xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_main.c (revision 17183c4759d35d62dc4d2b470a724940345ae906)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_ipa_obj_mgmt_api.h>
21 #include <qdf_types.h>
22 #include <qdf_lock.h>
23 #include <qdf_net_types.h>
24 #include <qdf_lro.h>
25 #include <qdf_module.h>
26 #include <hal_hw_headers.h>
27 #include <hal_api.h>
28 #include <hif.h>
29 #include <htt.h>
30 #include <wdi_event.h>
31 #include <queue.h>
32 #include "dp_types.h"
33 #include "dp_rings.h"
34 #include "dp_internal.h"
35 #include "dp_tx.h"
36 #include "dp_tx_desc.h"
37 #include "dp_rx.h"
38 #ifdef DP_RATETABLE_SUPPORT
39 #include "dp_ratetable.h"
40 #endif
41 #include <cdp_txrx_handle.h>
42 #include <wlan_cfg.h>
43 #include <wlan_utility.h>
44 #include "cdp_txrx_cmn_struct.h"
45 #include "cdp_txrx_stats_struct.h"
46 #include "cdp_txrx_cmn_reg.h"
47 #include <qdf_util.h>
48 #include "dp_peer.h"
49 #include "htt_stats.h"
50 #include "dp_htt.h"
51 #ifdef WLAN_SUPPORT_RX_FISA
52 #include <wlan_dp_fisa_rx.h>
53 #endif
54 #include "htt_ppdu_stats.h"
55 #include "qdf_mem.h"   /* qdf_mem_malloc,free */
56 #include "cfg_ucfg_api.h"
57 #include <wlan_module_ids.h>
58 #ifdef QCA_MULTIPASS_SUPPORT
59 #include <enet.h>
60 #endif
61 
62 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
63 #include "cdp_txrx_flow_ctrl_v2.h"
64 #else
65 
66 static inline void
67 cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
68 {
69 	return;
70 }
71 #endif
72 #ifdef WIFI_MONITOR_SUPPORT
73 #include <dp_mon.h>
74 #endif
75 #include "dp_ipa.h"
76 #ifdef FEATURE_WDS
77 #include "dp_txrx_wds.h"
78 #endif
79 #ifdef WLAN_SUPPORT_MSCS
80 #include "dp_mscs.h"
81 #endif
82 #ifdef WLAN_SUPPORT_MESH_LATENCY
83 #include "dp_mesh_latency.h"
84 #endif
85 #ifdef WLAN_SUPPORT_SCS
86 #include "dp_scs.h"
87 #endif
88 #ifdef ATH_SUPPORT_IQUE
89 #include "dp_txrx_me.h"
90 #endif
91 #if defined(DP_CON_MON)
92 #ifndef REMOVE_PKT_LOG
93 #include <pktlog_ac_api.h>
94 #include <pktlog_ac.h>
95 #endif
96 #endif
97 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
98 #include <wlan_dp_swlm.h>
99 #endif
100 #ifdef WLAN_DP_PROFILE_SUPPORT
101 #include <wlan_dp_main.h>
102 #endif
103 #ifdef CONFIG_SAWF_DEF_QUEUES
104 #include "dp_sawf.h"
105 #endif
106 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
107 #include "dp_rx_tag.h"
108 #endif
109 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
110 #include <target_if_dp.h>
111 #endif
112 
113 #ifdef QCA_DP_ENABLE_TX_COMP_RING4
114 #define TXCOMP_RING4_NUM 3
115 #else
116 #define TXCOMP_RING4_NUM WBM2SW_TXCOMP_RING4_NUM
117 #endif
118 
119 #if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
120 #define SET_PEER_REF_CNT_ONE(_peer) \
121 	qdf_atomic_set(&(_peer)->ref_cnt, 1)
122 #else
123 #define SET_PEER_REF_CNT_ONE(_peer)
124 #endif
125 
126 #ifdef WLAN_SYSFS_DP_STATS
127 /* sysfs event wait time for firmware stat request unit milliseconds */
128 #define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
129 #endif
130 
131 #ifdef QCA_DP_TX_FW_METADATA_V2
132 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
133 		HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
134 #else
135 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
136 		HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
137 #endif
138 #define MLD_MODE_INVALID 0xFF
139 
140 QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
141 			MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
142 
143 QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
144 			MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
145 
146 void dp_configure_arch_ops(struct dp_soc *soc);
147 qdf_size_t dp_get_soc_context_size(uint16_t device_id);
148 
149 /*
150  * The max size of cdp_peer_stats_param_t is limited to 16 bytes.
151  * If the buffer size is exceeding this size limit,
152  * dp_txrx_get_peer_stats is to be used instead.
153  */
154 QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
155 			(sizeof(cdp_peer_stats_param_t) <= 16));
156 
157 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
158 /*
159  * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
160  * also should be updated accordingly
161  */
162 QDF_COMPILE_TIME_ASSERT(num_intr_grps,
163 			HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
164 
165 /*
166  * HIF_EVENT_HIST_MAX should always be power of 2
167  */
168 QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
169 			(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
170 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
171 
172 /*
173  * If WLAN_CFG_INT_NUM_CONTEXTS is changed,
174  * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
175  */
176 QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
177 			WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
178 			WLAN_CFG_INT_NUM_CONTEXTS);
179 
180 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc);
181 static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
182 static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
183 
184 static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
185 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
186 static void dp_pdev_srng_free(struct dp_pdev *pdev);
187 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
188 
189 static inline
190 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
191 				struct cdp_pdev_attach_params *params);
192 
193 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
194 
195 static QDF_STATUS
196 dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
197 		   HTC_HANDLE htc_handle,
198 		   qdf_device_t qdf_osdev,
199 		   uint8_t pdev_id);
200 
201 static QDF_STATUS
202 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
203 
204 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
205 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
206 
207 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
208 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
209 				       uint8_t pdev_id,
210 				       int force);
211 static struct dp_soc *
212 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
213 	      struct cdp_soc_attach_params *params);
214 static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
215 					      uint8_t vdev_id,
216 					      uint8_t *peer_mac_addr,
217 					      enum cdp_peer_type peer_type);
218 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
219 				       uint8_t vdev_id,
220 				       uint8_t *peer_mac, uint32_t bitmap,
221 				       enum cdp_peer_type peer_type);
222 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
223 				bool unmap_only,
224 				bool mlo_peers_only);
225 #ifdef ENABLE_VERBOSE_DEBUG
226 bool is_dp_verbose_debug_enabled;
227 #endif
228 
229 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
230 static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
231 static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
232 			   bool enable);
233 static inline void
234 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
235 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats);
236 static inline void
237 dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
238 #endif
239 
240 #ifdef DP_UMAC_HW_RESET_SUPPORT
241 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
242 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
243 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
244 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
245 #endif
246 
247 #define MON_VDEV_TIMER_INIT 0x1
248 #define MON_VDEV_TIMER_RUNNING 0x2
249 
250 #define DP_MCS_LENGTH (6*MAX_MCS)
251 
252 #define DP_CURR_FW_STATS_AVAIL 19
253 #define DP_HTT_DBG_EXT_STATS_MAX 256
254 #define DP_MAX_SLEEP_TIME 100
255 #ifndef QCA_WIFI_3_0_EMU
256 #define SUSPEND_DRAIN_WAIT 500
257 #else
258 #define SUSPEND_DRAIN_WAIT 3000
259 #endif
260 
261 #ifdef IPA_OFFLOAD
262 /* Exclude IPA rings from the interrupt context */
263 #define TX_RING_MASK_VAL	0xb
264 #define RX_RING_MASK_VAL	0x7
265 #else
266 #define TX_RING_MASK_VAL	0xF
267 #define RX_RING_MASK_VAL	0xF
268 #endif
269 
270 #define STR_MAXLEN	64
271 
272 #define RNG_ERR		"SRNG setup failed for"
273 
274 /**
275  * enum dp_stats_type - Select the type of statistics
276  * @STATS_FW: Firmware-based statistic
277  * @STATS_HOST: Host-based statistic
278  * @STATS_TYPE_MAX: maximum enumeration
279  */
280 enum dp_stats_type {
281 	STATS_FW = 0,
282 	STATS_HOST = 1,
283 	STATS_TYPE_MAX = 2,
284 };
285 
286 /**
287  * enum dp_fw_stats - General Firmware statistics options
288  * @TXRX_FW_STATS_INVALID: statistic is not available
289  */
290 enum dp_fw_stats {
291 	TXRX_FW_STATS_INVALID	= -1,
292 };
293 
294 /*
295  * dp_stats_mapping_table - Firmware and Host statistics
296  * currently supported
297  */
298 #ifndef WLAN_SOFTUMAC_SUPPORT
299 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
300 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
301 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
302 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
303 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
304 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
305 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
306 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
307 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
308 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
309 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
310 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
311 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
312 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
313 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
314 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
315 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
316 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
317 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
318 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
319 	/* Last ENUM for HTT FW STATS */
320 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
321 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
322 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
323 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
324 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
325 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
326 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
327 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
328 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
329 	{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
330 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
331 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
332 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
333 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
334 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
335 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
336 	{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
337 	{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
338 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
339 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
340 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID},
341 	{TXRX_FW_STATS_INVALID, TXRX_PEER_STATS},
342 };
343 #else
344 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
345 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
346 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
347 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
348 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
349 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
350 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
351 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
352 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
353 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
354 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
355 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
356 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
357 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
358 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
359 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
360 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
361 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
362 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
363 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
364 	/* Last ENUM for HTT FW STATS */
365 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
366 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
367 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
368 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
369 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
370 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
371 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
372 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
373 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
374 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
375 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
376 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
377 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
378 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
379 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
380 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
381 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
382 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
383 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
384 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
385 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
386 };
387 #endif
388 
389 /* MCL specific functions */
390 #if defined(DP_CON_MON)
391 
392 #ifdef IPA_OFFLOAD
393 /**
394  * dp_get_num_rx_contexts() - get number of RX contexts
395  * @soc_hdl: cdp opaque soc handle
396  *
397  * Return: number of RX contexts
398  */
399 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
400 {
401 	int num_rx_contexts;
402 	uint32_t reo_ring_map;
403 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
404 
405 	reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
406 
407 	switch (soc->arch_id) {
408 	case CDP_ARCH_TYPE_BE:
409 		/* 2 REO rings are used for IPA */
410 		reo_ring_map &=  ~(BIT(3) | BIT(7));
411 
412 		break;
413 	case CDP_ARCH_TYPE_LI:
414 		/* 1 REO ring is used for IPA */
415 		reo_ring_map &=  ~BIT(3);
416 		break;
417 	default:
418 		dp_err("unknown arch_id 0x%x", soc->arch_id);
419 		QDF_BUG(0);
420 	}
421 	/*
422 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
423 	 * in future
424 	 */
425 	num_rx_contexts = qdf_get_hweight32(reo_ring_map);
426 
427 	return num_rx_contexts;
428 }
429 #else
430 #ifdef WLAN_SOFTUMAC_SUPPORT
431 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
432 {
433 	uint32_t rx_rings_config;
434 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
435 
436 	rx_rings_config = wlan_cfg_get_rx_rings_mapping(soc->wlan_cfg_ctx);
437 	/*
438 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
439 	 * in future
440 	 */
441 	return qdf_get_hweight32(rx_rings_config);
442 }
443 #else
444 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
445 {
446 	int num_rx_contexts;
447 	uint32_t reo_config;
448 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
449 
450 	reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
451 	/*
452 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
453 	 * in future
454 	 */
455 	num_rx_contexts = qdf_get_hweight32(reo_config);
456 
457 	return num_rx_contexts;
458 }
459 #endif /* WLAN_SOFTUMAC_SUPPORT */
460 #endif
461 
462 #endif
463 
464 #ifdef FEATURE_MEC
465 void dp_peer_mec_flush_entries(struct dp_soc *soc)
466 {
467 	unsigned int index;
468 	struct dp_mec_entry *mecentry, *mecentry_next;
469 
470 	TAILQ_HEAD(, dp_mec_entry) free_list;
471 	TAILQ_INIT(&free_list);
472 
473 	if (!soc->mec_hash.mask)
474 		return;
475 
476 	if (!soc->mec_hash.bins)
477 		return;
478 
479 	if (!qdf_atomic_read(&soc->mec_cnt))
480 		return;
481 
482 	qdf_spin_lock_bh(&soc->mec_lock);
483 	for (index = 0; index <= soc->mec_hash.mask; index++) {
484 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
485 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
486 					   hash_list_elem, mecentry_next) {
487 			    dp_peer_mec_detach_entry(soc, mecentry, &free_list);
488 			}
489 		}
490 	}
491 	qdf_spin_unlock_bh(&soc->mec_lock);
492 
493 	dp_peer_mec_free_list(soc, &free_list);
494 }
495 
496 /**
497  * dp_print_mec_stats() - Dump MEC entries in table
498  * @soc: Datapath soc handle
499  *
500  * Return: none
501  */
502 static void dp_print_mec_stats(struct dp_soc *soc)
503 {
504 	int i;
505 	uint32_t index;
506 	struct dp_mec_entry *mecentry = NULL, *mec_list;
507 	uint32_t num_entries = 0;
508 
509 	DP_PRINT_STATS("MEC Stats:");
510 	DP_PRINT_STATS("   Entries Added   = %d", soc->stats.mec.added);
511 	DP_PRINT_STATS("   Entries Deleted = %d", soc->stats.mec.deleted);
512 
513 	if (!qdf_atomic_read(&soc->mec_cnt))
514 		return;
515 
516 	mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
517 	if (!mec_list) {
518 		dp_peer_warn("%pK: failed to allocate mec_list", soc);
519 		return;
520 	}
521 
522 	DP_PRINT_STATS("MEC Table:");
523 	for (index = 0; index <= soc->mec_hash.mask; index++) {
524 		qdf_spin_lock_bh(&soc->mec_lock);
525 		if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
526 			qdf_spin_unlock_bh(&soc->mec_lock);
527 			continue;
528 		}
529 
530 		TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
531 			      hash_list_elem) {
532 			qdf_mem_copy(&mec_list[num_entries], mecentry,
533 				     sizeof(*mecentry));
534 			num_entries++;
535 		}
536 		qdf_spin_unlock_bh(&soc->mec_lock);
537 	}
538 
539 	if (!num_entries) {
540 		qdf_mem_free(mec_list);
541 		return;
542 	}
543 
544 	for (i = 0; i < num_entries; i++) {
545 		DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
546 			       " is_active = %d pdev_id = %d vdev_id = %d",
547 			       i,
548 			       QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
549 			       mec_list[i].is_active,
550 			       mec_list[i].pdev_id,
551 			       mec_list[i].vdev_id);
552 	}
553 	qdf_mem_free(mec_list);
554 }
555 #else
556 static void dp_print_mec_stats(struct dp_soc *soc)
557 {
558 }
559 #endif
560 
561 static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
562 				 uint8_t vdev_id,
563 				 uint8_t *peer_mac,
564 				 uint8_t *mac_addr,
565 				 enum cdp_txrx_ast_entry_type type,
566 				 uint32_t flags)
567 {
568 	int ret = -1;
569 	QDF_STATUS status = QDF_STATUS_SUCCESS;
570 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
571 						       peer_mac, 0, vdev_id,
572 						       DP_MOD_ID_CDP);
573 
574 	if (!peer) {
575 		dp_peer_debug("Peer is NULL!");
576 		return ret;
577 	}
578 
579 	status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
580 				 peer,
581 				 mac_addr,
582 				 type,
583 				 flags);
584 	if ((status == QDF_STATUS_SUCCESS) ||
585 	    (status == QDF_STATUS_E_ALREADY) ||
586 	    (status == QDF_STATUS_E_AGAIN))
587 		ret = 0;
588 
589 	dp_hmwds_ast_add_notify(peer, mac_addr,
590 				type, status, false);
591 
592 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
593 
594 	return ret;
595 }
596 
597 static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
598 						uint8_t vdev_id,
599 						uint8_t *peer_mac,
600 						uint8_t *wds_macaddr,
601 						uint32_t flags)
602 {
603 	int status = -1;
604 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
605 	struct dp_ast_entry  *ast_entry = NULL;
606 	struct dp_peer *peer;
607 
608 	if (soc->ast_offload_support)
609 		return status;
610 
611 	peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
612 				      peer_mac, 0, vdev_id,
613 				      DP_MOD_ID_CDP);
614 
615 	if (!peer) {
616 		dp_peer_debug("Peer is NULL!");
617 		return status;
618 	}
619 
620 	qdf_spin_lock_bh(&soc->ast_lock);
621 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
622 						    peer->vdev->pdev->pdev_id);
623 
624 	if (ast_entry) {
625 		status = dp_peer_update_ast(soc,
626 					    peer,
627 					    ast_entry, flags);
628 	}
629 	qdf_spin_unlock_bh(&soc->ast_lock);
630 
631 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
632 
633 	return status;
634 }
635 
636 /**
637  * dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
638  * @soc:		Datapath SOC handle
639  * @peer:		DP peer
640  * @arg:		callback argument
641  *
642  * Return: None
643  */
644 static void
645 dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
646 {
647 	struct dp_ast_entry *ast_entry = NULL;
648 	struct dp_ast_entry *tmp_ast_entry;
649 
650 	DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
651 		if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
652 		    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
653 			dp_peer_del_ast(soc, ast_entry);
654 	}
655 }
656 
657 /**
658  * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
659  * @soc_hdl:		Datapath SOC handle
660  * @wds_macaddr:	WDS entry MAC Address
661  * @peer_mac_addr:	WDS entry MAC Address
662  * @vdev_id:		id of vdev handle
663  *
664  * Return: QDF_STATUS
665  */
666 static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
667 					 uint8_t *wds_macaddr,
668 					 uint8_t *peer_mac_addr,
669 					 uint8_t vdev_id)
670 {
671 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
672 	struct dp_ast_entry *ast_entry = NULL;
673 	struct dp_peer *peer;
674 	struct dp_pdev *pdev;
675 	struct dp_vdev *vdev;
676 
677 	if (soc->ast_offload_support)
678 		return QDF_STATUS_E_FAILURE;
679 
680 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
681 
682 	if (!vdev)
683 		return QDF_STATUS_E_FAILURE;
684 
685 	pdev = vdev->pdev;
686 
687 	if (peer_mac_addr) {
688 		peer = dp_peer_find_hash_find(soc, peer_mac_addr,
689 					      0, vdev->vdev_id,
690 					      DP_MOD_ID_CDP);
691 		if (!peer) {
692 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
693 			return QDF_STATUS_E_FAILURE;
694 		}
695 
696 		qdf_spin_lock_bh(&soc->ast_lock);
697 		dp_peer_reset_ast_entries(soc, peer, NULL);
698 		qdf_spin_unlock_bh(&soc->ast_lock);
699 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
700 	} else if (wds_macaddr) {
701 		qdf_spin_lock_bh(&soc->ast_lock);
702 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
703 							    pdev->pdev_id);
704 
705 		if (ast_entry) {
706 			if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
707 			    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
708 				dp_peer_del_ast(soc, ast_entry);
709 		}
710 		qdf_spin_unlock_bh(&soc->ast_lock);
711 	}
712 
713 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
