_param() - function to set parameters in vdev
8699  * @cdp_soc: DP soc handle
8700  * @vdev_id: id of DP vdev handle
8701  * @param: parameter type to get value
8702  * @val: value
8703  *
8704  * Return: QDF_STATUS
8705  */
8706 static QDF_STATUS
8707 dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8708 		  enum cdp_vdev_param_type param, cdp_config_param_type val)
8709 {
8710 	struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
8711 	struct dp_vdev *vdev =
8712 		dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
8713 	uint32_t var = 0;
8714 
8715 	if (!vdev)
8716 		return QDF_STATUS_E_FAILURE;
8717 
8718 	switch (param) {
8719 	case CDP_ENABLE_WDS:
8720 		dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)",
8721 			   dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
8722 		vdev->wds_enabled = val.cdp_vdev_param_wds;
8723 		break;
8724 	case CDP_ENABLE_MEC:
8725 		dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)",
8726 			   dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
8727 		vdev->mec_enabled = val.cdp_vdev_param_mec;
8728 		break;
8729 	case CDP_ENABLE_DA_WAR:
8730 		dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)",
8731 			   dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
8732 		vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
8733 		dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
8734 					     vdev->pdev->soc));
8735 		break;
8736 	case CDP_ENABLE_NAWDS:
8737 		vdev->nawds_enabled = val.cdp_vdev_param_nawds;
8738 		break;
8739 	case CDP_ENABLE_MCAST_EN:
8740 		vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
8741 		break;
8742 	case CDP_ENABLE_IGMP_MCAST_EN:
8743 		vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
8744 		break;
8745 	case CDP_ENABLE_PROXYSTA:
8746 		vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
8747 		break;
8748 	case CDP_UPDATE_TDLS_FLAGS:
8749 		vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
8750 		break;
8751 	case CDP_CFG_WDS_AGING_TIMER:
8752 		var = val.cdp_vdev_param_aging_tmr;
8753 		if (!var)
8754 			qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
8755 		else if (var != vdev->wds_aging_timer_val)
8756 			qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
8757 
8758 		vdev->wds_aging_timer_val = var;
8759 		break;
8760 	case CDP_ENABLE_AP_BRIDGE:
8761 		if (wlan_op_mode_sta != vdev->opmode)
8762 			vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
8763 		else
8764 			vdev->ap_bridge_enabled = false;
8765 		break;
8766 	case CDP_ENABLE_CIPHER:
8767 		vdev->sec_type = val.cdp_vdev_param_cipher_en;
8768 		break;
8769 	case CDP_ENABLE_QWRAP_ISOLATION:
8770 		vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
8771 		break;
8772 	case CDP_UPDATE_MULTIPASS:
8773 		vdev->multipass_en = val.cdp_vdev_param_update_multipass;
8774 		dp_info("vdev %d Multipass enable %d", vdev_id,
8775 			vdev->multipass_en);
8776 		break;
8777 	case CDP_TX_ENCAP_TYPE:
8778 		vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
8779 		break;
8780 	case CDP_RX_DECAP_TYPE:
8781 		vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
8782 		break;
8783 	case CDP_TID_VDEV_PRTY:
8784 		vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
8785 		break;
8786 	case CDP_TIDMAP_TBL_ID:
8787 		vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
8788 		break;
8789 #ifdef MESH_MODE_SUPPORT
8790 	case CDP_MESH_RX_FILTER:
8791 		dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
8792 					   val.cdp_vdev_param_mesh_rx_filter);
8793 		break;
8794 	case CDP_MESH_MODE:
8795 		dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
8796 				      val.cdp_vdev_param_mesh_mode);
8797 		break;
8798 #endif
8799 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8800 		dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
8801 			val.cdp_vdev_param_hlos_tid_override);
8802 		dp_vdev_set_hlos_tid_override(vdev,
8803 				val.cdp_vdev_param_hlos_tid_override);
8804 		break;
8805 #ifdef QCA_SUPPORT_WDS_EXTENDED
8806 	case CDP_CFG_WDS_EXT:
8807 		if (vdev->opmode == wlan_op_mode_ap)
8808 			vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
8809 		break;
8810 	case CDP_DROP_TX_MCAST:
8811 		dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
8812 			val.cdp_drop_tx_mcast);
8813 		vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
8814 		break;
8815 #endif
8816 	case CDP_ENABLE_PEER_AUTHORIZE:
8817 		vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
8818 		break;
8819 #ifdef WLAN_SUPPORT_MESH_LATENCY
8820 	case CDP_ENABLE_PEER_TID_LATENCY:
8821 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8822 			val.cdp_vdev_param_peer_tid_latency_enable);
8823 		vdev->peer_tid_latency_enabled =
8824 			val.cdp_vdev_param_peer_tid_latency_enable;
8825 		break;
8826 	case CDP_SET_VAP_MESH_TID:
8827 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8828 			val.cdp_vdev_param_mesh_tid);
8829 		vdev->mesh_tid_latency_config.latency_tid
8830 				= val.cdp_vdev_param_mesh_tid;
8831 		break;
8832 #endif
8833 #ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
8834 	case CDP_SKIP_BAR_UPDATE_AP:
8835 		dp_info("vdev_id %d skip BAR update: %u", vdev_id,
8836 			val.cdp_skip_bar_update);
8837 		vdev->skip_bar_update = val.cdp_skip_bar_update;
8838 		vdev->skip_bar_update_last_ts = 0;
8839 		break;
8840 #endif
8841 	case CDP_DROP_3ADDR_MCAST:
8842 		dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
8843 			val.cdp_drop_3addr_mcast);
8844 		vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
8845 		break;
8846 	case CDP_ENABLE_WRAP:
8847 		vdev->wrap_vdev = val.cdp_vdev_param_wrap;
8848 		break;
8849 #ifdef DP_TRAFFIC_END_INDICATION
8850 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8851 		vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
8852 		break;
8853 #endif
8854 #ifdef FEATURE_DIRECT_LINK
8855 	case CDP_VDEV_TX_TO_FW:
8856 		dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
8857 		vdev->to_fw = val.cdp_vdev_tx_to_fw;
8858 		break;
8859 #endif
8860 	case CDP_VDEV_SET_MAC_ADDR:
8861 		dp_info("set mac addr, old mac addr" QDF_MAC_ADDR_FMT
8862 			" new mac addr: " QDF_MAC_ADDR_FMT " for vdev %d",
8863 			QDF_MAC_ADDR_REF(vdev->mac_addr.raw),
8864 			QDF_MAC_ADDR_REF(val.mac_addr), vdev->vdev_id);
8865 		qdf_mem_copy(&vdev->mac_addr.raw[0], val.mac_addr,
8866 			     QDF_MAC_ADDR_SIZE);
8867 		break;
8868 	default:
8869 		break;
8870 	}
8871 
8872 	dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
8873 	dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
8874 
8875 	/* Update PDEV flags as VDEV flags are updated */
8876 	dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
8877 	dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
8878 
8879 	return QDF_STATUS_SUCCESS;
8880 }
8881 
8882 #if defined(FEATURE_WLAN_TDLS) && defined(WLAN_FEATURE_11BE_MLO)
8883 /**
8884  * dp_update_mlo_vdev_for_tdls() - update mlo vdev configuration
8885  *                                 for TDLS
8886  * @cdp_soc: DP soc handle
8887  * @vdev_id: id of DP vdev handle
8888  * @param: parameter type for vdev
8889  * @val: value
8890  *
8891  * If TDLS connection is from secondary vdev, then copy osif_vdev from
8892  * primary vdev to support RX, update TX bank register info for primary
8893  * vdev as well.
8894  * If TDLS connection is from primary vdev, same as before.
8895  *
8896  * Return: None
8897  */
8898 static void
8899 dp_update_mlo_vdev_for_tdls(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8900 			    enum cdp_vdev_param_type param,
8901 			    cdp_config_param_type val)
8902 {
8903 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8904 	struct dp_peer *peer;
8905 	struct dp_peer *tmp_peer;
8906 	struct dp_peer *mld_peer;
8907 	struct dp_vdev *vdev = NULL;
8908 	struct dp_vdev *pri_vdev = NULL;
8909 	uint8_t pri_vdev_id = CDP_INVALID_VDEV_ID;
8910 
8911 	if (param != CDP_UPDATE_TDLS_FLAGS)
8912 		return;
8913 
8914 	dp_info("update TDLS flag for vdev_id %d, val %d",
8915 		vdev_id, val.cdp_vdev_param_tdls_flags);
8916 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MISC);
8917 	/* only check for STA mode vdev */
8918 	if (!vdev || vdev->opmode != wlan_op_mode_sta) {
8919 		dp_info("vdev is not as expected for TDLS");
8920 		goto comp_ret;
8921 	}
8922 
8923 	/* Find primary vdev_id */
8924 	qdf_spin_lock_bh(&vdev->peer_list_lock);
8925 	TAILQ_FOREACH_SAFE(peer, &vdev->peer_list,
8926 			   peer_list_elem,
8927 			   tmp_peer) {
8928 		if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
8929 					QDF_STATUS_SUCCESS) {
8930 			/* do check only if MLO link peer exist */
8931 			if (IS_MLO_DP_LINK_PEER(peer)) {
8932 				mld_peer = DP_GET_MLD_PEER_FROM_PEER(peer);
8933 				pri_vdev_id = mld_peer->vdev->vdev_id;
8934 				dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8935 				break;
8936 			}
8937 			dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8938 		}
8939 	}
8940 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
8941 
8942 	if (pri_vdev_id != CDP_INVALID_VDEV_ID)
8943 		pri_vdev = dp_vdev_get_ref_by_id(soc, pri_vdev_id,
8944 						 DP_MOD_ID_MISC);
8945 
8946 	/* If current vdev is not same as primary vdev */
8947 	if (pri_vdev && pri_vdev != vdev) {
8948 		dp_info("primary vdev [%d] %pK different with vdev [%d] %pK",
8949 			pri_vdev->vdev_id, pri_vdev,
8950 			vdev->vdev_id, vdev);
8951 		/* update osif_vdev to support RX for vdev */
8952 		vdev->osif_vdev = pri_vdev->osif_vdev;
8953 		dp_set_vdev_param(cdp_soc, pri_vdev->vdev_id,
8954 				  CDP_UPDATE_TDLS_FLAGS, val);
8955 	}
8956 
8957 comp_ret:
8958 	if (pri_vdev)
8959 		dp_vdev_unref_delete(soc, pri_vdev, DP_MOD_ID_MISC);
8960 	if (vdev)
8961 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
8962 }
8963 
8964 static QDF_STATUS
8965 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8966 			  enum cdp_vdev_param_type param,
8967 			  cdp_config_param_type val)
8968 {
8969 	dp_update_mlo_vdev_for_tdls(cdp_soc, vdev_id, param, val);
8970 
8971 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8972 }
8973 #else
8974 static QDF_STATUS
8975 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8976 			  enum cdp_vdev_param_type param,
8977 			  cdp_config_param_type val)
8978 {
8979 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8980 }
8981 #endif
8982 
8983 /**
8984  * dp_rx_peer_metadata_ver_update() - update rx peer metadata version and
8985  *                                    corresponding filed shift and mask
8986  * @soc: Handle to DP Soc structure
8987  * @peer_md_ver: RX peer metadata version value
8988  *
8989  * Return: None
8990  */
8991 static void
8992 dp_rx_peer_metadata_ver_update(struct dp_soc *soc, uint8_t peer_md_ver)
8993 {
8994 	dp_info("rx_peer_metadata version %d", peer_md_ver);
8995 
8996 	switch (peer_md_ver) {
8997 	case 0: /* htt_rx_peer_metadata_v0 */
8998 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V0_PEER_ID_S;
8999 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V0_PEER_ID_M;
9000 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V0_VDEV_ID_S;
9001 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V0_VDEV_ID_M;
9002 		break;
9003 	case 1: /* htt_rx_peer_metadata_v1 */
9004 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1_PEER_ID_S;
9005 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1_PEER_ID_M;
9006 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1_VDEV_ID_S;
9007 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1_VDEV_ID_M;
9008 		soc->htt_mld_peer_valid_s =
9009 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_S;
9010 		soc->htt_mld_peer_valid_m =
9011 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_M;
9012 		break;
9013 	case 2: /* htt_rx_peer_metadata_v1a */
9014 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1A_PEER_ID_S;
9015 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1A_PEER_ID_M;
9016 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_S;
9017 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_M;
9018 		soc->htt_mld_peer_valid_s =
9019 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_S;
9020 		soc->htt_mld_peer_valid_m =
9021 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_M;
9022 		break;
9023 	case 3: /* htt_rx_peer_metadata_v1b */
9024 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1B_PEER_ID_S;
9025 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1B_PEER_ID_M;
9026 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_S;
9027 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_M;
9028 		soc->htt_mld_peer_valid_s =
9029 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_S;
9030 		soc->htt_mld_peer_valid_m =
9031 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_M;
9032 		break;
9033 	default:
9034 		dp_err("invliad rx_peer_metadata version %d", peer_md_ver);
9035 		break;
9036 	}
9037 
9038 	soc->rx_peer_metadata_ver = peer_md_ver;
9039 }
9040 
9041 /**
9042  * dp_set_psoc_param: function to set parameters in psoc
9043  * @cdp_soc: DP soc handle
9044  * @param: parameter type to be set
9045  * @val: value of parameter to be set
9046  *
9047  * Return: QDF_STATUS
9048  */
9049 static QDF_STATUS
9050 dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
9051 		  enum cdp_psoc_param_type param, cdp_config_param_type val)
9052 {
9053 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
9054 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
9055 
9056 	switch (param) {
9057 	case CDP_ENABLE_RATE_STATS:
9058 		soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
9059 		break;
9060 	case CDP_SET_NSS_CFG:
9061 		wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
9062 					    val.cdp_psoc_param_en_nss_cfg);
9063 		/*
9064 		 * TODO: masked out based on the per offloaded radio
9065 		 */
9066 		switch (val.cdp_psoc_param_en_nss_cfg) {
9067 		case dp_nss_cfg_default:
9068 			break;
9069 		case dp_nss_cfg_first_radio:
9070 		/*
9071 		 * This configuration is valid for single band radio which
9072 		 * is also NSS offload.
9073 		 */
9074 		case dp_nss_cfg_dbdc:
9075 		case dp_nss_cfg_dbtc:
9076 			wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
9077 			wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
9078 			wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
9079 			wlan_cfg_set_num_tx_spl_desc(soc->wlan_cfg_ctx, 0);
9080 			wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
9081 			break;
9082 		default:
9083 			dp_cdp_err("%pK: Invalid offload config %d",
9084 				   soc, val.cdp_psoc_param_en_nss_cfg);
9085 		}
9086 
9087 			dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
9088 				   , soc);
9089 		break;
9090 	case CDP_SET_PREFERRED_HW_MODE:
9091 		soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
9092 		break;
9093 	case CDP_IPA_ENABLE:
9094 		soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
9095 		break;
9096 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
9097 		wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
9098 				val.cdp_psoc_param_vdev_stats_hw_offload);
9099 		break;
9100 	case CDP_SAWF_ENABLE:
9101 		wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
9102 		break;
9103 	case CDP_UMAC_RST_SKEL_ENABLE:
9104 		dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
9105 		break;
9106 	case CDP_UMAC_RESET_STATS:
9107 		dp_umac_reset_stats_print(soc);
9108 		break;
9109 	case CDP_SAWF_STATS:
9110 		wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
9111 					       val.cdp_sawf_stats);
9112 		break;
9113 	case CDP_CFG_RX_PEER_METADATA_VER:
9114 		dp_rx_peer_metadata_ver_update(
9115 				soc, val.cdp_peer_metadata_ver);
9116 		break;
9117 	case CDP_CFG_TX_DESC_NUM:
9118 		wlan_cfg_set_num_tx_desc(wlan_cfg_ctx,
9119 					 val.cdp_tx_desc_num);
9120 		break;
9121 	case CDP_CFG_TX_EXT_DESC_NUM:
9122 		wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx,
9123 					     val.cdp_tx_ext_desc_num);
9124 		break;
9125 	case CDP_CFG_TX_RING_SIZE:
9126 		wlan_cfg_set_tx_ring_size(wlan_cfg_ctx,
9127 					  val.cdp_tx_ring_size);
9128 		break;
9129 	case CDP_CFG_TX_COMPL_RING_SIZE:
9130 		wlan_cfg_set_tx_comp_ring_size(wlan_cfg_ctx,
9131 					       val.cdp_tx_comp_ring_size);
9132 		break;
9133 	case CDP_CFG_RX_SW_DESC_NUM:
9134 		wlan_cfg_set_dp_soc_rx_sw_desc_num(wlan_cfg_ctx,
9135 						   val.cdp_rx_sw_desc_num);
9136 		break;
9137 	case CDP_CFG_REO_DST_RING_SIZE:
9138 		wlan_cfg_set_reo_dst_ring_size(wlan_cfg_ctx,
9139 					       val.cdp_reo_dst_ring_size);
9140 		break;
9141 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9142 		wlan_cfg_set_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx,
9143 					val.cdp_rxdma_refill_ring_size);
9144 		break;
9145 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9146 	case CDP_CFG_RX_REFILL_POOL_NUM:
9147 		wlan_cfg_set_rx_refill_buf_pool_size(wlan_cfg_ctx,
9148 						val.cdp_rx_refill_buf_pool_size);
9149 		break;
9150 #endif
9151 	case CDP_CFG_AST_INDICATION_DISABLE:
9152 		wlan_cfg_set_ast_indication_disable
9153 			(wlan_cfg_ctx, val.cdp_ast_indication_disable);
9154 		break;
9155 	case CDP_CONFIG_DP_DEBUG_LOG:
9156 		soc->dp_debug_log_en = val.cdp_psoc_param_dp_debug_log;
9157 		break;
9158 	default:
9159 		break;
9160 	}
9161 
9162 	return QDF_STATUS_SUCCESS;
9163 }
9164 
9165 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
9166 /**
9167  * dp_get_mldev_mode: function to get mlo operation mode
9168  * @soc: soc structure for data path
9169  *
9170  * Return: uint8_t
9171  */
9172 static uint8_t dp_get_mldev_mode(struct dp_soc *soc)
9173 {
9174 	return soc->mld_mode_ap;
9175 }
9176 #else
9177 static uint8_t dp_get_mldev_mode(struct dp_soc *cdp_soc)
9178 {
9179 	return MLD_MODE_INVALID;
9180 }
9181 #endif
9182 
9183 /**
9184  * dp_get_psoc_param: function to get parameters in soc
9185  * @cdp_soc: DP soc handle
9186  * @param: parameter type to be get
9187  * @val: address of buffer
9188  *
9189  * Return: status
9190  */
9191 static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
9192 				    enum cdp_psoc_param_type param,
9193 				    cdp_config_param_type *val)
9194 {
9195 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
9196 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx;
9197 
9198 	if (!soc)
9199 		return QDF_STATUS_E_FAILURE;
9200 
9201 	wlan_cfg_ctx = soc->wlan_cfg_ctx;
9202 
9203 	switch (param) {
9204 	case CDP_ENABLE_RATE_STATS:
9205 		val->cdp_psoc_param_en_rate_stats = soc->peerstats_enabled;
9206 		break;
9207 	case CDP_CFG_PEER_EXT_STATS:
9208 		val->cdp_psoc_param_pext_stats =
9209 			wlan_cfg_is_peer_ext_stats_enabled(wlan_cfg_ctx);
9210 		break;
9211 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
9212 		val->cdp_psoc_param_vdev_stats_hw_offload =
9213 			wlan_cfg_get_vdev_stats_hw_offload_config(wlan_cfg_ctx);
9214 		break;
9215 	case CDP_UMAC_RST_SKEL_ENABLE:
9216 		val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
9217 		break;
9218 	case CDP_TXRX_HAL_SOC_HDL:
9219 		val->hal_soc_hdl = soc->hal_soc;
9220 		break;
9221 	case CDP_CFG_TX_DESC_NUM:
9222 		val->cdp_tx_desc_num = wlan_cfg_get_num_tx_desc(wlan_cfg_ctx);
9223 		break;
9224 	case CDP_CFG_TX_EXT_DESC_NUM:
9225 		val->cdp_tx_ext_desc_num =
9226 			wlan_cfg_get_num_tx_ext_desc(wlan_cfg_ctx);
9227 		break;
9228 	case CDP_CFG_TX_RING_SIZE:
9229 		val->cdp_tx_ring_size = wlan_cfg_tx_ring_size(wlan_cfg_ctx);
9230 		break;
9231 	case CDP_CFG_TX_COMPL_RING_SIZE:
9232 		val->cdp_tx_comp_ring_size =
9233 			wlan_cfg_tx_comp_ring_size(wlan_cfg_ctx);
9234 		break;
9235 	case CDP_CFG_RX_SW_DESC_NUM:
9236 		val->cdp_rx_sw_desc_num =
9237 			wlan_cfg_get_dp_soc_rx_sw_desc_num(wlan_cfg_ctx);
9238 		break;
9239 	case CDP_CFG_REO_DST_RING_SIZE:
9240 		val->cdp_reo_dst_ring_size =
9241 			wlan_cfg_get_reo_dst_ring_size(wlan_cfg_ctx);
9242 		break;
9243 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9244 		val->cdp_rxdma_refill_ring_size =
9245 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx);
9246 		break;
9247 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9248 	case CDP_CFG_RX_REFILL_POOL_NUM:
9249 		val->cdp_rx_refill_buf_pool_size =
9250 			wlan_cfg_get_rx_refill_buf_pool_size(wlan_cfg_ctx);
9251 		break;
9252 #endif
9253 	case CDP_CFG_FISA_PARAMS:
9254 		val->fisa_params.fisa_fst_size = wlan_cfg_get_rx_flow_search_table_size(soc->wlan_cfg_ctx);
9255 		val->fisa_params.rx_flow_max_search =
9256 			wlan_cfg_rx_fst_get_max_search(soc->wlan_cfg_ctx);
9257 		val->fisa_params.rx_toeplitz_hash_key =
9258 			wlan_cfg_rx_fst_get_hash_key(soc->wlan_cfg_ctx);
9259 		break;
9260 	case CDP_RX_PKT_TLV_SIZE:
9261 		val->rx_pkt_tlv_size = soc->rx_pkt_tlv_size;
9262 		break;
9263 	case CDP_CFG_GET_MLO_OPER_MODE:
9264 		val->cdp_psoc_param_mlo_oper_mode = dp_get_mldev_mode(soc);
9265 		break;
9266 	case CDP_CFG_PEER_JITTER_STATS:
9267 		val->cdp_psoc_param_jitter_stats =
9268 			wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx);
9269 		break;
9270 	case CDP_CONFIG_DP_DEBUG_LOG:
9271 		val->cdp_psoc_param_dp_debug_log = soc->dp_debug_log_en;
9272 		break;
9273 	default:
9274 		dp_warn("Invalid param: %u", param);
9275 		break;
9276 	}
9277 
9278 	return QDF_STATUS_SUCCESS;
9279 }
9280 
9281 /**
9282  * dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
9283  * @cdp_soc: CDP SOC handle
9284  * @vdev_id: id of DP_VDEV handle
9285  * @map_id:ID of map that needs to be updated
9286  *
9287  * Return: QDF_STATUS
9288  */
9289 static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
9290 						 uint8_t vdev_id,
9291 						 uint8_t map_id)
9292 {
9293 	cdp_config_param_type val;
9294 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
9295 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9296 						     DP_MOD_ID_CDP);
9297 	if (vdev) {
9298 		vdev->dscp_tid_map_id = map_id;
9299 		val.cdp_vdev_param_dscp_tid_map_id = map_id;
9300 		soc->arch_ops.txrx_set_vdev_param(soc,
9301 						  vdev,
9302 						  CDP_UPDATE_DSCP_TO_TID_MAP,
9303 						  val);
9304 		/* Update flag for transmit tid classification */
9305 		if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
9306 			vdev->skip_sw_tid_classification |=
9307 				DP_TX_HW_DSCP_TID_MAP_VALID;
9308 		else
9309 			vdev->skip_sw_tid_classification &=
9310 				~DP_TX_HW_DSCP_TID_MAP_VALID;
9311 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9312 		return QDF_STATUS_SUCCESS;
9313 	}
9314 
9315 	return QDF_STATUS_E_FAILURE;
9316 }
9317 
9318 #ifdef DP_RATETABLE_SUPPORT
9319 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9320 				int htflag, int gintval)
9321 {
9322 	uint32_t rix;
9323 	uint16_t ratecode;
9324 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
9325 
9326 	return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
9327 			       (uint8_t)preamb, 1, punc_mode,
9328 			       &rix, &ratecode);
9329 }
9330 #else
9331 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9332 				int htflag, int gintval)
9333 {
9334 	return 0;
9335 }
9336 #endif
9337 
9338 /**
9339  * dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
9340  * @soc: DP soc handle
9341  * @pdev_id: id of DP pdev handle
9342  * @pdev_stats: buffer to copy to
9343  *
9344  * Return: status success/failure
9345  */
9346 static QDF_STATUS
9347 dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9348 		       struct cdp_pdev_stats *pdev_stats)
9349 {
9350 	struct dp_pdev *pdev =
