xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_main.c (revision 29e7553979501d159421a1bbec13a9bf8e3cbc09)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_ipa_obj_mgmt_api.h>
21 #include <qdf_types.h>
22 #include <qdf_lock.h>
23 #include <qdf_net_types.h>
24 #include <qdf_lro.h>
25 #include <qdf_module.h>
26 #include <hal_hw_headers.h>
27 #include <hal_api.h>
28 #include <hif.h>
29 #include <htt.h>
30 #include <wdi_event.h>
31 #include <queue.h>
32 #include "dp_types.h"
33 #include "dp_rings.h"
34 #include "dp_internal.h"
35 #include "dp_tx.h"
36 #include "dp_tx_desc.h"
37 #include "dp_rx.h"
38 #ifdef DP_RATETABLE_SUPPORT
39 #include "dp_ratetable.h"
40 #endif
41 #include <cdp_txrx_handle.h>
42 #include <wlan_cfg.h>
43 #include <wlan_utility.h>
44 #include "cdp_txrx_cmn_struct.h"
45 #include "cdp_txrx_stats_struct.h"
46 #include "cdp_txrx_cmn_reg.h"
47 #include <qdf_util.h>
48 #include "dp_peer.h"
49 #include "htt_stats.h"
50 #include "dp_htt.h"
51 #ifdef WLAN_SUPPORT_RX_FISA
52 #include <wlan_dp_fisa_rx.h>
53 #endif
54 #include "htt_ppdu_stats.h"
55 #include "qdf_mem.h"   /* qdf_mem_malloc,free */
56 #include "cfg_ucfg_api.h"
57 #include <wlan_module_ids.h>
58 #ifdef QCA_MULTIPASS_SUPPORT
59 #include <enet.h>
60 #endif
61 
62 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
63 #include "cdp_txrx_flow_ctrl_v2.h"
64 #else
65 
66 static inline void
67 cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
68 {
69 	return;
70 }
71 #endif
72 #ifdef WIFI_MONITOR_SUPPORT
73 #include <dp_mon.h>
74 #endif
75 #include "dp_ipa.h"
76 #ifdef FEATURE_WDS
77 #include "dp_txrx_wds.h"
78 #endif
79 #ifdef WLAN_SUPPORT_MSCS
80 #include "dp_mscs.h"
81 #endif
82 #ifdef WLAN_SUPPORT_MESH_LATENCY
83 #include "dp_mesh_latency.h"
84 #endif
85 #ifdef WLAN_SUPPORT_SCS
86 #include "dp_scs.h"
87 #endif
88 #ifdef ATH_SUPPORT_IQUE
89 #include "dp_txrx_me.h"
90 #endif
91 #if defined(DP_CON_MON)
92 #ifndef REMOVE_PKT_LOG
93 #include <pktlog_ac_api.h>
94 #include <pktlog_ac.h>
95 #endif
96 #endif
97 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
98 #include <wlan_dp_swlm.h>
99 #endif
100 #ifdef WLAN_DP_PROFILE_SUPPORT
101 #include <wlan_dp_main.h>
102 #endif
103 #ifdef CONFIG_SAWF_DEF_QUEUES
104 #include "dp_sawf.h"
105 #endif
106 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
107 #include "dp_rx_tag.h"
108 #endif
109 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
110 #include <target_if_dp.h>
111 #endif
112 #include "qdf_ssr_driver_dump.h"
113 
114 #ifdef WLAN_SUPPORT_DPDK
115 #include <dp_dpdk.h>
116 #endif
117 
118 #ifdef QCA_DP_ENABLE_TX_COMP_RING4
119 #define TXCOMP_RING4_NUM 3
120 #else
121 #define TXCOMP_RING4_NUM WBM2SW_TXCOMP_RING4_NUM
122 #endif
123 
124 #if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
125 #define SET_PEER_REF_CNT_ONE(_peer) \
126 	qdf_atomic_set(&(_peer)->ref_cnt, 1)
127 #else
128 #define SET_PEER_REF_CNT_ONE(_peer)
129 #endif
130 
131 #ifdef WLAN_SYSFS_DP_STATS
132 /* sysfs event wait time for firmware stat request unit milliseconds */
133 #define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
134 #endif
135 
136 #ifdef QCA_DP_TX_FW_METADATA_V2
137 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
138 		HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
139 #else
140 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
141 		HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
142 #endif
143 #define MLD_MODE_INVALID 0xFF
144 
145 QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
146 			MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
147 
148 QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
149 			MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
150 
151 void dp_configure_arch_ops(struct dp_soc *soc);
152 qdf_size_t dp_get_soc_context_size(uint16_t device_id);
153 
154 /*
155  * The max size of cdp_peer_stats_param_t is limited to 16 bytes.
156  * If the buffer size is exceeding this size limit,
157  * dp_txrx_get_peer_stats is to be used instead.
158  */
159 QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
160 			(sizeof(cdp_peer_stats_param_t) <= 16));
161 
162 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
163 /*
164  * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
165  * also should be updated accordingly
166  */
167 QDF_COMPILE_TIME_ASSERT(num_intr_grps,
168 			HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
169 
170 /*
171  * HIF_EVENT_HIST_MAX should always be power of 2
172  */
173 QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
174 			(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
175 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
176 
177 /*
178  * If WLAN_CFG_INT_NUM_CONTEXTS is changed,
179  * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
180  */
181 QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
182 			WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
183 			WLAN_CFG_INT_NUM_CONTEXTS);
184 
185 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc);
186 static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
187 static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
188 
189 static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
190 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
191 static void dp_pdev_srng_free(struct dp_pdev *pdev);
192 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
193 
194 static inline
195 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
196 				struct cdp_pdev_attach_params *params);
197 
198 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
199 
200 static QDF_STATUS
201 dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
202 		   HTC_HANDLE htc_handle,
203 		   qdf_device_t qdf_osdev,
204 		   uint8_t pdev_id);
205 
206 static QDF_STATUS
207 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
208 
209 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
210 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
211 
212 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
213 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
214 				       uint8_t pdev_id,
215 				       int force);
216 static struct dp_soc *
217 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
218 	      struct cdp_soc_attach_params *params);
219 static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
220 					      uint8_t vdev_id,
221 					      uint8_t *peer_mac_addr,
222 					      enum cdp_peer_type peer_type);
223 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
224 				       uint8_t vdev_id,
225 				       uint8_t *peer_mac, uint32_t bitmap,
226 				       enum cdp_peer_type peer_type);
227 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
228 				bool unmap_only,
229 				bool mlo_peers_only);
230 #ifdef ENABLE_VERBOSE_DEBUG
231 bool is_dp_verbose_debug_enabled;
232 #endif
233 
234 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
235 static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
236 static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
237 			   bool enable);
238 static inline void
239 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
240 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats);
241 static inline void
242 dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
243 #endif
244 
245 #ifdef DP_UMAC_HW_RESET_SUPPORT
246 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
247 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
248 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
249 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
250 #endif
251 
252 #define MON_VDEV_TIMER_INIT 0x1
253 #define MON_VDEV_TIMER_RUNNING 0x2
254 
255 #define DP_MCS_LENGTH (6*MAX_MCS)
256 
257 #define DP_CURR_FW_STATS_AVAIL 19
258 #define DP_HTT_DBG_EXT_STATS_MAX 256
259 #define DP_MAX_SLEEP_TIME 100
260 #ifndef QCA_WIFI_3_0_EMU
261 #define SUSPEND_DRAIN_WAIT 500
262 #else
263 #define SUSPEND_DRAIN_WAIT 3000
264 #endif
265 
266 #ifdef IPA_OFFLOAD
267 /* Exclude IPA rings from the interrupt context */
268 #define TX_RING_MASK_VAL	0xb
269 #define RX_RING_MASK_VAL	0x7
270 #else
271 #define TX_RING_MASK_VAL	0xF
272 #define RX_RING_MASK_VAL	0xF
273 #endif
274 
275 #define STR_MAXLEN	64
276 
277 #define RNG_ERR		"SRNG setup failed for"
278 
279 /**
280  * enum dp_stats_type - Select the type of statistics
281  * @STATS_FW: Firmware-based statistic
282  * @STATS_HOST: Host-based statistic
283  * @STATS_TYPE_MAX: maximum enumeration
284  */
285 enum dp_stats_type {
286 	STATS_FW = 0,
287 	STATS_HOST = 1,
288 	STATS_TYPE_MAX = 2,
289 };
290 
291 /**
292  * enum dp_fw_stats - General Firmware statistics options
293  * @TXRX_FW_STATS_INVALID: statistic is not available
294  */
295 enum dp_fw_stats {
296 	TXRX_FW_STATS_INVALID	= -1,
297 };
298 
299 /*
300  * dp_stats_mapping_table - Firmware and Host statistics
301  * currently supported
302  */
303 #ifndef WLAN_SOFTUMAC_SUPPORT
304 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
305 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
306 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
307 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
308 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
309 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
310 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
311 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
312 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
313 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
314 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
315 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
316 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
317 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
318 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
319 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
320 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
321 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
322 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
323 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
324 	/* Last ENUM for HTT FW STATS */
325 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
326 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
327 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
328 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
329 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
330 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
331 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
332 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
333 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
334 	{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
335 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
336 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
337 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
338 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
339 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
340 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
341 	{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
342 	{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
343 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
344 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
345 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID},
346 	{TXRX_FW_STATS_INVALID, TXRX_PEER_STATS},
347 };
348 #else
349 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
350 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
351 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
352 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
353 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
354 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
355 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
356 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
357 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
358 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
359 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
360 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
361 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
362 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
363 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
364 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
365 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
366 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
367 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
368 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
369 	/* Last ENUM for HTT FW STATS */
370 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
371 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
372 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
373 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
374 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
375 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
376 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
377 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
378 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
379 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
380 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
381 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
382 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
383 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
384 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
385 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
386 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
387 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
388 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
389 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
390 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
391 };
392 #endif
393 
394 /* MCL specific functions */
395 #if defined(DP_CON_MON)
396 
397 #ifdef IPA_OFFLOAD
398 /**
399  * dp_get_num_rx_contexts() - get number of RX contexts
400  * @soc_hdl: cdp opaque soc handle
401  *
402  * Return: number of RX contexts
403  */
404 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
405 {
406 	int num_rx_contexts;
407 	uint32_t reo_ring_map;
408 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
409 
410 	reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
411 
412 	switch (soc->arch_id) {
413 	case CDP_ARCH_TYPE_BE:
414 		/* 2 REO rings are used for IPA */
415 		reo_ring_map &=  ~(BIT(3) | BIT(7));
416 
417 		break;
418 	case CDP_ARCH_TYPE_LI:
419 		/* 1 REO ring is used for IPA */
420 		reo_ring_map &=  ~BIT(3);
421 		break;
422 	default:
423 		dp_err("unknown arch_id 0x%x", soc->arch_id);
424 		QDF_BUG(0);
425 	}
426 	/*
427 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
428 	 * in future
429 	 */
430 	num_rx_contexts = qdf_get_hweight32(reo_ring_map);
431 
432 	return num_rx_contexts;
433 }
434 #else
435 #ifdef WLAN_SOFTUMAC_SUPPORT
436 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
437 {
438 	uint32_t rx_rings_config;
439 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
440 
441 	rx_rings_config = wlan_cfg_get_rx_rings_mapping(soc->wlan_cfg_ctx);
442 	/*
443 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
444 	 * in future
445 	 */
446 	return qdf_get_hweight32(rx_rings_config);
447 }
448 #else
449 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
450 {
451 	int num_rx_contexts;
452 	uint32_t reo_config;
453 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
454 
455 	reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
456 	/*
457 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
458 	 * in future
459 	 */
460 	num_rx_contexts = qdf_get_hweight32(reo_config);
461 
462 	return num_rx_contexts;
463 }
464 #endif /* WLAN_SOFTUMAC_SUPPORT */
465 #endif
466 
467 #endif
468 
469 #ifdef FEATURE_MEC
470 void dp_peer_mec_flush_entries(struct dp_soc *soc)
471 {
472 	unsigned int index;
473 	struct dp_mec_entry *mecentry, *mecentry_next;
474 
475 	TAILQ_HEAD(, dp_mec_entry) free_list;
476 	TAILQ_INIT(&free_list);
477 
478 	if (!soc->mec_hash.mask)
479 		return;
480 
481 	if (!soc->mec_hash.bins)
482 		return;
483 
484 	if (!qdf_atomic_read(&soc->mec_cnt))
485 		return;
486 
487 	qdf_spin_lock_bh(&soc->mec_lock);
488 	for (index = 0; index <= soc->mec_hash.mask; index++) {
489 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
490 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
491 					   hash_list_elem, mecentry_next) {
492 			    dp_peer_mec_detach_entry(soc, mecentry, &free_list);
493 			}
494 		}
495 	}
496 	qdf_spin_unlock_bh(&soc->mec_lock);
497 
498 	dp_peer_mec_free_list(soc, &free_list);
499 }
500 
501 /**
502  * dp_print_mec_stats() - Dump MEC entries in table
503  * @soc: Datapath soc handle
504  *
505  * Return: none
506  */
507 static void dp_print_mec_stats(struct dp_soc *soc)
508 {
509 	int i;
510 	uint32_t index;
511 	struct dp_mec_entry *mecentry = NULL, *mec_list;
512 	uint32_t num_entries = 0;
513 
514 	DP_PRINT_STATS("MEC Stats:");
515 	DP_PRINT_STATS("   Entries Added   = %d", soc->stats.mec.added);
516 	DP_PRINT_STATS("   Entries Deleted = %d", soc->stats.mec.deleted);
517 
518 	if (!qdf_atomic_read(&soc->mec_cnt))
519 		return;
520 
521 	mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
522 	if (!mec_list) {
523 		dp_peer_warn("%pK: failed to allocate mec_list", soc);
524 		return;
525 	}
526 
527 	DP_PRINT_STATS("MEC Table:");
528 	for (index = 0; index <= soc->mec_hash.mask; index++) {
529 		qdf_spin_lock_bh(&soc->mec_lock);
530 		if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
531 			qdf_spin_unlock_bh(&soc->mec_lock);
532 			continue;
533 		}
534 
535 		TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
536 			      hash_list_elem) {
537 			qdf_mem_copy(&mec_list[num_entries], mecentry,
538 				     sizeof(*mecentry));
539 			num_entries++;
540 		}
541 		qdf_spin_unlock_bh(&soc->mec_lock);
542 	}
543 
544 	if (!num_entries) {
545 		qdf_mem_free(mec_list);
546 		return;
547 	}
548 
549 	for (i = 0; i < num_entries; i++) {
550 		DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
551 			       " is_active = %d pdev_id = %d vdev_id = %d",
552 			       i,
553 			       QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
554 			       mec_list[i].is_active,
555 			       mec_list[i].pdev_id,
556 			       mec_list[i].vdev_id);
557 	}
558 	qdf_mem_free(mec_list);
559 }
560 #else
561 static void dp_print_mec_stats(struct dp_soc *soc)
562 {
563 }
564 #endif
565 
566 static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
567 				 uint8_t vdev_id,
568 				 uint8_t *peer_mac,
569 				 uint8_t *mac_addr,
570 				 enum cdp_txrx_ast_entry_type type,
571 				 uint32_t flags)
572 {
573 	int ret = -1;
574 	QDF_STATUS status = QDF_STATUS_SUCCESS;
575 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
576 						       peer_mac, 0, vdev_id,
577 						       DP_MOD_ID_CDP);
578 
579 	if (!peer) {
580 		dp_peer_debug("Peer is NULL!");
581 		return ret;
582 	}
583 
584 	status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
585 				 peer,
586 				 mac_addr,
587 				 type,
588 				 flags);
589 	if ((status == QDF_STATUS_SUCCESS) ||
590 	    (status == QDF_STATUS_E_ALREADY) ||
591 	    (status == QDF_STATUS_E_AGAIN))
592 		ret = 0;
593 
594 	dp_hmwds_ast_add_notify(peer, mac_addr,
595 				type, status, false);
596 
597 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
598 
599 	return ret;
600 }
601 
602 static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
603 						uint8_t vdev_id,
604 						uint8_t *peer_mac,
605 						uint8_t *wds_macaddr,
606 						uint32_t flags)
607 {
608 	int status = -1;
609 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
610 	struct dp_ast_entry  *ast_entry = NULL;
611 	struct dp_peer *peer;
612 
613 	if (soc->ast_offload_support)
614 		return status;
615 
616 	peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
617 				      peer_mac, 0, vdev_id,
618 				      DP_MOD_ID_CDP);
619 
620 	if (!peer) {
621 		dp_peer_debug("Peer is NULL!");
622 		return status;
623 	}
624 
625 	qdf_spin_lock_bh(&soc->ast_lock);
626 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
627 						    peer->vdev->pdev->pdev_id);
628 
629 	if (ast_entry) {
630 		status = dp_peer_update_ast(soc,
631 					    peer,
632 					    ast_entry, flags);
633 	}
634 	qdf_spin_unlock_bh(&soc->ast_lock);
635 
636 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
637 
638 	return status;
639 }
640 
641 /**
642  * dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
643  * @soc:		Datapath SOC handle
644  * @peer:		DP peer
645  * @arg:		callback argument
646  *
647  * Return: None
648  */
649 static void
650 dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
651 {
652 	struct dp_ast_entry *ast_entry = NULL;
653 	struct dp_ast_entry *tmp_ast_entry;
654 
655 	DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
656 		if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
657 		    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
658 			dp_peer_del_ast(soc, ast_entry);
659 	}
660 }
661 
662 /**
663  * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
664  * @soc_hdl:		Datapath SOC handle
665  * @wds_macaddr:	WDS entry MAC Address
666  * @peer_mac_addr:	WDS entry MAC Address
667  * @vdev_id:		id of vdev handle
668  *
669  * Return: QDF_STATUS
670  */
671 static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
672 					 uint8_t *wds_macaddr,
673 					 uint8_t *peer_mac_addr,
674 					 uint8_t vdev_id)
675 {
676 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
677 	struct dp_ast_entry *ast_entry = NULL;
678 	struct dp_peer *peer;
679 	struct dp_pdev *pdev;
680 	struct dp_vdev *vdev;
681 
682 	if (soc->ast_offload_support)
683 		return QDF_STATUS_E_FAILURE;
684 
685 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
686 
687 	if (!vdev)
688 		return QDF_STATUS_E_FAILURE;
689 
690 	pdev = vdev->pdev;
691 
692 	if (peer_mac_addr) {
693 		peer = dp_peer_find_hash_find(soc, peer_mac_addr,
694 					      0, vdev->vdev_id,
695 					      DP_MOD_ID_CDP);
696 		if (!peer) {
697 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
698 			return QDF_STATUS_E_FAILURE;
699 		}
700 
701 		qdf_spin_lock_bh(&soc->ast_lock);
702 		dp_peer_reset_ast_entries(soc, peer, NULL);
703 		qdf_spin_unlock_bh(&soc->ast_lock);
704 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
705 	} else if (wds_macaddr) {
706 		qdf_spin_lock_bh(&soc->ast_lock);
707 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
708 							    pdev->pdev_id);
709 
710 		if (ast_entry) {
711 			if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
712 			    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
713 				dp_peer_del_ast(soc, ast_entry);
714 		}
715 		qdf_spin_unlock_bh(&soc->ast_lock);
716 	}
717 
718 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
719 	return QDF_STATUS_SUCCESS;
720 }
721 
722 /**
723  * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
724  * @soc_hdl:		Datapath SOC handle
725  * @vdev_id:		id of vdev object
726  *
727  * Return: QDF_STATUS
728  */
729 static QDF_STATUS
730 dp_wds_reset_ast_table_wifi3(struct cdp_soc_t  *soc_hdl,
731 			     uint8_t vdev_id)
732 {
733 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
734 
735 	if (soc->ast_offload_support)
736 		return QDF_STATUS_SUCCESS;
737 
738 	qdf_spin_lock_bh(&soc->ast_lock);
739 
740 	dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
741 			    DP_MOD_ID_CDP);
742 	qdf_spin_unlock_bh(&soc->ast_lock);
743 
744 	return QDF_STATUS_SUCCESS;
745 }
746 
747 /**
748  * dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
749  * @soc:		Datapath SOC
750  * @peer:		Datapath peer
751  * @arg:		arg to callback
752  *
753  * Return: None
754  */
755 static void
756 dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
757 {
758 	struct dp_ast_entry *ase = NULL;
759 	struct dp_ast_entry *temp_ase;
760 
761 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
762 		if ((ase->type ==
763 			CDP_TXRX_AST_TYPE_STATIC) ||
764 			(ase->type ==
765 			 CDP_TXRX_AST_TYPE_SELF) ||
766 			(ase->type ==
767 			 CDP_TXRX_AST_TYPE_STA_BSS))
768 			continue;
769 		dp_peer_del_ast(soc, ase);
770 	}
771 }
772 
773 /**
774  * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
775  * @soc_hdl:		Datapath SOC handle
776  *
777  * Return: None
778  */
779 static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t  *soc_hdl)
780 {
781 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
782 
783 	qdf_spin_lock_bh(&soc->ast_lock);
784 
785 	dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
786 			    DP_MOD_ID_CDP);
787 
788 	qdf_spin_unlock_bh(&soc->ast_lock);
789 	dp_peer_mec_flush_entries(soc);
790 }
791 
792 #if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
793 /**
794  * dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
795  * @soc: Datapath SOC
796  * @peer: Datapath peer
797  *
798  * Return: None
799  */
800 static void
801 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
802 {
803 	struct dp_ast_entry *ase = NULL;
804 	struct dp_ast_entry *temp_ase;
805 
806 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
807 		if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
808 			soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
809 								      ase->mac_addr.raw,
810 								      ase->vdev_id);
811 		}
812 	}
813 }
814 #elif defined(FEATURE_AST)
815 static void
816 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
817 {
818 }
819 #endif
820 
821 /**
822  * dp_peer_check_ast_offload() - check ast offload support is enable or not
823  * @soc: soc handle
824  *
825  * Return: false in case of IPA and true/false in IPQ case
826  *
827  */
828 #if defined(IPA_OFFLOAD) && defined(QCA_WIFI_QCN9224)
829 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
830 {
831 	return false;
832 }
833 #else
834 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
835 {
836 	if (soc->ast_offload_support)
837 		return true;
838 
839 	return false;
840 }
841 #endif
842 
843 /**
844  * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
845  *                                       and return ast entry information
846  *                                       of first ast entry found in the
847  *                                       table with given mac address
848  * @soc_hdl: data path soc handle
849  * @ast_mac_addr: AST entry mac address
850  * @ast_entry_info: ast entry information
851  *
852  * Return: true if ast entry found with ast_mac_addr
853  *          false if ast entry not found
854  */
855 static bool dp_peer_get_ast_info_by_soc_wifi3
856 	(struct cdp_soc_t *soc_hdl,
857 	 uint8_t *ast_mac_addr,
858 	 struct cdp_ast_entry_info *ast_entry_info)
859 {
860 	struct dp_ast_entry *ast_entry = NULL;
861 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
862 	struct dp_peer *peer = NULL;
863 
864 	if (dp_peer_check_ast_offload(soc))
865 		return false;
866 
867 	qdf_spin_lock_bh(&soc->ast_lock);
868 
869 	ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
870 	if ((!ast_entry) ||
871 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
872 		qdf_spin_unlock_bh(&soc->ast_lock);
873 		return false;
874 	}
875 
876 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
877 				     DP_MOD_ID_AST);
878 	if (!peer) {
879 		qdf_spin_unlock_bh(&soc->ast_lock);
880 		return false;
881 	}
882 
883 	ast_entry_info->type = ast_entry->type;
884 	ast_entry_info->pdev_id = ast_entry->pdev_id;
885 	ast_entry_info->vdev_id = ast_entry->vdev_id;
886 	ast_entry_info->peer_id = ast_entry->peer_id;
887 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
888 		     &peer->mac_addr.raw[0],
889 		     QDF_MAC_ADDR_SIZE);
890 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
891 	qdf_spin_unlock_bh(&soc->ast_lock);
892 	return true;
893 }
894 
895 /**
896  * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
897  *                                          and return ast entry information
898  *                                          if mac address and pdev_id matches
899  * @soc_hdl: data path soc handle
900  * @ast_mac_addr: AST entry mac address
901  * @pdev_id: pdev_id
902  * @ast_entry_info: ast entry information
903  *
904  * Return: true if ast entry found with ast_mac_addr
905  *          false if ast entry not found
906  */
907 static bool dp_peer_get_ast_info_by_pdevid_wifi3
908 		(struct cdp_soc_t *soc_hdl,
909 		 uint8_t *ast_mac_addr,
910 		 uint8_t pdev_id,
911 		 struct cdp_ast_entry_info *ast_entry_info)
912 {
913 	struct dp_ast_entry *ast_entry;
914 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
915 	struct dp_peer *peer = NULL;
916 
917 	if (soc->ast_offload_support)
918 		return false;
919 
920 	qdf_spin_lock_bh(&soc->ast_lock);
921 
922 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
923 						    pdev_id);
924 
925 	if ((!ast_entry) ||
926 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
927 		qdf_spin_unlock_bh(&soc->ast_lock);
928 		return false;
929 	}
930 
931 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
932 				     DP_MOD_ID_AST);
933 	if (!peer) {
934 		qdf_spin_unlock_bh(&soc->ast_lock);
935 		return false;
936 	}
937 
938 	ast_entry_info->type = ast_entry->type;
939 	ast_entry_info->pdev_id = ast_entry->pdev_id;
940 	ast_entry_info->vdev_id = ast_entry->vdev_id;
941 	ast_entry_info->peer_id = ast_entry->peer_id;
942 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
943 		     &peer->mac_addr.raw[0],
944 		     QDF_MAC_ADDR_SIZE);
945 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
946 	qdf_spin_unlock_bh(&soc->ast_lock);
947 	return true;
948 }
949 
950 /**
951  * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
952  *                            with given mac address
953  * @soc_handle: data path soc handle
954  * @mac_addr: AST entry mac address
955  * @callback: callback function to called on ast delete response from FW
956  * @cookie: argument to be passed to callback
957  *
958  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
959  *          is sent
960  *          QDF_STATUS_E_INVAL false if ast entry not found
961  */
962 static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
963 					       uint8_t *mac_addr,
964 					       txrx_ast_free_cb callback,
965 					       void *cookie)
966 
967 {
968 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
969 	struct dp_ast_entry *ast_entry = NULL;
970 	txrx_ast_free_cb cb = NULL;
971 	void *arg = NULL;
972 
973 	if (soc->ast_offload_support)
974 		return -QDF_STATUS_E_INVAL;
975 
976 	qdf_spin_lock_bh(&soc->ast_lock);
977 	ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
978 	if (!ast_entry) {
979 		qdf_spin_unlock_bh(&soc->ast_lock);
980 		return -QDF_STATUS_E_INVAL;
981 	}
982 
983 	if (ast_entry->callback) {
984 		cb = ast_entry->callback;
985 		arg = ast_entry->cookie;
986 	}
987 
988 	ast_entry->callback = callback;
989 	ast_entry->cookie = cookie;
990 
991 	/*
992 	 * if delete_in_progress is set AST delete is sent to target
993 	 * and host is waiting for response should not send delete
994 	 * again
995 	 */
996 	if (!ast_entry->delete_in_progress)
997 		dp_peer_del_ast(soc, ast_entry);
998 
999 	qdf_spin_unlock_bh(&soc->ast_lock);
1000 	if (cb) {
1001 		cb(soc->ctrl_psoc,
1002 		   dp_soc_to_cdp_soc(soc),
1003 		   arg,
1004 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1005 	}
1006 	return QDF_STATUS_SUCCESS;
1007 }
1008 
1009 /**
1010  * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
1011  *                                   table if mac address and pdev_id matches
1012  * @soc_handle: data path soc handle
1013  * @mac_addr: AST entry mac address
1014  * @pdev_id: pdev id
1015  * @callback: callback function to called on ast delete response from FW
1016  * @cookie: argument to be passed to callback
1017  *
1018  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1019  *          is sent
1020  *          QDF_STATUS_E_INVAL false if ast entry not found
1021  */
1022 
1023 static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
1024 						uint8_t *mac_addr,
1025 						uint8_t pdev_id,
1026 						txrx_ast_free_cb callback,
1027 						void *cookie)
1028 
1029 {
1030 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1031 	struct dp_ast_entry *ast_entry;
1032 	txrx_ast_free_cb cb = NULL;
1033 	void *arg = NULL;
1034 
1035 	if (soc->ast_offload_support)
1036 		return -QDF_STATUS_E_INVAL;
1037 
1038 	qdf_spin_lock_bh(&soc->ast_lock);
1039 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
1040 
1041 	if (!ast_entry) {
1042 		qdf_spin_unlock_bh(&soc->ast_lock);
1043 		return -QDF_STATUS_E_INVAL;
1044 	}
1045 
1046 	if (ast_entry->callback) {
1047 		cb = ast_entry->callback;
1048 		arg = ast_entry->cookie;
1049 	}
1050 
1051 	ast_entry->callback = callback;
1052 	ast_entry->cookie = cookie;
1053 
1054 	/*
1055 	 * if delete_in_progress is set AST delete is sent to target
1056 	 * and host is waiting for response should not sent delete
1057 	 * again
1058 	 */
1059 	if (!ast_entry->delete_in_progress)
1060 		dp_peer_del_ast(soc, ast_entry);
1061 
1062 	qdf_spin_unlock_bh(&soc->ast_lock);
1063 
1064 	if (cb) {
1065 		cb(soc->ctrl_psoc,
1066 		   dp_soc_to_cdp_soc(soc),
1067 		   arg,
1068 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1069 	}
1070 	return QDF_STATUS_SUCCESS;
1071 }
1072 
1073 /**
1074  * dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
1075  *                                 table if HMWDS rem-addr command is issued
1076  *
1077  * @soc_handle: data path soc handle
1078  * @vdev_id: vdev id
1079  * @wds_macaddr: AST entry mac address to delete
1080  * @type: cdp_txrx_ast_entry_type to send to FW
1081  * @delete_in_fw: flag to indicate AST entry deletion in FW
1082  *
1083  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1084  *         is sent
1085  *         QDF_STATUS_E_INVAL false if ast entry not found
1086  */
1087 static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
1088 					      uint8_t vdev_id,
1089 					      uint8_t *wds_macaddr,
1090 					      uint8_t type,
1091 					      uint8_t delete_in_fw)
1092 {
1093 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1094 
1095 	if (soc->ast_offload_support) {
1096 		dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
1097 					 delete_in_fw);
1098 		return QDF_STATUS_SUCCESS;
1099 	}
1100 
1101 	return -QDF_STATUS_E_INVAL;
1102 }
1103 
1104 #ifdef FEATURE_AST
1105 /**
1106  * dp_print_mlo_ast_stats() - Print AST stats for MLO peers
1107  *
1108  * @soc: core DP soc context
1109  *
1110  * Return: void
1111  */
1112 static void dp_print_mlo_ast_stats(struct dp_soc *soc)
1113 {
1114 	if (soc->arch_ops.print_mlo_ast_stats)
1115 		soc->arch_ops.print_mlo_ast_stats(soc);
1116 }
1117 
1118 void
1119 dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1120 {
1121 	struct dp_ast_entry *ase, *tmp_ase;
1122 	uint32_t num_entries = 0;
1123 	char type[CDP_TXRX_AST_TYPE_MAX][10] = {
1124 			"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
1125 			"DA", "HMWDS_SEC", "MLD"};
1126 
1127 	DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
1128 	    DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
1129 		    " peer_mac_addr = "QDF_MAC_ADDR_FMT
1130 		    " peer_id = %u"
1131 		    " type = %s"
1132 		    " next_hop = %d"
1133 		    " is_active = %d"
1134 		    " ast_idx = %d"
1135 		    " ast_hash = %d"
1136 		    " delete_in_progress = %d"
1137 		    " pdev_id = %d"
1138 		    " vdev_id = %d",
1139 		    ++num_entries,
1140 		    QDF_MAC_ADDR_REF(ase->mac_addr.raw),
1141 		    QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1142 		    ase->peer_id,
1143 		    type[ase->type],
1144 		    ase->next_hop,
1145 		    ase->is_active,
1146 		    ase->ast_idx,
1147 		    ase->ast_hash_value,
1148 		    ase->delete_in_progress,
1149 		    ase->pdev_id,
1150 		    ase->vdev_id);
1151 	}
1152 }
1153 
1154 void dp_print_ast_stats(struct dp_soc *soc)
1155 {
1156 	DP_PRINT_STATS("AST Stats:");
1157 	DP_PRINT_STATS("	Entries Added   = %d", soc->stats.ast.added);
1158 	DP_PRINT_STATS("	Entries Deleted = %d", soc->stats.ast.deleted);
1159 	DP_PRINT_STATS("	Entries Agedout = %d", soc->stats.ast.aged_out);
1160 	DP_PRINT_STATS("	Entries MAP ERR  = %d", soc->stats.ast.map_err);
1161 	DP_PRINT_STATS("	Entries Mismatch ERR  = %d",
1162 		       soc->stats.ast.ast_mismatch);
1163 
1164 	DP_PRINT_STATS("AST Table:");
1165 
1166 	qdf_spin_lock_bh(&soc->ast_lock);
1167 
1168 	dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
1169 			    DP_MOD_ID_GENERIC_STATS);
1170 
1171 	qdf_spin_unlock_bh(&soc->ast_lock);
1172 
1173 	dp_print_mlo_ast_stats(soc);
1174 }
1175 #else
1176 void dp_print_ast_stats(struct dp_soc *soc)
1177 {
1178 	DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
1179 	return;
1180 }
1181 #endif
1182 
1183 /**
1184  * dp_print_peer_info() - Dump peer info
1185  * @soc: Datapath soc handle
1186  * @peer: Datapath peer handle
1187  * @arg: argument to iter function
1188  *
1189  * Return: void
1190  */
1191 static void
1192 dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1193 {
1194 	struct dp_txrx_peer *txrx_peer = NULL;
1195 
1196 	txrx_peer = dp_get_txrx_peer(peer);
1197 	if (!txrx_peer)
1198 		return;
1199 
1200 	DP_PRINT_STATS(" peer id = %d"
1201 		       " peer_mac_addr = "QDF_MAC_ADDR_FMT
1202 		       " nawds_enabled = %d"
1203 		       " bss_peer = %d"
1204 		       " wds_enabled = %d"
1205 		       " tx_cap_enabled = %d"
1206 		       " rx_cap_enabled = %d",
1207 		       peer->peer_id,
1208 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1209 		       txrx_peer->nawds_enabled,
1210 		       txrx_peer->bss_peer,
1211 		       txrx_peer->wds_enabled,
1212 		       dp_monitor_is_tx_cap_enabled(peer),
1213 		       dp_monitor_is_rx_cap_enabled(peer));
1214 }
1215 
1216 /**
1217  * dp_print_peer_table() - Dump all Peer stats
1218  * @vdev: Datapath Vdev handle
1219  *
1220  * Return: void
1221  */
1222 static void dp_print_peer_table(struct dp_vdev *vdev)
1223 {
1224 	DP_PRINT_STATS("Dumping Peer Table  Stats:");
1225 	dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
1226 			     DP_MOD_ID_GENERIC_STATS);
1227 }
1228 
1229 #ifdef DP_MEM_PRE_ALLOC
1230 
1231 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1232 			   size_t ctxt_size)
1233 {
1234 	void *ctxt_mem;
1235 
1236 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
1237 		dp_warn("dp_prealloc_get_context null!");
1238 		goto dynamic_alloc;
1239 	}
1240 
1241 	ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
1242 								ctxt_size);
1243 
1244 	if (ctxt_mem)
1245 		goto end;
1246 
1247 dynamic_alloc:
1248 	dp_info("switch to dynamic-alloc for type %d, size %zu",
1249 		ctxt_type, ctxt_size);
1250 	ctxt_mem = qdf_mem_malloc(ctxt_size);
1251 end:
1252 	return ctxt_mem;
1253 }
1254 
1255 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1256 			 void *vaddr)
1257 {
1258 	QDF_STATUS status;
1259 
1260 	if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
1261 		status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
1262 								ctxt_type,
1263 								vaddr);
1264 	} else {
1265 		dp_warn("dp_prealloc_put_context null!");
1266 		status = QDF_STATUS_E_NOSUPPORT;
1267 	}
1268 
1269 	if (QDF_IS_STATUS_ERROR(status)) {
1270 		dp_info("Context type %d not pre-allocated", ctxt_type);
1271 		qdf_mem_free(vaddr);
1272 	}
1273 }
1274 
1275 static inline
1276 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1277 					   struct dp_srng *srng,
1278 					   uint32_t ring_type)
1279 {
1280 	void *mem;
1281 
1282 	qdf_assert(!srng->is_mem_prealloc);
1283 
1284 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
1285 		dp_warn("dp_prealloc_get_consistent is null!");
1286 		goto qdf;
1287 	}
1288 
1289 	mem =
1290 		soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
1291 						(&srng->alloc_size,
1292 						 &srng->base_vaddr_unaligned,
1293 						 &srng->base_paddr_unaligned,
1294 						 &srng->base_paddr_aligned,
1295 						 DP_RING_BASE_ALIGN, ring_type);
1296 
1297 	if (mem) {
1298 		srng->is_mem_prealloc = true;
1299 		goto end;
1300 	}
1301 qdf:
1302 	mem =  qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1303 						&srng->base_vaddr_unaligned,
1304 						&srng->base_paddr_unaligned,
1305 						&srng->base_paddr_aligned,
1306 						DP_RING_BASE_ALIGN);
1307 end:
1308 	dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
1309 		srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
1310 		srng, ring_type, srng->alloc_size, srng->num_entries);
1311 	return mem;
1312 }
1313 
1314 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1315 					       struct dp_srng *srng)
1316 {
1317 	if (srng->is_mem_prealloc) {
1318 		if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
1319 			dp_warn("dp_prealloc_put_consistent is null!");
1320 			QDF_BUG(0);
1321 			return;
1322 		}
1323 		soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
1324 						(srng->alloc_size,
1325 						 srng->base_vaddr_unaligned,
1326 						 srng->base_paddr_unaligned);
1327 
1328 	} else {
1329 		qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1330 					srng->alloc_size,
1331 					srng->base_vaddr_unaligned,
1332 					srng->base_paddr_unaligned, 0);
1333 	}
1334 }
1335 
1336 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
1337 				   enum qdf_dp_desc_type desc_type,
1338 				   struct qdf_mem_multi_page_t *pages,
1339 				   size_t element_size,
1340 				   uint32_t element_num,
1341 				   qdf_dma_context_t memctxt,
1342 				   bool cacheable)
1343 {
1344 	if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
1345 		dp_warn("dp_get_multi_pages is null!");
1346 		goto qdf;
1347 	}
1348 
1349 	pages->num_pages = 0;
1350 	pages->is_mem_prealloc = 0;
1351 	soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
1352 						element_size,
1353 						element_num,
1354 						pages,
1355 						cacheable);
1356 	if (pages->num_pages)
1357 		goto end;
1358 
1359 qdf:
1360 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
1361 				  element_num, memctxt, cacheable);
1362 end:
1363 	dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
1364 		pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
1365 		desc_type, (int)element_size, element_num, cacheable);
1366 }
1367 
1368 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
1369 				  enum qdf_dp_desc_type desc_type,
1370 				  struct qdf_mem_multi_page_t *pages,
1371 				  qdf_dma_context_t memctxt,
1372 				  bool cacheable)
1373 {
1374 	if (pages->is_mem_prealloc) {
1375 		if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
1376 			dp_warn("dp_put_multi_pages is null!");
1377 			QDF_BUG(0);
1378 			return;
1379 		}
1380 
1381 		soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
1382 		qdf_mem_zero(pages, sizeof(*pages));
1383 	} else {
1384 		qdf_mem_multi_pages_free(soc->osdev, pages,
1385 					 memctxt, cacheable);
1386 	}
1387 }
1388 
1389 #else
1390 
1391 static inline
1392 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1393 					   struct dp_srng *srng,
1394 					   uint32_t ring_type)
1395 
1396 {
1397 	void *mem;
1398 
1399 	mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1400 					       &srng->base_vaddr_unaligned,
1401 					       &srng->base_paddr_unaligned,
1402 					       &srng->base_paddr_aligned,
1403 					       DP_RING_BASE_ALIGN);
1404 	if (mem)
1405 		qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
1406 
1407 	return mem;
1408 }
1409 
1410 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1411 					       struct dp_srng *srng)
1412 {
1413 	qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1414 				srng->alloc_size,
1415 				srng->base_vaddr_unaligned,
1416 				srng->base_paddr_unaligned, 0);
1417 }
1418 
1419 #endif /* DP_MEM_PRE_ALLOC */
1420 
1421 #ifdef QCA_SUPPORT_WDS_EXTENDED
1422 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1423 {
1424 	return vdev->wds_ext_enabled;
1425 }
1426 #else
1427 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1428 {
1429 	return false;
1430 }
1431 #endif
1432 
1433 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
1434 {
1435 	struct dp_vdev *vdev = NULL;
1436 	uint8_t rx_fast_flag = true;
1437 
1438 	/* Check if protocol tagging enable */
1439 	if (pdev->is_rx_protocol_tagging_enabled) {
1440 		rx_fast_flag = false;
1441 		goto update_flag;
1442 	}
1443 
1444 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1445 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1446 		/* Check if any VDEV has NAWDS enabled */
1447 		if (vdev->nawds_enabled) {
1448 			rx_fast_flag = false;
1449 			break;
1450 		}
1451 
1452 		/* Check if any VDEV has multipass enabled */
1453 		if (vdev->multipass_en) {
1454 			rx_fast_flag = false;
1455 			break;
1456 		}
1457 
1458 		/* Check if any VDEV has mesh enabled */
1459 		if (vdev->mesh_vdev) {
1460 			rx_fast_flag = false;
1461 			break;
1462 		}
1463 	}
1464 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1465 
1466 update_flag:
1467 	dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
1468 	pdev->rx_fast_flag = rx_fast_flag;
1469 }
1470 
1471 void dp_soc_set_interrupt_mode(struct dp_soc *soc)
1472 {
1473 	uint32_t msi_base_data, msi_vector_start;
1474 	int msi_vector_count, ret;
1475 
1476 	soc->intr_mode = DP_INTR_INTEGRATED;
1477 
1478 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
1479 	    (dp_is_monitor_mode_using_poll(soc) &&
1480 	     soc->cdp_soc.ol_ops->get_con_mode &&
1481 	     soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
1482 		soc->intr_mode = DP_INTR_POLL;
1483 	} else {
1484 		ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1485 						  &msi_vector_count,
1486 						  &msi_base_data,
1487 						  &msi_vector_start);
1488 		if (ret)
1489 			return;
1490 
1491 		soc->intr_mode = DP_INTR_MSI;
1492 	}
1493 }
1494 
1495 static int dp_srng_calculate_msi_group(struct dp_soc *soc,
1496 				       enum hal_ring_type ring_type,
1497 				       int ring_num,
1498 				       int *reg_msi_grp_num,
1499 				       bool nf_irq_support,
1500 				       int *nf_msi_grp_num)
1501 {
1502 	struct wlan_cfg_dp_soc_ctxt *cfg_ctx = soc->wlan_cfg_ctx;
1503 	uint8_t *grp_mask, *nf_irq_mask = NULL;
1504 	bool nf_irq_enabled = false;
1505 	uint8_t wbm2_sw_rx_rel_ring_id;
1506 
1507 	switch (ring_type) {
1508 	case WBM2SW_RELEASE:
1509 		wbm2_sw_rx_rel_ring_id =
1510 			wlan_cfg_get_rx_rel_ring_id(cfg_ctx);
1511 		if (ring_num == wbm2_sw_rx_rel_ring_id) {
1512 			/* dp_rx_wbm_err_process - soc->rx_rel_ring */
1513 			grp_mask = &cfg_ctx->int_rx_wbm_rel_ring_mask[0];
1514 			ring_num = 0;
1515 		} else if (ring_num == WBM2_SW_PPE_REL_RING_ID) {
1516 			grp_mask = &cfg_ctx->int_ppeds_wbm_release_ring_mask[0];
1517 			ring_num = 0;
1518 		}  else { /* dp_tx_comp_handler - soc->tx_comp_ring */
1519 			grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
1520 			nf_irq_mask = dp_srng_get_near_full_irq_mask(soc,
1521 								     ring_type,
1522 								     ring_num);
1523 			if (nf_irq_mask)
1524 				nf_irq_enabled = true;
1525 
1526 			/*
1527 			 * Using ring 4 as 4th tx completion ring since ring 3
1528 			 * is Rx error ring
1529 			 */
1530 			if (ring_num == WBM2SW_TXCOMP_RING4_NUM)
1531 				ring_num = TXCOMP_RING4_NUM;
1532 		}
1533 	break;
1534 
1535 	case REO_EXCEPTION:
1536 		/* dp_rx_err_process - &soc->reo_exception_ring */
1537 		grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
1538 	break;
1539 
1540 	case REO_DST:
1541 		/* dp_rx_process - soc->reo_dest_ring */
1542 		grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
1543 		nf_irq_mask = dp_srng_get_near_full_irq_mask(soc, ring_type,
1544 							     ring_num);
1545 		if (nf_irq_mask)
1546 			nf_irq_enabled = true;
1547 	break;
1548 
1549 	case REO_STATUS:
1550 		/* dp_reo_status_ring_handler - soc->reo_status_ring */
1551 		grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
1552 	break;
1553 
1554 	/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
1555 	case RXDMA_MONITOR_STATUS:
1556 	/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
1557 	case RXDMA_MONITOR_DST:
1558 		/* dp_mon_process */
1559 		grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
1560 	break;
1561 	case TX_MONITOR_DST:
1562 		/* dp_tx_mon_process */
1563 		grp_mask = &soc->wlan_cfg_ctx->int_tx_mon_ring_mask[0];
1564 	break;
1565 	case RXDMA_DST:
1566 		/* dp_rxdma_err_process */
1567 		grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
1568 	break;
1569 
1570 	case RXDMA_BUF:
1571 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
1572 	break;
1573 
1574 	case RXDMA_MONITOR_BUF:
1575 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
1576 	break;
1577 
1578 	case TX_MONITOR_BUF:
1579 		grp_mask = &soc->wlan_cfg_ctx->int_host2txmon_ring_mask[0];
1580 	break;
1581 
1582 	case REO2PPE:
1583 		grp_mask = &soc->wlan_cfg_ctx->int_reo2ppe_ring_mask[0];
1584 	break;
1585 
1586 	case PPE2TCL:
1587 		grp_mask = &soc->wlan_cfg_ctx->int_ppe2tcl_ring_mask[0];
1588 	break;
1589 
1590 	case TCL_DATA:
1591 	/* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */
1592 	case TCL_CMD_CREDIT:
1593 	case REO_CMD:
1594 	case SW2WBM_RELEASE:
1595 	case WBM_IDLE_LINK:
1596 		/* normally empty SW_TO_HW rings */
1597 		return -QDF_STATUS_E_NOENT;
1598 	break;
1599 
1600 	case TCL_STATUS:
1601 	case REO_REINJECT:
1602 		/* misc unused rings */
1603 		return -QDF_STATUS_E_NOENT;
1604 	break;
1605 
1606 	case CE_SRC:
1607 	case CE_DST:
1608 	case CE_DST_STATUS:
1609 		/* CE_rings - currently handled by hif */
1610 	default:
1611 		return -QDF_STATUS_E_NOENT;
1612 	break;
1613 	}
1614 
1615 	*reg_msi_grp_num = dp_srng_find_ring_in_mask(ring_num, grp_mask);
1616 
1617 	if (nf_irq_support && nf_irq_enabled) {
1618 		*nf_msi_grp_num = dp_srng_find_ring_in_mask(ring_num,
1619 							    nf_irq_mask);
1620 	}
1621 
1622 	return QDF_STATUS_SUCCESS;
1623 }
1624 
1625 #if defined(IPA_OFFLOAD) && defined(IPA_WDI3_VLAN_SUPPORT)
1626 static void
1627 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1628 			   int ring_num)
1629 {
1630 	if (wlan_ipa_is_vlan_enabled()) {
1631 		if ((ring_type == REO_DST) &&
1632 		    (ring_num == IPA_ALT_REO_DEST_RING_IDX)) {
1633 			ring_params->msi_addr = 0;
1634 			ring_params->msi_data = 0;
1635 			ring_params->flags &= ~HAL_SRNG_MSI_INTR;
1636 		}
1637 	}
1638 }
1639 #else
1640 static inline void
1641 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1642 			   int ring_num)
1643 {
1644 }
1645 #endif
1646 
1647 void dp_srng_msi_setup(struct dp_soc *soc, struct dp_srng *srng,
1648 		       struct hal_srng_params *ring_params,
1649 		       int ring_type, int ring_num)
1650 {
1651 	int reg_msi_grp_num;
1652 	/*
1653 	 * nf_msi_grp_num needs to be initialized with negative value,
1654 	 * to avoid configuring near-full msi for WBM2SW3 ring
1655 	 */
1656 	int nf_msi_grp_num = -1;
1657 	int msi_data_count;
1658 	int ret;
1659 	uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
1660 	bool nf_irq_support;
1661 	int vector;
1662 
1663 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1664 					  &msi_data_count, &msi_data_start,
1665 					  &msi_irq_start);
1666 
1667 	if (ret)
1668 		return;
1669 
1670 	nf_irq_support = hal_srng_is_near_full_irq_supported(soc->hal_soc,
1671 							     ring_type,
1672 							     ring_num);
1673 	ret = dp_srng_calculate_msi_group(soc, ring_type, ring_num,
1674 					  &reg_msi_grp_num,
1675 					  nf_irq_support,
1676 					  &nf_msi_grp_num);
1677 	if (ret < 0) {
1678 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1679 			     soc, ring_type, ring_num);
1680 		ring_params->msi_addr = 0;
1681 		ring_params->msi_data = 0;
1682 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1683 		return;
1684 	}
1685 
1686 	if (reg_msi_grp_num < 0) {
1687 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1688 			     soc, ring_type, ring_num);
1689 		ring_params->msi_addr = 0;
1690 		ring_params->msi_data = 0;
1691 		goto configure_msi2;
1692 	}
1693 
1694 	if (dp_is_msi_group_number_invalid(soc, reg_msi_grp_num,
1695 					   msi_data_count)) {
1696 		dp_init_warn("%pK: 2 msi_groups will share an msi; msi_group_num %d",
1697 			     soc, reg_msi_grp_num);
1698 		QDF_ASSERT(0);
1699 	}
1700 
1701 	pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
1702 
1703 	ring_params->msi_addr = addr_low;
1704 	ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
1705 	ring_params->msi_data = (reg_msi_grp_num % msi_data_count)
1706 		+ msi_data_start;
1707 	ring_params->flags |= HAL_SRNG_MSI_INTR;
1708 
1709 	dp_ipa_vlan_srng_msi_setup(ring_params, ring_type, ring_num);
1710 
1711 	dp_debug("ring type %u ring_num %u msi->data %u msi_addr %llx",
1712 		 ring_type, ring_num, ring_params->msi_data,
1713 		 (uint64_t)ring_params->msi_addr);
1714 
1715 	vector = msi_irq_start + (reg_msi_grp_num % msi_data_count);
1716 
1717 	/*
1718 	 * During umac reset ppeds interrupts free is not called.
1719 	 * Avoid registering interrupts again.
1720 	 *
1721 	 */
1722 	if (dp_check_umac_reset_in_progress(soc))
1723 		goto configure_msi2;
1724 
1725 	if (soc->arch_ops.dp_register_ppeds_interrupts)
1726 		if (soc->arch_ops.dp_register_ppeds_interrupts(soc, srng,
1727 							       vector,
1728 							       ring_type,
1729 							       ring_num))
1730 			return;
1731 
1732 configure_msi2:
1733 	if (!nf_irq_support) {
1734 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1735 		return;
1736 	}
1737 
1738 	dp_srng_msi2_setup(soc, ring_params, ring_type, ring_num,
1739 			   nf_msi_grp_num);
1740 }
1741 
1742 #ifdef WLAN_DP_PER_RING_TYPE_CONFIG
1743 /**
1744  * dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
1745  * threshold values from the wlan_srng_cfg table for each ring type
1746  * @soc: device handle
1747  * @ring_params: per ring specific parameters
1748  * @ring_type: Ring type
1749  * @ring_num: Ring number for a given ring type
1750  * @num_entries: number of entries to fill
1751  *
1752  * Fill the ring params with the interrupt threshold
1753  * configuration parameters available in the per ring type wlan_srng_cfg
1754  * table.
1755  *
1756  * Return: None
1757  */
1758 void
1759 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1760 				       struct hal_srng_params *ring_params,
1761 				       int ring_type, int ring_num,
1762 				       int num_entries)
1763 {
1764 	uint8_t wbm2_sw_rx_rel_ring_id;
1765 
1766 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1767 
1768 	if (ring_type == REO_DST) {
1769 		ring_params->intr_timer_thres_us =
1770 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1771 		ring_params->intr_batch_cntr_thres_entries =
1772 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1773 	} else if (ring_type == WBM2SW_RELEASE &&
1774 		   (ring_num == wbm2_sw_rx_rel_ring_id)) {
1775 		ring_params->intr_timer_thres_us =
1776 				wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1777 		ring_params->intr_batch_cntr_thres_entries =
1778 				wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1779 	} else {
1780 		ring_params->intr_timer_thres_us =
1781 				soc->wlan_srng_cfg[ring_type].timer_threshold;
1782 		ring_params->intr_batch_cntr_thres_entries =
1783 				soc->wlan_srng_cfg[ring_type].batch_count_threshold;
1784 	}
1785 	ring_params->low_threshold =
1786 			soc->wlan_srng_cfg[ring_type].low_threshold;
1787 	if (ring_params->low_threshold)
1788 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1789 
1790 	dp_srng_configure_nf_interrupt_thresholds(soc, ring_params, ring_type);
1791 }
1792 #else
1793 void
1794 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1795 				       struct hal_srng_params *ring_params,
1796 				       int ring_type, int ring_num,
1797 				       int num_entries)
1798 {
1799 	uint8_t wbm2_sw_rx_rel_ring_id;
1800 	bool rx_refill_lt_disable;
1801 
1802 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1803 
1804 	if (ring_type == REO_DST || ring_type == REO2PPE) {
1805 		ring_params->intr_timer_thres_us =
1806 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1807 		ring_params->intr_batch_cntr_thres_entries =
1808 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1809 	} else if (ring_type == WBM2SW_RELEASE &&
1810 		   (ring_num < wbm2_sw_rx_rel_ring_id ||
1811 		   ring_num == WBM2SW_TXCOMP_RING4_NUM ||
1812 		   ring_num == WBM2_SW_PPE_REL_RING_ID)) {
1813 		ring_params->intr_timer_thres_us =
1814 			wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
1815 		ring_params->intr_batch_cntr_thres_entries =
1816 			wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
1817 	} else if (ring_type == RXDMA_BUF) {
1818 		rx_refill_lt_disable =
1819 			wlan_cfg_get_dp_soc_rxdma_refill_lt_disable
1820 							(soc->wlan_cfg_ctx);
1821 		ring_params->intr_timer_thres_us =
1822 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1823 
1824 		if (!rx_refill_lt_disable) {
1825 			ring_params->low_threshold = num_entries >> 3;
1826 			ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1827 			ring_params->intr_batch_cntr_thres_entries = 0;
1828 		}
1829 	} else {
1830 		ring_params->intr_timer_thres_us =
1831 			wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1832 		ring_params->intr_batch_cntr_thres_entries =
1833 			wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1834 	}
1835 
1836 	/* These rings donot require interrupt to host. Make them zero */
1837 	switch (ring_type) {
1838 	case REO_REINJECT:
1839 	case REO_CMD:
1840 	case TCL_DATA:
1841 	case TCL_CMD_CREDIT:
1842 	case TCL_STATUS:
1843 	case WBM_IDLE_LINK:
1844 	case SW2WBM_RELEASE:
1845 	case SW2RXDMA_NEW:
1846 		ring_params->intr_timer_thres_us = 0;
1847 		ring_params->intr_batch_cntr_thres_entries = 0;
1848 		break;
1849 	case PPE2TCL:
1850 		ring_params->intr_timer_thres_us =
1851 			wlan_cfg_get_int_timer_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1852 		ring_params->intr_batch_cntr_thres_entries =
1853 			wlan_cfg_get_int_batch_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1854 		break;
1855 	case RXDMA_MONITOR_DST:
1856 		ring_params->intr_timer_thres_us =
1857 		  wlan_cfg_get_int_timer_threshold_mon_dest(soc->wlan_cfg_ctx);
1858 		ring_params->intr_batch_cntr_thres_entries =
1859 		  wlan_cfg_get_int_batch_threshold_mon_dest(soc->wlan_cfg_ctx);
1860 		break;
1861 	}
1862 
1863 	/* Enable low threshold interrupts for rx buffer rings (regular and
1864 	 * monitor buffer rings.
1865 	 * TODO: See if this is required for any other ring
1866 	 */
1867 	if ((ring_type == RXDMA_MONITOR_BUF) ||
1868 	    (ring_type == RXDMA_MONITOR_STATUS ||
1869 	    (ring_type == TX_MONITOR_BUF))) {
1870 		/* TODO: Setting low threshold to 1/8th of ring size
1871 		 * see if this needs to be configurable
1872 		 */
1873 		ring_params->low_threshold = num_entries >> 3;
1874 		ring_params->intr_timer_thres_us =
1875 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1876 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1877 		ring_params->intr_batch_cntr_thres_entries = 0;
1878 	}
1879 
1880 	/* During initialisation monitor rings are only filled with
1881 	 * MON_BUF_MIN_ENTRIES entries. So low threshold needs to be set to
1882 	 * a value less than that. Low threshold value is reconfigured again
1883 	 * to 1/8th of the ring size when monitor vap is created.
1884 	 */
1885 	if (ring_type == RXDMA_MONITOR_BUF)
1886 		ring_params->low_threshold = MON_BUF_MIN_ENTRIES >> 1;
1887 
1888 	/* In case of PCI chipsets, we dont have PPDU end interrupts,
1889 	 * so MONITOR STATUS ring is reaped by receiving MSI from srng.