714 	return QDF_STATUS_SUCCESS;
715 }
716 
717 /**
718  * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
719  * @soc_hdl:		Datapath SOC handle
720  * @vdev_id:		id of vdev object
721  *
722  * Return: QDF_STATUS
723  */
724 static QDF_STATUS
725 dp_wds_reset_ast_table_wifi3(struct cdp_soc_t  *soc_hdl,
726 			     uint8_t vdev_id)
727 {
728 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
729 
730 	if (soc->ast_offload_support)
731 		return QDF_STATUS_SUCCESS;
732 
733 	qdf_spin_lock_bh(&soc->ast_lock);
734 
735 	dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
736 			    DP_MOD_ID_CDP);
737 	qdf_spin_unlock_bh(&soc->ast_lock);
738 
739 	return QDF_STATUS_SUCCESS;
740 }
741 
742 /**
743  * dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
744  * @soc:		Datapath SOC
745  * @peer:		Datapath peer
746  * @arg:		arg to callback
747  *
748  * Return: None
749  */
750 static void
751 dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
752 {
753 	struct dp_ast_entry *ase = NULL;
754 	struct dp_ast_entry *temp_ase;
755 
756 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
757 		if ((ase->type ==
758 			CDP_TXRX_AST_TYPE_STATIC) ||
759 			(ase->type ==
760 			 CDP_TXRX_AST_TYPE_SELF) ||
761 			(ase->type ==
762 			 CDP_TXRX_AST_TYPE_STA_BSS))
763 			continue;
764 		dp_peer_del_ast(soc, ase);
765 	}
766 }
767 
768 /**
769  * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
770  * @soc_hdl:		Datapath SOC handle
771  *
772  * Return: None
773  */
774 static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t  *soc_hdl)
775 {
776 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
777 
778 	qdf_spin_lock_bh(&soc->ast_lock);
779 
780 	dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
781 			    DP_MOD_ID_CDP);
782 
783 	qdf_spin_unlock_bh(&soc->ast_lock);
784 	dp_peer_mec_flush_entries(soc);
785 }
786 
787 #if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
788 /**
789  * dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
790  * @soc: Datapath SOC
791  * @peer: Datapath peer
792  *
793  * Return: None
794  */
795 static void
796 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
797 {
798 	struct dp_ast_entry *ase = NULL;
799 	struct dp_ast_entry *temp_ase;
800 
801 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
802 		if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
803 			soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
804 								      ase->mac_addr.raw,
805 								      ase->vdev_id);
806 		}
807 	}
808 }
809 #elif defined(FEATURE_AST)
810 static void
811 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
812 {
813 }
814 #endif
815 
816 /**
817  * dp_peer_check_ast_offload() - check ast offload support is enable or not
818  * @soc: soc handle
819  *
820  * Return: false in case of IPA and true/false in IPQ case
821  *
822  */
823 #if defined(IPA_OFFLOAD) && defined(QCA_WIFI_QCN9224)
824 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
825 {
826 	return false;
827 }
828 #else
829 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
830 {
831 	if (soc->ast_offload_support)
832 		return true;
833 
834 	return false;
835 }
836 #endif
837 
838 /**
839  * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
840  *                                       and return ast entry information
841  *                                       of first ast entry found in the
842  *                                       table with given mac address
843  * @soc_hdl: data path soc handle
844  * @ast_mac_addr: AST entry mac address
845  * @ast_entry_info: ast entry information
846  *
847  * Return: true if ast entry found with ast_mac_addr
848  *          false if ast entry not found
849  */
850 static bool dp_peer_get_ast_info_by_soc_wifi3
851 	(struct cdp_soc_t *soc_hdl,
852 	 uint8_t *ast_mac_addr,
853 	 struct cdp_ast_entry_info *ast_entry_info)
854 {
855 	struct dp_ast_entry *ast_entry = NULL;
856 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
857 	struct dp_peer *peer = NULL;
858 
859 	if (dp_peer_check_ast_offload(soc))
860 		return false;
861 
862 	qdf_spin_lock_bh(&soc->ast_lock);
863 
864 	ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
865 	if ((!ast_entry) ||
866 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
867 		qdf_spin_unlock_bh(&soc->ast_lock);
868 		return false;
869 	}
870 
871 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
872 				     DP_MOD_ID_AST);
873 	if (!peer) {
874 		qdf_spin_unlock_bh(&soc->ast_lock);
875 		return false;
876 	}
877 
878 	ast_entry_info->type = ast_entry->type;
879 	ast_entry_info->pdev_id = ast_entry->pdev_id;
880 	ast_entry_info->vdev_id = ast_entry->vdev_id;
881 	ast_entry_info->peer_id = ast_entry->peer_id;
882 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
883 		     &peer->mac_addr.raw[0],
884 		     QDF_MAC_ADDR_SIZE);
885 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
886 	qdf_spin_unlock_bh(&soc->ast_lock);
887 	return true;
888 }
889 
890 /**
891  * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
892  *                                          and return ast entry information
893  *                                          if mac address and pdev_id matches
894  * @soc_hdl: data path soc handle
895  * @ast_mac_addr: AST entry mac address
896  * @pdev_id: pdev_id
897  * @ast_entry_info: ast entry information
898  *
899  * Return: true if ast entry found with ast_mac_addr
900  *          false if ast entry not found
901  */
902 static bool dp_peer_get_ast_info_by_pdevid_wifi3
903 		(struct cdp_soc_t *soc_hdl,
904 		 uint8_t *ast_mac_addr,
905 		 uint8_t pdev_id,
906 		 struct cdp_ast_entry_info *ast_entry_info)
907 {
908 	struct dp_ast_entry *ast_entry;
909 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
910 	struct dp_peer *peer = NULL;
911 
912 	if (soc->ast_offload_support)
913 		return false;
914 
915 	qdf_spin_lock_bh(&soc->ast_lock);
916 
917 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
918 						    pdev_id);
919 
920 	if ((!ast_entry) ||
921 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
922 		qdf_spin_unlock_bh(&soc->ast_lock);
923 		return false;
924 	}
925 
926 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
927 				     DP_MOD_ID_AST);
928 	if (!peer) {
929 		qdf_spin_unlock_bh(&soc->ast_lock);
930 		return false;
931 	}
932 
933 	ast_entry_info->type = ast_entry->type;
934 	ast_entry_info->pdev_id = ast_entry->pdev_id;
935 	ast_entry_info->vdev_id = ast_entry->vdev_id;
936 	ast_entry_info->peer_id = ast_entry->peer_id;
937 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
938 		     &peer->mac_addr.raw[0],
939 		     QDF_MAC_ADDR_SIZE);
940 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
941 	qdf_spin_unlock_bh(&soc->ast_lock);
942 	return true;
943 }
944 
945 /**
946  * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
947  *                            with given mac address
948  * @soc_handle: data path soc handle
949  * @mac_addr: AST entry mac address
950  * @callback: callback function to called on ast delete response from FW
951  * @cookie: argument to be passed to callback
952  *
953  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
954  *          is sent
955  *          QDF_STATUS_E_INVAL false if ast entry not found
956  */
957 static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
958 					       uint8_t *mac_addr,
959 					       txrx_ast_free_cb callback,
960 					       void *cookie)
961 
962 {
963 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
964 	struct dp_ast_entry *ast_entry = NULL;
965 	txrx_ast_free_cb cb = NULL;
966 	void *arg = NULL;
967 
968 	if (soc->ast_offload_support)
969 		return -QDF_STATUS_E_INVAL;
970 
971 	qdf_spin_lock_bh(&soc->ast_lock);
972 	ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
973 	if (!ast_entry) {
974 		qdf_spin_unlock_bh(&soc->ast_lock);
975 		return -QDF_STATUS_E_INVAL;
976 	}
977 
978 	if (ast_entry->callback) {
979 		cb = ast_entry->callback;
980 		arg = ast_entry->cookie;
981 	}
982 
983 	ast_entry->callback = callback;
984 	ast_entry->cookie = cookie;
985 
986 	/*
987 	 * if delete_in_progress is set AST delete is sent to target
988 	 * and host is waiting for response should not send delete
989 	 * again
990 	 */
991 	if (!ast_entry->delete_in_progress)
992 		dp_peer_del_ast(soc, ast_entry);
993 
994 	qdf_spin_unlock_bh(&soc->ast_lock);
995 	if (cb) {
996 		cb(soc->ctrl_psoc,
997 		   dp_soc_to_cdp_soc(soc),
998 		   arg,
999 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1000 	}
1001 	return QDF_STATUS_SUCCESS;
1002 }
1003 
1004 /**
1005  * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
1006  *                                   table if mac address and pdev_id matches
1007  * @soc_handle: data path soc handle
1008  * @mac_addr: AST entry mac address
1009  * @pdev_id: pdev id
1010  * @callback: callback function to called on ast delete response from FW
1011  * @cookie: argument to be passed to callback
1012  *
1013  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1014  *          is sent
1015  *          QDF_STATUS_E_INVAL false if ast entry not found
1016  */
1017 
1018 static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
1019 						uint8_t *mac_addr,
1020 						uint8_t pdev_id,
1021 						txrx_ast_free_cb callback,
1022 						void *cookie)
1023 
1024 {
1025 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1026 	struct dp_ast_entry *ast_entry;
1027 	txrx_ast_free_cb cb = NULL;
1028 	void *arg = NULL;
1029 
1030 	if (soc->ast_offload_support)
1031 		return -QDF_STATUS_E_INVAL;
1032 
1033 	qdf_spin_lock_bh(&soc->ast_lock);
1034 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
1035 
1036 	if (!ast_entry) {
1037 		qdf_spin_unlock_bh(&soc->ast_lock);
1038 		return -QDF_STATUS_E_INVAL;
1039 	}
1040 
1041 	if (ast_entry->callback) {
1042 		cb = ast_entry->callback;
1043 		arg = ast_entry->cookie;
1044 	}
1045 
1046 	ast_entry->callback = callback;
1047 	ast_entry->cookie = cookie;
1048 
1049 	/*
1050 	 * if delete_in_progress is set AST delete is sent to target
1051 	 * and host is waiting for response should not sent delete
1052 	 * again
1053 	 */
1054 	if (!ast_entry->delete_in_progress)
1055 		dp_peer_del_ast(soc, ast_entry);
1056 
1057 	qdf_spin_unlock_bh(&soc->ast_lock);
1058 
1059 	if (cb) {
1060 		cb(soc->ctrl_psoc,
1061 		   dp_soc_to_cdp_soc(soc),
1062 		   arg,
1063 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1064 	}
1065 	return QDF_STATUS_SUCCESS;
1066 }
1067 
1068 /**
1069  * dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
1070  *                                 table if HMWDS rem-addr command is issued
1071  *
1072  * @soc_handle: data path soc handle
1073  * @vdev_id: vdev id
1074  * @wds_macaddr: AST entry mac address to delete
1075  * @type: cdp_txrx_ast_entry_type to send to FW
1076  * @delete_in_fw: flag to indicate AST entry deletion in FW
1077  *
1078  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1079  *         is sent
1080  *         QDF_STATUS_E_INVAL false if ast entry not found
1081  */
1082 static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
1083 					      uint8_t vdev_id,
1084 					      uint8_t *wds_macaddr,
1085 					      uint8_t type,
1086 					      uint8_t delete_in_fw)
1087 {
1088 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1089 
1090 	if (soc->ast_offload_support) {
1091 		dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
1092 					 delete_in_fw);
1093 		return QDF_STATUS_SUCCESS;
1094 	}
1095 
1096 	return -QDF_STATUS_E_INVAL;
1097 }
1098 
1099 #ifdef FEATURE_AST
1100 /**
1101  * dp_print_mlo_ast_stats() - Print AST stats for MLO peers
1102  *
1103  * @soc: core DP soc context
1104  *
1105  * Return: void
1106  */
1107 static void dp_print_mlo_ast_stats(struct dp_soc *soc)
1108 {
1109 	if (soc->arch_ops.print_mlo_ast_stats)
1110 		soc->arch_ops.print_mlo_ast_stats(soc);
1111 }
1112 
1113 void
1114 dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1115 {
1116 	struct dp_ast_entry *ase, *tmp_ase;
1117 	uint32_t num_entries = 0;
1118 	char type[CDP_TXRX_AST_TYPE_MAX][10] = {
1119 			"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
1120 			"DA", "HMWDS_SEC", "MLD"};
1121 
1122 	DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
1123 	    DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
1124 		    " peer_mac_addr = "QDF_MAC_ADDR_FMT
1125 		    " peer_id = %u"
1126 		    " type = %s"
1127 		    " next_hop = %d"
1128 		    " is_active = %d"
1129 		    " ast_idx = %d"
1130 		    " ast_hash = %d"
1131 		    " delete_in_progress = %d"
1132 		    " pdev_id = %d"
1133 		    " vdev_id = %d",
1134 		    ++num_entries,
1135 		    QDF_MAC_ADDR_REF(ase->mac_addr.raw),
1136 		    QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1137 		    ase->peer_id,
1138 		    type[ase->type],
1139 		    ase->next_hop,
1140 		    ase->is_active,
1141 		    ase->ast_idx,
1142 		    ase->ast_hash_value,
1143 		    ase->delete_in_progress,
1144 		    ase->pdev_id,
1145 		    ase->vdev_id);
1146 	}
1147 }
1148 
1149 void dp_print_ast_stats(struct dp_soc *soc)
1150 {
1151 	DP_PRINT_STATS("AST Stats:");
1152 	DP_PRINT_STATS("	Entries Added   = %d", soc->stats.ast.added);
1153 	DP_PRINT_STATS("	Entries Deleted = %d", soc->stats.ast.deleted);
1154 	DP_PRINT_STATS("	Entries Agedout = %d", soc->stats.ast.aged_out);
1155 	DP_PRINT_STATS("	Entries MAP ERR  = %d", soc->stats.ast.map_err);
1156 	DP_PRINT_STATS("	Entries Mismatch ERR  = %d",
1157 		       soc->stats.ast.ast_mismatch);
1158 
1159 	DP_PRINT_STATS("AST Table:");
1160 
1161 	qdf_spin_lock_bh(&soc->ast_lock);
1162 
1163 	dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
1164 			    DP_MOD_ID_GENERIC_STATS);
1165 
1166 	qdf_spin_unlock_bh(&soc->ast_lock);
1167 
1168 	dp_print_mlo_ast_stats(soc);
1169 }
1170 #else
1171 void dp_print_ast_stats(struct dp_soc *soc)
1172 {
1173 	DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
1174 	return;
1175 }
1176 #endif
1177 
1178 /**
1179  * dp_print_peer_info() - Dump peer info
1180  * @soc: Datapath soc handle
1181  * @peer: Datapath peer handle
1182  * @arg: argument to iter function
1183  *
1184  * Return: void
1185  */
1186 static void
1187 dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1188 {
1189 	struct dp_txrx_peer *txrx_peer = NULL;
1190 
1191 	txrx_peer = dp_get_txrx_peer(peer);
1192 	if (!txrx_peer)
1193 		return;
1194 
1195 	DP_PRINT_STATS(" peer id = %d"
1196 		       " peer_mac_addr = "QDF_MAC_ADDR_FMT
1197 		       " nawds_enabled = %d"
1198 		       " bss_peer = %d"
1199 		       " wds_enabled = %d"
1200 		       " tx_cap_enabled = %d"
1201 		       " rx_cap_enabled = %d",
1202 		       peer->peer_id,
1203 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1204 		       txrx_peer->nawds_enabled,
1205 		       txrx_peer->bss_peer,
1206 		       txrx_peer->wds_enabled,
1207 		       dp_monitor_is_tx_cap_enabled(peer),
1208 		       dp_monitor_is_rx_cap_enabled(peer));
1209 }
1210 
1211 /**
1212  * dp_print_peer_table() - Dump all Peer stats
1213  * @vdev: Datapath Vdev handle
1214  *
1215  * Return: void
1216  */
1217 static void dp_print_peer_table(struct dp_vdev *vdev)
1218 {
1219 	DP_PRINT_STATS("Dumping Peer Table  Stats:");
1220 	dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
1221 			     DP_MOD_ID_GENERIC_STATS);
1222 }
1223 
1224 #ifdef DP_MEM_PRE_ALLOC
1225 
1226 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1227 			   size_t ctxt_size)
1228 {
1229 	void *ctxt_mem;
1230 
1231 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
1232 		dp_warn("dp_prealloc_get_context null!");
1233 		goto dynamic_alloc;
1234 	}
1235 
1236 	ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
1237 								ctxt_size);
1238 
1239 	if (ctxt_mem)
1240 		goto end;
1241 
1242 dynamic_alloc:
1243 	dp_info("switch to dynamic-alloc for type %d, size %zu",
1244 		ctxt_type, ctxt_size);
1245 	ctxt_mem = qdf_mem_malloc(ctxt_size);
1246 end:
1247 	return ctxt_mem;
1248 }
1249 
1250 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1251 			 void *vaddr)
1252 {
1253 	QDF_STATUS status;
1254 
1255 	if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
1256 		status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
1257 								ctxt_type,
1258 								vaddr);
1259 	} else {
1260 		dp_warn("dp_prealloc_put_context null!");
1261 		status = QDF_STATUS_E_NOSUPPORT;
1262 	}
1263 
1264 	if (QDF_IS_STATUS_ERROR(status)) {
1265 		dp_info("Context type %d not pre-allocated", ctxt_type);
1266 		qdf_mem_free(vaddr);
1267 	}
1268 }
1269 
1270 static inline
1271 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1272 					   struct dp_srng *srng,
1273 					   uint32_t ring_type)
1274 {
1275 	void *mem;
1276 
1277 	qdf_assert(!srng->is_mem_prealloc);
1278 
1279 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
1280 		dp_warn("dp_prealloc_get_consistent is null!");
1281 		goto qdf;
1282 	}
1283 
1284 	mem =
1285 		soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
1286 						(&srng->alloc_size,
1287 						 &srng->base_vaddr_unaligned,
1288 						 &srng->base_paddr_unaligned,
1289 						 &srng->base_paddr_aligned,
1290 						 DP_RING_BASE_ALIGN, ring_type);
1291 
1292 	if (mem) {
1293 		srng->is_mem_prealloc = true;
1294 		goto end;
1295 	}
1296 qdf:
1297 	mem =  qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1298 						&srng->base_vaddr_unaligned,
1299 						&srng->base_paddr_unaligned,
1300 						&srng->base_paddr_aligned,
1301 						DP_RING_BASE_ALIGN);
1302 end:
1303 	dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
1304 		srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
1305 		srng, ring_type, srng->alloc_size, srng->num_entries);
1306 	return mem;
1307 }
1308 
1309 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1310 					       struct dp_srng *srng)
1311 {
1312 	if (srng->is_mem_prealloc) {
1313 		if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
1314 			dp_warn("dp_prealloc_put_consistent is null!");
1315 			QDF_BUG(0);
1316 			return;
1317 		}
1318 		soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
1319 						(srng->alloc_size,
1320 						 srng->base_vaddr_unaligned,
1321 						 srng->base_paddr_unaligned);
1322 
1323 	} else {
1324 		qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1325 					srng->alloc_size,
1326 					srng->base_vaddr_unaligned,
1327 					srng->base_paddr_unaligned, 0);
1328 	}
1329 }
1330 
1331 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
1332 				   enum qdf_dp_desc_type desc_type,
1333 				   struct qdf_mem_multi_page_t *pages,
1334 				   size_t element_size,
1335 				   uint32_t element_num,
1336 				   qdf_dma_context_t memctxt,
1337 				   bool cacheable)
1338 {
1339 	if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
1340 		dp_warn("dp_get_multi_pages is null!");
1341 		goto qdf;
1342 	}
1343 
1344 	pages->num_pages = 0;
1345 	pages->is_mem_prealloc = 0;
1346 	soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
1347 						element_size,
1348 						element_num,
1349 						pages,
1350 						cacheable);
1351 	if (pages->num_pages)
1352 		goto end;
1353 
1354 qdf:
1355 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
1356 				  element_num, memctxt, cacheable);
1357 end:
1358 	dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
1359 		pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
1360 		desc_type, (int)element_size, element_num, cacheable);
1361 }
1362 
1363 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
1364 				  enum qdf_dp_desc_type desc_type,
1365 				  struct qdf_mem_multi_page_t *pages,
1366 				  qdf_dma_context_t memctxt,
1367 				  bool cacheable)
1368 {
1369 	if (pages->is_mem_prealloc) {
1370 		if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
1371 			dp_warn("dp_put_multi_pages is null!");
1372 			QDF_BUG(0);
1373 			return;
1374 		}
1375 
1376 		soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
1377 		qdf_mem_zero(pages, sizeof(*pages));
1378 	} else {
1379 		qdf_mem_multi_pages_free(soc->osdev, pages,
1380 					 memctxt, cacheable);
1381 	}
1382 }
1383 
1384 #else
1385 
1386 static inline
1387 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1388 					   struct dp_srng *srng,
1389 					   uint32_t ring_type)
1390 
1391 {
1392 	void *mem;
1393 
1394 	mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1395 					       &srng->base_vaddr_unaligned,
1396 					       &srng->base_paddr_unaligned,
1397 					       &srng->base_paddr_aligned,
1398 					       DP_RING_BASE_ALIGN);
1399 	if (mem)
1400 		qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
1401 
1402 	return mem;
1403 }
1404 
1405 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1406 					       struct dp_srng *srng)
1407 {
1408 	qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1409 				srng->alloc_size,
1410 				srng->base_vaddr_unaligned,
1411 				srng->base_paddr_unaligned, 0);
1412 }
1413 
1414 #endif /* DP_MEM_PRE_ALLOC */
1415 
1416 #ifdef QCA_SUPPORT_WDS_EXTENDED
1417 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1418 {
1419 	return vdev->wds_ext_enabled;
1420 }
1421 #else
1422 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1423 {
1424 	return false;
1425 }
1426 #endif
1427 
1428 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
1429 {
1430 	struct dp_vdev *vdev = NULL;
1431 	uint8_t rx_fast_flag = true;
1432 
1433 	/* Check if protocol tagging enable */
1434 	if (pdev->is_rx_protocol_tagging_enabled) {
1435 		rx_fast_flag = false;
1436 		goto update_flag;
1437 	}
1438 
1439 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1440 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1441 		/* Check if any VDEV has NAWDS enabled */
1442 		if (vdev->nawds_enabled) {
1443 			rx_fast_flag = false;
1444 			break;
1445 		}
1446 
1447 		/* Check if any VDEV has multipass enabled */
1448 		if (vdev->multipass_en) {
1449 			rx_fast_flag = false;
1450 			break;
1451 		}
1452 
1453 		/* Check if any VDEV has mesh enabled */
1454 		if (vdev->mesh_vdev) {
1455 			rx_fast_flag = false;
1456 			break;
1457 		}
1458 	}
1459 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1460 
1461 update_flag:
1462 	dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
1463 	pdev->rx_fast_flag = rx_fast_flag;
1464 }
1465 
1466 void dp_soc_set_interrupt_mode(struct dp_soc *soc)
1467 {
1468 	uint32_t msi_base_data, msi_vector_start;
1469 	int msi_vector_count, ret;
1470 
1471 	soc->intr_mode = DP_INTR_INTEGRATED;
1472 
1473 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
1474 	    (dp_is_monitor_mode_using_poll(soc) &&
1475 	     soc->cdp_soc.ol_ops->get_con_mode &&
1476 	     soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
1477 		soc->intr_mode = DP_INTR_POLL;
1478 	} else {