9351 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9352 						   pdev_id);
9353 	if (!pdev)
9354 		return QDF_STATUS_E_FAILURE;
9355 
9356 	dp_aggregate_pdev_stats(pdev);
9357 
9358 	qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
9359 	return QDF_STATUS_SUCCESS;
9360 }
9361 
9362 /**
9363  * dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
9364  * @vdev: DP vdev handle
9365  * @buf: buffer containing specific stats structure
9366  * @xmit_type: xmit type of packet - MLD/Link
9367  *
9368  * Return: void
9369  */
9370 static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
9371 					 void *buf, uint8_t xmit_type)
9372 {
9373 	struct cdp_tx_ingress_stats *host_stats = NULL;
9374 
9375 	if (!buf) {
9376 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9377 		return;
9378 	}
9379 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9380 
9381 	DP_STATS_INC_PKT(vdev, tx_i[xmit_type].mcast_en.mcast_pkt,
9382 			 host_stats->mcast_en.mcast_pkt.num,
9383 			 host_stats->mcast_en.mcast_pkt.bytes);
9384 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.dropped_map_error,
9385 		     host_stats->mcast_en.dropped_map_error);
9386 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.dropped_self_mac,
9387 		     host_stats->mcast_en.dropped_self_mac);
9388 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.dropped_send_fail,
9389 		     host_stats->mcast_en.dropped_send_fail);
9390 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.ucast,
9391 		     host_stats->mcast_en.ucast);
9392 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.fail_seg_alloc,
9393 		     host_stats->mcast_en.fail_seg_alloc);
9394 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.clone_fail,
9395 		     host_stats->mcast_en.clone_fail);
9396 }
9397 
9398 /**
9399  * dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
9400  * @vdev: DP vdev handle
9401  * @buf: buffer containing specific stats structure
9402  * @xmit_type: xmit type of packet -  MLD/Link
9403  *
9404  * Return: void
9405  */
9406 static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
9407 					      void *buf, uint8_t xmit_type)
9408 {
9409 	struct cdp_tx_ingress_stats *host_stats = NULL;
9410 
9411 	if (!buf) {
9412 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9413 		return;
9414 	}
9415 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9416 
9417 	DP_STATS_INC(vdev, tx_i[xmit_type].igmp_mcast_en.igmp_rcvd,
9418 		     host_stats->igmp_mcast_en.igmp_rcvd);
9419 	DP_STATS_INC(vdev, tx_i[xmit_type].igmp_mcast_en.igmp_ucast_converted,
9420 		     host_stats->igmp_mcast_en.igmp_ucast_converted);
9421 }
9422 
9423 /**
9424  * dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
9425  * @soc_hdl: DP soc handle
9426  * @vdev_id: id of DP vdev handle
9427  * @buf: buffer containing specific stats structure
9428  * @stats_id: stats type
9429  * @xmit_type: xmit type of packet - MLD/Link
9430  *
9431  * Return: QDF_STATUS
9432  */
9433 static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
9434 						 uint8_t vdev_id,
9435 						 void *buf,
9436 						 uint16_t stats_id,
9437 						 uint8_t xmit_type)
9438 {
9439 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9440 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9441 						     DP_MOD_ID_CDP);
9442 
9443 	if (!vdev) {
9444 		dp_cdp_err("%pK: Invalid vdev handle", soc);
9445 		return QDF_STATUS_E_FAILURE;
9446 	}
9447 
9448 	switch (stats_id) {
9449 	case DP_VDEV_STATS_PKT_CNT_ONLY:
9450 		break;
9451 	case DP_VDEV_STATS_TX_ME:
9452 		dp_txrx_update_vdev_me_stats(vdev, buf, xmit_type);
9453 		dp_txrx_update_vdev_igmp_me_stats(vdev, buf, xmit_type);
9454 		break;
9455 	default:
9456 		qdf_info("Invalid stats_id %d", stats_id);
9457 		break;
9458 	}
9459 
9460 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9461 	return QDF_STATUS_SUCCESS;
9462 }
9463 
9464 /**
9465  * dp_txrx_get_peer_stats_wrapper() - will get cdp_peer_stats
9466  * @soc: soc handle
9467  * @peer_stats: destination buffer to copy to
9468  * @peer_info: peer info
9469  *
9470  * Return: status success/failure
9471  */
9472 static QDF_STATUS
9473 dp_txrx_get_peer_stats_wrapper(struct cdp_soc_t *soc,
9474 			       struct cdp_peer_stats *peer_stats,
9475 			       struct cdp_peer_info peer_info)
9476 {
9477 	struct dp_peer *peer = NULL;
9478 
9479 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9480 					 DP_MOD_ID_CDP);
9481 
9482 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9483 
9484 	if (!peer)
9485 		return QDF_STATUS_E_FAILURE;
9486 
9487 	dp_get_peer_stats(peer, peer_stats);
9488 
9489 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9490 
9491 	return QDF_STATUS_SUCCESS;
9492 }
9493 
9494 /**
9495  * dp_txrx_get_peer_stats() - will get cdp_peer_stats
9496  * @soc: soc handle
9497  * @vdev_id: id of vdev handle
9498  * @peer_mac: peer mac address of DP_PEER handle
9499  * @peer_stats: destination buffer to copy to
9500  *
9501  * Return: status success/failure
9502  */
9503 static QDF_STATUS
9504 dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9505 		       uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
9506 {
9507 	struct cdp_peer_info peer_info = { 0 };
9508 
9509 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9510 				 CDP_WILD_PEER_TYPE);
9511 
9512 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9513 }
9514 
9515 /**
9516  * dp_txrx_get_peer_stats_based_on_peer_type() - get peer stats based on the
9517  * peer type
9518  * @soc: soc handle
9519  * @vdev_id: id of vdev handle
9520  * @peer_mac: mac of DP_PEER handle
9521  * @peer_stats: buffer to copy to
9522  * @peer_type: type of peer
9523  *
9524  * Return: status success/failure
9525  */
9526 static QDF_STATUS
9527 dp_txrx_get_peer_stats_based_on_peer_type(struct cdp_soc_t *soc, uint8_t vdev_id,
9528 					  uint8_t *peer_mac,
9529 					  struct cdp_peer_stats *peer_stats,
9530 					  enum cdp_peer_type peer_type)
9531 {
9532 	struct cdp_peer_info peer_info = { 0 };
9533 
9534 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9535 				 peer_type);
9536 
9537 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9538 }
9539 
9540 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
9541 /**
9542  * dp_get_per_link_peer_stats() - Get per link stats
9543  * @peer: DP peer
9544  * @peer_stats: buffer to copy to
9545  * @peer_type: Peer type
9546  * @num_link: Number of ML links
9547  *
9548  * Return: status success/failure
9549  */
9550 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9551 				      struct cdp_peer_stats *peer_stats,
9552 				      enum cdp_peer_type peer_type,
9553 				      uint8_t num_link)
9554 {
9555 	uint8_t i, min_num_links;
9556 	struct dp_peer *link_peer;
9557 	struct dp_mld_link_peers link_peers_info;
9558 	struct dp_soc *soc = peer->vdev->pdev->soc;
9559 
9560 	dp_get_peer_calibr_stats(peer, peer_stats);
9561 	dp_get_peer_basic_stats(peer, peer_stats);
9562 	dp_get_peer_tx_per(peer_stats);
9563 
9564 	if (IS_MLO_DP_MLD_PEER(peer)) {
9565 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9566 						    &link_peers_info,
9567 						    DP_MOD_ID_GENERIC_STATS);
9568 		if (link_peers_info.num_links > num_link)
9569 			dp_info("Req stats of %d link. less than total link %d",
9570 				num_link, link_peers_info.num_links);
9571 
9572 		min_num_links = num_link < link_peers_info.num_links ?
9573 				num_link : link_peers_info.num_links;
9574 		for (i = 0; i < min_num_links; i++) {
9575 			link_peer = link_peers_info.link_peers[i];
9576 			if (qdf_unlikely(!link_peer))
9577 				continue;
9578 			dp_get_peer_per_pkt_stats(link_peer, peer_stats);
9579 			dp_get_peer_extd_stats(link_peer, peer_stats);
9580 		}
9581 		dp_release_link_peers_ref(&link_peers_info,
9582 					  DP_MOD_ID_GENERIC_STATS);
9583 	} else {
9584 		dp_get_peer_per_pkt_stats(peer, peer_stats);
9585 		dp_get_peer_extd_stats(peer, peer_stats);
9586 	}
9587 	return QDF_STATUS_SUCCESS;
9588 }
9589 #else
9590 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9591 				      struct cdp_peer_stats *peer_stats,
9592 				      enum cdp_peer_type peer_type,
9593 				      uint8_t num_link)
9594 {
9595 	dp_err("Per link stats not supported");
9596 	return QDF_STATUS_E_INVAL;
9597 }
9598 #endif
9599 
9600 /**
9601  * dp_txrx_get_per_link_peer_stats() - Get per link peer stats
9602  * @soc: soc handle
9603  * @vdev_id: id of vdev handle
9604  * @peer_mac: peer mac address
9605  * @peer_stats: buffer to copy to
9606  * @peer_type: Peer type
9607  * @num_link: Number of ML links
9608  *
9609  * NOTE: For peer_type = CDP_MLD_PEER_TYPE peer_stats should point to
9610  *       buffer of size = (sizeof(*peer_stats) * num_link)
9611  *
9612  * Return: status success/failure
9613  */
9614 static QDF_STATUS
9615 dp_txrx_get_per_link_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9616 				uint8_t *peer_mac,
9617 				struct cdp_peer_stats *peer_stats,
9618 				enum cdp_peer_type peer_type, uint8_t num_link)
9619 {
9620 	QDF_STATUS status;
9621 	struct dp_peer *peer = NULL;
9622 	struct cdp_peer_info peer_info = { 0 };
9623 
9624 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9625 				 peer_type);
9626 
9627 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9628 					 DP_MOD_ID_GENERIC_STATS);
9629 	if (!peer)
9630 		return QDF_STATUS_E_FAILURE;
9631 
9632 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9633 
9634 	status = dp_get_per_link_peer_stats(peer, peer_stats, peer_type,
9635 					    num_link);
9636 
9637 	dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS);
9638 
9639 	return status;
9640 }
9641 
9642 /**
9643  * dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
9644  * @soc: soc handle
9645  * @vdev_id: vdev_id of vdev object
9646  * @peer_mac: mac address of the peer
9647  * @type: enum of required stats
9648  * @buf: buffer to hold the value
9649  *
9650  * Return: status success/failure
9651  */
9652 static QDF_STATUS
9653 dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
9654 			     uint8_t *peer_mac, enum cdp_peer_stats_type type,
9655 			     cdp_peer_stats_param_t *buf)
9656 {
9657 	QDF_STATUS ret;
9658 	struct dp_peer *peer = NULL;
9659 	struct cdp_peer_info peer_info = { 0 };
9660 
9661 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9662 				 CDP_WILD_PEER_TYPE);
9663 
9664 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9665 				         DP_MOD_ID_CDP);
9666 
9667 	if (!peer) {
9668 		dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
9669 			    soc, QDF_MAC_ADDR_REF(peer_mac));
9670 		return QDF_STATUS_E_FAILURE;
9671 	}
9672 
9673 	if (type >= cdp_peer_per_pkt_stats_min &&
9674 	    type < cdp_peer_per_pkt_stats_max) {
9675 		ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
9676 	} else if (type >= cdp_peer_extd_stats_min &&
9677 		   type < cdp_peer_extd_stats_max) {
9678 		ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
9679 	} else {
9680 		dp_err("%pK: Invalid stat type requested", soc);
9681 		ret = QDF_STATUS_E_FAILURE;
9682 	}
9683 
9684 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9685 
9686 	return ret;
9687 }
9688 
9689 /**
9690  * dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
9691  * @soc_hdl: soc handle
9692  * @vdev_id: id of vdev handle
9693  * @peer_mac: mac of DP_PEER handle
9694  *
9695  * Return: QDF_STATUS
9696  */
9697 #ifdef WLAN_FEATURE_11BE_MLO
9698 static QDF_STATUS
9699 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9700 			 uint8_t *peer_mac)
9701 {
9702 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9703 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9704 	struct dp_peer *peer =
9705 			dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
9706 						       vdev_id, DP_MOD_ID_CDP);
9707 
9708 	if (!peer)
9709 		return QDF_STATUS_E_FAILURE;
9710 
9711 	DP_STATS_CLR(peer);
9712 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9713 
9714 	if (IS_MLO_DP_MLD_PEER(peer)) {
9715 		uint8_t i;
9716 		struct dp_peer *link_peer;
9717 		struct dp_soc *link_peer_soc;
9718 		struct dp_mld_link_peers link_peers_info;
9719 
9720 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9721 						    &link_peers_info,
9722 						    DP_MOD_ID_CDP);
9723 		for (i = 0; i < link_peers_info.num_links; i++) {
9724 			link_peer = link_peers_info.link_peers[i];
9725 			link_peer_soc = link_peer->vdev->pdev->soc;
9726 
9727 			DP_STATS_CLR(link_peer);
9728 			dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
9729 		}
9730 
9731 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
9732 	} else {
9733 		dp_monitor_peer_reset_stats(soc, peer);
9734 	}
9735 
9736 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9737 
9738 	return status;
9739 }
9740 #else
9741 static QDF_STATUS
9742 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9743 			 uint8_t *peer_mac)
9744 {
9745 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9746 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
9747 						      peer_mac, 0, vdev_id,
9748 						      DP_MOD_ID_CDP);
9749 
9750 	if (!peer)
9751 		return QDF_STATUS_E_FAILURE;
9752 
9753 	DP_STATS_CLR(peer);
9754 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9755 	dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
9756 
9757 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9758 
9759 	return status;
9760 }
9761 #endif
9762 
9763 /**
9764  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
9765  * @soc_hdl: CDP SoC handle
9766  * @vdev_id: vdev Id
9767  * @buf: buffer for vdev stats
9768  * @is_aggregate: are aggregate stats being collected
9769  *
9770  * Return: QDF_STATUS
9771  */
9772 QDF_STATUS
9773 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9774 		       void *buf, bool is_aggregate)
9775 {
9776 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9777 	struct cdp_vdev_stats *vdev_stats;
9778 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9779 						     DP_MOD_ID_CDP);
9780 
9781 	if (!vdev)
9782 		return QDF_STATUS_E_RESOURCES;
9783 
9784 	vdev_stats = (struct cdp_vdev_stats *)buf;
9785 
9786 	if (is_aggregate) {
9787 		dp_aggregate_vdev_stats(vdev, buf, DP_XMIT_LINK);
9788 	} else {
9789 		dp_copy_vdev_stats_to_tgt_buf(vdev_stats,
9790 						    &vdev->stats, DP_XMIT_LINK);
9791 	}
9792 
9793 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9794 	return QDF_STATUS_SUCCESS;
9795 }
9796 
9797 /**
9798  * dp_get_total_per() - get total per
9799  * @soc: DP soc handle
9800  * @pdev_id: id of DP_PDEV handle
9801  *
9802  * Return: % error rate using retries per packet and success packets
9803  */
9804 static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
9805 {
9806 	struct dp_pdev *pdev =
9807 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9808 						   pdev_id);
9809 
9810 	if (!pdev)
9811 		return 0;
9812 
9813 	dp_aggregate_pdev_stats(pdev);
9814 	if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
9815 		return 0;
9816 	return qdf_do_div((pdev->stats.tx.retries * 100),
9817 		((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
9818 }
9819 
9820 /**
9821  * dp_txrx_stats_publish() - publish pdev stats into a buffer
9822  * @soc: DP soc handle
9823  * @pdev_id: id of DP_PDEV handle
9824  * @buf: to hold pdev_stats
9825  *
9826  * Return: int
9827  */
9828 static int
9829 dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
9830 		      struct cdp_stats_extd *buf)
9831 {
9832 	struct cdp_txrx_stats_req req = {0,};
9833 	QDF_STATUS status;
9834 	struct dp_pdev *pdev =
9835 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9836 						   pdev_id);
9837 
9838 	if (!pdev)
9839 		return TXRX_STATS_LEVEL_OFF;
9840 
9841 	if (pdev->pending_fw_stats_response) {
9842 		dp_warn("pdev%d: prev req pending\n", pdev->pdev_id);
9843 		return TXRX_STATS_LEVEL_OFF;
9844 	}
9845 
9846 	dp_aggregate_pdev_stats(pdev);
9847 
9848 	pdev->pending_fw_stats_response = true;
9849 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
9850 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9851 	pdev->fw_stats_tlv_bitmap_rcvd = 0;
9852 	qdf_event_reset(&pdev->fw_stats_event);
9853 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9854 					   req.param1, req.param2, req.param3, 0,
9855 					   req.cookie_val, 0);
9856 
9857 	if (status != QDF_STATUS_SUCCESS) {
9858 		dp_warn("pdev%d: tx stats req failed\n", pdev->pdev_id);
9859 		pdev->pending_fw_stats_response = false;
9860 		return TXRX_STATS_LEVEL_OFF;
9861 	}
9862 
9863 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
9864 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9865 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9866 					   req.param1, req.param2, req.param3, 0,
9867 					   req.cookie_val, 0);
9868 	if (status != QDF_STATUS_SUCCESS) {
9869 		dp_warn("pdev%d: rx stats req failed\n", pdev->pdev_id);
9870 		pdev->pending_fw_stats_response = false;
9871 		return TXRX_STATS_LEVEL_OFF;
9872 	}
9873 
9874 	/* The event may have already been signaled. Wait only if it's pending */
9875 	if (!pdev->fw_stats_event.done) {
9876 		status =
9877 			qdf_wait_single_event(&pdev->fw_stats_event,
9878 					      DP_MAX_SLEEP_TIME);
9879 
9880 		if (status != QDF_STATUS_SUCCESS) {
9881 			if (status == QDF_STATUS_E_TIMEOUT)
9882 				dp_warn("pdev%d: fw stats timeout. TLVs rcvd 0x%llx\n",
9883 					     pdev->pdev_id,
9884 					     pdev->fw_stats_tlv_bitmap_rcvd);
9885 			pdev->pending_fw_stats_response = false;
9886 			return TXRX_STATS_LEVEL_OFF;
9887 		}
9888 	}
9889 
9890 	qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
9891 	pdev->pending_fw_stats_response = false;
9892 
9893 	return TXRX_STATS_LEVEL;
9894 }
9895 
9896 /**
9897  * dp_get_obss_stats() - Get Pdev OBSS stats from Fw
9898  * @soc: DP soc handle
9899  * @pdev_id: id of DP_PDEV handle
9900  * @buf: to hold pdev obss stats
9901  * @req: Pointer to CDP TxRx stats
9902  *
9903  * Return: status
9904  */
9905 static QDF_STATUS
9906 dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9907 		  struct cdp_pdev_obss_pd_stats_tlv *buf,
9908 		  struct cdp_txrx_stats_req *req)
9909 {
9910 	QDF_STATUS status;
9911 	struct dp_pdev *pdev =
9912 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9913 						   pdev_id);
9914 
9915 	if (!pdev)
9916 		return QDF_STATUS_E_INVAL;
9917 
9918 	if (pdev->pending_fw_obss_stats_response)
9919 		return QDF_STATUS_E_AGAIN;
9920 
9921 	pdev->pending_fw_obss_stats_response = true;
9922 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9923 	req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
9924 	qdf_event_reset(&pdev->fw_obss_stats_event);
9925 	status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9926 					   req->param1, req->param2,
9927 					   req->param3, 0, req->cookie_val,
9928 					   req->mac_id);
9929 	if (QDF_IS_STATUS_ERROR(status)) {
9930 		pdev->pending_fw_obss_stats_response = false;
9931 		return status;
9932 	}
9933 	status =
9934 		qdf_wait_single_event(&pdev->fw_obss_stats_event,
9935 				      DP_MAX_SLEEP_TIME);
9936 
9937 	if (status != QDF_STATUS_SUCCESS) {
9938 		if (status == QDF_STATUS_E_TIMEOUT)
9939 			qdf_debug("TIMEOUT_OCCURS");
9940 		pdev->pending_fw_obss_stats_response = false;
9941 		return QDF_STATUS_E_TIMEOUT;
9942 	}
9943 	qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
9944 		     sizeof(struct cdp_pdev_obss_pd_stats_tlv));
9945 	pdev->pending_fw_obss_stats_response = false;
9946 	return status;
9947 }
9948 
9949 /**
9950  * dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
9951  * @soc: DP soc handle
9952  * @pdev_id: id of DP_PDEV handle
9953  * @req: Pointer to CDP TxRx stats request mac_id will be
9954  *	 pre-filled and should not be overwritten
9955  *
9956  * Return: status
9957  */
9958 static QDF_STATUS
9959 dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9960 			    struct cdp_txrx_stats_req *req)
9961 {
9962 	struct dp_pdev *pdev =
9963 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9964 						   pdev_id);
9965 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9966 
9967 	if (!pdev)
9968 		return QDF_STATUS_E_INVAL;
9969 
9970 	/*
9971 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9972 	 * from param0 to param3 according to below rule:
9973 	 *
9974 	 * PARAM:
9975 	 *   - config_param0 : start_offset (stats type)
9976 	 *   - config_param1 : stats bmask from start offset
9977 	 *   - config_param2 : stats bmask from start offset + 32
9978 	 *   - config_param3 : stats bmask from start offset + 64
9979 	 */
9980 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
9981 	req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9982 	req->param1 = 0x00000001;
9983 
9984 	return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9985 				  req->param1, req->param2, req->param3, 0,
9986 				cookie_val, req->mac_id);
9987 }
9988 
9989 /**
9990  * dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
9991  * @soc_handle: soc handle
9992  * @pdev_id: id of DP_PDEV handle
9993  * @map_id: ID of map that needs to be updated
9994  * @tos: index value in map
9995  * @tid: tid value passed by the user
9996  *
9997  * Return: QDF_STATUS
9998  */
9999 static QDF_STATUS
10000 dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
10001 			       uint8_t pdev_id,
10002 			       uint8_t map_id,
10003 			       uint8_t tos, uint8_t tid)
10004 {
10005 	uint8_t dscp;
10006 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10007 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
10008 
10009 	if (!pdev)
10010 		return QDF_STATUS_E_FAILURE;
10011 
10012 	dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
10013 	pdev->dscp_tid_map[map_id][dscp] = tid;
10014 
10015 	if (map_id < soc->num_hw_dscp_tid_map)
10016 		hal_tx_update_dscp_tid(soc->hal_soc, tid,
10017 				       map_id, dscp);
10018 	else
10019 		return QDF_STATUS_E_FAILURE;
10020 
10021 	return QDF_STATUS_SUCCESS;
10022 }
10023 
10024 #ifdef WLAN_SYSFS_DP_STATS
10025 /**
10026  * dp_sysfs_event_trigger() - Trigger event to wait for firmware
10027  * stats request response.
10028  * @soc: soc handle
10029  * @cookie_val: cookie value
10030  *
10031  * Return: QDF_STATUS
10032  */
10033 static QDF_STATUS
10034 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
10035 {
10036 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10037 	/* wait for firmware response for sysfs stats request */
10038 	if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
10039 		if (!soc) {
10040 			dp_cdp_err("soc is NULL");
10041 			return QDF_STATUS_E_FAILURE;
10042 		}
10043 		/* wait for event completion */
10044 		status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
10045 					       WLAN_SYSFS_STAT_REQ_WAIT_MS);
10046 		if (status == QDF_STATUS_SUCCESS)
10047 			dp_cdp_info("sysfs_txrx_fw_request_done event completed");
10048 		else if (status == QDF_STATUS_E_TIMEOUT)
10049 			dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
10050 		else
10051 			dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
10052 	}
10053 
10054 	return status;
10055 }
10056 #else /* WLAN_SYSFS_DP_STATS */
10057 static QDF_STATUS
10058 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
10059 {
10060 	return QDF_STATUS_SUCCESS;
10061 }
10062 #endif /* WLAN_SYSFS_DP_STATS */
10063 
10064 /**
10065  * dp_fw_stats_process() - Process TXRX FW stats request.