1890 	 * Keep batch threshold as 8 so that interrupt is received for
1891 	 * every 4 packets in MONITOR_STATUS ring
1892 	 */
1893 	if ((ring_type == RXDMA_MONITOR_STATUS) &&
1894 	    (soc->intr_mode == DP_INTR_MSI))
1895 		ring_params->intr_batch_cntr_thres_entries = 4;
1896 }
1897 #endif
1898 
1899 static int dp_process_rxdma_dst_ring(struct dp_soc *soc,
1900 				     struct dp_intr *int_ctx,
1901 				     int mac_for_pdev,
1902 				     int total_budget)
1903 {
1904 	uint32_t target_type;
1905 
1906 	target_type = hal_get_target_type(soc->hal_soc);
1907 	if (target_type == TARGET_TYPE_QCN9160)
1908 		return dp_monitor_process(soc, int_ctx,
1909 					  mac_for_pdev, total_budget);
1910 	else
1911 		return dp_rxdma_err_process(int_ctx, soc, mac_for_pdev,
1912 					    total_budget);
1913 }
1914 
1915 /**
1916  * dp_process_lmac_rings() - Process LMAC rings
1917  * @int_ctx: interrupt context
1918  * @total_budget: budget of work which can be done
1919  *
1920  * Return: work done
1921  */
1922 int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
1923 {
1924 	struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
1925 	struct dp_soc *soc = int_ctx->soc;
1926 	uint32_t remaining_quota = total_budget;
1927 	struct dp_pdev *pdev = NULL;
1928 	uint32_t work_done  = 0;
1929 	int budget = total_budget;
1930 	int ring = 0;
1931 	bool rx_refill_lt_disable;
1932 
1933 	rx_refill_lt_disable =
1934 		wlan_cfg_get_dp_soc_rxdma_refill_lt_disable(soc->wlan_cfg_ctx);
1935 
1936 	/* Process LMAC interrupts */
1937 	for  (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
1938 		int mac_for_pdev = ring;
1939 
1940 		pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
1941 		if (!pdev)
1942 			continue;
1943 		if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
1944 			work_done = dp_monitor_process(soc, int_ctx,
1945 						       mac_for_pdev,
1946 						       remaining_quota);
1947 			if (work_done)
1948 				intr_stats->num_rx_mon_ring_masks++;
1949 			budget -= work_done;
1950 			if (budget <= 0)
1951 				goto budget_done;
1952 			remaining_quota = budget;
1953 		}
1954 
1955 		if (int_ctx->tx_mon_ring_mask & (1 << mac_for_pdev)) {
1956 			work_done = dp_tx_mon_process(soc, int_ctx,
1957 						      mac_for_pdev,
1958 						      remaining_quota);
1959 			if (work_done)
1960 				intr_stats->num_tx_mon_ring_masks++;
1961 			budget -= work_done;
1962 			if (budget <= 0)
1963 				goto budget_done;
1964 			remaining_quota = budget;
1965 		}
1966 
1967 		if (int_ctx->rxdma2host_ring_mask &
1968 				(1 << mac_for_pdev)) {
1969 			work_done = dp_process_rxdma_dst_ring(soc, int_ctx,
1970 							      mac_for_pdev,
1971 							      remaining_quota);
1972 			if (work_done)
1973 				intr_stats->num_rxdma2host_ring_masks++;
1974 			budget -=  work_done;
1975 			if (budget <= 0)
1976 				goto budget_done;
1977 			remaining_quota = budget;
1978 		}
1979 
1980 		if (int_ctx->host2rxdma_ring_mask & (1 << mac_for_pdev)) {
1981 			struct dp_srng *rx_refill_buf_ring;
1982 			struct rx_desc_pool *rx_desc_pool;
1983 
1984 			rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
1985 			if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
1986 				rx_refill_buf_ring =
1987 					&soc->rx_refill_buf_ring[mac_for_pdev];
1988 			else
1989 				rx_refill_buf_ring =
1990 					&soc->rx_refill_buf_ring[pdev->lmac_id];
1991 
1992 			intr_stats->num_host2rxdma_ring_masks++;
1993 
1994 			if (!rx_refill_lt_disable)
1995 				dp_rx_buffers_lt_replenish_simple
1996 							(soc, mac_for_pdev,
1997 							 rx_refill_buf_ring,
1998 							 rx_desc_pool,
1999 							 false);
2000 		}
2001 	}
2002 
2003 	if (int_ctx->host2rxdma_mon_ring_mask)
2004 		dp_rx_mon_buf_refill(int_ctx);
2005 
2006 	if (int_ctx->host2txmon_ring_mask)
2007 		dp_tx_mon_buf_refill(int_ctx);
2008 
2009 budget_done:
2010 	return total_budget - budget;
2011 }
2012 
2013 uint32_t dp_service_srngs_wrapper(void *dp_ctx, uint32_t dp_budget, int cpu)
2014 {
2015 	struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
2016 	struct dp_soc *soc = int_ctx->soc;
2017 
2018 	return soc->arch_ops.dp_service_srngs(dp_ctx, dp_budget, cpu);
2019 }
2020 
2021 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
2022 /**
2023  * dp_soc_interrupt_map_calculate_wifi3_pci_legacy() -
2024  * Calculate interrupt map for legacy interrupts
2025  * @soc: DP soc handle
2026  * @intr_ctx_num: Interrupt context number
2027  * @irq_id_map: IRQ map
2028  * @num_irq_r: Number of interrupts assigned for this context
2029  *
2030  * Return: void
2031  */
2032 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2033 							    int intr_ctx_num,
2034 							    int *irq_id_map,
2035 							    int *num_irq_r)
2036 {
2037 	int j;
2038 	int num_irq = 0;
2039 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2040 					soc->wlan_cfg_ctx, intr_ctx_num);
2041 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2042 					soc->wlan_cfg_ctx, intr_ctx_num);
2043 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2044 					soc->wlan_cfg_ctx, intr_ctx_num);
2045 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2046 					soc->wlan_cfg_ctx, intr_ctx_num);
2047 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2048 					soc->wlan_cfg_ctx, intr_ctx_num);
2049 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2050 					soc->wlan_cfg_ctx, intr_ctx_num);
2051 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2052 					soc->wlan_cfg_ctx, intr_ctx_num);
2053 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2054 					soc->wlan_cfg_ctx, intr_ctx_num);
2055 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2056 					soc->wlan_cfg_ctx, intr_ctx_num);
2057 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2058 					soc->wlan_cfg_ctx, intr_ctx_num);
2059 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2060 					soc->wlan_cfg_ctx, intr_ctx_num);
2061 	soc->intr_mode = DP_INTR_LEGACY_VIRTUAL_IRQ;
2062 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2063 		if (tx_mask & (1 << j))
2064 			irq_id_map[num_irq++] = (wbm2sw0_release - j);
2065 		if (rx_mask & (1 << j))
2066 			irq_id_map[num_irq++] = (reo2sw1_intr - j);
2067 		if (rx_mon_mask & (1 << j))
2068 			irq_id_map[num_irq++] = (rxmon2sw_p0_dest0 - j);
2069 		if (rx_err_ring_mask & (1 << j))
2070 			irq_id_map[num_irq++] = (reo2sw0_intr - j);
2071 		if (rx_wbm_rel_ring_mask & (1 << j))
2072 			irq_id_map[num_irq++] = (wbm2sw5_release - j);
2073 		if (reo_status_ring_mask & (1 << j))
2074 			irq_id_map[num_irq++] = (reo_status - j);
2075 		if (rxdma2host_ring_mask & (1 << j))
2076 			irq_id_map[num_irq++] = (rxdma2sw_dst_ring0 - j);
2077 		if (host2rxdma_ring_mask & (1 << j))
2078 			irq_id_map[num_irq++] = (sw2rxdma_0 - j);
2079 		if (host2rxdma_mon_ring_mask & (1 << j))
2080 			irq_id_map[num_irq++] = (sw2rxmon_src_ring - j);
2081 		if (host2txmon_ring_mask & (1 << j))
2082 			irq_id_map[num_irq++] = sw2txmon_src_ring;
2083 		if (txmon2host_mon_ring_mask & (1 << j))
2084 			irq_id_map[num_irq++] = (txmon2sw_p0_dest0 - j);
2085 	}
2086 	*num_irq_r = num_irq;
2087 }
2088 #else
2089 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2090 							    int intr_ctx_num,
2091 							    int *irq_id_map,
2092 							    int *num_irq_r)
2093 {
2094 }
2095 #endif
2096 
2097 static void
2098 dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc, int intr_ctx_num,
2099 					  int *irq_id_map, int *num_irq_r)
2100 {
2101 	int j;
2102 	int num_irq = 0;
2103 
2104 	int tx_mask =
2105 		wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2106 	int rx_mask =
2107 		wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2108 	int rx_mon_mask =
2109 		wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2110 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2111 					soc->wlan_cfg_ctx, intr_ctx_num);
2112 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2113 					soc->wlan_cfg_ctx, intr_ctx_num);
2114 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2115 					soc->wlan_cfg_ctx, intr_ctx_num);
2116 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2117 					soc->wlan_cfg_ctx, intr_ctx_num);
2118 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2119 					soc->wlan_cfg_ctx, intr_ctx_num);
2120 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2121 					soc->wlan_cfg_ctx, intr_ctx_num);
2122 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2123 					soc->wlan_cfg_ctx, intr_ctx_num);
2124 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2125 					soc->wlan_cfg_ctx, intr_ctx_num);
2126 
2127 	soc->intr_mode = DP_INTR_INTEGRATED;
2128 
2129 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2130 		if (tx_mask & (1 << j)) {
2131 			irq_id_map[num_irq++] =
2132 				(wbm2host_tx_completions_ring1 - j);
2133 		}
2134 
2135 		if (rx_mask & (1 << j)) {
2136 			irq_id_map[num_irq++] =
2137 				(reo2host_destination_ring1 - j);
2138 		}
2139 
2140 		if (rxdma2host_ring_mask & (1 << j)) {
2141 			irq_id_map[num_irq++] =
2142 				rxdma2host_destination_ring_mac1 - j;
2143 		}
2144 
2145 		if (host2rxdma_ring_mask & (1 << j)) {
2146 			irq_id_map[num_irq++] =
2147 				host2rxdma_host_buf_ring_mac1 -	j;
2148 		}
2149 
2150 		if (host2rxdma_mon_ring_mask & (1 << j)) {
2151 			irq_id_map[num_irq++] =
2152 				host2rxdma_monitor_ring1 - j;
2153 		}
2154 
2155 		if (rx_mon_mask & (1 << j)) {
2156 			irq_id_map[num_irq++] =
2157 				ppdu_end_interrupts_mac1 - j;
2158 			irq_id_map[num_irq++] =
2159 				rxdma2host_monitor_status_ring_mac1 - j;
2160 			irq_id_map[num_irq++] =
2161 				rxdma2host_monitor_destination_mac1 - j;
2162 		}
2163 
2164 		if (rx_wbm_rel_ring_mask & (1 << j))
2165 			irq_id_map[num_irq++] = wbm2host_rx_release;
2166 
2167 		if (rx_err_ring_mask & (1 << j))
2168 			irq_id_map[num_irq++] = reo2host_exception;
2169 
2170 		if (reo_status_ring_mask & (1 << j))
2171 			irq_id_map[num_irq++] = reo2host_status;
2172 
2173 		if (host2txmon_ring_mask & (1 << j))
2174 			irq_id_map[num_irq++] = host2tx_monitor_ring1;
2175 
2176 		if (txmon2host_mon_ring_mask & (1 << j)) {
2177 			irq_id_map[num_irq++] =
2178 				(txmon2host_monitor_destination_mac1 - j);
2179 		}
2180 	}
2181 	*num_irq_r = num_irq;
2182 }
2183 
2184 static void
2185 dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc, int intr_ctx_num,
2186 				   int *irq_id_map, int *num_irq_r,
2187 				   int msi_vector_count, int msi_vector_start)
2188 {
2189 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2190 					soc->wlan_cfg_ctx, intr_ctx_num);
2191 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2192 					soc->wlan_cfg_ctx, intr_ctx_num);
2193 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2194 					soc->wlan_cfg_ctx, intr_ctx_num);
2195 	int tx_mon_mask = wlan_cfg_get_tx_mon_ring_mask(
2196 					soc->wlan_cfg_ctx, intr_ctx_num);
2197 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2198 					soc->wlan_cfg_ctx, intr_ctx_num);
2199 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2200 					soc->wlan_cfg_ctx, intr_ctx_num);
2201 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2202 					soc->wlan_cfg_ctx, intr_ctx_num);
2203 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2204 					soc->wlan_cfg_ctx, intr_ctx_num);
2205 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2206 					soc->wlan_cfg_ctx, intr_ctx_num);
2207 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2208 					soc->wlan_cfg_ctx, intr_ctx_num);
2209 	int rx_near_full_grp_1_mask =
2210 		wlan_cfg_get_rx_near_full_grp_1_mask(soc->wlan_cfg_ctx,
2211 						     intr_ctx_num);
2212 	int rx_near_full_grp_2_mask =
2213 		wlan_cfg_get_rx_near_full_grp_2_mask(soc->wlan_cfg_ctx,
2214 						     intr_ctx_num);
2215 	int tx_ring_near_full_mask =
2216 		wlan_cfg_get_tx_ring_near_full_mask(soc->wlan_cfg_ctx,
2217 						    intr_ctx_num);
2218 
2219 	int host2txmon_ring_mask =
2220 		wlan_cfg_get_host2txmon_ring_mask(soc->wlan_cfg_ctx,
2221 						  intr_ctx_num);
2222 	unsigned int vector =
2223 		(intr_ctx_num % msi_vector_count) + msi_vector_start;
2224 	int num_irq = 0;
2225 
2226 	soc->intr_mode = DP_INTR_MSI;
2227 
2228 	if (tx_mask | rx_mask | rx_mon_mask | tx_mon_mask | rx_err_ring_mask |
2229 	    rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask |
2230 	    host2rxdma_ring_mask | host2rxdma_mon_ring_mask |
2231 	    rx_near_full_grp_1_mask | rx_near_full_grp_2_mask |
2232 	    tx_ring_near_full_mask | host2txmon_ring_mask)
2233 		irq_id_map[num_irq++] =
2234 			pld_get_msi_irq(soc->osdev->dev, vector);
2235 
2236 	*num_irq_r = num_irq;
2237 }
2238 
2239 void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
2240 				    int *irq_id_map, int *num_irq)
2241 {
2242 	int msi_vector_count, ret;
2243 	uint32_t msi_base_data, msi_vector_start;
2244 
2245 	if (pld_get_enable_intx(soc->osdev->dev)) {
2246 		return dp_soc_interrupt_map_calculate_wifi3_pci_legacy(soc,
2247 				intr_ctx_num, irq_id_map, num_irq);
2248 	}
2249 
2250 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
2251 					  &msi_vector_count,
2252 					  &msi_base_data,
2253 					  &msi_vector_start);
2254 	if (ret)
2255 		return dp_soc_interrupt_map_calculate_integrated(soc,
2256 				intr_ctx_num, irq_id_map, num_irq);
2257 
2258 	else
2259 		dp_soc_interrupt_map_calculate_msi(soc,
2260 				intr_ctx_num, irq_id_map, num_irq,
2261 				msi_vector_count, msi_vector_start);
2262 }
2263 
2264 void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
2265 {
2266 	if (srng->alloc_size && srng->base_vaddr_unaligned) {
2267 		if (!srng->cached) {
2268 			dp_srng_mem_free_consistent(soc, srng);
2269 		} else {
2270 			qdf_mem_free(srng->base_vaddr_unaligned);
2271 		}
2272 		srng->alloc_size = 0;
2273 		srng->base_vaddr_unaligned = NULL;
2274 	}
2275 	srng->hal_srng = NULL;
2276 }
2277 
2278 qdf_export_symbol(dp_srng_free);
2279 
2280 QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
2281 			int ring_num, int mac_id)
2282 {
2283 	return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
2284 					    ring_num, mac_id);
2285 }
2286 
2287 qdf_export_symbol(dp_srng_init);
2288 
2289 QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
2290 			 int ring_type, uint32_t num_entries,
2291 			 bool cached)
2292 {
2293 	hal_soc_handle_t hal_soc = soc->hal_soc;
2294 	uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
2295 	uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
2296 
2297 	if (srng->base_vaddr_unaligned) {
2298 		dp_init_err("%pK: Ring type: %d, is already allocated",
2299 			    soc, ring_type);
2300 		return QDF_STATUS_SUCCESS;
2301 	}
2302 
2303 	num_entries = (num_entries > max_entries) ? max_entries : num_entries;
2304 	srng->hal_srng = NULL;
2305 	srng->alloc_size = num_entries * entry_size;
2306 	srng->num_entries = num_entries;
2307 	srng->cached = cached;
2308 
2309 	if (!cached) {
2310 		srng->base_vaddr_aligned =
2311 		    dp_srng_aligned_mem_alloc_consistent(soc,
2312 							 srng,
2313 							 ring_type);
2314 	} else {
2315 		srng->base_vaddr_aligned = qdf_aligned_malloc(
2316 					&srng->alloc_size,
2317 					&srng->base_vaddr_unaligned,
2318 					&srng->base_paddr_unaligned,
2319 					&srng->base_paddr_aligned,
2320 					DP_RING_BASE_ALIGN);
2321 	}
2322 
2323 	if (!srng->base_vaddr_aligned)
2324 		return QDF_STATUS_E_NOMEM;
2325 
2326 	return QDF_STATUS_SUCCESS;
2327 }
2328 
2329 qdf_export_symbol(dp_srng_alloc);
2330 
2331 void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
2332 		    int ring_type, int ring_num)
2333 {
2334 	if (!srng->hal_srng) {
2335 		dp_init_err("%pK: Ring type: %d, num:%d not setup",
2336 			    soc, ring_type, ring_num);
2337 		return;
2338 	}
2339 
2340 	if (dp_check_umac_reset_in_progress(soc))
2341 		goto srng_cleanup;
2342 
2343 	if (soc->arch_ops.dp_free_ppeds_interrupts)
2344 		soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
2345 						       ring_num);
2346 
2347 srng_cleanup:
2348 	hal_srng_cleanup(soc->hal_soc, srng->hal_srng,
2349 			 dp_check_umac_reset_in_progress(soc));
2350 	srng->hal_srng = NULL;
2351 }
2352 
2353 qdf_export_symbol(dp_srng_deinit);
2354 
2355 /* TODO: Need this interface from HIF */
2356 void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
2357 
2358 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2359 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2360 			 hal_ring_handle_t hal_ring_hdl)
2361 {
2362 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2363 	uint32_t hp, tp;
2364 	uint8_t ring_id;
2365 
2366 	if (!int_ctx)
2367 		return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2368 
2369 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2370 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2371 
2372 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2373 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
2374 
2375 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2376 }
2377 
2378 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2379 			hal_ring_handle_t hal_ring_hdl)
2380 {
2381 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2382 	uint32_t hp, tp;
2383 	uint8_t ring_id;
2384 
2385 	if (!int_ctx)
2386 		return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2387 
2388 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2389 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2390 
2391 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2392 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
2393 
2394 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2395 }
2396 
2397 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2398 					      uint8_t hist_group_id)
2399 {
2400 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2401 			 0, 0, 0, HIF_EVENT_TIMER_ENTRY);
2402 }
2403 
2404 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2405 					     uint8_t hist_group_id)
2406 {
2407 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2408 			 0, 0, 0, HIF_EVENT_TIMER_EXIT);
2409 }
2410 #else
2411 
2412 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2413 					      uint8_t hist_group_id)
2414 {
2415 }
2416 
2417 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2418 					     uint8_t hist_group_id)
2419 {
2420 }
2421 
2422 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2423 
2424 enum timer_yield_status
2425 dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
2426 			  uint64_t start_time)
2427 {
2428 	uint64_t cur_time = qdf_get_log_timestamp();
2429 
2430 	if (!work_done)
2431 		return DP_TIMER_WORK_DONE;
2432 
2433 	if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
2434 		return DP_TIMER_TIME_EXHAUST;
2435 
2436 	return DP_TIMER_NO_YIELD;
2437 }
2438 
2439 qdf_export_symbol(dp_should_timer_irq_yield);
2440 
2441 void dp_interrupt_timer(void *arg)
2442 {
2443 	struct dp_soc *soc = (struct dp_soc *) arg;
2444 	struct dp_pdev *pdev = soc->pdev_list[0];
2445 	enum timer_yield_status yield = DP_TIMER_NO_YIELD;
2446 	uint32_t work_done  = 0, total_work_done = 0;
2447 	int budget = 0xffff, i;
2448 	uint32_t remaining_quota = budget;
2449 	uint64_t start_time;
2450 	uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
2451 	uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
2452 	uint32_t lmac_iter;
2453 	int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
2454 	enum reg_wifi_band mon_band;
2455 	int cpu = dp_srng_get_cpu();
2456 
2457 	/*
2458 	 * this logic makes all data path interfacing rings (UMAC/LMAC)
2459 	 * and Monitor rings polling mode when NSS offload is disabled
2460 	 */
2461 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
2462 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
2463 		if (qdf_atomic_read(&soc->cmn_init_done)) {
2464 			for (i = 0; i < wlan_cfg_get_num_contexts(
2465 						soc->wlan_cfg_ctx); i++)
2466 				soc->arch_ops.dp_service_srngs(&soc->intr_ctx[i], 0xffff,
2467 							       cpu);
2468 
2469 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2470 		}
2471 		return;
2472 	}
2473 
2474 	if (!qdf_atomic_read(&soc->cmn_init_done))
2475 		return;
2476 
2477 	if (dp_monitor_is_chan_band_known(pdev)) {
2478 		mon_band = dp_monitor_get_chan_band(pdev);
2479 		lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
2480 		if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
2481 			dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
2482 			dp_srng_record_timer_entry(soc, dp_intr_id);
2483 		}
2484 	}
2485 
2486 	start_time = qdf_get_log_timestamp();
2487 	dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
2488 
2489 	while (yield == DP_TIMER_NO_YIELD) {
2490 		for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
2491 			if (lmac_iter == lmac_id)
2492 				work_done = dp_monitor_process(soc,
2493 						&soc->intr_ctx[dp_intr_id],
2494 						lmac_iter, remaining_quota);
2495 			else
2496 				work_done =
2497 					dp_monitor_drop_packets_for_mac(pdev,
2498 							     lmac_iter,
2499 							     remaining_quota);
2500 			if (work_done) {
2501 				budget -=  work_done;
2502 				if (budget <= 0) {
2503 					yield = DP_TIMER_WORK_EXHAUST;
2504 					goto budget_done;
2505 				}
2506 				remaining_quota = budget;
2507 				total_work_done += work_done;
2508 			}
2509 		}
2510 
2511 		yield = dp_should_timer_irq_yield(soc, total_work_done,
2512 						  start_time);
2513 		total_work_done = 0;
2514 	}
2515 
2516 budget_done:
2517 	if (yield == DP_TIMER_WORK_EXHAUST ||
2518 	    yield == DP_TIMER_TIME_EXHAUST)
2519 		qdf_timer_mod(&soc->int_timer, 1);
2520 	else
2521 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2522 
2523 	if (lmac_id != DP_MON_INVALID_LMAC_ID)
2524 		dp_srng_record_timer_exit(soc, dp_intr_id);
2525 }
2526 
2527 /**
2528  * dp_soc_interrupt_detach_wrapper() - wrapper function for interrupt detach
2529  * @txrx_soc: DP SOC handle
2530  *
2531  * Return: None
2532  */
2533 static void dp_soc_interrupt_detach_wrapper(struct cdp_soc_t *txrx_soc)
2534 {
2535 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2536 
2537 	return soc->arch_ops.dp_soc_interrupt_detach(txrx_soc);
2538 }
2539 
2540 #if defined(DP_INTR_POLL_BOTH)
2541 /**
2542  * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
2543  * @txrx_soc: DP SOC handle
2544  *
2545  * Call the appropriate attach function based on the mode of operation.
2546  * This is a WAR for enabling monitor mode.
2547  *
2548  * Return: 0 for success. nonzero for failure.
2549  */
2550 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2551 {
2552 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2553 
2554 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
2555 	    (dp_is_monitor_mode_using_poll(soc) &&
2556 	     soc->cdp_soc.ol_ops->get_con_mode &&
2557 	     soc->cdp_soc.ol_ops->get_con_mode() ==
2558 	     QDF_GLOBAL_MONITOR_MODE)) {
2559 		dp_info("Poll mode");
2560 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2561 	} else {
2562 		dp_info("Interrupt  mode");
2563 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2564 	}
2565 }
2566 #else
2567 #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
2568 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2569 {
2570 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2571 
2572 	return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2573 }
2574 #else
2575 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2576 {
2577 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2578 
2579 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
2580 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2581 	else
2582 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2583 }
2584 #endif
2585 #endif
2586 
2587 void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
2588 {
2589 	uint32_t cookie = 0;
2590 	uint32_t page_idx = 0;
2591 	struct qdf_mem_multi_page_t *pages;
2592 	struct qdf_mem_dma_page_t *dma_pages;
2593 	uint32_t offset = 0;
2594 	uint32_t count = 0;
2595 	uint32_t desc_id = 0;
2596 	void *desc_srng;
2597 	int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
2598 	uint32_t *total_link_descs_addr;
2599 	uint32_t total_link_descs;
2600 	uint32_t scatter_buf_num;
2601 	uint32_t num_entries_per_buf = 0;
2602 	uint32_t rem_entries;
2603 	uint32_t num_descs_per_page;
2604 	uint32_t num_scatter_bufs = 0;
2605 	uint8_t *scatter_buf_ptr;
2606 	void *desc;
2607 
2608 	num_scatter_bufs = soc->num_scatter_bufs;
2609 
2610 	if (mac_id == WLAN_INVALID_PDEV_ID) {
2611 		pages = &soc->link_desc_pages;
2612 		total_link_descs = soc->total_link_descs;
2613 		desc_srng = soc->wbm_idle_link_ring.hal_srng;
2614 	} else {
2615 		pages = dp_monitor_get_link_desc_pages(soc, mac_id);
2616 		/* dp_monitor_get_link_desc_pages returns NULL only
2617 		 * if monitor SOC is  NULL
2618 		 */
2619 		if (!pages) {
2620 			dp_err("can not get link desc pages");
2621 			QDF_ASSERT(0);
2622 			return;
2623 		}
2624 		total_link_descs_addr =
2625 				dp_monitor_get_total_link_descs(soc, mac_id);
2626 		total_link_descs = *total_link_descs_addr;
2627 		desc_srng = dp_monitor_get_link_desc_ring(soc, mac_id);
2628 	}
2629 
2630 	dma_pages = pages->dma_pages;
2631 	do {
2632 		qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
2633 			     pages->page_size);
2634 		page_idx++;
2635 	} while (page_idx < pages->num_pages);
2636 
2637 	if (desc_srng) {
2638 		hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
2639 		page_idx = 0;
2640 		count = 0;
2641 		offset = 0;
2642 
2643 		qdf_assert(pages->num_element_per_page != 0);
2644 		while ((desc = hal_srng_src_get_next(soc->hal_soc,
2645 						     desc_srng)) &&
2646 			(count < total_link_descs)) {
2647 			page_idx = count / pages->num_element_per_page;
2648 			if (desc_id == pages->num_element_per_page)
2649 				desc_id = 0;
2650 
2651 			offset = count % pages->num_element_per_page;
2652 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2653 						  soc->link_desc_id_start);
2654 
2655 			hal_set_link_desc_addr(soc->hal_soc, desc, cookie,
2656 					       dma_pages[page_idx].page_p_addr
2657 					       + (offset * link_desc_size),
2658 					       soc->idle_link_bm_id);
2659 			count++;
2660 			desc_id++;
2661 		}
2662 		hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
2663 	} else {
2664 		/* Populate idle list scatter buffers with link descriptor
2665 		 * pointers
2666 		 */
2667 		scatter_buf_num = 0;
2668 		num_entries_per_buf = hal_idle_scatter_buf_num_entries(
2669 					soc->hal_soc,
2670 					soc->wbm_idle_scatter_buf_size);
2671 
2672 		scatter_buf_ptr = (uint8_t *)(
2673 			soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
2674 		rem_entries = num_entries_per_buf;
2675 		page_idx = 0; count = 0;
2676 		offset = 0;
2677 		num_descs_per_page = pages->num_element_per_page;
2678 
2679 		qdf_assert(num_descs_per_page != 0);
2680 		while (count < total_link_descs) {
2681 			page_idx = count / num_descs_per_page;
2682 			offset = count % num_descs_per_page;
2683 			if (desc_id == pages->num_element_per_page)
2684 				desc_id = 0;
2685 
2686 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2687 						  soc->link_desc_id_start);
2688 			hal_set_link_desc_addr(soc->hal_soc,
2689 					       (void *)scatter_buf_ptr,
2690 					       cookie,
2691 					       dma_pages[page_idx].page_p_addr +
2692 					       (offset * link_desc_size),
2693 					       soc->idle_link_bm_id);
2694 			rem_entries--;
2695 			if (rem_entries) {
2696 				scatter_buf_ptr += link_desc_size;
2697 			} else {
2698 				rem_entries = num_entries_per_buf;
2699 				scatter_buf_num++;
2700 				if (scatter_buf_num >= num_scatter_bufs)
2701 					break;
2702 				scatter_buf_ptr = (uint8_t *)
2703 					(soc->wbm_idle_scatter_buf_base_vaddr[
2704 					 scatter_buf_num]);
2705 			}
2706 			count++;
2707 			desc_id++;
2708 		}
2709 		/* Setup link descriptor idle list in HW */
2710 		hal_setup_link_idle_list(soc->hal_soc,
2711 			soc->wbm_idle_scatter_buf_base_paddr,
2712 			soc->wbm_idle_scatter_buf_base_vaddr,
2713 			num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
2714 			(uint32_t)(scatter_buf_ptr -
2715 			(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
2716 			scatter_buf_num-1])), total_link_descs);
2717 	}
2718 }
2719 
2720 qdf_export_symbol(dp_link_desc_ring_replenish);
2721 
2722 /**
2723  * dp_soc_ppeds_stop() - Stop PPE DS processing
2724  * @soc_handle: DP SOC handle
2725  *
2726  * Return: none
2727  */
2728 static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
2729 {
2730 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2731 
2732 	if (soc->arch_ops.txrx_soc_ppeds_stop)
2733 		soc->arch_ops.txrx_soc_ppeds_stop(soc);
2734 }
2735 
2736 #ifdef ENABLE_VERBOSE_DEBUG
2737 void dp_enable_verbose_debug(struct dp_soc *soc)
2738 {
2739 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2740 
2741 	soc_cfg_ctx = soc->wlan_cfg_ctx;
2742 
2743 	if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
2744 		is_dp_verbose_debug_enabled = true;
2745 
2746 	if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
2747 		hal_set_verbose_debug(true);
2748 	else
2749 		hal_set_verbose_debug(false);
2750 }
2751 #else
2752 void dp_enable_verbose_debug(struct dp_soc *soc)
2753 {
2754 }
2755 #endif
2756 
2757 static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2758 {
2759 	struct cdp_lro_hash_config lro_hash;
2760 	QDF_STATUS status;
2761 
2762 	if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
2763 	    !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
2764 	    !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
2765 		dp_err("LRO, GRO and RX hash disabled");
2766 		return QDF_STATUS_E_FAILURE;
2767 	}
2768 
2769 	qdf_mem_zero(&lro_hash, sizeof(lro_hash));
2770 
2771 	if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
2772 	    wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
2773 		lro_hash.lro_enable = 1;
2774 		lro_hash.tcp_flag = QDF_TCPHDR_ACK;
2775 		lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
2776 			 QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
2777 			 QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
2778 	}
2779 
2780 	soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
2781 
2782 	qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
2783 
2784 	if (!soc->cdp_soc.ol_ops->lro_hash_config) {
2785 		QDF_BUG(0);
2786 		dp_err("lro_hash_config not configured");
2787 		return QDF_STATUS_E_FAILURE;
2788 	}
2789 
2790 	status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
2791 						      pdev->pdev_id,
2792 						      &lro_hash);
2793 	if (!QDF_IS_STATUS_SUCCESS(status)) {
2794 		dp_err("failed to send lro_hash_config to FW %u", status);
2795 		return status;
2796 	}
2797 
2798 	dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
2799 		lro_hash.lro_enable, lro_hash.tcp_flag,
2800 		lro_hash.tcp_flag_mask);
2801 
2802 	dp_info("toeplitz_hash_ipv4:");
2803 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2804 			   lro_hash.toeplitz_hash_ipv4,
2805 			   (sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
2806 			   LRO_IPV4_SEED_ARR_SZ));
2807 
2808 	dp_info("toeplitz_hash_ipv6:");
2809 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2810 			   lro_hash.toeplitz_hash_ipv6,
2811 			   (sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
2812 			   LRO_IPV6_SEED_ARR_SZ));
2813 
2814 	return status;
2815 }
2816 
2817 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
2818 /**
2819  * dp_reap_timer_init() - initialize the reap timer
2820  * @soc: data path SoC handle
2821  *
2822  * Return: void
2823  */
2824 static void dp_reap_timer_init(struct dp_soc *soc)
2825 {
2826 	/*
2827 	 * Timer to reap rxdma status rings.
2828 	 * Needed until we enable ppdu end interrupts
2829 	 */
2830 	dp_monitor_reap_timer_init(soc);
2831 	dp_monitor_vdev_timer_init(soc);
2832 }
2833 
2834 /**
2835  * dp_reap_timer_deinit() - de-initialize the reap timer
2836  * @soc: data path SoC handle
2837  *
2838  * Return: void
2839  */
2840 static void dp_reap_timer_deinit(struct dp_soc *soc)
2841 {
2842 	dp_monitor_reap_timer_deinit(soc);
2843 }
2844 #else
2845 /* WIN use case */
2846 static void dp_reap_timer_init(struct dp_soc *soc)
2847 {
2848 	/* Configure LMAC rings in Polled mode */
2849 	if (soc->lmac_polled_mode) {
2850 		/*
2851 		 * Timer to reap lmac rings.
2852 		 */
2853 		qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
2854 			       dp_service_lmac_rings, (void *)soc,
2855 			       QDF_TIMER_TYPE_WAKE_APPS);
2856 		soc->lmac_timer_init = 1;
2857 		qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
2858 	}
2859 }
2860 
2861 static void dp_reap_timer_deinit(struct dp_soc *soc)
2862 {
2863 	if (soc->lmac_timer_init) {
2864 		qdf_timer_stop(&soc->lmac_reap_timer);
2865 		qdf_timer_free(&soc->lmac_reap_timer);
2866 		soc->lmac_timer_init = 0;
2867 	}
2868 }
2869 #endif
2870 
2871 #ifdef QCA_HOST2FW_RXBUF_RING
2872 /**
2873  * dp_rxdma_ring_alloc() - allocate the RXDMA rings
2874  * @soc: data path SoC handle
2875  * @pdev: Physical device handle
2876  *
2877  * Return: 0 - success, > 0 - failure
2878  */
2879 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2880 {
2881 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2882 	int max_mac_rings;
2883 	int i;
2884 	int ring_size;
2885 
2886 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2887 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2888 	ring_size =  wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
2889 
2890 	for (i = 0; i < max_mac_rings; i++) {
2891 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2892 		if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
2893 				  RXDMA_BUF, ring_size, 0)) {
2894 			dp_init_err("%pK: failed rx mac ring setup", soc);
2895 			return QDF_STATUS_E_FAILURE;
2896 		}
2897 	}
2898 	return QDF_STATUS_SUCCESS;
2899 }
2900 
2901 /**
2902  * dp_rxdma_ring_setup() - configure the RXDMA rings
2903  * @soc: data path SoC handle
2904  * @pdev: Physical device handle
2905  *
2906  * Return: 0 - success, > 0 - failure
2907  */
2908 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2909 {
2910 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2911 	int max_mac_rings;
2912 	int i;
2913 
2914 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2915 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2916 
2917 	for (i = 0; i < max_mac_rings; i++) {
2918 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2919 		if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
2920 				 RXDMA_BUF, 1, i)) {
2921 			dp_init_err("%pK: failed rx mac ring setup", soc);
2922 			return QDF_STATUS_E_FAILURE;
2923 		}
2924 		dp_ssr_dump_srng_register("rx_mac_buf_ring",
2925 					  &pdev->rx_mac_buf_ring[i], i);
2926 	}
2927 	return QDF_STATUS_SUCCESS;
2928 }
2929 
2930 /**
2931  * dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
2932  * @soc: data path SoC handle
2933  * @pdev: Physical device handle
2934  *
2935  * Return: void
2936  */
2937 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2938 {
2939 	int i;
2940 
2941 	for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
2942 		dp_ssr_dump_srng_unregister("rx_mac_buf_ring", i);
2943 		dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
2944 	}
2945 
2946 	dp_reap_timer_deinit(soc);
2947 }
2948 
2949 /**
2950  * dp_rxdma_ring_free() - Free the RXDMA rings
2951  * @pdev: Physical device handle
2952  *
2953  * Return: void
2954  */
2955 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2956 {
2957 	int i;
2958 
2959 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2960 		dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
2961 }
2962 
2963 #else
2964 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2965 {
2966 	return QDF_STATUS_SUCCESS;
2967 }
2968 
2969 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2970 {
2971 	return QDF_STATUS_SUCCESS;
2972 }
2973 
2974 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2975 {
2976 	dp_reap_timer_deinit(soc);
2977 }
2978 
2979 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2980 {
2981 }
2982 #endif
2983 
2984 #ifdef IPA_OFFLOAD
2985 /**
2986  * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
2987  * @soc: data path instance
2988  * @pdev: core txrx pdev context
2989  *
2990  * Return: QDF_STATUS_SUCCESS: success
2991  *         QDF_STATUS_E_RESOURCES: Error return
2992  */
2993 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2994 					   struct dp_pdev *pdev)
2995 {
2996 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2997 	int entries;
2998 
2999 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3000 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3001 		entries =
3002 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3003 
3004 		/* Setup second Rx refill buffer ring */
3005 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3006 				  entries, 0)) {
3007 			dp_init_err("%pK: dp_srng_alloc failed second"
3008 				    "rx refill ring", soc);
3009 			return QDF_STATUS_E_FAILURE;
3010 		}
3011 	}
3012 
3013 	return QDF_STATUS_SUCCESS;
3014 }
3015 
3016 #ifdef IPA_WDI3_VLAN_SUPPORT
3017 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3018 					       struct dp_pdev *pdev)
3019 {
3020 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3021 	int entries;
3022 
3023 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3024 	    wlan_ipa_is_vlan_enabled()) {
3025 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3026 		entries =
3027 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3028 
3029 		/* Setup second Rx refill buffer ring */
3030 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3031 				  entries, 0)) {
3032 			dp_init_err("%pK: alloc failed for 3rd rx refill ring",
3033 				    soc);
3034 			return QDF_STATUS_E_FAILURE;
3035 		}
3036 	}
3037 
3038 	return QDF_STATUS_SUCCESS;
3039 }
3040 
3041 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3042 					      struct dp_pdev *pdev)
3043 {
3044 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3045 	    wlan_ipa_is_vlan_enabled()) {
3046 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3047 				 IPA_RX_ALT_REFILL_BUF_RING_IDX,
3048 				 pdev->pdev_id)) {
3049 			dp_init_err("%pK: init failed for 3rd rx refill ring",
3050 				    soc);
3051 			return QDF_STATUS_E_FAILURE;
3052 		}
3053 	}
3054 
3055 	return QDF_STATUS_SUCCESS;
3056 }
3057 
3058 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3059 						 struct dp_pdev *pdev)
3060 {
3061 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3062 	    wlan_ipa_is_vlan_enabled())
3063 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
3064 }
3065 
3066 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3067 					       struct dp_pdev *pdev)
3068 {
3069 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3070 	    wlan_ipa_is_vlan_enabled())
3071 		dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
3072 }
3073 #else
3074 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3075 					       struct dp_pdev *pdev)
3076 {
3077 	return QDF_STATUS_SUCCESS;
3078 }
3079 
3080 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3081 					      struct dp_pdev *pdev)
3082 {
3083 	return QDF_STATUS_SUCCESS;
3084 }
3085 
3086 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3087 						 struct dp_pdev *pdev)
3088 {
3089 }
3090 
3091 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3092 					       struct dp_pdev *pdev)
3093 {
3094 }
3095 #endif
3096 
3097 /**
3098  * dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
3099  * @soc: data path instance
3100  * @pdev: core txrx pdev context
3101  *
3102  * Return: void
3103  */
3104 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3105 					     struct dp_pdev *pdev)
3106 {
3107 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3108 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
3109 }
3110 
3111 /**
3112  * dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
3113  * @soc: data path instance
3114  * @pdev: core txrx pdev context
3115  *
3116  * Return: QDF_STATUS_SUCCESS: success
3117  *         QDF_STATUS_E_RESOURCES: Error return
3118  */
3119 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3120 					  struct dp_pdev *pdev)
3121 {
3122 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3123 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3124 				 IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
3125 			dp_init_err("%pK: dp_srng_init failed second"
3126 				    "rx refill ring", soc);
3127 			return QDF_STATUS_E_FAILURE;
3128 		}
3129 	}
3130 
3131 	if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3132 		dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
3133 		return QDF_STATUS_E_FAILURE;
3134 	}
3135 
3136 	return QDF_STATUS_SUCCESS;
3137 }
3138 
3139 /**
3140  * dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
3141  * @soc: data path instance
3142  * @pdev: core txrx pdev context
3143  *
3144  * Return: void
3145  */
3146 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3147 					   struct dp_pdev *pdev)
3148 {
3149 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3150 		dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
3151 }
3152 #else
3153 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3154 					   struct dp_pdev *pdev)
3155 {
3156 	return QDF_STATUS_SUCCESS;
3157 }
3158 
3159 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3160 					  struct dp_pdev *pdev)
3161 {
3162 	return QDF_STATUS_SUCCESS;
3163 }
3164 
3165 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3166 					     struct dp_pdev *pdev)
3167 {
3168 }
3169 
3170 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3171 					   struct dp_pdev *pdev)
3172 {
3173 }
3174 
3175 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3176 					       struct dp_pdev *pdev)
3177 {
3178 	return QDF_STATUS_SUCCESS;
3179 }
3180 
3181 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3182 						 struct dp_pdev *pdev)
3183 {
3184 }
3185 
3186 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3187 					       struct dp_pdev *pdev)
3188 {
3189 }
3190 #endif
3191 
3192 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
3193 
3194 /**
3195  * dp_soc_cfg_history_attach() - Allocate and attach datapath config events
3196  *				 history
3197  * @soc: DP soc handle
3198  *
3199  * Return: None
3200  */
3201 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3202 {
3203 	dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
3204 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3205 				   DP_CFG_EVT_HIST_PER_SLOT_MAX,
3206 				   sizeof(struct dp_cfg_event),
3207 				   true, DP_CFG_EVENT_HIST_TYPE);
3208 }
3209 
3210 /**
3211  * dp_soc_cfg_history_detach() - Detach and free DP config events history
3212  * @soc: DP soc handle
3213  *
3214  * Return: none
3215  */
3216 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3217 {
3218 	dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
3219 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3220 				   true, DP_CFG_EVENT_HIST_TYPE);
3221 }
3222 
3223 #else
3224 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3225 {
3226 }
3227 
3228 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3229 {
3230 }
3231 #endif
3232 
3233 #ifdef DP_TX_HW_DESC_HISTORY
3234 /**
3235  * dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
3236  *
3237  * @soc: DP soc handle
3238  *
3239  * Return: None
3240  */
3241 static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3242 {
3243 	dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
3244 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3245 				   DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
3246 				   sizeof(struct dp_tx_hw_desc_evt),
3247 				   true, DP_TX_HW_DESC_HIST_TYPE);
3248 }
3249 
3250 static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3251 {
3252 	dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
3253 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3254 				   true, DP_TX_HW_DESC_HIST_TYPE);
3255 }
3256 
3257 #else /* DP_TX_HW_DESC_HISTORY */
3258 static inline void
3259 dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3260 {
3261 }
3262 
3263 static inline void
3264 dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3265 {
3266 }
3267 #endif /* DP_TX_HW_DESC_HISTORY */
3268 
3269 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
3270 #ifndef RX_DEFRAG_DO_NOT_REINJECT
3271 /**
3272  * dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
3273  *					    history.
3274  * @soc: DP soc handle
3275  *
3276  * Return: None
3277  */
3278 static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3279 {
3280 	soc->rx_reinject_ring_history =
3281 		dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3282 				     sizeof(struct dp_rx_reinject_history));
3283 	if (soc->rx_reinject_ring_history)
3284 		qdf_atomic_init(&soc->rx_reinject_ring_history->index);
3285 }
3286 #else /* RX_DEFRAG_DO_NOT_REINJECT */
3287 static inline void
3288 dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3289 {
3290 }
3291 #endif /* RX_DEFRAG_DO_NOT_REINJECT */
3292 
3293 /**
3294  * dp_soc_rx_history_attach() - Attach the ring history record buffers
3295  * @soc: DP soc structure
3296  *
3297  * This function allocates the memory for recording the rx ring, rx error
3298  * ring and the reinject ring entries. There is no error returned in case
3299  * of allocation failure since the record function checks if the history is
3300  * initialized or not. We do not want to fail the driver load in case of
3301  * failure to allocate memory for debug history.
3302  *
3303  * Return: None
3304  */
3305 static void dp_soc_rx_history_attach(struct dp_soc *soc)
3306 {
3307 	int i;
3308 	uint32_t rx_ring_hist_size;
3309 	uint32_t rx_refill_ring_hist_size;
3310 
3311 	rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
3312 	rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
3313 
3314 	for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
3315 		soc->rx_ring_history[i] = dp_context_alloc_mem(
3316 				soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
3317 		if (soc->rx_ring_history[i])
3318 			qdf_atomic_init(&soc->rx_ring_history[i]->index);
3319 	}
3320 
3321 	soc->rx_err_ring_history = dp_context_alloc_mem(
3322 			soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
3323 	if (soc->rx_err_ring_history)
3324 		qdf_atomic_init(&soc->rx_err_ring_history->index);
3325 
3326 	dp_soc_rx_reinject_ring_history_attach(soc);
3327 
3328 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3329 		soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
3330 						soc,
3331 						DP_RX_REFILL_RING_HIST_TYPE,
3332 						rx_refill_ring_hist_size);
3333 
3334 		if (soc->rx_refill_ring_history[i])
3335 			qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
3336 	}
3337 }
3338 
3339 static void dp_soc_rx_history_detach(struct dp_soc *soc)
3340 {
3341 	int i;
3342 
3343 	for (i = 0; i < MAX_REO_DEST_RINGS; i++)
3344 		dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
3345 				    soc->rx_ring_history[i]);
3346 
3347 	dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
3348 			    soc->rx_err_ring_history);
3349 
3350 	/*
3351 	 * No need for a featurized detach since qdf_mem_free takes
3352 	 * care of NULL pointer.
3353 	 */
3354 	dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3355 			    soc->rx_reinject_ring_history);
3356 
3357 	for (i = 0; i < MAX_PDEV_CNT; i++)
3358 		dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
3359 				    soc->rx_refill_ring_history[i]);
3360 }
3361 
3362 #else
3363 static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
3364 {
3365 }
3366 
3367 static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
3368 {
3369 }
3370 #endif
3371 
3372 #ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
3373 /**
3374  * dp_soc_mon_status_ring_history_attach() - Attach the monitor status
3375  *					     buffer record history.
3376  * @soc: DP soc handle
3377  *
3378  * This function allocates memory to track the event for a monitor
3379  * status buffer, before its parsed and freed.
3380  *
3381  * Return: None
3382  */
3383 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3384 {
3385 	soc->mon_status_ring_history = dp_context_alloc_mem(soc,
3386 				DP_MON_STATUS_BUF_HIST_TYPE,
3387 				sizeof(struct dp_mon_status_ring_history));
3388 	if (!soc->mon_status_ring_history) {
3389 		dp_err("Failed to alloc memory for mon status ring history");
3390 		return;
3391 	}
3392 }
3393 
3394 /**
3395  * dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
3396  *					     record history.
3397  * @soc: DP soc handle
3398  *
3399  * Return: None
3400  */
3401 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3402 {
3403 	dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
3404 			    soc->mon_status_ring_history);
3405 }
3406 #else
3407 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3408 {
3409 }
3410 
3411 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3412 {
3413 }
3414 #endif
3415 
3416 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
3417 /**
3418  * dp_soc_tx_history_attach() - Attach the ring history record buffers
3419  * @soc: DP soc structure
3420  *
3421  * This function allocates the memory for recording the tx tcl ring and
3422  * the tx comp ring entries. There is no error returned in case
3423  * of allocation failure since the record function checks if the history is
3424  * initialized or not. We do not want to fail the driver load in case of
3425  * failure to allocate memory for debug history.
3426  *
3427  * Return: None
3428  */
3429 static void dp_soc_tx_history_attach(struct dp_soc *soc)
3430 {
3431 	dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
3432 				   DP_TX_TCL_HIST_MAX_SLOTS,
3433 				   DP_TX_TCL_HIST_PER_SLOT_MAX,
3434 				   sizeof(struct dp_tx_desc_event),
3435 				   true, DP_TX_TCL_HIST_TYPE);
3436 	dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
3437 				   DP_TX_COMP_HIST_MAX_SLOTS,
3438 				   DP_TX_COMP_HIST_PER_SLOT_MAX,
3439 				   sizeof(struct dp_tx_desc_event),
3440 				   true, DP_TX_COMP_HIST_TYPE);
3441 }
3442 
3443 /**
3444  * dp_soc_tx_history_detach() - Detach the ring history record buffers
3445  * @soc: DP soc structure
3446  *
3447  * This function frees the memory for recording the tx tcl ring and
3448  * the tx comp ring entries.
3449  *
3450  * Return: None
3451  */
3452 static void dp_soc_tx_history_detach(struct dp_soc *soc)
3453 {
3454 	dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
3455 				   DP_TX_TCL_HIST_MAX_SLOTS,
3456 				   true, DP_TX_TCL_HIST_TYPE);
3457 	dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
3458 				   DP_TX_COMP_HIST_MAX_SLOTS,
3459 				   true, DP_TX_COMP_HIST_TYPE);
3460 }
3461 
3462 #else
3463 static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
3464 {
3465 }
3466 
3467 static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
3468 {
3469 }
3470 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
3471 
3472 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
3473 QDF_STATUS
3474 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3475 {
3476 	struct dp_rx_fst *rx_fst = NULL;
3477 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
3478 
3479 	/* for Lithium the below API is not registered
3480 	 * hence fst attach happens for each pdev
3481 	 */
3482 	if (!soc->arch_ops.dp_get_rx_fst)
3483 		return dp_rx_fst_attach(soc, pdev);
3484 
3485 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3486 
3487 	/* for BE the FST attach is called only once per
3488 	 * ML context. if rx_fst is already registered
3489 	 * increase the ref count and return.
3490 	 */
3491 	if (rx_fst) {
3492 		soc->rx_fst = rx_fst;
3493 		pdev->rx_fst = rx_fst;
3494 		soc->arch_ops.dp_rx_fst_ref();
3495 	} else {
3496 		ret = dp_rx_fst_attach(soc, pdev);
3497 		if ((ret != QDF_STATUS_SUCCESS) &&
3498 		    (ret != QDF_STATUS_E_NOSUPPORT))
3499 			return ret;
3500 
3501 		soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
3502 		soc->arch_ops.dp_rx_fst_ref();
3503 	}
3504 	return ret;
3505 }
3506 
3507 void
3508 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3509 {
3510 	struct dp_rx_fst *rx_fst = NULL;
3511 
3512 	/* for Lithium the below API is not registered
3513 	 * hence fst detach happens for each pdev
3514 	 */
3515 	if (!soc->arch_ops.dp_get_rx_fst) {
3516 		dp_rx_fst_detach(soc, pdev);
3517 		return;
3518 	}
3519 
3520 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3521 
3522 	/* for BE the FST detach is called only when last
3523 	 * ref count reaches 1.
3524 	 */
3525 	if (rx_fst) {
3526 		if (soc->arch_ops.dp_rx_fst_deref() == 1)
3527 			dp_rx_fst_detach(soc, pdev);
3528 	}
3529 	pdev->rx_fst = NULL;
3530 }
3531 #else
3532 QDF_STATUS
3533 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3534 {
3535 	return QDF_STATUS_SUCCESS;
3536 }
3537 
3538 void
3539 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3540 {
3541 }
3542 #endif
3543 
3544 /**
3545  * dp_pdev_attach_wifi3() - attach txrx pdev
3546  * @txrx_soc: Datapath SOC handle
3547  * @params: Params for PDEV attach
3548  *
3549  * Return: QDF_STATUS
3550  */
3551 static inline
3552 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
3553 				struct cdp_pdev_attach_params *params)
3554 {
3555 	qdf_size_t pdev_context_size;
3556 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3557 	struct dp_pdev *pdev = NULL;
3558 	uint8_t pdev_id = params->pdev_id;
3559 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3560 	int nss_cfg;
3561 	QDF_STATUS ret;
3562 
3563 	pdev_context_size =
3564 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
3565 	if (pdev_context_size)
3566 		pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
3567 					    pdev_context_size);
3568 
3569 	if (!pdev) {
3570 		dp_init_err("%pK: DP PDEV memory allocation failed",
3571 			    soc);
3572 		goto fail0;
3573 	}
3574 	wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
3575 			  WLAN_MD_DP_PDEV, "dp_pdev");
3576 
3577 	soc_cfg_ctx = soc->wlan_cfg_ctx;
3578 	pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
3579 
3580 	if (!pdev->wlan_cfg_ctx) {
3581 		dp_init_err("%pK: pdev cfg_attach failed", soc);
3582 		goto fail1;
3583 	}
3584 
3585 	pdev->soc = soc;
3586 	pdev->pdev_id = pdev_id;
3587 	soc->pdev_list[pdev_id] = pdev;
3588 	pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
3589 	soc->pdev_count++;
3590 
3591 	dp_ssr_dump_pdev_register(pdev, pdev_id);
3592 
3593 	/*sync DP pdev cfg items with profile support after cfg_pdev_attach*/
3594 	wlan_dp_pdev_cfg_sync_profile((struct cdp_soc_t *)soc, pdev_id);
3595 
3596 	/*
3597 	 * set nss pdev config based on soc config
3598 	 */
3599 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
3600 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
3601 					 (nss_cfg & (1 << pdev_id)));
3602 
3603 	/* Allocate memory for pdev srng rings */
3604 	if (dp_pdev_srng_alloc(pdev)) {
3605 		dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
3606 		goto fail2;
3607 	}
3608 
3609 	/* Setup second Rx refill buffer ring */
3610 	if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
3611 		dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
3612 			    soc);
3613 		goto fail3;
3614 	}
3615 
3616 	/* Allocate memory for pdev rxdma rings */
3617 	if (dp_rxdma_ring_alloc(soc, pdev)) {
3618 		dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
3619 		goto fail4;
3620 	}
3621 
3622 	/* Rx specific init */
3623 	if (dp_rx_pdev_desc_pool_alloc(pdev)) {
3624 		dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
3625 		goto fail4;
3626 	}
3627 
3628 	if (dp_monitor_pdev_attach(pdev)) {
3629 		dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
3630 		goto fail5;
3631 	}
3632 
3633 	soc->arch_ops.txrx_pdev_attach(pdev, params);
3634 
3635 	/* Setup third Rx refill buffer ring */
3636 	if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3637 		dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
3638 			    soc);
3639 		goto fail6;
3640 	}
3641 
3642 	ret = dp_rx_fst_attach_wrapper(soc, pdev);
3643 	if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
3644 		dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
3645 			    soc, pdev_id, ret);
3646 		goto fail7;
3647 	}
3648 
3649 	return QDF_STATUS_SUCCESS;
3650 
3651 fail7:
3652 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3653 fail6:
3654 	dp_monitor_pdev_detach(pdev);
3655 fail5:
3656 	dp_rx_pdev_desc_pool_free(pdev);
3657 fail4:
3658 	dp_rxdma_ring_free(pdev);
3659 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3660 fail3:
3661 	dp_pdev_srng_free(pdev);
3662 fail2:
3663 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3664 fail1:
3665 	soc->pdev_list[pdev_id] = NULL;
3666 	qdf_mem_free(pdev);
3667 fail0:
3668 	return QDF_STATUS_E_FAILURE;
3669 }
3670 
3671 /**
3672  * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
3673  * @pdev: Datapath PDEV handle
3674  *
3675  * This is the last chance to flush all pending dp vdevs/peers,
3676  * some peer/vdev leak case like Non-SSR + peer unmap missing
3677  * will be covered here.