1479 		ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1480 						  &msi_vector_count,
1481 						  &msi_base_data,
1482 						  &msi_vector_start);
1483 		if (ret)
1484 			return;
1485 
1486 		soc->intr_mode = DP_INTR_MSI;
1487 	}
1488 }
1489 
1490 static int dp_srng_calculate_msi_group(struct dp_soc *soc,
1491 				       enum hal_ring_type ring_type,
1492 				       int ring_num,
1493 				       int *reg_msi_grp_num,
1494 				       bool nf_irq_support,
1495 				       int *nf_msi_grp_num)
1496 {
1497 	struct wlan_cfg_dp_soc_ctxt *cfg_ctx = soc->wlan_cfg_ctx;
1498 	uint8_t *grp_mask, *nf_irq_mask = NULL;
1499 	bool nf_irq_enabled = false;
1500 	uint8_t wbm2_sw_rx_rel_ring_id;
1501 
1502 	switch (ring_type) {
1503 	case WBM2SW_RELEASE:
1504 		wbm2_sw_rx_rel_ring_id =
1505 			wlan_cfg_get_rx_rel_ring_id(cfg_ctx);
1506 		if (ring_num == wbm2_sw_rx_rel_ring_id) {
1507 			/* dp_rx_wbm_err_process - soc->rx_rel_ring */
1508 			grp_mask = &cfg_ctx->int_rx_wbm_rel_ring_mask[0];
1509 			ring_num = 0;
1510 		} else if (ring_num == WBM2_SW_PPE_REL_RING_ID) {
1511 			grp_mask = &cfg_ctx->int_ppeds_wbm_release_ring_mask[0];
1512 			ring_num = 0;
1513 		}  else { /* dp_tx_comp_handler - soc->tx_comp_ring */
1514 			grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
1515 			nf_irq_mask = dp_srng_get_near_full_irq_mask(soc,
1516 								     ring_type,
1517 								     ring_num);
1518 			if (nf_irq_mask)
1519 				nf_irq_enabled = true;
1520 
1521 			/*
1522 			 * Using ring 4 as 4th tx completion ring since ring 3
1523 			 * is Rx error ring
1524 			 */
1525 			if (ring_num == WBM2SW_TXCOMP_RING4_NUM)
1526 				ring_num = TXCOMP_RING4_NUM;
1527 		}
1528 	break;
1529 
1530 	case REO_EXCEPTION:
1531 		/* dp_rx_err_process - &soc->reo_exception_ring */
1532 		grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
1533 	break;
1534 
1535 	case REO_DST:
1536 		/* dp_rx_process - soc->reo_dest_ring */
1537 		grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
1538 		nf_irq_mask = dp_srng_get_near_full_irq_mask(soc, ring_type,
1539 							     ring_num);
1540 		if (nf_irq_mask)
1541 			nf_irq_enabled = true;
1542 	break;
1543 
1544 	case REO_STATUS:
1545 		/* dp_reo_status_ring_handler - soc->reo_status_ring */
1546 		grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
1547 	break;
1548 
1549 	/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
1550 	case RXDMA_MONITOR_STATUS:
1551 	/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
1552 	case RXDMA_MONITOR_DST:
1553 		/* dp_mon_process */
1554 		grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
1555 	break;
1556 	case TX_MONITOR_DST:
1557 		/* dp_tx_mon_process */
1558 		grp_mask = &soc->wlan_cfg_ctx->int_tx_mon_ring_mask[0];
1559 	break;
1560 	case RXDMA_DST:
1561 		/* dp_rxdma_err_process */
1562 		grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
1563 	break;
1564 
1565 	case RXDMA_BUF:
1566 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
1567 	break;
1568 
1569 	case RXDMA_MONITOR_BUF:
1570 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
1571 	break;
1572 
1573 	case TX_MONITOR_BUF:
1574 		grp_mask = &soc->wlan_cfg_ctx->int_host2txmon_ring_mask[0];
1575 	break;
1576 
1577 	case REO2PPE:
1578 		grp_mask = &soc->wlan_cfg_ctx->int_reo2ppe_ring_mask[0];
1579 	break;
1580 
1581 	case PPE2TCL:
1582 		grp_mask = &soc->wlan_cfg_ctx->int_ppe2tcl_ring_mask[0];
1583 	break;
1584 
1585 	case TCL_DATA:
1586 	/* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */
1587 	case TCL_CMD_CREDIT:
1588 	case REO_CMD:
1589 	case SW2WBM_RELEASE:
1590 	case WBM_IDLE_LINK:
1591 		/* normally empty SW_TO_HW rings */
1592 		return -QDF_STATUS_E_NOENT;
1593 	break;
1594 
1595 	case TCL_STATUS:
1596 	case REO_REINJECT:
1597 		/* misc unused rings */
1598 		return -QDF_STATUS_E_NOENT;
1599 	break;
1600 
1601 	case CE_SRC:
1602 	case CE_DST:
1603 	case CE_DST_STATUS:
1604 		/* CE_rings - currently handled by hif */
1605 	default:
1606 		return -QDF_STATUS_E_NOENT;
1607 	break;
1608 	}
1609 
1610 	*reg_msi_grp_num = dp_srng_find_ring_in_mask(ring_num, grp_mask);
1611 
1612 	if (nf_irq_support && nf_irq_enabled) {
1613 		*nf_msi_grp_num = dp_srng_find_ring_in_mask(ring_num,
1614 							    nf_irq_mask);
1615 	}
1616 
1617 	return QDF_STATUS_SUCCESS;
1618 }
1619 
1620 #if defined(IPA_OFFLOAD) && defined(IPA_WDI3_VLAN_SUPPORT)
1621 static void
1622 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1623 			   int ring_num)
1624 {
1625 	if (wlan_ipa_is_vlan_enabled()) {
1626 		if ((ring_type == REO_DST) &&
1627 		    (ring_num == IPA_ALT_REO_DEST_RING_IDX)) {
1628 			ring_params->msi_addr = 0;
1629 			ring_params->msi_data = 0;
1630 			ring_params->flags &= ~HAL_SRNG_MSI_INTR;
1631 		}
1632 	}
1633 }
1634 #else
1635 static inline void
1636 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1637 			   int ring_num)
1638 {
1639 }
1640 #endif
1641 
1642 void dp_srng_msi_setup(struct dp_soc *soc, struct dp_srng *srng,
1643 		       struct hal_srng_params *ring_params,
1644 		       int ring_type, int ring_num)
1645 {
1646 	int reg_msi_grp_num;
1647 	/*
1648 	 * nf_msi_grp_num needs to be initialized with negative value,
1649 	 * to avoid configuring near-full msi for WBM2SW3 ring
1650 	 */
1651 	int nf_msi_grp_num = -1;
1652 	int msi_data_count;
1653 	int ret;
1654 	uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
1655 	bool nf_irq_support;
1656 	int vector;
1657 
1658 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1659 					  &msi_data_count, &msi_data_start,
1660 					  &msi_irq_start);
1661 
1662 	if (ret)
1663 		return;
1664 
1665 	nf_irq_support = hal_srng_is_near_full_irq_supported(soc->hal_soc,
1666 							     ring_type,
1667 							     ring_num);
1668 	ret = dp_srng_calculate_msi_group(soc, ring_type, ring_num,
1669 					  &reg_msi_grp_num,
1670 					  nf_irq_support,
1671 					  &nf_msi_grp_num);
1672 	if (ret < 0) {
1673 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1674 			     soc, ring_type, ring_num);
1675 		ring_params->msi_addr = 0;
1676 		ring_params->msi_data = 0;
1677 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1678 		return;
1679 	}
1680 
1681 	if (reg_msi_grp_num < 0) {
1682 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1683 			     soc, ring_type, ring_num);
1684 		ring_params->msi_addr = 0;
1685 		ring_params->msi_data = 0;
1686 		goto configure_msi2;
1687 	}
1688 
1689 	if (dp_is_msi_group_number_invalid(soc, reg_msi_grp_num,
1690 					   msi_data_count)) {
1691 		dp_init_warn("%pK: 2 msi_groups will share an msi; msi_group_num %d",
1692 			     soc, reg_msi_grp_num);
1693 		QDF_ASSERT(0);
1694 	}
1695 
1696 	pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
1697 
1698 	ring_params->msi_addr = addr_low;
1699 	ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
1700 	ring_params->msi_data = (reg_msi_grp_num % msi_data_count)
1701 		+ msi_data_start;
1702 	ring_params->flags |= HAL_SRNG_MSI_INTR;
1703 
1704 	dp_ipa_vlan_srng_msi_setup(ring_params, ring_type, ring_num);
1705 
1706 	dp_debug("ring type %u ring_num %u msi->data %u msi_addr %llx",
1707 		 ring_type, ring_num, ring_params->msi_data,
1708 		 (uint64_t)ring_params->msi_addr);
1709 
1710 	vector = msi_irq_start + (reg_msi_grp_num % msi_data_count);
1711 
1712 	/*
1713 	 * During umac reset ppeds interrupts free is not called.
1714 	 * Avoid registering interrupts again.
1715 	 *
1716 	 */
1717 	if (dp_check_umac_reset_in_progress(soc))
1718 		goto configure_msi2;
1719 
1720 	if (soc->arch_ops.dp_register_ppeds_interrupts)
1721 		if (soc->arch_ops.dp_register_ppeds_interrupts(soc, srng,
1722 							       vector,
1723 							       ring_type,
1724 							       ring_num))
1725 			return;
1726 
1727 configure_msi2:
1728 	if (!nf_irq_support) {
1729 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1730 		return;
1731 	}
1732 
1733 	dp_srng_msi2_setup(soc, ring_params, ring_type, ring_num,
1734 			   nf_msi_grp_num);
1735 }
1736 
1737 #ifdef WLAN_DP_PER_RING_TYPE_CONFIG
1738 /**
1739  * dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
1740  * threshold values from the wlan_srng_cfg table for each ring type
1741  * @soc: device handle
1742  * @ring_params: per ring specific parameters
1743  * @ring_type: Ring type
1744  * @ring_num: Ring number for a given ring type
1745  * @num_entries: number of entries to fill
1746  *
1747  * Fill the ring params with the interrupt threshold
1748  * configuration parameters available in the per ring type wlan_srng_cfg
1749  * table.
1750  *
1751  * Return: None
1752  */
1753 void
1754 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1755 				       struct hal_srng_params *ring_params,
1756 				       int ring_type, int ring_num,
1757 				       int num_entries)
1758 {
1759 	uint8_t wbm2_sw_rx_rel_ring_id;
1760 
1761 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1762 
1763 	if (ring_type == REO_DST) {
1764 		ring_params->intr_timer_thres_us =
1765 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1766 		ring_params->intr_batch_cntr_thres_entries =
1767 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1768 	} else if (ring_type == WBM2SW_RELEASE &&
1769 		   (ring_num == wbm2_sw_rx_rel_ring_id)) {
1770 		ring_params->intr_timer_thres_us =
1771 				wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1772 		ring_params->intr_batch_cntr_thres_entries =
1773 				wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1774 	} else {
1775 		ring_params->intr_timer_thres_us =
1776 				soc->wlan_srng_cfg[ring_type].timer_threshold;
1777 		ring_params->intr_batch_cntr_thres_entries =
1778 				soc->wlan_srng_cfg[ring_type].batch_count_threshold;
1779 	}
1780 	ring_params->low_threshold =
1781 			soc->wlan_srng_cfg[ring_type].low_threshold;
1782 	if (ring_params->low_threshold)
1783 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1784 
1785 	dp_srng_configure_nf_interrupt_thresholds(soc, ring_params, ring_type);
1786 }
1787 #else
1788 void
1789 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1790 				       struct hal_srng_params *ring_params,
1791 				       int ring_type, int ring_num,
1792 				       int num_entries)
1793 {
1794 	uint8_t wbm2_sw_rx_rel_ring_id;
1795 	bool rx_refill_lt_disable;
1796 
1797 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1798 
1799 	if (ring_type == REO_DST || ring_type == REO2PPE) {
1800 		ring_params->intr_timer_thres_us =
1801 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1802 		ring_params->intr_batch_cntr_thres_entries =
1803 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1804 	} else if (ring_type == WBM2SW_RELEASE &&
1805 		   (ring_num < wbm2_sw_rx_rel_ring_id ||
1806 		   ring_num == WBM2SW_TXCOMP_RING4_NUM ||
1807 		   ring_num == WBM2_SW_PPE_REL_RING_ID)) {
1808 		ring_params->intr_timer_thres_us =
1809 			wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
1810 		ring_params->intr_batch_cntr_thres_entries =
1811 			wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
1812 	} else if (ring_type == RXDMA_BUF) {
1813 		rx_refill_lt_disable =
1814 			wlan_cfg_get_dp_soc_rxdma_refill_lt_disable
1815 							(soc->wlan_cfg_ctx);
1816 		ring_params->intr_timer_thres_us =
1817 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1818 
1819 		if (!rx_refill_lt_disable) {
1820 			ring_params->low_threshold = num_entries >> 3;
1821 			ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1822 			ring_params->intr_batch_cntr_thres_entries = 0;
1823 		}
1824 	} else {
1825 		ring_params->intr_timer_thres_us =
1826 			wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1827 		ring_params->intr_batch_cntr_thres_entries =
1828 			wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1829 	}
1830 
1831 	/* These rings donot require interrupt to host. Make them zero */
1832 	switch (ring_type) {
1833 	case REO_REINJECT:
1834 	case REO_CMD:
1835 	case TCL_DATA:
1836 	case TCL_CMD_CREDIT:
1837 	case TCL_STATUS:
1838 	case WBM_IDLE_LINK:
1839 	case SW2WBM_RELEASE:
1840 	case SW2RXDMA_NEW:
1841 		ring_params->intr_timer_thres_us = 0;
1842 		ring_params->intr_batch_cntr_thres_entries = 0;
1843 		break;
1844 	case PPE2TCL:
1845 		ring_params->intr_timer_thres_us =
1846 			wlan_cfg_get_int_timer_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1847 		ring_params->intr_batch_cntr_thres_entries =
1848 			wlan_cfg_get_int_batch_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1849 		break;
1850 	case RXDMA_MONITOR_DST:
1851 		ring_params->intr_timer_thres_us =
1852 		  wlan_cfg_get_int_timer_threshold_mon_dest(soc->wlan_cfg_ctx);
1853 		ring_params->intr_batch_cntr_thres_entries =
1854 		  wlan_cfg_get_int_batch_threshold_mon_dest(soc->wlan_cfg_ctx);
1855 		break;
1856 	}
1857 
1858 	/* Enable low threshold interrupts for rx buffer rings (regular and
1859 	 * monitor buffer rings.
1860 	 * TODO: See if this is required for any other ring
1861 	 */
1862 	if ((ring_type == RXDMA_MONITOR_BUF) ||
1863 	    (ring_type == RXDMA_MONITOR_STATUS ||
1864 	    (ring_type == TX_MONITOR_BUF))) {
1865 		/* TODO: Setting low threshold to 1/8th of ring size
1866 		 * see if this needs to be configurable
1867 		 */
1868 		ring_params->low_threshold = num_entries >> 3;
1869 		ring_params->intr_timer_thres_us =
1870 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1871 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1872 		ring_params->intr_batch_cntr_thres_entries = 0;
1873 	}
1874 
1875 	/* During initialisation monitor rings are only filled with
1876 	 * MON_BUF_MIN_ENTRIES entries. So low threshold needs to be set to
1877 	 * a value less than that. Low threshold value is reconfigured again
1878 	 * to 1/8th of the ring size when monitor vap is created.
1879 	 */
1880 	if (ring_type == RXDMA_MONITOR_BUF)
1881 		ring_params->low_threshold = MON_BUF_MIN_ENTRIES >> 1;
1882 
1883 	/* In case of PCI chipsets, we dont have PPDU end interrupts,
1884 	 * so MONITOR STATUS ring is reaped by receiving MSI from srng.
1885 	 * Keep batch threshold as 8 so that interrupt is received for
1886 	 * every 4 packets in MONITOR_STATUS ring
1887 	 */
1888 	if ((ring_type == RXDMA_MONITOR_STATUS) &&
1889 	    (soc->intr_mode == DP_INTR_MSI))
1890 		ring_params->intr_batch_cntr_thres_entries = 4;
1891 }
1892 #endif
1893 
1894 static int dp_process_rxdma_dst_ring(struct dp_soc *soc,
1895 				     struct dp_intr *int_ctx,
1896 				     int mac_for_pdev,
1897 				     int total_budget)
1898 {
1899 	uint32_t target_type;
1900 
1901 	target_type = hal_get_target_type(soc->hal_soc);
1902 	if (target_type == TARGET_TYPE_QCN9160)
1903 		return dp_monitor_process(soc, int_ctx,
1904 					  mac_for_pdev, total_budget);
1905 	else
1906 		return dp_rxdma_err_process(int_ctx, soc, mac_for_pdev,
1907 					    total_budget);
1908 }
1909 
1910 /**
1911  * dp_process_lmac_rings() - Process LMAC rings
1912  * @int_ctx: interrupt context
1913  * @total_budget: budget of work which can be done
1914  *
1915  * Return: work done
1916  */
1917 int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
1918 {
1919 	struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
1920 	struct dp_soc *soc = int_ctx->soc;
1921 	uint32_t remaining_quota = total_budget;
1922 	struct dp_pdev *pdev = NULL;
1923 	uint32_t work_done  = 0;
1924 	int budget = total_budget;
1925 	int ring = 0;
1926 	bool rx_refill_lt_disable;
1927 
1928 	rx_refill_lt_disable =
1929 		wlan_cfg_get_dp_soc_rxdma_refill_lt_disable(soc->wlan_cfg_ctx);
1930 
1931 	/* Process LMAC interrupts */
1932 	for  (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
1933 		int mac_for_pdev = ring;
1934 
1935 		pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
1936 		if (!pdev)
1937 			continue;
1938 		if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
1939 			work_done = dp_monitor_process(soc, int_ctx,
1940 						       mac_for_pdev,
1941 						       remaining_quota);
1942 			if (work_done)
1943 				intr_stats->num_rx_mon_ring_masks++;
1944 			budget -= work_done;
1945 			if (budget <= 0)
1946 				goto budget_done;
1947 			remaining_quota = budget;
1948 		}
1949 
1950 		if (int_ctx->tx_mon_ring_mask & (1 << mac_for_pdev)) {
1951 			work_done = dp_tx_mon_process(soc, int_ctx,
1952 						      mac_for_pdev,
1953 						      remaining_quota);
1954 			if (work_done)
1955 				intr_stats->num_tx_mon_ring_masks++;
1956 			budget -= work_done;
1957 			if (budget <= 0)
1958 				goto budget_done;
1959 			remaining_quota = budget;
1960 		}
1961 
1962 		if (int_ctx->rxdma2host_ring_mask &
1963 				(1 << mac_for_pdev)) {
1964 			work_done = dp_process_rxdma_dst_ring(soc, int_ctx,
1965 							      mac_for_pdev,
1966 							      remaining_quota);
1967 			if (work_done)
1968 				intr_stats->num_rxdma2host_ring_masks++;
1969 			budget -=  work_done;
1970 			if (budget <= 0)
1971 				goto budget_done;
1972 			remaining_quota = budget;
1973 		}
1974 
1975 		if (int_ctx->host2rxdma_ring_mask & (1 << mac_for_pdev)) {
1976 			union dp_rx_desc_list_elem_t *desc_list = NULL;
1977 			union dp_rx_desc_list_elem_t *tail = NULL;
1978 			struct dp_srng *rx_refill_buf_ring;
1979 			struct rx_desc_pool *rx_desc_pool;
1980 
1981 			rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
1982 			if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
1983 				rx_refill_buf_ring =
1984 					&soc->rx_refill_buf_ring[mac_for_pdev];
1985 			else
1986 				rx_refill_buf_ring =
1987 					&soc->rx_refill_buf_ring[pdev->lmac_id];
1988 
1989 			intr_stats->num_host2rxdma_ring_masks++;
1990 
1991 			if (!rx_refill_lt_disable)
1992 				dp_rx_buffers_lt_replenish_simple(soc,
1993 							  mac_for_pdev,
1994 							  rx_refill_buf_ring,
1995 							  rx_desc_pool,
1996 							  0,
1997 							  &desc_list,
1998 							  &tail);
1999 		}
2000 	}
2001 
2002 	if (int_ctx->host2rxdma_mon_ring_mask)
2003 		dp_rx_mon_buf_refill(int_ctx);
2004 
2005 	if (int_ctx->host2txmon_ring_mask)
2006 		dp_tx_mon_buf_refill(int_ctx);
2007 
2008 budget_done:
2009 	return total_budget - budget;
2010 }
2011 
2012 uint32_t dp_service_srngs_wrapper(void *dp_ctx, uint32_t dp_budget, int cpu)
2013 {
2014 	struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
2015 	struct dp_soc *soc = int_ctx->soc;
2016 
2017 	return soc->arch_ops.dp_service_srngs(dp_ctx, dp_budget, cpu);
2018 }
2019 
2020 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
2021 /**
2022  * dp_soc_interrupt_map_calculate_wifi3_pci_legacy() -
2023  * Calculate interrupt map for legacy interrupts
2024  * @soc: DP soc handle
2025  * @intr_ctx_num: Interrupt context number
2026  * @irq_id_map: IRQ map
2027  * @num_irq_r: Number of interrupts assigned for this context
2028  *
2029  * Return: void
2030  */
2031 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2032 							    int intr_ctx_num,
2033 							    int *irq_id_map,
2034 							    int *num_irq_r)
2035 {
2036 	int j;
2037 	int num_irq = 0;
2038 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2039 					soc->wlan_cfg_ctx, intr_ctx_num);
2040 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2041 					soc->wlan_cfg_ctx, intr_ctx_num);
2042 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2043 					soc->wlan_cfg_ctx, intr_ctx_num);
2044 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2045 					soc->wlan_cfg_ctx, intr_ctx_num);
2046 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2047 					soc->wlan_cfg_ctx, intr_ctx_num);
2048 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2049 					soc->wlan_cfg_ctx, intr_ctx_num);
2050 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2051 					soc->wlan_cfg_ctx, intr_ctx_num);
2052 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2053 					soc->wlan_cfg_ctx, intr_ctx_num);
2054 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2055 					soc->wlan_cfg_ctx, intr_ctx_num);
2056 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2057 					soc->wlan_cfg_ctx, intr_ctx_num);
2058 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2059 					soc->wlan_cfg_ctx, intr_ctx_num);
2060 	soc->intr_mode = DP_INTR_LEGACY_VIRTUAL_IRQ;
2061 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2062 		if (tx_mask & (1 << j))
2063 			irq_id_map[num_irq++] = (wbm2sw0_release - j);
2064 		if (rx_mask & (1 << j))
2065 			irq_id_map[num_irq++] = (reo2sw1_intr - j);
2066 		if (rx_mon_mask & (1 << j))
2067 			irq_id_map[num_irq++] = (rxmon2sw_p0_dest0 - j);
2068 		if (rx_err_ring_mask & (1 << j))
2069 			irq_id_map[num_irq++] = (reo2sw0_intr - j);
2070 		if (rx_wbm_rel_ring_mask & (1 << j))
2071 			irq_id_map[num_irq++] = (wbm2sw5_release - j);
2072 		if (reo_status_ring_mask & (1 << j))
2073 			irq_id_map[num_irq++] = (reo_status - j);
2074 		if (rxdma2host_ring_mask & (1 << j))
2075 			irq_id_map[num_irq++] = (rxdma2sw_dst_ring0 - j);
2076 		if (host2rxdma_ring_mask & (1 << j))
2077 			irq_id_map[num_irq++] = (sw2rxdma_0 - j);
2078 		if (host2rxdma_mon_ring_mask & (1 << j))
2079 			irq_id_map[num_irq++] = (sw2rxmon_src_ring - j);
2080 		if (host2txmon_ring_mask & (1 << j))
2081 			irq_id_map[num_irq++] = sw2txmon_src_ring;
2082 		if (txmon2host_mon_ring_mask & (1 << j))
2083 			irq_id_map[num_irq++] = (txmon2sw_p0_dest0 - j);
2084 	}
2085 	*num_irq_r = num_irq;
2086 }
2087 #else
2088 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2089 							    int intr_ctx_num,
2090 							    int *irq_id_map,
2091 							    int *num_irq_r)
2092 {
2093 }
2094 #endif
2095 
2096 static void
2097 dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc, int intr_ctx_num,
2098 					  int *irq_id_map, int *num_irq_r)
2099 {
2100 	int j;
2101 	int num_irq = 0;
2102 
2103 	int tx_mask =
2104 		wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2105 	int rx_mask =
2106 		wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2107 	int rx_mon_mask =
2108 		wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2109 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2110 					soc->wlan_cfg_ctx, intr_ctx_num);
2111 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2112 					soc->wlan_cfg_ctx, intr_ctx_num);
2113 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2114 					soc->wlan_cfg_ctx, intr_ctx_num);
2115 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2116 					soc->wlan_cfg_ctx, intr_ctx_num);
2117 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2118 					soc->wlan_cfg_ctx, intr_ctx_num);
2119 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2120 					soc->wlan_cfg_ctx, intr_ctx_num);
2121 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2122 					soc->wlan_cfg_ctx, intr_ctx_num);
2123 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2124 					soc->wlan_cfg_ctx, intr_ctx_num);
2125 
2126 	soc->intr_mode = DP_INTR_INTEGRATED;
2127 
2128 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2129 		if (tx_mask & (1 << j)) {