10066  * @vdev: DP VDEV handle
10067  * @req: stats request
10068  *
10069  * Return: QDF_STATUS
10070  */
10071 static QDF_STATUS
10072 dp_fw_stats_process(struct dp_vdev *vdev,
10073 		    struct cdp_txrx_stats_req *req)
10074 {
10075 	struct dp_pdev *pdev = NULL;
10076 	struct dp_soc *soc = NULL;
10077 	uint32_t stats = req->stats;
10078 	uint8_t mac_id = req->mac_id;
10079 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
10080 
10081 	if (!vdev) {
10082 		DP_TRACE(NONE, "VDEV not found");
10083 		return QDF_STATUS_E_FAILURE;
10084 	}
10085 
10086 	pdev = vdev->pdev;
10087 	if (!pdev) {
10088 		DP_TRACE(NONE, "PDEV not found");
10089 		return QDF_STATUS_E_FAILURE;
10090 	}
10091 
10092 	soc = pdev->soc;
10093 	if (!soc) {
10094 		DP_TRACE(NONE, "soc not found");
10095 		return QDF_STATUS_E_FAILURE;
10096 	}
10097 
10098 	/* In case request is from host sysfs for displaying stats on console */
10099 	if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
10100 		cookie_val = DBG_SYSFS_STATS_COOKIE;
10101 
10102 	/*
10103 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
10104 	 * from param0 to param3 according to below rule:
10105 	 *
10106 	 * PARAM:
10107 	 *   - config_param0 : start_offset (stats type)
10108 	 *   - config_param1 : stats bmask from start offset
10109 	 *   - config_param2 : stats bmask from start offset + 32
10110 	 *   - config_param3 : stats bmask from start offset + 64
10111 	 */
10112 	if (req->stats == CDP_TXRX_STATS_0) {
10113 		req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
10114 		req->param1 = 0xFFFFFFFF;
10115 		req->param2 = 0xFFFFFFFF;
10116 		req->param3 = 0xFFFFFFFF;
10117 	} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
10118 		req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
10119 	}
10120 
10121 	if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
10122 		dp_h2t_ext_stats_msg_send(pdev,
10123 					  HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
10124 					  req->param0, req->param1, req->param2,
10125 					  req->param3, 0, cookie_val,
10126 					  mac_id);
10127 	} else {
10128 		dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
10129 					  req->param1, req->param2, req->param3,
10130 					  0, cookie_val, mac_id);
10131 	}
10132 
10133 	dp_sysfs_event_trigger(soc, cookie_val);
10134 
10135 	return QDF_STATUS_SUCCESS;
10136 }
10137 
10138 /**
10139  * dp_txrx_stats_request - function to map to firmware and host stats
10140  * @soc_handle: soc handle
10141  * @vdev_id: virtual device ID
10142  * @req: stats request
10143  *
10144  * Return: QDF_STATUS
10145  */
10146 static
10147 QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
10148 				 uint8_t vdev_id,
10149 				 struct cdp_txrx_stats_req *req)
10150 {
10151 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
10152 	int host_stats;
10153 	int fw_stats;
10154 	enum cdp_stats stats;
10155 	int num_stats;
10156 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10157 						     DP_MOD_ID_CDP);
10158 	QDF_STATUS status = QDF_STATUS_E_INVAL;
10159 
10160 	if (!vdev || !req) {
10161 		dp_cdp_err("%pK: Invalid vdev/req instance", soc);
10162 		status = QDF_STATUS_E_INVAL;
10163 		goto fail0;
10164 	}
10165 
10166 	if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
10167 		dp_err("Invalid mac_id: %u request", req->mac_id);
10168 		status = QDF_STATUS_E_INVAL;
10169 		goto fail0;
10170 	}
10171 
10172 	stats = req->stats;
10173 	if (stats >= CDP_TXRX_MAX_STATS) {
10174 		status = QDF_STATUS_E_INVAL;
10175 		goto fail0;
10176 	}
10177 
10178 	/*
10179 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10180 	 *			has to be updated if new FW HTT stats added
10181 	 */
10182 	if (stats > CDP_TXRX_STATS_HTT_MAX)
10183 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10184 
10185 	num_stats  = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10186 
10187 	if (stats >= num_stats) {
10188 		dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
10189 		status = QDF_STATUS_E_INVAL;
10190 		goto fail0;
10191 	}
10192 
10193 	req->stats = stats;
10194 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10195 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10196 
10197 	dp_info("stats: %u fw_stats_type: %d host_stats: %d",
10198 		stats, fw_stats, host_stats);
10199 
10200 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10201 		/* update request with FW stats type */
10202 		req->stats = fw_stats;
10203 		status = dp_fw_stats_process(vdev, req);
10204 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10205 			(host_stats <= TXRX_HOST_STATS_MAX))
10206 		status = dp_print_host_stats(vdev, req, soc);
10207 	else
10208 		dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
10209 fail0:
10210 	if (vdev)
10211 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10212 	return status;
10213 }
10214 
10215 /**
10216  * dp_soc_notify_asserted_soc() - API to notify asserted soc info
10217  * @psoc: CDP soc handle
10218  *
10219  * Return: QDF_STATUS
10220  */
10221 static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
10222 {
10223 	struct dp_soc *soc = (struct dp_soc *)psoc;
10224 
10225 	if (!soc) {
10226 		dp_cdp_err("%pK: soc is NULL", soc);
10227 		return QDF_STATUS_E_INVAL;
10228 	}
10229 
10230 	return dp_umac_reset_notify_asserted_soc(soc);
10231 }
10232 
10233 /**
10234  * dp_txrx_dump_stats() -  Dump statistics
10235  * @psoc: CDP soc handle
10236  * @value: Statistics option
10237  * @level: verbosity level
10238  */
10239 static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
10240 				     enum qdf_stats_verbosity_level level)
10241 {
10242 	struct dp_soc *soc =
10243 		(struct dp_soc *)psoc;
10244 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10245 
10246 	if (!soc) {
10247 		dp_cdp_err("%pK: soc is NULL", soc);
10248 		return QDF_STATUS_E_INVAL;
10249 	}
10250 
10251 	switch (value) {
10252 	case CDP_TXRX_PATH_STATS:
10253 		dp_txrx_path_stats(soc);
10254 		dp_print_soc_interrupt_stats(soc);
10255 		dp_print_reg_write_stats(soc);
10256 		dp_pdev_print_tx_delay_stats(soc);
10257 		/* Dump usage watermark stats for core TX/RX SRNGs */
10258 		dp_dump_srng_high_wm_stats(soc,
10259 					   DP_SRNG_WM_MASK_REO_DST |
10260 					   DP_SRNG_WM_MASK_TX_COMP);
10261 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10262 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10263 						CDP_FISA_STATS_ID_ERR_STATS);
10264 		break;
10265 
10266 	case CDP_RX_RING_STATS:
10267 		dp_print_per_ring_stats(soc);
10268 		break;
10269 
10270 	case CDP_TXRX_TSO_STATS:
10271 		dp_print_tso_stats(soc, level);
10272 		break;
10273 
10274 	case CDP_DUMP_TX_FLOW_POOL_INFO:
10275 		if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
10276 			cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
10277 		else
10278 			dp_tx_dump_flow_pool_info_compact(soc);
10279 		break;
10280 
10281 	case CDP_DP_NAPI_STATS:
10282 		dp_print_napi_stats(soc);
10283 		break;
10284 
10285 	case CDP_TXRX_DESC_STATS:
10286 		/* TODO: NOT IMPLEMENTED */
10287 		break;
10288 
10289 	case CDP_DP_RX_FISA_STATS:
10290 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10291 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10292 						CDP_FISA_STATS_ID_DUMP_SW_FST);
10293 		break;
10294 
10295 	case CDP_DP_SWLM_STATS:
10296 		dp_print_swlm_stats(soc);
10297 		break;
10298 
10299 	case CDP_DP_TX_HW_LATENCY_STATS:
10300 		dp_pdev_print_tx_delay_stats(soc);
10301 		break;
10302 
10303 	default:
10304 		status = QDF_STATUS_E_INVAL;
10305 		break;
10306 	}
10307 
10308 	return status;
10309 
10310 }
10311 
10312 #ifdef WLAN_SYSFS_DP_STATS
10313 static
10314 void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
10315 			    uint32_t *stat_type)
10316 {
10317 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10318 	*stat_type = soc->sysfs_config->stat_type_requested;
10319 	*mac_id   = soc->sysfs_config->mac_id;
10320 
10321 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10322 }
10323 
10324 static
10325 void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
10326 				       uint32_t curr_len,
10327 				       uint32_t max_buf_len,
10328 				       char *buf)
10329 {
10330 	qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
10331 	/* set sysfs_config parameters */
10332 	soc->sysfs_config->buf = buf;
10333 	soc->sysfs_config->curr_buffer_length = curr_len;
10334 	soc->sysfs_config->max_buffer_length = max_buf_len;
10335 	qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
10336 }
10337 
10338 static
10339 QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
10340 			       char *buf, uint32_t buf_size)
10341 {
10342 	uint32_t mac_id = 0;
10343 	uint32_t stat_type = 0;
10344 	uint32_t fw_stats = 0;
10345 	uint32_t host_stats = 0;
10346 	enum cdp_stats stats;
10347 	struct cdp_txrx_stats_req req;
10348 	uint32_t num_stats;
10349 	struct dp_soc *soc = NULL;
10350 
10351 	if (!soc_hdl) {
10352 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10353 		return QDF_STATUS_E_INVAL;
10354 	}
10355 
10356 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
10357 
10358 	if (!soc) {
10359 		dp_cdp_err("%pK: soc is NULL", soc);
10360 		return QDF_STATUS_E_INVAL;
10361 	}
10362 
10363 	dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
10364 
10365 	stats = stat_type;
10366 	if (stats >= CDP_TXRX_MAX_STATS) {
10367 		dp_cdp_info("sysfs stat type requested is invalid");
10368 		return QDF_STATUS_E_INVAL;
10369 	}
10370 	/*
10371 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10372 	 *			has to be updated if new FW HTT stats added
10373 	 */
10374 	if (stats > CDP_TXRX_MAX_STATS)
10375 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10376 
10377 	num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10378 
10379 	if (stats >= num_stats) {
10380 		dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
10381 				soc, stats, num_stats);
10382 		return QDF_STATUS_E_INVAL;
10383 	}
10384 
10385 	/* build request */
10386 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10387 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10388 
10389 	req.stats = stat_type;
10390 	req.mac_id = mac_id;
10391 	/* request stats to be printed */
10392 	qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
10393 
10394 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10395 		/* update request with FW stats type */
10396 		req.cookie_val = DBG_SYSFS_STATS_COOKIE;
10397 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10398 			(host_stats <= TXRX_HOST_STATS_MAX)) {
10399 		req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
10400 		soc->sysfs_config->process_id = qdf_get_current_pid();
10401 		soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
10402 	}
10403 
10404 	dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
10405 
10406 	dp_txrx_stats_request(soc_hdl, mac_id, &req);
10407 	soc->sysfs_config->process_id = 0;
10408 	soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
10409 
10410 	dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
10411 
10412 	qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
10413 	return QDF_STATUS_SUCCESS;
10414 }
10415 
10416 static
10417 QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
10418 				  uint32_t stat_type, uint32_t mac_id)
10419 {
10420 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10421 
10422 	if (!soc_hdl) {
10423 		dp_cdp_err("%pK: soc is NULL", soc);
10424 		return QDF_STATUS_E_INVAL;
10425 	}
10426 
10427 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10428 
10429 	soc->sysfs_config->stat_type_requested = stat_type;
10430 	soc->sysfs_config->mac_id = mac_id;
10431 
10432 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10433 
10434 	return QDF_STATUS_SUCCESS;
10435 }
10436 
10437 static
10438 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10439 {
10440 	struct dp_soc *soc;
10441 	QDF_STATUS status;
10442 
10443 	if (!soc_hdl) {
10444 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10445 		return QDF_STATUS_E_INVAL;
10446 	}
10447 
10448 	soc = soc_hdl;
10449 
10450 	soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
10451 	if (!soc->sysfs_config) {
10452 		dp_cdp_err("failed to allocate memory for sysfs_config no memory");
10453 		return QDF_STATUS_E_NOMEM;
10454 	}
10455 
10456 	status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10457 	/* create event for fw stats request from sysfs */
10458 	if (status != QDF_STATUS_SUCCESS) {
10459 		dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
10460 		qdf_mem_free(soc->sysfs_config);
10461 		soc->sysfs_config = NULL;
10462 		return QDF_STATUS_E_FAILURE;
10463 	}
10464 
10465 	qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
10466 	qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
10467 	qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
10468 
10469 	return QDF_STATUS_SUCCESS;
10470 }
10471 
10472 static
10473 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10474 {
10475 	struct dp_soc *soc;
10476 	QDF_STATUS status;
10477 
10478 	if (!soc_hdl) {
10479 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10480 		return QDF_STATUS_E_INVAL;
10481 	}
10482 
10483 	soc = soc_hdl;
10484 	if (!soc->sysfs_config) {
10485 		dp_cdp_err("soc->sysfs_config is NULL");
10486 		return QDF_STATUS_E_FAILURE;
10487 	}
10488 
10489 	status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10490 	if (status != QDF_STATUS_SUCCESS)
10491 		dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
10492 
10493 	qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
10494 	qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
10495 	qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
10496 
10497 	qdf_mem_free(soc->sysfs_config);
10498 
10499 	return QDF_STATUS_SUCCESS;
10500 }
10501 
10502 #else /* WLAN_SYSFS_DP_STATS */
10503 
10504 static
10505 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10506 {
10507 	return QDF_STATUS_SUCCESS;
10508 }
10509 
10510 static
10511 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10512 {
10513 	return QDF_STATUS_SUCCESS;
10514 }
10515 #endif /* WLAN_SYSFS_DP_STATS */
10516 
10517 /**
10518  * dp_txrx_clear_dump_stats() - clear dumpStats
10519  * @soc_hdl: soc handle
10520  * @pdev_id: pdev ID
10521  * @value: stats option
10522  *
10523  * Return: 0 - Success, non-zero - failure
10524  */
10525 static
10526 QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10527 				    uint8_t value)
10528 {
10529 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10530 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10531 
10532 	if (!soc) {
10533 		dp_err("soc is NULL");
10534 		return QDF_STATUS_E_INVAL;
10535 	}
10536 
10537 	switch (value) {
10538 	case CDP_TXRX_TSO_STATS:
10539 		dp_txrx_clear_tso_stats(soc);
10540 		break;
10541 
10542 	case CDP_DP_TX_HW_LATENCY_STATS:
10543 		dp_pdev_clear_tx_delay_stats(soc);
10544 		break;
10545 
10546 	default:
10547 		status = QDF_STATUS_E_INVAL;
10548 		break;
10549 	}
10550 
10551 	return status;
10552 }
10553 
10554 static QDF_STATUS
10555 dp_txrx_get_interface_stats(struct cdp_soc_t *soc_hdl,
10556 			    uint8_t vdev_id,
10557 			    void *buf,
10558 			    bool is_aggregate)
10559 {
10560 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10561 
10562 	if (soc && soc->arch_ops.dp_get_interface_stats)
10563 		return soc->arch_ops.dp_get_interface_stats(soc_hdl,
10564 							    vdev_id,
10565 							    buf,
10566 							    is_aggregate);
10567 	return QDF_STATUS_E_FAILURE;
10568 }
10569 
10570 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
10571 /**
10572  * dp_update_flow_control_parameters() - API to store datapath
10573  *                            config parameters
10574  * @soc: soc handle
10575  * @params: ini parameter handle
10576  *
10577  * Return: void
10578  */
10579 static inline
10580 void dp_update_flow_control_parameters(struct dp_soc *soc,
10581 				struct cdp_config_params *params)
10582 {
10583 	soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
10584 					params->tx_flow_stop_queue_threshold;
10585 	soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
10586 					params->tx_flow_start_queue_offset;
10587 }
10588 #else
10589 static inline
10590 void dp_update_flow_control_parameters(struct dp_soc *soc,
10591 				struct cdp_config_params *params)
10592 {
10593 }
10594 #endif
10595 
10596 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
10597 /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
10598 #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
10599 
10600 /* Max packet limit for RX REAP Loop (dp_rx_process) */
10601 #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
10602 
10603 static
10604 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10605 					struct cdp_config_params *params)
10606 {
10607 	soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
10608 				params->tx_comp_loop_pkt_limit;
10609 
10610 	if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
10611 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
10612 	else
10613 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
10614 
10615 	soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
10616 				params->rx_reap_loop_pkt_limit;
10617 
10618 	if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
10619 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
10620 	else
10621 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
10622 
10623 	soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
10624 				params->rx_hp_oos_update_limit;
10625 
10626 	dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
10627 		soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
10628 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
10629 		soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
10630 		soc->wlan_cfg_ctx->rx_enable_eol_data_check,
10631 		soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
10632 }
10633 
10634 #else
10635 static inline
10636 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10637 					struct cdp_config_params *params)
10638 { }
10639 
10640 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
10641 
10642 /**
10643  * dp_update_config_parameters() - API to store datapath
10644  *                            config parameters
10645  * @psoc: soc handle
10646  * @params: ini parameter handle
10647  *
10648  * Return: status
10649  */
10650 static
10651 QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
10652 				struct cdp_config_params *params)
10653 {
10654 	struct dp_soc *soc = (struct dp_soc *)psoc;
10655 
10656 	if (!(soc)) {
10657 		dp_cdp_err("%pK: Invalid handle", soc);
10658 		return QDF_STATUS_E_INVAL;
10659 	}
10660 
10661 	soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
10662 	soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
10663 	soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
10664 	soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
10665 				params->p2p_tcp_udp_checksumoffload;
10666 	soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
10667 				params->nan_tcp_udp_checksumoffload;
10668 	soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
10669 				params->tcp_udp_checksumoffload;
10670 	soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
10671 	soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
10672 	soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
10673 
10674 	dp_update_rx_soft_irq_limit_params(soc, params);
10675 	dp_update_flow_control_parameters(soc, params);
10676 
10677 	return QDF_STATUS_SUCCESS;
10678 }
10679 
10680 static struct cdp_wds_ops dp_ops_wds = {
10681 	.vdev_set_wds = dp_vdev_set_wds,
10682 #ifdef WDS_VENDOR_EXTENSION
10683 	.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
10684 	.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
10685 #endif
10686 };
10687 
10688 /**
10689  * dp_txrx_data_tx_cb_set() - set the callback for non standard tx
10690  * @soc_hdl: datapath soc handle
10691  * @vdev_id: virtual interface id
10692  * @callback: callback function
10693  * @ctxt: callback context
10694  *
10695  */
10696 static void
10697 dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10698 		       ol_txrx_data_tx_cb callback, void *ctxt)
10699 {
10700 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10701 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10702 						     DP_MOD_ID_CDP);
10703 
10704 	if (!vdev)
10705 		return;
10706 
10707 	vdev->tx_non_std_data_callback.func = callback;
10708 	vdev->tx_non_std_data_callback.ctxt = ctxt;
10709 
10710 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10711 }
10712 
10713 /**
10714  * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
10715  * @soc: datapath soc handle
10716  * @pdev_id: id of datapath pdev handle
10717  *
10718  * Return: opaque pointer to dp txrx handle
10719  */
10720 static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
10721 {
10722 	struct dp_pdev *pdev =
10723 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10724 						   pdev_id);
10725 	if (qdf_unlikely(!pdev))
10726 		return NULL;
10727 
10728 	return pdev->dp_txrx_handle;
10729 }
10730 
10731 /**
10732  * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
10733  * @soc: datapath soc handle
10734  * @pdev_id: id of datapath pdev handle
10735  * @dp_txrx_hdl: opaque pointer for dp_txrx_handle
10736  *
10737  * Return: void
10738  */
10739 static void
10740 dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
10741 			   void *dp_txrx_hdl)
10742 {
10743 	struct dp_pdev *pdev =
10744 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10745 						   pdev_id);
10746 
10747 	if (!pdev)
10748 		return;
10749 
10750 	pdev->dp_txrx_handle = dp_txrx_hdl;
10751 }
10752 
10753 /**
10754  * dp_vdev_get_dp_ext_handle() - get dp handle from vdev
10755  * @soc_hdl: datapath soc handle
10756  * @vdev_id: vdev id
10757  *
10758  * Return: opaque pointer to dp txrx handle
10759  */
10760 static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
10761 				       uint8_t vdev_id)
10762 {
10763 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10764 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10765 						     DP_MOD_ID_CDP);
10766 	void *dp_ext_handle;
10767 
10768 	if (!vdev)
10769 		return NULL;
10770 	dp_ext_handle = vdev->vdev_dp_ext_handle;
10771 
10772 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10773 	return dp_ext_handle;
10774 }
10775 
10776 /**
10777  * dp_vdev_set_dp_ext_handle() - set dp handle in vdev
10778  * @soc_hdl: datapath soc handle
10779  * @vdev_id: vdev id
10780  * @size: size of advance dp handle
10781  *
10782  * Return: QDF_STATUS
10783  */
10784 static QDF_STATUS
10785 dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
10786 			  uint16_t size)
10787 {
10788 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10789 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10790 						     DP_MOD_ID_CDP);
10791 	void *dp_ext_handle;
10792 
10793 	if (!vdev)
10794 		return QDF_STATUS_E_FAILURE;
10795 
10796 	dp_ext_handle = qdf_mem_malloc(size);
10797 
10798 	if (!dp_ext_handle) {
10799 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10800 		return QDF_STATUS_E_FAILURE;
10801 	}
10802 
10803 	vdev->vdev_dp_ext_handle = dp_ext_handle;
10804 
10805 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10806 	return QDF_STATUS_SUCCESS;
10807 }
10808 
10809 /**
10810  * dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
10811  *			      connection for this vdev
10812  * @soc_hdl: CDP soc handle
10813  * @vdev_id: vdev ID
10814  * @action: Add/Delete action
10815  *
10816  * Return: QDF_STATUS.