3678  *
3679  * Return: None
3680  */
3681 static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
3682 {
3683 	struct dp_soc *soc = pdev->soc;
3684 	struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
3685 	uint32_t i = 0;
3686 	uint32_t num_vdevs = 0;
3687 	struct dp_vdev *vdev = NULL;
3688 
3689 	if (TAILQ_EMPTY(&soc->inactive_vdev_list))
3690 		return;
3691 
3692 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
3693 	TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
3694 		      inactive_list_elem) {
3695 		if (vdev->pdev != pdev)
3696 			continue;
3697 
3698 		vdev_arr[num_vdevs] = vdev;
3699 		num_vdevs++;
3700 		/* take reference to free */
3701 		dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
3702 	}
3703 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
3704 
3705 	for (i = 0; i < num_vdevs; i++) {
3706 		dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
3707 		dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
3708 	}
3709 }
3710 
3711 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
3712 /**
3713  * dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
3714  *                                          for enable/disable of HW vdev stats
3715  * @soc: Datapath soc handle
3716  * @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
3717  * @enable: flag to represent enable/disable of hw vdev stats
3718  *
3719  * Return: none
3720  */
3721 static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
3722 						   uint8_t pdev_id,
3723 						   bool enable)
3724 {
3725 	/* Check SOC level config for HW offload vdev stats support */
3726 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3727 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3728 		return;
3729 	}
3730 
3731 	/* Send HTT command to FW for enable of stats */
3732 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
3733 }
3734 
3735 /**
3736  * dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
3737  * @soc: Datapath soc handle
3738  * @pdev_id: pdev_id (0,1,2)
3739  * @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
3740  *                   cleared on HW
3741  *
3742  * Return: none
3743  */
3744 static
3745 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3746 					   uint64_t vdev_id_bitmask)
3747 {
3748 	/* Check SOC level config for HW offload vdev stats support */
3749 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3750 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3751 		return;
3752 	}
3753 
3754 	/* Send HTT command to FW for reset of stats */
3755 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
3756 					 vdev_id_bitmask);
3757 }
3758 #else
3759 static void
3760 dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
3761 				       bool enable)
3762 {
3763 }
3764 
3765 static
3766 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3767 					   uint64_t vdev_id_bitmask)
3768 {
3769 }
3770 #endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
3771 
3772 /**
3773  * dp_pdev_deinit() - Deinit txrx pdev
3774  * @txrx_pdev: Datapath PDEV handle
3775  * @force: Force deinit
3776  *
3777  * Return: None
3778  */
3779 static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
3780 {
3781 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3782 	qdf_nbuf_t curr_nbuf, next_nbuf;
3783 
3784 	if (pdev->pdev_deinit)
3785 		return;
3786 
3787 	dp_tx_me_exit(pdev);
3788 	dp_rx_pdev_buffers_free(pdev);
3789 	dp_rx_pdev_desc_pool_deinit(pdev);
3790 	dp_pdev_bkp_stats_detach(pdev);
3791 	qdf_event_destroy(&pdev->fw_peer_stats_event);
3792 	qdf_event_destroy(&pdev->fw_stats_event);
3793 	qdf_event_destroy(&pdev->fw_obss_stats_event);
3794 	if (pdev->sojourn_buf)
3795 		qdf_nbuf_free(pdev->sojourn_buf);
3796 
3797 	dp_pdev_flush_pending_vdevs(pdev);
3798 	dp_tx_desc_flush(pdev, NULL, true);
3799 
3800 	qdf_spinlock_destroy(&pdev->tx_mutex);
3801 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
3802 
3803 	dp_monitor_pdev_deinit(pdev);
3804 
3805 	dp_pdev_srng_deinit(pdev);
3806 
3807 	dp_ipa_uc_detach(pdev->soc, pdev);
3808 	dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
3809 	dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
3810 	dp_rxdma_ring_cleanup(pdev->soc, pdev);
3811 
3812 	curr_nbuf = pdev->invalid_peer_head_msdu;
3813 	while (curr_nbuf) {
3814 		next_nbuf = qdf_nbuf_next(curr_nbuf);
3815 		dp_rx_nbuf_free(curr_nbuf);
3816 		curr_nbuf = next_nbuf;
3817 	}
3818 	pdev->invalid_peer_head_msdu = NULL;
3819 	pdev->invalid_peer_tail_msdu = NULL;
3820 
3821 	dp_wdi_event_detach(pdev);
3822 	pdev->pdev_deinit = 1;
3823 }
3824 
3825 /**
3826  * dp_pdev_deinit_wifi3() - Deinit txrx pdev
3827  * @psoc: Datapath psoc handle
3828  * @pdev_id: Id of datapath PDEV handle
3829  * @force: Force deinit
3830  *
3831  * Return: QDF_STATUS
3832  */
3833 static QDF_STATUS
3834 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3835 		     int force)
3836 {
3837 	struct dp_pdev *txrx_pdev;
3838 
3839 	txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3840 						       pdev_id);
3841 
3842 	if (!txrx_pdev)
3843 		return QDF_STATUS_E_FAILURE;
3844 
3845 	dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
3846 
3847 	return QDF_STATUS_SUCCESS;
3848 }
3849 
3850 /**
3851  * dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
3852  * @txrx_pdev: Datapath PDEV handle
3853  *
3854  * Return: None
3855  */
3856 static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
3857 {
3858 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3859 
3860 	dp_monitor_tx_capture_debugfs_init(pdev);
3861 
3862 	if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
3863 		dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
3864 	}
3865 }
3866 
3867 /**
3868  * dp_pdev_post_attach_wifi3() - attach txrx pdev post
3869  * @soc: Datapath soc handle
3870  * @pdev_id: pdev id of pdev
3871  *
3872  * Return: QDF_STATUS
3873  */
3874 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
3875 				     uint8_t pdev_id)
3876 {
3877 	struct dp_pdev *pdev;
3878 
3879 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3880 						  pdev_id);
3881 
3882 	if (!pdev) {
3883 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3884 			    (struct dp_soc *)soc, pdev_id);
3885 		return QDF_STATUS_E_FAILURE;
3886 	}
3887 
3888 	dp_pdev_post_attach((struct cdp_pdev *)pdev);
3889 	return QDF_STATUS_SUCCESS;
3890 }
3891 
3892 /**
3893  * dp_pdev_detach() - Complete rest of pdev detach
3894  * @txrx_pdev: Datapath PDEV handle
3895  * @force: Force deinit
3896  *
3897  * Return: None
3898  */
3899 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
3900 {
3901 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3902 	struct dp_soc *soc = pdev->soc;
3903 
3904 	dp_rx_fst_detach_wrapper(soc, pdev);
3905 	dp_pdev_htt_stats_dbgfs_deinit(pdev);
3906 	dp_rx_pdev_desc_pool_free(pdev);
3907 	dp_monitor_pdev_detach(pdev);
3908 	dp_rxdma_ring_free(pdev);
3909 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3910 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3911 	dp_pdev_srng_free(pdev);
3912 
3913 	soc->pdev_count--;
3914 	soc->pdev_list[pdev->pdev_id] = NULL;
3915 
3916 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3917 	wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
3918 			     WLAN_MD_DP_PDEV, "dp_pdev");
3919 	dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
3920 }
3921 
3922 /**
3923  * dp_pdev_detach_wifi3() - detach txrx pdev
3924  * @psoc: Datapath soc handle
3925  * @pdev_id: pdev id of pdev
3926  * @force: Force detach
3927  *
3928  * Return: QDF_STATUS
3929  */
3930 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3931 				       int force)
3932 {
3933 	struct dp_pdev *pdev;
3934 	struct dp_soc *soc = (struct dp_soc *)psoc;
3935 
3936 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3937 						  pdev_id);
3938 
3939 	if (!pdev) {
3940 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3941 			    (struct dp_soc *)psoc, pdev_id);
3942 		return QDF_STATUS_E_FAILURE;
3943 	}
3944 
3945 	dp_ssr_dump_pdev_unregister(pdev_id);
3946 
3947 	soc->arch_ops.txrx_pdev_detach(pdev);
3948 
3949 	dp_pdev_detach((struct cdp_pdev *)pdev, force);
3950 	return QDF_STATUS_SUCCESS;
3951 }
3952 
3953 void dp_soc_print_inactive_objects(struct dp_soc *soc)
3954 {
3955 	struct dp_peer *peer = NULL;
3956 	struct dp_peer *tmp_peer = NULL;
3957 	struct dp_vdev *vdev = NULL;
3958 	struct dp_vdev *tmp_vdev = NULL;
3959 	int i = 0;
3960 	uint32_t count;
3961 
3962 	if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
3963 	    TAILQ_EMPTY(&soc->inactive_vdev_list))
3964 		return;
3965 
3966 	TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
3967 			   inactive_list_elem, tmp_peer) {
3968 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3969 			count = qdf_atomic_read(&peer->mod_refs[i]);
3970 			if (count)
3971 				DP_PRINT_STATS("peer %pK Module id %u ==> %u",
3972 					       peer, i, count);
3973 		}
3974 	}
3975 
3976 	TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
3977 			   inactive_list_elem, tmp_vdev) {
3978 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3979 			count = qdf_atomic_read(&vdev->mod_refs[i]);
3980 			if (count)
3981 				DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
3982 					       vdev, i, count);
3983 		}
3984 	}
3985 	QDF_BUG(0);
3986 }
3987 
3988 /**
3989  * dp_soc_deinit_wifi3() - Deinitialize txrx SOC
3990  * @txrx_soc: Opaque DP SOC handle
3991  *
3992  * Return: None
3993  */
3994 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
3995 {
3996 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3997 
3998 	soc->arch_ops.txrx_soc_deinit(soc);
3999 }
4000 
4001 /**
4002  * dp_soc_detach() - Detach rest of txrx SOC
4003  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4004  *
4005  * Return: None
4006  */
4007 static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
4008 {
4009 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
4010 
4011 	soc->arch_ops.txrx_soc_detach(soc);
4012 
4013 	qdf_ssr_driver_dump_unregister_region("wlan_cfg_ctx");
4014 	qdf_ssr_driver_dump_unregister_region("dp_soc");
4015 	qdf_ssr_driver_dump_unregister_region("tcl_wbm_map_array");
4016 	qdf_nbuf_ssr_unregister_region();
4017 
4018 	dp_runtime_deinit();
4019 
4020 	dp_soc_unset_qref_debug_list(soc);
4021 	dp_sysfs_deinitialize_stats(soc);
4022 	dp_soc_swlm_detach(soc);
4023 	dp_soc_tx_desc_sw_pools_free(soc);
4024 	dp_soc_srng_free(soc);
4025 	dp_hw_link_desc_ring_free(soc);
4026 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
4027 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
4028 	dp_soc_tx_hw_desc_history_detach(soc);
4029 	dp_soc_tx_history_detach(soc);
4030 	dp_soc_mon_status_ring_history_detach(soc);
4031 	dp_soc_rx_history_detach(soc);
4032 	dp_soc_cfg_history_detach(soc);
4033 
4034 	if (!dp_monitor_modularized_enable()) {
4035 		dp_mon_soc_detach_wrapper(soc);
4036 	}
4037 
4038 	qdf_mem_free(soc->cdp_soc.ops);
4039 	qdf_mem_common_free(soc);
4040 }
4041 
4042 /**
4043  * dp_soc_detach_wifi3() - Detach txrx SOC
4044  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4045  *
4046  * Return: None
4047  */
4048 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
4049 {
4050 	dp_soc_detach(txrx_soc);
4051 }
4052 
4053 #ifdef QCA_HOST2FW_RXBUF_RING
4054 #ifdef IPA_WDI3_VLAN_SUPPORT
4055 static inline
4056 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4057 				 struct dp_pdev *pdev,
4058 				 uint8_t idx)
4059 {
4060 	if (pdev->rx_refill_buf_ring3.hal_srng)
4061 		htt_srng_setup(soc->htt_handle, idx,
4062 			       pdev->rx_refill_buf_ring3.hal_srng,
4063 			       RXDMA_BUF);
4064 }
4065 #else
4066 static inline
4067 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4068 				 struct dp_pdev *pdev,
4069 				 uint8_t idx)
4070 { }
4071 #endif
4072 
4073 #ifdef WIFI_MONITOR_SUPPORT
4074 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4075 {
4076 	return dp_local_pkt_capture_tx_config(pdev);
4077 }
4078 #else
4079 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4080 {
4081 	return QDF_STATUS_SUCCESS;
4082 }
4083 #endif
4084 
4085 /**
4086  * dp_rxdma_ring_config() - configure the RX DMA rings
4087  * @soc: data path SoC handle
4088  *
4089  * This function is used to configure the MAC rings.
4090  * On MCL host provides buffers in Host2FW ring
4091  * FW refills (copies) buffers to the ring and updates
4092  * ring_idx in register
4093  *
4094  * Return: zero on success, non-zero on failure
4095  */
4096 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4097 {
4098 	int i;
4099 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4100 
4101 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4102 		struct dp_pdev *pdev = soc->pdev_list[i];
4103 
4104 		if (pdev) {
4105 			int mac_id;
4106 			int max_mac_rings =
4107 				 wlan_cfg_get_num_mac_rings
4108 				(pdev->wlan_cfg_ctx);
4109 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4110 
4111 			htt_srng_setup(soc->htt_handle, i,
4112 				       soc->rx_refill_buf_ring[lmac_id]
4113 				       .hal_srng,
4114 				       RXDMA_BUF);
4115 
4116 			if (pdev->rx_refill_buf_ring2.hal_srng)
4117 				htt_srng_setup(soc->htt_handle, i,
4118 					       pdev->rx_refill_buf_ring2
4119 					       .hal_srng,
4120 					       RXDMA_BUF);
4121 
4122 			dp_rxdma_setup_refill_ring3(soc, pdev, i);
4123 
4124 			dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
4125 			dp_lpc_tx_config(pdev);
4126 			dp_info("pdev_id %d max_mac_rings %d",
4127 			       pdev->pdev_id, max_mac_rings);
4128 
4129 			for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
4130 				int mac_for_pdev =
4131 					dp_get_mac_id_for_pdev(mac_id,
4132 							       pdev->pdev_id);
4133 				/*
4134 				 * Obtain lmac id from pdev to access the LMAC
4135 				 * ring in soc context
4136 				 */
4137 				lmac_id =
4138 				dp_get_lmac_id_for_pdev_id(soc,
4139 							   mac_id,
4140 							   pdev->pdev_id);
4141 				dp_info("mac_id %d", mac_for_pdev);
4142 
4143 				htt_srng_setup(soc->htt_handle, mac_for_pdev,
4144 					 pdev->rx_mac_buf_ring[mac_id]
4145 						.hal_srng,
4146 					 RXDMA_BUF);
4147 
4148 				if (!soc->rxdma2sw_rings_not_supported)
4149 					dp_htt_setup_rxdma_err_dst_ring(soc,
4150 						mac_for_pdev, lmac_id);
4151 
4152 				/* Configure monitor mode rings */
4153 				status = dp_monitor_htt_srng_setup(soc, pdev,
4154 								   lmac_id,
4155 								   mac_for_pdev);
4156 				if (status != QDF_STATUS_SUCCESS) {
4157 					dp_err("Failed to send htt monitor messages to target");
4158 					return status;
4159 				}
4160 
4161 			}
4162 		}
4163 	}
4164 
4165 	dp_reap_timer_init(soc);
4166 	return status;
4167 }
4168 #else
4169 /* This is only for WIN */
4170 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4171 {
4172 	int i;
4173 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4174 	int mac_for_pdev;
4175 	int lmac_id;
4176 
4177 	/* Configure monitor mode rings */
4178 	dp_monitor_soc_htt_srng_setup(soc);
4179 
4180 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4181 		struct dp_pdev *pdev =  soc->pdev_list[i];
4182 
4183 		if (!pdev)
4184 			continue;
4185 
4186 		mac_for_pdev = i;
4187 		lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4188 
4189 		if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
4190 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4191 				       soc->rx_refill_buf_ring[lmac_id].
4192 				       hal_srng, RXDMA_BUF);
4193 
4194 		/* Configure monitor mode rings */
4195 		dp_monitor_htt_srng_setup(soc, pdev,
4196 					  lmac_id,
4197 					  mac_for_pdev);
4198 		if (!soc->rxdma2sw_rings_not_supported)
4199 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4200 				       soc->rxdma_err_dst_ring[lmac_id].hal_srng,
4201 				       RXDMA_DST);
4202 	}
4203 
4204 	dp_reap_timer_init(soc);
4205 	return status;
4206 }
4207 #endif
4208 
4209 /**
4210  * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
4211  *
4212  * This function is used to configure the FSE HW block in RX OLE on a
4213  * per pdev basis. Here, we will be programming parameters related to
4214  * the Flow Search Table.
4215  *
4216  * @soc: data path SoC handle
4217  *
4218  * Return: zero on success, non-zero on failure
4219  */
4220 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4221 static QDF_STATUS
4222 dp_rx_target_fst_config(struct dp_soc *soc)
4223 {
4224 	int i;
4225 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4226 
4227 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4228 		struct dp_pdev *pdev = soc->pdev_list[i];
4229 
4230 		/* Flow search is not enabled if NSS offload is enabled */
4231 		if (pdev &&
4232 		    !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
4233 			status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
4234 			if (status != QDF_STATUS_SUCCESS)
4235 				break;
4236 		}
4237 	}
4238 	return status;
4239 }
4240 #else
4241 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
4242 {
4243 	return QDF_STATUS_SUCCESS;
4244 }
4245 #endif
4246 
4247 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4248 static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
4249 {
4250 	return QDF_STATUS_SUCCESS;
4251 }
4252 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4253 
4254 #ifdef WLAN_SUPPORT_PPEDS
4255 /**
4256  * dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
4257  * @soc: DP Tx/Rx handle
4258  *
4259  * Return: QDF_STATUS
4260  */
4261 static
4262 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4263 {
4264 	struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
4265 	QDF_STATUS status;
4266 
4267 	/*
4268 	 * Program RxDMA to override the reo destination indication
4269 	 * with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
4270 	 * thereby driving the packet to REO2PPE ring.
4271 	 * If the MSDU is spanning more than 1 buffer, then this
4272 	 * override is not done.
4273 	 */
4274 	htt_cfg.override = 1;
4275 	htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
4276 	htt_cfg.multi_buffer_msdu_override_en = 0;
4277 
4278 	/*
4279 	 * Override use_ppe to 0 in RxOLE for the following
4280 	 * cases.
4281 	 */
4282 	htt_cfg.intra_bss_override = 1;
4283 	htt_cfg.decap_raw_override = 1;
4284 	htt_cfg.decap_nwifi_override = 1;
4285 	htt_cfg.ip_frag_override = 1;
4286 
4287 	status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
4288 	if (status != QDF_STATUS_SUCCESS)
4289 		dp_err("RxOLE and RxDMA PPE config failed %d", status);
4290 
4291 	return status;
4292 }
4293 
4294 #else
4295 static inline
4296 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4297 {
4298 	return QDF_STATUS_SUCCESS;
4299 }
4300 
4301 #endif /* WLAN_SUPPORT_PPEDS */
4302 
4303 #ifdef DP_UMAC_HW_RESET_SUPPORT
4304 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4305 {
4306 	dp_umac_reset_register_rx_action_callback(soc,
4307 					dp_umac_reset_action_trigger_recovery,
4308 					UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
4309 
4310 	dp_umac_reset_register_rx_action_callback(soc,
4311 		dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
4312 
4313 	dp_umac_reset_register_rx_action_callback(soc,
4314 					dp_umac_reset_handle_post_reset,
4315 					UMAC_RESET_ACTION_DO_POST_RESET_START);
4316 
4317 	dp_umac_reset_register_rx_action_callback(soc,
4318 				dp_umac_reset_handle_post_reset_complete,
4319 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
4320 
4321 }
4322 #else
4323 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4324 {
4325 }
4326 #endif
4327 /**
4328  * dp_soc_attach_target_wifi3() - SOC initialization in the target
4329  * @cdp_soc: Opaque Datapath SOC handle
4330  *
4331  * Return: zero on success, non-zero on failure
4332  */
4333 static QDF_STATUS
4334 dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
4335 {
4336 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4337 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4338 	struct hal_reo_params reo_params;
4339 
4340 	htt_soc_attach_target(soc->htt_handle);
4341 
4342 	status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
4343 	if (status != QDF_STATUS_SUCCESS) {
4344 		dp_err("Failed to send htt RxOLE and RxDMA messages to target");
4345 		return status;
4346 	}
4347 
4348 	status = dp_rxdma_ring_config(soc);
4349 	if (status != QDF_STATUS_SUCCESS) {
4350 		dp_err("Failed to send htt srng setup messages to target");
4351 		return status;
4352 	}
4353 
4354 	status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
4355 	if (status != QDF_STATUS_SUCCESS) {
4356 		dp_err("Failed to send htt ring config message to target");
4357 		return status;
4358 	}
4359 
4360 	status = dp_soc_umac_reset_init(cdp_soc);
4361 	if (status != QDF_STATUS_SUCCESS &&
4362 	    status != QDF_STATUS_E_NOSUPPORT) {
4363 		dp_err("Failed to initialize UMAC reset");
4364 		return status;
4365 	}
4366 
4367 	dp_register_umac_reset_handlers(soc);
4368 
4369 	status = dp_rx_target_fst_config(soc);
4370 	if (status != QDF_STATUS_SUCCESS &&
4371 	    status != QDF_STATUS_E_NOSUPPORT) {
4372 		dp_err("Failed to send htt fst setup config message to target");
4373 		return status;
4374 	}
4375 
4376 	DP_STATS_INIT(soc);
4377 
4378 	dp_runtime_init(soc);
4379 
4380 	/* Enable HW vdev offload stats if feature is supported */
4381 	dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
4382 
4383 	/* initialize work queue for stats processing */
4384 	qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
4385 
4386 	wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
4387 				       soc->ctrl_psoc);
4388 	/* Setup HW REO */
4389 	qdf_mem_zero(&reo_params, sizeof(reo_params));
4390 
4391 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
4392 		/*
4393 		 * Reo ring remap is not required if both radios
4394 		 * are offloaded to NSS
4395 		 */
4396 
4397 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
4398 						   &reo_params.remap1,
4399 						   &reo_params.remap2))
4400 			reo_params.rx_hash_enabled = true;
4401 		else
4402 			reo_params.rx_hash_enabled = false;
4403 	}
4404 
4405 	/*
4406 	 * set the fragment destination ring
4407 	 */
4408 	dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
4409 
4410 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
4411 		reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
4412 
4413 	reo_params.reo_qref = &soc->reo_qref;
4414 	hal_reo_setup(soc->hal_soc, &reo_params, 1);
4415 
4416 	hal_reo_set_err_dst_remap(soc->hal_soc);
4417 
4418 	soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
4419 
4420 	return QDF_STATUS_SUCCESS;
4421 }
4422 
4423 /**
4424  * dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
4425  * @soc: SoC handle
4426  * @vdev: vdev handle
4427  * @vdev_id: vdev_id
4428  *
4429  * Return: None
4430  */
4431 static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
4432 				   struct dp_vdev *vdev,
4433 				   uint8_t vdev_id)
4434 {
4435 	QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
4436 
4437 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4438 
4439 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4440 			QDF_STATUS_SUCCESS) {
4441 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
4442 			     soc, vdev, vdev_id);
4443 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4444 		return;
4445 	}
4446 
4447 	if (!soc->vdev_id_map[vdev_id])
4448 		soc->vdev_id_map[vdev_id] = vdev;
4449 	else
4450 		QDF_ASSERT(0);
4451 
4452 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4453 }
4454 
4455 /**
4456  * dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
4457  * @soc: SoC handle
4458  * @vdev: vdev handle
4459  *
4460  * Return: None
4461  */
4462 static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
4463 				      struct dp_vdev *vdev)
4464 {
4465 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4466 	QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
4467 
4468 	soc->vdev_id_map[vdev->vdev_id] = NULL;
4469 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4470 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4471 }
4472 
4473 /**
4474  * dp_vdev_pdev_list_add() - add vdev into pdev's list
4475  * @soc: soc handle
4476  * @pdev: pdev handle
4477  * @vdev: vdev handle
4478  *
4479  * Return: none
4480  */
4481 static void dp_vdev_pdev_list_add(struct dp_soc *soc,
4482 				  struct dp_pdev *pdev,
4483 				  struct dp_vdev *vdev)
4484 {
4485 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4486 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4487 			QDF_STATUS_SUCCESS) {
4488 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
4489 			     soc, vdev);
4490 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4491 		return;
4492 	}
4493 	/* add this vdev into the pdev's list */
4494 	TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
4495 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4496 }
4497 
4498 /**
4499  * dp_vdev_pdev_list_remove() - remove vdev from pdev's list
4500  * @soc: SoC handle
4501  * @pdev: pdev handle
4502  * @vdev: VDEV handle
4503  *
4504  * Return: none
4505  */
4506 static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
4507 				     struct dp_pdev *pdev,
4508 				     struct dp_vdev *vdev)
4509 {
4510 	uint8_t found = 0;
4511 	struct dp_vdev *tmpvdev = NULL;
4512 
4513 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4514 	TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
4515 		if (tmpvdev == vdev) {
4516 			found = 1;
4517 			break;
4518 		}
4519 	}
4520 
4521 	if (found) {
4522 		TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
4523 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4524 	} else {
4525 		dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
4526 			      soc, vdev, pdev, &pdev->vdev_list);
4527 		QDF_ASSERT(0);
4528 	}
4529 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4530 }
4531 
4532 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
4533 /**
4534  * dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
4535  * @vdev: Datapath VDEV handle
4536  *
4537  * Return: None
4538  */
4539 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4540 {
4541 	vdev->osif_rx_eapol = NULL;
4542 }
4543 
4544 /**
4545  * dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
4546  * @vdev: DP vdev handle
4547  * @txrx_ops: Tx and Rx operations
4548  *
4549  * Return: None
4550  */
4551 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4552 					     struct ol_txrx_ops *txrx_ops)
4553 {
4554 	vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
4555 }
4556 #else
4557 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4558 {
4559 }
4560 
4561 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4562 					     struct ol_txrx_ops *txrx_ops)
4563 {
4564 }
4565 #endif
4566 
4567 #ifdef WLAN_FEATURE_11BE_MLO
4568 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4569 					 struct cdp_vdev_info *vdev_info)
4570 {
4571 	if (vdev_info->mld_mac_addr)
4572 		qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
4573 			     vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
4574 }
4575 
4576 #ifdef WLAN_MLO_MULTI_CHIP
4577 static inline void
4578 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4579 				 struct cdp_vdev_info *vdev_info)
4580 {
4581 	if (vdev_info->is_bridge_vap)
4582 		vdev->is_bridge_vdev = 1;
4583 
4584 	dp_info("is_bridge_link = %d vdev id = %d chip id = %d",
4585 		vdev->is_bridge_vdev, vdev->vdev_id,
4586 		dp_get_chip_id(vdev->pdev->soc));
4587 }
4588 #else
4589 static inline void
4590 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4591 				 struct cdp_vdev_info *vdev_info)
4592 {
4593 }
4594 #endif /* WLAN_MLO_MULTI_CHIP */
4595 
4596 #else
4597 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4598 					 struct cdp_vdev_info *vdev_info)
4599 {
4600 
4601 }
4602 
4603 static inline void
4604 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4605 				 struct cdp_vdev_info *vdev_info)
4606 {
4607 }
4608 #endif
4609 
4610 #ifdef DP_TRAFFIC_END_INDICATION
4611 /**
4612  * dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
4613  *                                              related members in VDEV
4614  * @vdev: DP vdev handle
4615  *
4616  * Return: None
4617  */
4618 static inline void
4619 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4620 {
4621 	qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
4622 }
4623 
4624 /**
4625  * dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
4626  *                                              related members in VDEV
4627  * @vdev: DP vdev handle
4628  *
4629  * Return: None
4630  */
4631 static inline void
4632 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4633 {
4634 	qdf_nbuf_t nbuf;
4635 
4636 	while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
4637 		qdf_nbuf_free(nbuf);
4638 }
4639 #else
4640 static inline void
4641 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4642 {}
4643 
4644 static inline void
4645 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4646 {}
4647 #endif
4648 
4649 #ifdef WLAN_DP_VDEV_NO_SELF_PEER
4650 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4651 					      struct dp_vdev *vdev)
4652 {
4653 	return false;
4654 }
4655 #else
4656 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4657 					      struct dp_vdev *vdev)
4658 {
4659 	if (wlan_op_mode_sta == vdev->opmode)
4660 		return true;
4661 
4662 	return false;
4663 }
4664 #endif
4665 
4666 /**
4667  * dp_vdev_attach_wifi3() - attach txrx vdev
4668  * @cdp_soc: CDP SoC context
4669  * @pdev_id: PDEV ID for vdev creation
4670  * @vdev_info: parameters used for vdev creation
4671  *
4672  * Return: status
4673  */
4674 static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
4675 				       uint8_t pdev_id,
4676 				       struct cdp_vdev_info *vdev_info)
4677 {
4678 	int i = 0;
4679 	qdf_size_t vdev_context_size;
4680 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4681 	struct dp_pdev *pdev =
4682 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
4683 						   pdev_id);
4684 	struct dp_vdev *vdev;
4685 	uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
4686 	uint8_t vdev_id = vdev_info->vdev_id;
4687 	enum wlan_op_mode op_mode = vdev_info->op_mode;
4688 	enum wlan_op_subtype subtype = vdev_info->subtype;
4689 	enum QDF_OPMODE qdf_opmode = vdev_info->qdf_opmode;
4690 	uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
4691 
4692 	vdev_context_size =
4693 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
4694 	vdev = qdf_mem_malloc(vdev_context_size);
4695 
4696 	if (!pdev) {
4697 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
4698 			    cdp_soc, pdev_id);
4699 		qdf_mem_free(vdev);
4700 		goto fail0;
4701 	}
4702 
4703 	if (!vdev) {
4704 		dp_init_err("%pK: DP VDEV memory allocation failed",
4705 			    cdp_soc);
4706 		goto fail0;
4707 	}
4708 
4709 	wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
4710 			  WLAN_MD_DP_VDEV, "dp_vdev");
4711 
4712 	vdev->pdev = pdev;
4713 	vdev->vdev_id = vdev_id;
4714 	vdev->vdev_stats_id = vdev_stats_id;
4715 	vdev->opmode = op_mode;
4716 	vdev->subtype = subtype;
4717 	vdev->qdf_opmode = qdf_opmode;
4718 	vdev->osdev = soc->osdev;
4719 
4720 	vdev->osif_rx = NULL;
4721 	vdev->osif_rsim_rx_decap = NULL;
4722 	vdev->osif_get_key = NULL;
4723 	vdev->osif_tx_free_ext = NULL;
4724 	vdev->osif_vdev = NULL;
4725 
4726 	vdev->delete.pending = 0;
4727 	vdev->safemode = 0;
4728 	vdev->drop_unenc = 1;
4729 	vdev->sec_type = cdp_sec_type_none;
4730 	vdev->multipass_en = false;
4731 	vdev->wrap_vdev = false;
4732 	dp_vdev_init_rx_eapol(vdev);
4733 	qdf_atomic_init(&vdev->ref_cnt);
4734 	for (i = 0; i < DP_MOD_ID_MAX; i++)
4735 		qdf_atomic_init(&vdev->mod_refs[i]);
4736 
4737 	/* Take one reference for create*/
4738 	qdf_atomic_inc(&vdev->ref_cnt);
4739 	qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
4740 	vdev->num_peers = 0;
4741 #ifdef notyet
4742 	vdev->filters_num = 0;
4743 #endif
4744 	vdev->lmac_id = pdev->lmac_id;
4745 
4746 	qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
4747 
4748 	dp_vdev_update_bridge_vdev_param(vdev, vdev_info);
4749 	dp_vdev_save_mld_addr(vdev, vdev_info);
4750 
4751 	/* TODO: Initialize default HTT meta data that will be used in
4752 	 * TCL descriptors for packets transmitted from this VDEV
4753 	 */
4754 
4755 	qdf_spinlock_create(&vdev->peer_list_lock);
4756 	TAILQ_INIT(&vdev->peer_list);
4757 	dp_peer_multipass_list_init(vdev);
4758 	if ((soc->intr_mode == DP_INTR_POLL) &&
4759 	    wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
4760 		if ((pdev->vdev_count == 0) ||
4761 		    (wlan_op_mode_monitor == vdev->opmode))
4762 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
4763 	} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
4764 		   soc->intr_mode == DP_INTR_MSI &&
4765 		   wlan_op_mode_monitor == vdev->opmode &&
4766 		   !wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx)) {
4767 		/* Timer to reap status ring in mission mode */
4768 		dp_monitor_vdev_timer_start(soc);
4769 	}
4770 
4771 	dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
4772 
4773 	if (wlan_op_mode_monitor == vdev->opmode) {
4774 		if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
4775 			dp_monitor_pdev_set_mon_vdev(vdev);
4776 			return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
4777 		}
4778 		return QDF_STATUS_E_FAILURE;
4779 	}
4780 
4781 	vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4782 	vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4783 	vdev->dscp_tid_map_id = 0;
4784 	vdev->mcast_enhancement_en = 0;
4785 	vdev->igmp_mcast_enhanc_en = 0;
4786 	vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
4787 	vdev->prev_tx_enq_tstamp = 0;
4788 	vdev->prev_rx_deliver_tstamp = 0;
4789 	vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
4790 	dp_tx_vdev_traffic_end_indication_attach(vdev);
4791 
4792 	dp_vdev_pdev_list_add(soc, pdev, vdev);
4793 	pdev->vdev_count++;
4794 
4795 	if (wlan_op_mode_sta != vdev->opmode &&
4796 	    wlan_op_mode_ndi != vdev->opmode)
4797 		vdev->ap_bridge_enabled = true;
4798 	else
4799 		vdev->ap_bridge_enabled = false;
4800 	dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
4801 		     cdp_soc, vdev->ap_bridge_enabled);
4802 
4803 	dp_tx_vdev_attach(vdev);
4804 
4805 	dp_monitor_vdev_attach(vdev);
4806 	if (!pdev->is_lro_hash_configured) {
4807 		if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
4808 			pdev->is_lro_hash_configured = true;
4809 		else
4810 			dp_err("LRO hash setup failure!");
4811 	}
4812 
4813 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
4814 	dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
4815 		QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
4816 	DP_STATS_INIT(vdev);
4817 
4818 	if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
4819 		goto fail0;
4820 
4821 	if (dp_vdev_self_peer_required(soc, vdev))
4822 		dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
4823 				     vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
4824 
4825 	dp_pdev_update_fast_rx_flag(soc, pdev);
4826 
4827 	return QDF_STATUS_SUCCESS;
4828 
4829 fail0:
4830 	return QDF_STATUS_E_FAILURE;
4831 }
4832 
4833 #ifndef QCA_HOST_MODE_WIFI_DISABLED
4834 /**
4835  * dp_vdev_fetch_tx_handler() - Fetch Tx handlers
4836  * @vdev: struct dp_vdev *
4837  * @soc: struct dp_soc *
4838  * @ctx: struct ol_txrx_hardtart_ctxt *
4839  */
4840 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4841 					    struct dp_soc *soc,
4842 					    struct ol_txrx_hardtart_ctxt *ctx)
4843 {
4844 	/* Enable vdev_id check only for ap, if flag is enabled */
4845 	if (vdev->mesh_vdev)
4846 		ctx->tx = dp_tx_send_mesh;
4847 	else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4848 		 (vdev->opmode == wlan_op_mode_ap)) {
4849 		ctx->tx = dp_tx_send_vdev_id_check;
4850 		ctx->tx_fast = dp_tx_send_vdev_id_check;
4851 	} else {
4852 		ctx->tx = dp_tx_send;
4853 		ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
4854 	}
4855 
4856 	/* Avoid check in regular exception Path */
4857 	if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4858 	    (vdev->opmode == wlan_op_mode_ap))
4859 		ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
4860 	else
4861 		ctx->tx_exception = dp_tx_send_exception;
4862 }
4863 
4864 /**
4865  * dp_vdev_register_tx_handler() - Register Tx handler
4866  * @vdev: struct dp_vdev *
4867  * @soc: struct dp_soc *
4868  * @txrx_ops: struct ol_txrx_ops *
4869  */
4870 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4871 					       struct dp_soc *soc,
4872 					       struct ol_txrx_ops *txrx_ops)
4873 {
4874 	struct ol_txrx_hardtart_ctxt ctx = {0};
4875 
4876 	dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
4877 
4878 	txrx_ops->tx.tx = ctx.tx;
4879 	txrx_ops->tx.tx_fast = ctx.tx_fast;
4880 	txrx_ops->tx.tx_exception = ctx.tx_exception;
4881 
4882 	dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
4883 		wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
4884 		vdev->opmode, vdev->vdev_id);
4885 }
4886 #else /* QCA_HOST_MODE_WIFI_DISABLED */
4887 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4888 					       struct dp_soc *soc,
4889 					       struct ol_txrx_ops *txrx_ops)
4890 {
4891 }
4892 
4893 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4894 					    struct dp_soc *soc,
4895 					    struct ol_txrx_hardtart_ctxt *ctx)
4896 {
4897 }
4898 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
4899 
4900 /**
4901  * dp_vdev_register_wifi3() - Register VDEV operations from osif layer
4902  * @soc_hdl: Datapath soc handle
4903  * @vdev_id: id of Datapath VDEV handle
4904  * @osif_vdev: OSIF vdev handle
4905  * @txrx_ops: Tx and Rx operations
4906  *
4907  * Return: DP VDEV handle on success, NULL on failure
4908  */
4909 static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
4910 					 uint8_t vdev_id,
4911 					 ol_osif_vdev_handle osif_vdev,
4912 					 struct ol_txrx_ops *txrx_ops)
4913 {
4914 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4915 	struct dp_vdev *vdev =	dp_vdev_get_ref_by_id(soc, vdev_id,
4916 						      DP_MOD_ID_CDP);
4917 
4918 	if (!vdev)
4919 		return QDF_STATUS_E_FAILURE;
4920 
4921 	vdev->osif_vdev = osif_vdev;
4922 	vdev->osif_rx = txrx_ops->rx.rx;
4923 	vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
4924 	vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
4925 	vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
4926 	vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
4927 	vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
4928 	vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
4929 	vdev->osif_get_key = txrx_ops->get_key;
4930 	dp_monitor_vdev_register_osif(vdev, txrx_ops);
4931 	vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
4932 	vdev->tx_comp = txrx_ops->tx.tx_comp;
4933 	vdev->stats_cb = txrx_ops->rx.stats_rx;
4934 	vdev->tx_classify_critical_pkt_cb =
4935 		txrx_ops->tx.tx_classify_critical_pkt_cb;
4936 #ifdef notyet
4937 #if ATH_SUPPORT_WAPI
4938 	vdev->osif_check_wai = txrx_ops->rx.wai_check;
4939 #endif
4940 #endif
4941 #ifdef UMAC_SUPPORT_PROXY_ARP
4942 	vdev->osif_proxy_arp = txrx_ops->proxy_arp;
4943 #endif
4944 	vdev->me_convert = txrx_ops->me_convert;
4945 	vdev->get_tsf_time = txrx_ops->get_tsf_time;
4946 
4947 	dp_vdev_register_rx_eapol(vdev, txrx_ops);
4948 
4949 	dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
4950 
4951 	dp_init_info("%pK: DP Vdev Register success", soc);
4952 
4953 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4954 	return QDF_STATUS_SUCCESS;
4955 }
4956 
4957 #ifdef WLAN_FEATURE_11BE_MLO
4958 void dp_peer_delete(struct dp_soc *soc,
4959 		    struct dp_peer *peer,
4960 		    void *arg)
4961 {
4962 	if (!peer->valid)
4963 		return;
4964 
4965 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4966 			     peer->vdev->vdev_id,
4967 			     peer->mac_addr.raw, 0,
4968 			     peer->peer_type);
4969 }
4970 #else
4971 void dp_peer_delete(struct dp_soc *soc,
4972 		    struct dp_peer *peer,
4973 		    void *arg)
4974 {
4975 	if (!peer->valid)
4976 		return;
4977 
4978 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4979 			     peer->vdev->vdev_id,
4980 			     peer->mac_addr.raw, 0,
4981 			     CDP_LINK_PEER_TYPE);
4982 }
4983 #endif
4984 
4985 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
4986 static uint8_t
4987 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
4988 {
4989 	if (soc->cdp_soc.ol_ops->peer_get_num_mlo_links)
4990 		return soc->cdp_soc.ol_ops->peer_get_num_mlo_links(
4991 				soc->ctrl_psoc,
4992 				peer->vdev->vdev_id,
4993 				peer->mac_addr.raw,
4994 				IS_MLO_DP_MLD_PEER(peer));
4995 
4996 	return 0;
4997 }
4998 
4999 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5000 {
5001 	if (!peer->valid)
5002 		return;
5003 
5004 	/* skip deleting the SLO peers */
5005 	if (dp_mlo_get_num_link_peer(soc, peer) == 1)
5006 		return;
5007 
5008 	if (IS_MLO_DP_LINK_PEER(peer))
5009 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
5010 				     peer->vdev->vdev_id,
5011 				     peer->mac_addr.raw, 0,
5012 				     CDP_LINK_PEER_TYPE);
5013 }
5014 
5015 /**
5016  * dp_mlo_link_peer_flush() - flush all the link peers
5017  * @soc: Datapath soc handle
5018  * @peer: DP peer handle to be checked
5019  *
5020  * Return: None
5021  */
5022 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5023 {
5024 	int cnt = 0;
5025 	struct dp_peer *link_peer = NULL;
5026 	struct dp_mld_link_peers link_peers_info = {NULL};
5027 
5028 	if (!IS_MLO_DP_MLD_PEER(peer))
5029 		return;
5030 
5031 	/* get link peers with reference */
5032 	dp_get_link_peers_ref_from_mld_peer(soc, peer, &link_peers_info,
5033 					    DP_MOD_ID_CDP);
5034 	for (cnt = 0; cnt < link_peers_info.num_links; cnt++) {
5035 		link_peer = link_peers_info.link_peers[cnt];
5036 		if (!link_peer)
5037 			continue;
5038 
5039 		/* delete all the link peers */
5040 		dp_mlo_peer_delete(link_peer->vdev->pdev->soc, link_peer, NULL);
5041 		/* unmap all the link peers */
5042 		dp_rx_peer_unmap_handler(link_peer->vdev->pdev->soc,
5043 					 link_peer->peer_id,
5044 					 link_peer->vdev->vdev_id,
5045 					 link_peer->mac_addr.raw, 0,
5046 					 DP_PEER_WDS_COUNT_INVALID);
5047 	}
5048 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5049 }
5050 #else
5051 static uint8_t
5052 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
5053 {
5054 	return 0;
5055 }
5056 
5057 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5058 {
5059 }
5060 
5061 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5062 {
5063 }
5064 #endif
5065 /**
5066  * dp_vdev_flush_peers() - Forcibily Flush peers of vdev
5067  * @vdev_handle: Datapath VDEV handle
5068  * @unmap_only: Flag to indicate "only unmap"
5069  * @mlo_peers_only: true if only MLO peers should be flushed
5070  *
5071  * Return: void
5072  */
5073 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
5074 				bool unmap_only,
5075 				bool mlo_peers_only)
5076 {
5077 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
5078 	struct dp_pdev *pdev = vdev->pdev;
5079 	struct dp_soc *soc = pdev->soc;
5080 	struct dp_peer *peer;
5081 	uint32_t i = 0;
5082 
5083 
5084 	if (!unmap_only) {
5085 		if (!mlo_peers_only)
5086 			dp_vdev_iterate_peer_lock_safe(vdev,
5087 						       dp_peer_delete,
5088 						       NULL,
5089 						       DP_MOD_ID_CDP);
5090 		else
5091 			dp_vdev_iterate_peer_lock_safe(vdev,
5092 						       dp_mlo_peer_delete,
5093 						       NULL,
5094 						       DP_MOD_ID_CDP);
5095 	}
5096 
5097 	for (i = 0; i < soc->max_peer_id ; i++) {
5098 		peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
5099 
5100 		if (!peer)
5101 			continue;
5102 
5103 		if (peer->vdev != vdev) {
5104 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5105 			continue;
5106 		}
5107 
5108 		if (!mlo_peers_only) {
5109 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5110 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5111 			dp_mlo_link_peer_flush(soc, peer);
5112 			dp_rx_peer_unmap_handler(soc, i,
5113 						 vdev->vdev_id,
5114 						 peer->mac_addr.raw, 0,
5115 						 DP_PEER_WDS_COUNT_INVALID);
5116 			if (!IS_MLO_DP_MLD_PEER(peer))
5117 				SET_PEER_REF_CNT_ONE(peer);
5118 		} else if (IS_MLO_DP_LINK_PEER(peer) ||
5119 			   IS_MLO_DP_MLD_PEER(peer)) {
5120 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5121 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5122 
5123 			/* skip deleting the SLO peers */
5124 			if (dp_mlo_get_num_link_peer(soc, peer) ==  1) {
5125 				dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5126 				continue;
5127 			}
5128 
5129 			dp_mlo_link_peer_flush(soc, peer);
5130 			dp_rx_peer_unmap_handler(soc, i,
5131 						 vdev->vdev_id,
5132 						 peer->mac_addr.raw, 0,
5133 						 DP_PEER_WDS_COUNT_INVALID);
5134 			if (!IS_MLO_DP_MLD_PEER(peer))
5135 				SET_PEER_REF_CNT_ONE(peer);
5136 		}
5137 
5138 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5139 	}
5140 }
5141 
5142 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5143 /**
5144  * dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
5145  * @soc_hdl: Datapath soc handle
5146  * @vdev_stats_id: Address of vdev_stats_id
5147  *
5148  * Return: QDF_STATUS
5149  */
5150 static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5151 					      uint8_t *vdev_stats_id)
5152 {
5153 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5154 	uint8_t id = 0;
5155 
5156 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
5157 		*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5158 		return QDF_STATUS_E_FAILURE;
5159 	}
5160 
5161 	while (id < CDP_MAX_VDEV_STATS_ID) {
5162 		if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
5163 			*vdev_stats_id = id;
5164 			return QDF_STATUS_SUCCESS;
5165 		}
5166 		id++;
5167 	}
5168 
5169 	*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5170 	return QDF_STATUS_E_FAILURE;
5171 }
5172 
5173 /**
5174  * dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
5175  * @soc_hdl: Datapath soc handle
5176  * @vdev_stats_id: vdev_stats_id to reset in dp_soc
5177  *
5178  * Return: none
5179  */
5180 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5181 					uint8_t vdev_stats_id)
5182 {
5183 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5184 
5185 	if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
5186 	    (vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
5187 		return;
5188 
5189 	qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
5190 }
5191 #else
5192 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
5193 					uint8_t vdev_stats_id)
5194 {}
5195 #endif
5196 /**
5197  * dp_vdev_detach_wifi3() - Detach txrx vdev
5198  * @cdp_soc: Datapath soc handle
5199  * @vdev_id: VDEV Id
5200  * @callback: Callback OL_IF on completion of detach
5201  * @cb_context:	Callback context
5202  *
5203  */
5204 static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
5205 				       uint8_t vdev_id,
5206 				       ol_txrx_vdev_delete_cb callback,
5207 				       void *cb_context)
5208 {
5209 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
5210 	struct dp_pdev *pdev;
5211 	struct dp_neighbour_peer *peer = NULL;
5212 	struct dp_peer *vap_self_peer = NULL;
5213 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5214 						     DP_MOD_ID_CDP);
5215 
5216 	if (!vdev)
5217 		return QDF_STATUS_E_FAILURE;
5218 
5219 	soc->arch_ops.txrx_vdev_detach(soc, vdev);
5220 
5221 	pdev = vdev->pdev;
5222 
5223 	vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
5224 							DP_MOD_ID_CONFIG);
5225 	if (vap_self_peer) {
5226 		qdf_spin_lock_bh(&soc->ast_lock);
5227 		if (vap_self_peer->self_ast_entry) {
5228 			dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
5229 			vap_self_peer->self_ast_entry = NULL;
5230 		}
5231 		qdf_spin_unlock_bh(&soc->ast_lock);
5232 
5233 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
5234 				     vap_self_peer->mac_addr.raw, 0,
5235 				     CDP_LINK_PEER_TYPE);
5236 		dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
5237 	}
5238 
5239 	/*
5240 	 * If Target is hung, flush all peers before detaching vdev
5241 	 * this will free all references held due to missing
5242 	 * unmap commands from Target
5243 	 */
5244 	if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
5245 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
5246 	else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
5247 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
5248 
5249 	/* indicate that the vdev needs to be deleted */
5250 	vdev->delete.pending = 1;
5251 	dp_rx_vdev_detach(vdev);
5252 	/*
5253 	 * move it after dp_rx_vdev_detach(),
5254 	 * as the call back done in dp_rx_vdev_detach()
5255 	 * still need to get vdev pointer by vdev_id.
5256 	 */
5257 	dp_vdev_id_map_tbl_remove(soc, vdev);
5258 
5259 	dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
5260 
5261 	dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
5262 
5263 	dp_tx_vdev_multipass_deinit(vdev);
5264 	dp_tx_vdev_traffic_end_indication_detach(vdev);
5265 
5266 	if (vdev->vdev_dp_ext_handle) {
5267 		qdf_mem_free(vdev->vdev_dp_ext_handle);
5268 		vdev->vdev_dp_ext_handle = NULL;
5269 	}
5270 	vdev->delete.callback = callback;
5271 	vdev->delete.context = cb_context;
5272 
5273 	if (vdev->opmode != wlan_op_mode_monitor)
5274 		dp_vdev_pdev_list_remove(soc, pdev, vdev);
5275 
5276 	pdev->vdev_count--;
5277 	/* release reference taken above for find */
5278 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5279 
5280 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
5281 	TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
5282 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
5283 
5284 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
5285 	dp_info("detach vdev %pK id %d pending refs %d",
5286 		vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
5287 
5288 	/* release reference taken at dp_vdev_create */
5289 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
5290 
5291 	return QDF_STATUS_SUCCESS;
5292 }
5293 
5294 #ifdef WLAN_FEATURE_11BE_MLO
5295 /**
5296  * is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
5297  * @vdev: Target DP vdev handle
5298  * @peer: DP peer handle to be checked
5299  * @peer_mac_addr: Target peer mac address
5300  * @peer_type: Target peer type
5301  *
5302  * Return: true - if match, false - not match
5303  */
5304 static inline
5305 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5306 			  struct dp_peer *peer,
5307 			  uint8_t *peer_mac_addr,
5308 			  enum cdp_peer_type peer_type)
5309 {
5310 	if (peer->bss_peer && (peer->vdev == vdev) &&
5311 	    (peer->peer_type == peer_type) &&
5312 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5313 			 QDF_MAC_ADDR_SIZE) == 0))
5314 		return true;
5315 
5316 	return false;
5317 }
5318 #else
5319 static inline
5320 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5321 			  struct dp_peer *peer,
5322 			  uint8_t *peer_mac_addr,
5323 			  enum cdp_peer_type peer_type)
5324 {
5325 	if (peer->bss_peer && (peer->vdev == vdev) &&
5326 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5327 			 QDF_MAC_ADDR_SIZE) == 0))
5328 		return true;
5329 
5330 	return false;
5331 }
5332 #endif
5333 
5334 static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
5335 						uint8_t *peer_mac_addr,
5336 						enum cdp_peer_type peer_type)
5337 {
5338 	struct dp_peer *peer;
5339 	struct dp_soc *soc = vdev->pdev->soc;
5340 
5341 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5342 	TAILQ_FOREACH(peer, &soc->inactive_peer_list,
5343 		      inactive_list_elem) {
5344 
5345 		/* reuse bss peer only when vdev matches*/
5346 		if (is_dp_peer_can_reuse(vdev, peer,
5347 					 peer_mac_addr, peer_type)) {
5348 			/* increment ref count for cdp_peer_create*/
5349 			if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
5350 						QDF_STATUS_SUCCESS) {
5351 				TAILQ_REMOVE(&soc->inactive_peer_list, peer,
5352 					     inactive_list_elem);
5353 				qdf_spin_unlock_bh
5354 					(&soc->inactive_peer_list_lock);
5355 				return peer;
5356 			}
5357 		}
5358 	}
5359 
5360 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5361 	return NULL;
5362 }
5363 
5364 #ifdef FEATURE_AST
5365 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5366 					       struct dp_pdev *pdev,
5367 					       uint8_t *peer_mac_addr)
5368 {
5369 	struct dp_ast_entry *ast_entry;
5370 
5371 	if (soc->ast_offload_support)
5372 		return;
5373 
5374 	qdf_spin_lock_bh(&soc->ast_lock);
5375 	if (soc->ast_override_support)
5376 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
5377 							    pdev->pdev_id);
5378 	else
5379 		ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
5380 
5381 	if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
5382 		dp_peer_del_ast(soc, ast_entry);
5383 
5384 	qdf_spin_unlock_bh(&soc->ast_lock);
5385 }
5386 #else
5387 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5388 					       struct dp_pdev *pdev,
5389 					       uint8_t *peer_mac_addr)
5390 {
5391 }
5392 #endif
5393 
5394 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5395 /**
5396  * dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
5397  * @soc: Datapath soc handle
5398  * @txrx_peer: Datapath peer handle
5399  *
5400  * Return: none
5401  */
5402 static inline
5403 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5404 				struct dp_txrx_peer *txrx_peer)
5405 {
5406 	txrx_peer->hw_txrx_stats_en =
5407 		wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
5408 }
5409 #else
5410 static inline
5411 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5412 				struct dp_txrx_peer *txrx_peer)
5413 {
5414 	txrx_peer->hw_txrx_stats_en = 0;
5415 }
5416 #endif
5417 
5418 static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
5419 {
5420 	struct dp_txrx_peer *txrx_peer;
5421 	struct dp_pdev *pdev;
5422 	struct cdp_txrx_peer_params_update params = {0};
5423 
5424 	/* dp_txrx_peer exists for mld peer and legacy peer */
5425 	if (peer->txrx_peer) {
5426 		txrx_peer = peer->txrx_peer;
5427 		peer->txrx_peer = NULL;
5428 		pdev = txrx_peer->vdev->pdev;
5429 
5430 		if ((peer->vdev->opmode != wlan_op_mode_sta) &&
5431 		    !peer->bss_peer) {
5432 			params.vdev_id = peer->vdev->vdev_id;
5433 			params.peer_mac = peer->mac_addr.raw;
5434 
5435 			dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
5436 					     (void *)&params, peer->peer_id,
5437 					     WDI_NO_VAL, pdev->pdev_id);
5438 		}
5439 
5440 		dp_peer_defrag_rx_tids_deinit(txrx_peer);
5441 		/*
5442 		 * Deallocate the extended stats contenxt
5443 		 */
5444 		dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
5445 		dp_peer_rx_bufq_resources_deinit(txrx_peer);
5446 		dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
5447 		dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
5448 
5449 		qdf_mem_free(txrx_peer);
5450 	}
5451 
5452 	return QDF_STATUS_SUCCESS;
5453 }
5454 
5455 static inline
5456 uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
5457 					  struct dp_peer *peer)
5458 {
5459 	if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
5460 	    IS_MLO_DP_MLD_PEER(peer)) {
5461 		return (DP_MAX_MLO_LINKS + 1);
5462 	}
5463 	return 1;
5464 }
5465 
5466 static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
5467 {
5468 	struct dp_txrx_peer *txrx_peer;
5469 	struct dp_pdev *pdev;
5470 	struct cdp_txrx_peer_params_update params = {0};
5471 	uint8_t stats_arr_size = 0;
5472 
5473 	stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
5474 
5475 	txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
5476 							  (stats_arr_size *
5477 							   sizeof(struct dp_peer_stats)));
5478 
5479 	if (!txrx_peer)
5480 		return QDF_STATUS_E_NOMEM; /* failure */
5481 
5482 	txrx_peer->peer_id = HTT_INVALID_PEER;
5483 	/* initialize the peer_id */
5484 	txrx_peer->vdev = peer->vdev;
5485 	pdev = peer->vdev->pdev;
5486 	txrx_peer->stats_arr_size = stats_arr_size;
5487 
5488 	DP_TXRX_PEER_STATS_INIT(txrx_peer,
5489 				(txrx_peer->stats_arr_size *
5490 				sizeof(struct dp_peer_stats)));
5491 
5492 	if (!IS_DP_LEGACY_PEER(peer))
5493 		txrx_peer->is_mld_peer = 1;
5494 
5495 	dp_wds_ext_peer_init(txrx_peer);
5496 	dp_peer_rx_bufq_resources_init(txrx_peer);
5497 	dp_peer_hw_txrx_stats_init(soc, txrx_peer);
5498 	/*
5499 	 * Allocate peer extended stats context. Fall through in
5500 	 * case of failure as its not an implicit requirement to have
5501 	 * this object for regular statistics updates.
5502 	 */
5503 	if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
5504 					  QDF_STATUS_SUCCESS)
5505 		dp_warn("peer delay_stats ctx alloc failed");
5506 
5507 	/*
5508 	 * Alloctate memory for jitter stats. Fall through in
5509 	 * case of failure as its not an implicit requirement to have
5510 	 * this object for regular statistics updates.
5511 	 */
5512 	if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
5513 					   QDF_STATUS_SUCCESS)
5514 		dp_warn("peer jitter_stats ctx alloc failed");
5515 
5516 	dp_set_peer_isolation(txrx_peer, false);
5517 
5518 	dp_peer_defrag_rx_tids_init(txrx_peer);
5519 
5520 	if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
5521 		dp_warn("peer sawf stats alloc failed");
5522 
5523 	dp_txrx_peer_attach_add(soc, peer, txrx_peer);
5524 
5525 	if ((peer->vdev->opmode == wlan_op_mode_sta) || peer->bss_peer)
5526 		return QDF_STATUS_SUCCESS;
5527 
5528 	params.peer_mac = peer->mac_addr.raw;
5529 	params.vdev_id = peer->vdev->vdev_id;
5530 	params.chip_id = dp_get_chip_id(soc);
5531 	params.pdev_id = peer->vdev->pdev->pdev_id;
5532 
5533 	dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
5534 			     (void *)&params, peer->peer_id,
5535 			     WDI_NO_VAL, params.pdev_id);
5536 
5537 	return QDF_STATUS_SUCCESS;
5538 }
5539 
5540 static inline
5541 void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
5542 {
5543 	if (!txrx_peer)
5544 		return;
5545 
5546 	txrx_peer->tx_failed = 0;
5547 	txrx_peer->comp_pkt.num = 0;
5548 	txrx_peer->comp_pkt.bytes = 0;
5549 	txrx_peer->to_stack.num = 0;
5550 	txrx_peer->to_stack.bytes = 0;
5551 
5552 	DP_TXRX_PEER_STATS_CLR(txrx_peer,
5553 			       (txrx_peer->stats_arr_size *
5554 			       sizeof(struct dp_peer_stats)));
5555 	dp_peer_delay_stats_ctx_clr(txrx_peer);
5556 	dp_peer_jitter_stats_ctx_clr(txrx_peer);
5557 }
5558 
5559 /**
5560  * dp_peer_create_wifi3() - attach txrx peer
5561  * @soc_hdl: Datapath soc handle
5562  * @vdev_id: id of vdev
5563  * @peer_mac_addr: Peer MAC address
5564  * @peer_type: link or MLD peer type
5565  *
5566  * Return: 0 on success, -1 on failure
5567  */
5568 static QDF_STATUS
5569 dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5570 		     uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
5571 {
5572 	struct dp_peer *peer;
5573 	int i;
5574 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5575 	struct dp_pdev *pdev;
5576 	enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
5577 	struct dp_vdev *vdev = NULL;
5578 
5579 	if (!peer_mac_addr)
5580 		return QDF_STATUS_E_FAILURE;
5581 
5582 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5583 
5584 	if (!vdev)
5585 		return QDF_STATUS_E_FAILURE;
5586 
5587 	pdev = vdev->pdev;
5588 	soc = pdev->soc;
5589 
5590 	/*
5591 	 * If a peer entry with given MAC address already exists,
5592 	 * reuse the peer and reset the state of peer.
5593 	 */
5594 	peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
5595 
5596 	if (peer) {
5597 		qdf_atomic_init(&peer->is_default_route_set);
5598 		dp_peer_cleanup(vdev, peer);
5599 
5600 		dp_peer_vdev_list_add(soc, vdev, peer);
5601 		dp_peer_find_hash_add(soc, peer);
5602 
5603 		if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5604 			dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5605 				 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5606 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5607 			return QDF_STATUS_E_FAILURE;
5608 		}
5609 
5610 		if (IS_MLO_DP_MLD_PEER(peer))
5611 			dp_mld_peer_init_link_peers_info(peer);
5612 
5613 		qdf_spin_lock_bh(&soc->ast_lock);
5614 		dp_peer_delete_ast_entries(soc, peer);
5615 		qdf_spin_unlock_bh(&soc->ast_lock);
5616 
5617 		if ((vdev->opmode == wlan_op_mode_sta) &&
5618 		    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5619 		     QDF_MAC_ADDR_SIZE)) {
5620 			ast_type = CDP_TXRX_AST_TYPE_SELF;
5621 		}
5622 		dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5623 
5624 		peer->valid = 1;
5625 		peer->is_tdls_peer = false;
5626 		dp_local_peer_id_alloc(pdev, peer);
5627 
5628 		qdf_spinlock_create(&peer->peer_info_lock);
5629 
5630 		DP_STATS_INIT(peer);
5631 
5632 		/*
5633 		 * In tx_monitor mode, filter may be set for unassociated peer
5634 		 * when unassociated peer get associated peer need to
5635 		 * update tx_cap_enabled flag to support peer filter.
5636 		 */
5637 		if (!IS_MLO_DP_MLD_PEER(peer)) {
5638 			dp_monitor_peer_tx_capture_filter_check(pdev, peer);
5639 			dp_monitor_peer_reset_stats(soc, peer);
5640 		}
5641 
5642 		if (peer->txrx_peer) {
5643 			dp_peer_rx_bufq_resources_init(peer->txrx_peer);
5644 			dp_txrx_peer_stats_clr(peer->txrx_peer);
5645 			dp_set_peer_isolation(peer->txrx_peer, false);
5646 			dp_wds_ext_peer_init(peer->txrx_peer);
5647 			dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
5648 		}
5649 
5650 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5651 					     peer, vdev, 1);
5652 		dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
5653 			") vdev_ref_cnt "
5654 			"%d peer_ref_cnt: %d",
5655 			vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5656 			qdf_atomic_read(&vdev->ref_cnt),
5657 			qdf_atomic_read(&peer->ref_cnt));
5658 			dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5659 
5660 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5661 		return QDF_STATUS_SUCCESS;
5662 	} else {
5663 		/*
5664 		 * When a STA roams from RPTR AP to ROOT AP and vice versa, we
5665 		 * need to remove the AST entry which was earlier added as a WDS
5666 		 * entry.