2130 			irq_id_map[num_irq++] =
2131 				(wbm2host_tx_completions_ring1 - j);
2132 		}
2133 
2134 		if (rx_mask & (1 << j)) {
2135 			irq_id_map[num_irq++] =
2136 				(reo2host_destination_ring1 - j);
2137 		}
2138 
2139 		if (rxdma2host_ring_mask & (1 << j)) {
2140 			irq_id_map[num_irq++] =
2141 				rxdma2host_destination_ring_mac1 - j;
2142 		}
2143 
2144 		if (host2rxdma_ring_mask & (1 << j)) {
2145 			irq_id_map[num_irq++] =
2146 				host2rxdma_host_buf_ring_mac1 -	j;
2147 		}
2148 
2149 		if (host2rxdma_mon_ring_mask & (1 << j)) {
2150 			irq_id_map[num_irq++] =
2151 				host2rxdma_monitor_ring1 - j;
2152 		}
2153 
2154 		if (rx_mon_mask & (1 << j)) {
2155 			irq_id_map[num_irq++] =
2156 				ppdu_end_interrupts_mac1 - j;
2157 			irq_id_map[num_irq++] =
2158 				rxdma2host_monitor_status_ring_mac1 - j;
2159 			irq_id_map[num_irq++] =
2160 				rxdma2host_monitor_destination_mac1 - j;
2161 		}
2162 
2163 		if (rx_wbm_rel_ring_mask & (1 << j))
2164 			irq_id_map[num_irq++] = wbm2host_rx_release;
2165 
2166 		if (rx_err_ring_mask & (1 << j))
2167 			irq_id_map[num_irq++] = reo2host_exception;
2168 
2169 		if (reo_status_ring_mask & (1 << j))
2170 			irq_id_map[num_irq++] = reo2host_status;
2171 
2172 		if (host2txmon_ring_mask & (1 << j))
2173 			irq_id_map[num_irq++] = host2tx_monitor_ring1;
2174 
2175 		if (txmon2host_mon_ring_mask & (1 << j)) {
2176 			irq_id_map[num_irq++] =
2177 				(txmon2host_monitor_destination_mac1 - j);
2178 		}
2179 	}
2180 	*num_irq_r = num_irq;
2181 }
2182 
2183 static void
2184 dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc, int intr_ctx_num,
2185 				   int *irq_id_map, int *num_irq_r,
2186 				   int msi_vector_count, int msi_vector_start)
2187 {
2188 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2189 					soc->wlan_cfg_ctx, intr_ctx_num);
2190 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2191 					soc->wlan_cfg_ctx, intr_ctx_num);
2192 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2193 					soc->wlan_cfg_ctx, intr_ctx_num);
2194 	int tx_mon_mask = wlan_cfg_get_tx_mon_ring_mask(
2195 					soc->wlan_cfg_ctx, intr_ctx_num);
2196 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2197 					soc->wlan_cfg_ctx, intr_ctx_num);
2198 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2199 					soc->wlan_cfg_ctx, intr_ctx_num);
2200 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2201 					soc->wlan_cfg_ctx, intr_ctx_num);
2202 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2203 					soc->wlan_cfg_ctx, intr_ctx_num);
2204 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2205 					soc->wlan_cfg_ctx, intr_ctx_num);
2206 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2207 					soc->wlan_cfg_ctx, intr_ctx_num);
2208 	int rx_near_full_grp_1_mask =
2209 		wlan_cfg_get_rx_near_full_grp_1_mask(soc->wlan_cfg_ctx,
2210 						     intr_ctx_num);
2211 	int rx_near_full_grp_2_mask =
2212 		wlan_cfg_get_rx_near_full_grp_2_mask(soc->wlan_cfg_ctx,
2213 						     intr_ctx_num);
2214 	int tx_ring_near_full_mask =
2215 		wlan_cfg_get_tx_ring_near_full_mask(soc->wlan_cfg_ctx,
2216 						    intr_ctx_num);
2217 
2218 	int host2txmon_ring_mask =
2219 		wlan_cfg_get_host2txmon_ring_mask(soc->wlan_cfg_ctx,
2220 						  intr_ctx_num);
2221 	unsigned int vector =
2222 		(intr_ctx_num % msi_vector_count) + msi_vector_start;
2223 	int num_irq = 0;
2224 
2225 	soc->intr_mode = DP_INTR_MSI;
2226 
2227 	if (tx_mask | rx_mask | rx_mon_mask | tx_mon_mask | rx_err_ring_mask |
2228 	    rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask |
2229 	    host2rxdma_ring_mask | host2rxdma_mon_ring_mask |
2230 	    rx_near_full_grp_1_mask | rx_near_full_grp_2_mask |
2231 	    tx_ring_near_full_mask | host2txmon_ring_mask)
2232 		irq_id_map[num_irq++] =
2233 			pld_get_msi_irq(soc->osdev->dev, vector);
2234 
2235 	*num_irq_r = num_irq;
2236 }
2237 
2238 void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
2239 				    int *irq_id_map, int *num_irq)
2240 {
2241 	int msi_vector_count, ret;
2242 	uint32_t msi_base_data, msi_vector_start;
2243 
2244 	if (pld_get_enable_intx(soc->osdev->dev)) {
2245 		return dp_soc_interrupt_map_calculate_wifi3_pci_legacy(soc,
2246 				intr_ctx_num, irq_id_map, num_irq);
2247 	}
2248 
2249 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
2250 					  &msi_vector_count,
2251 					  &msi_base_data,
2252 					  &msi_vector_start);
2253 	if (ret)
2254 		return dp_soc_interrupt_map_calculate_integrated(soc,
2255 				intr_ctx_num, irq_id_map, num_irq);
2256 
2257 	else
2258 		dp_soc_interrupt_map_calculate_msi(soc,
2259 				intr_ctx_num, irq_id_map, num_irq,
2260 				msi_vector_count, msi_vector_start);
2261 }
2262 
2263 void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
2264 {
2265 	if (srng->alloc_size && srng->base_vaddr_unaligned) {
2266 		if (!srng->cached) {
2267 			dp_srng_mem_free_consistent(soc, srng);
2268 		} else {
2269 			qdf_mem_free(srng->base_vaddr_unaligned);
2270 		}
2271 		srng->alloc_size = 0;
2272 		srng->base_vaddr_unaligned = NULL;
2273 	}
2274 	srng->hal_srng = NULL;
2275 }
2276 
2277 qdf_export_symbol(dp_srng_free);
2278 
2279 QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
2280 			int ring_num, int mac_id)
2281 {
2282 	return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
2283 					    ring_num, mac_id);
2284 }
2285 
2286 qdf_export_symbol(dp_srng_init);
2287 
2288 QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
2289 			 int ring_type, uint32_t num_entries,
2290 			 bool cached)
2291 {
2292 	hal_soc_handle_t hal_soc = soc->hal_soc;
2293 	uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
2294 	uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
2295 
2296 	if (srng->base_vaddr_unaligned) {
2297 		dp_init_err("%pK: Ring type: %d, is already allocated",
2298 			    soc, ring_type);
2299 		return QDF_STATUS_SUCCESS;
2300 	}
2301 
2302 	num_entries = (num_entries > max_entries) ? max_entries : num_entries;
2303 	srng->hal_srng = NULL;
2304 	srng->alloc_size = num_entries * entry_size;
2305 	srng->num_entries = num_entries;
2306 	srng->cached = cached;
2307 
2308 	if (!cached) {
2309 		srng->base_vaddr_aligned =
2310 		    dp_srng_aligned_mem_alloc_consistent(soc,
2311 							 srng,
2312 							 ring_type);
2313 	} else {
2314 		srng->base_vaddr_aligned = qdf_aligned_malloc(
2315 					&srng->alloc_size,
2316 					&srng->base_vaddr_unaligned,
2317 					&srng->base_paddr_unaligned,
2318 					&srng->base_paddr_aligned,
2319 					DP_RING_BASE_ALIGN);
2320 	}
2321 
2322 	if (!srng->base_vaddr_aligned)
2323 		return QDF_STATUS_E_NOMEM;
2324 
2325 	return QDF_STATUS_SUCCESS;
2326 }
2327 
2328 qdf_export_symbol(dp_srng_alloc);
2329 
2330 void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
2331 		    int ring_type, int ring_num)
2332 {
2333 	if (!srng->hal_srng) {
2334 		dp_init_err("%pK: Ring type: %d, num:%d not setup",
2335 			    soc, ring_type, ring_num);
2336 		return;
2337 	}
2338 
2339 	if (dp_check_umac_reset_in_progress(soc))
2340 		goto srng_cleanup;
2341 
2342 	if (soc->arch_ops.dp_free_ppeds_interrupts)
2343 		soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
2344 						       ring_num);
2345 
2346 srng_cleanup:
2347 	hal_srng_cleanup(soc->hal_soc, srng->hal_srng,
2348 			 dp_check_umac_reset_in_progress(soc));
2349 	srng->hal_srng = NULL;
2350 }
2351 
2352 qdf_export_symbol(dp_srng_deinit);
2353 
2354 /* TODO: Need this interface from HIF */
2355 void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
2356 
2357 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2358 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2359 			 hal_ring_handle_t hal_ring_hdl)
2360 {
2361 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2362 	uint32_t hp, tp;
2363 	uint8_t ring_id;
2364 
2365 	if (!int_ctx)
2366 		return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2367 
2368 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2369 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2370 
2371 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2372 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
2373 
2374 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2375 }
2376 
2377 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2378 			hal_ring_handle_t hal_ring_hdl)
2379 {
2380 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2381 	uint32_t hp, tp;
2382 	uint8_t ring_id;
2383 
2384 	if (!int_ctx)
2385 		return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2386 
2387 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2388 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2389 
2390 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2391 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
2392 
2393 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2394 }
2395 
2396 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2397 					      uint8_t hist_group_id)
2398 {
2399 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2400 			 0, 0, 0, HIF_EVENT_TIMER_ENTRY);
2401 }
2402 
2403 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2404 					     uint8_t hist_group_id)
2405 {
2406 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2407 			 0, 0, 0, HIF_EVENT_TIMER_EXIT);
2408 }
2409 #else
2410 
2411 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2412 					      uint8_t hist_group_id)
2413 {
2414 }
2415 
2416 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2417 					     uint8_t hist_group_id)
2418 {
2419 }
2420 
2421 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2422 
2423 enum timer_yield_status
2424 dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
2425 			  uint64_t start_time)
2426 {
2427 	uint64_t cur_time = qdf_get_log_timestamp();
2428 
2429 	if (!work_done)
2430 		return DP_TIMER_WORK_DONE;
2431 
2432 	if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
2433 		return DP_TIMER_TIME_EXHAUST;
2434 
2435 	return DP_TIMER_NO_YIELD;
2436 }
2437 
2438 qdf_export_symbol(dp_should_timer_irq_yield);
2439 
2440 void dp_interrupt_timer(void *arg)
2441 {
2442 	struct dp_soc *soc = (struct dp_soc *) arg;
2443 	struct dp_pdev *pdev = soc->pdev_list[0];
2444 	enum timer_yield_status yield = DP_TIMER_NO_YIELD;
2445 	uint32_t work_done  = 0, total_work_done = 0;
2446 	int budget = 0xffff, i;
2447 	uint32_t remaining_quota = budget;
2448 	uint64_t start_time;
2449 	uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
2450 	uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
2451 	uint32_t lmac_iter;
2452 	int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
2453 	enum reg_wifi_band mon_band;
2454 	int cpu = dp_srng_get_cpu();
2455 
2456 	/*
2457 	 * this logic makes all data path interfacing rings (UMAC/LMAC)
2458 	 * and Monitor rings polling mode when NSS offload is disabled
2459 	 */
2460 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
2461 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
2462 		if (qdf_atomic_read(&soc->cmn_init_done)) {
2463 			for (i = 0; i < wlan_cfg_get_num_contexts(
2464 						soc->wlan_cfg_ctx); i++)
2465 				soc->arch_ops.dp_service_srngs(&soc->intr_ctx[i], 0xffff,
2466 							       cpu);
2467 
2468 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2469 		}
2470 		return;
2471 	}
2472 
2473 	if (!qdf_atomic_read(&soc->cmn_init_done))
2474 		return;
2475 
2476 	if (dp_monitor_is_chan_band_known(pdev)) {
2477 		mon_band = dp_monitor_get_chan_band(pdev);
2478 		lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
2479 		if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
2480 			dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
2481 			dp_srng_record_timer_entry(soc, dp_intr_id);
2482 		}
2483 	}
2484 
2485 	start_time = qdf_get_log_timestamp();
2486 	dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
2487 
2488 	while (yield == DP_TIMER_NO_YIELD) {
2489 		for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
2490 			if (lmac_iter == lmac_id)
2491 				work_done = dp_monitor_process(soc,
2492 						&soc->intr_ctx[dp_intr_id],
2493 						lmac_iter, remaining_quota);
2494 			else
2495 				work_done =
2496 					dp_monitor_drop_packets_for_mac(pdev,
2497 							     lmac_iter,
2498 							     remaining_quota);
2499 			if (work_done) {
2500 				budget -=  work_done;
2501 				if (budget <= 0) {
2502 					yield = DP_TIMER_WORK_EXHAUST;
2503 					goto budget_done;
2504 				}
2505 				remaining_quota = budget;
2506 				total_work_done += work_done;
2507 			}
2508 		}
2509 
2510 		yield = dp_should_timer_irq_yield(soc, total_work_done,
2511 						  start_time);
2512 		total_work_done = 0;
2513 	}
2514 
2515 budget_done:
2516 	if (yield == DP_TIMER_WORK_EXHAUST ||
2517 	    yield == DP_TIMER_TIME_EXHAUST)
2518 		qdf_timer_mod(&soc->int_timer, 1);
2519 	else
2520 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2521 
2522 	if (lmac_id != DP_MON_INVALID_LMAC_ID)
2523 		dp_srng_record_timer_exit(soc, dp_intr_id);
2524 }
2525 
2526 /**
2527  * dp_soc_interrupt_detach_wrapper() - wrapper function for interrupt detach
2528  * @txrx_soc: DP SOC handle
2529  *
2530  * Return: None
2531  */
2532 static void dp_soc_interrupt_detach_wrapper(struct cdp_soc_t *txrx_soc)
2533 {
2534 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2535 
2536 	return soc->arch_ops.dp_soc_interrupt_detach(txrx_soc);
2537 }
2538 
2539 #if defined(DP_INTR_POLL_BOTH)
2540 /**
2541  * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
2542  * @txrx_soc: DP SOC handle
2543  *
2544  * Call the appropriate attach function based on the mode of operation.
2545  * This is a WAR for enabling monitor mode.
2546  *
2547  * Return: 0 for success. nonzero for failure.
2548  */
2549 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2550 {
2551 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2552 
2553 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
2554 	    (dp_is_monitor_mode_using_poll(soc) &&
2555 	     soc->cdp_soc.ol_ops->get_con_mode &&
2556 	     soc->cdp_soc.ol_ops->get_con_mode() ==
2557 	     QDF_GLOBAL_MONITOR_MODE)) {
2558 		dp_info("Poll mode");
2559 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2560 	} else {
2561 		dp_info("Interrupt  mode");
2562 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2563 	}
2564 }
2565 #else
2566 #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
2567 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2568 {
2569 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2570 
2571 	return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2572 }
2573 #else
2574 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2575 {
2576 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2577 
2578 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
2579 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2580 	else
2581 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2582 }
2583 #endif
2584 #endif
2585 
2586 void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
2587 {
2588 	uint32_t cookie = 0;
2589 	uint32_t page_idx = 0;
2590 	struct qdf_mem_multi_page_t *pages;
2591 	struct qdf_mem_dma_page_t *dma_pages;
2592 	uint32_t offset = 0;
2593 	uint32_t count = 0;
2594 	uint32_t desc_id = 0;
2595 	void *desc_srng;
2596 	int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
2597 	uint32_t *total_link_descs_addr;
2598 	uint32_t total_link_descs;
2599 	uint32_t scatter_buf_num;
2600 	uint32_t num_entries_per_buf = 0;
2601 	uint32_t rem_entries;
2602 	uint32_t num_descs_per_page;
2603 	uint32_t num_scatter_bufs = 0;
2604 	uint8_t *scatter_buf_ptr;
2605 	void *desc;
2606 
2607 	num_scatter_bufs = soc->num_scatter_bufs;
2608 
2609 	if (mac_id == WLAN_INVALID_PDEV_ID) {
2610 		pages = &soc->link_desc_pages;
2611 		total_link_descs = soc->total_link_descs;
2612 		desc_srng = soc->wbm_idle_link_ring.hal_srng;
2613 	} else {
2614 		pages = dp_monitor_get_link_desc_pages(soc, mac_id);
2615 		/* dp_monitor_get_link_desc_pages returns NULL only
2616 		 * if monitor SOC is  NULL
2617 		 */
2618 		if (!pages) {
2619 			dp_err("can not get link desc pages");
2620 			QDF_ASSERT(0);
2621 			return;
2622 		}
2623 		total_link_descs_addr =
2624 				dp_monitor_get_total_link_descs(soc, mac_id);
2625 		total_link_descs = *total_link_descs_addr;
2626 		desc_srng = dp_monitor_get_link_desc_ring(soc, mac_id);
2627 	}
2628 
2629 	dma_pages = pages->dma_pages;
2630 	do {
2631 		qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
2632 			     pages->page_size);
2633 		page_idx++;
2634 	} while (page_idx < pages->num_pages);
2635 
2636 	if (desc_srng) {
2637 		hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
2638 		page_idx = 0;
2639 		count = 0;
2640 		offset = 0;
2641 		while ((desc = hal_srng_src_get_next(soc->hal_soc,
2642 						     desc_srng)) &&
2643 			(count < total_link_descs)) {
2644 			page_idx = count / pages->num_element_per_page;
2645 			if (desc_id == pages->num_element_per_page)
2646 				desc_id = 0;
2647 
2648 			offset = count % pages->num_element_per_page;
2649 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2650 						  soc->link_desc_id_start);
2651 
2652 			hal_set_link_desc_addr(soc->hal_soc, desc, cookie,
2653 					       dma_pages[page_idx].page_p_addr
2654 					       + (offset * link_desc_size),
2655 					       soc->idle_link_bm_id);
2656 			count++;
2657 			desc_id++;
2658 		}
2659 		hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
2660 	} else {
2661 		/* Populate idle list scatter buffers with link descriptor
2662 		 * pointers
2663 		 */
2664 		scatter_buf_num = 0;
2665 		num_entries_per_buf = hal_idle_scatter_buf_num_entries(
2666 					soc->hal_soc,
2667 					soc->wbm_idle_scatter_buf_size);
2668 
2669 		scatter_buf_ptr = (uint8_t *)(
2670 			soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
2671 		rem_entries = num_entries_per_buf;
2672 		page_idx = 0; count = 0;
2673 		offset = 0;
2674 		num_descs_per_page = pages->num_element_per_page;
2675 
2676 		while (count < total_link_descs) {
2677 			page_idx = count / num_descs_per_page;
2678 			offset = count % num_descs_per_page;
2679 			if (desc_id == pages->num_element_per_page)
2680 				desc_id = 0;
2681 
2682 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2683 						  soc->link_desc_id_start);
2684 			hal_set_link_desc_addr(soc->hal_soc,
2685 					       (void *)scatter_buf_ptr,
2686 					       cookie,
2687 					       dma_pages[page_idx].page_p_addr +
2688 					       (offset * link_desc_size),
2689 					       soc->idle_link_bm_id);
2690 			rem_entries--;
2691 			if (rem_entries) {
2692 				scatter_buf_ptr += link_desc_size;
2693 			} else {
2694 				rem_entries = num_entries_per_buf;
2695 				scatter_buf_num++;
2696 				if (scatter_buf_num >= num_scatter_bufs)
2697 					break;
2698 				scatter_buf_ptr = (uint8_t *)
2699 					(soc->wbm_idle_scatter_buf_base_vaddr[
2700 					 scatter_buf_num]);
2701 			}
2702 			count++;
2703 			desc_id++;
2704 		}
2705 		/* Setup link descriptor idle list in HW */
2706 		hal_setup_link_idle_list(soc->hal_soc,
2707 			soc->wbm_idle_scatter_buf_base_paddr,
2708 			soc->wbm_idle_scatter_buf_base_vaddr,
2709 			num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
2710 			(uint32_t)(scatter_buf_ptr -
2711 			(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
2712 			scatter_buf_num-1])), total_link_descs);
2713 	}
2714 }
2715 
2716 qdf_export_symbol(dp_link_desc_ring_replenish);
2717 
2718 /**
2719  * dp_soc_ppeds_stop() - Stop PPE DS processing
2720  * @soc_handle: DP SOC handle
2721  *
2722  * Return: none
2723  */
2724 static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
2725 {
2726 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2727 
2728 	if (soc->arch_ops.txrx_soc_ppeds_stop)
2729 		soc->arch_ops.txrx_soc_ppeds_stop(soc);
2730 }
2731 
2732 #ifdef ENABLE_VERBOSE_DEBUG
2733 void dp_enable_verbose_debug(struct dp_soc *soc)
2734 {
2735 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2736 
2737 	soc_cfg_ctx = soc->wlan_cfg_ctx;
2738 
2739 	if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
2740 		is_dp_verbose_debug_enabled = true;
2741 
2742 	if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
2743 		hal_set_verbose_debug(true);
2744 	else
2745 		hal_set_verbose_debug(false);
2746 }
2747 #else
2748 void dp_enable_verbose_debug(struct dp_soc *soc)
2749 {
2750 }
2751 #endif
2752 
2753 static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2754 {
2755 	struct cdp_lro_hash_config lro_hash;
2756 	QDF_STATUS status;
2757 
2758 	if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
2759 	    !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
2760 	    !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
2761 		dp_err("LRO, GRO and RX hash disabled");
2762 		return QDF_STATUS_E_FAILURE;
2763 	}
2764 
2765 	qdf_mem_zero(&lro_hash, sizeof(lro_hash));
2766 
2767 	if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
2768 	    wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
2769 		lro_hash.lro_enable = 1;
2770 		lro_hash.tcp_flag = QDF_TCPHDR_ACK;
2771 		lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
2772 			 QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
2773 			 QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
2774 	}
2775 
2776 	soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
2777 
2778 	qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
2779 
2780 	if (!soc->cdp_soc.ol_ops->lro_hash_config) {
2781 		QDF_BUG(0);
2782 		dp_err("lro_hash_config not configured");
2783 		return QDF_STATUS_E_FAILURE;
2784 	}
2785 
2786 	status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
2787 						      pdev->pdev_id,
2788 						      &lro_hash);
2789 	if (!QDF_IS_STATUS_SUCCESS(status)) {
2790 		dp_err("failed to send lro_hash_config to FW %u", status);
2791 		return status;
2792 	}
2793 
2794 	dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
2795 		lro_hash.lro_enable, lro_hash.tcp_flag,
2796 		lro_hash.tcp_flag_mask);
2797 
2798 	dp_info("toeplitz_hash_ipv4:");
2799 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2800 			   lro_hash.toeplitz_hash_ipv4,
2801 			   (sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
2802 			   LRO_IPV4_SEED_ARR_SZ));
2803 
2804 	dp_info("toeplitz_hash_ipv6:");
2805 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2806 			   lro_hash.toeplitz_hash_ipv6,
2807 			   (sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
2808 			   LRO_IPV6_SEED_ARR_SZ));
2809 
2810 	return status;
2811 }
2812 
2813 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
2814 /**
2815  * dp_reap_timer_init() - initialize the reap timer
2816  * @soc: data path SoC handle
2817  *
2818  * Return: void
2819  */
2820 static void dp_reap_timer_init(struct dp_soc *soc)
2821 {
2822 	/*
2823 	 * Timer to reap rxdma status rings.