10817  */
10818 static QDF_STATUS
10819 dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10820 		       enum vdev_ll_conn_actions action)
10821 {
10822 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10823 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10824 						     DP_MOD_ID_CDP);
10825 
10826 	if (!vdev) {
10827 		dp_err("LL connection action for invalid vdev %d", vdev_id);
10828 		return QDF_STATUS_E_FAILURE;
10829 	}
10830 
10831 	switch (action) {
10832 	case CDP_VDEV_LL_CONN_ADD:
10833 		vdev->num_latency_critical_conn++;
10834 		break;
10835 
10836 	case CDP_VDEV_LL_CONN_DEL:
10837 		vdev->num_latency_critical_conn--;
10838 		break;
10839 
10840 	default:
10841 		dp_err("LL connection action invalid %d", action);
10842 		break;
10843 	}
10844 
10845 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10846 	return QDF_STATUS_SUCCESS;
10847 }
10848 
10849 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
10850 /**
10851  * dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
10852  * @soc_hdl: CDP Soc handle
10853  * @value: Enable/Disable value
10854  *
10855  * Return: QDF_STATUS
10856  */
10857 static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
10858 					 uint8_t value)
10859 {
10860 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10861 
10862 	if (!soc->swlm.is_init) {
10863 		dp_err("SWLM is not initialized");
10864 		return QDF_STATUS_E_FAILURE;
10865 	}
10866 
10867 	soc->swlm.is_enabled = !!value;
10868 
10869 	return QDF_STATUS_SUCCESS;
10870 }
10871 
10872 /**
10873  * dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
10874  * @soc_hdl: CDP Soc handle
10875  *
10876  * Return: QDF_STATUS
10877  */
10878 static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
10879 {
10880 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10881 
10882 	return soc->swlm.is_enabled;
10883 }
10884 #endif
10885 
10886 /**
10887  * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
10888  * @soc_handle: datapath soc handle
10889  *
10890  * Return: opaque pointer to external dp (non-core DP)
10891  */
10892 static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
10893 {
10894 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10895 
10896 	return soc->external_txrx_handle;
10897 }
10898 
10899 /**
10900  * dp_soc_set_dp_txrx_handle() - set external dp handle in soc
10901  * @soc_handle: datapath soc handle
10902  * @txrx_handle: opaque pointer to external dp (non-core DP)
10903  *
10904  * Return: void
10905  */
10906 static void
10907 dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
10908 {
10909 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10910 
10911 	soc->external_txrx_handle = txrx_handle;
10912 }
10913 
10914 /**
10915  * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
10916  * @soc_hdl: datapath soc handle
10917  * @pdev_id: id of the datapath pdev handle
10918  * @lmac_id: lmac id
10919  *
10920  * Return: QDF_STATUS
10921  */
10922 static QDF_STATUS
10923 dp_soc_map_pdev_to_lmac
10924 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10925 	 uint32_t lmac_id)
10926 {
10927 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10928 
10929 	wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
10930 				pdev_id,
10931 				lmac_id);
10932 
10933 	/*Set host PDEV ID for lmac_id*/
10934 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10935 			      pdev_id,
10936 			      lmac_id);
10937 
10938 	return QDF_STATUS_SUCCESS;
10939 }
10940 
10941 /**
10942  * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
10943  * @soc_hdl: datapath soc handle
10944  * @pdev_id: id of the datapath pdev handle
10945  * @lmac_id: lmac id
10946  *
10947  * In the event of a dynamic mode change, update the pdev to lmac mapping
10948  *
10949  * Return: QDF_STATUS
10950  */
10951 static QDF_STATUS
10952 dp_soc_handle_pdev_mode_change
10953 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10954 	 uint32_t lmac_id)
10955 {
10956 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10957 	struct dp_vdev *vdev = NULL;
10958 	uint8_t hw_pdev_id, mac_id;
10959 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
10960 								  pdev_id);
10961 	int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
10962 
10963 	if (qdf_unlikely(!pdev))
10964 		return QDF_STATUS_E_FAILURE;
10965 
10966 	pdev->lmac_id = lmac_id;
10967 	pdev->target_pdev_id =
10968 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
10969 	dp_info("mode change %d %d", pdev->pdev_id, pdev->lmac_id);
10970 
10971 	/*Set host PDEV ID for lmac_id*/
10972 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10973 			      pdev->pdev_id,
10974 			      lmac_id);
10975 
10976 	hw_pdev_id =
10977 		dp_get_target_pdev_id_for_host_pdev_id(soc,
10978 						       pdev->pdev_id);
10979 
10980 	/*
10981 	 * When NSS offload is enabled, send pdev_id->lmac_id
10982 	 * and pdev_id to hw_pdev_id to NSS FW
10983 	 */
10984 	if (nss_config) {
10985 		mac_id = pdev->lmac_id;
10986 		if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
10987 			soc->cdp_soc.ol_ops->
10988 				pdev_update_lmac_n_target_pdev_id(
10989 				soc->ctrl_psoc,
10990 				&pdev_id, &mac_id, &hw_pdev_id);
10991 	}
10992 
10993 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
10994 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10995 		DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
10996 					       hw_pdev_id);
10997 		vdev->lmac_id = pdev->lmac_id;
10998 	}
10999 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
11000 
11001 	return QDF_STATUS_SUCCESS;
11002 }
11003 
11004 /**
11005  * dp_soc_set_pdev_status_down() - set pdev down/up status
11006  * @soc: datapath soc handle
11007  * @pdev_id: id of datapath pdev handle
11008  * @is_pdev_down: pdev down/up status
11009  *
11010  * Return: QDF_STATUS
11011  */
11012 static QDF_STATUS
11013 dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
11014 			    bool is_pdev_down)
11015 {
11016 	struct dp_pdev *pdev =
11017 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11018 						   pdev_id);
11019 	if (!pdev)
11020 		return QDF_STATUS_E_FAILURE;
11021 
11022 	pdev->is_pdev_down = is_pdev_down;
11023 	return QDF_STATUS_SUCCESS;
11024 }
11025 
11026 /**
11027  * dp_get_cfg_capabilities() - get dp capabilities
11028  * @soc_handle: datapath soc handle
11029  * @dp_caps: enum for dp capabilities
11030  *
11031  * Return: bool to determine if dp caps is enabled
11032  */
11033 static bool
11034 dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
11035 			enum cdp_capabilities dp_caps)
11036 {
11037 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11038 
11039 	return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
11040 }
11041 
11042 #ifdef FEATURE_AST
11043 static QDF_STATUS
11044 dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
11045 		       uint8_t *peer_mac)
11046 {
11047 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11048 	QDF_STATUS status = QDF_STATUS_SUCCESS;
11049 	struct dp_peer *peer =
11050 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
11051 					       DP_MOD_ID_CDP);
11052 
11053 	/* Peer can be null for monitor vap mac address */
11054 	if (!peer) {
11055 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
11056 			  "%s: Invalid peer\n", __func__);
11057 		return QDF_STATUS_E_FAILURE;
11058 	}
11059 
11060 	dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
11061 
11062 	qdf_spin_lock_bh(&soc->ast_lock);
11063 	dp_peer_send_wds_disconnect(soc, peer);
11064 	dp_peer_delete_ast_entries(soc, peer);
11065 	qdf_spin_unlock_bh(&soc->ast_lock);
11066 
11067 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11068 	return status;
11069 }
11070 #endif
11071 
11072 #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
11073 /**
11074  * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
11075  * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
11076  * @soc: cdp_soc handle
11077  * @pdev_id: id of cdp_pdev handle
11078  * @protocol_type: protocol type for which stats should be displayed
11079  *
11080  * Return: none
11081  */
11082 static inline void
11083 dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t  *soc, uint8_t pdev_id,
11084 				   uint16_t protocol_type)
11085 {
11086 }
11087 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
11088 
11089 #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
11090 /**
11091  * dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
11092  * applied to the desired protocol type packets
11093  * @soc: soc handle
11094  * @pdev_id: id of cdp_pdev handle
11095  * @enable_rx_protocol_tag: bitmask that indicates what protocol types
11096  * are enabled for tagging. zero indicates disable feature, non-zero indicates
11097  * enable feature
11098  * @protocol_type: new protocol type for which the tag is being added
11099  * @tag: user configured tag for the new protocol
11100  *
11101  * Return: Success
11102  */
11103 static inline QDF_STATUS
11104 dp_update_pdev_rx_protocol_tag(struct cdp_soc_t  *soc, uint8_t pdev_id,
11105 			       uint32_t enable_rx_protocol_tag,
11106 			       uint16_t protocol_type,
11107 			       uint16_t tag)
11108 {
11109 	return QDF_STATUS_SUCCESS;
11110 }
11111 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
11112 
11113 #ifndef WLAN_SUPPORT_RX_FLOW_TAG
11114 /**
11115  * dp_set_rx_flow_tag() - add/delete a flow
11116  * @cdp_soc: CDP soc handle
11117  * @pdev_id: id of cdp_pdev handle
11118  * @flow_info: flow tuple that is to be added to/deleted from flow search table
11119  *
11120  * Return: Success
11121  */
11122 static inline QDF_STATUS
11123 dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
11124 		   struct cdp_rx_flow_info *flow_info)
11125 {
11126 	return QDF_STATUS_SUCCESS;
11127 }
11128 /**
11129  * dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
11130  * given flow 5-tuple
11131  * @cdp_soc: soc handle
11132  * @pdev_id: id of cdp_pdev handle
11133  * @flow_info: flow 5-tuple for which stats should be displayed
11134  *
11135  * Return: Success
11136  */
11137 static inline QDF_STATUS
11138 dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
11139 			  struct cdp_rx_flow_info *flow_info)
11140 {
11141 	return QDF_STATUS_SUCCESS;
11142 }
11143 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
11144 
11145 static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t  *soc_hdl,
11146 					   uint32_t max_peers,
11147 					   uint32_t max_ast_index,
11148 					   uint8_t peer_map_unmap_versions)
11149 {
11150 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11151 	QDF_STATUS status;
11152 
11153 	soc->max_peers = max_peers;
11154 
11155 	wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
11156 
11157 	status = soc->arch_ops.txrx_peer_map_attach(soc);
11158 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11159 		dp_err("failure in allocating peer tables");
11160 		return QDF_STATUS_E_FAILURE;
11161 	}
11162 
11163 	dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u",
11164 		max_peers, soc->max_peer_id, max_ast_index);
11165 
11166 	status = dp_peer_find_attach(soc);
11167 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11168 		dp_err("Peer find attach failure");
11169 		goto fail;
11170 	}
11171 
11172 	soc->peer_map_unmap_versions = peer_map_unmap_versions;
11173 	soc->peer_map_attach_success = TRUE;
11174 
11175 	return QDF_STATUS_SUCCESS;
11176 fail:
11177 	soc->arch_ops.txrx_peer_map_detach(soc);
11178 
11179 	return status;
11180 }
11181 
11182 static QDF_STATUS dp_soc_set_param(struct cdp_soc_t  *soc_hdl,
11183 				   enum cdp_soc_param_t param,
11184 				   uint32_t value)
11185 {
11186 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11187 
11188 	switch (param) {
11189 	case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
11190 		soc->num_msdu_exception_desc = value;
11191 		dp_info("num_msdu exception_desc %u",
11192 			value);
11193 		break;
11194 	case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
11195 		if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
11196 			soc->fst_in_cmem = !!value;
11197 		dp_info("FW supports CMEM FSE %u", value);
11198 		break;
11199 	case DP_SOC_PARAM_MAX_AST_AGEOUT:
11200 		soc->max_ast_ageout_count = value;
11201 		dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
11202 		break;
11203 	case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
11204 		soc->eapol_over_control_port = value;
11205 		dp_info("Eapol over control_port:%d",
11206 			soc->eapol_over_control_port);
11207 		break;
11208 	case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
11209 		soc->multi_peer_grp_cmd_supported = value;
11210 		dp_info("Multi Peer group command support:%d",
11211 			soc->multi_peer_grp_cmd_supported);
11212 		break;
11213 	case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
11214 		soc->features.rssi_dbm_conv_support = value;
11215 		dp_info("Rssi dbm conversion support:%u",
11216 			soc->features.rssi_dbm_conv_support);
11217 		break;
11218 	case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
11219 		soc->features.umac_hw_reset_support = value;
11220 		dp_info("UMAC HW reset support :%u",
11221 			soc->features.umac_hw_reset_support);
11222 		break;
11223 	case DP_SOC_PARAM_MULTI_RX_REORDER_SETUP_SUPPORT:
11224 		soc->features.multi_rx_reorder_q_setup_support = value;
11225 		dp_info("Multi rx reorder queue setup support: %u",
11226 			soc->features.multi_rx_reorder_q_setup_support);
11227 		break;
11228 	default:
11229 		dp_info("not handled param %d ", param);
11230 		break;
11231 	}
11232 
11233 	return QDF_STATUS_SUCCESS;
11234 }
11235 
11236 static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
11237 				      void *stats_ctx)
11238 {
11239 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11240 
11241 	soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
11242 }
11243 
11244 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11245 /**
11246  * dp_peer_flush_rate_stats_req() - Flush peer rate stats
11247  * @soc: Datapath SOC handle
11248  * @peer: Datapath peer
11249  * @arg: argument to iter function
11250  *
11251  * Return: QDF_STATUS
11252  */
11253 static void
11254 dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
11255 			     void *arg)
11256 {
11257 	/* Skip self peer */
11258 	if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
11259 			 QDF_MAC_ADDR_SIZE))
11260 		return;
11261 
11262 	dp_wdi_event_handler(
11263 		WDI_EVENT_FLUSH_RATE_STATS_REQ,
11264 		soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
11265 		peer->peer_id,
11266 		WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11267 }
11268 
11269 /**
11270  * dp_flush_rate_stats_req() - Flush peer rate stats in pdev
11271  * @soc_hdl: Datapath SOC handle
11272  * @pdev_id: pdev_id
11273  *
11274  * Return: QDF_STATUS
11275  */
11276 static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11277 					  uint8_t pdev_id)
11278 {
11279 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11280 	struct dp_pdev *pdev =
11281 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11282 						   pdev_id);
11283 	if (!pdev)
11284 		return QDF_STATUS_E_FAILURE;
11285 
11286 	dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
11287 			     DP_MOD_ID_CDP);
11288 
11289 	return QDF_STATUS_SUCCESS;
11290 }
11291 #else
11292 static inline QDF_STATUS
11293 dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11294 			uint8_t pdev_id)
11295 {
11296 	return QDF_STATUS_SUCCESS;
11297 }
11298 #endif
11299 
11300 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11301 #ifdef WLAN_FEATURE_11BE_MLO
11302 /**
11303  * dp_get_peer_extd_rate_link_stats() - function to get peer
11304  *				extended rate and link stats
11305  * @soc_hdl: dp soc handler
11306  * @mac_addr: mac address of peer
11307  *
11308  * Return: QDF_STATUS
11309  */
11310 static QDF_STATUS
11311 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11312 {
11313 	uint8_t i;
11314 	struct dp_peer *link_peer;
11315 	struct dp_soc *link_peer_soc;
11316 	struct dp_mld_link_peers link_peers_info;
11317 	struct dp_peer *peer = NULL;
11318 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11319 	struct cdp_peer_info peer_info = { 0 };
11320 
11321 	if (!mac_addr) {
11322 		dp_err("NULL peer mac addr");
11323 		return QDF_STATUS_E_FAILURE;
11324 	}
11325 
11326 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
11327 				 CDP_WILD_PEER_TYPE);
11328 
11329 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
11330 	if (!peer) {
11331 		dp_err("Peer is NULL");
11332 		return QDF_STATUS_E_FAILURE;
11333 	}
11334 
11335 	if (IS_MLO_DP_MLD_PEER(peer)) {
11336 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
11337 						    &link_peers_info,
11338 						    DP_MOD_ID_CDP);
11339 		for (i = 0; i < link_peers_info.num_links; i++) {
11340 			link_peer = link_peers_info.link_peers[i];
11341 			link_peer_soc = link_peer->vdev->pdev->soc;
11342 			dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
11343 					     link_peer_soc,
11344 					     dp_monitor_peer_get_peerstats_ctx
11345 					     (link_peer_soc, link_peer),
11346 					     link_peer->peer_id,
11347 					     WDI_NO_VAL,
11348 					     link_peer->vdev->pdev->pdev_id);
11349 		}
11350 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
11351 	} else {
11352 		dp_wdi_event_handler(
11353 				WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11354 				dp_monitor_peer_get_peerstats_ctx(soc, peer),
11355 				peer->peer_id,
11356 				WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11357 	}
11358 
11359 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11360 	return QDF_STATUS_SUCCESS;
11361 }
11362 #else
11363 static QDF_STATUS
11364 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11365 {
11366 	struct dp_peer *peer = NULL;
11367 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11368 
11369 	if (!mac_addr) {
11370 		dp_err("NULL peer mac addr");
11371 		return QDF_STATUS_E_FAILURE;
11372 	}
11373 
11374 	peer = dp_peer_find_hash_find(soc, mac_addr, 0,
11375 				      DP_VDEV_ALL, DP_MOD_ID_CDP);
11376 	if (!peer) {
11377 		dp_err("Peer is NULL");
11378 		return QDF_STATUS_E_FAILURE;
11379 	}
11380 
11381 	dp_wdi_event_handler(
11382 			WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11383 			dp_monitor_peer_get_peerstats_ctx(soc, peer),
11384 			peer->peer_id,
11385 			WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11386 
11387 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11388 	return QDF_STATUS_SUCCESS;
11389 }
11390 #endif
11391 #else
11392 static inline QDF_STATUS
11393 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11394 {
11395 	return QDF_STATUS_SUCCESS;
11396 }
11397 #endif
11398 
11399 static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
11400 				       uint8_t vdev_id,
11401 				       uint8_t *mac_addr)
11402 {
11403 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11404 	struct dp_peer *peer;
11405 	void *peerstats_ctx = NULL;
11406 
11407 	if (mac_addr) {
11408 		peer = dp_peer_find_hash_find(soc, mac_addr,
11409 					      0, vdev_id,
11410 					      DP_MOD_ID_CDP);
11411 		if (!peer)
11412 			return NULL;
11413 
11414 		if (!IS_MLO_DP_MLD_PEER(peer))
11415 			peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
11416 									  peer);
11417 
11418 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11419 	}
11420 
11421 	return peerstats_ctx;
11422 }
11423 
11424 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11425 static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11426 					   uint8_t pdev_id,
11427 					   void *buf)
11428 {
11429 	 dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
11430 			      (struct dp_soc *)soc, buf, HTT_INVALID_PEER,
11431 			      WDI_NO_VAL, pdev_id);
11432 	return QDF_STATUS_SUCCESS;
11433 }
11434 #else
11435 static inline QDF_STATUS
11436 dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11437 			 uint8_t pdev_id,
11438 			 void *buf)
11439 {
11440 	return QDF_STATUS_SUCCESS;
11441 }
11442 #endif
11443 
11444 static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
11445 {
11446 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11447 
11448 	return soc->rate_stats_ctx;
11449 }
11450 
11451 /**
11452  * dp_get_cfg() - get dp cfg
11453  * @soc: cdp soc handle
11454  * @cfg: cfg enum
11455  *
11456  * Return: cfg value
11457  */
11458 static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
11459 {
11460 	struct dp_soc *dpsoc = (struct dp_soc *)soc;
11461 	uint32_t value = 0;
11462 
11463 	switch (cfg) {
11464 	case cfg_dp_enable_data_stall:
11465 		value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
11466 		break;
11467 	case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
11468 		value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
11469 		break;
11470 	case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
11471 		value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
11472 		break;
11473 	case cfg_dp_enable_ip_tcp_udp_checksum_offload:
11474 		value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
11475 		break;
11476 	case cfg_dp_disable_legacy_mode_csum_offload:
11477 		value = dpsoc->wlan_cfg_ctx->
11478 					legacy_mode_checksumoffload_disable;
11479 		break;
11480 	case cfg_dp_tso_enable:
11481 		value = dpsoc->wlan_cfg_ctx->tso_enabled;
11482 		break;
11483 	case cfg_dp_lro_enable:
11484 		value = dpsoc->wlan_cfg_ctx->lro_enabled;
11485 		break;
11486 	case cfg_dp_gro_enable:
11487 		value = dpsoc->wlan_cfg_ctx->gro_enabled;
11488 		break;
11489 	case cfg_dp_tc_based_dyn_gro_enable:
11490 		value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
11491 		break;
11492 	case cfg_dp_tc_ingress_prio:
11493 		value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
11494 		break;
11495 	case cfg_dp_sg_enable:
11496 		value = dpsoc->wlan_cfg_ctx->sg_enabled;
11497 		break;
11498 	case cfg_dp_tx_flow_start_queue_offset:
11499 		value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
11500 		break;
11501 	case cfg_dp_tx_flow_stop_queue_threshold:
11502 		value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
11503 		break;
11504 	case cfg_dp_disable_intra_bss_fwd:
11505 		value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
11506 		break;
11507 	case cfg_dp_pktlog_buffer_size:
11508 		value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
11509 		break;
11510 	case cfg_dp_wow_check_rx_pending:
11511 		value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
11512 		break;
11513 	case cfg_dp_local_pkt_capture:
11514 		value = wlan_cfg_get_local_pkt_capture(dpsoc->wlan_cfg_ctx);
11515 		break;
11516 	default:
11517 		value =  0;
11518 	}
11519 
11520 	return value;
11521 }
11522 
11523 #ifdef PEER_FLOW_CONTROL
11524 /**
11525  * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
11526  * @soc_handle: datapath soc handle
11527  * @pdev_id: id of datapath pdev handle
11528  * @param: ol ath params
11529  * @value: value of the flag
11530  * @buff: Buffer to be passed
11531  *
11532  * Implemented this function same as legacy function. In legacy code, single
11533  * function is used to display stats and update pdev params.
11534  *
11535  * Return: 0 for success. nonzero for failure.
11536  */
11537 static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
11538 					       uint8_t pdev_id,
11539 					       enum _dp_param_t param,
11540 					       uint32_t value, void *buff)
11541 {
11542 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11543 	struct dp_pdev *pdev =
11544 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11545 						   pdev_id);
11546 
11547 	if (qdf_unlikely(!pdev))
11548 		return 1;
11549 
11550 	soc = pdev->soc;
11551 	if (!soc)
11552 		return 1;
11553 
11554 	switch (param) {
11555 #ifdef QCA_ENH_V3_STATS_SUPPORT
11556 	case DP_PARAM_VIDEO_DELAY_STATS_FC:
11557 		if (value)
11558 			pdev->delay_stats_flag = true;
11559 		else
11560 			pdev->delay_stats_flag = false;
11561 		break;
11562 	case DP_PARAM_VIDEO_STATS_FC:
11563 		qdf_print("------- TID Stats ------\n");
11564 		dp_pdev_print_tid_stats(pdev);
11565 		qdf_print("------ Delay Stats ------\n");
11566 		dp_pdev_print_delay_stats(pdev);
11567 		qdf_print("------ Rx Error Stats ------\n");
11568 		dp_pdev_print_rx_error_stats(pdev);
11569 		break;
11570 #endif
11571 	case DP_PARAM_TOTAL_Q_SIZE:
11572 		{
11573 			uint32_t tx_min, tx_max;
11574 
11575 			tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
11576 			tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
11577 
11578 			if (!buff) {
11579 				if ((value >= tx_min) && (value <= tx_max)) {
11580 					pdev->num_tx_allowed = value;
11581 				} else {
11582 					dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
11583 						   soc, tx_min, tx_max);
11584 					break;
11585 				}
11586 			} else {
11587 				*(int *)buff = pdev->num_tx_allowed;
11588 			}
11589 		}
11590 		break;
11591 	default:
11592 		dp_tx_info("%pK: not handled param %d ", soc, param);
11593 		break;
11594 	}
11595 
11596 	return 0;
11597 }
11598 #endif
11599 
11600 #ifdef DP_UMAC_HW_RESET_SUPPORT
11601 /**
11602  * dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
11603  * @soc: dp soc handle
11604  *
11605  * Return: void
11606  */
11607 static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
11608 {
11609 	struct dp_intr_bkp *intr_bkp;
11610 	struct dp_intr *intr_ctx;
11611 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11612 	int i;
11613 
11614 	intr_bkp =
11615 	(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
11616 			num_ctxt);
11617 
11618 	qdf_assert_always(intr_bkp);
11619 
11620 	soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
11621 	for (i = 0; i < num_ctxt; i++) {
11622 		intr_ctx = &soc->intr_ctx[i];
11623 
11624 		intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
11625 		intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
11626 		intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
11627 		intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
11628 		intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
11629 		intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
11630 		intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
11631 		intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
11632 		intr_bkp->host2rxdma_mon_ring_mask =
11633 					intr_ctx->host2rxdma_mon_ring_mask;
11634 		intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
11635 
11636 		intr_ctx->tx_ring_mask = 0;
11637 		intr_ctx->rx_ring_mask = 0;
11638 		intr_ctx->rx_mon_ring_mask = 0;
11639 		intr_ctx->rx_err_ring_mask = 0;
11640 		intr_ctx->rx_wbm_rel_ring_mask = 0;
11641 		intr_ctx->reo_status_ring_mask = 0;
11642 		intr_ctx->rxdma2host_ring_mask = 0;
11643 		intr_ctx->host2rxdma_ring_mask = 0;
11644 		intr_ctx->host2rxdma_mon_ring_mask = 0;
11645 		intr_ctx->tx_mon_ring_mask = 0;
11646 
11647 		intr_bkp++;
11648 	}
11649 }
11650 
11651 /**
11652  * dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
11653  * @soc: dp soc handle
11654  *
11655  * Return: void
11656  */
11657 static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
11658 {
11659 	struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
11660 	struct dp_intr_bkp *intr_bkp_base = intr_bkp;
11661 	struct dp_intr *intr_ctx;
11662 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11663 	int i;
11664 
11665 	if (!intr_bkp)
11666 		return;
11667 
11668 	for (i = 0; i < num_ctxt; i++) {
11669 		intr_ctx = &soc->intr_ctx[i];
11670 
11671 		intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
11672 		intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
11673 		intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
11674 		intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
11675 		intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
11676 		intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
11677 		intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
11678 		intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
11679 		intr_ctx->host2rxdma_mon_ring_mask =
11680 			intr_bkp->host2rxdma_mon_ring_mask;
11681 		intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
11682 
11683 		intr_bkp++;
11684 	}
11685 
11686 	qdf_mem_free(intr_bkp_base);
11687 	soc->umac_reset_ctx.intr_ctx_bkp = NULL;
11688 }
11689 
11690 /**
11691  * dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
11692  * @soc: dp soc handle
11693  *
11694  * Return: void
11695  */
11696 static void dp_resume_tx_hardstart(struct dp_soc *soc)
11697 {
11698 	struct dp_vdev *vdev;
11699 	struct ol_txrx_hardtart_ctxt ctxt = {0};
11700 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11701 	int i;
11702 
11703 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11704 		struct dp_pdev *pdev = soc->pdev_list[i];
11705 
11706 		if (!pdev)
11707 			continue;
11708 
11709 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11710 			uint8_t vdev_id = vdev->vdev_id;
11711 
11712 			dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
11713 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11714 								    vdev_id,
11715 								    &ctxt);
11716 		}
11717 	}
11718 }
11719 
11720 /**
11721  * dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
11722  * @soc: dp soc handle
11723  *
11724  * Return: void
11725  */
11726 static void dp_pause_tx_hardstart(struct dp_soc *soc)
11727 {
11728 	struct dp_vdev *vdev;
11729 	struct ol_txrx_hardtart_ctxt ctxt;
11730 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11731 	int i;
11732 
11733 	ctxt.tx = &dp_tx_drop;
11734 	ctxt.tx_fast = &dp_tx_drop;
11735 	ctxt.tx_exception = &dp_tx_exc_drop;
11736 
11737 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11738 		struct dp_pdev *pdev = soc->pdev_list[i];
11739 
11740 		if (!pdev)
11741 			continue;
11742 
11743 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11744 			uint8_t vdev_id = vdev->vdev_id;
11745 
11746 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11747 								    vdev_id,
11748 								    &ctxt);
11749 		}
11750 	}
11751 }
11752 
11753 /**
11754  * dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
11755  * @soc: dp soc handle
11756  *
11757  * Return: void
11758  */
11759 static inline
11760 void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11761 {
11762 	soc->notify_fw_callback = NULL;
11763 }
11764 
11765 /**
11766  * dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
11767  * @soc: dp soc handle
11768  *
11769  * Return: void
11770  */
11771 static inline
11772 void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
11773 {
11774 	/* Some Cpu(s) is processing the umac rings*/
11775 	if (soc->service_rings_running)
11776 		return;
11777 
11778 	/* Unregister the callback */
11779 	dp_unregister_notify_umac_pre_reset_fw_callback(soc);
11780 
11781 	/* Check if notify was already sent by any other thread */
11782 	if (qdf_atomic_test_and_set_bit(DP_UMAC_RESET_NOTIFY_DONE,
11783 					&soc->service_rings_running))
11784 		return;
11785 
11786 	/* Notify the firmware that Umac pre reset is complete */
11787 	dp_umac_reset_notify_action_completion(soc,
11788 					       UMAC_RESET_ACTION_DO_PRE_RESET);
11789 }
11790 
11791 /**
11792  * dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
11793  * @soc: dp soc handle
11794  *
11795  * Return: void
11796  */
11797 static inline
11798 void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11799 {
11800 	soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
11801 }
11802 
11803 #ifdef DP_UMAC_HW_HARD_RESET
11804 /**
11805  * dp_set_umac_regs() - Reinitialize host umac registers
11806  * @soc: dp soc handle
11807  *
11808  * Return: void
11809  */
11810 static void dp_set_umac_regs(struct dp_soc *soc)
11811 {
11812 	int i;
11813 	struct hal_reo_params reo_params;
11814 
11815 	qdf_mem_zero(&reo_params, sizeof(reo_params));
11816 
11817 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
11818 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
11819 						   &reo_params.remap1,
11820 						   &reo_params.remap2))
11821 			reo_params.rx_hash_enabled = true;
11822 		else
11823 			reo_params.rx_hash_enabled = false;
11824 	}
11825 
11826 	reo_params.reo_qref = &soc->reo_qref;
11827 	hal_reo_setup(soc->hal_soc, &reo_params, 0);
11828 
11829 	soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
11830 
11831 	for (i = 0; i < PCP_TID_MAP_MAX; i++)
11832 		hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
11833 
11834 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11835 		struct dp_vdev *vdev = NULL;
11836 		struct dp_pdev *pdev = soc->pdev_list[i];
11837 
11838 		if (!pdev)
11839 			continue;
11840 
11841 		for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
11842 			hal_tx_set_dscp_tid_map(soc->hal_soc,
11843 						pdev->dscp_tid_map[i], i);
11844 
11845 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11846 			soc->arch_ops.dp_bank_reconfig(soc, vdev);
11847 			soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
11848 								      vdev);
11849 		}
11850 	}
11851 }
11852 #else
11853 static void dp_set_umac_regs(struct dp_soc *soc)
11854 {
11855 }
11856 #endif
11857 
11858 /**
11859  * dp_reinit_rings() - Reinitialize host managed rings
11860  * @soc: dp soc handle
11861  *
11862  * Return: QDF_STATUS
11863  */
11864 static void dp_reinit_rings(struct dp_soc *soc)
11865 {
11866 	unsigned long end;
11867 
11868 	dp_soc_srng_deinit(soc);
11869 	dp_hw_link_desc_ring_deinit(soc);
11870 
11871 	/* Busy wait for 2 ms to make sure the rings are in idle state
11872 	 * before we enable them again
11873 	 */
11874 	end = jiffies + msecs_to_jiffies(2);
11875 	while (time_before(jiffies, end))
11876 		;
11877 
11878 	dp_hw_link_desc_ring_init(soc);
11879 	dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
11880 	dp_soc_srng_init(soc);
11881 }
11882 
11883 /**
11884  * dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
11885  * @soc: dp soc handle
11886  *
11887  * Return: QDF_STATUS
11888  */
11889 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
11890 {
11891 	enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
11892 
11893 	return dp_umac_reset_notify_action_completion(soc, action);
11894 }
11895 
11896 #ifdef WLAN_SUPPORT_PPEDS
11897 /**
11898  * dp_umac_reset_service_handle_n_notify_done()
11899  *	Handle Umac pre reset for direct switch
11900  * @soc: dp soc handle
11901  *
11902  * Return: QDF_STATUS
11903  */
11904 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11905 {
11906 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11907 	    !soc->arch_ops.txrx_soc_ppeds_service_status_update ||
11908 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
11909 		goto non_ppeds;
11910 
11911 	/*
11912 	 * Check if ppeds is enabled on SoC.