5667 		 * If an AST entry exists, but no peer entry exists with a given
5668 		 * MAC addresses, we could deduce it as a WDS entry
5669 		 */
5670 		dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
5671 	}
5672 
5673 #ifdef notyet
5674 	peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
5675 		soc->mempool_ol_ath_peer);
5676 #else
5677 	peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
5678 #endif
5679 	wlan_minidump_log(peer,
5680 			  sizeof(*peer),
5681 			  soc->ctrl_psoc,
5682 			  WLAN_MD_DP_PEER, "dp_peer");
5683 	if (!peer) {
5684 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5685 		return QDF_STATUS_E_FAILURE; /* failure */
5686 	}
5687 
5688 	qdf_mem_zero(peer, sizeof(struct dp_peer));
5689 
5690 	/* store provided params */
5691 	peer->vdev = vdev;
5692 
5693 	/* initialize the peer_id */
5694 	peer->peer_id = HTT_INVALID_PEER;
5695 
5696 	qdf_mem_copy(
5697 		&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
5698 
5699 	DP_PEER_SET_TYPE(peer, peer_type);
5700 	if (IS_MLO_DP_MLD_PEER(peer)) {
5701 		if (dp_txrx_peer_attach(soc, peer) !=
5702 				QDF_STATUS_SUCCESS)
5703 			goto fail; /* failure */
5704 
5705 		dp_mld_peer_init_link_peers_info(peer);
5706 	}
5707 
5708 	if (dp_monitor_peer_attach(soc, peer) != QDF_STATUS_SUCCESS)
5709 		dp_warn("peer monitor ctx alloc failed");
5710 
5711 	TAILQ_INIT(&peer->ast_entry_list);
5712 
5713 	/* get the vdev reference for new peer */
5714 	dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
5715 
5716 	if ((vdev->opmode == wlan_op_mode_sta) &&
5717 	    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5718 			 QDF_MAC_ADDR_SIZE)) {
5719 		ast_type = CDP_TXRX_AST_TYPE_SELF;
5720 	}
5721 	qdf_spinlock_create(&peer->peer_state_lock);
5722 	dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5723 	qdf_spinlock_create(&peer->peer_info_lock);
5724 
5725 	/* reset the ast index to flowid table */
5726 	dp_peer_reset_flowq_map(peer);
5727 
5728 	qdf_atomic_init(&peer->ref_cnt);
5729 
5730 	for (i = 0; i < DP_MOD_ID_MAX; i++)
5731 		qdf_atomic_init(&peer->mod_refs[i]);
5732 
5733 	/* keep one reference for attach */
5734 	qdf_atomic_inc(&peer->ref_cnt);
5735 	qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
5736 
5737 	dp_peer_vdev_list_add(soc, vdev, peer);
5738 
5739 	/* TODO: See if hash based search is required */
5740 	dp_peer_find_hash_add(soc, peer);
5741 
5742 	/* Initialize the peer state */
5743 	peer->state = OL_TXRX_PEER_STATE_DISC;
5744 
5745 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5746 				     peer, vdev, 0);
5747 	dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
5748 		"%d peer_ref_cnt: %d",
5749 		vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5750 		qdf_atomic_read(&vdev->ref_cnt),
5751 		qdf_atomic_read(&peer->ref_cnt));
5752 	/*
5753 	 * For every peer MAp message search and set if bss_peer
5754 	 */
5755 	if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5756 			QDF_MAC_ADDR_SIZE) == 0 &&
5757 			(wlan_op_mode_sta != vdev->opmode)) {
5758 		dp_info("vdev bss_peer!!");
5759 		peer->bss_peer = 1;
5760 		if (peer->txrx_peer)
5761 			peer->txrx_peer->bss_peer = 1;
5762 	}
5763 
5764 	if (wlan_op_mode_sta == vdev->opmode &&
5765 	    qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5766 			QDF_MAC_ADDR_SIZE) == 0) {
5767 		peer->sta_self_peer = 1;
5768 	}
5769 
5770 	if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5771 		dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5772 			 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5773 		goto fail;
5774 	}
5775 
5776 	peer->valid = 1;
5777 	dp_local_peer_id_alloc(pdev, peer);
5778 	DP_STATS_INIT(peer);
5779 
5780 	if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
5781 		dp_warn("peer sawf context alloc failed");
5782 
5783 	dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5784 
5785 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5786 
5787 	return QDF_STATUS_SUCCESS;
5788 fail:
5789 	qdf_mem_free(peer);
5790 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5791 
5792 	return QDF_STATUS_E_FAILURE;
5793 }
5794 
5795 QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
5796 {
5797 	/* txrx_peer might exist already in peer reuse case */
5798 	if (peer->txrx_peer)
5799 		return QDF_STATUS_SUCCESS;
5800 
5801 	if (dp_txrx_peer_attach(soc, peer) !=
5802 				QDF_STATUS_SUCCESS) {
5803 		dp_err("peer txrx ctx alloc failed");
5804 		return QDF_STATUS_E_FAILURE;
5805 	}
5806 
5807 	return QDF_STATUS_SUCCESS;
5808 }
5809 
5810 #ifdef WLAN_FEATURE_11BE_MLO
5811 static QDF_STATUS dp_mld_peer_change_vdev(struct dp_soc *soc,
5812 					  struct dp_peer *mld_peer,
5813 					  uint8_t new_vdev_id)
5814 {
5815 	struct dp_vdev *prev_vdev;
5816 
5817 	prev_vdev = mld_peer->vdev;
5818 	/* release the ref to original dp_vdev */
5819 	dp_vdev_unref_delete(soc, mld_peer->vdev,
5820 			     DP_MOD_ID_CHILD);
5821 	/*
5822 	 * get the ref to new dp_vdev,
5823 	 * increase dp_vdev ref_cnt
5824 	 */
5825 	mld_peer->vdev = dp_vdev_get_ref_by_id(soc, new_vdev_id,
5826 					       DP_MOD_ID_CHILD);
5827 	mld_peer->txrx_peer->vdev = mld_peer->vdev;
5828 
5829 	dp_info("Change vdev for ML peer " QDF_MAC_ADDR_FMT
5830 		" old vdev %pK id %d new vdev %pK id %d",
5831 		QDF_MAC_ADDR_REF(mld_peer->mac_addr.raw),
5832 		prev_vdev, prev_vdev->vdev_id, mld_peer->vdev, new_vdev_id);
5833 
5834 	dp_cfg_event_record_mlo_setup_vdev_update_evt(
5835 			soc, mld_peer, prev_vdev,
5836 			mld_peer->vdev);
5837 
5838 	return QDF_STATUS_SUCCESS;
5839 }
5840 
5841 QDF_STATUS dp_peer_mlo_setup(
5842 			struct dp_soc *soc,
5843 			struct dp_peer *peer,
5844 			uint8_t vdev_id,
5845 			struct cdp_peer_setup_info *setup_info)
5846 {
5847 	struct dp_peer *mld_peer = NULL;
5848 	struct cdp_txrx_peer_params_update params = {0};
5849 
5850 	/* Non-MLO connection */
5851 	if (!setup_info || !setup_info->mld_peer_mac) {
5852 		/* To handle downgrade scenarios */
5853 		if (peer->vdev->opmode == wlan_op_mode_sta) {
5854 			struct cdp_txrx_peer_params_update params = {0};
5855 
5856 			params.chip_id = dp_get_chip_id(soc);
5857 			params.pdev_id = peer->vdev->pdev->pdev_id;
5858 			params.vdev_id = peer->vdev->vdev_id;
5859 
5860 			dp_wdi_event_handler(
5861 					WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5862 					soc,
5863 					(void *)&params, peer->peer_id,
5864 					WDI_NO_VAL, params.pdev_id);
5865 		}
5866 		return QDF_STATUS_SUCCESS;
5867 	}
5868 
5869 	dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
5870 					   peer, NULL, vdev_id, setup_info);
5871 
5872 	/* if this is the first link peer */
5873 	if (setup_info->is_first_link)
5874 		/* create MLD peer */
5875 		dp_peer_create_wifi3((struct cdp_soc_t *)soc,
5876 				     vdev_id,
5877 				     setup_info->mld_peer_mac,
5878 				     CDP_MLD_PEER_TYPE);
5879 
5880 	if (peer->vdev->opmode == wlan_op_mode_sta &&
5881 	    setup_info->is_primary_link) {
5882 		struct cdp_txrx_peer_params_update params = {0};
5883 
5884 		params.chip_id = dp_get_chip_id(soc);
5885 		params.pdev_id = peer->vdev->pdev->pdev_id;
5886 		params.vdev_id = peer->vdev->vdev_id;
5887 
5888 		dp_wdi_event_handler(
5889 				WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5890 				soc,
5891 				(void *)&params, peer->peer_id,
5892 				WDI_NO_VAL, params.pdev_id);
5893 	}
5894 
5895 	peer->first_link = setup_info->is_first_link;
5896 	peer->primary_link = setup_info->is_primary_link;
5897 	mld_peer = dp_mld_peer_find_hash_find(soc,
5898 					      setup_info->mld_peer_mac,
5899 					      0, vdev_id, DP_MOD_ID_CDP);
5900 
5901 	dp_info("Peer %pK MAC " QDF_MAC_ADDR_FMT " mld peer %pK MAC "
5902 		QDF_MAC_ADDR_FMT " first_link %d, primary_link %d", peer,
5903 		QDF_MAC_ADDR_REF(peer->mac_addr.raw), mld_peer,
5904 		QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
5905 		peer->first_link,
5906 		peer->primary_link);
5907 
5908 	if (mld_peer) {
5909 		if (setup_info->is_first_link) {
5910 			/* assign rx_tid to mld peer */
5911 			mld_peer->rx_tid = peer->rx_tid;
5912 			/* no cdp_peer_setup for MLD peer,
5913 			 * set it for addba processing
5914 			 */
5915 			qdf_atomic_set(&mld_peer->is_default_route_set, 1);
5916 		} else {
5917 			/* free link peer original rx_tids mem */
5918 			dp_peer_rx_tids_destroy(peer);
5919 			/* assign mld peer rx_tid to link peer */
5920 			peer->rx_tid = mld_peer->rx_tid;
5921 		}
5922 
5923 		if (setup_info->is_primary_link &&
5924 		    !setup_info->is_first_link) {
5925 			/*
5926 			 * if first link is not the primary link,
5927 			 * then need to change mld_peer->vdev as
5928 			 * primary link dp_vdev is not same one
5929 			 * during mld peer creation.
5930 			 */
5931 			dp_info("Primary link is not the first link. vdev: %pK "
5932 				"vdev_id %d vdev_ref_cnt %d",
5933 				mld_peer->vdev, vdev_id,
5934 				qdf_atomic_read(&mld_peer->vdev->ref_cnt));
5935 
5936 			dp_mld_peer_change_vdev(soc, mld_peer, vdev_id);
5937 
5938 			params.vdev_id = peer->vdev->vdev_id;
5939 			params.peer_mac = mld_peer->mac_addr.raw;
5940 			params.chip_id = dp_get_chip_id(soc);
5941 			params.pdev_id = peer->vdev->pdev->pdev_id;
5942 
5943 			dp_wdi_event_handler(
5944 					WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
5945 					soc, (void *)&params, peer->peer_id,
5946 					WDI_NO_VAL, params.pdev_id);
5947 		}
5948 
5949 		/* associate mld and link peer */
5950 		dp_link_peer_add_mld_peer(peer, mld_peer);
5951 		dp_mld_peer_add_link_peer(mld_peer, peer, setup_info->is_bridge_peer);
5952 
5953 		mld_peer->txrx_peer->is_mld_peer = 1;
5954 		dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
5955 	} else {
5956 		peer->mld_peer = NULL;
5957 		dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
5958 		       QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
5959 		return QDF_STATUS_E_FAILURE;
5960 	}
5961 
5962 	return QDF_STATUS_SUCCESS;
5963 }
5964 
5965 /**
5966  * dp_mlo_peer_authorize() - authorize MLO peer
5967  * @soc: soc handle
5968  * @peer: pointer to link peer
5969  *
5970  * Return: void
5971  */
5972 static void dp_mlo_peer_authorize(struct dp_soc *soc,
5973 				  struct dp_peer *peer)
5974 {
5975 	int i;
5976 	struct dp_peer *link_peer = NULL;
5977 	struct dp_peer *mld_peer = peer->mld_peer;
5978 	struct dp_mld_link_peers link_peers_info;
5979 
5980 	if (!mld_peer)
5981 		return;
5982 
5983 	/* get link peers with reference */
5984 	dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
5985 					    &link_peers_info,
5986 					    DP_MOD_ID_CDP);
5987 
5988 	for (i = 0; i < link_peers_info.num_links; i++) {
5989 		link_peer = link_peers_info.link_peers[i];
5990 
5991 		if (!link_peer->authorize) {
5992 			dp_release_link_peers_ref(&link_peers_info,
5993 						  DP_MOD_ID_CDP);
5994 			mld_peer->authorize = false;
5995 			return;
5996 		}
5997 	}
5998 
5999 	/* if we are here all link peers are authorized,
6000 	 * authorize ml_peer also
6001 	 */
6002 	mld_peer->authorize = true;
6003 
6004 	/* release link peers reference */
6005 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
6006 }
6007 #endif
6008 
6009 /**
6010  * dp_peer_setup_wifi3_wrapper() - initialize the peer
6011  * @soc_hdl: soc handle object
6012  * @vdev_id : vdev_id of vdev object
6013  * @peer_mac: Peer's mac address
6014  * @setup_info: peer setup info for MLO
6015  *
6016  * Return: QDF_STATUS
6017  */
6018 static QDF_STATUS
6019 dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6020 			    uint8_t *peer_mac,
6021 			    struct cdp_peer_setup_info *setup_info)
6022 {
6023 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6024 
6025 	return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
6026 					     peer_mac, setup_info);
6027 }
6028 
6029 /**
6030  * dp_cp_peer_del_resp_handler() - Handle the peer delete response
6031  * @soc_hdl: Datapath SOC handle
6032  * @vdev_id: id of virtual device object
6033  * @mac_addr: Mac address of the peer
6034  *
6035  * Return: QDF_STATUS
6036  */
6037 static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
6038 					      uint8_t vdev_id,
6039 					      uint8_t *mac_addr)
6040 {
6041 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6042 	struct dp_ast_entry  *ast_entry = NULL;
6043 	txrx_ast_free_cb cb = NULL;
6044 	void *cookie;
6045 
6046 	if (soc->ast_offload_support)
6047 		return QDF_STATUS_E_INVAL;
6048 
6049 	qdf_spin_lock_bh(&soc->ast_lock);
6050 
6051 	ast_entry =
6052 		dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
6053 						vdev_id);
6054 
6055 	/* in case of qwrap we have multiple BSS peers
6056 	 * with same mac address
6057 	 *
6058 	 * AST entry for this mac address will be created
6059 	 * only for one peer hence it will be NULL here
6060 	 */
6061 	if ((!ast_entry || !ast_entry->delete_in_progress) ||
6062 	    (ast_entry->peer_id != HTT_INVALID_PEER)) {
6063 		qdf_spin_unlock_bh(&soc->ast_lock);
6064 		return QDF_STATUS_E_FAILURE;
6065 	}
6066 
6067 	if (ast_entry->is_mapped)
6068 		soc->ast_table[ast_entry->ast_idx] = NULL;
6069 
6070 	DP_STATS_INC(soc, ast.deleted, 1);
6071 	dp_peer_ast_hash_remove(soc, ast_entry);
6072 
6073 	cb = ast_entry->callback;
6074 	cookie = ast_entry->cookie;
6075 	ast_entry->callback = NULL;
6076 	ast_entry->cookie = NULL;
6077 
6078 	soc->num_ast_entries--;
6079 	qdf_spin_unlock_bh(&soc->ast_lock);
6080 
6081 	if (cb) {
6082 		cb(soc->ctrl_psoc,
6083 		   dp_soc_to_cdp_soc(soc),
6084 		   cookie,
6085 		   CDP_TXRX_AST_DELETED);
6086 	}
6087 	qdf_mem_free(ast_entry);
6088 
6089 	return QDF_STATUS_SUCCESS;
6090 }
6091 
6092 #ifdef WLAN_SUPPORT_MSCS
6093 /**
6094  * dp_record_mscs_params() - Record MSCS parameters sent by the STA in
6095  * the MSCS Request to the AP.
6096  * @soc_hdl: Datapath soc handle
6097  * @peer_mac: STA Mac address
6098  * @vdev_id: ID of the vdev handle
6099  * @mscs_params: Structure having MSCS parameters obtained
6100  * from handshake
6101  * @active: Flag to set MSCS active/inactive
6102  *
6103  * The AP makes a note of these parameters while comparing the MSDUs
6104  * sent by the STA, to send the downlink traffic with correct User
6105  * priority.
6106  *
6107  * Return: QDF_STATUS - Success/Invalid
6108  */
6109 static QDF_STATUS
6110 dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
6111 		      uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
6112 		      bool active)
6113 {
6114 	struct dp_peer *peer;
6115 	struct dp_peer *tgt_peer;
6116 	QDF_STATUS status = QDF_STATUS_E_INVAL;
6117 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6118 
6119 	peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
6120 				      DP_MOD_ID_CDP);
6121 
6122 	if (!peer) {
6123 		dp_err("Peer is NULL!");
6124 		goto fail;
6125 	}
6126 
6127 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
6128 	if (!tgt_peer)
6129 		goto fail;
6130 
6131 	if (!active) {
6132 		dp_info("MSCS Procedure is terminated");
6133 		tgt_peer->mscs_active = active;
6134 		goto fail;
6135 	}
6136 
6137 	if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
6138 		/* Populate entries inside IPV4 database first */
6139 		tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
6140 			mscs_params->user_pri_bitmap;
6141 		tgt_peer->mscs_ipv4_parameter.user_priority_limit =
6142 			mscs_params->user_pri_limit;
6143 		tgt_peer->mscs_ipv4_parameter.classifier_mask =
6144 			mscs_params->classifier_mask;
6145 
6146 		/* Populate entries inside IPV6 database */
6147 		tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
6148 			mscs_params->user_pri_bitmap;
6149 		tgt_peer->mscs_ipv6_parameter.user_priority_limit =
6150 			mscs_params->user_pri_limit;
6151 		tgt_peer->mscs_ipv6_parameter.classifier_mask =
6152 			mscs_params->classifier_mask;
6153 		tgt_peer->mscs_active = 1;
6154 		dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
6155 			"\tClassifier_type = %d\tUser priority bitmap = %x\n"
6156 			"\tUser priority limit = %x\tClassifier mask = %x",
6157 			QDF_MAC_ADDR_REF(peer_mac),
6158 			mscs_params->classifier_type,
6159 			tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
6160 			tgt_peer->mscs_ipv4_parameter.user_priority_limit,
6161 			tgt_peer->mscs_ipv4_parameter.classifier_mask);
6162 	}
6163 
6164 	status = QDF_STATUS_SUCCESS;
6165 fail:
6166 	if (peer)
6167 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6168 	return status;
6169 }
6170 #endif
6171 
6172 /**
6173  * dp_get_sec_type() - Get the security type
6174  * @soc: soc handle
6175  * @vdev_id: id of dp handle
6176  * @peer_mac: mac of datapath PEER handle
6177  * @sec_idx:    Security id (mcast, ucast)
6178  *
6179  * return sec_type: Security type
6180  */
6181 static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
6182 			   uint8_t *peer_mac, uint8_t sec_idx)
6183 {
6184 	int sec_type = 0;
6185 	struct dp_peer *peer =
6186 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
6187 						       peer_mac, 0, vdev_id,
6188 						       DP_MOD_ID_CDP);
6189 
6190 	if (!peer) {
6191 		dp_cdp_err("%pK: Peer is NULL!", (struct dp_soc *)soc);
6192 		return sec_type;
6193 	}
6194 
6195 	if (!peer->txrx_peer) {
6196 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6197 		dp_peer_debug("%pK: txrx peer is NULL!", soc);
6198 		return sec_type;
6199 	}
6200 	sec_type = peer->txrx_peer->security[sec_idx].sec_type;
6201 
6202 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6203 	return sec_type;
6204 }
6205 
6206 /**
6207  * dp_peer_authorize() - authorize txrx peer
6208  * @soc_hdl: soc handle
6209  * @vdev_id: id of dp handle
6210  * @peer_mac: mac of datapath PEER handle
6211  * @authorize:
6212  *
6213  * Return: QDF_STATUS
6214  *
6215  */
6216 static QDF_STATUS
6217 dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6218 		  uint8_t *peer_mac, uint32_t authorize)
6219 {
6220 	QDF_STATUS status = QDF_STATUS_SUCCESS;
6221 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6222 	struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
6223 							      0, vdev_id,
6224 							      DP_MOD_ID_CDP);
6225 
6226 	if (!peer) {
6227 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6228 		status = QDF_STATUS_E_FAILURE;
6229 	} else {
6230 		peer->authorize = authorize ? 1 : 0;
6231 		if (peer->txrx_peer)
6232 			peer->txrx_peer->authorize = peer->authorize;
6233 
6234 		if (!peer->authorize)
6235 			dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
6236 
6237 		dp_mlo_peer_authorize(soc, peer);
6238 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6239 	}
6240 
6241 	return status;
6242 }
6243 
6244 /**
6245  * dp_peer_get_authorize() - get peer authorize status
6246  * @soc_hdl: soc handle
6247  * @vdev_id: id of dp handle
6248  * @peer_mac: mac of datapath PEER handle
6249  *
6250  * Return: true is peer is authorized, false otherwise
6251  */
6252 static bool
6253 dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6254 		      uint8_t *peer_mac)
6255 {
6256 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6257 	bool authorize = false;
6258 	struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
6259 						      0, vdev_id,
6260 						      DP_MOD_ID_CDP);
6261 
6262 	if (!peer) {
6263 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6264 		return authorize;
6265 	}
6266 
6267 	authorize = peer->authorize;
6268 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6269 
6270 	return authorize;
6271 }
6272 
6273 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
6274 			  enum dp_mod_id mod_id)
6275 {
6276 	ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
6277 	void *vdev_delete_context = NULL;
6278 	uint8_t vdev_id = vdev->vdev_id;
6279 	struct dp_pdev *pdev = vdev->pdev;
6280 	struct dp_vdev *tmp_vdev = NULL;
6281 	uint8_t found = 0;
6282 
6283 	QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
6284 
6285 	/* Return if this is not the last reference*/
6286 	if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
6287 		return;
6288 
6289 	/*
6290 	 * This should be set as last reference need to released
6291 	 * after cdp_vdev_detach() is called
6292 	 *
6293 	 * if this assert is hit there is a ref count issue
6294 	 */
6295 	QDF_ASSERT(vdev->delete.pending);
6296 
6297 	vdev_delete_cb = vdev->delete.callback;
6298 	vdev_delete_context = vdev->delete.context;
6299 
6300 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
6301 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6302 
6303 	if (wlan_op_mode_monitor == vdev->opmode) {
6304 		dp_monitor_vdev_delete(soc, vdev);
6305 		goto free_vdev;
6306 	}
6307 
6308 	/* all peers are gone, go ahead and delete it */
6309 	dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
6310 			FLOW_TYPE_VDEV, vdev_id);
6311 	dp_tx_vdev_detach(vdev);
6312 	dp_monitor_vdev_detach(vdev);
6313 
6314 free_vdev:
6315 	qdf_spinlock_destroy(&vdev->peer_list_lock);
6316 
6317 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
6318 	TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
6319 		      inactive_list_elem) {
6320 		if (tmp_vdev == vdev) {
6321 			found = 1;
6322 			break;
6323 		}
6324 	}
6325 	if (found)
6326 		TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
6327 			     inactive_list_elem);
6328 	/* delete this peer from the list */
6329 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
6330 
6331 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
6332 				     vdev);
6333 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
6334 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6335 	wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
6336 			     WLAN_MD_DP_VDEV, "dp_vdev");
6337 	qdf_mem_free(vdev);
6338 	vdev = NULL;
6339 
6340 	if (vdev_delete_cb)
6341 		vdev_delete_cb(vdev_delete_context);
6342 }
6343 
6344 qdf_export_symbol(dp_vdev_unref_delete);
6345 
6346 void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
6347 {
6348 	struct dp_vdev *vdev = peer->vdev;
6349 	struct dp_pdev *pdev = vdev->pdev;
6350 	struct dp_soc *soc = pdev->soc;
6351 	uint16_t peer_id;
6352 	struct dp_peer *tmp_peer;
6353 	bool found = false;
6354 
6355 	if (mod_id > DP_MOD_ID_RX)
6356 		QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
6357 
6358 	/*
6359 	 * Hold the lock all the way from checking if the peer ref count
6360 	 * is zero until the peer references are removed from the hash
6361 	 * table and vdev list (if the peer ref count is zero).
6362 	 * This protects against a new HL tx operation starting to use the
6363 	 * peer object just after this function concludes it's done being used.
6364 	 * Furthermore, the lock needs to be held while checking whether the
6365 	 * vdev's list of peers is empty, to make sure that list is not modified
6366 	 * concurrently with the empty check.
6367 	 */
6368 	if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
6369 		peer_id = peer->peer_id;
6370 
6371 		/*
6372 		 * Make sure that the reference to the peer in
6373 		 * peer object map is removed
6374 		 */
6375 		QDF_ASSERT(peer_id == HTT_INVALID_PEER);
6376 
6377 		dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
6378 			     QDF_MAC_ADDR_REF(peer->mac_addr.raw));
6379 
6380 		dp_peer_sawf_ctx_free(soc, peer);
6381 
6382 		wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
6383 				     WLAN_MD_DP_PEER, "dp_peer");
6384 
6385 		qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6386 		TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
6387 			      inactive_list_elem) {
6388 			if (tmp_peer == peer) {
6389 				found = 1;
6390 				break;
6391 			}
6392 		}
6393 		if (found)
6394 			TAILQ_REMOVE(&soc->inactive_peer_list, peer,
6395 				     inactive_list_elem);
6396 		/* delete this peer from the list */
6397 		qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6398 		DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
6399 		dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
6400 
6401 		/* cleanup the peer data */
6402 		dp_peer_cleanup(vdev, peer);
6403 
6404 		dp_monitor_peer_detach(soc, peer);
6405 
6406 		qdf_spinlock_destroy(&peer->peer_state_lock);
6407 
6408 		dp_txrx_peer_detach(soc, peer);
6409 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
6410 					     peer, vdev, 0);
6411 		qdf_mem_free(peer);
6412 
6413 		/*
6414 		 * Decrement ref count taken at peer create
6415 		 */
6416 		dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
6417 			     vdev, qdf_atomic_read(&vdev->ref_cnt));
6418 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
6419 	}
6420 }
6421 
6422 qdf_export_symbol(dp_peer_unref_delete);
6423 
6424 void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
6425 			       enum dp_mod_id mod_id)
6426 {
6427 	dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
6428 }
6429 
6430 qdf_export_symbol(dp_txrx_peer_unref_delete);
6431 
6432 /**
6433  * dp_peer_delete_wifi3() - Delete txrx peer
6434  * @soc_hdl: soc handle
6435  * @vdev_id: id of dp handle
6436  * @peer_mac: mac of datapath PEER handle
6437  * @bitmap: bitmap indicating special handling of request.
6438  * @peer_type: peer type (link or MLD)
6439  *
6440  */
6441 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
6442 				       uint8_t vdev_id,
6443 				       uint8_t *peer_mac, uint32_t bitmap,
6444 				       enum cdp_peer_type peer_type)
6445 {
6446 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6447 	struct dp_peer *peer;
6448 	struct cdp_peer_info peer_info = { 0 };
6449 	struct dp_vdev *vdev = NULL;
6450 
6451 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
6452 				 false, peer_type);
6453 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
6454 
6455 	/* Peer can be null for monitor vap mac address */
6456 	if (!peer) {
6457 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
6458 			  "%s: Invalid peer\n", __func__);
6459 		return QDF_STATUS_E_FAILURE;
6460 	}
6461 
6462 	if (!peer->valid) {
6463 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6464 		dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
6465 			QDF_MAC_ADDR_REF(peer_mac));
6466 		return QDF_STATUS_E_ALREADY;
6467 	}
6468 
6469 	vdev = peer->vdev;
6470 
6471 	if (!vdev) {
6472 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6473 		return QDF_STATUS_E_FAILURE;
6474 	}
6475 
6476 	peer->valid = 0;
6477 
6478 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
6479 				     vdev, 0);
6480 	dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
6481 		     soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
6482 		     qdf_atomic_read(&peer->ref_cnt));
6483 
6484 	dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
6485 
6486 	dp_local_peer_id_free(peer->vdev->pdev, peer);
6487 
6488 	/* Drop all rx packets before deleting peer */
6489 	dp_clear_peer_internal(soc, peer);
6490 
6491 	qdf_spinlock_destroy(&peer->peer_info_lock);
6492 	dp_peer_multipass_list_remove(peer);
6493 
6494 	/* remove the reference to the peer from the hash table */
6495 	dp_peer_find_hash_remove(soc, peer);
6496 
6497 	dp_peer_vdev_list_remove(soc, vdev, peer);
6498 
6499 	dp_peer_mlo_delete(peer);
6500 
6501 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6502 	TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
6503 			  inactive_list_elem);
6504 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6505 
6506 	/*
6507 	 * Remove the reference added during peer_attach.
6508 	 * The peer will still be left allocated until the
6509 	 * PEER_UNMAP message arrives to remove the other
6510 	 * reference, added by the PEER_MAP message.
6511 	 */
6512 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
6513 	/*
6514 	 * Remove the reference taken above
6515 	 */
6516 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6517 
6518 	return QDF_STATUS_SUCCESS;
6519 }
6520 
6521 #ifdef DP_RX_UDP_OVER_PEER_ROAM
6522 static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
6523 					       uint8_t vdev_id,
6524 					       uint8_t *peer_mac,
6525 					       uint32_t auth_status)
6526 {
6527 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6528 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6529 						     DP_MOD_ID_CDP);
6530 	if (!vdev)
6531 		return QDF_STATUS_E_FAILURE;
6532 
6533 	vdev->roaming_peer_status = auth_status;
6534 	qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
6535 		     QDF_MAC_ADDR_SIZE);
6536 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6537 
6538 	return QDF_STATUS_SUCCESS;
6539 }
6540 #endif
6541 /**
6542  * dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
6543  * @soc_hdl: Datapath soc handle
6544  * @vdev_id: virtual interface id
6545  *
6546  * Return: MAC address on success, NULL on failure.
6547  *
6548  */
6549 static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
6550 					   uint8_t vdev_id)
6551 {
6552 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6553 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6554 						     DP_MOD_ID_CDP);
6555 	uint8_t *mac = NULL;
6556 
6557 	if (!vdev)
6558 		return NULL;
6559 
6560 	mac = vdev->mac_addr.raw;
6561 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6562 
6563 	return mac;
6564 }
6565 
6566 /**
6567  * dp_vdev_set_wds() - Enable per packet stats
6568  * @soc_hdl: DP soc handle
6569  * @vdev_id: id of DP VDEV handle
6570  * @val: value
6571  *
6572  * Return: none
6573  */
6574 static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6575 			   uint32_t val)
6576 {
6577 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6578 	struct dp_vdev *vdev =
6579 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
6580 				      DP_MOD_ID_CDP);
6581 
6582 	if (!vdev)
6583 		return QDF_STATUS_E_FAILURE;
6584 
6585 	vdev->wds_enabled = val;
6586 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6587 
6588 	return QDF_STATUS_SUCCESS;
6589 }
6590 
6591 static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
6592 {
6593 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6594 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6595 						     DP_MOD_ID_CDP);
6596 	int opmode;
6597 
6598 	if (!vdev) {
6599 		dp_err_rl("vdev for id %d is NULL", vdev_id);
6600 		return -EINVAL;
6601 	}
6602 	opmode = vdev->opmode;
6603 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6604 
6605 	return opmode;
6606 }
6607 
6608 /**
6609  * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
6610  * @soc_hdl: ol_txrx_soc_handle handle
6611  * @vdev_id: vdev id for which os rx handles are needed
6612  * @stack_fn_p: pointer to stack function pointer
6613  * @osif_vdev_p: pointer to ol_osif_vdev_handle
6614  *
6615  * Return: void
6616  */
6617 static
6618 void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
6619 					  uint8_t vdev_id,
6620 					  ol_txrx_rx_fp *stack_fn_p,
6621 					  ol_osif_vdev_handle *osif_vdev_p)
6622 {
6623 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6624 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6625 						     DP_MOD_ID_CDP);
6626 
6627 	if (qdf_unlikely(!vdev)) {
6628 		*stack_fn_p = NULL;
6629 		*osif_vdev_p = NULL;
6630 		return;
6631 	}
6632 	*stack_fn_p = vdev->osif_rx_stack;
6633 	*osif_vdev_p = vdev->osif_vdev;
6634 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6635 }
6636 
6637 /**
6638  * dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
6639  * @soc_hdl: datapath soc handle
6640  * @vdev_id: virtual device/interface id
6641  *
6642  * Return: Handle to control pdev
6643  */
6644 static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
6645 						struct cdp_soc_t *soc_hdl,
6646 						uint8_t vdev_id)
6647 {
6648 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6649 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6650 						     DP_MOD_ID_CDP);
6651 	struct dp_pdev *pdev;
6652 
6653 	if (!vdev)
6654 		return NULL;
6655 
6656 	pdev = vdev->pdev;
6657 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6658 	return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
6659 }
6660 
6661 int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
6662 {
6663 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6664 
6665 	return qdf_atomic_read(&pdev->num_tx_outstanding);
6666 }
6667 
6668 /**
6669  * dp_get_peer_mac_from_peer_id() - get peer mac
6670  * @soc: CDP SoC handle
6671  * @peer_id: Peer ID
6672  * @peer_mac: MAC addr of PEER
6673  *
6674  * Return: QDF_STATUS
6675  */
6676 static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
6677 					       uint32_t peer_id,
6678 					       uint8_t *peer_mac)
6679 {
6680 	struct dp_peer *peer;
6681 
6682 	if (soc && peer_mac) {
6683 		peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
6684 					     (uint16_t)peer_id,
6685 					     DP_MOD_ID_CDP);
6686 		if (peer) {
6687 			qdf_mem_copy(peer_mac, peer->mac_addr.raw,
6688 				     QDF_MAC_ADDR_SIZE);
6689 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6690 			return QDF_STATUS_SUCCESS;
6691 		}
6692 	}
6693 
6694 	return QDF_STATUS_E_FAILURE;
6695 }
6696 
6697 #ifdef MESH_MODE_SUPPORT
6698 static
6699 void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
6700 {
6701 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6702 
6703 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6704 	vdev->mesh_vdev = val;
6705 	if (val)
6706 		vdev->skip_sw_tid_classification |=
6707 			DP_TX_MESH_ENABLED;
6708 	else
6709 		vdev->skip_sw_tid_classification &=
6710 			~DP_TX_MESH_ENABLED;
6711 }
6712 
6713 /**
6714  * dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
6715  * @vdev_hdl: virtual device object
6716  * @val: value to be set
6717  *
6718  * Return: void
6719  */
6720 static
6721 void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
6722 {
6723 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6724 
6725 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6726 	vdev->mesh_rx_filter = val;
6727 }
6728 #endif
6729 
6730 /**
6731  * dp_vdev_set_hlos_tid_override() - to set hlos tid override
6732  * @vdev: virtual device object
6733  * @val: value to be set
6734  *
6735  * Return: void
6736  */
6737 static
6738 void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
6739 {
6740 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6741 	if (val)
6742 		vdev->skip_sw_tid_classification |=
6743 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6744 	else
6745 		vdev->skip_sw_tid_classification &=
6746 			~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6747 }
6748 
6749 /**
6750  * dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
6751  * @vdev_hdl: virtual device object
6752  *
6753  * Return: 1 if this flag is set
6754  */
6755 static
6756 uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
6757 {
6758 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6759 
6760 	return !!(vdev->skip_sw_tid_classification &
6761 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
6762 }
6763 
6764 #ifdef VDEV_PEER_PROTOCOL_COUNT
6765 static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
6766 					       int8_t vdev_id,
6767 					       bool enable)
6768 {
6769 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6770 	struct dp_vdev *vdev;
6771 
6772 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6773 	if (!vdev)
6774 		return;
6775 
6776 	dp_info("enable %d vdev_id %d", enable, vdev_id);
6777 	vdev->peer_protocol_count_track = enable;
6778 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6779 }
6780 
6781 static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6782 						   int8_t vdev_id,
6783 						   int drop_mask)
6784 {
6785 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6786 	struct dp_vdev *vdev;
6787 
6788 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6789 	if (!vdev)
6790 		return;
6791 
6792 	dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
6793 	vdev->peer_protocol_count_dropmask = drop_mask;
6794 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6795 }
6796 
6797 static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
6798 						  int8_t vdev_id)
6799 {
6800 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6801 	struct dp_vdev *vdev;
6802 	int peer_protocol_count_track;
6803 
6804 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6805 	if (!vdev)
6806 		return 0;
6807 
6808 	dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
6809 		vdev_id);
6810 	peer_protocol_count_track =
6811 		vdev->peer_protocol_count_track;
6812 
6813 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6814 	return peer_protocol_count_track;
6815 }
6816 
6817 static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6818 					       int8_t vdev_id)
6819 {
6820 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6821 	struct dp_vdev *vdev;
6822 	int peer_protocol_count_dropmask;
6823 
6824 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6825 	if (!vdev)
6826 		return 0;
6827 
6828 	dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
6829 		vdev_id);
6830 	peer_protocol_count_dropmask =
6831 		vdev->peer_protocol_count_dropmask;
6832 
6833 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6834 	return peer_protocol_count_dropmask;
6835 }
6836 
6837 #endif
6838 
6839 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
6840 {
6841 	uint8_t pdev_count;
6842 
6843 	for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
6844 		if (soc->pdev_list[pdev_count] &&
6845 		    soc->pdev_list[pdev_count] == data)
6846 			return true;
6847 	}
6848 	return false;
6849 }
6850 
6851 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
6852 			     struct cdp_vdev_stats *vdev_stats,
6853 			     enum dp_pkt_xmit_type xmit_type)
6854 {
6855 	if (!vdev || !vdev->pdev)
6856 		return;
6857 
6858 	dp_update_vdev_ingress_stats(vdev);
6859 
6860 	dp_copy_vdev_stats_to_tgt_buf(vdev_stats,
6861 					    &vdev->stats, xmit_type);
6862 	dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
6863 			     DP_MOD_ID_GENERIC_STATS);
6864 
6865 	dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
6866 
6867 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6868 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6869 			     vdev_stats, vdev->vdev_id,
6870 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6871 #endif
6872 }
6873 
6874 void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
6875 {
6876 	struct dp_vdev *vdev = NULL;
6877 	struct dp_soc *soc;
6878 	struct cdp_vdev_stats *vdev_stats =
6879 			qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6880 
6881 	if (!vdev_stats) {
6882 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6883 			   pdev->soc);
6884 		return;
6885 	}
6886 
6887 	soc = pdev->soc;
6888 
6889 	qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
6890 	qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
6891 	qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
6892 	qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
6893 
6894 	if (dp_monitor_is_enable_mcopy_mode(pdev))
6895 		dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
6896 
6897 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
6898 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
6899 
6900 		dp_aggregate_vdev_stats(vdev, vdev_stats, DP_XMIT_TOTAL);
6901 		dp_update_pdev_stats(pdev, vdev_stats);
6902 		dp_update_pdev_ingress_stats(pdev, vdev);
6903 	}
6904 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
6905 	qdf_mem_free(vdev_stats);
6906 
6907 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6908 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
6909 			     pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
6910 #endif
6911 }
6912 
6913 /**
6914  * dp_vdev_getstats() - get vdev packet level stats
6915  * @vdev_handle: Datapath VDEV handle
6916  * @stats: cdp network device stats structure
6917  *
6918  * Return: QDF_STATUS
6919  */
6920 static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
6921 				   struct cdp_dev_stats *stats)
6922 {
6923 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
6924 	struct dp_pdev *pdev;
6925 	struct dp_soc *soc;
6926 	struct cdp_vdev_stats *vdev_stats;
6927 
6928 	if (!vdev)
6929 		return QDF_STATUS_E_FAILURE;
6930 
6931 	pdev = vdev->pdev;
6932 	if (!pdev)
6933 		return QDF_STATUS_E_FAILURE;
6934 
6935 	soc = pdev->soc;
6936 
6937 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6938 
6939 	if (!vdev_stats) {
6940 		dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6941 		       soc);
6942 		return QDF_STATUS_E_FAILURE;
6943 	}
6944 
6945 	dp_aggregate_vdev_stats(vdev, vdev_stats, DP_XMIT_LINK);
6946 
6947 	stats->tx_packets = vdev_stats->tx.comp_pkt.num;
6948 	stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
6949 
6950 	stats->tx_errors = vdev_stats->tx.tx_failed;
6951 	stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
6952 			    vdev_stats->tx_i.sg.dropped_host.num +
6953 			    vdev_stats->tx_i.mcast_en.dropped_map_error +
6954 			    vdev_stats->tx_i.mcast_en.dropped_self_mac +
6955 			    vdev_stats->tx_i.mcast_en.dropped_send_fail +
6956 			    vdev_stats->tx.nawds_mcast_drop;
6957 
6958 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
6959 		stats->rx_packets = vdev_stats->rx.to_stack.num;
6960 		stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
6961 	} else {
6962 		stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
6963 				    vdev_stats->rx_i.null_q_desc_pkt.num +
6964 				    vdev_stats->rx_i.routed_eapol_pkt.num;
6965 		stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
6966 				  vdev_stats->rx_i.null_q_desc_pkt.bytes +
6967 				  vdev_stats->rx_i.routed_eapol_pkt.bytes;
6968 	}
6969 
6970 	stats->rx_errors = vdev_stats->rx.err.mic_err +
6971 			   vdev_stats->rx.err.decrypt_err +
6972 			   vdev_stats->rx.err.fcserr +
6973 			   vdev_stats->rx.err.pn_err +
6974 			   vdev_stats->rx.err.oor_err +
6975 			   vdev_stats->rx.err.jump_2k_err +
6976 			   vdev_stats->rx.err.rxdma_wifi_parse_err;
6977 
6978 	stats->rx_dropped = vdev_stats->rx.mec_drop.num +
6979 			    vdev_stats->rx.multipass_rx_pkt_drop +
6980 			    vdev_stats->rx.peer_unauth_rx_pkt_drop +
6981 			    vdev_stats->rx.policy_check_drop +
6982 			    vdev_stats->rx.nawds_mcast_drop +
6983 			    vdev_stats->rx.mcast_3addr_drop +
6984 			    vdev_stats->rx.ppeds_drop.num;
6985 
6986 	qdf_mem_free(vdev_stats);
6987 
6988 	return QDF_STATUS_SUCCESS;
6989 }
6990 
6991 /**
6992  * dp_pdev_getstats() - get pdev packet level stats
6993  * @pdev_handle: Datapath PDEV handle
6994  * @stats: cdp network device stats structure
6995  *
6996  * Return: QDF_STATUS
6997  */
6998 static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
6999 			     struct cdp_dev_stats *stats)
7000 {
7001 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
7002 
7003 	dp_aggregate_pdev_stats(pdev);
7004 
7005 	stats->tx_packets = pdev->stats.tx.comp_pkt.num;
7006 	stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
7007 
7008 	stats->tx_errors = pdev->stats.tx.tx_failed;
7009 	stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
7010 			    pdev->stats.tx_i.sg.dropped_host.num +
7011 			    pdev->stats.tx_i.mcast_en.dropped_map_error +
7012 			    pdev->stats.tx_i.mcast_en.dropped_self_mac +
7013 			    pdev->stats.tx_i.mcast_en.dropped_send_fail +
7014 			    pdev->stats.tx.nawds_mcast_drop +
7015 			    pdev->stats.tso_stats.dropped_host.num;
7016 
7017 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
7018 		stats->rx_packets = pdev->stats.rx.to_stack.num;
7019 		stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
7020 	} else {
7021 		stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
7022 				    pdev->stats.rx_i.null_q_desc_pkt.num +
7023 				    pdev->stats.rx_i.routed_eapol_pkt.num;
7024 		stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
7025 				  pdev->stats.rx_i.null_q_desc_pkt.bytes +
7026 				  pdev->stats.rx_i.routed_eapol_pkt.bytes;
7027 	}
7028 
7029 	stats->rx_errors = pdev->stats.err.ip_csum_err +
7030 		pdev->stats.err.tcp_udp_csum_err +
7031 		pdev->stats.rx.err.mic_err +
7032 		pdev->stats.rx.err.decrypt_err +
7033 		pdev->stats.rx.err.fcserr +
7034 		pdev->stats.rx.err.pn_err +
7035 		pdev->stats.rx.err.oor_err +
7036 		pdev->stats.rx.err.jump_2k_err +
7037 		pdev->stats.rx.err.rxdma_wifi_parse_err;
7038 	stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
7039 		pdev->stats.dropped.mec +
7040 		pdev->stats.dropped.mesh_filter +
7041 		pdev->stats.dropped.wifi_parse +
7042 		pdev->stats.dropped.mon_rx_drop +
7043 		pdev->stats.dropped.mon_radiotap_update_err +
7044 		pdev->stats.rx.mec_drop.num +
7045 		pdev->stats.rx.ppeds_drop.num +
7046 		pdev->stats.rx.multipass_rx_pkt_drop +
7047 		pdev->stats.rx.peer_unauth_rx_pkt_drop +
7048 		pdev->stats.rx.policy_check_drop +
7049 		pdev->stats.rx.nawds_mcast_drop +
7050 		pdev->stats.rx.mcast_3addr_drop;
7051 }
7052 
7053 /**
7054  * dp_get_device_stats() - get interface level packet stats
7055  * @soc_hdl: soc handle
7056  * @id: vdev_id or pdev_id based on type
7057  * @stats: cdp network device stats structure
7058  * @type: device type pdev/vdev
7059  *
7060  * Return: QDF_STATUS
7061  */
7062 static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
7063 				      struct cdp_dev_stats *stats,
7064 				      uint8_t type)
7065 {
7066 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
7067 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
7068 	struct dp_vdev *vdev;
7069 
7070 	switch (type) {
7071 	case UPDATE_VDEV_STATS:
7072 		vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
7073 
7074 		if (vdev) {
7075 			status = dp_vdev_getstats((struct cdp_vdev *)vdev,
7076 						  stats);
7077 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7078 		}
7079 		return status;
7080 	case UPDATE_PDEV_STATS:
7081 		{
7082 			struct dp_pdev *pdev =
7083 				dp_get_pdev_from_soc_pdev_id_wifi3(
7084 						(struct dp_soc *)soc,
7085 						 id);
7086 			if (pdev) {
7087 				dp_pdev_getstats((struct cdp_pdev *)pdev,
7088 						 stats);
7089 				return QDF_STATUS_SUCCESS;
7090 			}
7091 		}
7092 		break;
7093 	default:
7094 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7095 			"apstats cannot be updated for this input "
7096 			"type %d", type);
7097 		break;
7098 	}
7099 
7100 	return QDF_STATUS_E_FAILURE;
7101 }
7102 
7103 const
7104 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
7105 {
7106 	switch (ring_type) {
7107 	case REO_DST:
7108 		return "Reo_dst";
7109 	case REO_EXCEPTION:
7110 		return "Reo_exception";
7111 	case REO_CMD:
7112 		return "Reo_cmd";
7113 	case REO_REINJECT:
7114 		return "Reo_reinject";
7115 	case REO_STATUS:
7116 		return "Reo_status";
7117 	case WBM2SW_RELEASE:
7118 		return "wbm2sw_release";
7119 	case TCL_DATA:
7120 		return "tcl_data";
7121 	case TCL_CMD_CREDIT:
7122 		return "tcl_cmd_credit";
7123 	case TCL_STATUS:
7124 		return "tcl_status";
7125 	case SW2WBM_RELEASE:
7126 		return "sw2wbm_release";
7127 	case RXDMA_BUF:
7128 		return "Rxdma_buf";
7129 	case RXDMA_DST:
7130 		return "Rxdma_dst";
7131 	case RXDMA_MONITOR_BUF:
7132 		return "Rxdma_monitor_buf";
7133 	case RXDMA_MONITOR_DESC:
7134 		return "Rxdma_monitor_desc";
7135 	case RXDMA_MONITOR_STATUS:
7136 		return "Rxdma_monitor_status";
7137 	case RXDMA_MONITOR_DST:
7138 		return "Rxdma_monitor_destination";
7139 	case WBM_IDLE_LINK:
7140 		return "WBM_hw_idle_link";
7141 	case PPE2TCL:
7142 		return "PPE2TCL";
7143 	case REO2PPE:
7144 		return "REO2PPE";
7145 	case TX_MONITOR_DST:
7146 		return "tx_monitor_destination";
7147 	case TX_MONITOR_BUF:
7148 		return "tx_monitor_buf";
7149 	default:
7150 		dp_err("Invalid ring type: %u", ring_type);
7151 		break;
7152 	}
7153 	return "Invalid";
7154 }
7155 
7156 void dp_print_napi_stats(struct dp_soc *soc)
7157 {
7158 	hif_print_napi_stats(soc->hif_handle);
7159 }
7160 
7161 /**
7162  * dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
7163  * @soc: Datapath soc
7164  * @peer: Datatpath peer
7165  * @arg: argument to iter function
7166  *
7167  * Return: QDF_STATUS
7168  */
7169 static inline void
7170 dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
7171 			    struct dp_peer *peer,
7172 			    void *arg)
7173 {
7174 	struct dp_txrx_peer *txrx_peer = NULL;
7175 	struct dp_peer *tgt_peer = NULL;
7176 	struct cdp_interface_peer_stats peer_stats_intf = {0};
7177 
7178 	peer_stats_intf.rx_avg_snr = CDP_INVALID_SNR;
7179 
7180 	DP_STATS_CLR(peer);
7181 	/* Clear monitor peer stats */
7182 	dp_monitor_peer_reset_stats(soc, peer);
7183 
7184 	/* Clear MLD peer stats only when link peer is primary */
7185 	if (dp_peer_is_primary_link_peer(peer)) {
7186 		tgt_peer = dp_get_tgt_peer_from_peer(peer);
7187 		if (tgt_peer) {
7188 			DP_STATS_CLR(tgt_peer);
7189 			txrx_peer = tgt_peer->txrx_peer;
7190 			dp_txrx_peer_stats_clr(txrx_peer);
7191 		}
7192 	}
7193 
7194 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7195 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
7196 			     &peer_stats_intf,  peer->peer_id,
7197 			     UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
7198 #endif
7199 }
7200 
7201 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
7202 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7203 {
7204 	int ring;
7205 
7206 	for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
7207 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
7208 					    soc->reo_dest_ring[ring].hal_srng);
7209 
7210 	for (ring = 0; ring < soc->num_tcl_data_rings; ring++) {
7211 		if (wlan_cfg_get_wbm_ring_num_for_index(
7212 					soc->wlan_cfg_ctx, ring) ==
7213 		    INVALID_WBM_RING_NUM)
7214 			continue;
7215 
7216 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
7217 					soc->tx_comp_ring[ring].hal_srng);
7218 	}
7219 }
7220 #else
7221 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7222 {
7223 }
7224 #endif
7225 
7226 #ifdef WLAN_SUPPORT_PPEDS
7227 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7228 {
7229 	if (soc->arch_ops.dp_ppeds_clear_stats)
7230 		soc->arch_ops.dp_ppeds_clear_stats(soc);
7231 }
7232 
7233 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7234 {
7235 	if (soc->arch_ops.dp_txrx_ppeds_clear_rings_stats)
7236 		soc->arch_ops.dp_txrx_ppeds_clear_rings_stats(soc);
7237 }
7238 #else
7239 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7240 {
7241 }
7242 
7243 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7244 {
7245 }
7246 #endif
7247 
7248 /**
7249  * dp_txrx_host_stats_clr() - Reinitialize the txrx stats
7250  * @vdev: DP_VDEV handle
7251  * @soc: DP_SOC handle
7252  *
7253  * Return: QDF_STATUS
7254  */
7255 static inline QDF_STATUS
7256 dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
7257 {
7258 	struct dp_vdev *var_vdev = NULL;
7259 
7260 	if (!vdev || !vdev->pdev)
7261 		return QDF_STATUS_E_FAILURE;
7262 
7263 	/*
7264 	 * if NSS offload is enabled, then send message
7265 	 * to NSS FW to clear the stats. Once NSS FW clears the statistics
7266 	 * then clear host statistics.