2824 	 * Needed until we enable ppdu end interrupts
2825 	 */
2826 	dp_monitor_reap_timer_init(soc);
2827 	dp_monitor_vdev_timer_init(soc);
2828 }
2829 
2830 /**
2831  * dp_reap_timer_deinit() - de-initialize the reap timer
2832  * @soc: data path SoC handle
2833  *
2834  * Return: void
2835  */
2836 static void dp_reap_timer_deinit(struct dp_soc *soc)
2837 {
2838 	dp_monitor_reap_timer_deinit(soc);
2839 }
2840 #else
2841 /* WIN use case */
2842 static void dp_reap_timer_init(struct dp_soc *soc)
2843 {
2844 	/* Configure LMAC rings in Polled mode */
2845 	if (soc->lmac_polled_mode) {
2846 		/*
2847 		 * Timer to reap lmac rings.
2848 		 */
2849 		qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
2850 			       dp_service_lmac_rings, (void *)soc,
2851 			       QDF_TIMER_TYPE_WAKE_APPS);
2852 		soc->lmac_timer_init = 1;
2853 		qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
2854 	}
2855 }
2856 
2857 static void dp_reap_timer_deinit(struct dp_soc *soc)
2858 {
2859 	if (soc->lmac_timer_init) {
2860 		qdf_timer_stop(&soc->lmac_reap_timer);
2861 		qdf_timer_free(&soc->lmac_reap_timer);
2862 		soc->lmac_timer_init = 0;
2863 	}
2864 }
2865 #endif
2866 
2867 #ifdef QCA_HOST2FW_RXBUF_RING
2868 /**
2869  * dp_rxdma_ring_alloc() - allocate the RXDMA rings
2870  * @soc: data path SoC handle
2871  * @pdev: Physical device handle
2872  *
2873  * Return: 0 - success, > 0 - failure
2874  */
2875 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2876 {
2877 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2878 	int max_mac_rings;
2879 	int i;
2880 	int ring_size;
2881 
2882 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2883 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2884 	ring_size =  wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
2885 
2886 	for (i = 0; i < max_mac_rings; i++) {
2887 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2888 		if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
2889 				  RXDMA_BUF, ring_size, 0)) {
2890 			dp_init_err("%pK: failed rx mac ring setup", soc);
2891 			return QDF_STATUS_E_FAILURE;
2892 		}
2893 	}
2894 	return QDF_STATUS_SUCCESS;
2895 }
2896 
2897 /**
2898  * dp_rxdma_ring_setup() - configure the RXDMA rings
2899  * @soc: data path SoC handle
2900  * @pdev: Physical device handle
2901  *
2902  * Return: 0 - success, > 0 - failure
2903  */
2904 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2905 {
2906 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2907 	int max_mac_rings;
2908 	int i;
2909 
2910 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2911 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2912 
2913 	for (i = 0; i < max_mac_rings; i++) {
2914 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2915 		if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
2916 				 RXDMA_BUF, 1, i)) {
2917 			dp_init_err("%pK: failed rx mac ring setup", soc);
2918 			return QDF_STATUS_E_FAILURE;
2919 		}
2920 	}
2921 	return QDF_STATUS_SUCCESS;
2922 }
2923 
2924 /**
2925  * dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
2926  * @soc: data path SoC handle
2927  * @pdev: Physical device handle
2928  *
2929  * Return: void
2930  */
2931 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2932 {
2933 	int i;
2934 
2935 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2936 		dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
2937 
2938 	dp_reap_timer_deinit(soc);
2939 }
2940 
2941 /**
2942  * dp_rxdma_ring_free() - Free the RXDMA rings
2943  * @pdev: Physical device handle
2944  *
2945  * Return: void
2946  */
2947 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2948 {
2949 	int i;
2950 
2951 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2952 		dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
2953 }
2954 
2955 #else
2956 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2957 {
2958 	return QDF_STATUS_SUCCESS;
2959 }
2960 
2961 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2962 {
2963 	return QDF_STATUS_SUCCESS;
2964 }
2965 
2966 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2967 {
2968 	dp_reap_timer_deinit(soc);
2969 }
2970 
2971 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2972 {
2973 }
2974 #endif
2975 
2976 #ifdef IPA_OFFLOAD
2977 /**
2978  * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
2979  * @soc: data path instance
2980  * @pdev: core txrx pdev context
2981  *
2982  * Return: QDF_STATUS_SUCCESS: success
2983  *         QDF_STATUS_E_RESOURCES: Error return
2984  */
2985 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2986 					   struct dp_pdev *pdev)
2987 {
2988 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2989 	int entries;
2990 
2991 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
2992 		soc_cfg_ctx = soc->wlan_cfg_ctx;
2993 		entries =
2994 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
2995 
2996 		/* Setup second Rx refill buffer ring */
2997 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
2998 				  entries, 0)) {
2999 			dp_init_err("%pK: dp_srng_alloc failed second"
3000 				    "rx refill ring", soc);
3001 			return QDF_STATUS_E_FAILURE;
3002 		}
3003 	}
3004 
3005 	return QDF_STATUS_SUCCESS;
3006 }
3007 
3008 #ifdef IPA_WDI3_VLAN_SUPPORT
3009 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3010 					       struct dp_pdev *pdev)
3011 {
3012 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3013 	int entries;
3014 
3015 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3016 	    wlan_ipa_is_vlan_enabled()) {
3017 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3018 		entries =
3019 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3020 
3021 		/* Setup second Rx refill buffer ring */
3022 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3023 				  entries, 0)) {
3024 			dp_init_err("%pK: alloc failed for 3rd rx refill ring",
3025 				    soc);
3026 			return QDF_STATUS_E_FAILURE;
3027 		}
3028 	}
3029 
3030 	return QDF_STATUS_SUCCESS;
3031 }
3032 
3033 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3034 					      struct dp_pdev *pdev)
3035 {
3036 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3037 	    wlan_ipa_is_vlan_enabled()) {
3038 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3039 				 IPA_RX_ALT_REFILL_BUF_RING_IDX,
3040 				 pdev->pdev_id)) {
3041 			dp_init_err("%pK: init failed for 3rd rx refill ring",
3042 				    soc);
3043 			return QDF_STATUS_E_FAILURE;
3044 		}
3045 	}
3046 
3047 	return QDF_STATUS_SUCCESS;
3048 }
3049 
3050 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3051 						 struct dp_pdev *pdev)
3052 {
3053 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3054 	    wlan_ipa_is_vlan_enabled())
3055 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
3056 }
3057 
3058 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3059 					       struct dp_pdev *pdev)
3060 {
3061 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3062 	    wlan_ipa_is_vlan_enabled())
3063 		dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
3064 }
3065 #else
3066 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3067 					       struct dp_pdev *pdev)
3068 {
3069 	return QDF_STATUS_SUCCESS;
3070 }
3071 
3072 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3073 					      struct dp_pdev *pdev)
3074 {
3075 	return QDF_STATUS_SUCCESS;
3076 }
3077 
3078 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3079 						 struct dp_pdev *pdev)
3080 {
3081 }
3082 
3083 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3084 					       struct dp_pdev *pdev)
3085 {
3086 }
3087 #endif
3088 
3089 /**
3090  * dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
3091  * @soc: data path instance
3092  * @pdev: core txrx pdev context
3093  *
3094  * Return: void
3095  */
3096 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3097 					     struct dp_pdev *pdev)
3098 {
3099 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3100 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
3101 }
3102 
3103 /**
3104  * dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
3105  * @soc: data path instance
3106  * @pdev: core txrx pdev context
3107  *
3108  * Return: QDF_STATUS_SUCCESS: success
3109  *         QDF_STATUS_E_RESOURCES: Error return
3110  */
3111 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3112 					  struct dp_pdev *pdev)
3113 {
3114 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3115 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3116 				 IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
3117 			dp_init_err("%pK: dp_srng_init failed second"
3118 				    "rx refill ring", soc);
3119 			return QDF_STATUS_E_FAILURE;
3120 		}
3121 	}
3122 
3123 	if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3124 		dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
3125 		return QDF_STATUS_E_FAILURE;
3126 	}
3127 
3128 	return QDF_STATUS_SUCCESS;
3129 }
3130 
3131 /**
3132  * dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
3133  * @soc: data path instance
3134  * @pdev: core txrx pdev context
3135  *
3136  * Return: void
3137  */
3138 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3139 					   struct dp_pdev *pdev)
3140 {
3141 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3142 		dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
3143 }
3144 #else
3145 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3146 					   struct dp_pdev *pdev)
3147 {
3148 	return QDF_STATUS_SUCCESS;
3149 }
3150 
3151 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3152 					  struct dp_pdev *pdev)
3153 {
3154 	return QDF_STATUS_SUCCESS;
3155 }
3156 
3157 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3158 					     struct dp_pdev *pdev)
3159 {
3160 }
3161 
3162 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3163 					   struct dp_pdev *pdev)
3164 {
3165 }
3166 
3167 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3168 					       struct dp_pdev *pdev)
3169 {
3170 	return QDF_STATUS_SUCCESS;
3171 }
3172 
3173 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3174 						 struct dp_pdev *pdev)
3175 {
3176 }
3177 
3178 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3179 					       struct dp_pdev *pdev)
3180 {
3181 }
3182 #endif
3183 
3184 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
3185 
3186 /**
3187  * dp_soc_cfg_history_attach() - Allocate and attach datapath config events
3188  *				 history
3189  * @soc: DP soc handle
3190  *
3191  * Return: None
3192  */
3193 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3194 {
3195 	dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
3196 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3197 				   DP_CFG_EVT_HIST_PER_SLOT_MAX,
3198 				   sizeof(struct dp_cfg_event),
3199 				   true, DP_CFG_EVENT_HIST_TYPE);
3200 }
3201 
3202 /**
3203  * dp_soc_cfg_history_detach() - Detach and free DP config events history
3204  * @soc: DP soc handle
3205  *
3206  * Return: none
3207  */
3208 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3209 {
3210 	dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
3211 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3212 				   true, DP_CFG_EVENT_HIST_TYPE);
3213 }
3214 
3215 #else
3216 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3217 {
3218 }
3219 
3220 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3221 {
3222 }
3223 #endif
3224 
3225 #ifdef DP_TX_HW_DESC_HISTORY
3226 /**
3227  * dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
3228  *
3229  * @soc: DP soc handle
3230  *
3231  * Return: None
3232  */
3233 static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3234 {
3235 	dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
3236 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3237 				   DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
3238 				   sizeof(struct dp_tx_hw_desc_evt),
3239 				   true, DP_TX_HW_DESC_HIST_TYPE);
3240 }
3241 
3242 static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3243 {
3244 	dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
3245 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3246 				   true, DP_TX_HW_DESC_HIST_TYPE);
3247 }
3248 
3249 #else /* DP_TX_HW_DESC_HISTORY */
3250 static inline void
3251 dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3252 {
3253 }
3254 
3255 static inline void
3256 dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3257 {
3258 }
3259 #endif /* DP_TX_HW_DESC_HISTORY */
3260 
3261 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
3262 #ifndef RX_DEFRAG_DO_NOT_REINJECT
3263 /**
3264  * dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
3265  *					    history.
3266  * @soc: DP soc handle
3267  *
3268  * Return: None
3269  */
3270 static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3271 {
3272 	soc->rx_reinject_ring_history =
3273 		dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3274 				     sizeof(struct dp_rx_reinject_history));
3275 	if (soc->rx_reinject_ring_history)
3276 		qdf_atomic_init(&soc->rx_reinject_ring_history->index);
3277 }
3278 #else /* RX_DEFRAG_DO_NOT_REINJECT */
3279 static inline void
3280 dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3281 {
3282 }
3283 #endif /* RX_DEFRAG_DO_NOT_REINJECT */
3284 
3285 /**
3286  * dp_soc_rx_history_attach() - Attach the ring history record buffers
3287  * @soc: DP soc structure
3288  *
3289  * This function allocates the memory for recording the rx ring, rx error
3290  * ring and the reinject ring entries. There is no error returned in case
3291  * of allocation failure since the record function checks if the history is
3292  * initialized or not. We do not want to fail the driver load in case of
3293  * failure to allocate memory for debug history.
3294  *
3295  * Return: None
3296  */
3297 static void dp_soc_rx_history_attach(struct dp_soc *soc)
3298 {
3299 	int i;
3300 	uint32_t rx_ring_hist_size;
3301 	uint32_t rx_refill_ring_hist_size;
3302 
3303 	rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
3304 	rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
3305 
3306 	for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
3307 		soc->rx_ring_history[i] = dp_context_alloc_mem(
3308 				soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
3309 		if (soc->rx_ring_history[i])
3310 			qdf_atomic_init(&soc->rx_ring_history[i]->index);
3311 	}
3312 
3313 	soc->rx_err_ring_history = dp_context_alloc_mem(
3314 			soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
3315 	if (soc->rx_err_ring_history)
3316 		qdf_atomic_init(&soc->rx_err_ring_history->index);
3317 
3318 	dp_soc_rx_reinject_ring_history_attach(soc);
3319 
3320 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3321 		soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
3322 						soc,
3323 						DP_RX_REFILL_RING_HIST_TYPE,
3324 						rx_refill_ring_hist_size);
3325 
3326 		if (soc->rx_refill_ring_history[i])
3327 			qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
3328 	}
3329 }
3330 
3331 static void dp_soc_rx_history_detach(struct dp_soc *soc)
3332 {
3333 	int i;
3334 
3335 	for (i = 0; i < MAX_REO_DEST_RINGS; i++)
3336 		dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
3337 				    soc->rx_ring_history[i]);
3338 
3339 	dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
3340 			    soc->rx_err_ring_history);
3341 
3342 	/*
3343 	 * No need for a featurized detach since qdf_mem_free takes
3344 	 * care of NULL pointer.
3345 	 */
3346 	dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3347 			    soc->rx_reinject_ring_history);
3348 
3349 	for (i = 0; i < MAX_PDEV_CNT; i++)
3350 		dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
3351 				    soc->rx_refill_ring_history[i]);
3352 }
3353 
3354 #else
3355 static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
3356 {
3357 }
3358 
3359 static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
3360 {
3361 }
3362 #endif
3363 
3364 #ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
3365 /**
3366  * dp_soc_mon_status_ring_history_attach() - Attach the monitor status
3367  *					     buffer record history.
3368  * @soc: DP soc handle
3369  *
3370  * This function allocates memory to track the event for a monitor
3371  * status buffer, before its parsed and freed.
3372  *
3373  * Return: None
3374  */
3375 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3376 {
3377 	soc->mon_status_ring_history = dp_context_alloc_mem(soc,
3378 				DP_MON_STATUS_BUF_HIST_TYPE,
3379 				sizeof(struct dp_mon_status_ring_history));
3380 	if (!soc->mon_status_ring_history) {
3381 		dp_err("Failed to alloc memory for mon status ring history");
3382 		return;
3383 	}
3384 }
3385 
3386 /**
3387  * dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
3388  *					     record history.
3389  * @soc: DP soc handle
3390  *
3391  * Return: None
3392  */
3393 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3394 {
3395 	dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
3396 			    soc->mon_status_ring_history);
3397 }
3398 #else
3399 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3400 {
3401 }
3402 
3403 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3404 {
3405 }
3406 #endif
3407 
3408 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
3409 /**
3410  * dp_soc_tx_history_attach() - Attach the ring history record buffers
3411  * @soc: DP soc structure
3412  *
3413  * This function allocates the memory for recording the tx tcl ring and
3414  * the tx comp ring entries. There is no error returned in case
3415  * of allocation failure since the record function checks if the history is
3416  * initialized or not. We do not want to fail the driver load in case of
3417  * failure to allocate memory for debug history.
3418  *
3419  * Return: None
3420  */
3421 static void dp_soc_tx_history_attach(struct dp_soc *soc)
3422 {
3423 	dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
3424 				   DP_TX_TCL_HIST_MAX_SLOTS,
3425 				   DP_TX_TCL_HIST_PER_SLOT_MAX,
3426 				   sizeof(struct dp_tx_desc_event),
3427 				   true, DP_TX_TCL_HIST_TYPE);
3428 	dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
3429 				   DP_TX_COMP_HIST_MAX_SLOTS,
3430 				   DP_TX_COMP_HIST_PER_SLOT_MAX,
3431 				   sizeof(struct dp_tx_desc_event),
3432 				   true, DP_TX_COMP_HIST_TYPE);
3433 }
3434 
3435 /**
3436  * dp_soc_tx_history_detach() - Detach the ring history record buffers
3437  * @soc: DP soc structure
3438  *
3439  * This function frees the memory for recording the tx tcl ring and
3440  * the tx comp ring entries.
3441  *
3442  * Return: None
3443  */
3444 static void dp_soc_tx_history_detach(struct dp_soc *soc)
3445 {
3446 	dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
3447 				   DP_TX_TCL_HIST_MAX_SLOTS,
3448 				   true, DP_TX_TCL_HIST_TYPE);
3449 	dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
3450 				   DP_TX_COMP_HIST_MAX_SLOTS,
3451 				   true, DP_TX_COMP_HIST_TYPE);
3452 }
3453 
3454 #else
3455 static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
3456 {
3457 }
3458 
3459 static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
3460 {
3461 }
3462 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
3463 
3464 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
3465 QDF_STATUS
3466 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3467 {
3468 	struct dp_rx_fst *rx_fst = NULL;
3469 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
3470 
3471 	/* for Lithium the below API is not registered
3472 	 * hence fst attach happens for each pdev
3473 	 */
3474 	if (!soc->arch_ops.dp_get_rx_fst)
3475 		return dp_rx_fst_attach(soc, pdev);
3476 
3477 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3478 
3479 	/* for BE the FST attach is called only once per
3480 	 * ML context. if rx_fst is already registered
3481 	 * increase the ref count and return.