11913 	 */
11914 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11915 		goto non_ppeds;
11916 
11917 	/*
11918 	 * Start the UMAC pre reset done service.
11919 	 */
11920 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
11921 
11922 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11923 
11924 	soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
11925 
11926 	dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
11927 
11928 	/*
11929 	 * UMAC pre reset service complete
11930 	 */
11931 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
11932 
11933 	soc->umac_reset_ctx.nbuf_list = NULL;
11934 	return QDF_STATUS_SUCCESS;
11935 
11936 non_ppeds:
11937 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11938 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11939 	soc->umac_reset_ctx.nbuf_list = NULL;
11940 	return QDF_STATUS_SUCCESS;
11941 }
11942 
11943 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11944 							 qdf_nbuf_t *nbuf_list)
11945 {
11946 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11947 	    !soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
11948 		return;
11949 
11950 	/*
11951 	 * Deinit of PPEDS Tx desc rings.
11952 	 */
11953 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11954 		soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
11955 }
11956 
11957 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11958 {
11959 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11960 	    !soc->arch_ops.txrx_soc_ppeds_start ||
11961 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_start)
11962 		return;
11963 
11964 	/*
11965 	 * Start PPEDS node and enable interrupt.
11966 	 */
11967 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
11968 		soc->arch_ops.txrx_soc_ppeds_start(soc);
11969 		soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
11970 	}
11971 }
11972 #else
11973 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11974 {
11975 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11976 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11977 	soc->umac_reset_ctx.nbuf_list = NULL;
11978 	return QDF_STATUS_SUCCESS;
11979 }
11980 
11981 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11982 							 qdf_nbuf_t *nbuf_list)
11983 {
11984 }
11985 
11986 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11987 {
11988 }
11989 #endif
11990 
11991 /**
11992  * dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
11993  * @soc: dp soc handle
11994  *
11995  * Return: QDF_STATUS
11996  */
11997 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
11998 {
11999 	dp_reset_interrupt_ring_masks(soc);
12000 
12001 	dp_pause_tx_hardstart(soc);
12002 	dp_pause_reo_send_cmd(soc);
12003 	dp_umac_reset_service_handle_n_notify_done(soc);
12004 	return QDF_STATUS_SUCCESS;
12005 }
12006 
12007 /**
12008  * dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
12009  * @soc: dp soc handle
12010  *
12011  * Return: QDF_STATUS
12012  */
12013 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
12014 {
12015 	if (!soc->umac_reset_ctx.skel_enable) {
12016 		bool cleanup_needed;
12017 		qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
12018 
12019 		dp_set_umac_regs(soc);
12020 
12021 		dp_reinit_rings(soc);
12022 
12023 		dp_rx_desc_reuse(soc, nbuf_list);
12024 
12025 		dp_cleanup_reo_cmd_module(soc);
12026 
12027 		dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
12028 
12029 		cleanup_needed = dp_get_global_tx_desc_cleanup_flag(soc);
12030 
12031 		dp_tx_desc_pool_cleanup(soc, nbuf_list, cleanup_needed);
12032 
12033 		dp_reset_tid_q_setup(soc);
12034 	}
12035 
12036 	return dp_umac_reset_notify_action_completion(soc,
12037 					UMAC_RESET_ACTION_DO_POST_RESET_START);
12038 }
12039 
12040 /**
12041  * dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
12042  *						interrupt from FW
12043  * @soc: dp soc handle
12044  *
12045  * Return: QDF_STATUS
12046  */
12047 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
12048 {
12049 	QDF_STATUS status;
12050 	qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
12051 	uint8_t mac_id;
12052 
12053 	soc->umac_reset_ctx.nbuf_list = NULL;
12054 
12055 	soc->service_rings_running = 0;
12056 
12057 	dp_resume_reo_send_cmd(soc);
12058 
12059 	dp_umac_reset_ppeds_start(soc);
12060 
12061 	dp_restore_interrupt_ring_masks(soc);
12062 
12063 	dp_resume_tx_hardstart(soc);
12064 
12065 	dp_reset_global_tx_desc_cleanup_flag(soc);
12066 
12067 	status = dp_umac_reset_notify_action_completion(soc,
12068 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
12069 
12070 	while (nbuf_list) {
12071 		qdf_nbuf_t nbuf = nbuf_list->next;
12072 
12073 		qdf_nbuf_free(nbuf_list);
12074 		nbuf_list = nbuf;
12075 	}
12076 
12077 	/*
12078 	 * at pre-reset if in_use descriptors are not sufficient we replenish
12079 	 * only 1/3 of the ring. Try to replenish full ring here.
12080 	 */
12081 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
12082 		struct dp_srng *dp_rxdma_srng =
12083 					&soc->rx_refill_buf_ring[mac_id];
12084 		struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
12085 
12086 		dp_rx_buffers_lt_replenish_simple(soc, mac_id, dp_rxdma_srng,
12087 						  rx_desc_pool, true);
12088 	}
12089 
12090 	dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
12091 			   "trigger done : %u us prereset : %u us\n"
12092 			   "postreset : %u us \n postreset complete: %u us \n",
12093 			   soc,
12094 			   soc->umac_reset_ctx.ts.trigger_done -
12095 			   soc->umac_reset_ctx.ts.trigger_start,
12096 			   soc->umac_reset_ctx.ts.pre_reset_done -
12097 			   soc->umac_reset_ctx.ts.pre_reset_start,
12098 			   soc->umac_reset_ctx.ts.post_reset_done -
12099 			   soc->umac_reset_ctx.ts.post_reset_start,
12100 			   soc->umac_reset_ctx.ts.post_reset_complete_done -
12101 			   soc->umac_reset_ctx.ts.post_reset_complete_start);
12102 
12103 	return status;
12104 }
12105 #endif
12106 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
12107 static void
12108 dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
12109 {
12110 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
12111 
12112 	soc->wlan_cfg_ctx->pkt_capture_mode = val;
12113 }
12114 #endif
12115 
12116 #ifdef HW_TX_DELAY_STATS_ENABLE
12117 /**
12118  * dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
12119  * @soc_hdl: DP soc handle
12120  * @vdev_id: vdev id
12121  * @value: value
12122  *
12123  * Return: None
12124  */
12125 static void
12126 dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
12127 				      uint8_t vdev_id,
12128 				      uint8_t value)
12129 {
12130 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12131 	struct dp_vdev *vdev = NULL;
12132 
12133 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12134 	if (!vdev)
12135 		return;
12136 
12137 	vdev->hw_tx_delay_stats_enabled = value;
12138 
12139 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12140 }
12141 
12142 /**
12143  * dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
12144  * @soc_hdl: DP soc handle
12145  * @vdev_id: vdev id
12146  *
12147  * Return: 1 if enabled, 0 if disabled
12148  */
12149 static uint8_t
12150 dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
12151 				     uint8_t vdev_id)
12152 {
12153 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12154 	struct dp_vdev *vdev;
12155 	uint8_t ret_val = 0;
12156 
12157 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12158 	if (!vdev)
12159 		return ret_val;
12160 
12161 	ret_val = vdev->hw_tx_delay_stats_enabled;
12162 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12163 
12164 	return ret_val;
12165 }
12166 #endif
12167 
12168 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12169 static void
12170 dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
12171 			     uint8_t vdev_id,
12172 			     bool mlo_peers_only)
12173 {
12174 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
12175 	struct dp_vdev *vdev;
12176 
12177 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12178 
12179 	if (!vdev)
12180 		return;
12181 
12182 	dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
12183 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12184 }
12185 #endif
12186 #ifdef QCA_GET_TSF_VIA_REG
12187 /**
12188  * dp_get_tsf_time() - get tsf time
12189  * @soc_hdl: Datapath soc handle
12190  * @tsf_id: TSF identifier
12191  * @mac_id: mac_id
12192  * @tsf: pointer to update tsf value
12193  * @tsf_sync_soc_time: pointer to update tsf sync time
12194  *
12195  * Return: None.
12196  */
12197 static inline void
12198 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12199 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12200 {
12201 	hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
12202 			 tsf, tsf_sync_soc_time);
12203 }
12204 #else
12205 static inline void
12206 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12207 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12208 {
12209 }
12210 #endif
12211 
12212 /**
12213  * dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
12214  * @soc_hdl: Datapath soc handle
12215  * @mac_id: mac_id
12216  * @value: pointer to update tsf2 offset value
12217  *
12218  * Return: None.
12219  */
12220 static inline void
12221 dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
12222 			uint64_t *value)
12223 {
12224 	hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
12225 }
12226 
12227 /**
12228  * dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
12229  * @soc_hdl: Datapath soc handle
12230  * @value: pointer to update tqm offset value
12231  *
12232  * Return: None.
12233  */
12234 static inline void
12235 dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
12236 {
12237 	hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
12238 }
12239 
12240 /**
12241  * dp_set_tx_pause() - Pause or resume tx path
12242  * @soc_hdl: Datapath soc handle
12243  * @flag: set or clear is_tx_pause
12244  *
12245  * Return: None.
12246  */
12247 static inline
12248 void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
12249 {
12250 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12251 
12252 	soc->is_tx_pause = flag;
12253 }
12254 
12255 static inline uint64_t dp_rx_fisa_get_cmem_base(struct cdp_soc_t *soc_hdl,
12256 						uint64_t size)
12257 {
12258 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12259 
12260 	if (soc->arch_ops.dp_get_fst_cmem_base)
12261 		return soc->arch_ops.dp_get_fst_cmem_base(soc, size);
12262 
12263 	return 0;
12264 }
12265 
12266 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
12267 /**
12268  * dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
12269  *                                      ILP configuration
12270  * @soc_hdl: CDP SOC handle
12271  * @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
12272  * @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
12273  *
12274  * This function will check: (a) TX ILP INI configuration,
12275  * (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
12276  * only if both (a) and (b) condition is met, then TX ILP feature is
12277  * considered to be enabled.
12278  *
12279  * Return: Final updated TX ILP enable result in dp_soc,
12280  *         true is enabled, false is not
12281  */
12282 static
12283 bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
12284 				      uint8_t num_msdu_idx_map,
12285 				      uint8_t *msdu_idx_map_arr)
12286 {
12287 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12288 	bool enable_tx_ilp = false;
12289 
12290 	/**
12291 	 * Check INI configuration firstly, if it's disabled,
12292 	 * then keep feature disabled.
12293 	 */
12294 	if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
12295 		dp_info("TX ILP INI is disabled already");
12296 		goto update_tx_ilp;
12297 	}
12298 
12299 	/* Check if the msdu index to qtype map table is valid */
12300 	if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
12301 		dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
12302 			num_msdu_idx_map, msdu_idx_map_arr);
12303 		goto update_tx_ilp;
12304 	}
12305 
12306 	dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
12307 		HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
12308 		msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
12309 
12310 	if (HTT_MSDU_QTYPE_USER_SPECIFIED ==
12311 	    msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
12312 		enable_tx_ilp = true;
12313 
12314 update_tx_ilp:
12315 	soc->tx_ilp_enable = enable_tx_ilp;
12316 	dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
12317 
12318 	return soc->tx_ilp_enable;
12319 }
12320 #endif
12321 
12322 static struct cdp_cmn_ops dp_ops_cmn = {
12323 	.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
12324 	.txrx_vdev_attach = dp_vdev_attach_wifi3,
12325 	.txrx_vdev_detach = dp_vdev_detach_wifi3,
12326 	.txrx_pdev_attach = dp_pdev_attach_wifi3,
12327 	.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
12328 	.txrx_pdev_detach = dp_pdev_detach_wifi3,
12329 	.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
12330 	.txrx_peer_create = dp_peer_create_wifi3,
12331 	.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
12332 #ifdef FEATURE_AST
12333 	.txrx_peer_teardown = dp_peer_teardown_wifi3,
12334 #else
12335 	.txrx_peer_teardown = NULL,
12336 #endif
12337 	.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
12338 	.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
12339 	.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
12340 	.txrx_peer_get_ast_info_by_pdev =
12341 		dp_peer_get_ast_info_by_pdevid_wifi3,
12342 	.txrx_peer_ast_delete_by_soc =
12343 		dp_peer_ast_entry_del_by_soc,
12344 	.txrx_peer_ast_delete_by_pdev =
12345 		dp_peer_ast_entry_del_by_pdev,
12346 	.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
12347 	.txrx_peer_delete = dp_peer_delete_wifi3,
12348 #ifdef DP_RX_UDP_OVER_PEER_ROAM
12349 	.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
12350 #endif
12351 	.txrx_vdev_register = dp_vdev_register_wifi3,
12352 	.txrx_soc_detach = dp_soc_detach_wifi3,
12353 	.txrx_soc_deinit = dp_soc_deinit_wifi3,
12354 	.txrx_soc_init = dp_soc_init_wifi3,
12355 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12356 	.txrx_tso_soc_attach = dp_tso_soc_attach,
12357 	.txrx_tso_soc_detach = dp_tso_soc_detach,
12358 	.tx_send = dp_tx_send,
12359 	.tx_send_exc = dp_tx_send_exception,
12360 #endif
12361 	.set_tx_pause = dp_set_tx_pause,
12362 	.txrx_pdev_init = dp_pdev_init_wifi3,
12363 	.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
12364 	.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
12365 	.txrx_ath_getstats = dp_get_device_stats,
12366 #ifndef WLAN_SOFTUMAC_SUPPORT
12367 	.addba_requestprocess = dp_addba_requestprocess_wifi3,
12368 	.addba_responsesetup = dp_addba_responsesetup_wifi3,
12369 	.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
12370 	.delba_process = dp_delba_process_wifi3,
12371 	.set_addba_response = dp_set_addba_response,
12372 	.flush_cache_rx_queue = NULL,
12373 	.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
12374 #endif
12375 	/* TODO: get API's for dscp-tid need to be added*/
12376 	.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
12377 	.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
12378 	.txrx_get_total_per = dp_get_total_per,
12379 	.txrx_stats_request = dp_txrx_stats_request,
12380 	.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
12381 	.display_stats = dp_txrx_dump_stats,
12382 	.notify_asserted_soc = dp_soc_notify_asserted_soc,
12383 	.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
12384 	.txrx_intr_detach = dp_soc_interrupt_detach_wrapper,
12385 	.txrx_ppeds_stop = dp_soc_ppeds_stop,
12386 	.set_key_sec_type = dp_set_key_sec_type_wifi3,
12387 	.update_config_parameters = dp_update_config_parameters,
12388 	/* TODO: Add other functions */
12389 	.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
12390 	.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
12391 	.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
12392 	.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
12393 	.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
12394 	.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
12395 	.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
12396 	.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
12397 	.handle_mode_change = dp_soc_handle_pdev_mode_change,
12398 	.set_pdev_status_down = dp_soc_set_pdev_status_down,
12399 	.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
12400 	.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
12401 	.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
12402 	.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
12403 	.set_soc_param = dp_soc_set_param,
12404 	.txrx_get_os_rx_handles_from_vdev =
12405 					dp_get_os_rx_handles_from_vdev_wifi3,
12406 #ifndef WLAN_SOFTUMAC_SUPPORT
12407 	.set_pn_check = dp_set_pn_check_wifi3,
12408 	.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
12409 	.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
12410 	.delba_tx_completion = dp_delba_tx_completion_wifi3,
12411 	.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
12412 	.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
12413 #endif
12414 	.get_dp_capabilities = dp_get_cfg_capabilities,
12415 	.txrx_get_cfg = dp_get_cfg,
12416 	.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
12417 	.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
12418 	.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
12419 	.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
12420 	.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
12421 
12422 	.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
12423 #ifdef QCA_MULTIPASS_SUPPORT
12424 	.set_vlan_groupkey = dp_set_vlan_groupkey,
12425 #endif
12426 	.get_peer_mac_list = dp_get_peer_mac_list,
12427 	.get_peer_id = dp_get_peer_id,
12428 #ifdef QCA_SUPPORT_WDS_EXTENDED
12429 	.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
12430 	.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
12431 	.set_wds_ext_peer_bit = dp_wds_ext_set_peer_bit,
12432 #endif /* QCA_SUPPORT_WDS_EXTENDED */
12433 
12434 #if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
12435 	.txrx_drain = dp_drain_txrx,
12436 #endif
12437 #if defined(FEATURE_RUNTIME_PM)
12438 	.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
12439 #endif
12440 #ifdef WLAN_SYSFS_DP_STATS
12441 	.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
12442 	.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
12443 #endif /* WLAN_SYSFS_DP_STATS */
12444 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
12445 	.set_pkt_capture_mode = dp_set_pkt_capture_mode,
12446 #endif
12447 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12448 	.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
12449 #endif
12450 	.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
12451 	.txrx_umac_reset_init = dp_soc_umac_reset_init,
12452 	.txrx_get_tsf_time = dp_get_tsf_time,
12453 	.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
12454 	.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
12455 #ifdef WLAN_SUPPORT_RX_FISA
12456 	.get_fst_cmem_base = dp_rx_fisa_get_cmem_base,
12457 #endif
12458 #ifdef WLAN_SUPPORT_DPDK
12459 	.dpdk_get_ring_info = dp_dpdk_get_ring_info,
12460 	.cfgmgr_get_soc_info = dp_cfgmgr_get_soc_info,
12461 	.cfgmgr_get_vdev_info = dp_cfgmgr_get_vdev_info,
12462 	.cfgmgr_get_peer_info = dp_cfgmgr_get_peer_info,
12463 	.cfgmgr_get_vdev_create_evt_info = dp_cfgmgr_get_vdev_create_evt_info,
12464 	.cfgmgr_get_peer_create_evt_info = dp_cfgmgr_get_peer_create_evt_info,
12465 #endif
12466 };
12467 
12468 static struct cdp_ctrl_ops dp_ops_ctrl = {
12469 	.txrx_peer_authorize = dp_peer_authorize,
12470 	.txrx_peer_get_authorize = dp_peer_get_authorize,
12471 #ifdef VDEV_PEER_PROTOCOL_COUNT
12472 	.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
12473 	.txrx_set_peer_protocol_drop_mask =
12474 		dp_enable_vdev_peer_protocol_drop_mask,
12475 	.txrx_is_peer_protocol_count_enabled =
12476 		dp_is_vdev_peer_protocol_count_enabled,
12477 	.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
12478 #endif
12479 	.txrx_set_vdev_param = dp_set_vdev_param_wrapper,
12480 	.txrx_set_psoc_param = dp_set_psoc_param,
12481 	.txrx_get_psoc_param = dp_get_psoc_param,
12482 #ifndef WLAN_SOFTUMAC_SUPPORT
12483 	.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
12484 	.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
12485 #endif
12486 	.txrx_get_sec_type = dp_get_sec_type,
12487 	.txrx_wdi_event_sub = dp_wdi_event_sub,
12488 	.txrx_wdi_event_unsub = dp_wdi_event_unsub,
12489 	.txrx_set_pdev_param = dp_set_pdev_param,
12490 	.txrx_get_pdev_param = dp_get_pdev_param,
12491 #ifdef WLAN_FEATURE_11BE_MLO
12492 	.txrx_set_peer_param = dp_set_peer_param_wrapper,
12493 #else
12494 	.txrx_set_peer_param = dp_set_peer_param,
12495 #endif
12496 	.txrx_get_peer_param = dp_get_peer_param,
12497 #ifdef VDEV_PEER_PROTOCOL_COUNT
12498 	.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
12499 #endif
12500 #ifdef WLAN_SUPPORT_MSCS
12501 	.txrx_record_mscs_params = dp_record_mscs_params,
12502 #endif
12503 	.set_key = dp_set_michael_key,
12504 	.txrx_get_vdev_param = dp_get_vdev_param,
12505 	.calculate_delay_stats = dp_calculate_delay_stats,
12506 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
12507 	.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
12508 #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
12509 	.txrx_dump_pdev_rx_protocol_tag_stats =
12510 				dp_dump_pdev_rx_protocol_tag_stats,
12511 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
12512 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
12513 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12514 	.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
12515 	.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
12516 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
12517 #ifdef QCA_MULTIPASS_SUPPORT
12518 	.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
12519 #endif /*QCA_MULTIPASS_SUPPORT*/
12520 #if defined(WLAN_FEATURE_TSF_AUTO_REPORT) || defined(WLAN_CONFIG_TX_DELAY)
12521 	.txrx_set_delta_tsf = dp_set_delta_tsf,
12522 #endif
12523 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
12524 	.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
12525 	.txrx_get_uplink_delay = dp_get_uplink_delay,
12526 #endif
12527 #ifdef QCA_UNDECODED_METADATA_SUPPORT
12528 	.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
12529 	.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
12530 #endif
12531 	.txrx_peer_flush_frags = dp_peer_flush_frags,
12532 #ifdef DP_UMAC_HW_RESET_SUPPORT
12533 	.get_umac_reset_in_progress_state = dp_get_umac_reset_in_progress_state,
12534 #endif
12535 #ifdef WLAN_SUPPORT_RX_FISA
12536 	.txrx_fisa_config = dp_fisa_config,
12537 #endif
12538 };
12539 
12540 static struct cdp_me_ops dp_ops_me = {
12541 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12542 #ifdef ATH_SUPPORT_IQUE
12543 	.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
12544 	.tx_me_free_descriptor = dp_tx_me_free_descriptor,
12545 	.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
12546 #endif
12547 #endif
12548 };
12549 
12550 static struct cdp_host_stats_ops dp_ops_host_stats = {
12551 	.txrx_per_peer_stats = dp_get_host_peer_stats,
12552 	.get_fw_peer_stats = dp_get_fw_peer_stats,
12553 	.get_htt_stats = dp_get_htt_stats,
12554 	.txrx_stats_publish = dp_txrx_stats_publish,
12555 	.txrx_get_vdev_stats  = dp_txrx_get_vdev_stats,
12556 	.txrx_get_peer_stats = dp_txrx_get_peer_stats,
12557 	.txrx_get_peer_stats_based_on_peer_type =
12558 			dp_txrx_get_peer_stats_based_on_peer_type,
12559 	.txrx_get_soc_stats = dp_txrx_get_soc_stats,
12560 	.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
12561 	.txrx_get_per_link_stats = dp_txrx_get_per_link_peer_stats,
12562 	.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
12563 	.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
12564 #if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
12565 	.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
12566 	.txrx_get_vdev_stats  = dp_ipa_txrx_get_vdev_stats,
12567 	.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
12568 #endif
12569 	.txrx_get_ratekbps = dp_txrx_get_ratekbps,
12570 	.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
12571 	.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
12572 	.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
12573 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
12574 	.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
12575 	.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
12576 #endif
12577 #ifdef WLAN_TX_PKT_CAPTURE_ENH
12578 	.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
12579 	.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
12580 #endif /* WLAN_TX_PKT_CAPTURE_ENH */
12581 #ifdef HW_TX_DELAY_STATS_ENABLE
12582 	.enable_disable_vdev_tx_delay_stats =
12583 				dp_enable_disable_vdev_tx_delay_stats,
12584 	.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
12585 #endif
12586 	.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
12587 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
12588 	.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
12589 	.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
12590 	.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
12591 	.txrx_peer_deter_stats = dp_get_peer_deter_stats,
12592 	.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
12593 #endif
12594 	.txrx_get_peer_extd_rate_link_stats =
12595 					dp_get_peer_extd_rate_link_stats,
12596 	.get_pdev_obss_stats = dp_get_obss_stats,
12597 	.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
12598 	.txrx_get_interface_stats  = dp_txrx_get_interface_stats,
12599 #ifdef WLAN_FEATURE_TX_LATENCY_STATS
12600 	.tx_latency_stats_fetch = dp_tx_latency_stats_fetch,
12601 	.tx_latency_stats_config = dp_tx_latency_stats_config,
12602 	.tx_latency_stats_register_cb = dp_tx_latency_stats_register_cb,
12603 #endif
12604 	/* TODO */
12605 };
12606 
12607 static struct cdp_raw_ops dp_ops_raw = {
12608 	/* TODO */
12609 };
12610 
12611 #ifdef PEER_FLOW_CONTROL
12612 static struct cdp_pflow_ops dp_ops_pflow = {
12613 	dp_tx_flow_ctrl_configure_pdev,
12614 };
12615 #endif
12616 
12617 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
12618 static struct cdp_cfr_ops dp_ops_cfr = {
12619 	.txrx_get_cfr_rcc = dp_get_cfr_rcc,
12620 	.txrx_set_cfr_rcc = dp_set_cfr_rcc,
12621 	.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
12622 	.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
12623 };
12624 #endif
12625 
12626 #ifdef WLAN_SUPPORT_MSCS
12627 static struct cdp_mscs_ops dp_ops_mscs = {
12628 	.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
12629 };
12630 #endif
12631 
12632 #ifdef WLAN_SUPPORT_MESH_LATENCY
12633 static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
12634 	.mesh_latency_update_peer_parameter =
12635 		dp_mesh_latency_update_peer_parameter,
12636 };
12637 #endif
12638 
12639 #ifdef WLAN_SUPPORT_SCS
12640 static struct cdp_scs_ops dp_ops_scs = {
12641 	.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
12642 };
12643 #endif
12644 
12645 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12646 static struct cdp_fse_ops dp_ops_fse = {
12647 	.fse_rule_add = dp_rx_sfe_add_flow_entry,
12648 	.fse_rule_delete = dp_rx_sfe_delete_flow_entry,
12649 };
12650 #endif
12651 
12652 #ifdef CONFIG_SAWF_DEF_QUEUES
12653 static struct cdp_sawf_ops dp_ops_sawf = {
12654 	.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
12655 	.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
12656 	.sawf_def_queues_get_map_report =
12657 		dp_sawf_def_queues_get_map_report,
12658 #ifdef CONFIG_SAWF_STATS
12659 	.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
12660 	.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
12661 	.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
12662 	.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
12663 	.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
12664 	.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
12665 	.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
12666 	.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
12667 	.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
12668 	.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
12669 	.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
12670 	.peer_config_ul = dp_sawf_peer_config_ul,
12671 	.swaf_peer_sla_configuration = dp_swaf_peer_sla_configuration,
12672 	.sawf_peer_flow_count = dp_sawf_peer_flow_count,
12673 #endif
12674 #ifdef WLAN_FEATURE_11BE_MLO_3_LINK_TX
12675 	.get_peer_msduq = dp_sawf_get_peer_msduq,
12676 	.sawf_3_link_peer_flow_count = dp_sawf_3_link_peer_flow_count,
12677 #endif
12678 };
12679 #endif
12680 
12681 #ifdef DP_TX_TRACKING
12682 
12683 #define DP_TX_COMP_MAX_LATENCY_MS 60000
12684 /**
12685  * dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
12686  * @tx_desc: tx descriptor
12687  *
12688  * Calculate time latency for tx completion per pkt and trigger self recovery
12689  * when the delay is more than threshold value.