7267 	 */
7268 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
7269 		if (soc->cdp_soc.ol_ops->nss_stats_clr)
7270 			soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
7271 							   vdev->vdev_id);
7272 	}
7273 
7274 	dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
7275 					      (1 << vdev->vdev_id));
7276 
7277 	DP_STATS_CLR(vdev->pdev);
7278 	DP_STATS_CLR(vdev->pdev->soc);
7279 
7280 	dp_clear_tx_ppeds_stats(soc);
7281 	dp_ppeds_clear_ring_util_stats(soc);
7282 
7283 	hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
7284 
7285 	TAILQ_FOREACH(var_vdev, &vdev->pdev->vdev_list, vdev_list_elem) {
7286 		DP_STATS_CLR(var_vdev);
7287 		dp_vdev_iterate_peer(var_vdev, dp_txrx_host_peer_stats_clr,
7288 				     NULL, DP_MOD_ID_GENERIC_STATS);
7289 	}
7290 
7291 	dp_srng_clear_ring_usage_wm_stats(soc);
7292 
7293 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7294 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
7295 			     &vdev->stats,  vdev->vdev_id,
7296 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
7297 #endif
7298 	return QDF_STATUS_SUCCESS;
7299 }
7300 
7301 /**
7302  * dp_get_peer_calibr_stats()- Get peer calibrated stats
7303  * @peer: Datapath peer
7304  * @peer_stats: buffer for peer stats
7305  *
7306  * Return: none
7307  */
7308 static inline
7309 void dp_get_peer_calibr_stats(struct dp_peer *peer,
7310 			      struct cdp_peer_stats *peer_stats)
7311 {
7312 	struct dp_peer *tgt_peer;
7313 
7314 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
7315 	if (!tgt_peer)
7316 		return;
7317 
7318 	peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
7319 	peer_stats->tx.tx_bytes_success_last =
7320 				tgt_peer->stats.tx.tx_bytes_success_last;
7321 	peer_stats->tx.tx_data_success_last =
7322 					tgt_peer->stats.tx.tx_data_success_last;
7323 	peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
7324 	peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
7325 	peer_stats->tx.tx_data_ucast_last =
7326 					tgt_peer->stats.tx.tx_data_ucast_last;
7327 	peer_stats->tx.tx_data_ucast_rate =
7328 					tgt_peer->stats.tx.tx_data_ucast_rate;
7329 	peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
7330 	peer_stats->rx.rx_bytes_success_last =
7331 				tgt_peer->stats.rx.rx_bytes_success_last;
7332 	peer_stats->rx.rx_data_success_last =
7333 				tgt_peer->stats.rx.rx_data_success_last;
7334 	peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
7335 	peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
7336 }
7337 
7338 /**
7339  * dp_get_peer_basic_stats()- Get peer basic stats
7340  * @peer: Datapath peer
7341  * @peer_stats: buffer for peer stats
7342  *
7343  * Return: none
7344  */
7345 static inline
7346 void dp_get_peer_basic_stats(struct dp_peer *peer,
7347 			     struct cdp_peer_stats *peer_stats)
7348 {
7349 	struct dp_txrx_peer *txrx_peer;
7350 
7351 	txrx_peer = dp_get_txrx_peer(peer);
7352 	if (!txrx_peer)
7353 		return;
7354 
7355 	peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
7356 	peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
7357 	peer_stats->tx.tx_failed += txrx_peer->tx_failed;
7358 	peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
7359 	peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
7360 }
7361 
7362 #ifdef QCA_ENHANCED_STATS_SUPPORT
7363 /**
7364  * dp_get_peer_per_pkt_stats()- Get peer per pkt stats
7365  * @peer: Datapath peer
7366  * @peer_stats: buffer for peer stats
7367  *
7368  * Return: none
7369  */
7370 static inline
7371 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7372 			       struct cdp_peer_stats *peer_stats)
7373 {
7374 	struct dp_txrx_peer *txrx_peer;
7375 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7376 	uint8_t inx = 0, link_id = 0;
7377 	struct dp_pdev *pdev;
7378 	struct dp_soc *soc;
7379 	uint8_t stats_arr_size;
7380 
7381 	txrx_peer = dp_get_txrx_peer(peer);
7382 	pdev = peer->vdev->pdev;
7383 
7384 	if (!txrx_peer)
7385 		return;
7386 
7387 	if (!IS_MLO_DP_LINK_PEER(peer)) {
7388 		stats_arr_size = txrx_peer->stats_arr_size;
7389 		for (inx = 0; inx < stats_arr_size; inx++) {
7390 			per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
7391 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7392 		}
7393 	} else {
7394 		soc = pdev->soc;
7395 		link_id = dp_get_peer_hw_link_id(soc, pdev);
7396 		per_pkt_stats =
7397 			&txrx_peer->stats[link_id].per_pkt_stats;
7398 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7399 	}
7400 }
7401 
7402 #ifdef WLAN_FEATURE_11BE_MLO
7403 /**
7404  * dp_get_peer_extd_stats()- Get peer extd stats
7405  * @peer: Datapath peer
7406  * @peer_stats: buffer for peer stats
7407  *
7408  * Return: none
7409  */
7410 static inline
7411 void dp_get_peer_extd_stats(struct dp_peer *peer,
7412 			    struct cdp_peer_stats *peer_stats)
7413 {
7414 	struct dp_soc *soc = peer->vdev->pdev->soc;
7415 
7416 	if (IS_MLO_DP_MLD_PEER(peer)) {
7417 		uint8_t i;
7418 		struct dp_peer *link_peer;
7419 		struct dp_soc *link_peer_soc;
7420 		struct dp_mld_link_peers link_peers_info;
7421 
7422 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7423 						    &link_peers_info,
7424 						    DP_MOD_ID_CDP);
7425 		for (i = 0; i < link_peers_info.num_links; i++) {
7426 			link_peer = link_peers_info.link_peers[i];
7427 			link_peer_soc = link_peer->vdev->pdev->soc;
7428 			dp_monitor_peer_get_stats(link_peer_soc, link_peer,
7429 						  peer_stats,
7430 						  UPDATE_PEER_STATS);
7431 		}
7432 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
7433 	} else {
7434 		dp_monitor_peer_get_stats(soc, peer, peer_stats,
7435 					  UPDATE_PEER_STATS);
7436 	}
7437 }
7438 #else
7439 static inline
7440 void dp_get_peer_extd_stats(struct dp_peer *peer,
7441 			    struct cdp_peer_stats *peer_stats)
7442 {
7443 	struct dp_soc *soc = peer->vdev->pdev->soc;
7444 
7445 	dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
7446 }
7447 #endif
7448 #else
7449 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
7450 static inline
7451 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7452 			       struct cdp_peer_stats *peer_stats)
7453 {
7454 	uint8_t i, index;
7455 	struct dp_mld_link_peers link_peers_info;
7456 	struct dp_txrx_peer *txrx_peer;
7457 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7458 	struct dp_soc *soc = peer->vdev->pdev->soc;
7459 
7460 	txrx_peer = dp_get_txrx_peer(peer);
7461 	if (!txrx_peer)
7462 		return;
7463 
7464 	if (IS_MLO_DP_MLD_PEER(peer)) {
7465 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7466 						    &link_peers_info,
7467 						    DP_MOD_ID_GENERIC_STATS);
7468 		for (i = 0; i < link_peers_info.num_links; i++) {
7469 			if (i > txrx_peer->stats_arr_size)
7470 				break;
7471 			per_pkt_stats = &txrx_peer->stats[i].per_pkt_stats;
7472 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7473 		}
7474 		dp_release_link_peers_ref(&link_peers_info,
7475 					  DP_MOD_ID_GENERIC_STATS);
7476 	} else {
7477 		index = dp_get_peer_link_id(peer);
7478 		per_pkt_stats = &txrx_peer->stats[index].per_pkt_stats;
7479 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7480 		qdf_mem_copy(&peer_stats->mac_addr,
7481 			     &peer->mac_addr.raw[0],
7482 			     QDF_MAC_ADDR_SIZE);
7483 	}
7484 }
7485 
7486 static inline
7487 void dp_get_peer_extd_stats(struct dp_peer *peer,
7488 			    struct cdp_peer_stats *peer_stats)
7489 {
7490 	uint8_t i, index;
7491 	struct dp_mld_link_peers link_peers_info;
7492 	struct dp_txrx_peer *txrx_peer;
7493 	struct dp_peer_extd_stats *extd_stats;
7494 	struct dp_soc *soc = peer->vdev->pdev->soc;
7495 
7496 	txrx_peer = dp_get_txrx_peer(peer);
7497 	if (qdf_unlikely(!txrx_peer)) {
7498 		dp_err_rl("txrx_peer NULL for peer MAC: " QDF_MAC_ADDR_FMT,
7499 			  QDF_MAC_ADDR_REF(peer->mac_addr.raw));
7500 		return;
7501 	}
7502 
7503 	if (IS_MLO_DP_MLD_PEER(peer)) {
7504 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7505 						    &link_peers_info,
7506 						    DP_MOD_ID_GENERIC_STATS);
7507 		for (i = 0; i < link_peers_info.num_links; i++) {
7508 			if (i > txrx_peer->stats_arr_size)
7509 				break;
7510 			extd_stats = &txrx_peer->stats[i].extd_stats;
7511 			/* Return aggregated stats for MLD peer */
7512 			DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7513 		}
7514 		dp_release_link_peers_ref(&link_peers_info,
7515 					  DP_MOD_ID_GENERIC_STATS);
7516 	} else {
7517 		index = dp_get_peer_link_id(peer);
7518 		extd_stats = &txrx_peer->stats[index].extd_stats;
7519 		DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7520 		qdf_mem_copy(&peer_stats->mac_addr,
7521 			     &peer->mac_addr.raw[0],
7522 			     QDF_MAC_ADDR_SIZE);
7523 	}
7524 }
7525 #else
7526 static inline
7527 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7528 			       struct cdp_peer_stats *peer_stats)
7529 {
7530 	struct dp_txrx_peer *txrx_peer;
7531 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7532 
7533 	txrx_peer = dp_get_txrx_peer(peer);
7534 	if (!txrx_peer)
7535 		return;
7536 
7537 	per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
7538 	DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7539 }
7540 
7541 static inline
7542 void dp_get_peer_extd_stats(struct dp_peer *peer,
7543 			    struct cdp_peer_stats *peer_stats)
7544 {
7545 	struct dp_txrx_peer *txrx_peer;
7546 	struct dp_peer_extd_stats *extd_stats;
7547 
7548 	txrx_peer = dp_get_txrx_peer(peer);
7549 	if (qdf_unlikely(!txrx_peer)) {
7550 		dp_err_rl("txrx_peer NULL");
7551 		return;
7552 	}
7553 
7554 	extd_stats = &txrx_peer->stats[0].extd_stats;
7555 	DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7556 }
7557 #endif
7558 #endif
7559 
7560 /**
7561  * dp_get_peer_tx_per()- Get peer packet error ratio
7562  * @peer_stats: buffer for peer stats
7563  *
7564  * Return: none
7565  */
7566 static inline
7567 void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
7568 {
7569 	if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
7570 		peer_stats->tx.per = qdf_do_div((peer_stats->tx.retries * 100),
7571 				  (peer_stats->tx.tx_success.num +
7572 				   peer_stats->tx.retries));
7573 	else
7574 		peer_stats->tx.per = 0;
7575 }
7576 
7577 void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
7578 {
7579 	dp_get_peer_calibr_stats(peer, peer_stats);
7580 
7581 	dp_get_peer_basic_stats(peer, peer_stats);
7582 
7583 	dp_get_peer_per_pkt_stats(peer, peer_stats);
7584 
7585 	dp_get_peer_extd_stats(peer, peer_stats);
7586 
7587 	dp_get_peer_tx_per(peer_stats);
7588 }
7589 
7590 /**
7591  * dp_get_host_peer_stats()- function to print peer stats
7592  * @soc: dp_soc handle
7593  * @mac_addr: mac address of the peer
7594  *
7595  * Return: QDF_STATUS
7596  */
7597 static QDF_STATUS
7598 dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
7599 {
7600 	struct dp_peer *peer = NULL;
7601 	struct cdp_peer_stats *peer_stats = NULL;
7602 	struct cdp_peer_info peer_info = { 0 };
7603 
7604 	if (!mac_addr) {
7605 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7606 			  "%s: NULL peer mac addr\n", __func__);
7607 		return QDF_STATUS_E_FAILURE;
7608 	}
7609 
7610 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
7611 				 CDP_WILD_PEER_TYPE);
7612 
7613 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
7614 					 DP_MOD_ID_CDP);
7615 	if (!peer) {
7616 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7617 			  "%s: Invalid peer\n", __func__);
7618 		return QDF_STATUS_E_FAILURE;
7619 	}
7620 
7621 	peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
7622 	if (!peer_stats) {
7623 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7624 			  "%s: Memory allocation failed for cdp_peer_stats\n",
7625 			  __func__);
7626 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7627 		return QDF_STATUS_E_NOMEM;
7628 	}
7629 
7630 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
7631 
7632 	dp_get_peer_stats(peer, peer_stats);
7633 	dp_print_peer_stats(peer, peer_stats);
7634 
7635 	dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
7636 			    dp_rx_tid_stats_cb, NULL);
7637 
7638 	qdf_mem_free(peer_stats);
7639 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7640 
7641 	return QDF_STATUS_SUCCESS;
7642 }
7643 
7644 /**
7645  * dp_txrx_stats_help() - Helper function for Txrx_Stats
7646  *
7647  * Return: None
7648  */
7649 static void dp_txrx_stats_help(void)
7650 {
7651 	dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
7652 	dp_info("stats_option:");
7653 	dp_info("  1 -- HTT Tx Statistics");
7654 	dp_info("  2 -- HTT Rx Statistics");
7655 	dp_info("  3 -- HTT Tx HW Queue Statistics");
7656 	dp_info("  4 -- HTT Tx HW Sched Statistics");
7657 	dp_info("  5 -- HTT Error Statistics");
7658 	dp_info("  6 -- HTT TQM Statistics");
7659 	dp_info("  7 -- HTT TQM CMDQ Statistics");
7660 	dp_info("  8 -- HTT TX_DE_CMN Statistics");
7661 	dp_info("  9 -- HTT Tx Rate Statistics");
7662 	dp_info(" 10 -- HTT Rx Rate Statistics");
7663 	dp_info(" 11 -- HTT Peer Statistics");
7664 	dp_info(" 12 -- HTT Tx SelfGen Statistics");
7665 	dp_info(" 13 -- HTT Tx MU HWQ Statistics");
7666 	dp_info(" 14 -- HTT RING_IF_INFO Statistics");
7667 	dp_info(" 15 -- HTT SRNG Statistics");
7668 	dp_info(" 16 -- HTT SFM Info Statistics");
7669 	dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
7670 	dp_info(" 18 -- HTT Peer List Details");
7671 	dp_info(" 20 -- Clear Host Statistics");
7672 	dp_info(" 21 -- Host Rx Rate Statistics");
7673 	dp_info(" 22 -- Host Tx Rate Statistics");
7674 	dp_info(" 23 -- Host Tx Statistics");
7675 	dp_info(" 24 -- Host Rx Statistics");
7676 	dp_info(" 25 -- Host AST Statistics");
7677 	dp_info(" 26 -- Host SRNG PTR Statistics");
7678 	dp_info(" 27 -- Host Mon Statistics");
7679 	dp_info(" 28 -- Host REO Queue Statistics");
7680 	dp_info(" 29 -- Host Soc cfg param Statistics");
7681 	dp_info(" 30 -- Host pdev cfg param Statistics");
7682 	dp_info(" 31 -- Host NAPI stats");
7683 	dp_info(" 32 -- Host Interrupt stats");
7684 	dp_info(" 33 -- Host FISA stats");
7685 	dp_info(" 34 -- Host Register Work stats");
7686 	dp_info(" 35 -- HW REO Queue stats");
7687 	dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
7688 	dp_info(" 37 -- Host SRNG usage watermark stats");
7689 }
7690 
7691 #ifdef DP_UMAC_HW_RESET_SUPPORT
7692 /**
7693  * dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
7694  * @soc: dp soc handle
7695  * @en: ebable/disable
7696  *
7697  * Return: void
7698  */
7699 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7700 {
7701 	soc->umac_reset_ctx.skel_enable = en;
7702 	dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
7703 		     soc->umac_reset_ctx.skel_enable);
7704 }
7705 
7706 /**
7707  * dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
7708  * @soc: dp soc handle
7709  *
7710  * Return: enable/disable flag
7711  */
7712 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7713 {
7714 	return soc->umac_reset_ctx.skel_enable;
7715 }
7716 #else
7717 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7718 {
7719 }
7720 
7721 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7722 {
7723 	return false;
7724 }
7725 #endif
7726 
7727 #ifndef WLAN_SOFTUMAC_SUPPORT
7728 static void dp_print_reg_write_stats(struct dp_soc *soc)
7729 {
7730 	hal_dump_reg_write_stats(soc->hal_soc);
7731 	hal_dump_reg_write_srng_stats(soc->hal_soc);
7732 }
7733 #else
7734 static void dp_print_reg_write_stats(struct dp_soc *soc)
7735 {
7736 	hif_print_reg_write_stats(soc->hif_handle);
7737 }
7738 #endif
7739 
7740 /**
7741  * dp_print_host_stats()- Function to print the stats aggregated at host
7742  * @vdev: DP_VDEV handle
7743  * @req: host stats type
7744  * @soc: dp soc handler
7745  *
7746  * Return: 0 on success, print error message in case of failure
7747  */
7748 static int
7749 dp_print_host_stats(struct dp_vdev *vdev,
7750 		    struct cdp_txrx_stats_req *req,
7751 		    struct dp_soc *soc)
7752 {
7753 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
7754 	enum cdp_host_txrx_stats type =
7755 			dp_stats_mapping_table[req->stats][STATS_HOST];
7756 
7757 	dp_aggregate_pdev_stats(pdev);
7758 
7759 	switch (type) {
7760 	case TXRX_CLEAR_STATS:
7761 		dp_txrx_host_stats_clr(vdev, soc);
7762 		break;
7763 	case TXRX_RX_RATE_STATS:
7764 		dp_print_rx_rates(vdev);
7765 		break;
7766 	case TXRX_TX_RATE_STATS:
7767 		dp_print_tx_rates(vdev);
7768 		break;
7769 	case TXRX_TX_HOST_STATS:
7770 		dp_print_pdev_tx_stats(pdev);
7771 		dp_print_soc_tx_stats(pdev->soc);
7772 		dp_print_global_desc_count();
7773 		dp_print_vdev_mlo_mcast_tx_stats(vdev);
7774 		break;
7775 	case TXRX_RX_HOST_STATS:
7776 		dp_print_pdev_rx_stats(pdev);
7777 		dp_print_soc_rx_stats(pdev->soc);
7778 		break;
7779 	case TXRX_AST_STATS:
7780 		dp_print_ast_stats(pdev->soc);
7781 		dp_print_mec_stats(pdev->soc);
7782 		dp_print_peer_table(vdev);
7783 		if (soc->arch_ops.dp_mlo_print_ptnr_info)
7784 			soc->arch_ops.dp_mlo_print_ptnr_info(vdev);
7785 		break;
7786 	case TXRX_SRNG_PTR_STATS:
7787 		dp_print_ring_stats(pdev);
7788 		break;
7789 	case TXRX_RX_MON_STATS:
7790 		dp_monitor_print_pdev_rx_mon_stats(pdev);
7791 		break;
7792 	case TXRX_REO_QUEUE_STATS:
7793 		dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
7794 				       req->peer_addr);
7795 		break;
7796 	case TXRX_SOC_CFG_PARAMS:
7797 		dp_print_soc_cfg_params(pdev->soc);
7798 		break;
7799 	case TXRX_PDEV_CFG_PARAMS:
7800 		dp_print_pdev_cfg_params(pdev);
7801 		break;
7802 	case TXRX_NAPI_STATS:
7803 		dp_print_napi_stats(pdev->soc);
7804 		break;
7805 	case TXRX_SOC_INTERRUPT_STATS:
7806 		dp_print_soc_interrupt_stats(pdev->soc);
7807 		break;
7808 	case TXRX_SOC_FSE_STATS:
7809 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
7810 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
7811 						CDP_FISA_STATS_ID_DUMP_HW_FST);
7812 		break;
7813 	case TXRX_HAL_REG_WRITE_STATS:
7814 		dp_print_reg_write_stats(pdev->soc);
7815 		break;
7816 	case TXRX_SOC_REO_HW_DESC_DUMP:
7817 		dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
7818 					 vdev->vdev_id);
7819 		break;
7820 	case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
7821 		dp_dump_wbm_idle_hptp(pdev->soc, pdev);
7822 		break;
7823 	case TXRX_SRNG_USAGE_WM_STATS:
7824 		/* Dump usage watermark stats for all SRNGs */
7825 		dp_dump_srng_high_wm_stats(soc, DP_SRNG_WM_MASK_ALL);
7826 		break;
7827 	case TXRX_PEER_STATS:
7828 		dp_print_per_link_stats((struct cdp_soc_t *)pdev->soc,
7829 					vdev->vdev_id);
7830 		break;
7831 	default:
7832 		dp_info("Wrong Input For TxRx Host Stats");
7833 		dp_txrx_stats_help();
7834 		break;
7835 	}
7836 	return 0;
7837 }
7838 
7839 /**
7840  * dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
7841  * @pdev: pdev handle
7842  * @val: increase in value
7843  *
7844  * Return: void
7845  */
7846 static void
7847 dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
7848 {
7849 	pdev->stats.tid_stats.ingress_stack += val;
7850 }
7851 
7852 /**
7853  * dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
7854  * @pdev: pdev handle
7855  * @val: increase in value
7856  *
7857  * Return: void
7858  */
7859 static void
7860 dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
7861 {
7862 	pdev->stats.tid_stats.osif_drop += val;
7863 }
7864 
7865 /**
7866  * dp_get_fw_peer_stats()- function to print peer stats
7867  * @soc: soc handle
7868  * @pdev_id: id of the pdev handle
7869  * @mac_addr: mac address of the peer
7870  * @cap: Type of htt stats requested
7871  * @is_wait: if set, wait on completion from firmware response
7872  *
7873  * Currently Supporting only MAC ID based requests Only
7874  *	1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
7875  *	2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
7876  *	3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
7877  *
7878  * Return: QDF_STATUS
7879  */
7880 static QDF_STATUS
7881 dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7882 		     uint8_t *mac_addr,
7883 		     uint32_t cap, uint32_t is_wait)
7884 {
7885 	int i;
7886 	uint32_t config_param0 = 0;
7887 	uint32_t config_param1 = 0;
7888 	uint32_t config_param2 = 0;
7889 	uint32_t config_param3 = 0;
7890 	struct dp_pdev *pdev =
7891 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7892 						   pdev_id);
7893 
7894 	if (!pdev)
7895 		return QDF_STATUS_E_FAILURE;
7896 
7897 	HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
7898 	config_param0 |= (1 << (cap + 1));
7899 
7900 	for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
7901 		config_param1 |= (1 << i);
7902 	}
7903 
7904 	config_param2 |= (mac_addr[0] & 0x000000ff);
7905 	config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
7906 	config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
7907 	config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
7908 
7909 	config_param3 |= (mac_addr[4] & 0x000000ff);
7910 	config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
7911 
7912 	if (is_wait) {
7913 		qdf_event_reset(&pdev->fw_peer_stats_event);
7914 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7915 					  config_param0, config_param1,
7916 					  config_param2, config_param3,
7917 					  0, DBG_STATS_COOKIE_DP_STATS, 0);
7918 		qdf_wait_single_event(&pdev->fw_peer_stats_event,
7919 				      DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
7920 	} else {
7921 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7922 					  config_param0, config_param1,
7923 					  config_param2, config_param3,
7924 					  0, DBG_STATS_COOKIE_DEFAULT, 0);
7925 	}
7926 
7927 	return QDF_STATUS_SUCCESS;
7928 
7929 }
7930 
7931 /* This struct definition will be removed from here
7932  * once it get added in FW headers*/
7933 struct httstats_cmd_req {
7934     uint32_t    config_param0;
7935     uint32_t    config_param1;
7936     uint32_t    config_param2;
7937     uint32_t    config_param3;
7938     int cookie;
7939     u_int8_t    stats_id;
7940 };
7941 
7942 /**
7943  * dp_get_htt_stats: function to process the httstas request
7944  * @soc: DP soc handle
7945  * @pdev_id: id of pdev handle
7946  * @data: pointer to request data
7947  * @data_len: length for request data
7948  *
7949  * Return: QDF_STATUS
7950  */
7951 static QDF_STATUS
7952 dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
7953 		 uint32_t data_len)
7954 {
7955 	struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
7956 	struct dp_pdev *pdev =
7957 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7958 						   pdev_id);
7959 
7960 	if (!pdev)
7961 		return QDF_STATUS_E_FAILURE;
7962 
7963 	QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
7964 	dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
7965 				req->config_param0, req->config_param1,
7966 				req->config_param2, req->config_param3,
7967 				req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
7968 
7969 	return QDF_STATUS_SUCCESS;
7970 }
7971 
7972 /**
7973  * dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
7974  * @pdev: DP_PDEV handle
7975  * @prio: tidmap priority value passed by the user
7976  *
7977  * Return: QDF_STATUS_SUCCESS on success
7978  */
7979 static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
7980 						uint8_t prio)
7981 {
7982 	struct dp_soc *soc = pdev->soc;
7983 
7984 	soc->tidmap_prty = prio;
7985 
7986 	hal_tx_set_tidmap_prty(soc->hal_soc, prio);
7987 	return QDF_STATUS_SUCCESS;
7988 }
7989 
7990 /**
7991  * dp_get_peer_param: function to get parameters in peer
7992  * @cdp_soc: DP soc handle
7993  * @vdev_id: id of vdev handle
7994  * @peer_mac: peer mac address
7995  * @param: parameter type to be set
7996  * @val: address of buffer
7997  *
7998  * Return: val
7999  */
8000 static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8001 				    uint8_t *peer_mac,
8002 				    enum cdp_peer_param_type param,
8003 				    cdp_config_param_type *val)
8004 {
8005 	return QDF_STATUS_SUCCESS;
8006 }
8007 
8008 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
8009 static inline void
8010 dp_check_map_link_id_band(struct dp_peer *peer)
8011 {
8012 	if (peer->link_id_valid)
8013 		dp_map_link_id_band(peer);
8014 }
8015 #else
8016 static inline void
8017 dp_check_map_link_id_band(struct dp_peer *peer)
8018 {
8019 }
8020 #endif
8021 
8022 /**
8023  * dp_set_peer_freq() - Set peer frequency
8024  * @cdp_soc: DP soc handle
8025  * @vdev_id: id of vdev handle
8026  * @peer_mac: peer mac address
8027  * @param: parameter type to be set
8028  * @val: value of parameter to be set
8029  *
8030  * Return: QDF_STATUS_SUCCESS for success. error code for failure.
8031  */
8032 static inline QDF_STATUS
8033 dp_set_peer_freq(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8034 		 uint8_t *peer_mac, enum cdp_peer_param_type param,
8035 		 cdp_config_param_type val)
8036 {
8037 	struct dp_peer *peer = NULL;
8038 	struct cdp_peer_info peer_info = { 0 };
8039 
8040 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
8041 				 false, CDP_LINK_PEER_TYPE);
8042 
8043 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)cdp_soc,
8044 					 &peer_info, DP_MOD_ID_CDP);
8045 	if (!peer) {
8046 		dp_err("peer NULL,MAC " QDF_MAC_ADDR_FMT ", vdev_id %u",
8047 		       QDF_MAC_ADDR_REF(peer_mac), vdev_id);
8048 
8049 		return QDF_STATUS_E_FAILURE;
8050 	}
8051 
8052 	peer->freq = val.cdp_peer_param_freq;
8053 	dp_check_map_link_id_band(peer);
8054 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8055 
8056 	dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %u, frequency %u",
8057 		QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8058 		peer->freq);
8059 
8060 	return QDF_STATUS_SUCCESS;
8061 }
8062 
8063 /**
8064  * dp_set_peer_param: function to set parameters in peer
8065  * @cdp_soc: DP soc handle
8066  * @vdev_id: id of vdev handle
8067  * @peer_mac: peer mac address
8068  * @param: parameter type to be set
8069  * @val: value of parameter to be set
8070  *
8071  * Return: 0 for success. nonzero for failure.
8072  */
8073 static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8074 				    uint8_t *peer_mac,
8075 				    enum cdp_peer_param_type param,
8076 				    cdp_config_param_type val)
8077 {
8078 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8079 	struct dp_peer *peer =
8080 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
8081 						       peer_mac, 0, vdev_id,
8082 						       DP_MOD_ID_CDP);
8083 	struct dp_txrx_peer *txrx_peer;
8084 
8085 	if (!peer)
8086 		return QDF_STATUS_E_FAILURE;
8087 
8088 	txrx_peer = peer->txrx_peer;
8089 	if (!txrx_peer) {
8090 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8091 		return QDF_STATUS_E_FAILURE;
8092 	}
8093 
8094 	switch (param) {
8095 	case CDP_CONFIG_NAWDS:
8096 		txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
8097 		break;
8098 	case CDP_CONFIG_ISOLATION:
8099 		dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %d, isolation %d",
8100 			QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8101 			val.cdp_peer_param_isolation);
8102 		dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
8103 		break;
8104 	case CDP_CONFIG_IN_TWT:
8105 		txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
8106 		break;
8107 	case CDP_CONFIG_PEER_FREQ:
8108 		status =  dp_set_peer_freq(cdp_soc, vdev_id,
8109 					   peer_mac, param, val);
8110 		break;
8111 	default:
8112 		break;
8113 	}
8114 
8115 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8116 
8117 	return status;
8118 }
8119 
8120 #ifdef WLAN_FEATURE_11BE_MLO
8121 /**
8122  * dp_set_mld_peer_param: function to set parameters in MLD peer
8123  * @cdp_soc: DP soc handle
8124  * @vdev_id: id of vdev handle
8125  * @peer_mac: peer mac address
8126  * @param: parameter type to be set
8127  * @val: value of parameter to be set
8128  *
8129  * Return: 0 for success. nonzero for failure.
8130  */
8131 static QDF_STATUS dp_set_mld_peer_param(struct cdp_soc_t *cdp_soc,
8132 					uint8_t vdev_id,
8133 					uint8_t *peer_mac,
8134 					enum cdp_peer_param_type param,
8135 					cdp_config_param_type val)
8136 {
8137 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8138 	struct dp_peer *peer;
8139 	struct dp_txrx_peer *txrx_peer;
8140 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8141 
8142 	peer = dp_mld_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
8143 					  DP_MOD_ID_CDP);
8144 	if (!peer)
8145 		return QDF_STATUS_E_FAILURE;
8146 
8147 	txrx_peer = peer->txrx_peer;
8148 	if (!txrx_peer) {
8149 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8150 		return QDF_STATUS_E_FAILURE;
8151 	}
8152 
8153 	switch (param) {
8154 	case CDP_CONFIG_MLD_PEER_VDEV:
8155 		status = dp_mld_peer_change_vdev(soc, peer, val.new_vdev_id);
8156 		break;
8157 	default:
8158 		break;
8159 	}
8160 
8161 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8162 
8163 	return status;
8164 }
8165 
8166 /**
8167  * dp_set_peer_param_wrapper: wrapper function to set parameters in
8168  *			      legacy/link/MLD peer
8169  * @cdp_soc: DP soc handle
8170  * @vdev_id: id of vdev handle
8171  * @peer_mac: peer mac address
8172  * @param: parameter type to be set
8173  * @val: value of parameter to be set
8174  *
8175  * Return: 0 for success. nonzero for failure.
8176  */
8177 static QDF_STATUS
8178 dp_set_peer_param_wrapper(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8179 			  uint8_t *peer_mac, enum cdp_peer_param_type param,
8180 			  cdp_config_param_type val)
8181 {
8182 	QDF_STATUS status;
8183 
8184 	switch (param) {
8185 	case CDP_CONFIG_MLD_PEER_VDEV:
8186 		status = dp_set_mld_peer_param(cdp_soc, vdev_id, peer_mac,
8187 					       param, val);
8188 		break;
8189 	default:
8190 		status = dp_set_peer_param(cdp_soc, vdev_id, peer_mac,
8191 					   param, val);
8192 		break;
8193 	}
8194 
8195 	return status;
8196 }
8197 #endif
8198 
8199 /**
8200  * dp_get_pdev_param() - function to get parameters from pdev
8201  * @cdp_soc: DP soc handle
8202  * @pdev_id: id of pdev handle
8203  * @param: parameter type to be get
8204  * @val: buffer for value
8205  *
8206  * Return: status
8207  */
8208 static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8209 				    enum cdp_pdev_param_type param,
8210 				    cdp_config_param_type *val)
8211 {
8212 	struct cdp_pdev *pdev = (struct cdp_pdev *)
8213 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8214 						   pdev_id);
8215 	if (!pdev)
8216 		return QDF_STATUS_E_FAILURE;
8217 
8218 	switch (param) {
8219 	case CDP_CONFIG_VOW:
8220 		val->cdp_pdev_param_cfg_vow =
8221 				((struct dp_pdev *)pdev)->vow_stats;
8222 		break;
8223 	case CDP_TX_PENDING:
8224 		val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
8225 		break;
8226 	case CDP_FILTER_MCAST_DATA:
8227 		val->cdp_pdev_param_fltr_mcast =
8228 				dp_monitor_pdev_get_filter_mcast_data(pdev);
8229 		break;
8230 	case CDP_FILTER_NO_DATA:
8231 		val->cdp_pdev_param_fltr_none =
8232 				dp_monitor_pdev_get_filter_non_data(pdev);
8233 		break;
8234 	case CDP_FILTER_UCAST_DATA:
8235 		val->cdp_pdev_param_fltr_ucast =
8236 				dp_monitor_pdev_get_filter_ucast_data(pdev);
8237 		break;
8238 	case CDP_MONITOR_CHANNEL:
8239 		val->cdp_pdev_param_monitor_chan =
8240 			dp_monitor_get_chan_num((struct dp_pdev *)pdev);
8241 		break;
8242 	case CDP_MONITOR_FREQUENCY:
8243 		val->cdp_pdev_param_mon_freq =
8244 			dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
8245 		break;
8246 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8247 		val->cdp_rxdma_buf_ring_size =
8248 			wlan_cfg_get_rx_dma_buf_ring_size(((struct dp_pdev *)pdev)->wlan_cfg_ctx);
8249 		break;
8250 	case CDP_CONFIG_DELAY_STATS:
8251 		val->cdp_pdev_param_cfg_delay_stats =
8252 				((struct dp_pdev *)pdev)->delay_stats_flag;
8253 		break;
8254 	default:
8255 		return QDF_STATUS_E_FAILURE;
8256 	}
8257 
8258 	return QDF_STATUS_SUCCESS;
8259 }
8260 
8261 /**
8262  * dp_set_pdev_param() - function to set parameters in pdev
8263  * @cdp_soc: DP soc handle
8264  * @pdev_id: id of pdev handle
8265  * @param: parameter type to be set
8266  * @val: value of parameter to be set
8267  *
8268  * Return: 0 for success. nonzero for failure.
8269  */
8270 static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8271 				    enum cdp_pdev_param_type param,
8272 				    cdp_config_param_type val)
8273 {
8274 	int target_type;
8275 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8276 	struct dp_pdev *pdev =
8277 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8278 						   pdev_id);
8279 	enum reg_wifi_band chan_band;
8280 
8281 	if (!pdev)
8282 		return QDF_STATUS_E_FAILURE;
8283 
8284 	target_type = hal_get_target_type(soc->hal_soc);
8285 	switch (target_type) {
8286 	case TARGET_TYPE_QCA6750:
8287 	case TARGET_TYPE_WCN6450:
8288 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8289 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8290 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8291 		break;
8292 	case TARGET_TYPE_KIWI:
8293 	case TARGET_TYPE_MANGO:
8294 	case TARGET_TYPE_PEACH:
8295 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8296 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8297 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8298 		break;
8299 	default:
8300 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
8301 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8302 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8303 		break;
8304 	}
8305 
8306 	switch (param) {
8307 	case CDP_CONFIG_TX_CAPTURE:
8308 		return dp_monitor_config_debug_sniffer(pdev,
8309 						val.cdp_pdev_param_tx_capture);
8310 	case CDP_CONFIG_DEBUG_SNIFFER:
8311 		return dp_monitor_config_debug_sniffer(pdev,
8312 						val.cdp_pdev_param_dbg_snf);
8313 	case CDP_CONFIG_BPR_ENABLE:
8314 		return dp_monitor_set_bpr_enable(pdev,
8315 						 val.cdp_pdev_param_bpr_enable);
8316 	case CDP_CONFIG_PRIMARY_RADIO:
8317 		pdev->is_primary = val.cdp_pdev_param_primary_radio;
8318 		break;
8319 	case CDP_CONFIG_CAPTURE_LATENCY:
8320 		pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
8321 		break;
8322 	case CDP_INGRESS_STATS:
8323 		dp_pdev_tid_stats_ingress_inc(pdev,
8324 					      val.cdp_pdev_param_ingrs_stats);
8325 		break;
8326 	case CDP_OSIF_DROP:
8327 		dp_pdev_tid_stats_osif_drop(pdev,
8328 					    val.cdp_pdev_param_osif_drop);
8329 		break;
8330 	case CDP_CONFIG_ENH_RX_CAPTURE:
8331 		return dp_monitor_config_enh_rx_capture(pdev,
8332 						val.cdp_pdev_param_en_rx_cap);
8333 	case CDP_CONFIG_ENH_TX_CAPTURE:
8334 		return dp_monitor_config_enh_tx_capture(pdev,
8335 						val.cdp_pdev_param_en_tx_cap);
8336 	case CDP_CONFIG_HMMC_TID_OVERRIDE:
8337 		pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
8338 		break;
8339 	case CDP_CONFIG_HMMC_TID_VALUE:
8340 		pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
8341 		break;
8342 	case CDP_CHAN_NOISE_FLOOR:
8343 		pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
8344 		break;
8345 	case CDP_TIDMAP_PRTY:
8346 		dp_set_pdev_tidmap_prty_wifi3(pdev,
8347 					      val.cdp_pdev_param_tidmap_prty);
8348 		break;
8349 	case CDP_FILTER_NEIGH_PEERS:
8350 		dp_monitor_set_filter_neigh_peers(pdev,
8351 					val.cdp_pdev_param_fltr_neigh_peers);
8352 		break;
8353 	case CDP_MONITOR_CHANNEL:
8354 		dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
8355 		break;
8356 	case CDP_MONITOR_FREQUENCY:
8357 		chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
8358 		dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
8359 		dp_monitor_set_chan_band(pdev, chan_band);
8360 		break;
8361 	case CDP_CONFIG_BSS_COLOR:
8362 		dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
8363 		break;
8364 	case CDP_SET_ATF_STATS_ENABLE:
8365 		dp_monitor_set_atf_stats_enable(pdev,
8366 					val.cdp_pdev_param_atf_stats_enable);
8367 		break;
8368 	case CDP_CONFIG_SPECIAL_VAP:
8369 		dp_monitor_pdev_config_scan_spcl_vap(pdev,
8370 					val.cdp_pdev_param_config_special_vap);
8371 		dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
8372 		break;
8373 	case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
8374 		dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
8375 				val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
8376 		break;
8377 	case CDP_CONFIG_ENHANCED_STATS_ENABLE:
8378 		pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
8379 		break;
8380 	case CDP_ISOLATION:
8381 		pdev->isolation = val.cdp_pdev_param_isolation;
8382 		break;
8383 	case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
8384 		return dp_monitor_config_undecoded_metadata_capture(pdev,
8385 				val.cdp_pdev_param_undecoded_metadata_enable);
8386 		break;
8387 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8388 		wlan_cfg_set_rx_dma_buf_ring_size(pdev->wlan_cfg_ctx,
8389 						  val.cdp_rxdma_buf_ring_size);
8390 		break;
8391 	case CDP_CONFIG_VOW:
8392 		pdev->vow_stats = val.cdp_pdev_param_cfg_vow;
8393 		break;
8394 	default:
8395 		return QDF_STATUS_E_INVAL;
8396 	}
8397 	return QDF_STATUS_SUCCESS;
8398 }
8399 
8400 #ifdef QCA_UNDECODED_METADATA_SUPPORT
8401 static
8402 QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8403 					uint8_t pdev_id, uint32_t mask,
8404 					uint32_t mask_cont)
8405 {
8406 	struct dp_pdev *pdev =
8407 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8408 						   pdev_id);
8409 
8410 	if (!pdev)
8411 		return QDF_STATUS_E_FAILURE;
8412 
8413 	return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
8414 				mask, mask_cont);
8415 }
8416 
8417 static
8418 QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8419 					uint8_t pdev_id, uint32_t *mask,
8420 					uint32_t *mask_cont)
8421 {
8422 	struct dp_pdev *pdev =
8423 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8424 						   pdev_id);
8425 
8426 	if (!pdev)
8427 		return QDF_STATUS_E_FAILURE;
8428 
8429 	return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
8430 				mask, mask_cont);
8431 }
8432 #endif
8433 
8434 #ifdef QCA_PEER_EXT_STATS
8435 static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8436 					  qdf_nbuf_t nbuf)
8437 {
8438 	struct dp_peer *peer = NULL;
8439 	uint16_t peer_id, ring_id;
8440 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
8441 	struct dp_peer_delay_stats *delay_stats = NULL;
8442 
8443 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
8444 	if (peer_id > soc->max_peer_id)
8445 		return;
8446 
8447 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
8448 	if (qdf_unlikely(!peer))
8449 		return;
8450 
8451 	if (qdf_unlikely(!peer->txrx_peer)) {
8452 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8453 		return;
8454 	}
8455 
8456 	if (qdf_likely(peer->txrx_peer->delay_stats)) {
8457 		delay_stats = peer->txrx_peer->delay_stats;
8458 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
8459 		dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
8460 					nbuf);
8461 	}
8462 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8463 }
8464 #else
8465 static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8466 						 qdf_nbuf_t nbuf)
8467 {
8468 }
8469 #endif
8470 
8471 /**
8472  * dp_calculate_delay_stats() - function to get rx delay stats
8473  * @cdp_soc: DP soc handle
8474  * @vdev_id: id of DP vdev handle
8475  * @nbuf: skb
8476  *
8477  * Return: QDF_STATUS
8478  */
8479 static QDF_STATUS
8480 dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8481 			 qdf_nbuf_t nbuf)
8482 {
8483 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8484 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8485 						     DP_MOD_ID_CDP);
8486 
8487 	if (!vdev)
8488 		return QDF_STATUS_SUCCESS;
8489 
8490 	if (vdev->pdev->delay_stats_flag)
8491 		dp_rx_compute_delay(vdev, nbuf);
8492 	else
8493 		dp_rx_update_peer_delay_stats(soc, nbuf);
8494 
8495 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8496 	return QDF_STATUS_SUCCESS;
8497 }
8498 
8499 /**
8500  * dp_get_vdev_param() - function to get parameters from vdev
8501  * @cdp_soc: DP soc handle
8502  * @vdev_id: id of DP vdev handle
8503  * @param: parameter type to get value
8504  * @val: buffer address
8505  *
8506  * Return: status
8507  */
8508 static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8509 				    enum cdp_vdev_param_type param,
8510 				    cdp_config_param_type *val)
8511 {
8512 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8513 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8514 						     DP_MOD_ID_CDP);
8515 
8516 	if (!vdev)
8517 		return QDF_STATUS_E_FAILURE;
8518 
8519 	switch (param) {
8520 	case CDP_ENABLE_WDS:
8521 		val->cdp_vdev_param_wds = vdev->wds_enabled;
8522 		break;
8523 	case CDP_ENABLE_MEC:
8524 		val->cdp_vdev_param_mec = vdev->mec_enabled;
8525 		break;
8526 	case CDP_ENABLE_DA_WAR:
8527 		val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
8528 		break;
8529 	case CDP_ENABLE_IGMP_MCAST_EN:
8530 		val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
8531 		break;
8532 	case CDP_ENABLE_MCAST_EN:
8533 		val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
8534 		break;
8535 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8536 		val->cdp_vdev_param_hlos_tid_override =
8537 			    dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
8538 		break;
8539 	case CDP_ENABLE_PEER_AUTHORIZE:
8540 		val->cdp_vdev_param_peer_authorize =
8541 			    vdev->peer_authorize;
8542 		break;
8543 	case CDP_TX_ENCAP_TYPE:
8544 		val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
8545 		break;
8546 	case CDP_ENABLE_CIPHER:
8547 		val->cdp_vdev_param_cipher_en = vdev->sec_type;
8548 		break;
8549 #ifdef WLAN_SUPPORT_MESH_LATENCY
8550 	case CDP_ENABLE_PEER_TID_LATENCY:
8551 		val->cdp_vdev_param_peer_tid_latency_enable =
8552 			vdev->peer_tid_latency_enabled;
8553 		break;
8554 	case CDP_SET_VAP_MESH_TID:
8555 		val->cdp_vdev_param_mesh_tid =
8556 				vdev->mesh_tid_latency_config.latency_tid;
8557 		break;
8558 #endif
8559 	case CDP_DROP_3ADDR_MCAST:
8560 		val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
8561 		break;
8562 	case CDP_SET_MCAST_VDEV:
8563 		soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
8564 		break;
8565 #ifdef QCA_SUPPORT_WDS_EXTENDED
8566 	case CDP_DROP_TX_MCAST:
8567 		val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
8568 		break;
8569 #endif
8570 
8571 #ifdef MESH_MODE_SUPPORT
8572 	case CDP_MESH_RX_FILTER:
8573 		val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
8574 		break;
8575 	case CDP_MESH_MODE:
8576 		val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
8577 		break;
8578 #endif
8579 	case CDP_ENABLE_NAWDS:
8580 		val->cdp_vdev_param_nawds = vdev->nawds_enabled;
8581 		break;
8582 
8583 	case CDP_ENABLE_WRAP:
8584 		val->cdp_vdev_param_wrap = vdev->wrap_vdev;
8585 		break;
8586 
8587 #ifdef DP_TRAFFIC_END_INDICATION
8588 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8589 		val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
8590 		break;
8591 #endif
8592 
8593 	default:
8594 		dp_cdp_err("%pK: param value %d is wrong",
8595 			   soc, param);
8596 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8597 		return QDF_STATUS_E_FAILURE;
8598 	}
8599 
8600 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8601 	return QDF_STATUS_SUCCESS;
8602 }
8603 
8604 /**
8605  * dp_set_vdev_param() - function to set parameters in vdev
8606  * @cdp_soc: DP soc handle
8607  * @vdev_id: id of DP vdev handle
8608  * @param: parameter type to get value
8609  * @val: value
8610  *
8611  * Return: QDF_STATUS
8612  */
8613 static QDF_STATUS
8614 dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8615 		  enum cdp_vdev_param_type param, cdp_config_param_type val)
8616 {
8617 	struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
8618 	struct dp_vdev *vdev =
8619 		dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
8620 	uint32_t var = 0;
8621 
8622 	if (!vdev)
8623 		return QDF_STATUS_E_FAILURE;
8624 
8625 	switch (param) {
8626 	case CDP_ENABLE_WDS:
8627 		dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)",
8628 			   dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
8629 		vdev->wds_enabled = val.cdp_vdev_param_wds;
8630 		break;
8631 	case CDP_ENABLE_MEC:
8632 		dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)",
8633 			   dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
8634 		vdev->mec_enabled = val.cdp_vdev_param_mec;
8635 		break;
8636 	case CDP_ENABLE_DA_WAR:
8637 		dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)",
8638 			   dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
8639 		vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
8640 		dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
8641 					     vdev->pdev->soc));
8642 		break;
8643 	case CDP_ENABLE_NAWDS:
8644 		vdev->nawds_enabled = val.cdp_vdev_param_nawds;
8645 		break;
8646 	case CDP_ENABLE_MCAST_EN:
8647 		vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
8648 		break;
8649 	case CDP_ENABLE_IGMP_MCAST_EN:
8650 		vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
8651 		break;
8652 	case CDP_ENABLE_PROXYSTA:
8653 		vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
8654 		break;
8655 	case CDP_UPDATE_TDLS_FLAGS:
8656 		vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
8657 		break;
8658 	case CDP_CFG_WDS_AGING_TIMER:
8659 		var = val.cdp_vdev_param_aging_tmr;
8660 		if (!var)
8661 			qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
8662 		else if (var != vdev->wds_aging_timer_val)
8663 			qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
8664 
8665 		vdev->wds_aging_timer_val = var;
8666 		break;
8667 	case CDP_ENABLE_AP_BRIDGE:
8668 		if (wlan_op_mode_sta != vdev->opmode)
8669 			vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
8670 		else
8671 			vdev->ap_bridge_enabled = false;
8672 		break;
8673 	case CDP_ENABLE_CIPHER:
8674 		vdev->sec_type = val.cdp_vdev_param_cipher_en;
8675 		break;
8676 	case CDP_ENABLE_QWRAP_ISOLATION:
8677 		vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
8678 		break;
8679 	case CDP_UPDATE_MULTIPASS:
8680 		vdev->multipass_en = val.cdp_vdev_param_update_multipass;
8681 		dp_info("vdev %d Multipass enable %d", vdev_id,
8682 			vdev->multipass_en);
8683 		break;
8684 	case CDP_TX_ENCAP_TYPE:
8685 		vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
8686 		break;
8687 	case CDP_RX_DECAP_TYPE:
8688 		vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
8689 		break;
8690 	case CDP_TID_VDEV_PRTY:
8691 		vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
8692 		break;
8693 	case CDP_TIDMAP_TBL_ID:
8694 		vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
8695 		break;
8696 #ifdef MESH_MODE_SUPPORT
8697 	case CDP_MESH_RX_FILTER:
8698 		dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
8699 					   val.cdp_vdev_param_mesh_rx_filter);
8700 		break;
8701 	case CDP_MESH_MODE:
8702 		dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
8703 				      val.cdp_vdev_param_mesh_mode);
8704 		break;
8705 #endif
8706 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8707 		dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
8708 			val.cdp_vdev_param_hlos_tid_override);
8709 		dp_vdev_set_hlos_tid_override(vdev,
8710 				val.cdp_vdev_param_hlos_tid_override);
8711 		break;
8712 #ifdef QCA_SUPPORT_WDS_EXTENDED
8713 	case CDP_CFG_WDS_EXT:
8714 		if (vdev->opmode == wlan_op_mode_ap)
8715 			vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
8716 		break;
8717 	case CDP_DROP_TX_MCAST:
8718 		dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
8719 			val.cdp_drop_tx_mcast);
8720 		vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
8721 		break;
8722 #endif
8723 	case CDP_ENABLE_PEER_AUTHORIZE:
8724 		vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
8725 		break;
8726 #ifdef WLAN_SUPPORT_MESH_LATENCY
8727 	case CDP_ENABLE_PEER_TID_LATENCY:
8728 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8729 			val.cdp_vdev_param_peer_tid_latency_enable);
8730 		vdev->peer_tid_latency_enabled =
8731 			val.cdp_vdev_param_peer_tid_latency_enable;
8732 		break;
8733 	case CDP_SET_VAP_MESH_TID:
8734 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8735 			val.cdp_vdev_param_mesh_tid);
8736 		vdev->mesh_tid_latency_config.latency_tid
8737 				= val.cdp_vdev_param_mesh_tid;
8738 		break;
8739 #endif
8740 #ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
8741 	case CDP_SKIP_BAR_UPDATE_AP:
8742 		dp_info("vdev_id %d skip BAR update: %u", vdev_id,
8743 			val.cdp_skip_bar_update);
8744 		vdev->skip_bar_update = val.cdp_skip_bar_update;
8745 		vdev->skip_bar_update_last_ts = 0;
8746 		break;
8747 #endif
8748 	case CDP_DROP_3ADDR_MCAST:
8749 		dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
8750 			val.cdp_drop_3addr_mcast);
8751 		vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
8752 		break;
8753 	case CDP_ENABLE_WRAP:
8754 		vdev->wrap_vdev = val.cdp_vdev_param_wrap;
8755 		break;
8756 #ifdef DP_TRAFFIC_END_INDICATION
8757 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8758 		vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
8759 		break;
8760 #endif
8761 #ifdef FEATURE_DIRECT_LINK
8762 	case CDP_VDEV_TX_TO_FW:
8763 		dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
8764 		vdev->to_fw = val.cdp_vdev_tx_to_fw;
8765 		break;
8766 #endif
8767 	case CDP_VDEV_SET_MAC_ADDR:
8768 		dp_info("set mac addr, old mac addr" QDF_MAC_ADDR_FMT
8769 			" new mac addr: " QDF_MAC_ADDR_FMT " for vdev %d",
8770 			QDF_MAC_ADDR_REF(vdev->mac_addr.raw),
8771 			QDF_MAC_ADDR_REF(val.mac_addr), vdev->vdev_id);
8772 		qdf_mem_copy(&vdev->mac_addr.raw[0], val.mac_addr,
8773 			     QDF_MAC_ADDR_SIZE);
8774 		break;
8775 	default:
8776 		break;
8777 	}
8778 
8779 	dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
8780 	dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
8781 
8782 	/* Update PDEV flags as VDEV flags are updated */
8783 	dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
8784 	dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
8785 
8786 	return QDF_STATUS_SUCCESS;
8787 }
8788 
8789 #if defined(FEATURE_WLAN_TDLS) && defined(WLAN_FEATURE_11BE_MLO)
8790 /**
8791  * dp_update_mlo_vdev_for_tdls() - update mlo vdev configuration
8792  *                                 for TDLS
8793  * @cdp_soc: DP soc handle
8794  * @vdev_id: id of DP vdev handle
8795  * @param: parameter type for vdev
8796  * @val: value
8797  *
8798  * If TDLS connection is from secondary vdev, then copy osif_vdev from
8799  * primary vdev to support RX, update TX bank register info for primary
8800  * vdev as well.
8801  * If TDLS connection is from primary vdev, same as before.
8802  *
8803  * Return: None
8804  */
8805 static void
8806 dp_update_mlo_vdev_for_tdls(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8807 			    enum cdp_vdev_param_type param,
8808 			    cdp_config_param_type val)
8809 {
8810 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8811 	struct dp_peer *peer;
8812 	struct dp_peer *tmp_peer;
8813 	struct dp_peer *mld_peer;
8814 	struct dp_vdev *vdev = NULL;
8815 	struct dp_vdev *pri_vdev = NULL;
8816 	uint8_t pri_vdev_id = CDP_INVALID_VDEV_ID;
8817 
8818 	if (param != CDP_UPDATE_TDLS_FLAGS)
8819 		return;
8820 
8821 	dp_info("update TDLS flag for vdev_id %d, val %d",
8822 		vdev_id, val.cdp_vdev_param_tdls_flags);
8823 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MISC);
8824 	/* only check for STA mode vdev */
8825 	if (!vdev || vdev->opmode != wlan_op_mode_sta) {
8826 		dp_info("vdev is not as expected for TDLS");
8827 		goto comp_ret;
8828 	}
8829 
8830 	/* Find primary vdev_id */
8831 	qdf_spin_lock_bh(&vdev->peer_list_lock);
8832 	TAILQ_FOREACH_SAFE(peer, &vdev->peer_list,
8833 			   peer_list_elem,
8834 			   tmp_peer) {
8835 		if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
8836 					QDF_STATUS_SUCCESS) {
8837 			/* do check only if MLO link peer exist */
8838 			if (IS_MLO_DP_LINK_PEER(peer)) {
8839 				mld_peer = DP_GET_MLD_PEER_FROM_PEER(peer);
8840 				pri_vdev_id = mld_peer->vdev->vdev_id;
8841 				dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8842 				break;
8843 			}
8844 			dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8845 		}
8846 	}
8847 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
8848 
8849 	if (pri_vdev_id != CDP_INVALID_VDEV_ID)
8850 		pri_vdev = dp_vdev_get_ref_by_id(soc, pri_vdev_id,
8851 						 DP_MOD_ID_MISC);
8852 
8853 	/* If current vdev is not same as primary vdev */
8854 	if (pri_vdev && pri_vdev != vdev) {
8855 		dp_info("primary vdev [%d] %pK different with vdev [%d] %pK",
8856 			pri_vdev->vdev_id, pri_vdev,
8857 			vdev->vdev_id, vdev);
8858 		/* update osif_vdev to support RX for vdev */
8859 		vdev->osif_vdev = pri_vdev->osif_vdev;
8860 		dp_set_vdev_param(cdp_soc, pri_vdev->vdev_id,
8861 				  CDP_UPDATE_TDLS_FLAGS, val);
8862 	}
8863 
8864 comp_ret:
8865 	if (pri_vdev)
8866 		dp_vdev_unref_delete(soc, pri_vdev, DP_MOD_ID_MISC);
8867 	if (vdev)
8868 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
8869 }
8870 
8871 static QDF_STATUS
8872 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8873 			  enum cdp_vdev_param_type param,
8874 			  cdp_config_param_type val)
8875 {
8876 	dp_update_mlo_vdev_for_tdls(cdp_soc, vdev_id, param, val);
8877 
8878 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8879 }
8880 #else
8881 static QDF_STATUS
8882 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8883 			  enum cdp_vdev_param_type param,
8884 			  cdp_config_param_type val)
8885 {
8886 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8887 }
8888 #endif
8889 
8890 /**
8891  * dp_rx_peer_metadata_ver_update() - update rx peer metadata version and
8892  *                                    corresponding filed shift and mask
8893  * @soc: Handle to DP Soc structure
8894  * @peer_md_ver: RX peer metadata version value
8895  *
8896  * Return: None
8897  */
8898 static void
8899 dp_rx_peer_metadata_ver_update(struct dp_soc *soc, uint8_t peer_md_ver)
8900 {
8901 	dp_info("rx_peer_metadata version %d", peer_md_ver);
8902 
8903 	switch (peer_md_ver) {
8904 	case 0: /* htt_rx_peer_metadata_v0 */
8905 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V0_PEER_ID_S;
8906 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V0_PEER_ID_M;
8907 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V0_VDEV_ID_S;
8908 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V0_VDEV_ID_M;
8909 		break;
8910 	case 1: /* htt_rx_peer_metadata_v1 */
8911 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1_PEER_ID_S;
8912 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1_PEER_ID_M;
8913 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1_VDEV_ID_S;
8914 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1_VDEV_ID_M;
8915 		soc->htt_mld_peer_valid_s =
8916 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_S;
8917 		soc->htt_mld_peer_valid_m =
8918 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_M;
8919 		break;
8920 	case 2: /* htt_rx_peer_metadata_v1a */
8921 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1A_PEER_ID_S;
8922 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1A_PEER_ID_M;
8923 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_S;
8924 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_M;
8925 		soc->htt_mld_peer_valid_s =
8926 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_S;
8927 		soc->htt_mld_peer_valid_m =
8928 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_M;
8929 		break;
8930 	case 3: /* htt_rx_peer_metadata_v1b */
8931 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1B_PEER_ID_S;
8932 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1B_PEER_ID_M;
8933 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_S;
8934 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_M;
8935 		soc->htt_mld_peer_valid_s =
8936 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_S;
8937 		soc->htt_mld_peer_valid_m =
8938 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_M;
8939 		break;
8940 	default:
8941 		dp_err("invliad rx_peer_metadata version %d", peer_md_ver);
8942 		break;
8943 	}
8944 
8945 	soc->rx_peer_metadata_ver = peer_md_ver;
8946 }
8947 
8948 /**
8949  * dp_set_psoc_param: function to set parameters in psoc
8950  * @cdp_soc: DP soc handle
8951  * @param: parameter type to be set
8952  * @val: value of parameter to be set
8953  *
8954  * Return: QDF_STATUS
8955  */
8956 static QDF_STATUS
8957 dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
8958 		  enum cdp_psoc_param_type param, cdp_config_param_type val)
8959 {
8960 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8961 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
8962 
8963 	switch (param) {
8964 	case CDP_ENABLE_RATE_STATS:
8965 		soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
8966 		break;
8967 	case CDP_SET_NSS_CFG:
8968 		wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
8969 					    val.cdp_psoc_param_en_nss_cfg);
8970 		/*
8971 		 * TODO: masked out based on the per offloaded radio
8972 		 */
8973 		switch (val.cdp_psoc_param_en_nss_cfg) {
8974 		case dp_nss_cfg_default:
8975 			break;
8976 		case dp_nss_cfg_first_radio:
8977 		/*
8978 		 * This configuration is valid for single band radio which
8979 		 * is also NSS offload.