3482 	 */
3483 	if (rx_fst) {
3484 		soc->rx_fst = rx_fst;
3485 		pdev->rx_fst = rx_fst;
3486 		soc->arch_ops.dp_rx_fst_ref();
3487 	} else {
3488 		ret = dp_rx_fst_attach(soc, pdev);
3489 		if ((ret != QDF_STATUS_SUCCESS) &&
3490 		    (ret != QDF_STATUS_E_NOSUPPORT))
3491 			return ret;
3492 
3493 		soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
3494 		soc->arch_ops.dp_rx_fst_ref();
3495 	}
3496 	return ret;
3497 }
3498 
3499 void
3500 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3501 {
3502 	struct dp_rx_fst *rx_fst = NULL;
3503 
3504 	/* for Lithium the below API is not registered
3505 	 * hence fst detach happens for each pdev
3506 	 */
3507 	if (!soc->arch_ops.dp_get_rx_fst) {
3508 		dp_rx_fst_detach(soc, pdev);
3509 		return;
3510 	}
3511 
3512 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3513 
3514 	/* for BE the FST detach is called only when last
3515 	 * ref count reaches 1.
3516 	 */
3517 	if (rx_fst) {
3518 		if (soc->arch_ops.dp_rx_fst_deref() == 1)
3519 			dp_rx_fst_detach(soc, pdev);
3520 	}
3521 	pdev->rx_fst = NULL;
3522 }
3523 #else
3524 QDF_STATUS
3525 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3526 {
3527 	return QDF_STATUS_SUCCESS;
3528 }
3529 
3530 void
3531 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3532 {
3533 }
3534 #endif
3535 
3536 /**
3537  * dp_pdev_attach_wifi3() - attach txrx pdev
3538  * @txrx_soc: Datapath SOC handle
3539  * @params: Params for PDEV attach
3540  *
3541  * Return: QDF_STATUS
3542  */
3543 static inline
3544 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
3545 				struct cdp_pdev_attach_params *params)
3546 {
3547 	qdf_size_t pdev_context_size;
3548 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3549 	struct dp_pdev *pdev = NULL;
3550 	uint8_t pdev_id = params->pdev_id;
3551 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3552 	int nss_cfg;
3553 	QDF_STATUS ret;
3554 
3555 	pdev_context_size =
3556 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
3557 	if (pdev_context_size)
3558 		pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
3559 					    pdev_context_size);
3560 
3561 	if (!pdev) {
3562 		dp_init_err("%pK: DP PDEV memory allocation failed",
3563 			    soc);
3564 		goto fail0;
3565 	}
3566 	wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
3567 			  WLAN_MD_DP_PDEV, "dp_pdev");
3568 
3569 	soc_cfg_ctx = soc->wlan_cfg_ctx;
3570 	pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
3571 
3572 	if (!pdev->wlan_cfg_ctx) {
3573 		dp_init_err("%pK: pdev cfg_attach failed", soc);
3574 		goto fail1;
3575 	}
3576 
3577 	pdev->soc = soc;
3578 	pdev->pdev_id = pdev_id;
3579 	soc->pdev_list[pdev_id] = pdev;
3580 
3581 	pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
3582 	soc->pdev_count++;
3583 
3584 	/*sync DP pdev cfg items with profile support after cfg_pdev_attach*/
3585 	wlan_dp_pdev_cfg_sync_profile((struct cdp_soc_t *)soc, pdev_id);
3586 
3587 	/*
3588 	 * set nss pdev config based on soc config
3589 	 */
3590 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
3591 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
3592 					 (nss_cfg & (1 << pdev_id)));
3593 
3594 	/* Allocate memory for pdev srng rings */
3595 	if (dp_pdev_srng_alloc(pdev)) {
3596 		dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
3597 		goto fail2;
3598 	}
3599 
3600 	/* Setup second Rx refill buffer ring */
3601 	if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
3602 		dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
3603 			    soc);
3604 		goto fail3;
3605 	}
3606 
3607 	/* Allocate memory for pdev rxdma rings */
3608 	if (dp_rxdma_ring_alloc(soc, pdev)) {
3609 		dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
3610 		goto fail4;
3611 	}
3612 
3613 	/* Rx specific init */
3614 	if (dp_rx_pdev_desc_pool_alloc(pdev)) {
3615 		dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
3616 		goto fail4;
3617 	}
3618 
3619 	if (dp_monitor_pdev_attach(pdev)) {
3620 		dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
3621 		goto fail5;
3622 	}
3623 
3624 	soc->arch_ops.txrx_pdev_attach(pdev, params);
3625 
3626 	/* Setup third Rx refill buffer ring */
3627 	if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3628 		dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
3629 			    soc);
3630 		goto fail6;
3631 	}
3632 
3633 	ret = dp_rx_fst_attach_wrapper(soc, pdev);
3634 	if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
3635 		dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
3636 			    soc, pdev_id, ret);
3637 		goto fail7;
3638 	}
3639 
3640 	return QDF_STATUS_SUCCESS;
3641 
3642 fail7:
3643 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3644 fail6:
3645 	dp_monitor_pdev_detach(pdev);
3646 fail5:
3647 	dp_rx_pdev_desc_pool_free(pdev);
3648 fail4:
3649 	dp_rxdma_ring_free(pdev);
3650 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3651 fail3:
3652 	dp_pdev_srng_free(pdev);
3653 fail2:
3654 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3655 fail1:
3656 	soc->pdev_list[pdev_id] = NULL;
3657 	qdf_mem_free(pdev);
3658 fail0:
3659 	return QDF_STATUS_E_FAILURE;
3660 }
3661 
3662 /**
3663  * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
3664  * @pdev: Datapath PDEV handle
3665  *
3666  * This is the last chance to flush all pending dp vdevs/peers,
3667  * some peer/vdev leak case like Non-SSR + peer unmap missing
3668  * will be covered here.
3669  *
3670  * Return: None
3671  */
3672 static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
3673 {
3674 	struct dp_soc *soc = pdev->soc;
3675 	struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
3676 	uint32_t i = 0;
3677 	uint32_t num_vdevs = 0;
3678 	struct dp_vdev *vdev = NULL;
3679 
3680 	if (TAILQ_EMPTY(&soc->inactive_vdev_list))
3681 		return;
3682 
3683 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
3684 	TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
3685 		      inactive_list_elem) {
3686 		if (vdev->pdev != pdev)
3687 			continue;
3688 
3689 		vdev_arr[num_vdevs] = vdev;
3690 		num_vdevs++;
3691 		/* take reference to free */
3692 		dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
3693 	}
3694 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
3695 
3696 	for (i = 0; i < num_vdevs; i++) {
3697 		dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
3698 		dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
3699 	}
3700 }
3701 
3702 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
3703 /**
3704  * dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
3705  *                                          for enable/disable of HW vdev stats
3706  * @soc: Datapath soc handle
3707  * @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
3708  * @enable: flag to represent enable/disable of hw vdev stats
3709  *
3710  * Return: none
3711  */
3712 static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
3713 						   uint8_t pdev_id,
3714 						   bool enable)
3715 {
3716 	/* Check SOC level config for HW offload vdev stats support */
3717 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3718 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3719 		return;
3720 	}
3721 
3722 	/* Send HTT command to FW for enable of stats */
3723 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
3724 }
3725 
3726 /**
3727  * dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
3728  * @soc: Datapath soc handle
3729  * @pdev_id: pdev_id (0,1,2)
3730  * @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
3731  *                   cleared on HW
3732  *
3733  * Return: none
3734  */
3735 static
3736 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3737 					   uint64_t vdev_id_bitmask)
3738 {
3739 	/* Check SOC level config for HW offload vdev stats support */
3740 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3741 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3742 		return;
3743 	}
3744 
3745 	/* Send HTT command to FW for reset of stats */
3746 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
3747 					 vdev_id_bitmask);
3748 }
3749 #else
3750 static void
3751 dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
3752 				       bool enable)
3753 {
3754 }
3755 
3756 static
3757 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3758 					   uint64_t vdev_id_bitmask)
3759 {
3760 }
3761 #endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
3762 
3763 /**
3764  * dp_pdev_deinit() - Deinit txrx pdev
3765  * @txrx_pdev: Datapath PDEV handle
3766  * @force: Force deinit
3767  *
3768  * Return: None
3769  */
3770 static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
3771 {
3772 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3773 	qdf_nbuf_t curr_nbuf, next_nbuf;
3774 
3775 	if (pdev->pdev_deinit)
3776 		return;
3777 
3778 	dp_tx_me_exit(pdev);
3779 	dp_rx_pdev_buffers_free(pdev);
3780 	dp_rx_pdev_desc_pool_deinit(pdev);
3781 	dp_pdev_bkp_stats_detach(pdev);
3782 	qdf_event_destroy(&pdev->fw_peer_stats_event);
3783 	qdf_event_destroy(&pdev->fw_stats_event);
3784 	qdf_event_destroy(&pdev->fw_obss_stats_event);
3785 	if (pdev->sojourn_buf)
3786 		qdf_nbuf_free(pdev->sojourn_buf);
3787 
3788 	dp_pdev_flush_pending_vdevs(pdev);
3789 	dp_tx_desc_flush(pdev, NULL, true);
3790 
3791 	qdf_spinlock_destroy(&pdev->tx_mutex);
3792 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
3793 
3794 	dp_monitor_pdev_deinit(pdev);
3795 
3796 	dp_pdev_srng_deinit(pdev);
3797 
3798 	dp_ipa_uc_detach(pdev->soc, pdev);
3799 	dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
3800 	dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
3801 	dp_rxdma_ring_cleanup(pdev->soc, pdev);
3802 
3803 	curr_nbuf = pdev->invalid_peer_head_msdu;
3804 	while (curr_nbuf) {
3805 		next_nbuf = qdf_nbuf_next(curr_nbuf);
3806 		dp_rx_nbuf_free(curr_nbuf);
3807 		curr_nbuf = next_nbuf;
3808 	}
3809 	pdev->invalid_peer_head_msdu = NULL;
3810 	pdev->invalid_peer_tail_msdu = NULL;
3811 
3812 	dp_wdi_event_detach(pdev);
3813 	pdev->pdev_deinit = 1;
3814 }
3815 
3816 /**
3817  * dp_pdev_deinit_wifi3() - Deinit txrx pdev
3818  * @psoc: Datapath psoc handle
3819  * @pdev_id: Id of datapath PDEV handle
3820  * @force: Force deinit
3821  *
3822  * Return: QDF_STATUS
3823  */
3824 static QDF_STATUS
3825 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3826 		     int force)
3827 {
3828 	struct dp_pdev *txrx_pdev;
3829 
3830 	txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3831 						       pdev_id);
3832 
3833 	if (!txrx_pdev)
3834 		return QDF_STATUS_E_FAILURE;
3835 
3836 	dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
3837 
3838 	return QDF_STATUS_SUCCESS;
3839 }
3840 
3841 /**
3842  * dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
3843  * @txrx_pdev: Datapath PDEV handle
3844  *
3845  * Return: None
3846  */
3847 static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
3848 {
3849 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3850 
3851 	dp_monitor_tx_capture_debugfs_init(pdev);
3852 
3853 	if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
3854 		dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
3855 	}
3856 }
3857 
3858 /**
3859  * dp_pdev_post_attach_wifi3() - attach txrx pdev post
3860  * @soc: Datapath soc handle
3861  * @pdev_id: pdev id of pdev
3862  *
3863  * Return: QDF_STATUS
3864  */
3865 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
3866 				     uint8_t pdev_id)
3867 {
3868 	struct dp_pdev *pdev;
3869 
3870 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3871 						  pdev_id);
3872 
3873 	if (!pdev) {
3874 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3875 			    (struct dp_soc *)soc, pdev_id);
3876 		return QDF_STATUS_E_FAILURE;
3877 	}
3878 
3879 	dp_pdev_post_attach((struct cdp_pdev *)pdev);
3880 	return QDF_STATUS_SUCCESS;
3881 }
3882 
3883 /**
3884  * dp_pdev_detach() - Complete rest of pdev detach
3885  * @txrx_pdev: Datapath PDEV handle
3886  * @force: Force deinit
3887  *
3888  * Return: None
3889  */
3890 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
3891 {
3892 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3893 	struct dp_soc *soc = pdev->soc;
3894 
3895 	dp_rx_fst_detach_wrapper(soc, pdev);
3896 	dp_pdev_htt_stats_dbgfs_deinit(pdev);
3897 	dp_rx_pdev_desc_pool_free(pdev);
3898 	dp_monitor_pdev_detach(pdev);
3899 	dp_rxdma_ring_free(pdev);
3900 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3901 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3902 	dp_pdev_srng_free(pdev);
3903 
3904 	soc->pdev_count--;
3905 	soc->pdev_list[pdev->pdev_id] = NULL;
3906 
3907 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3908 	wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
3909 			     WLAN_MD_DP_PDEV, "dp_pdev");
3910 	dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
3911 }
3912 
3913 /**
3914  * dp_pdev_detach_wifi3() - detach txrx pdev
3915  * @psoc: Datapath soc handle
3916  * @pdev_id: pdev id of pdev
3917  * @force: Force detach
3918  *
3919  * Return: QDF_STATUS
3920  */
3921 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3922 				       int force)
3923 {
3924 	struct dp_pdev *pdev;
3925 	struct dp_soc *soc = (struct dp_soc *)psoc;
3926 
3927 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3928 						  pdev_id);
3929 
3930 	if (!pdev) {
3931 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3932 			    (struct dp_soc *)psoc, pdev_id);
3933 		return QDF_STATUS_E_FAILURE;
3934 	}
3935 
3936 	soc->arch_ops.txrx_pdev_detach(pdev);
3937 
3938 	dp_pdev_detach((struct cdp_pdev *)pdev, force);
3939 	return QDF_STATUS_SUCCESS;
3940 }
3941 
3942 void dp_soc_print_inactive_objects(struct dp_soc *soc)
3943 {
3944 	struct dp_peer *peer = NULL;
3945 	struct dp_peer *tmp_peer = NULL;
3946 	struct dp_vdev *vdev = NULL;
3947 	struct dp_vdev *tmp_vdev = NULL;
3948 	int i = 0;
3949 	uint32_t count;
3950 
3951 	if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
3952 	    TAILQ_EMPTY(&soc->inactive_vdev_list))
3953 		return;
3954 
3955 	TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
3956 			   inactive_list_elem, tmp_peer) {
3957 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3958 			count = qdf_atomic_read(&peer->mod_refs[i]);
3959 			if (count)
3960 				DP_PRINT_STATS("peer %pK Module id %u ==> %u",
3961 					       peer, i, count);
3962 		}
3963 	}
3964 
3965 	TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
3966 			   inactive_list_elem, tmp_vdev) {
3967 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3968 			count = qdf_atomic_read(&vdev->mod_refs[i]);
3969 			if (count)
3970 				DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
3971 					       vdev, i, count);
3972 		}
3973 	}
3974 	QDF_BUG(0);
3975 }
3976 
3977 /**
3978  * dp_soc_deinit_wifi3() - Deinitialize txrx SOC
3979  * @txrx_soc: Opaque DP SOC handle
3980  *
3981  * Return: None
3982  */
3983 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
3984 {
3985 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3986 
3987 	soc->arch_ops.txrx_soc_deinit(soc);
3988 }
3989 
3990 /**
3991  * dp_soc_detach() - Detach rest of txrx SOC
3992  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
3993  *
3994  * Return: None
3995  */
3996 static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
3997 {
3998 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3999 
4000 	soc->arch_ops.txrx_soc_detach(soc);
4001 
4002 	dp_runtime_deinit();
4003 
4004 	dp_soc_unset_qref_debug_list(soc);
4005 	dp_sysfs_deinitialize_stats(soc);
4006 	dp_soc_swlm_detach(soc);
4007 	dp_soc_tx_desc_sw_pools_free(soc);
4008 	dp_soc_srng_free(soc);
4009 	dp_hw_link_desc_ring_free(soc);
4010 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
4011 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
4012 	dp_soc_tx_hw_desc_history_detach(soc);
4013 	dp_soc_tx_history_detach(soc);
4014 	dp_soc_mon_status_ring_history_detach(soc);
4015 	dp_soc_rx_history_detach(soc);
4016 	dp_soc_cfg_history_detach(soc);
4017 
4018 	if (!dp_monitor_modularized_enable()) {
4019 		dp_mon_soc_detach_wrapper(soc);
4020 	}
4021 
4022 	qdf_mem_free(soc->cdp_soc.ops);
4023 	qdf_mem_common_free(soc);
4024 }
4025 
4026 /**
4027  * dp_soc_detach_wifi3() - Detach txrx SOC
4028  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4029  *
4030  * Return: None
4031  */
4032 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
4033 {
4034 	dp_soc_detach(txrx_soc);
4035 }
4036 
4037 #ifdef QCA_HOST2FW_RXBUF_RING
4038 #ifdef IPA_WDI3_VLAN_SUPPORT
4039 static inline
4040 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4041 				 struct dp_pdev *pdev,
4042 				 uint8_t idx)
4043 {
4044 	if (pdev->rx_refill_buf_ring3.hal_srng)
4045 		htt_srng_setup(soc->htt_handle, idx,
4046 			       pdev->rx_refill_buf_ring3.hal_srng,
4047 			       RXDMA_BUF);
4048 }
4049 #else
4050 static inline
4051 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4052 				 struct dp_pdev *pdev,
4053 				 uint8_t idx)
4054 { }
4055 #endif
4056 
4057 #ifdef WIFI_MONITOR_SUPPORT
4058 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4059 {
4060 	return dp_local_pkt_capture_tx_config(pdev);
4061 }
4062 #else
4063 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4064 {
4065 	return QDF_STATUS_SUCCESS;
4066 }
4067 #endif
4068 
4069 /**
4070  * dp_rxdma_ring_config() - configure the RX DMA rings
4071  * @soc: data path SoC handle
4072  *
4073  * This function is used to configure the MAC rings.
4074  * On MCL host provides buffers in Host2FW ring
4075  * FW refills (copies) buffers to the ring and updates
4076  * ring_idx in register
4077  *
4078  * Return: zero on success, non-zero on failure
4079  */
4080 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4081 {
4082 	int i;
4083 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4084 
4085 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4086 		struct dp_pdev *pdev = soc->pdev_list[i];
4087 
4088 		if (pdev) {
4089 			int mac_id;
4090 			int max_mac_rings =
4091 				 wlan_cfg_get_num_mac_rings
4092 				(pdev->wlan_cfg_ctx);
4093 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4094 
4095 			htt_srng_setup(soc->htt_handle, i,
4096 				       soc->rx_refill_buf_ring[lmac_id]
4097 				       .hal_srng,
4098 				       RXDMA_BUF);
4099 
4100 			if (pdev->rx_refill_buf_ring2.hal_srng)
4101 				htt_srng_setup(soc->htt_handle, i,
4102 					       pdev->rx_refill_buf_ring2
4103 					       .hal_srng,
4104 					       RXDMA_BUF);
4105 
4106 			dp_rxdma_setup_refill_ring3(soc, pdev, i);
4107 
4108 			dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
4109 			dp_lpc_tx_config(pdev);
4110 			dp_info("pdev_id %d max_mac_rings %d",
4111 			       pdev->pdev_id, max_mac_rings);
4112 
4113 			for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
4114 				int mac_for_pdev =
4115 					dp_get_mac_id_for_pdev(mac_id,
4116 							       pdev->pdev_id);
4117 				/*
4118 				 * Obtain lmac id from pdev to access the LMAC
4119 				 * ring in soc context
4120 				 */
4121 				lmac_id =
4122 				dp_get_lmac_id_for_pdev_id(soc,
4123 							   mac_id,
4124 							   pdev->pdev_id);
4125 				dp_info("mac_id %d", mac_for_pdev);
4126 
4127 				htt_srng_setup(soc->htt_handle, mac_for_pdev,
4128 					 pdev->rx_mac_buf_ring[mac_id]
4129 						.hal_srng,
4130 					 RXDMA_BUF);
4131 
4132 				if (!soc->rxdma2sw_rings_not_supported)
4133 					dp_htt_setup_rxdma_err_dst_ring(soc,
4134 						mac_for_pdev, lmac_id);
4135 
4136 				/* Configure monitor mode rings */
4137 				status = dp_monitor_htt_srng_setup(soc, pdev,
4138 								   lmac_id,
4139 								   mac_for_pdev);
4140 				if (status != QDF_STATUS_SUCCESS) {
4141 					dp_err("Failed to send htt monitor messages to target");
4142 					return status;
4143 				}
4144 
4145 			}
4146 		}
4147 	}
4148 
4149 	dp_reap_timer_init(soc);
4150 	return status;
4151 }
4152 #else
4153 /* This is only for WIN */
4154 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4155 {
4156 	int i;
4157 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4158 	int mac_for_pdev;
4159 	int lmac_id;
4160 
4161 	/* Configure monitor mode rings */
4162 	dp_monitor_soc_htt_srng_setup(soc);
4163 
4164 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4165 		struct dp_pdev *pdev =  soc->pdev_list[i];
4166 
4167 		if (!pdev)
4168 			continue;
4169 
4170 		mac_for_pdev = i;
4171 		lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4172 
4173 		if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
4174 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4175 				       soc->rx_refill_buf_ring[lmac_id].
4176 				       hal_srng, RXDMA_BUF);
4177 
4178 		/* Configure monitor mode rings */
4179 		dp_monitor_htt_srng_setup(soc, pdev,
4180 					  lmac_id,
4181 					  mac_for_pdev);
4182 		if (!soc->rxdma2sw_rings_not_supported)
4183 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4184 				       soc->rxdma_err_dst_ring[lmac_id].hal_srng,
4185 				       RXDMA_DST);
4186 	}
4187 
4188 	dp_reap_timer_init(soc);
4189 	return status;
4190 }
4191 #endif
4192 
4193 /**
4194  * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
4195  *
4196  * This function is used to configure the FSE HW block in RX OLE on a
4197  * per pdev basis. Here, we will be programming parameters related to
4198  * the Flow Search Table.