12690  *
12691  * Return: True if delay is more than threshold
12692  */
12693 static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
12694 {
12695 	uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
12696 	qdf_ktime_t current_time = qdf_ktime_real_get();
12697 	qdf_ktime_t timestamp = tx_desc->timestamp;
12698 
12699 	if (dp_tx_pkt_tracepoints_enabled()) {
12700 		if (!timestamp)
12701 			return false;
12702 
12703 		time_latency = qdf_ktime_to_ms(current_time) -
12704 				qdf_ktime_to_ms(timestamp);
12705 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12706 			dp_err_rl("enqueued: %llu ms, current : %llu ms",
12707 				  timestamp, current_time);
12708 			return true;
12709 		}
12710 	} else {
12711 		if (!timestamp_tick)
12712 			return false;
12713 
12714 		current_time = qdf_system_ticks();
12715 		time_latency = qdf_system_ticks_to_msecs(current_time -
12716 							 timestamp_tick);
12717 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12718 			dp_err_rl("enqueued: %u ms, current : %u ms",
12719 				  qdf_system_ticks_to_msecs(timestamp_tick),
12720 				  qdf_system_ticks_to_msecs(current_time));
12721 			return true;
12722 		}
12723 	}
12724 
12725 	return false;
12726 }
12727 
12728 void dp_find_missing_tx_comp(struct dp_soc *soc)
12729 {
12730 	uint8_t i;
12731 	uint32_t j;
12732 	uint32_t num_desc, page_id, offset;
12733 	uint16_t num_desc_per_page;
12734 	struct dp_tx_desc_s *tx_desc = NULL;
12735 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
12736 
12737 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
12738 		tx_desc_pool = &soc->tx_desc[i];
12739 		if (!(tx_desc_pool->pool_size) ||
12740 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
12741 		    !(tx_desc_pool->desc_pages.cacheable_pages))
12742 			continue;
12743 
12744 		num_desc = tx_desc_pool->pool_size;
12745 		num_desc_per_page =
12746 			tx_desc_pool->desc_pages.num_element_per_page;
12747 		for (j = 0; j < num_desc; j++) {
12748 			page_id = j / num_desc_per_page;
12749 			offset = j % num_desc_per_page;
12750 
12751 			if (qdf_unlikely(!(tx_desc_pool->
12752 					 desc_pages.cacheable_pages)))
12753 				break;
12754 
12755 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
12756 						  false);
12757 			if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
12758 				continue;
12759 			} else if (tx_desc->magic ==
12760 				   DP_TX_MAGIC_PATTERN_INUSE) {
12761 				if (dp_tx_comp_delay_check(tx_desc)) {
12762 					dp_err_rl("Tx completion not rcvd for id: %u",
12763 						  tx_desc->id);
12764 					if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
12765 						tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
12766 						dp_err_rl("Freed tx_desc %u",
12767 							  tx_desc->id);
12768 						dp_tx_comp_free_buf(soc,
12769 								    tx_desc,
12770 								    false);
12771 						dp_tx_desc_release(soc, tx_desc,
12772 								   i);
12773 						DP_STATS_INC(soc,
12774 							     tx.tx_comp_force_freed, 1);
12775 					}
12776 				}
12777 			} else {
12778 				dp_err_rl("tx desc %u corrupted, flags: 0x%x",
12779 					  tx_desc->id, tx_desc->flags);
12780 			}
12781 		}
12782 	}
12783 }
12784 #else
12785 inline void dp_find_missing_tx_comp(struct dp_soc *soc)
12786 {
12787 }
12788 #endif
12789 
12790 #ifdef FEATURE_RUNTIME_PM
12791 /**
12792  * dp_runtime_suspend() - ensure DP is ready to runtime suspend
12793  * @soc_hdl: Datapath soc handle
12794  * @pdev_id: id of data path pdev handle
12795  *
12796  * DP is ready to runtime suspend if there are no pending TX packets.
12797  *
12798  * Return: QDF_STATUS
12799  */
12800 static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12801 {
12802 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12803 	struct dp_pdev *pdev;
12804 	int32_t tx_pending;
12805 
12806 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12807 	if (!pdev) {
12808 		dp_err("pdev is NULL");
12809 		return QDF_STATUS_E_INVAL;
12810 	}
12811 
12812 	/* Abort if there are any pending TX packets */
12813 	tx_pending = dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev));
12814 	if (tx_pending) {
12815 		dp_info_rl("%pK: Abort suspend due to pending TX packets %d",
12816 			   soc, tx_pending);
12817 		dp_find_missing_tx_comp(soc);
12818 		/* perform a force flush if tx is pending */
12819 		soc->arch_ops.dp_update_ring_hptp(soc, true);
12820 		qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12821 
12822 		return QDF_STATUS_E_AGAIN;
12823 	}
12824 
12825 	if (dp_runtime_get_refcount(soc)) {
12826 		dp_init_info("refcount: %d", dp_runtime_get_refcount(soc));
12827 
12828 		return QDF_STATUS_E_AGAIN;
12829 	}
12830 
12831 	if (soc->intr_mode == DP_INTR_POLL)
12832 		qdf_timer_stop(&soc->int_timer);
12833 
12834 	return QDF_STATUS_SUCCESS;
12835 }
12836 
12837 #define DP_FLUSH_WAIT_CNT 10
12838 #define DP_RUNTIME_SUSPEND_WAIT_MS 10
12839 /**
12840  * dp_runtime_resume() - ensure DP is ready to runtime resume
12841  * @soc_hdl: Datapath soc handle
12842  * @pdev_id: id of data path pdev handle
12843  *
12844  * Resume DP for runtime PM.
12845  *
12846  * Return: QDF_STATUS
12847  */
12848 static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12849 {
12850 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12851 	int suspend_wait = 0;
12852 
12853 	if (soc->intr_mode == DP_INTR_POLL)
12854 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
12855 
12856 	/*
12857 	 * Wait until dp runtime refcount becomes zero or time out, then flush
12858 	 * pending tx for runtime suspend.
12859 	 */
12860 	while (dp_runtime_get_refcount(soc) &&
12861 	       suspend_wait < DP_FLUSH_WAIT_CNT) {
12862 		qdf_sleep(DP_RUNTIME_SUSPEND_WAIT_MS);
12863 		suspend_wait++;
12864 	}
12865 
12866 	soc->arch_ops.dp_update_ring_hptp(soc, false);
12867 	qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12868 
12869 	return QDF_STATUS_SUCCESS;
12870 }
12871 #endif /* FEATURE_RUNTIME_PM */
12872 
12873 /**
12874  * dp_tx_get_success_ack_stats() - get tx success completion count
12875  * @soc_hdl: Datapath soc handle
12876  * @vdev_id: vdev identifier
12877  *
12878  * Return: tx success ack count
12879  */
12880 static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
12881 					    uint8_t vdev_id)
12882 {
12883 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12884 	struct cdp_vdev_stats *vdev_stats = NULL;
12885 	uint32_t tx_success;
12886 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
12887 						     DP_MOD_ID_CDP);
12888 
12889 	if (!vdev) {
12890 		dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
12891 		return 0;
12892 	}
12893 
12894 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
12895 	if (!vdev_stats) {
12896 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
12897 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12898 		return 0;
12899 	}
12900 
12901 	dp_aggregate_vdev_stats(vdev, vdev_stats, DP_XMIT_TOTAL);
12902 
12903 	tx_success = vdev_stats->tx.tx_success.num;
12904 	qdf_mem_free(vdev_stats);
12905 
12906 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12907 	return tx_success;
12908 }
12909 
12910 #ifdef WLAN_SUPPORT_DATA_STALL
12911 /**
12912  * dp_register_data_stall_detect_cb() - register data stall callback
12913  * @soc_hdl: Datapath soc handle
12914  * @pdev_id: id of data path pdev handle
12915  * @data_stall_detect_callback: data stall callback function
12916  *
12917  * Return: QDF_STATUS Enumeration
12918  */
12919 static
12920 QDF_STATUS dp_register_data_stall_detect_cb(
12921 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12922 			data_stall_detect_cb data_stall_detect_callback)
12923 {
12924 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12925 	struct dp_pdev *pdev;
12926 
12927 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12928 	if (!pdev) {
12929 		dp_err("pdev NULL!");
12930 		return QDF_STATUS_E_INVAL;
12931 	}
12932 
12933 	pdev->data_stall_detect_callback = data_stall_detect_callback;
12934 	return QDF_STATUS_SUCCESS;
12935 }
12936 
12937 /**
12938  * dp_deregister_data_stall_detect_cb() - de-register data stall callback
12939  * @soc_hdl: Datapath soc handle
12940  * @pdev_id: id of data path pdev handle
12941  * @data_stall_detect_callback: data stall callback function
12942  *
12943  * Return: QDF_STATUS Enumeration
12944  */
12945 static
12946 QDF_STATUS dp_deregister_data_stall_detect_cb(
12947 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12948 			data_stall_detect_cb data_stall_detect_callback)
12949 {
12950 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12951 	struct dp_pdev *pdev;
12952 
12953 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12954 	if (!pdev) {
12955 		dp_err("pdev NULL!");
12956 		return QDF_STATUS_E_INVAL;
12957 	}
12958 
12959 	pdev->data_stall_detect_callback = NULL;
12960 	return QDF_STATUS_SUCCESS;
12961 }
12962 
12963 /**
12964  * dp_txrx_post_data_stall_event() - post data stall event
12965  * @soc_hdl: Datapath soc handle
12966  * @indicator: Module triggering data stall
12967  * @data_stall_type: data stall event type
12968  * @pdev_id: pdev id
12969  * @vdev_id_bitmap: vdev id bitmap
12970  * @recovery_type: data stall recovery type
12971  *
12972  * Return: None
12973  */
12974 static void
12975 dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
12976 			      enum data_stall_log_event_indicator indicator,
12977 			      enum data_stall_log_event_type data_stall_type,
12978 			      uint32_t pdev_id, uint32_t vdev_id_bitmap,
12979 			      enum data_stall_log_recovery_type recovery_type)
12980 {
12981 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12982 	struct data_stall_event_info data_stall_info;
12983 	struct dp_pdev *pdev;
12984 
12985 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12986 	if (!pdev) {
12987 		dp_err("pdev NULL!");
12988 		return;
12989 	}
12990 
12991 	if (!pdev->data_stall_detect_callback) {
12992 		dp_err("data stall cb not registered!");
12993 		return;
12994 	}
12995 
12996 	dp_info("data_stall_type: %x pdev_id: %d",
12997 		data_stall_type, pdev_id);
12998 
12999 	data_stall_info.indicator = indicator;
13000 	data_stall_info.data_stall_type = data_stall_type;
13001 	data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
13002 	data_stall_info.pdev_id = pdev_id;
13003 	data_stall_info.recovery_type = recovery_type;
13004 
13005 	pdev->data_stall_detect_callback(&data_stall_info);
13006 }
13007 #endif /* WLAN_SUPPORT_DATA_STALL */
13008 
13009 #ifdef WLAN_FEATURE_STATS_EXT
13010 /**
13011  * dp_txrx_ext_stats_request() - request dp txrx extended stats request
13012  * @soc_hdl: soc handle
13013  * @pdev_id: pdev id
13014  * @req: stats request
13015  *
13016  * Return: QDF_STATUS
13017  */
13018 static QDF_STATUS
13019 dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13020 			  struct cdp_txrx_ext_stats *req)
13021 {
13022 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
13023 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13024 	int i = 0;
13025 	int tcl_ring_full = 0;
13026 
13027 	if (!pdev) {
13028 		dp_err("pdev is null");
13029 		return QDF_STATUS_E_INVAL;
13030 	}
13031 
13032 	dp_aggregate_pdev_stats(pdev);
13033 
13034 	for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
13035 		tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
13036 
13037 	req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
13038 	req->tx_msdu_overflow = tcl_ring_full;
13039 	/* Error rate at LMAC */
13040 	req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
13041 				pdev->stats.err.fw_reported_rxdma_error;
13042 	/* only count error source from RXDMA */
13043 	req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
13044 
13045 	/* Error rate at above the MAC */
13046 	req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
13047 	req->rx_mpdu_missed = pdev->stats.err.reo_error;
13048 
13049 	dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
13050 		"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
13051 		"rx_mpdu_missed = %u, rx_mpdu_error = %u",
13052 		req->tx_msdu_enqueue,
13053 		req->tx_msdu_overflow,
13054 		req->rx_mpdu_received,
13055 		req->rx_mpdu_delivered,
13056 		req->rx_mpdu_missed,
13057 		req->rx_mpdu_error);
13058 
13059 	return QDF_STATUS_SUCCESS;
13060 }
13061 
13062 #endif /* WLAN_FEATURE_STATS_EXT */
13063 
13064 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
13065 /**
13066  * dp_mark_first_wakeup_packet() - set flag to indicate that
13067  *    fw is compatible for marking first packet after wow wakeup
13068  * @soc_hdl: Datapath soc handle
13069  * @pdev_id: id of data path pdev handle
13070  * @value: 1 for enabled/ 0 for disabled
13071  *
13072  * Return: None
13073  */
13074 static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
13075 					uint8_t pdev_id, uint8_t value)
13076 {
13077 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13078 	struct dp_pdev *pdev;
13079 
13080 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13081 	if (!pdev) {
13082 		dp_err("pdev is NULL");
13083 		return;
13084 	}
13085 
13086 	pdev->is_first_wakeup_packet = value;
13087 }
13088 #endif
13089 
13090 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
13091 /**
13092  * dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
13093  * @soc_hdl: Opaque handle to the DP soc object
13094  * @vdev_id: VDEV identifier
13095  * @mac: MAC address of the peer
13096  * @ac: access category mask
13097  * @tid: TID mask
13098  * @policy: Flush policy
13099  *
13100  * Return: 0 on success, errno on failure
13101  */
13102 static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
13103 					uint8_t vdev_id, uint8_t *mac,
13104 					uint8_t ac, uint32_t tid,
13105 					enum cdp_peer_txq_flush_policy policy)
13106 {
13107 	struct dp_soc *soc;
13108 
13109 	if (!soc_hdl) {
13110 		dp_err("soc is null");
13111 		return -EINVAL;
13112 	}
13113 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
13114 	return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
13115 					       mac, ac, tid, policy);
13116 }
13117 #endif
13118 
13119 #ifdef CONNECTIVITY_PKTLOG
13120 /**
13121  * dp_register_packetdump_callback() - registers
13122  *  tx data packet, tx mgmt. packet and rx data packet
13123  *  dump callback handler.
13124  *
13125  * @soc_hdl: Datapath soc handle
13126  * @pdev_id: id of data path pdev handle
13127  * @dp_tx_packetdump_cb: tx packetdump cb
13128  * @dp_rx_packetdump_cb: rx packetdump cb
13129  *
13130  * This function is used to register tx data pkt, tx mgmt.
13131  * pkt and rx data pkt dump callback
13132  *
13133  * Return: None
13134  *
13135  */
13136 static inline
13137 void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13138 				     ol_txrx_pktdump_cb dp_tx_packetdump_cb,
13139 				     ol_txrx_pktdump_cb dp_rx_packetdump_cb)
13140 {
13141 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13142 	struct dp_pdev *pdev;
13143 
13144 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13145 	if (!pdev) {
13146 		dp_err("pdev is NULL!");
13147 		return;
13148 	}
13149 
13150 	pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
13151 	pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
13152 }
13153 
13154 /**
13155  * dp_deregister_packetdump_callback() - deregidters
13156  *  tx data packet, tx mgmt. packet and rx data packet
13157  *  dump callback handler
13158  * @soc_hdl: Datapath soc handle
13159  * @pdev_id: id of data path pdev handle
13160  *
13161  * This function is used to deregidter tx data pkt.,
13162  * tx mgmt. pkt and rx data pkt. dump callback
13163  *
13164  * Return: None
13165  *
13166  */
13167 static inline
13168 void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
13169 				       uint8_t pdev_id)
13170 {
13171 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13172 	struct dp_pdev *pdev;
13173 
13174 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13175 	if (!pdev) {
13176 		dp_err("pdev is NULL!");
13177 		return;
13178 	}
13179 
13180 	pdev->dp_tx_packetdump_cb = NULL;
13181 	pdev->dp_rx_packetdump_cb = NULL;
13182 }
13183 #endif
13184 
13185 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13186 /**
13187  * dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
13188  * @soc_hdl: Datapath soc handle
13189  * @high: whether the bus bw is high or not
13190  *
13191  * Return: void
13192  */
13193 static void
13194 dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
13195 {
13196 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13197 
13198 	soc->high_throughput = high;
13199 }
13200 
13201 /**
13202  * dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
13203  * @soc_hdl: Datapath soc handle
13204  *
13205  * Return: bool
13206  */
13207 static bool
13208 dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
13209 {
13210 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13211 
13212 	return soc->high_throughput;
13213 }
13214 #endif
13215 
13216 #ifdef DP_PEER_EXTENDED_API
13217 static struct cdp_misc_ops dp_ops_misc = {
13218 #ifdef FEATURE_WLAN_TDLS
13219 	.tx_non_std = dp_tx_non_std,
13220 #endif /* FEATURE_WLAN_TDLS */
13221 	.get_opmode = dp_get_opmode,
13222 #ifdef FEATURE_RUNTIME_PM
13223 	.runtime_suspend = dp_runtime_suspend,
13224 	.runtime_resume = dp_runtime_resume,
13225 #endif /* FEATURE_RUNTIME_PM */
13226 	.get_num_rx_contexts = dp_get_num_rx_contexts,
13227 	.get_tx_ack_stats = dp_tx_get_success_ack_stats,
13228 #ifdef WLAN_SUPPORT_DATA_STALL
13229 	.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
13230 	.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
13231 	.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
13232 #endif
13233 
13234 #ifdef WLAN_FEATURE_STATS_EXT
13235 	.txrx_ext_stats_request = dp_txrx_ext_stats_request,
13236 #ifndef WLAN_SOFTUMAC_SUPPORT
13237 	.request_rx_hw_stats = dp_request_rx_hw_stats,
13238 	.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
13239 #endif
13240 #endif /* WLAN_FEATURE_STATS_EXT */
13241 	.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
13242 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
13243 	.set_swlm_enable = dp_soc_set_swlm_enable,
13244 	.is_swlm_enabled = dp_soc_is_swlm_enabled,
13245 #endif
13246 	.display_txrx_hw_info = dp_display_srng_info,
13247 #ifndef WLAN_SOFTUMAC_SUPPORT
13248 	.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
13249 #endif
13250 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
13251 	.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
13252 #endif
13253 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
13254 	.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
13255 #endif
13256 #ifdef CONNECTIVITY_PKTLOG
13257 	.register_pktdump_cb = dp_register_packetdump_callback,
13258 	.unregister_pktdump_cb = dp_deregister_packetdump_callback,
13259 #endif
13260 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13261 	.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
13262 	.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
13263 #endif
13264 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13265 	.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
13266 #endif
13267 };
13268 #endif
13269 
13270 #ifdef DP_FLOW_CTL
13271 static struct cdp_flowctl_ops dp_ops_flowctl = {
13272 	/* WIFI 3.0 DP implement as required. */
13273 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
13274 #ifndef WLAN_SOFTUMAC_SUPPORT
13275 	.flow_pool_map_handler = dp_tx_flow_pool_map,
13276 	.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
13277 #endif /*WLAN_SOFTUMAC_SUPPORT */
13278 	.register_pause_cb = dp_txrx_register_pause_cb,
13279 	.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
13280 	.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
13281 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
13282 };
13283 
13284 static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
13285 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13286 };
13287 #endif
13288 
13289 #ifdef IPA_OFFLOAD
13290 static struct cdp_ipa_ops dp_ops_ipa = {
13291 	.ipa_get_resource = dp_ipa_get_resource,
13292 	.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
13293 	.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
13294 	.ipa_op_response = dp_ipa_op_response,
13295 	.ipa_register_op_cb = dp_ipa_register_op_cb,
13296 	.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
13297 	.ipa_get_stat = dp_ipa_get_stat,
13298 	.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
13299 	.ipa_enable_autonomy = dp_ipa_enable_autonomy,
13300 	.ipa_disable_autonomy = dp_ipa_disable_autonomy,
13301 	.ipa_setup = dp_ipa_setup,
13302 	.ipa_cleanup = dp_ipa_cleanup,
13303 	.ipa_setup_iface = dp_ipa_setup_iface,
13304 	.ipa_cleanup_iface = dp_ipa_cleanup_iface,
13305 	.ipa_enable_pipes = dp_ipa_enable_pipes,
13306 	.ipa_disable_pipes = dp_ipa_disable_pipes,
13307 	.ipa_set_perf_level = dp_ipa_set_perf_level,
13308 	.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
13309 	.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
13310 	.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
13311 	.ipa_rx_buf_smmu_pool_mapping = dp_ipa_rx_buf_pool_smmu_mapping,
13312 	.ipa_set_smmu_mapped = dp_ipa_set_smmu_mapped,
13313 	.ipa_get_smmu_mapped = dp_ipa_get_smmu_mapped,
13314 #ifdef QCA_SUPPORT_WDS_EXTENDED
13315 	.ipa_rx_wdsext_iface = dp_ipa_rx_wdsext_iface,
13316 #endif
13317 #ifdef QCA_ENHANCED_STATS_SUPPORT
13318 	.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
13319 #endif
13320 #ifdef IPA_OPT_WIFI_DP
13321 	.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
13322 	.ipa_pcie_link_up = dp_ipa_pcie_link_up,
13323 	.ipa_pcie_link_down = dp_ipa_pcie_link_down,
13324 #endif
13325 #ifdef IPA_WDS_EASYMESH_FEATURE
13326 	.ipa_ast_create = dp_ipa_ast_create,
13327 #endif
13328 	.ipa_get_wdi_version = dp_ipa_get_wdi_version,
13329 };
13330 #endif
13331 
13332 #ifdef DP_POWER_SAVE
13333 static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13334 {
13335 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13336 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13337 	int timeout = SUSPEND_DRAIN_WAIT;
13338 	int drain_wait_delay = 50; /* 50 ms */
13339 	int32_t tx_pending;
13340 
13341 	if (qdf_unlikely(!pdev)) {
13342 		dp_err("pdev is NULL");
13343 		return QDF_STATUS_E_INVAL;
13344 	}
13345 
13346 	/* Abort if there are any pending TX packets */
13347 	while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
13348 		qdf_sleep(drain_wait_delay);
13349 		if (timeout <= 0) {
13350 			dp_info("TX frames are pending %d, abort suspend",
13351 				tx_pending);
13352 			dp_find_missing_tx_comp(soc);
13353 			return QDF_STATUS_E_TIMEOUT;
13354 		}
13355 		timeout = timeout - drain_wait_delay;
13356 	}
13357 
13358 	if (soc->intr_mode == DP_INTR_POLL)
13359 		qdf_timer_stop(&soc->int_timer);
13360 
13361 	/* Stop monitor reap timer and reap any pending frames in ring */
13362 	dp_monitor_reap_timer_suspend(soc);
13363 
13364 	return QDF_STATUS_SUCCESS;
13365 }
13366 
13367 static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13368 {
13369 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13370 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13371 
13372 	if (qdf_unlikely(!pdev)) {
13373 		dp_err("pdev is NULL");
13374 		return QDF_STATUS_E_INVAL;
13375 	}
13376 
13377 	if (soc->intr_mode == DP_INTR_POLL)
13378 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
13379 
13380 	/* Start monitor reap timer */
13381 	dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
13382 
13383 	soc->arch_ops.dp_update_ring_hptp(soc, false);
13384 
13385 	return QDF_STATUS_SUCCESS;
13386 }
13387 
13388 /**
13389  * dp_process_wow_ack_rsp() - process wow ack response
13390  * @soc_hdl: datapath soc handle
13391  * @pdev_id: data path pdev handle id
13392  *
13393  * Return: none
13394  */
13395 static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13396 {
13397 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13398 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13399 
13400 	if (qdf_unlikely(!pdev)) {
13401 		dp_err("pdev is NULL");
13402 		return;
13403 	}
13404 
13405 	/*
13406 	 * As part of wow enable FW disables the mon status ring and in wow ack
13407 	 * response from FW reap mon status ring to make sure no packets pending
13408 	 * in the ring.