8980 		 */
8981 		case dp_nss_cfg_dbdc:
8982 		case dp_nss_cfg_dbtc:
8983 			wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
8984 			wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
8985 			wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
8986 			wlan_cfg_set_num_tx_spl_desc(soc->wlan_cfg_ctx, 0);
8987 			wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
8988 			break;
8989 		default:
8990 			dp_cdp_err("%pK: Invalid offload config %d",
8991 				   soc, val.cdp_psoc_param_en_nss_cfg);
8992 		}
8993 
8994 			dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
8995 				   , soc);
8996 		break;
8997 	case CDP_SET_PREFERRED_HW_MODE:
8998 		soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
8999 		break;
9000 	case CDP_IPA_ENABLE:
9001 		soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
9002 		break;
9003 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
9004 		wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
9005 				val.cdp_psoc_param_vdev_stats_hw_offload);
9006 		break;
9007 	case CDP_SAWF_ENABLE:
9008 		wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
9009 		break;
9010 	case CDP_UMAC_RST_SKEL_ENABLE:
9011 		dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
9012 		break;
9013 	case CDP_UMAC_RESET_STATS:
9014 		dp_umac_reset_stats_print(soc);
9015 		break;
9016 	case CDP_SAWF_STATS:
9017 		wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
9018 					       val.cdp_sawf_stats);
9019 		break;
9020 	case CDP_CFG_RX_PEER_METADATA_VER:
9021 		dp_rx_peer_metadata_ver_update(
9022 				soc, val.cdp_peer_metadata_ver);
9023 		break;
9024 	case CDP_CFG_TX_DESC_NUM:
9025 		wlan_cfg_set_num_tx_desc(wlan_cfg_ctx,
9026 					 val.cdp_tx_desc_num);
9027 		break;
9028 	case CDP_CFG_TX_EXT_DESC_NUM:
9029 		wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx,
9030 					     val.cdp_tx_ext_desc_num);
9031 		break;
9032 	case CDP_CFG_TX_RING_SIZE:
9033 		wlan_cfg_set_tx_ring_size(wlan_cfg_ctx,
9034 					  val.cdp_tx_ring_size);
9035 		break;
9036 	case CDP_CFG_TX_COMPL_RING_SIZE:
9037 		wlan_cfg_set_tx_comp_ring_size(wlan_cfg_ctx,
9038 					       val.cdp_tx_comp_ring_size);
9039 		break;
9040 	case CDP_CFG_RX_SW_DESC_NUM:
9041 		wlan_cfg_set_dp_soc_rx_sw_desc_num(wlan_cfg_ctx,
9042 						   val.cdp_rx_sw_desc_num);
9043 		break;
9044 	case CDP_CFG_REO_DST_RING_SIZE:
9045 		wlan_cfg_set_reo_dst_ring_size(wlan_cfg_ctx,
9046 					       val.cdp_reo_dst_ring_size);
9047 		break;
9048 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9049 		wlan_cfg_set_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx,
9050 					val.cdp_rxdma_refill_ring_size);
9051 		break;
9052 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9053 	case CDP_CFG_RX_REFILL_POOL_NUM:
9054 		wlan_cfg_set_rx_refill_buf_pool_size(wlan_cfg_ctx,
9055 						val.cdp_rx_refill_buf_pool_size);
9056 		break;
9057 #endif
9058 	case CDP_CFG_AST_INDICATION_DISABLE:
9059 		wlan_cfg_set_ast_indication_disable
9060 			(wlan_cfg_ctx, val.cdp_ast_indication_disable);
9061 		break;
9062 	case CDP_CONFIG_DP_DEBUG_LOG:
9063 		soc->dp_debug_log_en = val.cdp_psoc_param_dp_debug_log;
9064 		break;
9065 	default:
9066 		break;
9067 	}
9068 
9069 	return QDF_STATUS_SUCCESS;
9070 }
9071 
9072 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
9073 /**
9074  * dp_get_mldev_mode: function to get mlo operation mode
9075  * @soc: soc structure for data path
9076  *
9077  * Return: uint8_t
9078  */
9079 static uint8_t dp_get_mldev_mode(struct dp_soc *soc)
9080 {
9081 	return soc->mld_mode_ap;
9082 }
9083 #else
9084 static uint8_t dp_get_mldev_mode(struct dp_soc *cdp_soc)
9085 {
9086 	return MLD_MODE_INVALID;
9087 }
9088 #endif
9089 
9090 /**
9091  * dp_get_psoc_param: function to get parameters in soc
9092  * @cdp_soc: DP soc handle
9093  * @param: parameter type to be get
9094  * @val: address of buffer
9095  *
9096  * Return: status
9097  */
9098 static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
9099 				    enum cdp_psoc_param_type param,
9100 				    cdp_config_param_type *val)
9101 {
9102 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
9103 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx;
9104 
9105 	if (!soc)
9106 		return QDF_STATUS_E_FAILURE;
9107 
9108 	wlan_cfg_ctx = soc->wlan_cfg_ctx;
9109 
9110 	switch (param) {
9111 	case CDP_ENABLE_RATE_STATS:
9112 		val->cdp_psoc_param_en_rate_stats = soc->peerstats_enabled;
9113 		break;
9114 	case CDP_CFG_PEER_EXT_STATS:
9115 		val->cdp_psoc_param_pext_stats =
9116 			wlan_cfg_is_peer_ext_stats_enabled(wlan_cfg_ctx);
9117 		break;
9118 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
9119 		val->cdp_psoc_param_vdev_stats_hw_offload =
9120 			wlan_cfg_get_vdev_stats_hw_offload_config(wlan_cfg_ctx);
9121 		break;
9122 	case CDP_UMAC_RST_SKEL_ENABLE:
9123 		val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
9124 		break;
9125 	case CDP_TXRX_HAL_SOC_HDL:
9126 		val->hal_soc_hdl = soc->hal_soc;
9127 		break;
9128 	case CDP_CFG_TX_DESC_NUM:
9129 		val->cdp_tx_desc_num = wlan_cfg_get_num_tx_desc(wlan_cfg_ctx);
9130 		break;
9131 	case CDP_CFG_TX_EXT_DESC_NUM:
9132 		val->cdp_tx_ext_desc_num =
9133 			wlan_cfg_get_num_tx_ext_desc(wlan_cfg_ctx);
9134 		break;
9135 	case CDP_CFG_TX_RING_SIZE:
9136 		val->cdp_tx_ring_size = wlan_cfg_tx_ring_size(wlan_cfg_ctx);
9137 		break;
9138 	case CDP_CFG_TX_COMPL_RING_SIZE:
9139 		val->cdp_tx_comp_ring_size =
9140 			wlan_cfg_tx_comp_ring_size(wlan_cfg_ctx);
9141 		break;
9142 	case CDP_CFG_RX_SW_DESC_NUM:
9143 		val->cdp_rx_sw_desc_num =
9144 			wlan_cfg_get_dp_soc_rx_sw_desc_num(wlan_cfg_ctx);
9145 		break;
9146 	case CDP_CFG_REO_DST_RING_SIZE:
9147 		val->cdp_reo_dst_ring_size =
9148 			wlan_cfg_get_reo_dst_ring_size(wlan_cfg_ctx);
9149 		break;
9150 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9151 		val->cdp_rxdma_refill_ring_size =
9152 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx);
9153 		break;
9154 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9155 	case CDP_CFG_RX_REFILL_POOL_NUM:
9156 		val->cdp_rx_refill_buf_pool_size =
9157 			wlan_cfg_get_rx_refill_buf_pool_size(wlan_cfg_ctx);
9158 		break;
9159 #endif
9160 	case CDP_CFG_FISA_PARAMS:
9161 		val->fisa_params.fisa_fst_size = wlan_cfg_get_rx_flow_search_table_size(soc->wlan_cfg_ctx);
9162 		val->fisa_params.rx_flow_max_search =
9163 			wlan_cfg_rx_fst_get_max_search(soc->wlan_cfg_ctx);
9164 		val->fisa_params.rx_toeplitz_hash_key =
9165 			wlan_cfg_rx_fst_get_hash_key(soc->wlan_cfg_ctx);
9166 		break;
9167 	case CDP_RX_PKT_TLV_SIZE:
9168 		val->rx_pkt_tlv_size = soc->rx_pkt_tlv_size;
9169 		break;
9170 	case CDP_CFG_GET_MLO_OPER_MODE:
9171 		val->cdp_psoc_param_mlo_oper_mode = dp_get_mldev_mode(soc);
9172 		break;
9173 	case CDP_CFG_PEER_JITTER_STATS:
9174 		val->cdp_psoc_param_jitter_stats =
9175 			wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx);
9176 		break;
9177 	case CDP_CONFIG_DP_DEBUG_LOG:
9178 		val->cdp_psoc_param_dp_debug_log = soc->dp_debug_log_en;
9179 		break;
9180 	default:
9181 		dp_warn("Invalid param: %u", param);
9182 		break;
9183 	}
9184 
9185 	return QDF_STATUS_SUCCESS;
9186 }
9187 
9188 /**
9189  * dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
9190  * @cdp_soc: CDP SOC handle
9191  * @vdev_id: id of DP_VDEV handle
9192  * @map_id:ID of map that needs to be updated
9193  *
9194  * Return: QDF_STATUS
9195  */
9196 static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
9197 						 uint8_t vdev_id,
9198 						 uint8_t map_id)
9199 {
9200 	cdp_config_param_type val;
9201 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
9202 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9203 						     DP_MOD_ID_CDP);
9204 	if (vdev) {
9205 		vdev->dscp_tid_map_id = map_id;
9206 		val.cdp_vdev_param_dscp_tid_map_id = map_id;
9207 		soc->arch_ops.txrx_set_vdev_param(soc,
9208 						  vdev,
9209 						  CDP_UPDATE_DSCP_TO_TID_MAP,
9210 						  val);
9211 		/* Update flag for transmit tid classification */
9212 		if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
9213 			vdev->skip_sw_tid_classification |=
9214 				DP_TX_HW_DSCP_TID_MAP_VALID;
9215 		else
9216 			vdev->skip_sw_tid_classification &=
9217 				~DP_TX_HW_DSCP_TID_MAP_VALID;
9218 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9219 		return QDF_STATUS_SUCCESS;
9220 	}
9221 
9222 	return QDF_STATUS_E_FAILURE;
9223 }
9224 
9225 #ifdef DP_RATETABLE_SUPPORT
9226 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9227 				int htflag, int gintval)
9228 {
9229 	uint32_t rix;
9230 	uint16_t ratecode;
9231 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
9232 
9233 	return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
9234 			       (uint8_t)preamb, 1, punc_mode,
9235 			       &rix, &ratecode);
9236 }
9237 #else
9238 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9239 				int htflag, int gintval)
9240 {
9241 	return 0;
9242 }
9243 #endif
9244 
9245 /**
9246  * dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
9247  * @soc: DP soc handle
9248  * @pdev_id: id of DP pdev handle
9249  * @pdev_stats: buffer to copy to
9250  *
9251  * Return: status success/failure
9252  */
9253 static QDF_STATUS
9254 dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9255 		       struct cdp_pdev_stats *pdev_stats)
9256 {
9257 	struct dp_pdev *pdev =
9258 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9259 						   pdev_id);
9260 	if (!pdev)
9261 		return QDF_STATUS_E_FAILURE;
9262 
9263 	dp_aggregate_pdev_stats(pdev);
9264 
9265 	qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
9266 	return QDF_STATUS_SUCCESS;
9267 }
9268 
9269 /**
9270  * dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
9271  * @vdev: DP vdev handle
9272  * @buf: buffer containing specific stats structure
9273  * @xmit_type: xmit type of packet - MLD/Link
9274  *
9275  * Return: void
9276  */
9277 static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
9278 					 void *buf, uint8_t xmit_type)
9279 {
9280 	struct cdp_tx_ingress_stats *host_stats = NULL;
9281 
9282 	if (!buf) {
9283 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9284 		return;
9285 	}
9286 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9287 
9288 	DP_STATS_INC_PKT(vdev, tx_i[xmit_type].mcast_en.mcast_pkt,
9289 			 host_stats->mcast_en.mcast_pkt.num,
9290 			 host_stats->mcast_en.mcast_pkt.bytes);
9291 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.dropped_map_error,
9292 		     host_stats->mcast_en.dropped_map_error);
9293 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.dropped_self_mac,
9294 		     host_stats->mcast_en.dropped_self_mac);
9295 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.dropped_send_fail,
9296 		     host_stats->mcast_en.dropped_send_fail);
9297 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.ucast,
9298 		     host_stats->mcast_en.ucast);
9299 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.fail_seg_alloc,
9300 		     host_stats->mcast_en.fail_seg_alloc);
9301 	DP_STATS_INC(vdev, tx_i[xmit_type].mcast_en.clone_fail,
9302 		     host_stats->mcast_en.clone_fail);
9303 }
9304 
9305 /**
9306  * dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
9307  * @vdev: DP vdev handle
9308  * @buf: buffer containing specific stats structure
9309  * @xmit_type: xmit type of packet -  MLD/Link
9310  *
9311  * Return: void
9312  */
9313 static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
9314 					      void *buf, uint8_t xmit_type)
9315 {
9316 	struct cdp_tx_ingress_stats *host_stats = NULL;
9317 
9318 	if (!buf) {
9319 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9320 		return;
9321 	}
9322 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9323 
9324 	DP_STATS_INC(vdev, tx_i[xmit_type].igmp_mcast_en.igmp_rcvd,
9325 		     host_stats->igmp_mcast_en.igmp_rcvd);
9326 	DP_STATS_INC(vdev, tx_i[xmit_type].igmp_mcast_en.igmp_ucast_converted,
9327 		     host_stats->igmp_mcast_en.igmp_ucast_converted);
9328 }
9329 
9330 /**
9331  * dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
9332  * @soc_hdl: DP soc handle
9333  * @vdev_id: id of DP vdev handle
9334  * @buf: buffer containing specific stats structure
9335  * @stats_id: stats type
9336  * @xmit_type: xmit type of packet - MLD/Link
9337  *
9338  * Return: QDF_STATUS
9339  */
9340 static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
9341 						 uint8_t vdev_id,
9342 						 void *buf,
9343 						 uint16_t stats_id,
9344 						 uint8_t xmit_type)
9345 {
9346 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9347 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9348 						     DP_MOD_ID_CDP);
9349 
9350 	if (!vdev) {
9351 		dp_cdp_err("%pK: Invalid vdev handle", soc);
9352 		return QDF_STATUS_E_FAILURE;
9353 	}
9354 
9355 	switch (stats_id) {
9356 	case DP_VDEV_STATS_PKT_CNT_ONLY:
9357 		break;
9358 	case DP_VDEV_STATS_TX_ME:
9359 		dp_txrx_update_vdev_me_stats(vdev, buf, xmit_type);
9360 		dp_txrx_update_vdev_igmp_me_stats(vdev, buf, xmit_type);
9361 		break;
9362 	default:
9363 		qdf_info("Invalid stats_id %d", stats_id);
9364 		break;
9365 	}
9366 
9367 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9368 	return QDF_STATUS_SUCCESS;
9369 }
9370 
9371 /**
9372  * dp_txrx_get_peer_stats_wrapper() - will get cdp_peer_stats
9373  * @soc: soc handle
9374  * @peer_stats: destination buffer to copy to
9375  * @peer_info: peer info
9376  *
9377  * Return: status success/failure
9378  */
9379 static QDF_STATUS
9380 dp_txrx_get_peer_stats_wrapper(struct cdp_soc_t *soc,
9381 			       struct cdp_peer_stats *peer_stats,
9382 			       struct cdp_peer_info peer_info)
9383 {
9384 	struct dp_peer *peer = NULL;
9385 
9386 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9387 					 DP_MOD_ID_CDP);
9388 
9389 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9390 
9391 	if (!peer)
9392 		return QDF_STATUS_E_FAILURE;
9393 
9394 	dp_get_peer_stats(peer, peer_stats);
9395 
9396 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9397 
9398 	return QDF_STATUS_SUCCESS;
9399 }
9400 
9401 /**
9402  * dp_txrx_get_peer_stats() - will get cdp_peer_stats
9403  * @soc: soc handle
9404  * @vdev_id: id of vdev handle
9405  * @peer_mac: peer mac address of DP_PEER handle
9406  * @peer_stats: destination buffer to copy to
9407  *
9408  * Return: status success/failure
9409  */
9410 static QDF_STATUS
9411 dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9412 		       uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
9413 {
9414 	struct cdp_peer_info peer_info = { 0 };
9415 
9416 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9417 				 CDP_WILD_PEER_TYPE);
9418 
9419 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9420 }
9421 
9422 /**
9423  * dp_txrx_get_peer_stats_based_on_peer_type() - get peer stats based on the
9424  * peer type
9425  * @soc: soc handle
9426  * @vdev_id: id of vdev handle
9427  * @peer_mac: mac of DP_PEER handle
9428  * @peer_stats: buffer to copy to
9429  * @peer_type: type of peer
9430  *
9431  * Return: status success/failure
9432  */
9433 static QDF_STATUS
9434 dp_txrx_get_peer_stats_based_on_peer_type(struct cdp_soc_t *soc, uint8_t vdev_id,
9435 					  uint8_t *peer_mac,
9436 					  struct cdp_peer_stats *peer_stats,
9437 					  enum cdp_peer_type peer_type)
9438 {
9439 	struct cdp_peer_info peer_info = { 0 };
9440 
9441 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9442 				 peer_type);
9443 
9444 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9445 }
9446 
9447 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
9448 /**
9449  * dp_get_per_link_peer_stats() - Get per link stats
9450  * @peer: DP peer
9451  * @peer_stats: buffer to copy to
9452  * @peer_type: Peer type
9453  * @num_link: Number of ML links
9454  *
9455  * Return: status success/failure
9456  */
9457 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9458 				      struct cdp_peer_stats *peer_stats,
9459 				      enum cdp_peer_type peer_type,
9460 				      uint8_t num_link)
9461 {
9462 	uint8_t i, index = 0;
9463 	struct dp_peer *link_peer;
9464 	struct dp_mld_link_peers link_peers_info;
9465 	struct cdp_peer_stats *stats;
9466 	struct dp_soc *soc = peer->vdev->pdev->soc;
9467 
9468 	dp_get_peer_calibr_stats(peer, peer_stats);
9469 	dp_get_peer_basic_stats(peer, peer_stats);
9470 	dp_get_peer_tx_per(peer_stats);
9471 
9472 	if (IS_MLO_DP_MLD_PEER(peer)) {
9473 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9474 						    &link_peers_info,
9475 						    DP_MOD_ID_GENERIC_STATS);
9476 		for (i = 0; i < link_peers_info.num_links; i++) {
9477 			link_peer = link_peers_info.link_peers[i];
9478 			if (qdf_unlikely(!link_peer))
9479 				continue;
9480 			if (index > num_link) {
9481 				dp_err("Request stats for %d link(s) is less than total link(s) %d",
9482 				       num_link, link_peers_info.num_links);
9483 				break;
9484 			}
9485 			stats = &peer_stats[index];
9486 			dp_get_peer_per_pkt_stats(link_peer, stats);
9487 			dp_get_peer_extd_stats(link_peer, stats);
9488 			index++;
9489 		}
9490 		dp_release_link_peers_ref(&link_peers_info,
9491 					  DP_MOD_ID_GENERIC_STATS);
9492 	} else {
9493 		dp_get_peer_per_pkt_stats(peer, peer_stats);
9494 		dp_get_peer_extd_stats(peer, peer_stats);
9495 	}
9496 	return QDF_STATUS_SUCCESS;
9497 }
9498 #else
9499 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9500 				      struct cdp_peer_stats *peer_stats,
9501 				      enum cdp_peer_type peer_type,
9502 				      uint8_t num_link)
9503 {
9504 	dp_err("Per link stats not supported");
9505 	return QDF_STATUS_E_INVAL;
9506 }
9507 #endif
9508 
9509 /**
9510  * dp_txrx_get_per_link_peer_stats() - Get per link peer stats
9511  * @soc: soc handle
9512  * @vdev_id: id of vdev handle
9513  * @peer_mac: peer mac address
9514  * @peer_stats: buffer to copy to
9515  * @peer_type: Peer type
9516  * @num_link: Number of ML links
9517  *
9518  * NOTE: For peer_type = CDP_MLD_PEER_TYPE peer_stats should point to
9519  *       buffer of size = (sizeof(*peer_stats) * num_link)
9520  *
9521  * Return: status success/failure
9522  */
9523 static QDF_STATUS
9524 dp_txrx_get_per_link_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9525 				uint8_t *peer_mac,
9526 				struct cdp_peer_stats *peer_stats,
9527 				enum cdp_peer_type peer_type, uint8_t num_link)
9528 {
9529 	QDF_STATUS status;
9530 	struct dp_peer *peer = NULL;
9531 	struct cdp_peer_info peer_info = { 0 };
9532 
9533 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9534 				 peer_type);
9535 
9536 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9537 					 DP_MOD_ID_GENERIC_STATS);
9538 	if (!peer)
9539 		return QDF_STATUS_E_FAILURE;
9540 
9541 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9542 
9543 	status = dp_get_per_link_peer_stats(peer, peer_stats, peer_type,
9544 					    num_link);
9545 
9546 	dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS);
9547 
9548 	return status;
9549 }
9550 
9551 /**
9552  * dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
9553  * @soc: soc handle
9554  * @vdev_id: vdev_id of vdev object
9555  * @peer_mac: mac address of the peer
9556  * @type: enum of required stats
9557  * @buf: buffer to hold the value
9558  *
9559  * Return: status success/failure
9560  */
9561 static QDF_STATUS
9562 dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
9563 			     uint8_t *peer_mac, enum cdp_peer_stats_type type,
9564 			     cdp_peer_stats_param_t *buf)
9565 {
9566 	QDF_STATUS ret;
9567 	struct dp_peer *peer = NULL;
9568 	struct cdp_peer_info peer_info = { 0 };
9569 
9570 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9571 				 CDP_WILD_PEER_TYPE);
9572 
9573 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9574 				         DP_MOD_ID_CDP);
9575 
9576 	if (!peer) {
9577 		dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
9578 			    soc, QDF_MAC_ADDR_REF(peer_mac));
9579 		return QDF_STATUS_E_FAILURE;
9580 	}
9581 
9582 	if (type >= cdp_peer_per_pkt_stats_min &&
9583 	    type < cdp_peer_per_pkt_stats_max) {
9584 		ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
9585 	} else if (type >= cdp_peer_extd_stats_min &&
9586 		   type < cdp_peer_extd_stats_max) {
9587 		ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
9588 	} else {
9589 		dp_err("%pK: Invalid stat type requested", soc);
9590 		ret = QDF_STATUS_E_FAILURE;
9591 	}
9592 
9593 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9594 
9595 	return ret;
9596 }
9597 
9598 /**
9599  * dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
9600  * @soc_hdl: soc handle
9601  * @vdev_id: id of vdev handle
9602  * @peer_mac: mac of DP_PEER handle
9603  *
9604  * Return: QDF_STATUS
9605  */
9606 #ifdef WLAN_FEATURE_11BE_MLO
9607 static QDF_STATUS
9608 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9609 			 uint8_t *peer_mac)
9610 {
9611 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9612 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9613 	struct dp_peer *peer =
9614 			dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
9615 						       vdev_id, DP_MOD_ID_CDP);
9616 
9617 	if (!peer)
9618 		return QDF_STATUS_E_FAILURE;
9619 
9620 	DP_STATS_CLR(peer);
9621 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9622 
9623 	if (IS_MLO_DP_MLD_PEER(peer)) {
9624 		uint8_t i;
9625 		struct dp_peer *link_peer;
9626 		struct dp_soc *link_peer_soc;
9627 		struct dp_mld_link_peers link_peers_info;
9628 
9629 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9630 						    &link_peers_info,
9631 						    DP_MOD_ID_CDP);
9632 		for (i = 0; i < link_peers_info.num_links; i++) {
9633 			link_peer = link_peers_info.link_peers[i];
9634 			link_peer_soc = link_peer->vdev->pdev->soc;
9635 
9636 			DP_STATS_CLR(link_peer);
9637 			dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
9638 		}
9639 
9640 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
9641 	} else {
9642 		dp_monitor_peer_reset_stats(soc, peer);
9643 	}
9644 
9645 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9646 
9647 	return status;
9648 }
9649 #else
9650 static QDF_STATUS
9651 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9652 			 uint8_t *peer_mac)
9653 {
9654 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9655 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
9656 						      peer_mac, 0, vdev_id,
9657 						      DP_MOD_ID_CDP);
9658 
9659 	if (!peer)
9660 		return QDF_STATUS_E_FAILURE;
9661 
9662 	DP_STATS_CLR(peer);
9663 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9664 	dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
9665 
9666 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9667 
9668 	return status;
9669 }
9670 #endif
9671 
9672 /**
9673  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
9674  * @soc_hdl: CDP SoC handle
9675  * @vdev_id: vdev Id
9676  * @buf: buffer for vdev stats
9677  * @is_aggregate: are aggregate stats being collected
9678  *
9679  * Return: QDF_STATUS
9680  */
9681 QDF_STATUS
9682 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9683 		       void *buf, bool is_aggregate)
9684 {
9685 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9686 	struct cdp_vdev_stats *vdev_stats;
9687 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9688 						     DP_MOD_ID_CDP);
9689 
9690 	if (!vdev)
9691 		return QDF_STATUS_E_RESOURCES;
9692 
9693 	vdev_stats = (struct cdp_vdev_stats *)buf;
9694 
9695 	if (is_aggregate) {
9696 		dp_aggregate_vdev_stats(vdev, buf, DP_XMIT_LINK);
9697 	} else {
9698 		dp_copy_vdev_stats_to_tgt_buf(vdev_stats,
9699 						    &vdev->stats, DP_XMIT_LINK);
9700 	}
9701 
9702 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9703 	return QDF_STATUS_SUCCESS;
9704 }
9705 
9706 /**
9707  * dp_get_total_per() - get total per
9708  * @soc: DP soc handle
9709  * @pdev_id: id of DP_PDEV handle
9710  *
9711  * Return: % error rate using retries per packet and success packets
9712  */
9713 static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
9714 {
9715 	struct dp_pdev *pdev =
9716 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9717 						   pdev_id);
9718 
9719 	if (!pdev)
9720 		return 0;
9721 
9722 	dp_aggregate_pdev_stats(pdev);
9723 	if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
9724 		return 0;
9725 	return qdf_do_div((pdev->stats.tx.retries * 100),
9726 		((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
9727 }
9728 
9729 /**
9730  * dp_txrx_stats_publish() - publish pdev stats into a buffer
9731  * @soc: DP soc handle
9732  * @pdev_id: id of DP_PDEV handle
9733  * @buf: to hold pdev_stats
9734  *
9735  * Return: int
9736  */
9737 static int
9738 dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
9739 		      struct cdp_stats_extd *buf)
9740 {
9741 	struct cdp_txrx_stats_req req = {0,};
9742 	QDF_STATUS status;
9743 	struct dp_pdev *pdev =
9744 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9745 						   pdev_id);
9746 
9747 	if (!pdev)
9748 		return TXRX_STATS_LEVEL_OFF;
9749 
9750 	if (pdev->pending_fw_stats_response) {
9751 		dp_warn("pdev%d: prev req pending\n", pdev->pdev_id);
9752 		return TXRX_STATS_LEVEL_OFF;
9753 	}
9754 
9755 	dp_aggregate_pdev_stats(pdev);
9756 
9757 	pdev->pending_fw_stats_response = true;
9758 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
9759 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9760 	pdev->fw_stats_tlv_bitmap_rcvd = 0;
9761 	qdf_event_reset(&pdev->fw_stats_event);
9762 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9763 					   req.param1, req.param2, req.param3, 0,
9764 					   req.cookie_val, 0);
9765 
9766 	if (status != QDF_STATUS_SUCCESS) {
9767 		dp_warn("pdev%d: tx stats req failed\n", pdev->pdev_id);
9768 		pdev->pending_fw_stats_response = false;
9769 		return TXRX_STATS_LEVEL_OFF;
9770 	}
9771 
9772 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
9773 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9774 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9775 					   req.param1, req.param2, req.param3, 0,
9776 					   req.cookie_val, 0);
9777 	if (status != QDF_STATUS_SUCCESS) {
9778 		dp_warn("pdev%d: rx stats req failed\n", pdev->pdev_id);
9779 		pdev->pending_fw_stats_response = false;
9780 		return TXRX_STATS_LEVEL_OFF;
9781 	}
9782 
9783 	/* The event may have already been signaled. Wait only if it's pending */
9784 	if (!pdev->fw_stats_event.done) {
9785 		status =
9786 			qdf_wait_single_event(&pdev->fw_stats_event,
9787 					      DP_MAX_SLEEP_TIME);
9788 
9789 		if (status != QDF_STATUS_SUCCESS) {
9790 			if (status == QDF_STATUS_E_TIMEOUT)
9791 				dp_warn("pdev%d: fw stats timeout. TLVs rcvd 0x%llx\n",
9792 					     pdev->pdev_id,
9793 					     pdev->fw_stats_tlv_bitmap_rcvd);
9794 			pdev->pending_fw_stats_response = false;
9795 			return TXRX_STATS_LEVEL_OFF;
9796 		}
9797 	}
9798 
9799 	qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
9800 	pdev->pending_fw_stats_response = false;
9801 
9802 	return TXRX_STATS_LEVEL;
9803 }
9804 
9805 /**
9806  * dp_get_obss_stats() - Get Pdev OBSS stats from Fw
9807  * @soc: DP soc handle
9808  * @pdev_id: id of DP_PDEV handle
9809  * @buf: to hold pdev obss stats
9810  * @req: Pointer to CDP TxRx stats
9811  *
9812  * Return: status
9813  */
9814 static QDF_STATUS
9815 dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9816 		  struct cdp_pdev_obss_pd_stats_tlv *buf,
9817 		  struct cdp_txrx_stats_req *req)
9818 {
9819 	QDF_STATUS status;
9820 	struct dp_pdev *pdev =
9821 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9822 						   pdev_id);
9823 
9824 	if (!pdev)
9825 		return QDF_STATUS_E_INVAL;
9826 
9827 	if (pdev->pending_fw_obss_stats_response)
9828 		return QDF_STATUS_E_AGAIN;
9829 
9830 	pdev->pending_fw_obss_stats_response = true;
9831 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9832 	req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
9833 	qdf_event_reset(&pdev->fw_obss_stats_event);
9834 	status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9835 					   req->param1, req->param2,
9836 					   req->param3, 0, req->cookie_val,
9837 					   req->mac_id);
9838 	if (QDF_IS_STATUS_ERROR(status)) {
9839 		pdev->pending_fw_obss_stats_response = false;
9840 		return status;
9841 	}
9842 	status =
9843 		qdf_wait_single_event(&pdev->fw_obss_stats_event,
9844 				      DP_MAX_SLEEP_TIME);
9845 
9846 	if (status != QDF_STATUS_SUCCESS) {
9847 		if (status == QDF_STATUS_E_TIMEOUT)
9848 			qdf_debug("TIMEOUT_OCCURS");
9849 		pdev->pending_fw_obss_stats_response = false;
9850 		return QDF_STATUS_E_TIMEOUT;
9851 	}
9852 	qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
9853 		     sizeof(struct cdp_pdev_obss_pd_stats_tlv));
9854 	pdev->pending_fw_obss_stats_response = false;
9855 	return status;
9856 }
9857 
9858 /**
9859  * dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
9860  * @soc: DP soc handle
9861  * @pdev_id: id of DP_PDEV handle
9862  * @req: Pointer to CDP TxRx stats request mac_id will be
9863  *	 pre-filled and should not be overwritten
9864  *
9865  * Return: status
9866  */
9867 static QDF_STATUS
9868 dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9869 			    struct cdp_txrx_stats_req *req)
9870 {
9871 	struct dp_pdev *pdev =
9872 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9873 						   pdev_id);
9874 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9875 
9876 	if (!pdev)
9877 		return QDF_STATUS_E_INVAL;
9878 
9879 	/*
9880 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9881 	 * from param0 to param3 according to below rule:
9882 	 *
9883 	 * PARAM:
9884 	 *   - config_param0 : start_offset (stats type)
9885 	 *   - config_param1 : stats bmask from start offset
9886 	 *   - config_param2 : stats bmask from start offset + 32
9887 	 *   - config_param3 : stats bmask from start offset + 64
9888 	 */
9889 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
9890 	req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9891 	req->param1 = 0x00000001;
9892 
9893 	return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9894 				  req->param1, req->param2, req->param3, 0,
9895 				cookie_val, req->mac_id);
9896 }
9897 
9898 /**
9899  * dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
9900  * @soc_handle: soc handle
9901  * @pdev_id: id of DP_PDEV handle
9902  * @map_id: ID of map that needs to be updated
9903  * @tos: index value in map
9904  * @tid: tid value passed by the user
9905  *
9906  * Return: QDF_STATUS
9907  */
9908 static QDF_STATUS
9909 dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
9910 			       uint8_t pdev_id,
9911 			       uint8_t map_id,
9912 			       uint8_t tos, uint8_t tid)
9913 {
9914 	uint8_t dscp;
9915 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9916 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
9917 
9918 	if (!pdev)
9919 		return QDF_STATUS_E_FAILURE;
9920 
9921 	dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
9922 	pdev->dscp_tid_map[map_id][dscp] = tid;
9923 
9924 	if (map_id < soc->num_hw_dscp_tid_map)
9925 		hal_tx_update_dscp_tid(soc->hal_soc, tid,
9926 				       map_id, dscp);
9927 	else
9928 		return QDF_STATUS_E_FAILURE;
9929 
9930 	return QDF_STATUS_SUCCESS;
9931 }
9932 
9933 #ifdef WLAN_SYSFS_DP_STATS
9934 /**
9935  * dp_sysfs_event_trigger() - Trigger event to wait for firmware
9936  * stats request response.
9937  * @soc: soc handle
9938  * @cookie_val: cookie value
9939  *
9940  * Return: QDF_STATUS
9941  */
9942 static QDF_STATUS
9943 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9944 {
9945 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9946 	/* wait for firmware response for sysfs stats request */
9947 	if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
9948 		if (!soc) {
9949 			dp_cdp_err("soc is NULL");
9950 			return QDF_STATUS_E_FAILURE;
9951 		}
9952 		/* wait for event completion */
9953 		status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
9954 					       WLAN_SYSFS_STAT_REQ_WAIT_MS);
9955 		if (status == QDF_STATUS_SUCCESS)
9956 			dp_cdp_info("sysfs_txrx_fw_request_done event completed");
9957 		else if (status == QDF_STATUS_E_TIMEOUT)
9958 			dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
9959 		else
9960 			dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
9961 	}
9962 
9963 	return status;
9964 }
9965 #else /* WLAN_SYSFS_DP_STATS */
9966 static QDF_STATUS
9967 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9968 {
9969 	return QDF_STATUS_SUCCESS;
9970 }
9971 #endif /* WLAN_SYSFS_DP_STATS */
9972 
9973 /**
9974  * dp_fw_stats_process() - Process TXRX FW stats request.
9975  * @vdev: DP VDEV handle
9976  * @req: stats request
9977  *
9978  * Return: QDF_STATUS
9979  */
9980 static QDF_STATUS
9981 dp_fw_stats_process(struct dp_vdev *vdev,
9982 		    struct cdp_txrx_stats_req *req)
9983 {
9984 	struct dp_pdev *pdev = NULL;
9985 	struct dp_soc *soc = NULL;
9986 	uint32_t stats = req->stats;
9987 	uint8_t mac_id = req->mac_id;
9988 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9989 
9990 	if (!vdev) {
9991 		DP_TRACE(NONE, "VDEV not found");
9992 		return QDF_STATUS_E_FAILURE;
9993 	}
9994 
9995 	pdev = vdev->pdev;
9996 	if (!pdev) {
9997 		DP_TRACE(NONE, "PDEV not found");
9998 		return QDF_STATUS_E_FAILURE;
9999 	}
10000 
10001 	soc = pdev->soc;
10002 	if (!soc) {
10003 		DP_TRACE(NONE, "soc not found");
10004 		return QDF_STATUS_E_FAILURE;
10005 	}
10006 
10007 	/* In case request is from host sysfs for displaying stats on console */
10008 	if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
10009 		cookie_val = DBG_SYSFS_STATS_COOKIE;
10010 
10011 	/*
10012 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
10013 	 * from param0 to param3 according to below rule:
10014 	 *
10015 	 * PARAM:
10016 	 *   - config_param0 : start_offset (stats type)
10017 	 *   - config_param1 : stats bmask from start offset
10018 	 *   - config_param2 : stats bmask from start offset + 32
10019 	 *   - config_param3 : stats bmask from start offset + 64
10020 	 */
10021 	if (req->stats == CDP_TXRX_STATS_0) {
10022 		req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
10023 		req->param1 = 0xFFFFFFFF;
10024 		req->param2 = 0xFFFFFFFF;
10025 		req->param3 = 0xFFFFFFFF;
10026 	} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
10027 		req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
10028 	}
10029 
10030 	if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
10031 		dp_h2t_ext_stats_msg_send(pdev,
10032 					  HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
10033 					  req->param0, req->param1, req->param2,
10034 					  req->param3, 0, cookie_val,
10035 					  mac_id);
10036 	} else {
10037 		dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
10038 					  req->param1, req->param2, req->param3,
10039 					  0, cookie_val, mac_id);
10040 	}
10041 
10042 	dp_sysfs_event_trigger(soc, cookie_val);
10043 
10044 	return QDF_STATUS_SUCCESS;
10045 }
10046 
10047 /**
10048  * dp_txrx_stats_request - function to map to firmware and host stats
10049  * @soc_handle: soc handle
10050  * @vdev_id: virtual device ID
10051  * @req: stats request
10052  *
10053  * Return: QDF_STATUS
10054  */
10055 static
10056 QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
10057 				 uint8_t vdev_id,
10058 				 struct cdp_txrx_stats_req *req)
10059 {
10060 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
10061 	int host_stats;
10062 	int fw_stats;
10063 	enum cdp_stats stats;
10064 	int num_stats;
10065 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10066 						     DP_MOD_ID_CDP);
10067 	QDF_STATUS status = QDF_STATUS_E_INVAL;
10068 
10069 	if (!vdev || !req) {
10070 		dp_cdp_err("%pK: Invalid vdev/req instance", soc);
10071 		status = QDF_STATUS_E_INVAL;
10072 		goto fail0;
10073 	}
10074 
10075 	if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
10076 		dp_err("Invalid mac_id: %u request", req->mac_id);
10077 		status = QDF_STATUS_E_INVAL;
10078 		goto fail0;
10079 	}
10080 
10081 	stats = req->stats;
10082 	if (stats >= CDP_TXRX_MAX_STATS) {
10083 		status = QDF_STATUS_E_INVAL;
10084 		goto fail0;
10085 	}
10086 
10087 	/*
10088 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10089 	 *			has to be updated if new FW HTT stats added
10090 	 */
10091 	if (stats > CDP_TXRX_STATS_HTT_MAX)
10092 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10093 
10094 	num_stats  = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10095 
10096 	if (stats >= num_stats) {
10097 		dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
10098 		status = QDF_STATUS_E_INVAL;
10099 		goto fail0;
10100 	}
10101 
10102 	req->stats = stats;
10103 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10104 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10105 
10106 	dp_info("stats: %u fw_stats_type: %d host_stats: %d",
10107 		stats, fw_stats, host_stats);
10108 
10109 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10110 		/* update request with FW stats type */
10111 		req->stats = fw_stats;
10112 		status = dp_fw_stats_process(vdev, req);
10113 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10114 			(host_stats <= TXRX_HOST_STATS_MAX))
10115 		status = dp_print_host_stats(vdev, req, soc);
10116 	else
10117 		dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
10118 fail0:
10119 	if (vdev)
10120 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10121 	return status;
10122 }
10123 
10124 /**
10125  * dp_soc_notify_asserted_soc() - API to notify asserted soc info
10126  * @psoc: CDP soc handle
10127  *
10128  * Return: QDF_STATUS
10129  */
10130 static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
10131 {
10132 	struct dp_soc *soc = (struct dp_soc *)psoc;
10133 
10134 	if (!soc) {
10135 		dp_cdp_err("%pK: soc is NULL", soc);
10136 		return QDF_STATUS_E_INVAL;
10137 	}
10138 
10139 	return dp_umac_reset_notify_asserted_soc(soc);
10140 }
10141 
10142 /**
10143  * dp_txrx_dump_stats() -  Dump statistics
10144  * @psoc: CDP soc handle
10145  * @value: Statistics option
10146  * @level: verbosity level
10147  */
10148 static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
10149 				     enum qdf_stats_verbosity_level level)
10150 {
10151 	struct dp_soc *soc =
10152 		(struct dp_soc *)psoc;
10153 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10154 
10155 	if (!soc) {
10156 		dp_cdp_err("%pK: soc is NULL", soc);
10157 		return QDF_STATUS_E_INVAL;
10158 	}
10159 
10160 	switch (value) {
10161 	case CDP_TXRX_PATH_STATS:
10162 		dp_txrx_path_stats(soc);
10163 		dp_print_soc_interrupt_stats(soc);
10164 		dp_print_reg_write_stats(soc);
10165 		dp_pdev_print_tx_delay_stats(soc);
10166 		/* Dump usage watermark stats for core TX/RX SRNGs */
10167 		dp_dump_srng_high_wm_stats(soc,
10168 					   DP_SRNG_WM_MASK_REO_DST |
10169 					   DP_SRNG_WM_MASK_TX_COMP);
10170 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10171 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10172 						CDP_FISA_STATS_ID_ERR_STATS);
10173 		break;
10174 
10175 	case CDP_RX_RING_STATS:
10176 		dp_print_per_ring_stats(soc);
10177 		break;
10178 
10179 	case CDP_TXRX_TSO_STATS:
10180 		dp_print_tso_stats(soc, level);
10181 		break;
10182 
10183 	case CDP_DUMP_TX_FLOW_POOL_INFO:
10184 		if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
10185 			cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
10186 		else
10187 			dp_tx_dump_flow_pool_info_compact(soc);
10188 		break;
10189 
10190 	case CDP_DP_NAPI_STATS:
10191 		dp_print_napi_stats(soc);
10192 		break;
10193 
10194 	case CDP_TXRX_DESC_STATS:
10195 		/* TODO: NOT IMPLEMENTED */
10196 		break;
10197 
10198 	case CDP_DP_RX_FISA_STATS:
10199 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10200 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10201 						CDP_FISA_STATS_ID_DUMP_SW_FST);
10202 		break;
10203 
10204 	case CDP_DP_SWLM_STATS:
10205 		dp_print_swlm_stats(soc);
10206 		break;
10207 
10208 	case CDP_DP_TX_HW_LATENCY_STATS:
10209 		dp_pdev_print_tx_delay_stats(soc);
10210 		break;
10211 
10212 	default:
10213 		status = QDF_STATUS_E_INVAL;
10214 		break;
10215 	}
10216 
10217 	return status;
10218 
10219 }
10220 
10221 #ifdef WLAN_SYSFS_DP_STATS
10222 static
10223 void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
10224 			    uint32_t *stat_type)
10225 {
10226 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10227 	*stat_type = soc->sysfs_config->stat_type_requested;
10228 	*mac_id   = soc->sysfs_config->mac_id;
10229 
10230 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10231 }
10232 
10233 static
10234 void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
10235 				       uint32_t curr_len,
10236 				       uint32_t max_buf_len,
10237 				       char *buf)
10238 {
10239 	qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
10240 	/* set sysfs_config parameters */
10241 	soc->sysfs_config->buf = buf;
10242 	soc->sysfs_config->curr_buffer_length = curr_len;
10243 	soc->sysfs_config->max_buffer_length = max_buf_len;
10244 	qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
10245 }
10246 
10247 static
10248 QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
10249 			       char *buf, uint32_t buf_size)
10250 {
10251 	uint32_t mac_id = 0;
10252 	uint32_t stat_type = 0;
10253 	uint32_t fw_stats = 0;
10254 	uint32_t host_stats = 0;
10255 	enum cdp_stats stats;
10256 	struct cdp_txrx_stats_req req;
10257 	uint32_t num_stats;
10258 	struct dp_soc *soc = NULL;
10259 
10260 	if (!soc_hdl) {
10261 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10262 		return QDF_STATUS_E_INVAL;
10263 	}
10264 
10265 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
10266 
10267 	if (!soc) {
10268 		dp_cdp_err("%pK: soc is NULL", soc);
10269 		return QDF_STATUS_E_INVAL;
10270 	}
10271 
10272 	dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
10273 
10274 	stats = stat_type;
10275 	if (stats >= CDP_TXRX_MAX_STATS) {
10276 		dp_cdp_info("sysfs stat type requested is invalid");
10277 		return QDF_STATUS_E_INVAL;
10278 	}
10279 	/*
10280 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10281 	 *			has to be updated if new FW HTT stats added
10282 	 */
10283 	if (stats > CDP_TXRX_MAX_STATS)
10284 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10285 
10286 	num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10287 
10288 	if (stats >= num_stats) {
10289 		dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
10290 				soc, stats, num_stats);
10291 		return QDF_STATUS_E_INVAL;
10292 	}
10293 
10294 	/* build request */
10295 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10296 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10297 
10298 	req.stats = stat_type;
10299 	req.mac_id = mac_id;
10300 	/* request stats to be printed */
10301 	qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
10302 
10303 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10304 		/* update request with FW stats type */
10305 		req.cookie_val = DBG_SYSFS_STATS_COOKIE;
10306 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10307 			(host_stats <= TXRX_HOST_STATS_MAX)) {
10308 		req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
10309 		soc->sysfs_config->process_id = qdf_get_current_pid();
10310 		soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
10311 	}
10312 
10313 	dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
10314 
10315 	dp_txrx_stats_request(soc_hdl, mac_id, &req);
10316 	soc->sysfs_config->process_id = 0;
10317 	soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
10318 
10319 	dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
10320 
10321 	qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
10322 	return QDF_STATUS_SUCCESS;
10323 }
10324 
10325 static
10326 QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
10327 				  uint32_t stat_type, uint32_t mac_id)
10328 {
10329 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10330 
10331 	if (!soc_hdl) {
10332 		dp_cdp_err("%pK: soc is NULL", soc);
10333 		return QDF_STATUS_E_INVAL;
10334 	}
10335 
10336 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10337 
10338 	soc->sysfs_config->stat_type_requested = stat_type;
10339 	soc->sysfs_config->mac_id = mac_id;
10340 
10341 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10342 
10343 	return QDF_STATUS_SUCCESS;
10344 }
10345 
10346 static
10347 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10348 {
10349 	struct dp_soc *soc;
10350 	QDF_STATUS status;
10351 
10352 	if (!soc_hdl) {
10353 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10354 		return QDF_STATUS_E_INVAL;
10355 	}
10356 
10357 	soc = soc_hdl;
10358 
10359 	soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
10360 	if (!soc->sysfs_config) {
10361 		dp_cdp_err("failed to allocate memory for sysfs_config no memory");
10362 		return QDF_STATUS_E_NOMEM;
10363 	}
10364 
10365 	status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10366 	/* create event for fw stats request from sysfs */
10367 	if (status != QDF_STATUS_SUCCESS) {
10368 		dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
10369 		qdf_mem_free(soc->sysfs_config);
10370 		soc->sysfs_config = NULL;
10371 		return QDF_STATUS_E_FAILURE;
10372 	}
10373 
10374 	qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
10375 	qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
10376 	qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
10377 
10378 	return QDF_STATUS_SUCCESS;
10379 }
10380 
10381 static
10382 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10383 {
10384 	struct dp_soc *soc;
10385 	QDF_STATUS status;
10386 
10387 	if (!soc_hdl) {
10388 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10389 		return QDF_STATUS_E_INVAL;
10390 	}
10391 
10392 	soc = soc_hdl;
10393 	if (!soc->sysfs_config) {
10394 		dp_cdp_err("soc->sysfs_config is NULL");
10395 		return QDF_STATUS_E_FAILURE;
10396 	}
10397 
10398 	status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10399 	if (status != QDF_STATUS_SUCCESS)
10400 		dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
10401 
10402 	qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
10403 	qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
10404 	qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
10405 
10406 	qdf_mem_free(soc->sysfs_config);
10407 
10408 	return QDF_STATUS_SUCCESS;
10409 }
10410 
10411 #else /* WLAN_SYSFS_DP_STATS */
10412 
10413 static
10414 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10415 {
10416 	return QDF_STATUS_SUCCESS;
10417 }
10418 
10419 static
10420 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10421 {
10422 	return QDF_STATUS_SUCCESS;
10423 }
10424 #endif /* WLAN_SYSFS_DP_STATS */
10425 
10426 /**
10427  * dp_txrx_clear_dump_stats() - clear dumpStats
10428  * @soc_hdl: soc handle
10429  * @pdev_id: pdev ID
10430  * @value: stats option
10431  *
10432  * Return: 0 - Success, non-zero - failure
10433  */
10434 static
10435 QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10436 				    uint8_t value)
10437 {
10438 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10439 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10440 
10441 	if (!soc) {
10442 		dp_err("soc is NULL");
10443 		return QDF_STATUS_E_INVAL;
10444 	}
10445 
10446 	switch (value) {
10447 	case CDP_TXRX_TSO_STATS:
10448 		dp_txrx_clear_tso_stats(soc);
10449 		break;
10450 
10451 	case CDP_DP_TX_HW_LATENCY_STATS:
10452 		dp_pdev_clear_tx_delay_stats(soc);
10453 		break;
10454 
10455 	default:
10456 		status = QDF_STATUS_E_INVAL;
10457 		break;
10458 	}
10459 
10460 	return status;
10461 }
10462 
10463 static QDF_STATUS
10464 dp_txrx_get_interface_stats(struct cdp_soc_t *soc_hdl,
10465 			    uint8_t vdev_id,
10466 			    void *buf,
10467 			    bool is_aggregate)
10468 {
10469 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10470 
10471 	if (soc && soc->arch_ops.dp_get_interface_stats)
10472 		return soc->arch_ops.dp_get_interface_stats(soc_hdl,
10473 							    vdev_id,
10474 							    buf,
10475 							    is_aggregate);
10476 	return QDF_STATUS_E_FAILURE;
10477 }
10478 
10479 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
10480 /**
10481  * dp_update_flow_control_parameters() - API to store datapath
10482  *                            config parameters
10483  * @soc: soc handle
10484  * @params: ini parameter handle
10485  *
10486  * Return: void
10487  */
10488 static inline
10489 void dp_update_flow_control_parameters(struct dp_soc *soc,
10490 				struct cdp_config_params *params)
10491 {
10492 	soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
10493 					params->tx_flow_stop_queue_threshold;
10494 	soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
10495 					params->tx_flow_start_queue_offset;
10496 }
10497 #else
10498 static inline
10499 void dp_update_flow_control_parameters(struct dp_soc *soc,
10500 				struct cdp_config_params *params)
10501 {
10502 }
10503 #endif
10504 
10505 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
10506 /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
10507 #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
10508 
10509 /* Max packet limit for RX REAP Loop (dp_rx_process) */
10510 #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
10511 
10512 static
10513 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10514 					struct cdp_config_params *params)
10515 {
10516 	soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
10517 				params->tx_comp_loop_pkt_limit;
10518 
10519 	if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
10520 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
10521 	else
10522 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
10523 
10524 	soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
10525 				params->rx_reap_loop_pkt_limit;
10526 
10527 	if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
10528 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
10529 	else
10530 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
10531 
10532 	soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
10533 				params->rx_hp_oos_update_limit;
10534 
10535 	dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
10536 		soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
10537 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
10538 		soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
10539 		soc->wlan_cfg_ctx->rx_enable_eol_data_check,
10540 		soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
10541 }
10542 
10543 #else
10544 static inline
10545 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10546 					struct cdp_config_params *params)
10547 { }
10548 
10549 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
10550 
10551 /**
10552  * dp_update_config_parameters() - API to store datapath
10553  *                            config parameters
10554  * @psoc: soc handle
10555  * @params: ini parameter handle
10556  *
10557  * Return: status
10558  */
10559 static
10560 QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
10561 				struct cdp_config_params *params)
10562 {
10563 	struct dp_soc *soc = (struct dp_soc *)psoc;
10564 
10565 	if (!(soc)) {
10566 		dp_cdp_err("%pK: Invalid handle", soc);
10567 		return QDF_STATUS_E_INVAL;
10568 	}
10569 
10570 	soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
10571 	soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
10572 	soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
10573 	soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
10574 				params->p2p_tcp_udp_checksumoffload;
10575 	soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
10576 				params->nan_tcp_udp_checksumoffload;
10577 	soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
10578 				params->tcp_udp_checksumoffload;
10579 	soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
10580 	soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
10581 	soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
10582 
10583 	dp_update_rx_soft_irq_limit_params(soc, params);
10584 	dp_update_flow_control_parameters(soc, params);
10585 
10586 	return QDF_STATUS_SUCCESS;
10587 }
10588 
10589 static struct cdp_wds_ops dp_ops_wds = {
10590 	.vdev_set_wds = dp_vdev_set_wds,
10591 #ifdef WDS_VENDOR_EXTENSION
10592 	.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
10593 	.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
10594 #endif
10595 };
10596 
10597 /**
10598  * dp_txrx_data_tx_cb_set() - set the callback for non standard tx
10599  * @soc_hdl: datapath soc handle
10600  * @vdev_id: virtual interface id
10601  * @callback: callback function
10602  * @ctxt: callback context
10603  *
10604  */
10605 static void
10606 dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10607 		       ol_txrx_data_tx_cb callback, void *ctxt)
10608 {
10609 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10610 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10611 						     DP_MOD_ID_CDP);
10612 
10613 	if (!vdev)
10614 		return;
10615 
10616 	vdev->tx_non_std_data_callback.func = callback;
10617 	vdev->tx_non_std_data_callback.ctxt = ctxt;
10618 
10619 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10620 }
10621 
10622 /**
10623  * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
10624  * @soc: datapath soc handle
10625  * @pdev_id: id of datapath pdev handle
10626  *
10627  * Return: opaque pointer to dp txrx handle
10628  */
10629 static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
10630 {
10631 	struct dp_pdev *pdev =
10632 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10633 						   pdev_id);
10634 	if (qdf_unlikely(!pdev))
10635 		return NULL;
10636 
10637 	return pdev->dp_txrx_handle;
10638 }
10639 
10640 /**
10641  * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
10642  * @soc: datapath soc handle
10643  * @pdev_id: id of datapath pdev handle
10644  * @dp_txrx_hdl: opaque pointer for dp_txrx_handle
10645  *
10646  * Return: void
10647  */
10648 static void
10649 dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
10650 			   void *dp_txrx_hdl)
10651 {
10652 	struct dp_pdev *pdev =
10653 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10654 						   pdev_id);
10655 
10656 	if (!pdev)
10657 		return;
10658 
10659 	pdev->dp_txrx_handle = dp_txrx_hdl;
10660 }
10661 
10662 /**
10663  * dp_vdev_get_dp_ext_handle() - get dp handle from vdev
10664  * @soc_hdl: datapath soc handle
10665  * @vdev_id: vdev id
10666  *
10667  * Return: opaque pointer to dp txrx handle
10668  */
10669 static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
10670 				       uint8_t vdev_id)
10671 {
10672 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10673 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10674 						     DP_MOD_ID_CDP);
10675 	void *dp_ext_handle;
10676 
10677 	if (!vdev)
10678 		return NULL;
10679 	dp_ext_handle = vdev->vdev_dp_ext_handle;
10680 
10681 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10682 	return dp_ext_handle;
10683 }
10684 
10685 /**
10686  * dp_vdev_set_dp_ext_handle() - set dp handle in vdev
10687  * @soc_hdl: datapath soc handle
10688  * @vdev_id: vdev id
10689  * @size: size of advance dp handle
10690  *
10691  * Return: QDF_STATUS
10692  */
10693 static QDF_STATUS
10694 dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
10695 			  uint16_t size)
10696 {
10697 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10698 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10699 						     DP_MOD_ID_CDP);
10700 	void *dp_ext_handle;
10701 
10702 	if (!vdev)
10703 		return QDF_STATUS_E_FAILURE;
10704 
10705 	dp_ext_handle = qdf_mem_malloc(size);
10706 
10707 	if (!dp_ext_handle) {
10708 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10709 		return QDF_STATUS_E_FAILURE;
10710 	}
10711 
10712 	vdev->vdev_dp_ext_handle = dp_ext_handle;
10713 
10714 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10715 	return QDF_STATUS_SUCCESS;
10716 }
10717 
10718 /**
10719  * dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
10720  *			      connection for this vdev
10721  * @soc_hdl: CDP soc handle
10722  * @vdev_id: vdev ID
10723  * @action: Add/Delete action
10724  *
10725  * Return: QDF_STATUS.