4199  *
4200  * @soc: data path SoC handle
4201  *
4202  * Return: zero on success, non-zero on failure
4203  */
4204 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4205 static QDF_STATUS
4206 dp_rx_target_fst_config(struct dp_soc *soc)
4207 {
4208 	int i;
4209 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4210 
4211 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4212 		struct dp_pdev *pdev = soc->pdev_list[i];
4213 
4214 		/* Flow search is not enabled if NSS offload is enabled */
4215 		if (pdev &&
4216 		    !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
4217 			status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
4218 			if (status != QDF_STATUS_SUCCESS)
4219 				break;
4220 		}
4221 	}
4222 	return status;
4223 }
4224 #else
4225 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
4226 {
4227 	return QDF_STATUS_SUCCESS;
4228 }
4229 #endif
4230 
4231 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4232 static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
4233 {
4234 	return QDF_STATUS_SUCCESS;
4235 }
4236 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4237 
4238 #ifdef WLAN_SUPPORT_PPEDS
4239 /**
4240  * dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
4241  * @soc: DP Tx/Rx handle
4242  *
4243  * Return: QDF_STATUS
4244  */
4245 static
4246 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4247 {
4248 	struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
4249 	QDF_STATUS status;
4250 
4251 	/*
4252 	 * Program RxDMA to override the reo destination indication
4253 	 * with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
4254 	 * thereby driving the packet to REO2PPE ring.
4255 	 * If the MSDU is spanning more than 1 buffer, then this
4256 	 * override is not done.
4257 	 */
4258 	htt_cfg.override = 1;
4259 	htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
4260 	htt_cfg.multi_buffer_msdu_override_en = 0;
4261 
4262 	/*
4263 	 * Override use_ppe to 0 in RxOLE for the following
4264 	 * cases.
4265 	 */
4266 	htt_cfg.intra_bss_override = 1;
4267 	htt_cfg.decap_raw_override = 1;
4268 	htt_cfg.decap_nwifi_override = 1;
4269 	htt_cfg.ip_frag_override = 1;
4270 
4271 	status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
4272 	if (status != QDF_STATUS_SUCCESS)
4273 		dp_err("RxOLE and RxDMA PPE config failed %d", status);
4274 
4275 	return status;
4276 }
4277 
4278 #else
4279 static inline
4280 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4281 {
4282 	return QDF_STATUS_SUCCESS;
4283 }
4284 
4285 #endif /* WLAN_SUPPORT_PPEDS */
4286 
4287 #ifdef DP_UMAC_HW_RESET_SUPPORT
4288 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4289 {
4290 	dp_umac_reset_register_rx_action_callback(soc,
4291 					dp_umac_reset_action_trigger_recovery,
4292 					UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
4293 
4294 	dp_umac_reset_register_rx_action_callback(soc,
4295 		dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
4296 
4297 	dp_umac_reset_register_rx_action_callback(soc,
4298 					dp_umac_reset_handle_post_reset,
4299 					UMAC_RESET_ACTION_DO_POST_RESET_START);
4300 
4301 	dp_umac_reset_register_rx_action_callback(soc,
4302 				dp_umac_reset_handle_post_reset_complete,
4303 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
4304 
4305 }
4306 #else
4307 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4308 {
4309 }
4310 #endif
4311 /**
4312  * dp_soc_attach_target_wifi3() - SOC initialization in the target
4313  * @cdp_soc: Opaque Datapath SOC handle
4314  *
4315  * Return: zero on success, non-zero on failure
4316  */
4317 static QDF_STATUS
4318 dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
4319 {
4320 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4321 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4322 	struct hal_reo_params reo_params;
4323 
4324 	htt_soc_attach_target(soc->htt_handle);
4325 
4326 	status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
4327 	if (status != QDF_STATUS_SUCCESS) {
4328 		dp_err("Failed to send htt RxOLE and RxDMA messages to target");
4329 		return status;
4330 	}
4331 
4332 	status = dp_rxdma_ring_config(soc);
4333 	if (status != QDF_STATUS_SUCCESS) {
4334 		dp_err("Failed to send htt srng setup messages to target");
4335 		return status;
4336 	}
4337 
4338 	status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
4339 	if (status != QDF_STATUS_SUCCESS) {
4340 		dp_err("Failed to send htt ring config message to target");
4341 		return status;
4342 	}
4343 
4344 	status = dp_soc_umac_reset_init(cdp_soc);
4345 	if (status != QDF_STATUS_SUCCESS &&
4346 	    status != QDF_STATUS_E_NOSUPPORT) {
4347 		dp_err("Failed to initialize UMAC reset");
4348 		return status;
4349 	}
4350 
4351 	dp_register_umac_reset_handlers(soc);
4352 
4353 	status = dp_rx_target_fst_config(soc);
4354 	if (status != QDF_STATUS_SUCCESS &&
4355 	    status != QDF_STATUS_E_NOSUPPORT) {
4356 		dp_err("Failed to send htt fst setup config message to target");
4357 		return status;
4358 	}
4359 
4360 	DP_STATS_INIT(soc);
4361 
4362 	dp_runtime_init(soc);
4363 
4364 	/* Enable HW vdev offload stats if feature is supported */
4365 	dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
4366 
4367 	/* initialize work queue for stats processing */
4368 	qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
4369 
4370 	wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
4371 				       soc->ctrl_psoc);
4372 	/* Setup HW REO */
4373 	qdf_mem_zero(&reo_params, sizeof(reo_params));
4374 
4375 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
4376 		/*
4377 		 * Reo ring remap is not required if both radios
4378 		 * are offloaded to NSS
4379 		 */
4380 
4381 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
4382 						   &reo_params.remap1,
4383 						   &reo_params.remap2))
4384 			reo_params.rx_hash_enabled = true;
4385 		else
4386 			reo_params.rx_hash_enabled = false;
4387 	}
4388 
4389 	/*
4390 	 * set the fragment destination ring
4391 	 */
4392 	dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
4393 
4394 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
4395 		reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
4396 
4397 	reo_params.reo_qref = &soc->reo_qref;
4398 	hal_reo_setup(soc->hal_soc, &reo_params, 1);
4399 
4400 	hal_reo_set_err_dst_remap(soc->hal_soc);
4401 
4402 	soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
4403 
4404 	return QDF_STATUS_SUCCESS;
4405 }
4406 
4407 /**
4408  * dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
4409  * @soc: SoC handle
4410  * @vdev: vdev handle
4411  * @vdev_id: vdev_id
4412  *
4413  * Return: None
4414  */
4415 static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
4416 				   struct dp_vdev *vdev,
4417 				   uint8_t vdev_id)
4418 {
4419 	QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
4420 
4421 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4422 
4423 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4424 			QDF_STATUS_SUCCESS) {
4425 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
4426 			     soc, vdev, vdev_id);
4427 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4428 		return;
4429 	}
4430 
4431 	if (!soc->vdev_id_map[vdev_id])
4432 		soc->vdev_id_map[vdev_id] = vdev;
4433 	else
4434 		QDF_ASSERT(0);
4435 
4436 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4437 }
4438 
4439 /**
4440  * dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
4441  * @soc: SoC handle
4442  * @vdev: vdev handle
4443  *
4444  * Return: None
4445  */
4446 static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
4447 				      struct dp_vdev *vdev)
4448 {
4449 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4450 	QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
4451 
4452 	soc->vdev_id_map[vdev->vdev_id] = NULL;
4453 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4454 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4455 }
4456 
4457 /**
4458  * dp_vdev_pdev_list_add() - add vdev into pdev's list
4459  * @soc: soc handle
4460  * @pdev: pdev handle
4461  * @vdev: vdev handle
4462  *
4463  * Return: none
4464  */
4465 static void dp_vdev_pdev_list_add(struct dp_soc *soc,
4466 				  struct dp_pdev *pdev,
4467 				  struct dp_vdev *vdev)
4468 {
4469 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4470 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4471 			QDF_STATUS_SUCCESS) {
4472 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
4473 			     soc, vdev);
4474 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4475 		return;
4476 	}
4477 	/* add this vdev into the pdev's list */
4478 	TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
4479 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4480 }
4481 
4482 /**
4483  * dp_vdev_pdev_list_remove() - remove vdev from pdev's list
4484  * @soc: SoC handle
4485  * @pdev: pdev handle
4486  * @vdev: VDEV handle
4487  *
4488  * Return: none
4489  */
4490 static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
4491 				     struct dp_pdev *pdev,
4492 				     struct dp_vdev *vdev)
4493 {
4494 	uint8_t found = 0;
4495 	struct dp_vdev *tmpvdev = NULL;
4496 
4497 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4498 	TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
4499 		if (tmpvdev == vdev) {
4500 			found = 1;
4501 			break;
4502 		}
4503 	}
4504 
4505 	if (found) {
4506 		TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
4507 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4508 	} else {
4509 		dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
4510 			      soc, vdev, pdev, &pdev->vdev_list);
4511 		QDF_ASSERT(0);
4512 	}
4513 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4514 }
4515 
4516 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
4517 /**
4518  * dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
4519  * @vdev: Datapath VDEV handle
4520  *
4521  * Return: None
4522  */
4523 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4524 {
4525 	vdev->osif_rx_eapol = NULL;
4526 }
4527 
4528 /**
4529  * dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
4530  * @vdev: DP vdev handle
4531  * @txrx_ops: Tx and Rx operations
4532  *
4533  * Return: None
4534  */
4535 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4536 					     struct ol_txrx_ops *txrx_ops)
4537 {
4538 	vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
4539 }
4540 #else
4541 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4542 {
4543 }
4544 
4545 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4546 					     struct ol_txrx_ops *txrx_ops)
4547 {
4548 }
4549 #endif
4550 
4551 #ifdef WLAN_FEATURE_11BE_MLO
4552 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4553 					 struct cdp_vdev_info *vdev_info)
4554 {
4555 	if (vdev_info->mld_mac_addr)
4556 		qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
4557 			     vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
4558 }
4559 
4560 #ifdef WLAN_MLO_MULTI_CHIP
4561 static inline void
4562 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4563 				 struct cdp_vdev_info *vdev_info)
4564 {
4565 	if (vdev_info->is_bridge_vap)
4566 		vdev->is_bridge_vdev = 1;
4567 
4568 	dp_info("is_bridge_link = %d vdev id = %d chip id = %d",
4569 		vdev->is_bridge_vdev, vdev->vdev_id,
4570 		dp_get_chip_id(vdev->pdev->soc));
4571 }
4572 #else
4573 static inline void
4574 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4575 				 struct cdp_vdev_info *vdev_info)
4576 {
4577 }
4578 #endif /* WLAN_MLO_MULTI_CHIP */
4579 
4580 #else
4581 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4582 					 struct cdp_vdev_info *vdev_info)
4583 {
4584 
4585 }
4586 
4587 static inline void
4588 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4589 				 struct cdp_vdev_info *vdev_info)
4590 {
4591 }
4592 #endif
4593 
4594 #ifdef DP_TRAFFIC_END_INDICATION
4595 /**
4596  * dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
4597  *                                              related members in VDEV
4598  * @vdev: DP vdev handle
4599  *
4600  * Return: None
4601  */
4602 static inline void
4603 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4604 {
4605 	qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
4606 }
4607 
4608 /**
4609  * dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
4610  *                                              related members in VDEV
4611  * @vdev: DP vdev handle
4612  *
4613  * Return: None
4614  */
4615 static inline void
4616 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4617 {
4618 	qdf_nbuf_t nbuf;
4619 
4620 	while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
4621 		qdf_nbuf_free(nbuf);
4622 }
4623 #else
4624 static inline void
4625 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4626 {}
4627 
4628 static inline void
4629 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4630 {}
4631 #endif
4632 
4633 #ifdef WLAN_DP_VDEV_NO_SELF_PEER
4634 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4635 					      struct dp_vdev *vdev)
4636 {
4637 	return false;
4638 }
4639 #else
4640 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4641 					      struct dp_vdev *vdev)
4642 {
4643 	if (wlan_op_mode_sta == vdev->opmode)
4644 		return true;
4645 
4646 	return false;
4647 }
4648 #endif
4649 
4650 /**
4651  * dp_vdev_attach_wifi3() - attach txrx vdev
4652  * @cdp_soc: CDP SoC context
4653  * @pdev_id: PDEV ID for vdev creation
4654  * @vdev_info: parameters used for vdev creation
4655  *
4656  * Return: status
4657  */
4658 static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
4659 				       uint8_t pdev_id,
4660 				       struct cdp_vdev_info *vdev_info)
4661 {
4662 	int i = 0;
4663 	qdf_size_t vdev_context_size;
4664 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4665 	struct dp_pdev *pdev =
4666 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
4667 						   pdev_id);
4668 	struct dp_vdev *vdev;
4669 	uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
4670 	uint8_t vdev_id = vdev_info->vdev_id;
4671 	enum wlan_op_mode op_mode = vdev_info->op_mode;
4672 	enum wlan_op_subtype subtype = vdev_info->subtype;
4673 	enum QDF_OPMODE qdf_opmode = vdev_info->qdf_opmode;
4674 	uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
4675 
4676 	vdev_context_size =
4677 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
4678 	vdev = qdf_mem_malloc(vdev_context_size);
4679 
4680 	if (!pdev) {
4681 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
4682 			    cdp_soc, pdev_id);
4683 		qdf_mem_free(vdev);
4684 		goto fail0;
4685 	}
4686 
4687 	if (!vdev) {
4688 		dp_init_err("%pK: DP VDEV memory allocation failed",
4689 			    cdp_soc);
4690 		goto fail0;
4691 	}
4692 
4693 	wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
4694 			  WLAN_MD_DP_VDEV, "dp_vdev");
4695 
4696 	vdev->pdev = pdev;
4697 	vdev->vdev_id = vdev_id;
4698 	vdev->vdev_stats_id = vdev_stats_id;
4699 	vdev->opmode = op_mode;
4700 	vdev->subtype = subtype;
4701 	vdev->qdf_opmode = qdf_opmode;
4702 	vdev->osdev = soc->osdev;
4703 
4704 	vdev->osif_rx = NULL;
4705 	vdev->osif_rsim_rx_decap = NULL;
4706 	vdev->osif_get_key = NULL;
4707 	vdev->osif_tx_free_ext = NULL;
4708 	vdev->osif_vdev = NULL;
4709 
4710 	vdev->delete.pending = 0;
4711 	vdev->safemode = 0;
4712 	vdev->drop_unenc = 1;
4713 	vdev->sec_type = cdp_sec_type_none;
4714 	vdev->multipass_en = false;
4715 	vdev->wrap_vdev = false;
4716 	dp_vdev_init_rx_eapol(vdev);
4717 	qdf_atomic_init(&vdev->ref_cnt);
4718 	for (i = 0; i < DP_MOD_ID_MAX; i++)
4719 		qdf_atomic_init(&vdev->mod_refs[i]);
4720 
4721 	/* Take one reference for create*/
4722 	qdf_atomic_inc(&vdev->ref_cnt);
4723 	qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
4724 	vdev->num_peers = 0;
4725 #ifdef notyet
4726 	vdev->filters_num = 0;
4727 #endif
4728 	vdev->lmac_id = pdev->lmac_id;
4729 
4730 	qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
4731 
4732 	dp_vdev_update_bridge_vdev_param(vdev, vdev_info);
4733 	dp_vdev_save_mld_addr(vdev, vdev_info);
4734 
4735 	/* TODO: Initialize default HTT meta data that will be used in
4736 	 * TCL descriptors for packets transmitted from this VDEV
4737 	 */
4738 
4739 	qdf_spinlock_create(&vdev->peer_list_lock);
4740 	TAILQ_INIT(&vdev->peer_list);
4741 	dp_peer_multipass_list_init(vdev);
4742 	if ((soc->intr_mode == DP_INTR_POLL) &&
4743 	    wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
4744 		if ((pdev->vdev_count == 0) ||
4745 		    (wlan_op_mode_monitor == vdev->opmode))
4746 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
4747 	} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
4748 		   soc->intr_mode == DP_INTR_MSI &&
4749 		   wlan_op_mode_monitor == vdev->opmode &&
4750 		   !wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx)) {
4751 		/* Timer to reap status ring in mission mode */
4752 		dp_monitor_vdev_timer_start(soc);
4753 	}
4754 
4755 	dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
4756 
4757 	if (wlan_op_mode_monitor == vdev->opmode) {
4758 		if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
4759 			dp_monitor_pdev_set_mon_vdev(vdev);
4760 			return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
4761 		}
4762 		return QDF_STATUS_E_FAILURE;
4763 	}
4764 
4765 	vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4766 	vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4767 	vdev->dscp_tid_map_id = 0;
4768 	vdev->mcast_enhancement_en = 0;
4769 	vdev->igmp_mcast_enhanc_en = 0;
4770 	vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
4771 	vdev->prev_tx_enq_tstamp = 0;
4772 	vdev->prev_rx_deliver_tstamp = 0;
4773 	vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
4774 	dp_tx_vdev_traffic_end_indication_attach(vdev);
4775 
4776 	dp_vdev_pdev_list_add(soc, pdev, vdev);
4777 	pdev->vdev_count++;
4778 
4779 	if (wlan_op_mode_sta != vdev->opmode &&
4780 	    wlan_op_mode_ndi != vdev->opmode)
4781 		vdev->ap_bridge_enabled = true;
4782 	else
4783 		vdev->ap_bridge_enabled = false;
4784 	dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
4785 		     cdp_soc, vdev->ap_bridge_enabled);
4786 
4787 	dp_tx_vdev_attach(vdev);
4788 
4789 	dp_monitor_vdev_attach(vdev);
4790 	if (!pdev->is_lro_hash_configured) {
4791 		if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
4792 			pdev->is_lro_hash_configured = true;
4793 		else
4794 			dp_err("LRO hash setup failure!");
4795 	}
4796 
4797 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
4798 	dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
4799 		QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
4800 	DP_STATS_INIT(vdev);
4801 
4802 	if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
4803 		goto fail0;
4804 
4805 	if (dp_vdev_self_peer_required(soc, vdev))
4806 		dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
4807 				     vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
4808 
4809 	dp_pdev_update_fast_rx_flag(soc, pdev);
4810 
4811 	return QDF_STATUS_SUCCESS;
4812 
4813 fail0:
4814 	return QDF_STATUS_E_FAILURE;
4815 }
4816 
4817 #ifndef QCA_HOST_MODE_WIFI_DISABLED
4818 /**
4819  * dp_vdev_fetch_tx_handler() - Fetch Tx handlers
4820  * @vdev: struct dp_vdev *
4821  * @soc: struct dp_soc *
4822  * @ctx: struct ol_txrx_hardtart_ctxt *
4823  */
4824 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4825 					    struct dp_soc *soc,
4826 					    struct ol_txrx_hardtart_ctxt *ctx)
4827 {
4828 	/* Enable vdev_id check only for ap, if flag is enabled */
4829 	if (vdev->mesh_vdev)
4830 		ctx->tx = dp_tx_send_mesh;
4831 	else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4832 		 (vdev->opmode == wlan_op_mode_ap)) {
4833 		ctx->tx = dp_tx_send_vdev_id_check;
4834 		ctx->tx_fast = dp_tx_send_vdev_id_check;
4835 	} else {
4836 		ctx->tx = dp_tx_send;
4837 		ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
4838 	}
4839 
4840 	/* Avoid check in regular exception Path */
4841 	if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4842 	    (vdev->opmode == wlan_op_mode_ap))
4843 		ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
4844 	else
4845 		ctx->tx_exception = dp_tx_send_exception;
4846 }
4847 
4848 /**
4849  * dp_vdev_register_tx_handler() - Register Tx handler
4850  * @vdev: struct dp_vdev *
4851  * @soc: struct dp_soc *
4852  * @txrx_ops: struct ol_txrx_ops *
4853  */
4854 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4855 					       struct dp_soc *soc,
4856 					       struct ol_txrx_ops *txrx_ops)
4857 {
4858 	struct ol_txrx_hardtart_ctxt ctx = {0};
4859 
4860 	dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
4861 
4862 	txrx_ops->tx.tx = ctx.tx;
4863 	txrx_ops->tx.tx_fast = ctx.tx_fast;
4864 	txrx_ops->tx.tx_exception = ctx.tx_exception;
4865 
4866 	dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
4867 		wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
4868 		vdev->opmode, vdev->vdev_id);
4869 }
4870 #else /* QCA_HOST_MODE_WIFI_DISABLED */
4871 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4872 					       struct dp_soc *soc,
4873 					       struct ol_txrx_ops *txrx_ops)
4874 {
4875 }
4876 
4877 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4878 					    struct dp_soc *soc,
4879 					    struct ol_txrx_hardtart_ctxt *ctx)
4880 {
4881 }
4882 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
4883 
4884 /**
4885  * dp_vdev_register_wifi3() - Register VDEV operations from osif layer
4886  * @soc_hdl: Datapath soc handle
4887  * @vdev_id: id of Datapath VDEV handle