13409 	 */
13410 	dp_monitor_reap_timer_suspend(soc);
13411 }
13412 
13413 /**
13414  * dp_process_target_suspend_req() - process target suspend request
13415  * @soc_hdl: datapath soc handle
13416  * @pdev_id: data path pdev handle id
13417  *
13418  * Return: none
13419  */
13420 static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
13421 					  uint8_t pdev_id)
13422 {
13423 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13424 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13425 
13426 	if (qdf_unlikely(!pdev)) {
13427 		dp_err("pdev is NULL");
13428 		return;
13429 	}
13430 
13431 	/* Stop monitor reap timer and reap any pending frames in ring */
13432 	dp_monitor_reap_timer_suspend(soc);
13433 }
13434 
13435 static struct cdp_bus_ops dp_ops_bus = {
13436 	.bus_suspend = dp_bus_suspend,
13437 	.bus_resume = dp_bus_resume,
13438 	.process_wow_ack_rsp = dp_process_wow_ack_rsp,
13439 	.process_target_suspend_req = dp_process_target_suspend_req
13440 };
13441 #endif
13442 
13443 #ifdef DP_FLOW_CTL
13444 static struct cdp_throttle_ops dp_ops_throttle = {
13445 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13446 };
13447 
13448 static struct cdp_cfg_ops dp_ops_cfg = {
13449 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13450 };
13451 #endif
13452 
13453 #ifdef DP_PEER_EXTENDED_API
13454 static struct cdp_ocb_ops dp_ops_ocb = {
13455 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13456 };
13457 
13458 static struct cdp_mob_stats_ops dp_ops_mob_stats = {
13459 	.clear_stats = dp_txrx_clear_dump_stats,
13460 };
13461 
13462 static struct cdp_peer_ops dp_ops_peer = {
13463 	.register_peer = dp_register_peer,
13464 	.clear_peer = dp_clear_peer,
13465 	.find_peer_exist = dp_find_peer_exist,
13466 	.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
13467 	.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
13468 	.peer_state_update = dp_peer_state_update,
13469 	.get_vdevid = dp_get_vdevid,
13470 	.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
13471 	.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
13472 	.get_peer_state = dp_get_peer_state,
13473 	.peer_flush_frags = dp_peer_flush_frags,
13474 	.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
13475 };
13476 #endif
13477 
13478 static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
13479 {
13480 	soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
13481 	soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
13482 	soc->cdp_soc.ops->me_ops = &dp_ops_me;
13483 	soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
13484 	soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
13485 	soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
13486 #ifdef PEER_FLOW_CONTROL
13487 	soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
13488 #endif /* PEER_FLOW_CONTROL */
13489 #ifdef DP_PEER_EXTENDED_API
13490 	soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
13491 	soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
13492 	soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
13493 	soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
13494 #endif
13495 #ifdef DP_FLOW_CTL
13496 	soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
13497 	soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
13498 	soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
13499 	soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
13500 #endif
13501 #ifdef IPA_OFFLOAD
13502 	soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
13503 #endif
13504 #ifdef DP_POWER_SAVE
13505 	soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
13506 #endif
13507 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13508 	soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
13509 #endif
13510 #ifdef WLAN_SUPPORT_MSCS
13511 	soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
13512 #endif
13513 #ifdef WLAN_SUPPORT_MESH_LATENCY
13514 	soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
13515 #endif
13516 #ifdef CONFIG_SAWF_DEF_QUEUES
13517 	soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
13518 #endif
13519 #ifdef WLAN_SUPPORT_SCS
13520 	soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
13521 #endif
13522 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
13523 	soc->cdp_soc.ops->fse_ops = &dp_ops_fse;
13524 #endif
13525 };
13526 
13527 #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
13528 	defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
13529 	defined(QCA_WIFI_QCA5332)
13530 
13531 /**
13532  * dp_soc_attach_wifi3() - Attach txrx SOC
13533  * @ctrl_psoc: Opaque SOC handle from control plane
13534  * @params: SOC attach params
13535  *
13536  * Return: DP SOC handle on success, NULL on failure
13537  */
13538 struct cdp_soc_t *
13539 dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13540 		    struct cdp_soc_attach_params *params)
13541 {
13542 	struct dp_soc *dp_soc = NULL;
13543 
13544 	dp_soc = dp_soc_attach(ctrl_psoc, params);
13545 
13546 	return dp_soc_to_cdp_soc_t(dp_soc);
13547 }
13548 
13549 static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
13550 {
13551 	int lmac_id;
13552 
13553 	for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
13554 		/*Set default host PDEV ID for lmac_id*/
13555 		wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
13556 				      INVALID_PDEV_ID, lmac_id);
13557 	}
13558 }
13559 
13560 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc)
13561 {
13562 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13563 
13564 	if (max_list_size == 0)
13565 		return;
13566 
13567 	qdf_mem_free(soc->list_shared_qaddr_del);
13568 	qdf_mem_free(soc->reo_write_list);
13569 	qdf_mem_free(soc->list_qdesc_addr_free);
13570 	qdf_mem_free(soc->list_qdesc_addr_alloc);
13571 }
13572 
13573 static void dp_soc_set_qref_debug_list(struct dp_soc *soc)
13574 {
13575 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13576 
13577 	if (max_list_size == 0)
13578 		return;
13579 
13580 	soc->list_shared_qaddr_del =
13581 			(struct test_qaddr_del *)
13582 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13583 					       max_list_size);
13584 	soc->reo_write_list =
13585 			(struct test_qaddr_del *)
13586 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13587 					       max_list_size);
13588 	soc->list_qdesc_addr_free =
13589 			(struct test_mem_free *)
13590 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13591 					       max_list_size);
13592 	soc->list_qdesc_addr_alloc =
13593 			(struct test_mem_free *)
13594 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13595 					       max_list_size);
13596 }
13597 
13598 static uint32_t
13599 dp_get_link_desc_id_start(uint16_t arch_id)
13600 {
13601 	switch (arch_id) {
13602 	case CDP_ARCH_TYPE_LI:
13603 	case CDP_ARCH_TYPE_RH:
13604 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13605 	case CDP_ARCH_TYPE_BE:
13606 		return LINK_DESC_ID_START_20_BITS_COOKIE;
13607 	default:
13608 		dp_err("unknown arch_id 0x%x", arch_id);
13609 		QDF_BUG(0);
13610 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13611 	}
13612 }
13613 
13614 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13615 static inline
13616 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13617 {
13618 	soc->tx_ilp_enable = false;
13619 }
13620 #else
13621 static inline
13622 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13623 {
13624 }
13625 #endif
13626 
13627 /**
13628  * dp_soc_attach() - Attach txrx SOC
13629  * @ctrl_psoc: Opaque SOC handle from control plane
13630  * @params: SOC attach params
13631  *
13632  * Return: DP SOC handle on success, NULL on failure
13633  */
13634 static struct dp_soc *
13635 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13636 	      struct cdp_soc_attach_params *params)
13637 {
13638 	struct dp_soc *soc =  NULL;
13639 	uint16_t arch_id;
13640 	struct hif_opaque_softc *hif_handle = params->hif_handle;
13641 	qdf_device_t qdf_osdev = params->qdf_osdev;
13642 	struct ol_if_ops *ol_ops = params->ol_ops;
13643 	uint16_t device_id = params->device_id;
13644 
13645 	if (!hif_handle) {
13646 		dp_err("HIF handle is NULL");
13647 		goto fail0;
13648 	}
13649 	arch_id = cdp_get_arch_type_from_devid(device_id);
13650 	soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
13651 	if (!soc) {
13652 		dp_err("DP SOC memory allocation failed");
13653 		goto fail0;
13654 	}
13655 
13656 	dp_info("soc memory allocated %pK", soc);
13657 	soc->hif_handle = hif_handle;
13658 	soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
13659 	if (!soc->hal_soc)
13660 		goto fail1;
13661 
13662 	hif_get_cmem_info(soc->hif_handle,
13663 			  &soc->cmem_base,
13664 			  &soc->cmem_total_size);
13665 	soc->cmem_avail_size = soc->cmem_total_size;
13666 	soc->device_id = device_id;
13667 	soc->cdp_soc.ops =
13668 		(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
13669 	if (!soc->cdp_soc.ops)
13670 		goto fail1;
13671 
13672 	dp_soc_txrx_ops_attach(soc);
13673 	soc->cdp_soc.ol_ops = ol_ops;
13674 	soc->ctrl_psoc = ctrl_psoc;
13675 	soc->osdev = qdf_osdev;
13676 	soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
13677 	dp_soc_init_tx_ilp(soc);
13678 	hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
13679 			    &soc->rx_mon_pkt_tlv_size);
13680 	soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
13681 						       params->mlo_chip_id);
13682 	soc->features.dmac_cmn_src_rxbuf_ring_enabled =
13683 		hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
13684 	soc->arch_id = arch_id;
13685 	soc->link_desc_id_start =
13686 			dp_get_link_desc_id_start(soc->arch_id);
13687 	dp_configure_arch_ops(soc);
13688 
13689 	/* Reset wbm sg list and flags */
13690 	dp_rx_wbm_sg_list_reset(soc);
13691 
13692 	dp_soc_cfg_history_attach(soc);
13693 	dp_soc_tx_hw_desc_history_attach(soc);
13694 	dp_soc_rx_history_attach(soc);
13695 	dp_soc_mon_status_ring_history_attach(soc);
13696 	dp_soc_tx_history_attach(soc);
13697 	dp_soc_msdu_done_fail_desc_list_attach(soc);
13698 	dp_soc_msdu_done_fail_history_attach(soc);
13699 	wlan_set_srng_cfg(&soc->wlan_srng_cfg);
13700 	soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
13701 	if (!soc->wlan_cfg_ctx) {
13702 		dp_err("wlan_cfg_ctx failed");
13703 		goto fail2;
13704 	}
13705 
13706 	qdf_ssr_driver_dump_register_region("wlan_cfg_ctx", soc->wlan_cfg_ctx,
13707 					    sizeof(*soc->wlan_cfg_ctx));
13708 
13709 	/*sync DP soc cfg items with profile support after cfg_soc_attach*/
13710 	wlan_dp_soc_cfg_sync_profile((struct cdp_soc_t *)soc);
13711 
13712 	soc->arch_ops.soc_cfg_attach(soc);
13713 
13714 	qdf_ssr_driver_dump_register_region("tcl_wbm_map_array",
13715 					    &soc->wlan_cfg_ctx->tcl_wbm_map_array,
13716 					    sizeof(struct wlan_cfg_tcl_wbm_ring_num_map));
13717 
13718 	if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
13719 		dp_err("failed to allocate link desc pool banks");
13720 		goto fail3;
13721 	}
13722 
13723 	if (dp_hw_link_desc_ring_alloc(soc)) {
13724 		dp_err("failed to allocate link_desc_ring");
13725 		goto fail4;
13726 	}
13727 
13728 	if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
13729 								 params))) {
13730 		dp_err("unable to do target specific attach");
13731 		goto fail5;
13732 	}
13733 
13734 	if (dp_soc_srng_alloc(soc)) {
13735 		dp_err("failed to allocate soc srng rings");
13736 		goto fail6;
13737 	}
13738 
13739 	if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
13740 		dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
13741 		goto fail7;
13742 	}
13743 
13744 	if (!dp_monitor_modularized_enable()) {
13745 		if (dp_mon_soc_attach_wrapper(soc)) {
13746 			dp_err("failed to attach monitor");
13747 			goto fail8;
13748 		}
13749 	}
13750 
13751 	if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
13752 				       &soc->reo_qref)
13753 	    != QDF_STATUS_SUCCESS) {
13754 		dp_err("unable to setup reo shared qaddr");
13755 		goto fail9;
13756 	}
13757 
13758 	if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
13759 		dp_err("failed to initialize dp stats sysfs file");
13760 		dp_sysfs_deinitialize_stats(soc);
13761 	}
13762 
13763 	dp_soc_swlm_attach(soc);
13764 	dp_soc_set_interrupt_mode(soc);
13765 	dp_soc_set_def_pdev(soc);
13766 	dp_soc_set_qref_debug_list(soc);
13767 	qdf_ssr_driver_dump_register_region("dp_soc", soc, sizeof(*soc));
13768 	qdf_nbuf_ssr_register_region();
13769 
13770 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
13771 		qdf_dma_mem_stats_read(),
13772 		qdf_heap_mem_stats_read(),
13773 		qdf_skb_total_mem_stats_read());
13774 
13775 	return soc;
13776 fail9:
13777 	if (!dp_monitor_modularized_enable())
13778 		dp_mon_soc_detach_wrapper(soc);
13779 fail8:
13780 	dp_soc_tx_desc_sw_pools_free(soc);
13781 fail7:
13782 	dp_soc_srng_free(soc);
13783 fail6:
13784 	soc->arch_ops.txrx_soc_detach(soc);
13785 fail5:
13786 	dp_hw_link_desc_ring_free(soc);
13787 fail4:
13788 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
13789 fail3:
13790 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
13791 fail2:
13792 	dp_soc_msdu_done_fail_history_detach(soc);
13793 	qdf_mem_free(soc->cdp_soc.ops);
13794 fail1:
13795 	qdf_mem_common_free(soc);
13796 fail0:
13797 	return NULL;
13798 }
13799 
13800 void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
13801 			struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13802 			struct hif_opaque_softc *hif_handle,
13803 			HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
13804 			struct ol_if_ops *ol_ops, uint16_t device_id)
13805 {
13806 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
13807 
13808 	return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
13809 }
13810 
13811 #endif
13812 
13813 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
13814 {
13815 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
13816 		return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
13817 
13818 	/* Typically for MCL as there only 1 PDEV*/
13819 	return soc->pdev_list[0];
13820 }
13821 
13822 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
13823 				     int *max_mac_rings)
13824 {
13825 	bool dbs_enable = false;
13826 
13827 	if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
13828 		dbs_enable = soc->cdp_soc.ol_ops->
13829 				is_hw_dbs_capable((void *)soc->ctrl_psoc);
13830 
13831 	*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
13832 	dp_info("dbs_enable %d, max_mac_rings %d",
13833 		dbs_enable, *max_mac_rings);
13834 }
13835 
13836 qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
13837 
13838 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13839 /**
13840  * dp_get_cfr_rcc() - get cfr rcc config
13841  * @soc_hdl: Datapath soc handle
13842  * @pdev_id: id of objmgr pdev
13843  *
13844  * Return: true/false based on cfr mode setting
13845  */
13846 static
13847 bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13848 {
13849 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13850 	struct dp_pdev *pdev = NULL;
13851 
13852 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13853 	if (!pdev) {
13854 		dp_err("pdev is NULL");
13855 		return false;
13856 	}
13857 
13858 	return pdev->cfr_rcc_mode;
13859 }
13860 
13861 /**
13862  * dp_set_cfr_rcc() - enable/disable cfr rcc config
13863  * @soc_hdl: Datapath soc handle
13864  * @pdev_id: id of objmgr pdev
13865  * @enable: Enable/Disable cfr rcc mode
13866  *
13867  * Return: none
13868  */
13869 static
13870 void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
13871 {
13872 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13873 	struct dp_pdev *pdev = NULL;
13874 
13875 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13876 	if (!pdev) {
13877 		dp_err("pdev is NULL");
13878 		return;
13879 	}
13880 
13881 	pdev->cfr_rcc_mode = enable;
13882 }
13883 
13884 /**
13885  * dp_get_cfr_dbg_stats - Get the debug statistics for CFR
13886  * @soc_hdl: Datapath soc handle
13887  * @pdev_id: id of data path pdev handle
13888  * @cfr_rcc_stats: CFR RCC debug statistics buffer
13889  *
13890  * Return: none
13891  */
13892 static inline void
13893 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13894 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats)
13895 {
13896 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13897 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13898 
13899 	if (!pdev) {
13900 		dp_err("pdev is NULL");
13901 		return;
13902 	}
13903 
13904 	qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
13905 		     sizeof(struct cdp_cfr_rcc_stats));
13906 }
13907 
13908 /**
13909  * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
13910  * @soc_hdl: Datapath soc handle
13911  * @pdev_id: id of data path pdev handle
13912  *
13913  * Return: none
13914  */
13915 static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
13916 				   uint8_t pdev_id)
13917 {
13918 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13919 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13920 
13921 	if (!pdev) {
13922 		dp_err("dp pdev is NULL");
13923 		return;
13924 	}
13925 
13926 	qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
13927 }
13928 #endif
13929 
13930 /**
13931  * dp_bucket_index() - Return index from array
13932  *
13933  * @delay: delay measured
13934  * @array: array used to index corresponding delay
13935  * @delay_in_us: flag to indicate whether the delay in ms or us
13936  *
13937  * Return: index
13938  */
13939 static uint8_t
13940 dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
13941 {
13942 	uint8_t i = CDP_DELAY_BUCKET_0;
13943 	uint32_t thr_low, thr_high;
13944 
13945 	for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
13946 		thr_low = array[i];
13947 		thr_high = array[i + 1];
13948 
13949 		if (delay_in_us) {
13950 			thr_low = thr_low * USEC_PER_MSEC;
13951 			thr_high = thr_high * USEC_PER_MSEC;
13952 		}
13953 		if (delay >= thr_low && delay <= thr_high)
13954 			return i;
13955 	}
13956 	return (CDP_DELAY_BUCKET_MAX - 1);
13957 }
13958 
13959 #ifdef HW_TX_DELAY_STATS_ENABLE
13960 /*
13961  * cdp_fw_to_hw_delay_range
13962  * Fw to hw delay ranges in milliseconds
13963  */
13964 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13965 	0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
13966 #else
13967 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13968 	0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
13969 #endif
13970 
13971 /*
13972  * cdp_sw_enq_delay_range
13973  * Software enqueue delay ranges in milliseconds
13974  */
13975 static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
13976 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
13977 
13978 /*
13979  * cdp_intfrm_delay_range
13980  * Interframe delay ranges in milliseconds
13981  */
13982 static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
13983 	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
13984 
13985 /**
13986  * dp_fill_delay_buckets() - Fill delay statistics bucket for each
13987  *				type of delay
13988  * @tstats: tid tx stats
13989  * @rstats: tid rx stats
13990  * @delay: delay in ms
13991  * @tid: tid value
13992  * @mode: type of tx delay mode
13993  * @ring_id: ring number
13994  * @delay_in_us: flag to indicate whether the delay in ms or us
13995  *
13996  * Return: pointer to cdp_delay_stats structure
13997  */
13998 static struct cdp_delay_stats *
13999 dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
14000 		      struct cdp_tid_rx_stats *rstats, uint32_t delay,
14001 		      uint8_t tid, uint8_t mode, uint8_t ring_id,
14002 		      bool delay_in_us)
14003 {
14004 	uint8_t delay_index = 0;
14005 	struct cdp_delay_stats *stats = NULL;
14006 
14007 	/*
14008 	 * Update delay stats in proper bucket
14009 	 */
14010 	switch (mode) {
14011 	/* Software Enqueue delay ranges */
14012 	case CDP_DELAY_STATS_SW_ENQ:
14013 		if (!tstats)
14014 			break;
14015 
14016 		delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
14017 					      delay_in_us);
14018 		tstats->swq_delay.delay_bucket[delay_index]++;
14019 		stats = &tstats->swq_delay;
14020 		break;
14021 
14022 	/* Tx Completion delay ranges */
14023 	case CDP_DELAY_STATS_FW_HW_TRANSMIT:
14024 		if (!tstats)
14025 			break;
14026 
14027 		delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
14028 					      delay_in_us);
14029 		tstats->hwtx_delay.delay_bucket[delay_index]++;
14030 		stats = &tstats->hwtx_delay;
14031 		break;
14032 
14033 	/* Interframe tx delay ranges */
14034 	case CDP_DELAY_STATS_TX_INTERFRAME:
14035 		if (!tstats)
14036 			break;
14037 
14038 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
14039 					      delay_in_us);
14040 		tstats->intfrm_delay.delay_bucket[delay_index]++;
14041 		stats = &tstats->intfrm_delay;
14042 		break;
14043 
14044 	/* Interframe rx delay ranges */
14045 	case CDP_DELAY_STATS_RX_INTERFRAME:
14046 		if (!rstats)
14047 			break;
14048 
14049 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
14050 					      delay_in_us);
14051 		rstats->intfrm_delay.delay_bucket[delay_index]++;
14052 		stats = &rstats->intfrm_delay;
14053 		break;
14054 
14055 	/* Ring reap to indication to network stack */
14056 	case CDP_DELAY_STATS_REAP_STACK:
14057 		if (!rstats)
14058 			break;
14059 
14060 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
14061 					      delay_in_us);
14062 		rstats->to_stack_delay.delay_bucket[delay_index]++;
14063 		stats = &rstats->to_stack_delay;
14064 		break;
14065 	default:
14066 		dp_debug("Incorrect delay mode: %d", mode);
14067 	}
14068 
14069 	return stats;
14070 }
14071 
14072 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
14073 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
14074 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
14075 			   bool delay_in_us)
14076 {
14077 	struct cdp_delay_stats *dstats = NULL;
14078 
14079 	/*
14080 	 * Delay ranges are different for different delay modes
14081 	 * Get the correct index to update delay bucket
14082 	 */
14083 	dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
14084 				       ring_id, delay_in_us);
14085 	if (qdf_unlikely(!dstats))
14086 		return;
14087 
14088 	if (delay != 0) {
14089 		/*
14090 		 * Compute minimum,average and maximum
14091 		 * delay
14092 		 */
14093 		if (delay < dstats->min_delay)
14094 			dstats->min_delay = delay;
14095 
14096 		if (delay > dstats->max_delay)
14097 			dstats->max_delay = delay;
14098 
14099 		/*
14100 		 * Average over delay measured till now
14101 		 */
14102 		if (!dstats->avg_delay)
14103 			dstats->avg_delay = delay;
14104 		else
14105 			dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
14106 	}
14107 }
14108 
14109 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
14110 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
14111 			      u_int16_t mac_cnt, bool limit)
14112 {
14113 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
14114 	struct dp_vdev *vdev =
14115 		dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
14116 	struct dp_peer *peer;
14117 	uint16_t new_mac_cnt = 0;
14118 
14119 	if (!vdev)
14120 		return new_mac_cnt;
14121 
14122 	if (limit && (vdev->num_peers > mac_cnt)) {
14123 		dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
14124 		return 0;
14125 	}
14126 
14127 	qdf_spin_lock_bh(&vdev->peer_list_lock);
14128 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
14129 		if (peer->bss_peer)
14130 			continue;
14131 		if (new_mac_cnt < mac_cnt) {
14132 			WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
14133 			new_mac_cnt++;
14134 		}
14135 	}
14136 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
14137 	dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
14138 	return new_mac_cnt;
14139 }
14140 
14141 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
14142 {
14143 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14144 						       mac, 0, vdev_id,
14145 						       DP_MOD_ID_CDP);
14146 	uint16_t peer_id = HTT_INVALID_PEER;
14147 
14148 	if (!peer) {
14149 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
14150 		return peer_id;
14151 	}
14152 
14153 	peer_id = peer->peer_id;
14154 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14155 	return peer_id;
14156 }
14157 
14158 #ifdef QCA_SUPPORT_WDS_EXTENDED
14159 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
14160 				  uint8_t vdev_id,
14161 				  uint8_t *mac,
14162 				  ol_txrx_rx_fp rx,
14163 				  ol_osif_peer_handle osif_peer)
14164 {
14165 	struct dp_txrx_peer *txrx_peer = NULL;
14166 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14167 						       mac, 0, vdev_id,
14168 						       DP_MOD_ID_CDP);
14169 	QDF_STATUS status = QDF_STATUS_E_INVAL;
14170 
14171 	if (!peer) {
14172 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
14173 		return status;
14174 	}
14175 
14176 	txrx_peer = dp_get_txrx_peer(peer);
14177 	if (!txrx_peer) {
14178 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14179 		return status;
14180 	}
14181 
14182 	if (rx) {
14183 		if (txrx_peer->osif_rx) {
14184 			status = QDF_STATUS_E_ALREADY;
14185 		} else {
14186 			txrx_peer->osif_rx = rx;
14187 			status = QDF_STATUS_SUCCESS;
14188 		}
14189 	} else {
14190 		if (txrx_peer->osif_rx) {
14191 			txrx_peer->osif_rx = NULL;
14192 			status = QDF_STATUS_SUCCESS;
14193 		} else {
14194 			status = QDF_STATUS_E_ALREADY;
14195 		}
14196 	}
14197 
14198 	txrx_peer->wds_ext.osif_peer = osif_peer;
14199 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14200 
14201 	return status;
14202 }
14203 
14204 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
14205 				ol_txrx_soc_handle soc,
14206 				uint8_t vdev_id,
14207 				uint8_t *mac,
14208 				ol_osif_peer_handle *osif_peer)
14209 {
14210 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
14211 	struct dp_txrx_peer *txrx_peer = NULL;
14212 	struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
14213 						      mac, 0, vdev_id,
14214 						      DP_MOD_ID_CDP);
14215 
14216 	if (!peer) {
14217 		dp_cdp_debug("%pK: Peer is NULL!", dp_soc);
14218 		return QDF_STATUS_E_INVAL;
14219 	}
14220 
14221 	txrx_peer = dp_get_txrx_peer(peer);
14222 	if (!txrx_peer) {
14223 		dp_cdp_debug("%pK: TXRX Peer is NULL!", dp_soc);
14224 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14225 		return QDF_STATUS_E_INVAL;
14226 	}
14227 
14228 	*osif_peer = txrx_peer->wds_ext.osif_peer;
14229 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14230 
14231 	return QDF_STATUS_SUCCESS;
14232 }
14233 
14234 QDF_STATUS dp_wds_ext_set_peer_bit(ol_txrx_soc_handle soc, uint8_t *mac)
14235 {
14236 	struct dp_txrx_peer *txrx_peer = NULL;
14237 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14238 						       mac, 0, DP_VDEV_ALL,
14239 						       DP_MOD_ID_IPA);
14240 	if (!peer) {
14241 		dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
14242 		return QDF_STATUS_E_INVAL;
14243 	}
14244 
14245 	txrx_peer = dp_get_txrx_peer(peer);
14246 	if (!txrx_peer) {
14247 		dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14248 		return QDF_STATUS_E_INVAL;
14249 	}
14250 	qdf_atomic_test_and_set_bit(WDS_EXT_PEER_INIT_BIT,
14251 				    &txrx_peer->wds_ext.init);
14252 	dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14253 
14254 	return QDF_STATUS_SUCCESS;
14255 }
14256 #endif /* QCA_SUPPORT_WDS_EXTENDED */
14257 
14258 /**
14259  * dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
14260  *			   monitor rings
14261  * @pdev: Datapath pdev handle
14262  *
14263  */
14264 static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
14265 {
14266 	struct dp_soc *soc = pdev->soc;
14267 	uint8_t i;
14268 
14269 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14270 		dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14271 			       RXDMA_BUF,
14272 			       pdev->lmac_id);
14273 
14274 	if (!soc->rxdma2sw_rings_not_supported) {
14275 		for (i = 0;
14276 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14277 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14278 								 pdev->pdev_id);
14279 
14280 			wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
14281 							base_vaddr_unaligned,
14282 					     soc->rxdma_err_dst_ring[lmac_id].