10726  */
10727 static QDF_STATUS
10728 dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10729 		       enum vdev_ll_conn_actions action)
10730 {
10731 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10732 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10733 						     DP_MOD_ID_CDP);
10734 
10735 	if (!vdev) {
10736 		dp_err("LL connection action for invalid vdev %d", vdev_id);
10737 		return QDF_STATUS_E_FAILURE;
10738 	}
10739 
10740 	switch (action) {
10741 	case CDP_VDEV_LL_CONN_ADD:
10742 		vdev->num_latency_critical_conn++;
10743 		break;
10744 
10745 	case CDP_VDEV_LL_CONN_DEL:
10746 		vdev->num_latency_critical_conn--;
10747 		break;
10748 
10749 	default:
10750 		dp_err("LL connection action invalid %d", action);
10751 		break;
10752 	}
10753 
10754 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10755 	return QDF_STATUS_SUCCESS;
10756 }
10757 
10758 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
10759 /**
10760  * dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
10761  * @soc_hdl: CDP Soc handle
10762  * @value: Enable/Disable value
10763  *
10764  * Return: QDF_STATUS
10765  */
10766 static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
10767 					 uint8_t value)
10768 {
10769 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10770 
10771 	if (!soc->swlm.is_init) {
10772 		dp_err("SWLM is not initialized");
10773 		return QDF_STATUS_E_FAILURE;
10774 	}
10775 
10776 	soc->swlm.is_enabled = !!value;
10777 
10778 	return QDF_STATUS_SUCCESS;
10779 }
10780 
10781 /**
10782  * dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
10783  * @soc_hdl: CDP Soc handle
10784  *
10785  * Return: QDF_STATUS
10786  */
10787 static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
10788 {
10789 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10790 
10791 	return soc->swlm.is_enabled;
10792 }
10793 #endif
10794 
10795 /**
10796  * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
10797  * @soc_handle: datapath soc handle
10798  *
10799  * Return: opaque pointer to external dp (non-core DP)
10800  */
10801 static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
10802 {
10803 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10804 
10805 	return soc->external_txrx_handle;
10806 }
10807 
10808 /**
10809  * dp_soc_set_dp_txrx_handle() - set external dp handle in soc
10810  * @soc_handle: datapath soc handle
10811  * @txrx_handle: opaque pointer to external dp (non-core DP)
10812  *
10813  * Return: void
10814  */
10815 static void
10816 dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
10817 {
10818 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10819 
10820 	soc->external_txrx_handle = txrx_handle;
10821 }
10822 
10823 /**
10824  * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
10825  * @soc_hdl: datapath soc handle
10826  * @pdev_id: id of the datapath pdev handle
10827  * @lmac_id: lmac id
10828  *
10829  * Return: QDF_STATUS
10830  */
10831 static QDF_STATUS
10832 dp_soc_map_pdev_to_lmac
10833 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10834 	 uint32_t lmac_id)
10835 {
10836 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10837 
10838 	wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
10839 				pdev_id,
10840 				lmac_id);
10841 
10842 	/*Set host PDEV ID for lmac_id*/
10843 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10844 			      pdev_id,
10845 			      lmac_id);
10846 
10847 	return QDF_STATUS_SUCCESS;
10848 }
10849 
10850 /**
10851  * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
10852  * @soc_hdl: datapath soc handle
10853  * @pdev_id: id of the datapath pdev handle
10854  * @lmac_id: lmac id
10855  *
10856  * In the event of a dynamic mode change, update the pdev to lmac mapping
10857  *
10858  * Return: QDF_STATUS
10859  */
10860 static QDF_STATUS
10861 dp_soc_handle_pdev_mode_change
10862 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10863 	 uint32_t lmac_id)
10864 {
10865 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10866 	struct dp_vdev *vdev = NULL;
10867 	uint8_t hw_pdev_id, mac_id;
10868 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
10869 								  pdev_id);
10870 	int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
10871 
10872 	if (qdf_unlikely(!pdev))
10873 		return QDF_STATUS_E_FAILURE;
10874 
10875 	pdev->lmac_id = lmac_id;
10876 	pdev->target_pdev_id =
10877 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
10878 	dp_info("mode change %d %d", pdev->pdev_id, pdev->lmac_id);
10879 
10880 	/*Set host PDEV ID for lmac_id*/
10881 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10882 			      pdev->pdev_id,
10883 			      lmac_id);
10884 
10885 	hw_pdev_id =
10886 		dp_get_target_pdev_id_for_host_pdev_id(soc,
10887 						       pdev->pdev_id);
10888 
10889 	/*
10890 	 * When NSS offload is enabled, send pdev_id->lmac_id
10891 	 * and pdev_id to hw_pdev_id to NSS FW
10892 	 */
10893 	if (nss_config) {
10894 		mac_id = pdev->lmac_id;
10895 		if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
10896 			soc->cdp_soc.ol_ops->
10897 				pdev_update_lmac_n_target_pdev_id(
10898 				soc->ctrl_psoc,
10899 				&pdev_id, &mac_id, &hw_pdev_id);
10900 	}
10901 
10902 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
10903 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10904 		DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
10905 					       hw_pdev_id);
10906 		vdev->lmac_id = pdev->lmac_id;
10907 	}
10908 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
10909 
10910 	return QDF_STATUS_SUCCESS;
10911 }
10912 
10913 /**
10914  * dp_soc_set_pdev_status_down() - set pdev down/up status
10915  * @soc: datapath soc handle
10916  * @pdev_id: id of datapath pdev handle
10917  * @is_pdev_down: pdev down/up status
10918  *
10919  * Return: QDF_STATUS
10920  */
10921 static QDF_STATUS
10922 dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
10923 			    bool is_pdev_down)
10924 {
10925 	struct dp_pdev *pdev =
10926 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10927 						   pdev_id);
10928 	if (!pdev)
10929 		return QDF_STATUS_E_FAILURE;
10930 
10931 	pdev->is_pdev_down = is_pdev_down;
10932 	return QDF_STATUS_SUCCESS;
10933 }
10934 
10935 /**
10936  * dp_get_cfg_capabilities() - get dp capabilities
10937  * @soc_handle: datapath soc handle
10938  * @dp_caps: enum for dp capabilities
10939  *
10940  * Return: bool to determine if dp caps is enabled
10941  */
10942 static bool
10943 dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
10944 			enum cdp_capabilities dp_caps)
10945 {
10946 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10947 
10948 	return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
10949 }
10950 
10951 #ifdef FEATURE_AST
10952 static QDF_STATUS
10953 dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10954 		       uint8_t *peer_mac)
10955 {
10956 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10957 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10958 	struct dp_peer *peer =
10959 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
10960 					       DP_MOD_ID_CDP);
10961 
10962 	/* Peer can be null for monitor vap mac address */
10963 	if (!peer) {
10964 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
10965 			  "%s: Invalid peer\n", __func__);
10966 		return QDF_STATUS_E_FAILURE;
10967 	}
10968 
10969 	dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
10970 
10971 	qdf_spin_lock_bh(&soc->ast_lock);
10972 	dp_peer_send_wds_disconnect(soc, peer);
10973 	dp_peer_delete_ast_entries(soc, peer);
10974 	qdf_spin_unlock_bh(&soc->ast_lock);
10975 
10976 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
10977 	return status;
10978 }
10979 #endif
10980 
10981 #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
10982 /**
10983  * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
10984  * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
10985  * @soc: cdp_soc handle
10986  * @pdev_id: id of cdp_pdev handle
10987  * @protocol_type: protocol type for which stats should be displayed
10988  *
10989  * Return: none
10990  */
10991 static inline void
10992 dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t  *soc, uint8_t pdev_id,
10993 				   uint16_t protocol_type)
10994 {
10995 }
10996 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
10997 
10998 #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
10999 /**
11000  * dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
11001  * applied to the desired protocol type packets
11002  * @soc: soc handle
11003  * @pdev_id: id of cdp_pdev handle
11004  * @enable_rx_protocol_tag: bitmask that indicates what protocol types
11005  * are enabled for tagging. zero indicates disable feature, non-zero indicates
11006  * enable feature
11007  * @protocol_type: new protocol type for which the tag is being added
11008  * @tag: user configured tag for the new protocol
11009  *
11010  * Return: Success
11011  */
11012 static inline QDF_STATUS
11013 dp_update_pdev_rx_protocol_tag(struct cdp_soc_t  *soc, uint8_t pdev_id,
11014 			       uint32_t enable_rx_protocol_tag,
11015 			       uint16_t protocol_type,
11016 			       uint16_t tag)
11017 {
11018 	return QDF_STATUS_SUCCESS;
11019 }
11020 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
11021 
11022 #ifndef WLAN_SUPPORT_RX_FLOW_TAG
11023 /**
11024  * dp_set_rx_flow_tag() - add/delete a flow
11025  * @cdp_soc: CDP soc handle
11026  * @pdev_id: id of cdp_pdev handle
11027  * @flow_info: flow tuple that is to be added to/deleted from flow search table
11028  *
11029  * Return: Success
11030  */
11031 static inline QDF_STATUS
11032 dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
11033 		   struct cdp_rx_flow_info *flow_info)
11034 {
11035 	return QDF_STATUS_SUCCESS;
11036 }
11037 /**
11038  * dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
11039  * given flow 5-tuple
11040  * @cdp_soc: soc handle
11041  * @pdev_id: id of cdp_pdev handle
11042  * @flow_info: flow 5-tuple for which stats should be displayed
11043  *
11044  * Return: Success
11045  */
11046 static inline QDF_STATUS
11047 dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
11048 			  struct cdp_rx_flow_info *flow_info)
11049 {
11050 	return QDF_STATUS_SUCCESS;
11051 }
11052 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
11053 
11054 static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t  *soc_hdl,
11055 					   uint32_t max_peers,
11056 					   uint32_t max_ast_index,
11057 					   uint8_t peer_map_unmap_versions)
11058 {
11059 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11060 	QDF_STATUS status;
11061 
11062 	soc->max_peers = max_peers;
11063 
11064 	wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
11065 
11066 	status = soc->arch_ops.txrx_peer_map_attach(soc);
11067 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11068 		dp_err("failure in allocating peer tables");
11069 		return QDF_STATUS_E_FAILURE;
11070 	}
11071 
11072 	dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u",
11073 		max_peers, soc->max_peer_id, max_ast_index);
11074 
11075 	status = dp_peer_find_attach(soc);
11076 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11077 		dp_err("Peer find attach failure");
11078 		goto fail;
11079 	}
11080 
11081 	soc->peer_map_unmap_versions = peer_map_unmap_versions;
11082 	soc->peer_map_attach_success = TRUE;
11083 
11084 	return QDF_STATUS_SUCCESS;
11085 fail:
11086 	soc->arch_ops.txrx_peer_map_detach(soc);
11087 
11088 	return status;
11089 }
11090 
11091 static QDF_STATUS dp_soc_set_param(struct cdp_soc_t  *soc_hdl,
11092 				   enum cdp_soc_param_t param,
11093 				   uint32_t value)
11094 {
11095 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11096 
11097 	switch (param) {
11098 	case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
11099 		soc->num_msdu_exception_desc = value;
11100 		dp_info("num_msdu exception_desc %u",
11101 			value);
11102 		break;
11103 	case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
11104 		if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
11105 			soc->fst_in_cmem = !!value;
11106 		dp_info("FW supports CMEM FSE %u", value);
11107 		break;
11108 	case DP_SOC_PARAM_MAX_AST_AGEOUT:
11109 		soc->max_ast_ageout_count = value;
11110 		dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
11111 		break;
11112 	case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
11113 		soc->eapol_over_control_port = value;
11114 		dp_info("Eapol over control_port:%d",
11115 			soc->eapol_over_control_port);
11116 		break;
11117 	case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
11118 		soc->multi_peer_grp_cmd_supported = value;
11119 		dp_info("Multi Peer group command support:%d",
11120 			soc->multi_peer_grp_cmd_supported);
11121 		break;
11122 	case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
11123 		soc->features.rssi_dbm_conv_support = value;
11124 		dp_info("Rssi dbm conversion support:%u",
11125 			soc->features.rssi_dbm_conv_support);
11126 		break;
11127 	case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
11128 		soc->features.umac_hw_reset_support = value;
11129 		dp_info("UMAC HW reset support :%u",
11130 			soc->features.umac_hw_reset_support);
11131 		break;
11132 	default:
11133 		dp_info("not handled param %d ", param);
11134 		break;
11135 	}
11136 
11137 	return QDF_STATUS_SUCCESS;
11138 }
11139 
11140 static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
11141 				      void *stats_ctx)
11142 {
11143 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11144 
11145 	soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
11146 }
11147 
11148 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11149 /**
11150  * dp_peer_flush_rate_stats_req() - Flush peer rate stats
11151  * @soc: Datapath SOC handle
11152  * @peer: Datapath peer
11153  * @arg: argument to iter function
11154  *
11155  * Return: QDF_STATUS
11156  */
11157 static void
11158 dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
11159 			     void *arg)
11160 {
11161 	/* Skip self peer */
11162 	if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
11163 			 QDF_MAC_ADDR_SIZE))
11164 		return;
11165 
11166 	dp_wdi_event_handler(
11167 		WDI_EVENT_FLUSH_RATE_STATS_REQ,
11168 		soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
11169 		peer->peer_id,
11170 		WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11171 }
11172 
11173 /**
11174  * dp_flush_rate_stats_req() - Flush peer rate stats in pdev
11175  * @soc_hdl: Datapath SOC handle
11176  * @pdev_id: pdev_id
11177  *
11178  * Return: QDF_STATUS
11179  */
11180 static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11181 					  uint8_t pdev_id)
11182 {
11183 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11184 	struct dp_pdev *pdev =
11185 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11186 						   pdev_id);
11187 	if (!pdev)
11188 		return QDF_STATUS_E_FAILURE;
11189 
11190 	dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
11191 			     DP_MOD_ID_CDP);
11192 
11193 	return QDF_STATUS_SUCCESS;
11194 }
11195 #else
11196 static inline QDF_STATUS
11197 dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11198 			uint8_t pdev_id)
11199 {
11200 	return QDF_STATUS_SUCCESS;
11201 }
11202 #endif
11203 
11204 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11205 #ifdef WLAN_FEATURE_11BE_MLO
11206 /**
11207  * dp_get_peer_extd_rate_link_stats() - function to get peer
11208  *				extended rate and link stats
11209  * @soc_hdl: dp soc handler
11210  * @mac_addr: mac address of peer
11211  *
11212  * Return: QDF_STATUS
11213  */
11214 static QDF_STATUS
11215 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11216 {
11217 	uint8_t i;
11218 	struct dp_peer *link_peer;
11219 	struct dp_soc *link_peer_soc;
11220 	struct dp_mld_link_peers link_peers_info;
11221 	struct dp_peer *peer = NULL;
11222 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11223 	struct cdp_peer_info peer_info = { 0 };
11224 
11225 	if (!mac_addr) {
11226 		dp_err("NULL peer mac addr");
11227 		return QDF_STATUS_E_FAILURE;
11228 	}
11229 
11230 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
11231 				 CDP_WILD_PEER_TYPE);
11232 
11233 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
11234 	if (!peer) {
11235 		dp_err("Peer is NULL");
11236 		return QDF_STATUS_E_FAILURE;
11237 	}
11238 
11239 	if (IS_MLO_DP_MLD_PEER(peer)) {
11240 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
11241 						    &link_peers_info,
11242 						    DP_MOD_ID_CDP);
11243 		for (i = 0; i < link_peers_info.num_links; i++) {
11244 			link_peer = link_peers_info.link_peers[i];
11245 			link_peer_soc = link_peer->vdev->pdev->soc;
11246 			dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
11247 					     link_peer_soc,
11248 					     dp_monitor_peer_get_peerstats_ctx
11249 					     (link_peer_soc, link_peer),
11250 					     link_peer->peer_id,
11251 					     WDI_NO_VAL,
11252 					     link_peer->vdev->pdev->pdev_id);
11253 		}
11254 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
11255 	} else {
11256 		dp_wdi_event_handler(
11257 				WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11258 				dp_monitor_peer_get_peerstats_ctx(soc, peer),
11259 				peer->peer_id,
11260 				WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11261 	}
11262 
11263 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11264 	return QDF_STATUS_SUCCESS;
11265 }
11266 #else
11267 static QDF_STATUS
11268 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11269 {
11270 	struct dp_peer *peer = NULL;
11271 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11272 
11273 	if (!mac_addr) {
11274 		dp_err("NULL peer mac addr");
11275 		return QDF_STATUS_E_FAILURE;
11276 	}
11277 
11278 	peer = dp_peer_find_hash_find(soc, mac_addr, 0,
11279 				      DP_VDEV_ALL, DP_MOD_ID_CDP);
11280 	if (!peer) {
11281 		dp_err("Peer is NULL");
11282 		return QDF_STATUS_E_FAILURE;
11283 	}
11284 
11285 	dp_wdi_event_handler(
11286 			WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11287 			dp_monitor_peer_get_peerstats_ctx(soc, peer),
11288 			peer->peer_id,
11289 			WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11290 
11291 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11292 	return QDF_STATUS_SUCCESS;
11293 }
11294 #endif
11295 #else
11296 static inline QDF_STATUS
11297 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11298 {
11299 	return QDF_STATUS_SUCCESS;
11300 }
11301 #endif
11302 
11303 static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
11304 				       uint8_t vdev_id,
11305 				       uint8_t *mac_addr)
11306 {
11307 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11308 	struct dp_peer *peer;
11309 	void *peerstats_ctx = NULL;
11310 
11311 	if (mac_addr) {
11312 		peer = dp_peer_find_hash_find(soc, mac_addr,
11313 					      0, vdev_id,
11314 					      DP_MOD_ID_CDP);
11315 		if (!peer)
11316 			return NULL;
11317 
11318 		if (!IS_MLO_DP_MLD_PEER(peer))
11319 			peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
11320 									  peer);
11321 
11322 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11323 	}
11324 
11325 	return peerstats_ctx;
11326 }
11327 
11328 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11329 static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11330 					   uint8_t pdev_id,
11331 					   void *buf)
11332 {
11333 	 dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
11334 			      (struct dp_soc *)soc, buf, HTT_INVALID_PEER,
11335 			      WDI_NO_VAL, pdev_id);
11336 	return QDF_STATUS_SUCCESS;
11337 }
11338 #else
11339 static inline QDF_STATUS
11340 dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11341 			 uint8_t pdev_id,
11342 			 void *buf)
11343 {
11344 	return QDF_STATUS_SUCCESS;
11345 }
11346 #endif
11347 
11348 static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
11349 {
11350 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11351 
11352 	return soc->rate_stats_ctx;
11353 }
11354 
11355 /**
11356  * dp_get_cfg() - get dp cfg
11357  * @soc: cdp soc handle
11358  * @cfg: cfg enum
11359  *
11360  * Return: cfg value
11361  */
11362 static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
11363 {
11364 	struct dp_soc *dpsoc = (struct dp_soc *)soc;
11365 	uint32_t value = 0;
11366 
11367 	switch (cfg) {
11368 	case cfg_dp_enable_data_stall:
11369 		value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
11370 		break;
11371 	case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
11372 		value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
11373 		break;
11374 	case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
11375 		value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
11376 		break;
11377 	case cfg_dp_enable_ip_tcp_udp_checksum_offload:
11378 		value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
11379 		break;
11380 	case cfg_dp_disable_legacy_mode_csum_offload:
11381 		value = dpsoc->wlan_cfg_ctx->
11382 					legacy_mode_checksumoffload_disable;
11383 		break;
11384 	case cfg_dp_tso_enable:
11385 		value = dpsoc->wlan_cfg_ctx->tso_enabled;
11386 		break;
11387 	case cfg_dp_lro_enable:
11388 		value = dpsoc->wlan_cfg_ctx->lro_enabled;
11389 		break;
11390 	case cfg_dp_gro_enable:
11391 		value = dpsoc->wlan_cfg_ctx->gro_enabled;
11392 		break;
11393 	case cfg_dp_tc_based_dyn_gro_enable:
11394 		value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
11395 		break;
11396 	case cfg_dp_tc_ingress_prio:
11397 		value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
11398 		break;
11399 	case cfg_dp_sg_enable:
11400 		value = dpsoc->wlan_cfg_ctx->sg_enabled;
11401 		break;
11402 	case cfg_dp_tx_flow_start_queue_offset:
11403 		value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
11404 		break;
11405 	case cfg_dp_tx_flow_stop_queue_threshold:
11406 		value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
11407 		break;
11408 	case cfg_dp_disable_intra_bss_fwd:
11409 		value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
11410 		break;
11411 	case cfg_dp_pktlog_buffer_size:
11412 		value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
11413 		break;
11414 	case cfg_dp_wow_check_rx_pending:
11415 		value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
11416 		break;
11417 	case cfg_dp_local_pkt_capture:
11418 		value = wlan_cfg_get_local_pkt_capture(dpsoc->wlan_cfg_ctx);
11419 		break;
11420 	default:
11421 		value =  0;
11422 	}
11423 
11424 	return value;
11425 }
11426 
11427 #ifdef PEER_FLOW_CONTROL
11428 /**
11429  * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
11430  * @soc_handle: datapath soc handle
11431  * @pdev_id: id of datapath pdev handle
11432  * @param: ol ath params
11433  * @value: value of the flag
11434  * @buff: Buffer to be passed
11435  *
11436  * Implemented this function same as legacy function. In legacy code, single
11437  * function is used to display stats and update pdev params.
11438  *
11439  * Return: 0 for success. nonzero for failure.
11440  */
11441 static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
11442 					       uint8_t pdev_id,
11443 					       enum _dp_param_t param,
11444 					       uint32_t value, void *buff)
11445 {
11446 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11447 	struct dp_pdev *pdev =
11448 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11449 						   pdev_id);
11450 
11451 	if (qdf_unlikely(!pdev))
11452 		return 1;
11453 
11454 	soc = pdev->soc;
11455 	if (!soc)
11456 		return 1;
11457 
11458 	switch (param) {
11459 #ifdef QCA_ENH_V3_STATS_SUPPORT
11460 	case DP_PARAM_VIDEO_DELAY_STATS_FC:
11461 		if (value)
11462 			pdev->delay_stats_flag = true;
11463 		else
11464 			pdev->delay_stats_flag = false;
11465 		break;
11466 	case DP_PARAM_VIDEO_STATS_FC:
11467 		qdf_print("------- TID Stats ------\n");
11468 		dp_pdev_print_tid_stats(pdev);
11469 		qdf_print("------ Delay Stats ------\n");
11470 		dp_pdev_print_delay_stats(pdev);
11471 		qdf_print("------ Rx Error Stats ------\n");
11472 		dp_pdev_print_rx_error_stats(pdev);
11473 		break;
11474 #endif
11475 	case DP_PARAM_TOTAL_Q_SIZE:
11476 		{
11477 			uint32_t tx_min, tx_max;
11478 
11479 			tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
11480 			tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
11481 
11482 			if (!buff) {
11483 				if ((value >= tx_min) && (value <= tx_max)) {
11484 					pdev->num_tx_allowed = value;
11485 				} else {
11486 					dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
11487 						   soc, tx_min, tx_max);
11488 					break;
11489 				}
11490 			} else {
11491 				*(int *)buff = pdev->num_tx_allowed;
11492 			}
11493 		}
11494 		break;
11495 	default:
11496 		dp_tx_info("%pK: not handled param %d ", soc, param);
11497 		break;
11498 	}
11499 
11500 	return 0;
11501 }
11502 #endif
11503 
11504 #ifdef DP_UMAC_HW_RESET_SUPPORT
11505 /**
11506  * dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
11507  * @soc: dp soc handle
11508  *
11509  * Return: void
11510  */
11511 static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
11512 {
11513 	struct dp_intr_bkp *intr_bkp;
11514 	struct dp_intr *intr_ctx;
11515 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11516 	int i;
11517 
11518 	intr_bkp =
11519 	(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
11520 			num_ctxt);
11521 
11522 	qdf_assert_always(intr_bkp);
11523 
11524 	soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
11525 	for (i = 0; i < num_ctxt; i++) {
11526 		intr_ctx = &soc->intr_ctx[i];
11527 
11528 		intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
11529 		intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
11530 		intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
11531 		intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
11532 		intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
11533 		intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
11534 		intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
11535 		intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
11536 		intr_bkp->host2rxdma_mon_ring_mask =
11537 					intr_ctx->host2rxdma_mon_ring_mask;
11538 		intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
11539 
11540 		intr_ctx->tx_ring_mask = 0;
11541 		intr_ctx->rx_ring_mask = 0;
11542 		intr_ctx->rx_mon_ring_mask = 0;
11543 		intr_ctx->rx_err_ring_mask = 0;
11544 		intr_ctx->rx_wbm_rel_ring_mask = 0;
11545 		intr_ctx->reo_status_ring_mask = 0;
11546 		intr_ctx->rxdma2host_ring_mask = 0;
11547 		intr_ctx->host2rxdma_ring_mask = 0;
11548 		intr_ctx->host2rxdma_mon_ring_mask = 0;
11549 		intr_ctx->tx_mon_ring_mask = 0;
11550 
11551 		intr_bkp++;
11552 	}
11553 }
11554 
11555 /**
11556  * dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
11557  * @soc: dp soc handle
11558  *
11559  * Return: void
11560  */
11561 static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
11562 {
11563 	struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
11564 	struct dp_intr_bkp *intr_bkp_base = intr_bkp;
11565 	struct dp_intr *intr_ctx;
11566 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11567 	int i;
11568 
11569 	if (!intr_bkp)
11570 		return;
11571 
11572 	for (i = 0; i < num_ctxt; i++) {
11573 		intr_ctx = &soc->intr_ctx[i];
11574 
11575 		intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
11576 		intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
11577 		intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
11578 		intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
11579 		intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
11580 		intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
11581 		intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
11582 		intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
11583 		intr_ctx->host2rxdma_mon_ring_mask =
11584 			intr_bkp->host2rxdma_mon_ring_mask;
11585 		intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
11586 
11587 		intr_bkp++;
11588 	}
11589 
11590 	qdf_mem_free(intr_bkp_base);
11591 	soc->umac_reset_ctx.intr_ctx_bkp = NULL;
11592 }
11593 
11594 /**
11595  * dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
11596  * @soc: dp soc handle
11597  *
11598  * Return: void
11599  */
11600 static void dp_resume_tx_hardstart(struct dp_soc *soc)
11601 {
11602 	struct dp_vdev *vdev;
11603 	struct ol_txrx_hardtart_ctxt ctxt = {0};
11604 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11605 	int i;
11606 
11607 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11608 		struct dp_pdev *pdev = soc->pdev_list[i];
11609 
11610 		if (!pdev)
11611 			continue;
11612 
11613 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11614 			uint8_t vdev_id = vdev->vdev_id;
11615 
11616 			dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
11617 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11618 								    vdev_id,
11619 								    &ctxt);
11620 		}
11621 	}
11622 }
11623 
11624 /**
11625  * dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
11626  * @soc: dp soc handle
11627  *
11628  * Return: void
11629  */
11630 static void dp_pause_tx_hardstart(struct dp_soc *soc)
11631 {
11632 	struct dp_vdev *vdev;
11633 	struct ol_txrx_hardtart_ctxt ctxt;
11634 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11635 	int i;
11636 
11637 	ctxt.tx = &dp_tx_drop;
11638 	ctxt.tx_fast = &dp_tx_drop;
11639 	ctxt.tx_exception = &dp_tx_exc_drop;
11640 
11641 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11642 		struct dp_pdev *pdev = soc->pdev_list[i];
11643 
11644 		if (!pdev)
11645 			continue;
11646 
11647 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11648 			uint8_t vdev_id = vdev->vdev_id;
11649 
11650 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11651 								    vdev_id,
11652 								    &ctxt);
11653 		}
11654 	}
11655 }
11656 
11657 /**
11658  * dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
11659  * @soc: dp soc handle
11660  *
11661  * Return: void
11662  */
11663 static inline
11664 void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11665 {
11666 	soc->notify_fw_callback = NULL;
11667 }
11668 
11669 /**
11670  * dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
11671  * @soc: dp soc handle
11672  *
11673  * Return: void
11674  */
11675 static inline
11676 void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
11677 {
11678 	/* Some Cpu(s) is processing the umac rings*/
11679 	if (soc->service_rings_running)
11680 		return;
11681 
11682 	/* Unregister the callback */
11683 	dp_unregister_notify_umac_pre_reset_fw_callback(soc);
11684 
11685 	/* Check if notify was already sent by any other thread */
11686 	if (qdf_atomic_test_and_set_bit(DP_UMAC_RESET_NOTIFY_DONE,
11687 					&soc->service_rings_running))
11688 		return;
11689 
11690 	/* Notify the firmware that Umac pre reset is complete */
11691 	dp_umac_reset_notify_action_completion(soc,
11692 					       UMAC_RESET_ACTION_DO_PRE_RESET);
11693 }
11694 
11695 /**
11696  * dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
11697  * @soc: dp soc handle
11698  *
11699  * Return: void
11700  */
11701 static inline
11702 void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11703 {
11704 	soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
11705 }
11706 
11707 #ifdef DP_UMAC_HW_HARD_RESET
11708 /**
11709  * dp_set_umac_regs() - Reinitialize host umac registers
11710  * @soc: dp soc handle
11711  *
11712  * Return: void
11713  */
11714 static void dp_set_umac_regs(struct dp_soc *soc)
11715 {
11716 	int i;
11717 	struct hal_reo_params reo_params;
11718 
11719 	qdf_mem_zero(&reo_params, sizeof(reo_params));
11720 
11721 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
11722 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
11723 						   &reo_params.remap1,
11724 						   &reo_params.remap2))
11725 			reo_params.rx_hash_enabled = true;
11726 		else
11727 			reo_params.rx_hash_enabled = false;
11728 	}
11729 
11730 	reo_params.reo_qref = &soc->reo_qref;
11731 	hal_reo_setup(soc->hal_soc, &reo_params, 0);
11732 
11733 	soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
11734 
11735 	for (i = 0; i < PCP_TID_MAP_MAX; i++)
11736 		hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
11737 
11738 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11739 		struct dp_vdev *vdev = NULL;
11740 		struct dp_pdev *pdev = soc->pdev_list[i];
11741 
11742 		if (!pdev)
11743 			continue;
11744 
11745 		for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
11746 			hal_tx_set_dscp_tid_map(soc->hal_soc,
11747 						pdev->dscp_tid_map[i], i);
11748 
11749 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11750 			soc->arch_ops.dp_bank_reconfig(soc, vdev);
11751 			soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
11752 								      vdev);
11753 		}
11754 	}
11755 }
11756 #else
11757 static void dp_set_umac_regs(struct dp_soc *soc)
11758 {
11759 }
11760 #endif
11761 
11762 /**
11763  * dp_reinit_rings() - Reinitialize host managed rings
11764  * @soc: dp soc handle
11765  *
11766  * Return: QDF_STATUS
11767  */
11768 static void dp_reinit_rings(struct dp_soc *soc)
11769 {
11770 	unsigned long end;
11771 
11772 	dp_soc_srng_deinit(soc);
11773 	dp_hw_link_desc_ring_deinit(soc);
11774 
11775 	/* Busy wait for 2 ms to make sure the rings are in idle state
11776 	 * before we enable them again
11777 	 */
11778 	end = jiffies + msecs_to_jiffies(2);
11779 	while (time_before(jiffies, end))
11780 		;
11781 
11782 	dp_hw_link_desc_ring_init(soc);
11783 	dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
11784 	dp_soc_srng_init(soc);
11785 }
11786 
11787 /**
11788  * dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
11789  * @soc: dp soc handle
11790  *
11791  * Return: QDF_STATUS
11792  */
11793 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
11794 {
11795 	enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
11796 
11797 	return dp_umac_reset_notify_action_completion(soc, action);
11798 }
11799 
11800 #ifdef WLAN_SUPPORT_PPEDS
11801 /**
11802  * dp_umac_reset_service_handle_n_notify_done()
11803  *	Handle Umac pre reset for direct switch
11804  * @soc: dp soc handle
11805  *
11806  * Return: QDF_STATUS
11807  */
11808 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11809 {
11810 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11811 	    !soc->arch_ops.txrx_soc_ppeds_service_status_update ||
11812 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
11813 		goto non_ppeds;
11814 
11815 	/*
11816 	 * Check if ppeds is enabled on SoC.
11817 	 */
11818 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11819 		goto non_ppeds;
11820 
11821 	/*
11822 	 * Start the UMAC pre reset done service.
11823 	 */
11824 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
11825 
11826 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11827 
11828 	soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
11829 
11830 	dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
11831 
11832 	/*
11833 	 * UMAC pre reset service complete
11834 	 */
11835 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
11836 
11837 	soc->umac_reset_ctx.nbuf_list = NULL;
11838 	return QDF_STATUS_SUCCESS;
11839 
11840 non_ppeds:
11841 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11842 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11843 	soc->umac_reset_ctx.nbuf_list = NULL;
11844 	return QDF_STATUS_SUCCESS;
11845 }
11846 
11847 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11848 							 qdf_nbuf_t *nbuf_list)
11849 {
11850 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11851 	    !soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
11852 		return;
11853 
11854 	/*
11855 	 * Deinit of PPEDS Tx desc rings.
11856 	 */
11857 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11858 		soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
11859 }
11860 
11861 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11862 {
11863 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11864 	    !soc->arch_ops.txrx_soc_ppeds_start ||
11865 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_start)
11866 		return;
11867 
11868 	/*
11869 	 * Start PPEDS node and enable interrupt.
11870 	 */
11871 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
11872 		soc->arch_ops.txrx_soc_ppeds_start(soc);
11873 		soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
11874 	}
11875 }
11876 #else
11877 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11878 {
11879 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11880 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11881 	soc->umac_reset_ctx.nbuf_list = NULL;
11882 	return QDF_STATUS_SUCCESS;
11883 }
11884 
11885 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11886 							 qdf_nbuf_t *nbuf_list)
11887 {
11888 }
11889 
11890 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11891 {
11892 }
11893 #endif
11894 
11895 /**
11896  * dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
11897  * @soc: dp soc handle
11898  *
11899  * Return: QDF_STATUS
11900  */
11901 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
11902 {
11903 	dp_reset_interrupt_ring_masks(soc);
11904 
11905 	dp_pause_tx_hardstart(soc);
11906 	dp_pause_reo_send_cmd(soc);
11907 	dp_umac_reset_service_handle_n_notify_done(soc);
11908 	return QDF_STATUS_SUCCESS;
11909 }
11910 
11911 /**
11912  * dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
11913  * @soc: dp soc handle
11914  *
11915  * Return: QDF_STATUS
11916  */
11917 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
11918 {
11919 	if (!soc->umac_reset_ctx.skel_enable) {
11920 		qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
11921 
11922 		dp_set_umac_regs(soc);
11923 
11924 		dp_reinit_rings(soc);
11925 
11926 		dp_rx_desc_reuse(soc, nbuf_list);
11927 
11928 		dp_cleanup_reo_cmd_module(soc);
11929 
11930 		dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
11931 
11932 		dp_tx_desc_pool_cleanup(soc, nbuf_list);
11933 
11934 		dp_reset_tid_q_setup(soc);
11935 	}
11936 
11937 	return dp_umac_reset_notify_action_completion(soc,
11938 					UMAC_RESET_ACTION_DO_POST_RESET_START);
11939 }
11940 
11941 /**
11942  * dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
11943  *						interrupt from FW
11944  * @soc: dp soc handle
11945  *
11946  * Return: QDF_STATUS
11947  */
11948 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
11949 {
11950 	QDF_STATUS status;
11951 	qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
11952 	uint8_t mac_id;
11953 
11954 	soc->umac_reset_ctx.nbuf_list = NULL;
11955 
11956 	soc->service_rings_running = 0;
11957 
11958 	dp_resume_reo_send_cmd(soc);
11959 
11960 	dp_umac_reset_ppeds_start(soc);
11961 
11962 	dp_restore_interrupt_ring_masks(soc);
11963 
11964 	dp_resume_tx_hardstart(soc);
11965 
11966 	status = dp_umac_reset_notify_action_completion(soc,
11967 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
11968 
11969 	while (nbuf_list) {
11970 		qdf_nbuf_t nbuf = nbuf_list->next;
11971 
11972 		qdf_nbuf_free(nbuf_list);
11973 		nbuf_list = nbuf;
11974 	}
11975 
11976 	/*
11977 	 * at pre-reset if in_use descriptors are not sufficient we replenish
11978 	 * only 1/3 of the ring. Try to replenish full ring here.
11979 	 */
11980 	for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
11981 		struct dp_srng *dp_rxdma_srng =
11982 					&soc->rx_refill_buf_ring[mac_id];
11983 		struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
11984 
11985 		dp_rx_buffers_lt_replenish_simple(soc, mac_id, dp_rxdma_srng,
11986 						  rx_desc_pool, true);
11987 	}
11988 
11989 	dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
11990 			   "trigger done : %u us prereset : %u us\n"
11991 			   "postreset : %u us \n postreset complete: %u us \n",
11992 			   soc,
11993 			   soc->umac_reset_ctx.ts.trigger_done -
11994 			   soc->umac_reset_ctx.ts.trigger_start,
11995 			   soc->umac_reset_ctx.ts.pre_reset_done -
11996 			   soc->umac_reset_ctx.ts.pre_reset_start,
11997 			   soc->umac_reset_ctx.ts.post_reset_done -
11998 			   soc->umac_reset_ctx.ts.post_reset_start,
11999 			   soc->umac_reset_ctx.ts.post_reset_complete_done -
12000 			   soc->umac_reset_ctx.ts.post_reset_complete_start);
12001 
12002 	return status;
12003 }
12004 #endif
12005 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
12006 static void
12007 dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
12008 {
12009 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
12010 
12011 	soc->wlan_cfg_ctx->pkt_capture_mode = val;
12012 }
12013 #endif
12014 
12015 #ifdef HW_TX_DELAY_STATS_ENABLE
12016 /**
12017  * dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
12018  * @soc_hdl: DP soc handle
12019  * @vdev_id: vdev id
12020  * @value: value
12021  *
12022  * Return: None
12023  */
12024 static void
12025 dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
12026 				      uint8_t vdev_id,
12027 				      uint8_t value)
12028 {
12029 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12030 	struct dp_vdev *vdev = NULL;
12031 
12032 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12033 	if (!vdev)
12034 		return;
12035 
12036 	vdev->hw_tx_delay_stats_enabled = value;
12037 
12038 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12039 }
12040 
12041 /**
12042  * dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
12043  * @soc_hdl: DP soc handle
12044  * @vdev_id: vdev id
12045  *
12046  * Return: 1 if enabled, 0 if disabled
12047  */
12048 static uint8_t
12049 dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
12050 				     uint8_t vdev_id)
12051 {
12052 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12053 	struct dp_vdev *vdev;
12054 	uint8_t ret_val = 0;
12055 
12056 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12057 	if (!vdev)
12058 		return ret_val;
12059 
12060 	ret_val = vdev->hw_tx_delay_stats_enabled;
12061 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12062 
12063 	return ret_val;
12064 }
12065 #endif
12066 
12067 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12068 static void
12069 dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
12070 			     uint8_t vdev_id,
12071 			     bool mlo_peers_only)
12072 {
12073 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
12074 	struct dp_vdev *vdev;
12075 
12076 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12077 
12078 	if (!vdev)
12079 		return;
12080 
12081 	dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
12082 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12083 }
12084 #endif
12085 #ifdef QCA_GET_TSF_VIA_REG
12086 /**
12087  * dp_get_tsf_time() - get tsf time
12088  * @soc_hdl: Datapath soc handle
12089  * @tsf_id: TSF identifier
12090  * @mac_id: mac_id
12091  * @tsf: pointer to update tsf value
12092  * @tsf_sync_soc_time: pointer to update tsf sync time
12093  *
12094  * Return: None.
12095  */
12096 static inline void
12097 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12098 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12099 {
12100 	hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
12101 			 tsf, tsf_sync_soc_time);
12102 }
12103 #else
12104 static inline void
12105 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12106 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12107 {
12108 }
12109 #endif
12110 
12111 /**
12112  * dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
12113  * @soc_hdl: Datapath soc handle
12114  * @mac_id: mac_id
12115  * @value: pointer to update tsf2 offset value
12116  *
12117  * Return: None.
12118  */
12119 static inline void
12120 dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
12121 			uint64_t *value)
12122 {
12123 	hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
12124 }
12125 
12126 /**
12127  * dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
12128  * @soc_hdl: Datapath soc handle
12129  * @value: pointer to update tqm offset value
12130  *
12131  * Return: None.
12132  */
12133 static inline void
12134 dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
12135 {
12136 	hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
12137 }
12138 
12139 /**
12140  * dp_set_tx_pause() - Pause or resume tx path
12141  * @soc_hdl: Datapath soc handle
12142  * @flag: set or clear is_tx_pause
12143  *
12144  * Return: None.
12145  */
12146 static inline
12147 void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
12148 {
12149 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12150 
12151 	soc->is_tx_pause = flag;
12152 }
12153 
12154 static inline uint64_t dp_rx_fisa_get_cmem_base(struct cdp_soc_t *soc_hdl,
12155 						uint64_t size)
12156 {
12157 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12158 
12159 	if (soc->arch_ops.dp_get_fst_cmem_base)
12160 		return soc->arch_ops.dp_get_fst_cmem_base(soc, size);
12161 
12162 	return 0;
12163 }
12164 
12165 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
12166 /**
12167  * dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
12168  *                                      ILP configuration
12169  * @soc_hdl: CDP SOC handle
12170  * @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
12171  * @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
12172  *
12173  * This function will check: (a) TX ILP INI configuration,
12174  * (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
12175  * only if both (a) and (b) condition is met, then TX ILP feature is
12176  * considered to be enabled.
12177  *
12178  * Return: Final updated TX ILP enable result in dp_soc,
12179  *         true is enabled, false is not
12180  */
12181 static
12182 bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
12183 				      uint8_t num_msdu_idx_map,
12184 				      uint8_t *msdu_idx_map_arr)
12185 {
12186 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12187 	bool enable_tx_ilp = false;
12188 
12189 	/**
12190 	 * Check INI configuration firstly, if it's disabled,
12191 	 * then keep feature disabled.
12192 	 */
12193 	if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
12194 		dp_info("TX ILP INI is disabled already");
12195 		goto update_tx_ilp;
12196 	}
12197 
12198 	/* Check if the msdu index to qtype map table is valid */
12199 	if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
12200 		dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
12201 			num_msdu_idx_map, msdu_idx_map_arr);
12202 		goto update_tx_ilp;
12203 	}
12204 
12205 	dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
12206 		HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
12207 		msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
12208 
12209 	if (HTT_MSDU_QTYPE_USER_SPECIFIED ==
12210 	    msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
12211 		enable_tx_ilp = true;
12212 
12213 update_tx_ilp:
12214 	soc->tx_ilp_enable = enable_tx_ilp;
12215 	dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
12216 
12217 	return soc->tx_ilp_enable;
12218 }
12219 #endif
12220 
12221 static struct cdp_cmn_ops dp_ops_cmn = {
12222 	.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
12223 	.txrx_vdev_attach = dp_vdev_attach_wifi3,
12224 	.txrx_vdev_detach = dp_vdev_detach_wifi3,
12225 	.txrx_pdev_attach = dp_pdev_attach_wifi3,
12226 	.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
12227 	.txrx_pdev_detach = dp_pdev_detach_wifi3,
12228 	.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
12229 	.txrx_peer_create = dp_peer_create_wifi3,
12230 	.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
12231 #ifdef FEATURE_AST
12232 	.txrx_peer_teardown = dp_peer_teardown_wifi3,
12233 #else
12234 	.txrx_peer_teardown = NULL,
12235 #endif
12236 	.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
12237 	.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
12238 	.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
12239 	.txrx_peer_get_ast_info_by_pdev =
12240 		dp_peer_get_ast_info_by_pdevid_wifi3,
12241 	.txrx_peer_ast_delete_by_soc =
12242 		dp_peer_ast_entry_del_by_soc,
12243 	.txrx_peer_ast_delete_by_pdev =
12244 		dp_peer_ast_entry_del_by_pdev,
12245 	.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
12246 	.txrx_peer_delete = dp_peer_delete_wifi3,
12247 #ifdef DP_RX_UDP_OVER_PEER_ROAM
12248 	.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
12249 #endif
12250 	.txrx_vdev_register = dp_vdev_register_wifi3,
12251 	.txrx_soc_detach = dp_soc_detach_wifi3,
12252 	.txrx_soc_deinit = dp_soc_deinit_wifi3,
12253 	.txrx_soc_init = dp_soc_init_wifi3,
12254 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12255 	.txrx_tso_soc_attach = dp_tso_soc_attach,
12256 	.txrx_tso_soc_detach = dp_tso_soc_detach,
12257 	.tx_send = dp_tx_send,
12258 	.tx_send_exc = dp_tx_send_exception,
12259 #endif
12260 	.set_tx_pause = dp_set_tx_pause,
12261 	.txrx_pdev_init = dp_pdev_init_wifi3,
12262 	.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
12263 	.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
12264 	.txrx_ath_getstats = dp_get_device_stats,
12265 #ifndef WLAN_SOFTUMAC_SUPPORT
12266 	.addba_requestprocess = dp_addba_requestprocess_wifi3,
12267 	.addba_responsesetup = dp_addba_responsesetup_wifi3,
12268 	.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
12269 	.delba_process = dp_delba_process_wifi3,
12270 	.set_addba_response = dp_set_addba_response,
12271 	.flush_cache_rx_queue = NULL,
12272 	.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
12273 #endif
12274 	/* TODO: get API's for dscp-tid need to be added*/
12275 	.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
12276 	.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
12277 	.txrx_get_total_per = dp_get_total_per,
12278 	.txrx_stats_request = dp_txrx_stats_request,
12279 	.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
12280 	.display_stats = dp_txrx_dump_stats,
12281 	.notify_asserted_soc = dp_soc_notify_asserted_soc,
12282 	.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
12283 	.txrx_intr_detach = dp_soc_interrupt_detach_wrapper,
12284 	.txrx_ppeds_stop = dp_soc_ppeds_stop,
12285 	.set_key_sec_type = dp_set_key_sec_type_wifi3,
12286 	.update_config_parameters = dp_update_config_parameters,
12287 	/* TODO: Add other functions */
12288 	.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
12289 	.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
12290 	.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
12291 	.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
12292 	.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
12293 	.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
12294 	.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
12295 	.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
12296 	.handle_mode_change = dp_soc_handle_pdev_mode_change,
12297 	.set_pdev_status_down = dp_soc_set_pdev_status_down,
12298 	.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
12299 	.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
12300 	.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
12301 	.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
12302 	.set_soc_param = dp_soc_set_param,
12303 	.txrx_get_os_rx_handles_from_vdev =
12304 					dp_get_os_rx_handles_from_vdev_wifi3,
12305 #ifndef WLAN_SOFTUMAC_SUPPORT
12306 	.set_pn_check = dp_set_pn_check_wifi3,
12307 	.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
12308 	.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
12309 	.delba_tx_completion = dp_delba_tx_completion_wifi3,
12310 	.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
12311 	.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
12312 #endif
12313 	.get_dp_capabilities = dp_get_cfg_capabilities,
12314 	.txrx_get_cfg = dp_get_cfg,
12315 	.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
12316 	.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
12317 	.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
12318 	.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
12319 	.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
12320 
12321 	.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
12322 #ifdef QCA_MULTIPASS_SUPPORT
12323 	.set_vlan_groupkey = dp_set_vlan_groupkey,
12324 #endif
12325 	.get_peer_mac_list = dp_get_peer_mac_list,
12326 	.get_peer_id = dp_get_peer_id,
12327 #ifdef QCA_SUPPORT_WDS_EXTENDED
12328 	.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
12329 	.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
12330 	.set_wds_ext_peer_bit = dp_wds_ext_set_peer_bit,
12331 #endif /* QCA_SUPPORT_WDS_EXTENDED */
12332 
12333 #if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
12334 	.txrx_drain = dp_drain_txrx,
12335 #endif
12336 #if defined(FEATURE_RUNTIME_PM)
12337 	.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
12338 #endif
12339 #ifdef WLAN_SYSFS_DP_STATS
12340 	.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
12341 	.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
12342 #endif /* WLAN_SYSFS_DP_STATS */
12343 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
12344 	.set_pkt_capture_mode = dp_set_pkt_capture_mode,
12345 #endif
12346 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12347 	.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
12348 #endif
12349 	.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
12350 	.txrx_umac_reset_init = dp_soc_umac_reset_init,
12351 	.txrx_get_tsf_time = dp_get_tsf_time,
12352 	.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
12353 	.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
12354 #ifdef WLAN_SUPPORT_RX_FISA
12355 	.get_fst_cmem_base = dp_rx_fisa_get_cmem_base,
12356 #endif
12357 #ifdef WLAN_SUPPORT_DPDK
12358 	.dpdk_get_ring_info = dp_dpdk_get_ring_info,
12359 	.cfgmgr_get_soc_info = dp_cfgmgr_get_soc_info,
12360 	.cfgmgr_get_vdev_info = dp_cfgmgr_get_vdev_info,
12361 	.cfgmgr_get_peer_info = dp_cfgmgr_get_peer_info,
12362 	.cfgmgr_get_vdev_create_evt_info = dp_cfgmgr_get_vdev_create_evt_info,
12363 	.cfgmgr_get_peer_create_evt_info = dp_cfgmgr_get_peer_create_evt_info,
12364 #endif
12365 };
12366 
12367 static struct cdp_ctrl_ops dp_ops_ctrl = {
12368 	.txrx_peer_authorize = dp_peer_authorize,
12369 	.txrx_peer_get_authorize = dp_peer_get_authorize,
12370 #ifdef VDEV_PEER_PROTOCOL_COUNT
12371 	.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
12372 	.txrx_set_peer_protocol_drop_mask =
12373 		dp_enable_vdev_peer_protocol_drop_mask,
12374 	.txrx_is_peer_protocol_count_enabled =
12375 		dp_is_vdev_peer_protocol_count_enabled,
12376 	.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
12377 #endif
12378 	.txrx_set_vdev_param = dp_set_vdev_param_wrapper,
12379 	.txrx_set_psoc_param = dp_set_psoc_param,
12380 	.txrx_get_psoc_param = dp_get_psoc_param,
12381 #ifndef WLAN_SOFTUMAC_SUPPORT
12382 	.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
12383 	.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
12384 #endif
12385 	.txrx_get_sec_type = dp_get_sec_type,
12386 	.txrx_wdi_event_sub = dp_wdi_event_sub,
12387 	.txrx_wdi_event_unsub = dp_wdi_event_unsub,
12388 	.txrx_set_pdev_param = dp_set_pdev_param,
12389 	.txrx_get_pdev_param = dp_get_pdev_param,
12390 #ifdef WLAN_FEATURE_11BE_MLO
12391 	.txrx_set_peer_param = dp_set_peer_param_wrapper,
12392 #else
12393 	.txrx_set_peer_param = dp_set_peer_param,
12394 #endif
12395 	.txrx_get_peer_param = dp_get_peer_param,
12396 #ifdef VDEV_PEER_PROTOCOL_COUNT
12397 	.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
12398 #endif
12399 #ifdef WLAN_SUPPORT_MSCS
12400 	.txrx_record_mscs_params = dp_record_mscs_params,
12401 #endif
12402 	.set_key = dp_set_michael_key,
12403 	.txrx_get_vdev_param = dp_get_vdev_param,
12404 	.calculate_delay_stats = dp_calculate_delay_stats,
12405 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
12406 	.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
12407 #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
12408 	.txrx_dump_pdev_rx_protocol_tag_stats =
12409 				dp_dump_pdev_rx_protocol_tag_stats,
12410 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
12411 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
12412 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12413 	.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
12414 	.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
12415 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
12416 #ifdef QCA_MULTIPASS_SUPPORT
12417 	.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
12418 #endif /*QCA_MULTIPASS_SUPPORT*/
12419 #if defined(WLAN_FEATURE_TSF_AUTO_REPORT) || defined(WLAN_CONFIG_TX_DELAY)
12420 	.txrx_set_delta_tsf = dp_set_delta_tsf,
12421 #endif
12422 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
12423 	.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
12424 	.txrx_get_uplink_delay = dp_get_uplink_delay,
12425 #endif
12426 #ifdef QCA_UNDECODED_METADATA_SUPPORT
12427 	.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
12428 	.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
12429 #endif
12430 	.txrx_peer_flush_frags = dp_peer_flush_frags,
12431 #ifdef DP_UMAC_HW_RESET_SUPPORT
12432 	.get_umac_reset_in_progress_state = dp_get_umac_reset_in_progress_state,
12433 #endif
12434 #ifdef WLAN_SUPPORT_RX_FISA
12435 	.txrx_fisa_config = dp_fisa_config,
12436 #endif
12437 };
12438 
12439 static struct cdp_me_ops dp_ops_me = {
12440 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12441 #ifdef ATH_SUPPORT_IQUE
12442 	.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
12443 	.tx_me_free_descriptor = dp_tx_me_free_descriptor,
12444 	.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
12445 #endif
12446 #endif
12447 };
12448 
12449 static struct cdp_host_stats_ops dp_ops_host_stats = {
12450 	.txrx_per_peer_stats = dp_get_host_peer_stats,
12451 	.get_fw_peer_stats = dp_get_fw_peer_stats,
12452 	.get_htt_stats = dp_get_htt_stats,
12453 	.txrx_stats_publish = dp_txrx_stats_publish,
12454 	.txrx_get_vdev_stats  = dp_txrx_get_vdev_stats,
12455 	.txrx_get_peer_stats = dp_txrx_get_peer_stats,
12456 	.txrx_get_peer_stats_based_on_peer_type =
12457 			dp_txrx_get_peer_stats_based_on_peer_type,
12458 	.txrx_get_soc_stats = dp_txrx_get_soc_stats,
12459 	.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
12460 	.txrx_get_per_link_stats = dp_txrx_get_per_link_peer_stats,
12461 	.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
12462 	.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
12463 #if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
12464 	.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
12465 	.txrx_get_vdev_stats  = dp_ipa_txrx_get_vdev_stats,
12466 	.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
12467 #endif
12468 	.txrx_get_ratekbps = dp_txrx_get_ratekbps,
12469 	.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
12470 	.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
12471 	.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
12472 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
12473 	.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
12474 	.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
12475 #endif
12476 #ifdef WLAN_TX_PKT_CAPTURE_ENH
12477 	.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
12478 	.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
12479 #endif /* WLAN_TX_PKT_CAPTURE_ENH */
12480 #ifdef HW_TX_DELAY_STATS_ENABLE
12481 	.enable_disable_vdev_tx_delay_stats =
12482 				dp_enable_disable_vdev_tx_delay_stats,
12483 	.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
12484 #endif
12485 	.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
12486 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
12487 	.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
12488 	.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
12489 	.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
12490 	.txrx_peer_deter_stats = dp_get_peer_deter_stats,
12491 	.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
12492 #endif
12493 	.txrx_get_peer_extd_rate_link_stats =
12494 					dp_get_peer_extd_rate_link_stats,
12495 	.get_pdev_obss_stats = dp_get_obss_stats,
12496 	.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
12497 	.txrx_get_interface_stats  = dp_txrx_get_interface_stats,
12498 #ifdef WLAN_FEATURE_TX_LATENCY_STATS
12499 	.tx_latency_stats_fetch = dp_tx_latency_stats_fetch,
12500 	.tx_latency_stats_config = dp_tx_latency_stats_config,
12501 	.tx_latency_stats_register_cb = dp_tx_latency_stats_register_cb,
12502 #endif
12503 	/* TODO */
12504 };
12505 
12506 static struct cdp_raw_ops dp_ops_raw = {
12507 	/* TODO */
12508 };
12509 
12510 #ifdef PEER_FLOW_CONTROL
12511 static struct cdp_pflow_ops dp_ops_pflow = {
12512 	dp_tx_flow_ctrl_configure_pdev,
12513 };
12514 #endif
12515 
12516 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
12517 static struct cdp_cfr_ops dp_ops_cfr = {
12518 	.txrx_get_cfr_rcc = dp_get_cfr_rcc,
12519 	.txrx_set_cfr_rcc = dp_set_cfr_rcc,
12520 	.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
12521 	.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
12522 };
12523 #endif
12524 
12525 #ifdef WLAN_SUPPORT_MSCS
12526 static struct cdp_mscs_ops dp_ops_mscs = {
12527 	.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
12528 };
12529 #endif
12530 
12531 #ifdef WLAN_SUPPORT_MESH_LATENCY
12532 static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
12533 	.mesh_latency_update_peer_parameter =
12534 		dp_mesh_latency_update_peer_parameter,
12535 };
12536 #endif
12537 
12538 #ifdef WLAN_SUPPORT_SCS
12539 static struct cdp_scs_ops dp_ops_scs = {
12540 	.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
12541 };
12542 #endif
12543 
12544 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12545 static struct cdp_fse_ops dp_ops_fse = {
12546 	.fse_rule_add = dp_rx_sfe_add_flow_entry,
12547 	.fse_rule_delete = dp_rx_sfe_delete_flow_entry,
12548 };
12549 #endif
12550 
12551 #ifdef CONFIG_SAWF_DEF_QUEUES
12552 static struct cdp_sawf_ops dp_ops_sawf = {
12553 	.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
12554 	.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
12555 	.sawf_def_queues_get_map_report =
12556 		dp_sawf_def_queues_get_map_report,
12557 #ifdef CONFIG_SAWF_STATS
12558 	.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
12559 	.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
12560 	.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
12561 	.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
12562 	.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
12563 	.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
12564 	.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
12565 	.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
12566 	.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
12567 	.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
12568 	.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
12569 	.peer_config_ul = dp_sawf_peer_config_ul,
12570 	.swaf_peer_sla_configuration = dp_swaf_peer_sla_configuration,
12571 	.sawf_peer_flow_count = dp_sawf_peer_flow_count,
12572 #endif
12573 #ifdef WLAN_FEATURE_11BE_MLO_3_LINK_TX
12574 	.get_peer_msduq = dp_sawf_get_peer_msduq,
12575 	.sawf_3_link_peer_flow_count = dp_sawf_3_link_peer_flow_count,
12576 #endif
12577 };
12578 #endif
12579 
12580 #ifdef DP_TX_TRACKING
12581 
12582 #define DP_TX_COMP_MAX_LATENCY_MS 60000
12583 /**
12584  * dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
12585  * @tx_desc: tx descriptor
12586  *
12587  * Calculate time latency for tx completion per pkt and trigger self recovery
12588  * when the delay is more than threshold value.
12589  *
12590  * Return: True if delay is more than threshold
12591  */
12592 static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
12593 {
12594 	uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
12595 	qdf_ktime_t current_time = qdf_ktime_real_get();
12596 	qdf_ktime_t timestamp = tx_desc->timestamp;
12597 
12598 	if (dp_tx_pkt_tracepoints_enabled()) {
12599 		if (!timestamp)
12600 			return false;
12601 
12602 		time_latency = qdf_ktime_to_ms(current_time) -
12603 				qdf_ktime_to_ms(timestamp);
12604 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12605 			dp_err_rl("enqueued: %llu ms, current : %llu ms",
12606 				  timestamp, current_time);
12607 			return true;
12608 		}
12609 	} else {
12610 		if (!timestamp_tick)
12611 			return false;
12612 
12613 		current_time = qdf_system_ticks();
12614 		time_latency = qdf_system_ticks_to_msecs(current_time -
12615 							 timestamp_tick);
12616 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12617 			dp_err_rl("enqueued: %u ms, current : %u ms",
12618 				  qdf_system_ticks_to_msecs(timestamp_tick),
12619 				  qdf_system_ticks_to_msecs(current_time));
12620 			return true;
12621 		}
12622 	}
12623 
12624 	return false;
12625 }
12626 
12627 void dp_find_missing_tx_comp(struct dp_soc *soc)
12628 {
12629 	uint8_t i;
12630 	uint32_t j;
12631 	uint32_t num_desc, page_id, offset;
12632 	uint16_t num_desc_per_page;
12633 	struct dp_tx_desc_s *tx_desc = NULL;
12634 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
12635 
12636 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
12637 		tx_desc_pool = &soc->tx_desc[i];
12638 		if (!(tx_desc_pool->pool_size) ||
12639 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
12640 		    !(tx_desc_pool->desc_pages.cacheable_pages))
12641 			continue;
12642 
12643 		num_desc = tx_desc_pool->pool_size;
12644 		num_desc_per_page =
12645 			tx_desc_pool->desc_pages.num_element_per_page;
12646 		for (j = 0; j < num_desc; j++) {
12647 			page_id = j / num_desc_per_page;
12648 			offset = j % num_desc_per_page;
12649 
12650 			if (qdf_unlikely(!(tx_desc_pool->
12651 					 desc_pages.cacheable_pages)))
12652 				break;
12653 
12654 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
12655 						  false);
12656 			if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
12657 				continue;
12658 			} else if (tx_desc->magic ==
12659 				   DP_TX_MAGIC_PATTERN_INUSE) {
12660 				if (dp_tx_comp_delay_check(tx_desc)) {
12661 					dp_err_rl("Tx completion not rcvd for id: %u",
12662 						  tx_desc->id);
12663 					if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
12664 						tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
12665 						dp_err_rl("Freed tx_desc %u",
12666 							  tx_desc->id);
12667 						dp_tx_comp_free_buf(soc,
12668 								    tx_desc,
12669 								    false);
12670 						dp_tx_desc_release(soc, tx_desc,
12671 								   i);
12672 						DP_STATS_INC(soc,
12673 							     tx.tx_comp_force_freed, 1);
12674 					}
12675 				}
12676 			} else {
12677 				dp_err_rl("tx desc %u corrupted, flags: 0x%x",
12678 					  tx_desc->id, tx_desc->flags);
12679 			}
12680 		}
12681 	}
12682 }
12683 #else
12684 inline void dp_find_missing_tx_comp(struct dp_soc *soc)
12685 {
12686 }
12687 #endif
12688 
12689 #ifdef FEATURE_RUNTIME_PM
12690 /**
12691  * dp_runtime_suspend() - ensure DP is ready to runtime suspend
12692  * @soc_hdl: Datapath soc handle
12693  * @pdev_id: id of data path pdev handle
12694  *
12695  * DP is ready to runtime suspend if there are no pending TX packets.
12696  *
12697  * Return: QDF_STATUS
12698  */
12699 static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12700 {
12701 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12702 	struct dp_pdev *pdev;
12703 	int32_t tx_pending;
12704 
12705 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12706 	if (!pdev) {
12707 		dp_err("pdev is NULL");
12708 		return QDF_STATUS_E_INVAL;
12709 	}
12710 
12711 	/* Abort if there are any pending TX packets */
12712 	tx_pending = dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev));
12713 	if (tx_pending) {
12714 		dp_info_rl("%pK: Abort suspend due to pending TX packets %d",
12715 			   soc, tx_pending);
12716 		dp_find_missing_tx_comp(soc);
12717 		/* perform a force flush if tx is pending */
12718 		soc->arch_ops.dp_update_ring_hptp(soc, true);
12719 		qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12720 
12721 		return QDF_STATUS_E_AGAIN;
12722 	}
12723 
12724 	if (dp_runtime_get_refcount(soc)) {
12725 		dp_init_info("refcount: %d", dp_runtime_get_refcount(soc));
12726 
12727 		return QDF_STATUS_E_AGAIN;
12728 	}
12729 
12730 	if (soc->intr_mode == DP_INTR_POLL)
12731 		qdf_timer_stop(&soc->int_timer);
12732 
12733 	return QDF_STATUS_SUCCESS;
12734 }
12735 
12736 #define DP_FLUSH_WAIT_CNT 10
12737 #define DP_RUNTIME_SUSPEND_WAIT_MS 10
12738 /**
12739  * dp_runtime_resume() - ensure DP is ready to runtime resume
12740  * @soc_hdl: Datapath soc handle
12741  * @pdev_id: id of data path pdev handle
12742  *
12743  * Resume DP for runtime PM.
12744  *
12745  * Return: QDF_STATUS
12746  */
12747 static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12748 {
12749 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12750 	int suspend_wait = 0;
12751 
12752 	if (soc->intr_mode == DP_INTR_POLL)
12753 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
12754 
12755 	/*
12756 	 * Wait until dp runtime refcount becomes zero or time out, then flush
12757 	 * pending tx for runtime suspend.
12758 	 */
12759 	while (dp_runtime_get_refcount(soc) &&
12760 	       suspend_wait < DP_FLUSH_WAIT_CNT) {
12761 		qdf_sleep(DP_RUNTIME_SUSPEND_WAIT_MS);
12762 		suspend_wait++;
12763 	}
12764 
12765 	soc->arch_ops.dp_update_ring_hptp(soc, false);
12766 	qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12767 
12768 	return QDF_STATUS_SUCCESS;
12769 }
12770 #endif /* FEATURE_RUNTIME_PM */
12771 
12772 /**
12773  * dp_tx_get_success_ack_stats() - get tx success completion count
12774  * @soc_hdl: Datapath soc handle
12775  * @vdev_id: vdev identifier
12776  *
12777  * Return: tx success ack count
12778  */
12779 static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
12780 					    uint8_t vdev_id)
12781 {
12782 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12783 	struct cdp_vdev_stats *vdev_stats = NULL;
12784 	uint32_t tx_success;
12785 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
12786 						     DP_MOD_ID_CDP);
12787 
12788 	if (!vdev) {
12789 		dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
12790 		return 0;
12791 	}
12792 
12793 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
12794 	if (!vdev_stats) {
12795 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
12796 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12797 		return 0;
12798 	}
12799 
12800 	dp_aggregate_vdev_stats(vdev, vdev_stats, DP_XMIT_TOTAL);
12801 
12802 	tx_success = vdev_stats->tx.tx_success.num;
12803 	qdf_mem_free(vdev_stats);
12804 
12805 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12806 	return tx_success;
12807 }
12808 
12809 #ifdef WLAN_SUPPORT_DATA_STALL
12810 /**
12811  * dp_register_data_stall_detect_cb() - register data stall callback
12812  * @soc_hdl: Datapath soc handle
12813  * @pdev_id: id of data path pdev handle
12814  * @data_stall_detect_callback: data stall callback function
12815  *
12816  * Return: QDF_STATUS Enumeration
12817  */
12818 static
12819 QDF_STATUS dp_register_data_stall_detect_cb(
12820 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12821 			data_stall_detect_cb data_stall_detect_callback)
12822 {
12823 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12824 	struct dp_pdev *pdev;
12825 
12826 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12827 	if (!pdev) {
12828 		dp_err("pdev NULL!");
12829 		return QDF_STATUS_E_INVAL;
12830 	}
12831 
12832 	pdev->data_stall_detect_callback = data_stall_detect_callback;
12833 	return QDF_STATUS_SUCCESS;
12834 }
12835 
12836 /**
12837  * dp_deregister_data_stall_detect_cb() - de-register data stall callback
12838  * @soc_hdl: Datapath soc handle
12839  * @pdev_id: id of data path pdev handle
12840  * @data_stall_detect_callback: data stall callback function
12841  *
12842  * Return: QDF_STATUS Enumeration
12843  */
12844 static
12845 QDF_STATUS dp_deregister_data_stall_detect_cb(
12846 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12847 			data_stall_detect_cb data_stall_detect_callback)
12848 {
12849 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12850 	struct dp_pdev *pdev;
12851 
12852 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12853 	if (!pdev) {
12854 		dp_err("pdev NULL!");
12855 		return QDF_STATUS_E_INVAL;
12856 	}
12857 
12858 	pdev->data_stall_detect_callback = NULL;
12859 	return QDF_STATUS_SUCCESS;
12860 }
12861 
12862 /**
12863  * dp_txrx_post_data_stall_event() - post data stall event
12864  * @soc_hdl: Datapath soc handle
12865  * @indicator: Module triggering data stall
12866  * @data_stall_type: data stall event type
12867  * @pdev_id: pdev id
12868  * @vdev_id_bitmap: vdev id bitmap
12869  * @recovery_type: data stall recovery type
12870  *
12871  * Return: None
12872  */
12873 static void
12874 dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
12875 			      enum data_stall_log_event_indicator indicator,
12876 			      enum data_stall_log_event_type data_stall_type,
12877 			      uint32_t pdev_id, uint32_t vdev_id_bitmap,
12878 			      enum data_stall_log_recovery_type recovery_type)
12879 {
12880 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12881 	struct data_stall_event_info data_stall_info;
12882 	struct dp_pdev *pdev;
12883 
12884 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12885 	if (!pdev) {
12886 		dp_err("pdev NULL!");
12887 		return;
12888 	}
12889 
12890 	if (!pdev->data_stall_detect_callback) {
12891 		dp_err("data stall cb not registered!");
12892 		return;
12893 	}
12894 
12895 	dp_info("data_stall_type: %x pdev_id: %d",
12896 		data_stall_type, pdev_id);
12897 
12898 	data_stall_info.indicator = indicator;
12899 	data_stall_info.data_stall_type = data_stall_type;
12900 	data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
12901 	data_stall_info.pdev_id = pdev_id;
12902 	data_stall_info.recovery_type = recovery_type;
12903 
12904 	pdev->data_stall_detect_callback(&data_stall_info);
12905 }
12906 #endif /* WLAN_SUPPORT_DATA_STALL */
12907 
12908 #ifdef WLAN_FEATURE_STATS_EXT
12909 /**
12910  * dp_txrx_ext_stats_request() - request dp txrx extended stats request
12911  * @soc_hdl: soc handle
12912  * @pdev_id: pdev id
12913  * @req: stats request
12914  *
12915  * Return: QDF_STATUS
12916  */
12917 static QDF_STATUS
12918 dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12919 			  struct cdp_txrx_ext_stats *req)
12920 {
12921 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
12922 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12923 	int i = 0;
12924 	int tcl_ring_full = 0;
12925 
12926 	if (!pdev) {
12927 		dp_err("pdev is null");
12928 		return QDF_STATUS_E_INVAL;
12929 	}
12930 
12931 	dp_aggregate_pdev_stats(pdev);
12932 
12933 	for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
12934 		tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
12935 
12936 	req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
12937 	req->tx_msdu_overflow = tcl_ring_full;
12938 	/* Error rate at LMAC */
12939 	req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
12940 				pdev->stats.err.fw_reported_rxdma_error;
12941 	/* only count error source from RXDMA */
12942 	req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
12943 
12944 	/* Error rate at above the MAC */
12945 	req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
12946 	req->rx_mpdu_missed = pdev->stats.err.reo_error;
12947 
12948 	dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
12949 		"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
12950 		"rx_mpdu_missed = %u, rx_mpdu_error = %u",
12951 		req->tx_msdu_enqueue,
12952 		req->tx_msdu_overflow,
12953 		req->rx_mpdu_received,
12954 		req->rx_mpdu_delivered,
12955 		req->rx_mpdu_missed,
12956 		req->rx_mpdu_error);
12957 
12958 	return QDF_STATUS_SUCCESS;
12959 }
12960 
12961 #endif /* WLAN_FEATURE_STATS_EXT */
12962 
12963 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
12964 /**
12965  * dp_mark_first_wakeup_packet() - set flag to indicate that
12966  *    fw is compatible for marking first packet after wow wakeup
12967  * @soc_hdl: Datapath soc handle
12968  * @pdev_id: id of data path pdev handle
12969  * @value: 1 for enabled/ 0 for disabled
12970  *
12971  * Return: None
12972  */
12973 static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
12974 					uint8_t pdev_id, uint8_t value)
12975 {
12976 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12977 	struct dp_pdev *pdev;
12978 
12979 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12980 	if (!pdev) {
12981 		dp_err("pdev is NULL");
12982 		return;
12983 	}
12984 
12985 	pdev->is_first_wakeup_packet = value;
12986 }
12987 #endif
12988 
12989 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
12990 /**
12991  * dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
12992  * @soc_hdl: Opaque handle to the DP soc object
12993  * @vdev_id: VDEV identifier
12994  * @mac: MAC address of the peer
12995  * @ac: access category mask
12996  * @tid: TID mask
12997  * @policy: Flush policy
12998  *
12999  * Return: 0 on success, errno on failure
13000  */
13001 static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
13002 					uint8_t vdev_id, uint8_t *mac,
13003 					uint8_t ac, uint32_t tid,
13004 					enum cdp_peer_txq_flush_policy policy)
13005 {
13006 	struct dp_soc *soc;
13007 
13008 	if (!soc_hdl) {
13009 		dp_err("soc is null");
13010 		return -EINVAL;
13011 	}
13012 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
13013 	return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
13014 					       mac, ac, tid, policy);
13015 }
13016 #endif
13017 
13018 #ifdef CONNECTIVITY_PKTLOG
13019 /**
13020  * dp_register_packetdump_callback() - registers
13021  *  tx data packet, tx mgmt. packet and rx data packet
13022  *  dump callback handler.