14283 								alloc_size,
14284 					     soc->ctrl_psoc,
14285 					     WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14286 					     "rxdma_err_dst");
14287 			dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
14288 				       RXDMA_DST, lmac_id);
14289 		}
14290 	}
14291 
14292 
14293 }
14294 
14295 /**
14296  * dp_pdev_srng_init() - initialize all pdev srng rings including
14297  *			   monitor rings
14298  * @pdev: Datapath pdev handle
14299  *
14300  * Return: QDF_STATUS_SUCCESS on success
14301  *	   QDF_STATUS_E_NOMEM on failure
14302  */
14303 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
14304 {
14305 	struct dp_soc *soc = pdev->soc;
14306 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14307 	uint32_t i;
14308 
14309 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14310 
14311 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14312 		if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14313 				 RXDMA_BUF, 0, pdev->lmac_id)) {
14314 			dp_init_err("%pK: dp_srng_init failed rx refill ring",
14315 				    soc);
14316 			goto fail1;
14317 		}
14318 	}
14319 
14320 	/* LMAC RxDMA to SW Rings configuration */
14321 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14322 		/* Only valid for MCL */
14323 		pdev = soc->pdev_list[0];
14324 
14325 	if (!soc->rxdma2sw_rings_not_supported) {
14326 		for (i = 0;
14327 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14328 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14329 								 pdev->pdev_id);
14330 			struct dp_srng *srng =
14331 				&soc->rxdma_err_dst_ring[lmac_id];
14332 
14333 			if (srng->hal_srng)
14334 				continue;
14335 
14336 			if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
14337 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14338 					    soc);
14339 				goto fail1;
14340 			}
14341 			wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
14342 						base_vaddr_unaligned,
14343 					  soc->rxdma_err_dst_ring[lmac_id].
14344 						alloc_size,
14345 					  soc->ctrl_psoc,
14346 					  WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14347 					  "rxdma_err_dst");
14348 		}
14349 	}
14350 	return QDF_STATUS_SUCCESS;
14351 
14352 fail1:
14353 	dp_pdev_srng_deinit(pdev);
14354 	return QDF_STATUS_E_NOMEM;
14355 }
14356 
14357 /**
14358  * dp_pdev_srng_free() - free all pdev srng rings including monitor rings
14359  * @pdev: Datapath pdev handle
14360  *
14361  */
14362 static void dp_pdev_srng_free(struct dp_pdev *pdev)
14363 {
14364 	struct dp_soc *soc = pdev->soc;
14365 	uint8_t i;
14366 
14367 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14368 		dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
14369 
14370 	if (!soc->rxdma2sw_rings_not_supported) {
14371 		for (i = 0;
14372 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14373 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14374 								 pdev->pdev_id);
14375 
14376 			dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
14377 		}
14378 	}
14379 }
14380 
14381 /**
14382  * dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
14383  *			  monitor rings
14384  * @pdev: Datapath pdev handle
14385  *
14386  * Return: QDF_STATUS_SUCCESS on success
14387  *	   QDF_STATUS_E_NOMEM on failure
14388  */
14389 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
14390 {
14391 	struct dp_soc *soc = pdev->soc;
14392 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14393 	uint32_t ring_size;
14394 	uint32_t i;
14395 
14396 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14397 
14398 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
14399 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14400 		if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14401 				  RXDMA_BUF, ring_size, 0)) {
14402 			dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
14403 				    soc);
14404 			goto fail1;
14405 		}
14406 	}
14407 
14408 	ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
14409 	/* LMAC RxDMA to SW Rings configuration */
14410 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14411 		/* Only valid for MCL */
14412 		pdev = soc->pdev_list[0];
14413 
14414 	if (!soc->rxdma2sw_rings_not_supported) {
14415 		for (i = 0;
14416 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14417 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14418 								 pdev->pdev_id);
14419 			struct dp_srng *srng =
14420 				&soc->rxdma_err_dst_ring[lmac_id];
14421 
14422 			if (srng->base_vaddr_unaligned)
14423 				continue;
14424 
14425 			if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
14426 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14427 					    soc);
14428 				goto fail1;
14429 			}
14430 		}
14431 	}
14432 
14433 	return QDF_STATUS_SUCCESS;
14434 fail1:
14435 	dp_pdev_srng_free(pdev);
14436 	return QDF_STATUS_E_NOMEM;
14437 }
14438 
14439 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
14440 /**
14441  * dp_init_link_peer_stats_enabled() - Init link_peer_stats as per config
14442  * @pdev: DP pdev
14443  *
14444  * Return: None
14445  */
14446 static inline void
14447 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14448 {
14449 	pdev->link_peer_stats = wlan_cfg_is_peer_link_stats_enabled(
14450 						pdev->soc->wlan_cfg_ctx);
14451 }
14452 #else
14453 static inline void
14454 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14455 {
14456 }
14457 #endif
14458 
14459 static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
14460 				      HTC_HANDLE htc_handle,
14461 				      qdf_device_t qdf_osdev,
14462 				      uint8_t pdev_id)
14463 {
14464 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14465 	int nss_cfg;
14466 	void *sojourn_buf;
14467 
14468 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
14469 	struct dp_pdev *pdev = soc->pdev_list[pdev_id];
14470 
14471 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14472 	pdev->soc = soc;
14473 	pdev->pdev_id = pdev_id;
14474 
14475 	/*
14476 	 * Variable to prevent double pdev deinitialization during
14477 	 * radio detach execution .i.e. in the absence of any vdev.
14478 	 */
14479 	pdev->pdev_deinit = 0;
14480 
14481 	if (dp_wdi_event_attach(pdev)) {
14482 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
14483 			  "dp_wdi_evet_attach failed");
14484 		goto fail0;
14485 	}
14486 
14487 	if (dp_pdev_srng_init(pdev)) {
14488 		dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
14489 		goto fail1;
14490 	}
14491 
14492 	/* Initialize descriptors in TCL Rings used by IPA */
14493 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
14494 		hal_tx_init_data_ring(soc->hal_soc,
14495 				      soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
14496 		dp_ipa_hal_tx_init_alt_data_ring(soc);
14497 	}
14498 
14499 	/*
14500 	 * Initialize command/credit ring descriptor
14501 	 * Command/CREDIT ring also used for sending DATA cmds
14502 	 */
14503 	dp_tx_init_cmd_credit_ring(soc);
14504 
14505 	dp_tx_pdev_init(pdev);
14506 
14507 	/*
14508 	 * set nss pdev config based on soc config
14509 	 */
14510 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
14511 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
14512 					 (nss_cfg & (1 << pdev_id)));
14513 	pdev->target_pdev_id =
14514 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
14515 
14516 	if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
14517 	    pdev->lmac_id == PHYB_2G_LMAC_ID) {
14518 		pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
14519 	}
14520 
14521 	/* Reset the cpu ring map if radio is NSS offloaded */
14522 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
14523 		dp_soc_reset_cpu_ring_map(soc);
14524 		dp_soc_reset_intr_mask(soc);
14525 	}
14526 
14527 	/* Reset the ring interrupt mask if DPDK is enabled */
14528 	if (wlan_cfg_get_dp_soc_dpdk_cfg(soc->ctrl_psoc)) {
14529 		dp_soc_reset_dpdk_intr_mask(soc);
14530 	}
14531 	/* Reset the cpu ring map if radio is NSS offloaded */
14532 	dp_soc_reset_ipa_vlan_intr_mask(soc);
14533 
14534 	TAILQ_INIT(&pdev->vdev_list);
14535 	qdf_spinlock_create(&pdev->vdev_list_lock);
14536 	pdev->vdev_count = 0;
14537 	pdev->is_lro_hash_configured = 0;
14538 
14539 	qdf_spinlock_create(&pdev->tx_mutex);
14540 	pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
14541 	pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
14542 	pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
14543 
14544 	DP_STATS_INIT(pdev);
14545 
14546 	dp_local_peer_id_pool_init(pdev);
14547 
14548 	dp_dscp_tid_map_setup(pdev);
14549 	dp_pcp_tid_map_setup(pdev);
14550 
14551 	/* set the reo destination during initialization */
14552 	dp_pdev_set_default_reo(pdev);
14553 
14554 	qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
14555 
14556 	pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
14557 			      sizeof(struct cdp_tx_sojourn_stats), 0, 4,
14558 			      TRUE);
14559 
14560 	if (!pdev->sojourn_buf) {
14561 		dp_init_err("%pK: Failed to allocate sojourn buf", soc);
14562 		goto fail2;
14563 	}
14564 	sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
14565 	qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
14566 
14567 	qdf_event_create(&pdev->fw_peer_stats_event);
14568 	qdf_event_create(&pdev->fw_stats_event);
14569 	qdf_event_create(&pdev->fw_obss_stats_event);
14570 
14571 	pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
14572 	pdev->num_tx_spl_allowed =
14573 		wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
14574 	pdev->num_reg_tx_allowed =
14575 		pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
14576 	if (dp_rxdma_ring_setup(soc, pdev)) {
14577 		dp_init_err("%pK: RXDMA ring config failed", soc);
14578 		goto fail3;
14579 	}
14580 
14581 	if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
14582 		goto fail3;
14583 
14584 	if (dp_ipa_ring_resource_setup(soc, pdev))
14585 		goto fail4;
14586 
14587 	if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
14588 		dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
14589 		goto fail4;
14590 	}
14591 
14592 	if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
14593 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
14594 			  FL("dp_pdev_bkp_stats_attach failed"));
14595 		goto fail5;
14596 	}
14597 
14598 	if (dp_monitor_pdev_init(pdev)) {
14599 		dp_init_err("%pK: dp_monitor_pdev_init failed", soc);
14600 		goto fail6;
14601 	}
14602 
14603 	/* initialize sw rx descriptors */
14604 	dp_rx_pdev_desc_pool_init(pdev);
14605 	/* allocate buffers and replenish the RxDMA ring */
14606 	dp_rx_pdev_buffers_alloc(pdev);
14607 
14608 	dp_init_tso_stats(pdev);
14609 	dp_init_link_peer_stats_enabled(pdev);
14610 
14611 	/* Initialize dp tx fast path flag */
14612 	pdev->tx_fast_flag = DP_TX_DESC_FLAG_SIMPLE;
14613 	if (soc->hw_txrx_stats_en)
14614 		pdev->tx_fast_flag |= DP_TX_DESC_FLAG_FASTPATH_SIMPLE;
14615 
14616 	pdev->rx_fast_flag = false;
14617 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
14618 		qdf_dma_mem_stats_read(),
14619 		qdf_heap_mem_stats_read(),
14620 		qdf_skb_total_mem_stats_read());
14621 
14622 	return QDF_STATUS_SUCCESS;
14623 fail6:
14624 	dp_pdev_bkp_stats_detach(pdev);
14625 fail5:
14626 	dp_ipa_uc_detach(soc, pdev);
14627 fail4:
14628 	dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
14629 fail3:
14630 	dp_rxdma_ring_cleanup(soc, pdev);
14631 	qdf_nbuf_free(pdev->sojourn_buf);
14632 fail2:
14633 	qdf_spinlock_destroy(&pdev->tx_mutex);
14634 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
14635 	dp_pdev_srng_deinit(pdev);
14636 fail1:
14637 	dp_wdi_event_detach(pdev);
14638 fail0:
14639 	return QDF_STATUS_E_FAILURE;
14640 }
14641 
14642 /**
14643  * dp_pdev_init_wifi3() - Init txrx pdev
14644  * @txrx_soc:
14645  * @htc_handle: HTC handle for host-target interface
14646  * @qdf_osdev: QDF OS device
14647  * @pdev_id: pdev Id
14648  *
14649  * Return: QDF_STATUS
14650  */
14651 static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
14652 				     HTC_HANDLE htc_handle,
14653 				     qdf_device_t qdf_osdev,
14654 				     uint8_t pdev_id)
14655 {
14656 	return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
14657 }
14658 
14659 #ifdef FEATURE_DIRECT_LINK
14660 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14661 						 uint8_t pdev_id)
14662 {
14663 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14664 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14665 
14666 	if (!pdev) {
14667 		dp_err("DP pdev is NULL");
14668 		return NULL;
14669 	}
14670 
14671 	if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
14672 			  RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
14673 		dp_err("SRNG alloc failed for rx_refill_buf_ring4");
14674 		return NULL;
14675 	}
14676 
14677 	if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
14678 			 RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
14679 		dp_err("SRNG init failed for rx_refill_buf_ring4");
14680 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14681 		return NULL;
14682 	}
14683 
14684 	if (htt_srng_setup(soc->htt_handle, pdev_id,
14685 			   pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
14686 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
14687 			       DIRECT_LINK_REFILL_RING_IDX);
14688 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14689 		return NULL;
14690 	}
14691 
14692 	return &pdev->rx_refill_buf_ring4;
14693 }
14694 
14695 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14696 					uint8_t pdev_id)
14697 {
14698 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14699 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14700 
14701 	if (!pdev) {
14702 		dp_err("DP pdev is NULL");
14703 		return;
14704 	}
14705 
14706 	dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
14707 	dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14708 }
14709 #endif
14710 
14711 #ifdef QCA_MULTIPASS_SUPPORT
14712 QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
14713 				uint16_t vlan_id, uint16_t group_key)
14714 {
14715 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14716 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
14717 						     DP_MOD_ID_TX_MULTIPASS);
14718 	QDF_STATUS status;
14719 
14720 	dp_info("Try: vdev_id %d, vdev %pK, multipass_en %d, vlan_id %d, group_key %d",
14721 		vdev_id, vdev, vdev ? vdev->multipass_en : 0, vlan_id,
14722 		group_key);
14723 	if (!vdev || !vdev->multipass_en) {
14724 		status = QDF_STATUS_E_INVAL;
14725 		goto fail;
14726 	}
14727 
14728 	if (!vdev->iv_vlan_map) {
14729 		uint16_t vlan_map_size = (sizeof(uint16_t)) * DP_MAX_VLAN_IDS;
14730 
14731 		vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
14732 		if (!vdev->iv_vlan_map) {
14733 			QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
14734 			status = QDF_STATUS_E_NOMEM;
14735 			goto fail;
14736 		}
14737 
14738 		/*
14739 		 * 0 is invalid group key.
14740 		 * Initilalize array with invalid group keys.
14741 		 */
14742 		qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
14743 	}
14744 
14745 	if (vlan_id >= DP_MAX_VLAN_IDS) {
14746 		status = QDF_STATUS_E_INVAL;
14747 		goto fail;
14748 	}
14749 
14750 	dp_info("Successful setting: vdev_id %d, vlan_id %d, group_key %d",
14751 		vdev_id, vlan_id, group_key);
14752 	vdev->iv_vlan_map[vlan_id] = group_key;
14753 	status = QDF_STATUS_SUCCESS;
14754 fail:
14755 	if (vdev)
14756 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
14757 	return status;
14758 }
14759 
14760 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
14761 {
14762 	struct vlan_ethhdr veth_hdr;
14763 	struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
14764 
14765 	/*
14766 	 * Extract VLAN header of 4 bytes:
14767 	 * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4],
14768 	 *		   EtherType[2], Payload}
14769 	 * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02
14770 	 *		    08 00 45 00 00...
14771 	 * After Removal  : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00
14772 	 *		    00...
14773 	 */
14774 	qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
14775 	qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
14776 	veh = (struct vlan_ethhdr *)nbuf->data;
14777 	qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
14778 }
14779 
14780 void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
14781 {
14782 	struct dp_txrx_peer *txrx_peer = NULL;
14783 
14784 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
14785 	TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
14786 		qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
14787 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
14788 
14789 	if (vdev->iv_vlan_map) {
14790 		qdf_mem_free(vdev->iv_vlan_map);
14791 		vdev->iv_vlan_map = NULL;
14792 	}
14793 
14794 	qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
14795 }
14796 
14797 void dp_peer_multipass_list_init(struct dp_vdev *vdev)
14798 {
14799 	/*
14800 	 * vdev->iv_vlan_map is allocated when the first configuration command
14801 	 * is issued to avoid unnecessary allocation for regular mode VAP.
14802 	 */
14803 	TAILQ_INIT(&vdev->mpass_peer_list);
14804 	qdf_spinlock_create(&vdev->mpass_peer_mutex);
14805 }
14806 #endif /* QCA_MULTIPASS_SUPPORT */
14807 
14808 #ifdef WLAN_FEATURE_SSR_DRIVER_DUMP
14809 #define MAX_STR_LEN 50
14810 #define MAX_SRNG_STR_LEN 30
14811 
14812 void dp_ssr_dump_srng_register(char *region_name, struct dp_srng *srng, int num)
14813 {
14814 	char ring[MAX_SRNG_STR_LEN], ring_handle[MAX_STR_LEN];
14815 
14816 	if (num >= 0)
14817 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s%s%d",
14818 			    region_name, "_", num);
14819 	else
14820 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s", region_name);
14821 
14822 	qdf_snprint(ring_handle, MAX_STR_LEN, "%s%s", ring, "_handle");
14823 
14824 	qdf_ssr_driver_dump_register_region(ring_handle, srng->hal_srng,
14825 					    sizeof(struct hal_srng));
14826 	qdf_ssr_driver_dump_register_region(ring,
14827 					    srng->base_vaddr_aligned,
14828 					    srng->alloc_size);
14829 }
14830 
14831 void dp_ssr_dump_srng_unregister(char *region_name, int num)
14832 {
14833 	char ring[MAX_SRNG_STR_LEN], ring_handle[MAX_STR_LEN];
14834 
14835 	if (num >= 0)
14836 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s%s%d",
14837 			    region_name, "_", num);
14838 	else
14839 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s", region_name);
14840 
14841 	qdf_snprint(ring_handle, MAX_STR_LEN, "%s%s", ring, "_handle");
14842 
14843 	qdf_ssr_driver_dump_unregister_region(ring);
14844 	qdf_ssr_driver_dump_unregister_region(ring_handle);
14845 }
14846 
14847 void dp_ssr_dump_pdev_register(struct dp_pdev *pdev, uint8_t pdev_id)
14848 {
14849 	char pdev_str[MAX_STR_LEN];
14850 
14851 	qdf_snprint(pdev_str, MAX_STR_LEN, "%s%s%d", "dp_pdev", "_", pdev_id);
14852 	qdf_ssr_driver_dump_register_region(pdev_str, pdev, sizeof(*pdev));
14853 }
14854 
14855 void dp_ssr_dump_pdev_unregister(uint8_t pdev_id)
14856 {
14857 	char pdev_str[MAX_STR_LEN];
14858 
14859 	qdf_snprint(pdev_str, MAX_STR_LEN, "%s%s%d", "dp_pdev", "_", pdev_id);
14860 	qdf_ssr_driver_dump_unregister_region(pdev_str);
14861 }
14862 #endif
14863