13023  *
13024  * @soc_hdl: Datapath soc handle
13025  * @pdev_id: id of data path pdev handle
13026  * @dp_tx_packetdump_cb: tx packetdump cb
13027  * @dp_rx_packetdump_cb: rx packetdump cb
13028  *
13029  * This function is used to register tx data pkt, tx mgmt.
13030  * pkt and rx data pkt dump callback
13031  *
13032  * Return: None
13033  *
13034  */
13035 static inline
13036 void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13037 				     ol_txrx_pktdump_cb dp_tx_packetdump_cb,
13038 				     ol_txrx_pktdump_cb dp_rx_packetdump_cb)
13039 {
13040 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13041 	struct dp_pdev *pdev;
13042 
13043 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13044 	if (!pdev) {
13045 		dp_err("pdev is NULL!");
13046 		return;
13047 	}
13048 
13049 	pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
13050 	pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
13051 }
13052 
13053 /**
13054  * dp_deregister_packetdump_callback() - deregidters
13055  *  tx data packet, tx mgmt. packet and rx data packet
13056  *  dump callback handler
13057  * @soc_hdl: Datapath soc handle
13058  * @pdev_id: id of data path pdev handle
13059  *
13060  * This function is used to deregidter tx data pkt.,
13061  * tx mgmt. pkt and rx data pkt. dump callback
13062  *
13063  * Return: None
13064  *
13065  */
13066 static inline
13067 void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
13068 				       uint8_t pdev_id)
13069 {
13070 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13071 	struct dp_pdev *pdev;
13072 
13073 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13074 	if (!pdev) {
13075 		dp_err("pdev is NULL!");
13076 		return;
13077 	}
13078 
13079 	pdev->dp_tx_packetdump_cb = NULL;
13080 	pdev->dp_rx_packetdump_cb = NULL;
13081 }
13082 #endif
13083 
13084 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13085 /**
13086  * dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
13087  * @soc_hdl: Datapath soc handle
13088  * @high: whether the bus bw is high or not
13089  *
13090  * Return: void
13091  */
13092 static void
13093 dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
13094 {
13095 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13096 
13097 	soc->high_throughput = high;
13098 }
13099 
13100 /**
13101  * dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
13102  * @soc_hdl: Datapath soc handle
13103  *
13104  * Return: bool
13105  */
13106 static bool
13107 dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
13108 {
13109 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13110 
13111 	return soc->high_throughput;
13112 }
13113 #endif
13114 
13115 #ifdef DP_PEER_EXTENDED_API
13116 static struct cdp_misc_ops dp_ops_misc = {
13117 #ifdef FEATURE_WLAN_TDLS
13118 	.tx_non_std = dp_tx_non_std,
13119 #endif /* FEATURE_WLAN_TDLS */
13120 	.get_opmode = dp_get_opmode,
13121 #ifdef FEATURE_RUNTIME_PM
13122 	.runtime_suspend = dp_runtime_suspend,
13123 	.runtime_resume = dp_runtime_resume,
13124 #endif /* FEATURE_RUNTIME_PM */
13125 	.get_num_rx_contexts = dp_get_num_rx_contexts,
13126 	.get_tx_ack_stats = dp_tx_get_success_ack_stats,
13127 #ifdef WLAN_SUPPORT_DATA_STALL
13128 	.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
13129 	.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
13130 	.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
13131 #endif
13132 
13133 #ifdef WLAN_FEATURE_STATS_EXT
13134 	.txrx_ext_stats_request = dp_txrx_ext_stats_request,
13135 #ifndef WLAN_SOFTUMAC_SUPPORT
13136 	.request_rx_hw_stats = dp_request_rx_hw_stats,
13137 	.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
13138 #endif
13139 #endif /* WLAN_FEATURE_STATS_EXT */
13140 	.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
13141 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
13142 	.set_swlm_enable = dp_soc_set_swlm_enable,
13143 	.is_swlm_enabled = dp_soc_is_swlm_enabled,
13144 #endif
13145 	.display_txrx_hw_info = dp_display_srng_info,
13146 #ifndef WLAN_SOFTUMAC_SUPPORT
13147 	.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
13148 #endif
13149 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
13150 	.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
13151 #endif
13152 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
13153 	.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
13154 #endif
13155 #ifdef CONNECTIVITY_PKTLOG
13156 	.register_pktdump_cb = dp_register_packetdump_callback,
13157 	.unregister_pktdump_cb = dp_deregister_packetdump_callback,
13158 #endif
13159 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13160 	.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
13161 	.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
13162 #endif
13163 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13164 	.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
13165 #endif
13166 };
13167 #endif
13168 
13169 #ifdef DP_FLOW_CTL
13170 static struct cdp_flowctl_ops dp_ops_flowctl = {
13171 	/* WIFI 3.0 DP implement as required. */
13172 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
13173 #ifndef WLAN_SOFTUMAC_SUPPORT
13174 	.flow_pool_map_handler = dp_tx_flow_pool_map,
13175 	.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
13176 #endif /*WLAN_SOFTUMAC_SUPPORT */
13177 	.register_pause_cb = dp_txrx_register_pause_cb,
13178 	.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
13179 	.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
13180 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
13181 };
13182 
13183 static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
13184 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13185 };
13186 #endif
13187 
13188 #ifdef IPA_OFFLOAD
13189 static struct cdp_ipa_ops dp_ops_ipa = {
13190 	.ipa_get_resource = dp_ipa_get_resource,
13191 	.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
13192 	.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
13193 	.ipa_op_response = dp_ipa_op_response,
13194 	.ipa_register_op_cb = dp_ipa_register_op_cb,
13195 	.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
13196 	.ipa_get_stat = dp_ipa_get_stat,
13197 	.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
13198 	.ipa_enable_autonomy = dp_ipa_enable_autonomy,
13199 	.ipa_disable_autonomy = dp_ipa_disable_autonomy,
13200 	.ipa_setup = dp_ipa_setup,
13201 	.ipa_cleanup = dp_ipa_cleanup,
13202 	.ipa_setup_iface = dp_ipa_setup_iface,
13203 	.ipa_cleanup_iface = dp_ipa_cleanup_iface,
13204 	.ipa_enable_pipes = dp_ipa_enable_pipes,
13205 	.ipa_disable_pipes = dp_ipa_disable_pipes,
13206 	.ipa_set_perf_level = dp_ipa_set_perf_level,
13207 	.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
13208 	.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
13209 	.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
13210 	.ipa_rx_buf_smmu_pool_mapping = dp_ipa_rx_buf_pool_smmu_mapping,
13211 	.ipa_set_smmu_mapped = dp_ipa_set_smmu_mapped,
13212 	.ipa_get_smmu_mapped = dp_ipa_get_smmu_mapped,
13213 #ifdef QCA_SUPPORT_WDS_EXTENDED
13214 	.ipa_rx_wdsext_iface = dp_ipa_rx_wdsext_iface,
13215 #endif
13216 #ifdef QCA_ENHANCED_STATS_SUPPORT
13217 	.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
13218 #endif
13219 #ifdef IPA_OPT_WIFI_DP
13220 	.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
13221 	.ipa_pcie_link_up = dp_ipa_pcie_link_up,
13222 	.ipa_pcie_link_down = dp_ipa_pcie_link_down,
13223 #endif
13224 #ifdef IPA_WDS_EASYMESH_FEATURE
13225 	.ipa_ast_create = dp_ipa_ast_create,
13226 #endif
13227 	.ipa_get_wdi_version = dp_ipa_get_wdi_version,
13228 };
13229 #endif
13230 
13231 #ifdef DP_POWER_SAVE
13232 static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13233 {
13234 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13235 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13236 	int timeout = SUSPEND_DRAIN_WAIT;
13237 	int drain_wait_delay = 50; /* 50 ms */
13238 	int32_t tx_pending;
13239 
13240 	if (qdf_unlikely(!pdev)) {
13241 		dp_err("pdev is NULL");
13242 		return QDF_STATUS_E_INVAL;
13243 	}
13244 
13245 	/* Abort if there are any pending TX packets */
13246 	while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
13247 		qdf_sleep(drain_wait_delay);
13248 		if (timeout <= 0) {
13249 			dp_info("TX frames are pending %d, abort suspend",
13250 				tx_pending);
13251 			dp_find_missing_tx_comp(soc);
13252 			return QDF_STATUS_E_TIMEOUT;
13253 		}
13254 		timeout = timeout - drain_wait_delay;
13255 	}
13256 
13257 	if (soc->intr_mode == DP_INTR_POLL)
13258 		qdf_timer_stop(&soc->int_timer);
13259 
13260 	/* Stop monitor reap timer and reap any pending frames in ring */
13261 	dp_monitor_reap_timer_suspend(soc);
13262 
13263 	return QDF_STATUS_SUCCESS;
13264 }
13265 
13266 static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13267 {
13268 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13269 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13270 
13271 	if (qdf_unlikely(!pdev)) {
13272 		dp_err("pdev is NULL");
13273 		return QDF_STATUS_E_INVAL;
13274 	}
13275 
13276 	if (soc->intr_mode == DP_INTR_POLL)
13277 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
13278 
13279 	/* Start monitor reap timer */
13280 	dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
13281 
13282 	soc->arch_ops.dp_update_ring_hptp(soc, false);
13283 
13284 	return QDF_STATUS_SUCCESS;
13285 }
13286 
13287 /**
13288  * dp_process_wow_ack_rsp() - process wow ack response
13289  * @soc_hdl: datapath soc handle
13290  * @pdev_id: data path pdev handle id
13291  *
13292  * Return: none
13293  */
13294 static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13295 {
13296 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13297 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13298 
13299 	if (qdf_unlikely(!pdev)) {
13300 		dp_err("pdev is NULL");
13301 		return;
13302 	}
13303 
13304 	/*
13305 	 * As part of wow enable FW disables the mon status ring and in wow ack
13306 	 * response from FW reap mon status ring to make sure no packets pending
13307 	 * in the ring.
13308 	 */
13309 	dp_monitor_reap_timer_suspend(soc);
13310 }
13311 
13312 /**
13313  * dp_process_target_suspend_req() - process target suspend request
13314  * @soc_hdl: datapath soc handle
13315  * @pdev_id: data path pdev handle id
13316  *
13317  * Return: none
13318  */
13319 static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
13320 					  uint8_t pdev_id)
13321 {
13322 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13323 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13324 
13325 	if (qdf_unlikely(!pdev)) {
13326 		dp_err("pdev is NULL");
13327 		return;
13328 	}
13329 
13330 	/* Stop monitor reap timer and reap any pending frames in ring */
13331 	dp_monitor_reap_timer_suspend(soc);
13332 }
13333 
13334 static struct cdp_bus_ops dp_ops_bus = {
13335 	.bus_suspend = dp_bus_suspend,
13336 	.bus_resume = dp_bus_resume,
13337 	.process_wow_ack_rsp = dp_process_wow_ack_rsp,
13338 	.process_target_suspend_req = dp_process_target_suspend_req
13339 };
13340 #endif
13341 
13342 #ifdef DP_FLOW_CTL
13343 static struct cdp_throttle_ops dp_ops_throttle = {
13344 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13345 };
13346 
13347 static struct cdp_cfg_ops dp_ops_cfg = {
13348 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13349 };
13350 #endif
13351 
13352 #ifdef DP_PEER_EXTENDED_API
13353 static struct cdp_ocb_ops dp_ops_ocb = {
13354 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13355 };
13356 
13357 static struct cdp_mob_stats_ops dp_ops_mob_stats = {
13358 	.clear_stats = dp_txrx_clear_dump_stats,
13359 };
13360 
13361 static struct cdp_peer_ops dp_ops_peer = {
13362 	.register_peer = dp_register_peer,
13363 	.clear_peer = dp_clear_peer,
13364 	.find_peer_exist = dp_find_peer_exist,
13365 	.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
13366 	.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
13367 	.peer_state_update = dp_peer_state_update,
13368 	.get_vdevid = dp_get_vdevid,
13369 	.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
13370 	.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
13371 	.get_peer_state = dp_get_peer_state,
13372 	.peer_flush_frags = dp_peer_flush_frags,
13373 	.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
13374 };
13375 #endif
13376 
13377 static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
13378 {
13379 	soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
13380 	soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
13381 	soc->cdp_soc.ops->me_ops = &dp_ops_me;
13382 	soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
13383 	soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
13384 	soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
13385 #ifdef PEER_FLOW_CONTROL
13386 	soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
13387 #endif /* PEER_FLOW_CONTROL */
13388 #ifdef DP_PEER_EXTENDED_API
13389 	soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
13390 	soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
13391 	soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
13392 	soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
13393 #endif
13394 #ifdef DP_FLOW_CTL
13395 	soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
13396 	soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
13397 	soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
13398 	soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
13399 #endif
13400 #ifdef IPA_OFFLOAD
13401 	soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
13402 #endif
13403 #ifdef DP_POWER_SAVE
13404 	soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
13405 #endif
13406 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13407 	soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
13408 #endif
13409 #ifdef WLAN_SUPPORT_MSCS
13410 	soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
13411 #endif
13412 #ifdef WLAN_SUPPORT_MESH_LATENCY
13413 	soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
13414 #endif
13415 #ifdef CONFIG_SAWF_DEF_QUEUES
13416 	soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
13417 #endif
13418 #ifdef WLAN_SUPPORT_SCS
13419 	soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
13420 #endif
13421 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
13422 	soc->cdp_soc.ops->fse_ops = &dp_ops_fse;
13423 #endif
13424 };
13425 
13426 #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
13427 	defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
13428 	defined(QCA_WIFI_QCA5332)
13429 
13430 /**
13431  * dp_soc_attach_wifi3() - Attach txrx SOC
13432  * @ctrl_psoc: Opaque SOC handle from control plane
13433  * @params: SOC attach params
13434  *
13435  * Return: DP SOC handle on success, NULL on failure
13436  */
13437 struct cdp_soc_t *
13438 dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13439 		    struct cdp_soc_attach_params *params)
13440 {
13441 	struct dp_soc *dp_soc = NULL;
13442 
13443 	dp_soc = dp_soc_attach(ctrl_psoc, params);
13444 
13445 	return dp_soc_to_cdp_soc_t(dp_soc);
13446 }
13447 
13448 static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
13449 {
13450 	int lmac_id;
13451 
13452 	for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
13453 		/*Set default host PDEV ID for lmac_id*/
13454 		wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
13455 				      INVALID_PDEV_ID, lmac_id);
13456 	}
13457 }
13458 
13459 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc)
13460 {
13461 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13462 
13463 	if (max_list_size == 0)
13464 		return;
13465 
13466 	qdf_mem_free(soc->list_shared_qaddr_del);
13467 	qdf_mem_free(soc->reo_write_list);
13468 	qdf_mem_free(soc->list_qdesc_addr_free);
13469 	qdf_mem_free(soc->list_qdesc_addr_alloc);
13470 }
13471 
13472 static void dp_soc_set_qref_debug_list(struct dp_soc *soc)
13473 {
13474 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13475 
13476 	if (max_list_size == 0)
13477 		return;
13478 
13479 	soc->list_shared_qaddr_del =
13480 			(struct test_qaddr_del *)
13481 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13482 					       max_list_size);
13483 	soc->reo_write_list =
13484 			(struct test_qaddr_del *)
13485 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13486 					       max_list_size);
13487 	soc->list_qdesc_addr_free =
13488 			(struct test_mem_free *)
13489 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13490 					       max_list_size);
13491 	soc->list_qdesc_addr_alloc =
13492 			(struct test_mem_free *)
13493 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13494 					       max_list_size);
13495 }
13496 
13497 static uint32_t
13498 dp_get_link_desc_id_start(uint16_t arch_id)
13499 {
13500 	switch (arch_id) {
13501 	case CDP_ARCH_TYPE_LI:
13502 	case CDP_ARCH_TYPE_RH:
13503 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13504 	case CDP_ARCH_TYPE_BE:
13505 		return LINK_DESC_ID_START_20_BITS_COOKIE;
13506 	default:
13507 		dp_err("unknown arch_id 0x%x", arch_id);
13508 		QDF_BUG(0);
13509 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13510 	}
13511 }
13512 
13513 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13514 static inline
13515 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13516 {
13517 	soc->tx_ilp_enable = false;
13518 }
13519 #else
13520 static inline
13521 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13522 {
13523 }
13524 #endif
13525 
13526 /**
13527  * dp_soc_attach() - Attach txrx SOC
13528  * @ctrl_psoc: Opaque SOC handle from control plane
13529  * @params: SOC attach params
13530  *
13531  * Return: DP SOC handle on success, NULL on failure
13532  */
13533 static struct dp_soc *
13534 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13535 	      struct cdp_soc_attach_params *params)
13536 {
13537 	struct dp_soc *soc =  NULL;
13538 	uint16_t arch_id;
13539 	struct hif_opaque_softc *hif_handle = params->hif_handle;
13540 	qdf_device_t qdf_osdev = params->qdf_osdev;
13541 	struct ol_if_ops *ol_ops = params->ol_ops;
13542 	uint16_t device_id = params->device_id;
13543 
13544 	if (!hif_handle) {
13545 		dp_err("HIF handle is NULL");
13546 		goto fail0;
13547 	}
13548 	arch_id = cdp_get_arch_type_from_devid(device_id);
13549 	soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
13550 	if (!soc) {
13551 		dp_err("DP SOC memory allocation failed");
13552 		goto fail0;
13553 	}
13554 
13555 	dp_info("soc memory allocated %pK", soc);
13556 	soc->hif_handle = hif_handle;
13557 	soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
13558 	if (!soc->hal_soc)
13559 		goto fail1;
13560 
13561 	hif_get_cmem_info(soc->hif_handle,
13562 			  &soc->cmem_base,
13563 			  &soc->cmem_total_size);
13564 	soc->cmem_avail_size = soc->cmem_total_size;
13565 	soc->device_id = device_id;
13566 	soc->cdp_soc.ops =
13567 		(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
13568 	if (!soc->cdp_soc.ops)
13569 		goto fail1;
13570 
13571 	dp_soc_txrx_ops_attach(soc);
13572 	soc->cdp_soc.ol_ops = ol_ops;
13573 	soc->ctrl_psoc = ctrl_psoc;
13574 	soc->osdev = qdf_osdev;
13575 	soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
13576 	dp_soc_init_tx_ilp(soc);
13577 	hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
13578 			    &soc->rx_mon_pkt_tlv_size);
13579 	soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
13580 						       params->mlo_chip_id);
13581 	soc->features.dmac_cmn_src_rxbuf_ring_enabled =
13582 		hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
13583 	soc->arch_id = arch_id;
13584 	soc->link_desc_id_start =
13585 			dp_get_link_desc_id_start(soc->arch_id);
13586 	dp_configure_arch_ops(soc);
13587 
13588 	/* Reset wbm sg list and flags */
13589 	dp_rx_wbm_sg_list_reset(soc);
13590 
13591 	dp_soc_cfg_history_attach(soc);
13592 	dp_soc_tx_hw_desc_history_attach(soc);
13593 	dp_soc_rx_history_attach(soc);
13594 	dp_soc_mon_status_ring_history_attach(soc);
13595 	dp_soc_tx_history_attach(soc);
13596 	wlan_set_srng_cfg(&soc->wlan_srng_cfg);
13597 	soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
13598 	if (!soc->wlan_cfg_ctx) {
13599 		dp_err("wlan_cfg_ctx failed");
13600 		goto fail2;
13601 	}
13602 
13603 	qdf_ssr_driver_dump_register_region("wlan_cfg_ctx", soc->wlan_cfg_ctx,
13604 					    sizeof(*soc->wlan_cfg_ctx));
13605 
13606 	/*sync DP soc cfg items with profile support after cfg_soc_attach*/
13607 	wlan_dp_soc_cfg_sync_profile((struct cdp_soc_t *)soc);
13608 
13609 	soc->arch_ops.soc_cfg_attach(soc);
13610 
13611 	qdf_ssr_driver_dump_register_region("tcl_wbm_map_array",
13612 					    &soc->wlan_cfg_ctx->tcl_wbm_map_array,
13613 					    sizeof(struct wlan_cfg_tcl_wbm_ring_num_map));
13614 
13615 	if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
13616 		dp_err("failed to allocate link desc pool banks");
13617 		goto fail3;
13618 	}
13619 
13620 	if (dp_hw_link_desc_ring_alloc(soc)) {
13621 		dp_err("failed to allocate link_desc_ring");
13622 		goto fail4;
13623 	}
13624 
13625 	if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
13626 								 params))) {
13627 		dp_err("unable to do target specific attach");
13628 		goto fail5;
13629 	}
13630 
13631 	if (dp_soc_srng_alloc(soc)) {
13632 		dp_err("failed to allocate soc srng rings");
13633 		goto fail6;
13634 	}
13635 
13636 	if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
13637 		dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
13638 		goto fail7;
13639 	}
13640 
13641 	if (!dp_monitor_modularized_enable()) {
13642 		if (dp_mon_soc_attach_wrapper(soc)) {
13643 			dp_err("failed to attach monitor");
13644 			goto fail8;
13645 		}
13646 	}
13647 
13648 	if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
13649 				       &soc->reo_qref)
13650 	    != QDF_STATUS_SUCCESS) {
13651 		dp_err("unable to setup reo shared qaddr");
13652 		goto fail9;
13653 	}
13654 
13655 	if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
13656 		dp_err("failed to initialize dp stats sysfs file");
13657 		dp_sysfs_deinitialize_stats(soc);
13658 	}
13659 
13660 	dp_soc_swlm_attach(soc);
13661 	dp_soc_set_interrupt_mode(soc);
13662 	dp_soc_set_def_pdev(soc);
13663 	dp_soc_set_qref_debug_list(soc);
13664 	qdf_ssr_driver_dump_register_region("dp_soc", soc, sizeof(*soc));
13665 	qdf_nbuf_ssr_register_region();
13666 
13667 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
13668 		qdf_dma_mem_stats_read(),
13669 		qdf_heap_mem_stats_read(),
13670 		qdf_skb_total_mem_stats_read());
13671 
13672 	return soc;
13673 fail9:
13674 	if (!dp_monitor_modularized_enable())
13675 		dp_mon_soc_detach_wrapper(soc);
13676 fail8:
13677 	dp_soc_tx_desc_sw_pools_free(soc);
13678 fail7:
13679 	dp_soc_srng_free(soc);
13680 fail6:
13681 	soc->arch_ops.txrx_soc_detach(soc);
13682 fail5:
13683 	dp_hw_link_desc_ring_free(soc);
13684 fail4:
13685 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
13686 fail3:
13687 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
13688 fail2:
13689 	qdf_mem_free(soc->cdp_soc.ops);
13690 fail1:
13691 	qdf_mem_common_free(soc);
13692 fail0:
13693 	return NULL;
13694 }
13695 
13696 void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
13697 			struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13698 			struct hif_opaque_softc *hif_handle,
13699 			HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
13700 			struct ol_if_ops *ol_ops, uint16_t device_id)
13701 {
13702 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
13703 
13704 	return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
13705 }
13706 
13707 #endif
13708 
13709 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
13710 {
13711 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
13712 		return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
13713 
13714 	/* Typically for MCL as there only 1 PDEV*/
13715 	return soc->pdev_list[0];
13716 }
13717 
13718 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
13719 				     int *max_mac_rings)
13720 {
13721 	bool dbs_enable = false;
13722 
13723 	if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
13724 		dbs_enable = soc->cdp_soc.ol_ops->
13725 				is_hw_dbs_capable((void *)soc->ctrl_psoc);
13726 
13727 	*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
13728 	dp_info("dbs_enable %d, max_mac_rings %d",
13729 		dbs_enable, *max_mac_rings);
13730 }
13731 
13732 qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
13733 
13734 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13735 /**
13736  * dp_get_cfr_rcc() - get cfr rcc config
13737  * @soc_hdl: Datapath soc handle
13738  * @pdev_id: id of objmgr pdev
13739  *
13740  * Return: true/false based on cfr mode setting
13741  */
13742 static
13743 bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13744 {
13745 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13746 	struct dp_pdev *pdev = NULL;
13747 
13748 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13749 	if (!pdev) {
13750 		dp_err("pdev is NULL");
13751 		return false;
13752 	}
13753 
13754 	return pdev->cfr_rcc_mode;
13755 }
13756 
13757 /**
13758  * dp_set_cfr_rcc() - enable/disable cfr rcc config
13759  * @soc_hdl: Datapath soc handle
13760  * @pdev_id: id of objmgr pdev
13761  * @enable: Enable/Disable cfr rcc mode
13762  *
13763  * Return: none
13764  */
13765 static
13766 void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
13767 {
13768 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13769 	struct dp_pdev *pdev = NULL;
13770 
13771 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13772 	if (!pdev) {
13773 		dp_err("pdev is NULL");
13774 		return;
13775 	}
13776 
13777 	pdev->cfr_rcc_mode = enable;
13778 }
13779 
13780 /**
13781  * dp_get_cfr_dbg_stats - Get the debug statistics for CFR
13782  * @soc_hdl: Datapath soc handle
13783  * @pdev_id: id of data path pdev handle
13784  * @cfr_rcc_stats: CFR RCC debug statistics buffer
13785  *
13786  * Return: none
13787  */
13788 static inline void
13789 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13790 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats)
13791 {
13792 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13793 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13794 
13795 	if (!pdev) {
13796 		dp_err("pdev is NULL");
13797 		return;
13798 	}
13799 
13800 	qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
13801 		     sizeof(struct cdp_cfr_rcc_stats));
13802 }
13803 
13804 /**
13805  * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
13806  * @soc_hdl: Datapath soc handle
13807  * @pdev_id: id of data path pdev handle
13808  *
13809  * Return: none
13810  */
13811 static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
13812 				   uint8_t pdev_id)
13813 {
13814 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13815 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13816 
13817 	if (!pdev) {
13818 		dp_err("dp pdev is NULL");
13819 		return;
13820 	}
13821 
13822 	qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
13823 }
13824 #endif
13825 
13826 /**
13827  * dp_bucket_index() - Return index from array
13828  *
13829  * @delay: delay measured
13830  * @array: array used to index corresponding delay
13831  * @delay_in_us: flag to indicate whether the delay in ms or us
13832  *
13833  * Return: index
13834  */
13835 static uint8_t
13836 dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
13837 {
13838 	uint8_t i = CDP_DELAY_BUCKET_0;
13839 	uint32_t thr_low, thr_high;
13840 
13841 	for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
13842 		thr_low = array[i];
13843 		thr_high = array[i + 1];
13844 
13845 		if (delay_in_us) {
13846 			thr_low = thr_low * USEC_PER_MSEC;
13847 			thr_high = thr_high * USEC_PER_MSEC;
13848 		}
13849 		if (delay >= thr_low && delay <= thr_high)
13850 			return i;
13851 	}
13852 	return (CDP_DELAY_BUCKET_MAX - 1);
13853 }
13854 
13855 #ifdef HW_TX_DELAY_STATS_ENABLE
13856 /*
13857  * cdp_fw_to_hw_delay_range
13858  * Fw to hw delay ranges in milliseconds
13859  */
13860 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13861 	0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
13862 #else
13863 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13864 	0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
13865 #endif
13866 
13867 /*
13868  * cdp_sw_enq_delay_range
13869  * Software enqueue delay ranges in milliseconds
13870  */
13871 static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
13872 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
13873 
13874 /*
13875  * cdp_intfrm_delay_range
13876  * Interframe delay ranges in milliseconds
13877  */
13878 static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
13879 	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
13880 
13881 /**
13882  * dp_fill_delay_buckets() - Fill delay statistics bucket for each
13883  *				type of delay
13884  * @tstats: tid tx stats
13885  * @rstats: tid rx stats
13886  * @delay: delay in ms
13887  * @tid: tid value
13888  * @mode: type of tx delay mode
13889  * @ring_id: ring number
13890  * @delay_in_us: flag to indicate whether the delay in ms or us
13891  *
13892  * Return: pointer to cdp_delay_stats structure
13893  */
13894 static struct cdp_delay_stats *
13895 dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
13896 		      struct cdp_tid_rx_stats *rstats, uint32_t delay,
13897 		      uint8_t tid, uint8_t mode, uint8_t ring_id,
13898 		      bool delay_in_us)
13899 {
13900 	uint8_t delay_index = 0;
13901 	struct cdp_delay_stats *stats = NULL;
13902 
13903 	/*
13904 	 * Update delay stats in proper bucket
13905 	 */
13906 	switch (mode) {
13907 	/* Software Enqueue delay ranges */
13908 	case CDP_DELAY_STATS_SW_ENQ:
13909 		if (!tstats)
13910 			break;
13911 
13912 		delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
13913 					      delay_in_us);
13914 		tstats->swq_delay.delay_bucket[delay_index]++;
13915 		stats = &tstats->swq_delay;
13916 		break;
13917 
13918 	/* Tx Completion delay ranges */
13919 	case CDP_DELAY_STATS_FW_HW_TRANSMIT:
13920 		if (!tstats)
13921 			break;
13922 
13923 		delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
13924 					      delay_in_us);
13925 		tstats->hwtx_delay.delay_bucket[delay_index]++;
13926 		stats = &tstats->hwtx_delay;
13927 		break;
13928 
13929 	/* Interframe tx delay ranges */
13930 	case CDP_DELAY_STATS_TX_INTERFRAME:
13931 		if (!tstats)
13932 			break;
13933 
13934 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13935 					      delay_in_us);
13936 		tstats->intfrm_delay.delay_bucket[delay_index]++;
13937 		stats = &tstats->intfrm_delay;
13938 		break;
13939 
13940 	/* Interframe rx delay ranges */
13941 	case CDP_DELAY_STATS_RX_INTERFRAME:
13942 		if (!rstats)
13943 			break;
13944 
13945 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13946 					      delay_in_us);
13947 		rstats->intfrm_delay.delay_bucket[delay_index]++;
13948 		stats = &rstats->intfrm_delay;
13949 		break;
13950 
13951 	/* Ring reap to indication to network stack */
13952 	case CDP_DELAY_STATS_REAP_STACK:
13953 		if (!rstats)
13954 			break;
13955 
13956 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13957 					      delay_in_us);
13958 		rstats->to_stack_delay.delay_bucket[delay_index]++;
13959 		stats = &rstats->to_stack_delay;
13960 		break;
13961 	default:
13962 		dp_debug("Incorrect delay mode: %d", mode);
13963 	}
13964 
13965 	return stats;
13966 }
13967 
13968 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
13969 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
13970 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
13971 			   bool delay_in_us)
13972 {
13973 	struct cdp_delay_stats *dstats = NULL;
13974 
13975 	/*
13976 	 * Delay ranges are different for different delay modes
13977 	 * Get the correct index to update delay bucket
13978 	 */
13979 	dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
13980 				       ring_id, delay_in_us);
13981 	if (qdf_unlikely(!dstats))
13982 		return;
13983 
13984 	if (delay != 0) {
13985 		/*
13986 		 * Compute minimum,average and maximum
13987 		 * delay
13988 		 */
13989 		if (delay < dstats->min_delay)
13990 			dstats->min_delay = delay;
13991 
13992 		if (delay > dstats->max_delay)
13993 			dstats->max_delay = delay;
13994 
13995 		/*
13996 		 * Average over delay measured till now
13997 		 */
13998 		if (!dstats->avg_delay)
13999 			dstats->avg_delay = delay;
14000 		else
14001 			dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
14002 	}
14003 }
14004 
14005 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
14006 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
14007 			      u_int16_t mac_cnt, bool limit)
14008 {
14009 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
14010 	struct dp_vdev *vdev =
14011 		dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
14012 	struct dp_peer *peer;
14013 	uint16_t new_mac_cnt = 0;
14014 
14015 	if (!vdev)
14016 		return new_mac_cnt;
14017 
14018 	if (limit && (vdev->num_peers > mac_cnt)) {
14019 		dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
14020 		return 0;
14021 	}
14022 
14023 	qdf_spin_lock_bh(&vdev->peer_list_lock);
14024 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
14025 		if (peer->bss_peer)
14026 			continue;
14027 		if (new_mac_cnt < mac_cnt) {
14028 			WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
14029 			new_mac_cnt++;
14030 		}
14031 	}
14032 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
14033 	dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
14034 	return new_mac_cnt;
14035 }
14036 
14037 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
14038 {
14039 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14040 						       mac, 0, vdev_id,
14041 						       DP_MOD_ID_CDP);
14042 	uint16_t peer_id = HTT_INVALID_PEER;
14043 
14044 	if (!peer) {
14045 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
14046 		return peer_id;
14047 	}
14048 
14049 	peer_id = peer->peer_id;
14050 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14051 	return peer_id;
14052 }
14053 
14054 #ifdef QCA_SUPPORT_WDS_EXTENDED
14055 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
14056 				  uint8_t vdev_id,
14057 				  uint8_t *mac,
14058 				  ol_txrx_rx_fp rx,
14059 				  ol_osif_peer_handle osif_peer)
14060 {
14061 	struct dp_txrx_peer *txrx_peer = NULL;
14062 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14063 						       mac, 0, vdev_id,
14064 						       DP_MOD_ID_CDP);
14065 	QDF_STATUS status = QDF_STATUS_E_INVAL;
14066 
14067 	if (!peer) {
14068 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
14069 		return status;
14070 	}
14071 
14072 	txrx_peer = dp_get_txrx_peer(peer);
14073 	if (!txrx_peer) {
14074 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14075 		return status;
14076 	}
14077 
14078 	if (rx) {
14079 		if (txrx_peer->osif_rx) {
14080 			status = QDF_STATUS_E_ALREADY;
14081 		} else {
14082 			txrx_peer->osif_rx = rx;
14083 			status = QDF_STATUS_SUCCESS;
14084 		}
14085 	} else {
14086 		if (txrx_peer->osif_rx) {
14087 			txrx_peer->osif_rx = NULL;
14088 			status = QDF_STATUS_SUCCESS;
14089 		} else {
14090 			status = QDF_STATUS_E_ALREADY;
14091 		}
14092 	}
14093 
14094 	txrx_peer->wds_ext.osif_peer = osif_peer;
14095 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14096 
14097 	return status;
14098 }
14099 
14100 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
14101 				ol_txrx_soc_handle soc,
14102 				uint8_t vdev_id,
14103 				uint8_t *mac,
14104 				ol_osif_peer_handle *osif_peer)
14105 {
14106 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
14107 	struct dp_txrx_peer *txrx_peer = NULL;
14108 	struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
14109 						      mac, 0, vdev_id,
14110 						      DP_MOD_ID_CDP);
14111 
14112 	if (!peer) {
14113 		dp_cdp_debug("%pK: Peer is NULL!", dp_soc);
14114 		return QDF_STATUS_E_INVAL;
14115 	}
14116 
14117 	txrx_peer = dp_get_txrx_peer(peer);
14118 	if (!txrx_peer) {
14119 		dp_cdp_debug("%pK: TXRX Peer is NULL!", dp_soc);
14120 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14121 		return QDF_STATUS_E_INVAL;
14122 	}
14123 
14124 	*osif_peer = txrx_peer->wds_ext.osif_peer;
14125 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14126 
14127 	return QDF_STATUS_SUCCESS;
14128 }
14129 
14130 QDF_STATUS dp_wds_ext_set_peer_bit(ol_txrx_soc_handle soc, uint8_t *mac)
14131 {
14132 	struct dp_txrx_peer *txrx_peer = NULL;
14133 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14134 						       mac, 0, DP_VDEV_ALL,
14135 						       DP_MOD_ID_IPA);
14136 	if (!peer) {
14137 		dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
14138 		return QDF_STATUS_E_INVAL;
14139 	}
14140 
14141 	txrx_peer = dp_get_txrx_peer(peer);
14142 	if (!txrx_peer) {
14143 		dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14144 		return QDF_STATUS_E_INVAL;
14145 	}
14146 	qdf_atomic_test_and_set_bit(WDS_EXT_PEER_INIT_BIT,
14147 				    &txrx_peer->wds_ext.init);
14148 	dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14149 
14150 	return QDF_STATUS_SUCCESS;
14151 }
14152 #endif /* QCA_SUPPORT_WDS_EXTENDED */
14153 
14154 /**
14155  * dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
14156  *			   monitor rings
14157  * @pdev: Datapath pdev handle
14158  *
14159  */
14160 static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
14161 {
14162 	struct dp_soc *soc = pdev->soc;
14163 	uint8_t i;
14164 
14165 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14166 		dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14167 			       RXDMA_BUF,
14168 			       pdev->lmac_id);
14169 
14170 	if (!soc->rxdma2sw_rings_not_supported) {
14171 		for (i = 0;
14172 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14173 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14174 								 pdev->pdev_id);
14175 
14176 			wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
14177 							base_vaddr_unaligned,
14178 					     soc->rxdma_err_dst_ring[lmac_id].
14179 								alloc_size,
14180 					     soc->ctrl_psoc,
14181 					     WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14182 					     "rxdma_err_dst");
14183 			dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
14184 				       RXDMA_DST, lmac_id);
14185 		}
14186 	}
14187 
14188 
14189 }
14190 
14191 /**
14192  * dp_pdev_srng_init() - initialize all pdev srng rings including
14193  *			   monitor rings
14194  * @pdev: Datapath pdev handle
14195  *
14196  * Return: QDF_STATUS_SUCCESS on success
14197  *	   QDF_STATUS_E_NOMEM on failure
14198  */
14199 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
14200 {
14201 	struct dp_soc *soc = pdev->soc;
14202 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14203 	uint32_t i;
14204 
14205 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14206 
14207 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14208 		if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14209 				 RXDMA_BUF, 0, pdev->lmac_id)) {
14210 			dp_init_err("%pK: dp_srng_init failed rx refill ring",
14211 				    soc);
14212 			goto fail1;
14213 		}
14214 	}
14215 
14216 	/* LMAC RxDMA to SW Rings configuration */
14217 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14218 		/* Only valid for MCL */
14219 		pdev = soc->pdev_list[0];
14220 
14221 	if (!soc->rxdma2sw_rings_not_supported) {
14222 		for (i = 0;
14223 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14224 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14225 								 pdev->pdev_id);
14226 			struct dp_srng *srng =
14227 				&soc->rxdma_err_dst_ring[lmac_id];
14228 
14229 			if (srng->hal_srng)
14230 				continue;
14231 
14232 			if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
14233 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14234 					    soc);
14235 				goto fail1;
14236 			}
14237 			wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
14238 						base_vaddr_unaligned,
14239 					  soc->rxdma_err_dst_ring[lmac_id].
14240 						alloc_size,
14241 					  soc->ctrl_psoc,
14242 					  WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14243 					  "rxdma_err_dst");
14244 		}
14245 	}
14246 	return QDF_STATUS_SUCCESS;
14247 
14248 fail1:
14249 	dp_pdev_srng_deinit(pdev);
14250 	return QDF_STATUS_E_NOMEM;
14251 }
14252 
14253 /**
14254  * dp_pdev_srng_free() - free all pdev srng rings including monitor rings
14255  * @pdev: Datapath pdev handle
14256  *
14257  */
14258 static void dp_pdev_srng_free(struct dp_pdev *pdev)
14259 {
14260 	struct dp_soc *soc = pdev->soc;
14261 	uint8_t i;
14262 
14263 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14264 		dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
14265 
14266 	if (!soc->rxdma2sw_rings_not_supported) {
14267 		for (i = 0;
14268 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14269 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14270 								 pdev->pdev_id);
14271 
14272 			dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
14273 		}
14274 	}
14275 }
14276 
14277 /**
14278  * dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
14279  *			  monitor rings
14280  * @pdev: Datapath pdev handle
14281  *
14282  * Return: QDF_STATUS_SUCCESS on success
14283  *	   QDF_STATUS_E_NOMEM on failure
14284  */
14285 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
14286 {
14287 	struct dp_soc *soc = pdev->soc;
14288 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14289 	uint32_t ring_size;
14290 	uint32_t i;
14291 
14292 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14293 
14294 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
14295 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14296 		if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14297 				  RXDMA_BUF, ring_size, 0)) {
14298 			dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
14299 				    soc);
14300 			goto fail1;
14301 		}
14302 	}
14303 
14304 	ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
14305 	/* LMAC RxDMA to SW Rings configuration */
14306 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14307 		/* Only valid for MCL */
14308 		pdev = soc->pdev_list[0];
14309 
14310 	if (!soc->rxdma2sw_rings_not_supported) {
14311 		for (i = 0;
14312 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14313 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14314 								 pdev->pdev_id);
14315 			struct dp_srng *srng =
14316 				&soc->rxdma_err_dst_ring[lmac_id];
14317 
14318 			if (srng->base_vaddr_unaligned)
14319 				continue;
14320 
14321 			if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
14322 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14323 					    soc);
14324 				goto fail1;
14325 			}
14326 		}
14327 	}
14328 
14329 	return QDF_STATUS_SUCCESS;
14330 fail1:
14331 	dp_pdev_srng_free(pdev);
14332 	return QDF_STATUS_E_NOMEM;
14333 }
14334 
14335 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
14336 /**
14337  * dp_init_link_peer_stats_enabled() - Init link_peer_stats as per config
14338  * @pdev: DP pdev
14339  *
14340  * Return: None
14341  */
14342 static inline void
14343 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14344 {
14345 	pdev->link_peer_stats = wlan_cfg_is_peer_link_stats_enabled(
14346 						pdev->soc->wlan_cfg_ctx);
14347 }
14348 #else
14349 static inline void
14350 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14351 {
14352 }
14353 #endif
14354 
14355 static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
14356 				      HTC_HANDLE htc_handle,
14357 				      qdf_device_t qdf_osdev,
14358 				      uint8_t pdev_id)
14359 {
14360 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14361 	int nss_cfg;
14362 	void *sojourn_buf;
14363 
14364 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
14365 	struct dp_pdev *pdev = soc->pdev_list[pdev_id];
14366 
14367 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14368 	pdev->soc = soc;
14369 	pdev->pdev_id = pdev_id;
14370 
14371 	/*
14372 	 * Variable to prevent double pdev deinitialization during
14373 	 * radio detach execution .i.e. in the absence of any vdev.
14374 	 */
14375 	pdev->pdev_deinit = 0;
14376 
14377 	if (dp_wdi_event_attach(pdev)) {
14378 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
14379 			  "dp_wdi_evet_attach failed");
14380 		goto fail0;
14381 	}
14382 
14383 	if (dp_pdev_srng_init(pdev)) {
14384 		dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
14385 		goto fail1;
14386 	}
14387 
14388 	/* Initialize descriptors in TCL Rings used by IPA */
14389 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
14390 		hal_tx_init_data_ring(soc->hal_soc,
14391 				      soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
14392 		dp_ipa_hal_tx_init_alt_data_ring(soc);
14393 	}
14394 
14395 	/*
14396 	 * Initialize command/credit ring descriptor
14397 	 * Command/CREDIT ring also used for sending DATA cmds
14398 	 */
14399 	dp_tx_init_cmd_credit_ring(soc);
14400 
14401 	dp_tx_pdev_init(pdev);
14402 
14403 	/*
14404 	 * set nss pdev config based on soc config
14405 	 */
14406 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
14407 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
14408 					 (nss_cfg & (1 << pdev_id)));
14409 	pdev->target_pdev_id =
14410 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
14411 
14412 	if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
14413 	    pdev->lmac_id == PHYB_2G_LMAC_ID) {
14414 		pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
14415 	}
14416 
14417 	/* Reset the cpu ring map if radio is NSS offloaded */
14418 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
14419 		dp_soc_reset_cpu_ring_map(soc);
14420 		dp_soc_reset_intr_mask(soc);
14421 	}
14422 
14423 	/* Reset the ring interrupt mask if DPDK is enabled */
14424 	if (wlan_cfg_get_dp_soc_dpdk_cfg(soc->ctrl_psoc)) {
14425 		dp_soc_reset_dpdk_intr_mask(soc);
14426 	}
14427 	/* Reset the cpu ring map if radio is NSS offloaded */
14428 	dp_soc_reset_ipa_vlan_intr_mask(soc);
14429 
14430 	TAILQ_INIT(&pdev->vdev_list);
14431 	qdf_spinlock_create(&pdev->vdev_list_lock);
14432 	pdev->vdev_count = 0;
14433 	pdev->is_lro_hash_configured = 0;
14434 
14435 	qdf_spinlock_create(&pdev->tx_mutex);
14436 	pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
14437 	pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
14438 	pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
14439 
14440 	DP_STATS_INIT(pdev);
14441 
14442 	dp_local_peer_id_pool_init(pdev);
14443 
14444 	dp_dscp_tid_map_setup(pdev);
14445 	dp_pcp_tid_map_setup(pdev);
14446 
14447 	/* set the reo destination during initialization */
14448 	dp_pdev_set_default_reo(pdev);
14449 
14450 	qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
14451 
14452 	pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
14453 			      sizeof(struct cdp_tx_sojourn_stats), 0, 4,
14454 			      TRUE);
14455 
14456 	if (!pdev->sojourn_buf) {
14457 		dp_init_err("%pK: Failed to allocate sojourn buf", soc);
14458 		goto fail2;
14459 	}
14460 	sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
14461 	qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
14462 
14463 	qdf_event_create(&pdev->fw_peer_stats_event);
14464 	qdf_event_create(&pdev->fw_stats_event);
14465 	qdf_event_create(&pdev->fw_obss_stats_event);
14466 
14467 	pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
14468 	pdev->num_tx_spl_allowed =
14469 		wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
14470 	pdev->num_reg_tx_allowed =
14471 		pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
14472 	if (dp_rxdma_ring_setup(soc, pdev)) {
14473 		dp_init_err("%pK: RXDMA ring config failed", soc);
14474 		goto fail3;
14475 	}
14476 
14477 	if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
14478 		goto fail3;
14479 
14480 	if (dp_ipa_ring_resource_setup(soc, pdev))
14481 		goto fail4;
14482 
14483 	if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
14484 		dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
14485 		goto fail4;
14486 	}
14487 
14488 	if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
14489 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
14490 			  FL("dp_pdev_bkp_stats_attach failed"));
14491 		goto fail5;
14492 	}
14493 
14494 	if (dp_monitor_pdev_init(pdev)) {
14495 		dp_init_err("%pK: dp_monitor_pdev_init failed", soc);
14496 		goto fail6;
14497 	}
14498 
14499 	/* initialize sw rx descriptors */
14500 	dp_rx_pdev_desc_pool_init(pdev);
14501 	/* allocate buffers and replenish the RxDMA ring */
14502 	dp_rx_pdev_buffers_alloc(pdev);
14503 
14504 	dp_init_tso_stats(pdev);
14505 	dp_init_link_peer_stats_enabled(pdev);
14506 
14507 	/* Initialize dp tx fast path flag */
14508 	pdev->tx_fast_flag = DP_TX_DESC_FLAG_SIMPLE;
14509 	if (soc->hw_txrx_stats_en)
14510 		pdev->tx_fast_flag |= DP_TX_DESC_FLAG_FASTPATH_SIMPLE;
14511 
14512 	pdev->rx_fast_flag = false;
14513 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
14514 		qdf_dma_mem_stats_read(),
14515 		qdf_heap_mem_stats_read(),
14516 		qdf_skb_total_mem_stats_read());
14517 
14518 	return QDF_STATUS_SUCCESS;
14519 fail6:
14520 	dp_pdev_bkp_stats_detach(pdev);
14521 fail5:
14522 	dp_ipa_uc_detach(soc, pdev);
14523 fail4:
14524 	dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
14525 fail3:
14526 	dp_rxdma_ring_cleanup(soc, pdev);
14527 	qdf_nbuf_free(pdev->sojourn_buf);
14528 fail2:
14529 	qdf_spinlock_destroy(&pdev->tx_mutex);
14530 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
14531 	dp_pdev_srng_deinit(pdev);
14532 fail1:
14533 	dp_wdi_event_detach(pdev);
14534 fail0:
14535 	return QDF_STATUS_E_FAILURE;
14536 }
14537 
14538 /**
14539  * dp_pdev_init_wifi3() - Init txrx pdev
14540  * @txrx_soc:
14541  * @htc_handle: HTC handle for host-target interface
14542  * @qdf_osdev: QDF OS device
14543  * @pdev_id: pdev Id
14544  *
14545  * Return: QDF_STATUS
14546  */
14547 static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
14548 				     HTC_HANDLE htc_handle,
14549 				     qdf_device_t qdf_osdev,
14550 				     uint8_t pdev_id)
14551 {
14552 	return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
14553 }
14554 
14555 #ifdef FEATURE_DIRECT_LINK
14556 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14557 						 uint8_t pdev_id)
14558 {
14559 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14560 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14561 
14562 	if (!pdev) {
14563 		dp_err("DP pdev is NULL");
14564 		return NULL;
14565 	}
14566 
14567 	if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
14568 			  RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
14569 		dp_err("SRNG alloc failed for rx_refill_buf_ring4");
14570 		return NULL;
14571 	}
14572 
14573 	if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
14574 			 RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
14575 		dp_err("SRNG init failed for rx_refill_buf_ring4");
14576 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14577 		return NULL;
14578 	}
14579 
14580 	if (htt_srng_setup(soc->htt_handle, pdev_id,
14581 			   pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
14582 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
14583 			       DIRECT_LINK_REFILL_RING_IDX);
14584 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14585 		return NULL;
14586 	}
14587 
14588 	return &pdev->rx_refill_buf_ring4;
14589 }
14590 
14591 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14592 					uint8_t pdev_id)
14593 {
14594 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14595 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14596 
14597 	if (!pdev) {
14598 		dp_err("DP pdev is NULL");
14599 		return;
14600 	}
14601 
14602 	dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
14603 	dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14604 }
14605 #endif
14606 
14607 #ifdef QCA_MULTIPASS_SUPPORT
14608 QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
14609 				uint16_t vlan_id, uint16_t group_key)
14610 {
14611 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14612 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
14613 						     DP_MOD_ID_TX_MULTIPASS);
14614 	QDF_STATUS status;
14615 
14616 	dp_info("Try: vdev_id %d, vdev %pK, multipass_en %d, vlan_id %d, group_key %d",
14617 		vdev_id, vdev, vdev ? vdev->multipass_en : 0, vlan_id,
14618 		group_key);
14619 	if (!vdev || !vdev->multipass_en) {
14620 		status = QDF_STATUS_E_INVAL;
14621 		goto fail;
14622 	}
14623 
14624 	if (!vdev->iv_vlan_map) {
14625 		uint16_t vlan_map_size = (sizeof(uint16_t)) * DP_MAX_VLAN_IDS;
14626 
14627 		vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
14628 		if (!vdev->iv_vlan_map) {
14629 			QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
14630 			status = QDF_STATUS_E_NOMEM;
14631 			goto fail;
14632 		}
14633 
14634 		/*
14635 		 * 0 is invalid group key.
14636 		 * Initilalize array with invalid group keys.
14637 		 */
14638 		qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
14639 	}
14640 
14641 	if (vlan_id >= DP_MAX_VLAN_IDS) {
14642 		status = QDF_STATUS_E_INVAL;
14643 		goto fail;
14644 	}
14645 
14646 	dp_info("Successful setting: vdev_id %d, vlan_id %d, group_key %d",
14647 		vdev_id, vlan_id, group_key);
14648 	vdev->iv_vlan_map[vlan_id] = group_key;
14649 	status = QDF_STATUS_SUCCESS;
14650 fail:
14651 	if (vdev)
14652 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
14653 	return status;
14654 }
14655 
14656 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
14657 {
14658 	struct vlan_ethhdr veth_hdr;
14659 	struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
14660 
14661 	/*
14662 	 * Extract VLAN header of 4 bytes:
14663 	 * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4],
14664 	 *		   EtherType[2], Payload}
14665 	 * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02
14666 	 *		    08 00 45 00 00...
14667 	 * After Removal  : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00
14668 	 *		    00...
14669 	 */
14670 	qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
14671 	qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
14672 	veh = (struct vlan_ethhdr *)nbuf->data;
14673 	qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
14674 }
14675 
14676 void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
14677 {
14678 	struct dp_txrx_peer *txrx_peer = NULL;
14679 
14680 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
14681 	TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
14682 		qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
14683 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
14684 
14685 	if (vdev->iv_vlan_map) {
14686 		qdf_mem_free(vdev->iv_vlan_map);
14687 		vdev->iv_vlan_map = NULL;
14688 	}
14689 
14690 	qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
14691 }
14692 
14693 void dp_peer_multipass_list_init(struct dp_vdev *vdev)
14694 {
14695 	/*
14696 	 * vdev->iv_vlan_map is allocated when the first configuration command
14697 	 * is issued to avoid unnecessary allocation for regular mode VAP.
14698 	 */
14699 	TAILQ_INIT(&vdev->mpass_peer_list);
14700 	qdf_spinlock_create(&vdev->mpass_peer_mutex);
14701 }
14702 #endif /* QCA_MULTIPASS_SUPPORT */
14703 
14704 #ifdef WLAN_FEATURE_SSR_DRIVER_DUMP
14705 #define MAX_STR_LEN 50
14706 #define MAX_SRNG_STR_LEN 30
14707 
14708 void dp_ssr_dump_srng_register(char *region_name, struct dp_srng *srng, int num)
14709 {
14710 	char ring[MAX_SRNG_STR_LEN], ring_handle[MAX_STR_LEN];
14711 
14712 	if (num >= 0)
14713 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s%s%d",
14714 			    region_name, "_", num);
14715 	else
14716 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s", region_name);
14717 
14718 	qdf_snprint(ring_handle, MAX_STR_LEN, "%s%s", ring, "_handle");
14719 
14720 	qdf_ssr_driver_dump_register_region(ring_handle, srng->hal_srng,
14721 					    sizeof(struct hal_srng));
14722 	qdf_ssr_driver_dump_register_region(ring,
14723 					    srng->base_vaddr_aligned,
14724 					    srng->alloc_size);
14725 }
14726 
14727 void dp_ssr_dump_srng_unregister(char *region_name, int num)
14728 {
14729 	char ring[MAX_SRNG_STR_LEN], ring_handle[MAX_STR_LEN];
14730 
14731 	if (num >= 0)
14732 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s%s%d",
14733 			    region_name, "_", num);
14734 	else
14735 		qdf_snprint(ring, MAX_SRNG_STR_LEN, "%s", region_name);
14736 
14737 	qdf_snprint(ring_handle, MAX_STR_LEN, "%s%s", ring, "_handle");
14738 
14739 	qdf_ssr_driver_dump_unregister_region(ring);
14740 	qdf_ssr_driver_dump_unregister_region(ring_handle);
14741 }
14742 
14743 void dp_ssr_dump_pdev_register(struct dp_pdev *pdev, uint8_t pdev_id)
14744 {
14745 	char pdev_str[MAX_STR_LEN];
14746 
14747 	qdf_snprint(pdev_str, MAX_STR_LEN, "%s%s%d", "dp_pdev", "_", pdev_id);
14748 	qdf_ssr_driver_dump_register_region(pdev_str, pdev, sizeof(*pdev));
14749 }
14750 
14751 void dp_ssr_dump_pdev_unregister(uint8_t pdev_id)
14752 {
14753 	char pdev_str[MAX_STR_LEN];
14754 
14755 	qdf_snprint(pdev_str, MAX_STR_LEN, "%s%s%d", "dp_pdev", "_", pdev_id);
14756 	qdf_ssr_driver_dump_unregister_region(pdev_str);
14757 }
14758 #endif
14759