4888  * @osif_vdev: OSIF vdev handle
4889  * @txrx_ops: Tx and Rx operations
4890  *
4891  * Return: DP VDEV handle on success, NULL on failure
4892  */
4893 static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
4894 					 uint8_t vdev_id,
4895 					 ol_osif_vdev_handle osif_vdev,
4896 					 struct ol_txrx_ops *txrx_ops)
4897 {
4898 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4899 	struct dp_vdev *vdev =	dp_vdev_get_ref_by_id(soc, vdev_id,
4900 						      DP_MOD_ID_CDP);
4901 
4902 	if (!vdev)
4903 		return QDF_STATUS_E_FAILURE;
4904 
4905 	vdev->osif_vdev = osif_vdev;
4906 	vdev->osif_rx = txrx_ops->rx.rx;
4907 	vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
4908 	vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
4909 	vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
4910 	vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
4911 	vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
4912 	vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
4913 	vdev->osif_get_key = txrx_ops->get_key;
4914 	dp_monitor_vdev_register_osif(vdev, txrx_ops);
4915 	vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
4916 	vdev->tx_comp = txrx_ops->tx.tx_comp;
4917 	vdev->stats_cb = txrx_ops->rx.stats_rx;
4918 	vdev->tx_classify_critical_pkt_cb =
4919 		txrx_ops->tx.tx_classify_critical_pkt_cb;
4920 #ifdef notyet
4921 #if ATH_SUPPORT_WAPI
4922 	vdev->osif_check_wai = txrx_ops->rx.wai_check;
4923 #endif
4924 #endif
4925 #ifdef UMAC_SUPPORT_PROXY_ARP
4926 	vdev->osif_proxy_arp = txrx_ops->proxy_arp;
4927 #endif
4928 	vdev->me_convert = txrx_ops->me_convert;
4929 	vdev->get_tsf_time = txrx_ops->get_tsf_time;
4930 
4931 	dp_vdev_register_rx_eapol(vdev, txrx_ops);
4932 
4933 	dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
4934 
4935 	dp_init_info("%pK: DP Vdev Register success", soc);
4936 
4937 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4938 	return QDF_STATUS_SUCCESS;
4939 }
4940 
4941 #ifdef WLAN_FEATURE_11BE_MLO
4942 void dp_peer_delete(struct dp_soc *soc,
4943 		    struct dp_peer *peer,
4944 		    void *arg)
4945 {
4946 	if (!peer->valid)
4947 		return;
4948 
4949 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4950 			     peer->vdev->vdev_id,
4951 			     peer->mac_addr.raw, 0,
4952 			     peer->peer_type);
4953 }
4954 #else
4955 void dp_peer_delete(struct dp_soc *soc,
4956 		    struct dp_peer *peer,
4957 		    void *arg)
4958 {
4959 	if (!peer->valid)
4960 		return;
4961 
4962 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4963 			     peer->vdev->vdev_id,
4964 			     peer->mac_addr.raw, 0,
4965 			     CDP_LINK_PEER_TYPE);
4966 }
4967 #endif
4968 
4969 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
4970 static uint8_t
4971 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
4972 {
4973 	if (soc->cdp_soc.ol_ops->peer_get_num_mlo_links)
4974 		return soc->cdp_soc.ol_ops->peer_get_num_mlo_links(
4975 				soc->ctrl_psoc,
4976 				peer->vdev->vdev_id,
4977 				peer->mac_addr.raw,
4978 				IS_MLO_DP_MLD_PEER(peer));
4979 
4980 	return 0;
4981 }
4982 
4983 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
4984 {
4985 	if (!peer->valid)
4986 		return;
4987 
4988 	/* skip deleting the SLO peers */
4989 	if (dp_mlo_get_num_link_peer(soc, peer) == 1)
4990 		return;
4991 
4992 	if (IS_MLO_DP_LINK_PEER(peer))
4993 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4994 				     peer->vdev->vdev_id,
4995 				     peer->mac_addr.raw, 0,
4996 				     CDP_LINK_PEER_TYPE);
4997 }
4998 
4999 /**
5000  * dp_mlo_link_peer_flush() - flush all the link peers
5001  * @soc: Datapath soc handle
5002  * @peer: DP peer handle to be checked
5003  *
5004  * Return: None
5005  */
5006 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5007 {
5008 	int cnt = 0;
5009 	struct dp_peer *link_peer = NULL;
5010 	struct dp_mld_link_peers link_peers_info = {NULL};
5011 
5012 	if (!IS_MLO_DP_MLD_PEER(peer))
5013 		return;
5014 
5015 	/* get link peers with reference */
5016 	dp_get_link_peers_ref_from_mld_peer(soc, peer, &link_peers_info,
5017 					    DP_MOD_ID_CDP);
5018 	for (cnt = 0; cnt < link_peers_info.num_links; cnt++) {
5019 		link_peer = link_peers_info.link_peers[cnt];
5020 		if (!link_peer)
5021 			continue;
5022 
5023 		/* delete all the link peers */
5024 		dp_mlo_peer_delete(link_peer->vdev->pdev->soc, link_peer, NULL);
5025 		/* unmap all the link peers */
5026 		dp_rx_peer_unmap_handler(link_peer->vdev->pdev->soc,
5027 					 link_peer->peer_id,
5028 					 link_peer->vdev->vdev_id,
5029 					 link_peer->mac_addr.raw, 0,
5030 					 DP_PEER_WDS_COUNT_INVALID);
5031 	}
5032 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5033 }
5034 #else
5035 static uint8_t
5036 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
5037 {
5038 	return 0;
5039 }
5040 
5041 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5042 {
5043 }
5044 
5045 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5046 {
5047 }
5048 #endif
5049 /**
5050  * dp_vdev_flush_peers() - Forcibily Flush peers of vdev
5051  * @vdev_handle: Datapath VDEV handle
5052  * @unmap_only: Flag to indicate "only unmap"
5053  * @mlo_peers_only: true if only MLO peers should be flushed
5054  *
5055  * Return: void
5056  */
5057 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
5058 				bool unmap_only,
5059 				bool mlo_peers_only)
5060 {
5061 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
5062 	struct dp_pdev *pdev = vdev->pdev;
5063 	struct dp_soc *soc = pdev->soc;
5064 	struct dp_peer *peer;
5065 	uint32_t i = 0;
5066 
5067 
5068 	if (!unmap_only) {
5069 		if (!mlo_peers_only)
5070 			dp_vdev_iterate_peer_lock_safe(vdev,
5071 						       dp_peer_delete,
5072 						       NULL,
5073 						       DP_MOD_ID_CDP);
5074 		else
5075 			dp_vdev_iterate_peer_lock_safe(vdev,
5076 						       dp_mlo_peer_delete,
5077 						       NULL,
5078 						       DP_MOD_ID_CDP);
5079 	}
5080 
5081 	for (i = 0; i < soc->max_peer_id ; i++) {
5082 		peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
5083 
5084 		if (!peer)
5085 			continue;
5086 
5087 		if (peer->vdev != vdev) {
5088 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5089 			continue;
5090 		}
5091 
5092 		if (!mlo_peers_only) {
5093 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5094 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5095 			dp_mlo_link_peer_flush(soc, peer);
5096 			dp_rx_peer_unmap_handler(soc, i,
5097 						 vdev->vdev_id,
5098 						 peer->mac_addr.raw, 0,
5099 						 DP_PEER_WDS_COUNT_INVALID);
5100 			if (!IS_MLO_DP_MLD_PEER(peer))
5101 				SET_PEER_REF_CNT_ONE(peer);
5102 		} else if (IS_MLO_DP_LINK_PEER(peer) ||
5103 			   IS_MLO_DP_MLD_PEER(peer)) {
5104 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5105 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5106 
5107 			/* skip deleting the SLO peers */
5108 			if (dp_mlo_get_num_link_peer(soc, peer) ==  1) {
5109 				dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5110 				continue;
5111 			}
5112 
5113 			dp_mlo_link_peer_flush(soc, peer);
5114 			dp_rx_peer_unmap_handler(soc, i,
5115 						 vdev->vdev_id,
5116 						 peer->mac_addr.raw, 0,
5117 						 DP_PEER_WDS_COUNT_INVALID);
5118 			SET_PEER_REF_CNT_ONE(peer);
5119 		}
5120 
5121 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5122 	}
5123 }
5124 
5125 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5126 /**
5127  * dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
5128  * @soc_hdl: Datapath soc handle
5129  * @vdev_stats_id: Address of vdev_stats_id
5130  *
5131  * Return: QDF_STATUS
5132  */
5133 static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5134 					      uint8_t *vdev_stats_id)
5135 {
5136 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5137 	uint8_t id = 0;
5138 
5139 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
5140 		*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5141 		return QDF_STATUS_E_FAILURE;
5142 	}
5143 
5144 	while (id < CDP_MAX_VDEV_STATS_ID) {
5145 		if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
5146 			*vdev_stats_id = id;
5147 			return QDF_STATUS_SUCCESS;
5148 		}
5149 		id++;
5150 	}
5151 
5152 	*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5153 	return QDF_STATUS_E_FAILURE;
5154 }
5155 
5156 /**
5157  * dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
5158  * @soc_hdl: Datapath soc handle
5159  * @vdev_stats_id: vdev_stats_id to reset in dp_soc
5160  *
5161  * Return: none
5162  */
5163 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5164 					uint8_t vdev_stats_id)
5165 {
5166 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5167 
5168 	if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
5169 	    (vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
5170 		return;
5171 
5172 	qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
5173 }
5174 #else
5175 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
5176 					uint8_t vdev_stats_id)
5177 {}
5178 #endif
5179 /**
5180  * dp_vdev_detach_wifi3() - Detach txrx vdev
5181  * @cdp_soc: Datapath soc handle
5182  * @vdev_id: VDEV Id
5183  * @callback: Callback OL_IF on completion of detach
5184  * @cb_context:	Callback context
5185  *
5186  */
5187 static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
5188 				       uint8_t vdev_id,
5189 				       ol_txrx_vdev_delete_cb callback,
5190 				       void *cb_context)
5191 {
5192 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
5193 	struct dp_pdev *pdev;
5194 	struct dp_neighbour_peer *peer = NULL;
5195 	struct dp_peer *vap_self_peer = NULL;
5196 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5197 						     DP_MOD_ID_CDP);
5198 
5199 	if (!vdev)
5200 		return QDF_STATUS_E_FAILURE;
5201 
5202 	soc->arch_ops.txrx_vdev_detach(soc, vdev);
5203 
5204 	pdev = vdev->pdev;
5205 
5206 	vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
5207 							DP_MOD_ID_CONFIG);
5208 	if (vap_self_peer) {
5209 		qdf_spin_lock_bh(&soc->ast_lock);
5210 		if (vap_self_peer->self_ast_entry) {
5211 			dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
5212 			vap_self_peer->self_ast_entry = NULL;
5213 		}
5214 		qdf_spin_unlock_bh(&soc->ast_lock);
5215 
5216 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
5217 				     vap_self_peer->mac_addr.raw, 0,
5218 				     CDP_LINK_PEER_TYPE);
5219 		dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
5220 	}
5221 
5222 	/*
5223 	 * If Target is hung, flush all peers before detaching vdev
5224 	 * this will free all references held due to missing
5225 	 * unmap commands from Target
5226 	 */
5227 	if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
5228 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
5229 	else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
5230 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
5231 
5232 	/* indicate that the vdev needs to be deleted */
5233 	vdev->delete.pending = 1;
5234 	dp_rx_vdev_detach(vdev);
5235 	/*
5236 	 * move it after dp_rx_vdev_detach(),
5237 	 * as the call back done in dp_rx_vdev_detach()
5238 	 * still need to get vdev pointer by vdev_id.
5239 	 */
5240 	dp_vdev_id_map_tbl_remove(soc, vdev);
5241 
5242 	dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
5243 
5244 	dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
5245 
5246 	dp_tx_vdev_multipass_deinit(vdev);
5247 	dp_tx_vdev_traffic_end_indication_detach(vdev);
5248 
5249 	if (vdev->vdev_dp_ext_handle) {
5250 		qdf_mem_free(vdev->vdev_dp_ext_handle);
5251 		vdev->vdev_dp_ext_handle = NULL;
5252 	}
5253 	vdev->delete.callback = callback;
5254 	vdev->delete.context = cb_context;
5255 
5256 	if (vdev->opmode != wlan_op_mode_monitor)
5257 		dp_vdev_pdev_list_remove(soc, pdev, vdev);
5258 
5259 	pdev->vdev_count--;
5260 	/* release reference taken above for find */
5261 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5262 
5263 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
5264 	TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
5265 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
5266 
5267 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
5268 	dp_info("detach vdev %pK id %d pending refs %d",
5269 		vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
5270 
5271 	/* release reference taken at dp_vdev_create */
5272 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
5273 
5274 	return QDF_STATUS_SUCCESS;
5275 }
5276 
5277 #ifdef WLAN_FEATURE_11BE_MLO
5278 /**
5279  * is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
5280  * @vdev: Target DP vdev handle
5281  * @peer: DP peer handle to be checked
5282  * @peer_mac_addr: Target peer mac address
5283  * @peer_type: Target peer type
5284  *
5285  * Return: true - if match, false - not match
5286  */
5287 static inline
5288 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5289 			  struct dp_peer *peer,
5290 			  uint8_t *peer_mac_addr,
5291 			  enum cdp_peer_type peer_type)
5292 {
5293 	if (peer->bss_peer && (peer->vdev == vdev) &&
5294 	    (peer->peer_type == peer_type) &&
5295 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5296 			 QDF_MAC_ADDR_SIZE) == 0))
5297 		return true;
5298 
5299 	return false;
5300 }
5301 #else
5302 static inline
5303 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5304 			  struct dp_peer *peer,
5305 			  uint8_t *peer_mac_addr,
5306 			  enum cdp_peer_type peer_type)
5307 {
5308 	if (peer->bss_peer && (peer->vdev == vdev) &&
5309 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5310 			 QDF_MAC_ADDR_SIZE) == 0))
5311 		return true;
5312 
5313 	return false;
5314 }
5315 #endif
5316 
5317 static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
5318 						uint8_t *peer_mac_addr,
5319 						enum cdp_peer_type peer_type)
5320 {
5321 	struct dp_peer *peer;
5322 	struct dp_soc *soc = vdev->pdev->soc;
5323 
5324 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5325 	TAILQ_FOREACH(peer, &soc->inactive_peer_list,
5326 		      inactive_list_elem) {
5327 
5328 		/* reuse bss peer only when vdev matches*/
5329 		if (is_dp_peer_can_reuse(vdev, peer,
5330 					 peer_mac_addr, peer_type)) {
5331 			/* increment ref count for cdp_peer_create*/
5332 			if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
5333 						QDF_STATUS_SUCCESS) {
5334 				TAILQ_REMOVE(&soc->inactive_peer_list, peer,
5335 					     inactive_list_elem);
5336 				qdf_spin_unlock_bh
5337 					(&soc->inactive_peer_list_lock);
5338 				return peer;
5339 			}
5340 		}
5341 	}
5342 
5343 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5344 	return NULL;
5345 }
5346 
5347 #ifdef FEATURE_AST
5348 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5349 					       struct dp_pdev *pdev,
5350 					       uint8_t *peer_mac_addr)
5351 {
5352 	struct dp_ast_entry *ast_entry;
5353 
5354 	if (soc->ast_offload_support)
5355 		return;
5356 
5357 	qdf_spin_lock_bh(&soc->ast_lock);
5358 	if (soc->ast_override_support)
5359 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
5360 							    pdev->pdev_id);
5361 	else
5362 		ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
5363 
5364 	if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
5365 		dp_peer_del_ast(soc, ast_entry);
5366 
5367 	qdf_spin_unlock_bh(&soc->ast_lock);
5368 }
5369 #else
5370 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5371 					       struct dp_pdev *pdev,
5372 					       uint8_t *peer_mac_addr)
5373 {
5374 }
5375 #endif
5376 
5377 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5378 /**
5379  * dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
5380  * @soc: Datapath soc handle
5381  * @txrx_peer: Datapath peer handle
5382  *
5383  * Return: none
5384  */
5385 static inline
5386 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5387 				struct dp_txrx_peer *txrx_peer)
5388 {
5389 	txrx_peer->hw_txrx_stats_en =
5390 		wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
5391 }
5392 #else
5393 static inline
5394 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5395 				struct dp_txrx_peer *txrx_peer)
5396 {
5397 	txrx_peer->hw_txrx_stats_en = 0;
5398 }
5399 #endif
5400 
5401 static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
5402 {
5403 	struct dp_txrx_peer *txrx_peer;
5404 	struct dp_pdev *pdev;
5405 	struct cdp_txrx_peer_params_update params = {0};
5406 
5407 	/* dp_txrx_peer exists for mld peer and legacy peer */
5408 	if (peer->txrx_peer) {
5409 		txrx_peer = peer->txrx_peer;
5410 		peer->txrx_peer = NULL;
5411 		pdev = txrx_peer->vdev->pdev;
5412 
5413 		if ((peer->vdev->opmode != wlan_op_mode_sta) &&
5414 		    !peer->bss_peer) {
5415 			params.vdev_id = peer->vdev->vdev_id;
5416 			params.peer_mac = peer->mac_addr.raw;
5417 
5418 			dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
5419 					     (void *)&params, peer->peer_id,
5420 					     WDI_NO_VAL, pdev->pdev_id);
5421 		}
5422 
5423 		dp_peer_defrag_rx_tids_deinit(txrx_peer);
5424 		/*
5425 		 * Deallocate the extended stats contenxt
5426 		 */
5427 		dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
5428 		dp_peer_rx_bufq_resources_deinit(txrx_peer);
5429 		dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
5430 		dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
5431 
5432 		qdf_mem_free(txrx_peer);
5433 	}
5434 
5435 	return QDF_STATUS_SUCCESS;
5436 }
5437 
5438 static inline
5439 uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
5440 					  struct dp_peer *peer)
5441 {
5442 	if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
5443 	    IS_MLO_DP_MLD_PEER(peer)) {
5444 		return (DP_MAX_MLO_LINKS + 1);
5445 	}
5446 	return 1;
5447 }
5448 
5449 static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
5450 {
5451 	struct dp_txrx_peer *txrx_peer;
5452 	struct dp_pdev *pdev;
5453 	struct cdp_txrx_peer_params_update params = {0};
5454 	uint8_t stats_arr_size = 0;
5455 
5456 	stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
5457 
5458 	txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
5459 							  (stats_arr_size *
5460 							   sizeof(struct dp_peer_stats)));
5461 
5462 	if (!txrx_peer)
5463 		return QDF_STATUS_E_NOMEM; /* failure */
5464 
5465 	txrx_peer->peer_id = HTT_INVALID_PEER;
5466 	/* initialize the peer_id */
5467 	txrx_peer->vdev = peer->vdev;
5468 	pdev = peer->vdev->pdev;
5469 	txrx_peer->stats_arr_size = stats_arr_size;
5470 
5471 	DP_TXRX_PEER_STATS_INIT(txrx_peer,
5472 				(txrx_peer->stats_arr_size *
5473 				sizeof(struct dp_peer_stats)));
5474 
5475 	if (!IS_DP_LEGACY_PEER(peer))
5476 		txrx_peer->is_mld_peer = 1;
5477 
5478 	dp_wds_ext_peer_init(txrx_peer);
5479 	dp_peer_rx_bufq_resources_init(txrx_peer);
5480 	dp_peer_hw_txrx_stats_init(soc, txrx_peer);
5481 	/*
5482 	 * Allocate peer extended stats context. Fall through in
5483 	 * case of failure as its not an implicit requirement to have
5484 	 * this object for regular statistics updates.
5485 	 */
5486 	if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
5487 					  QDF_STATUS_SUCCESS)
5488 		dp_warn("peer delay_stats ctx alloc failed");
5489 
5490 	/*
5491 	 * Alloctate memory for jitter stats. Fall through in
5492 	 * case of failure as its not an implicit requirement to have
5493 	 * this object for regular statistics updates.
5494 	 */
5495 	if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
5496 					   QDF_STATUS_SUCCESS)
5497 		dp_warn("peer jitter_stats ctx alloc failed");
5498 
5499 	dp_set_peer_isolation(txrx_peer, false);
5500 
5501 	dp_peer_defrag_rx_tids_init(txrx_peer);
5502 
5503 	if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
5504 		dp_warn("peer sawf stats alloc failed");
5505 
5506 	dp_txrx_peer_attach_add(soc, peer, txrx_peer);
5507 
5508 	if ((peer->vdev->opmode == wlan_op_mode_sta) || peer->bss_peer)
5509 		return QDF_STATUS_SUCCESS;
5510 
5511 	params.peer_mac = peer->mac_addr.raw;
5512 	params.vdev_id = peer->vdev->vdev_id;
5513 	params.chip_id = dp_get_chip_id(soc);
5514 	params.pdev_id = peer->vdev->pdev->pdev_id;
5515 
5516 	dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
5517 			     (void *)&params, peer->peer_id,
5518 			     WDI_NO_VAL, params.pdev_id);
5519 
5520 	return QDF_STATUS_SUCCESS;
5521 }
5522 
5523 static inline
5524 void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
5525 {
5526 	if (!txrx_peer)
5527 		return;
5528 
5529 	txrx_peer->tx_failed = 0;
5530 	txrx_peer->comp_pkt.num = 0;
5531 	txrx_peer->comp_pkt.bytes = 0;
5532 	txrx_peer->to_stack.num = 0;
5533 	txrx_peer->to_stack.bytes = 0;
5534 
5535 	DP_TXRX_PEER_STATS_CLR(txrx_peer,
5536 			       (txrx_peer->stats_arr_size *
5537 			       sizeof(struct dp_peer_stats)));
5538 	dp_peer_delay_stats_ctx_clr(txrx_peer);
5539 	dp_peer_jitter_stats_ctx_clr(txrx_peer);
5540 }
5541 
5542 /**
5543  * dp_peer_create_wifi3() - attach txrx peer
5544  * @soc_hdl: Datapath soc handle
5545  * @vdev_id: id of vdev
5546  * @peer_mac_addr: Peer MAC address
5547  * @peer_type: link or MLD peer type
5548  *
5549  * Return: 0 on success, -1 on failure
5550  */
5551 static QDF_STATUS
5552 dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5553 		     uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
5554 {
5555 	struct dp_peer *peer;
5556 	int i;
5557 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5558 	struct dp_pdev *pdev;
5559 	enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
5560 	struct dp_vdev *vdev = NULL;
5561 
5562 	if (!peer_mac_addr)
5563 		return QDF_STATUS_E_FAILURE;
5564 
5565 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5566 
5567 	if (!vdev)
5568 		return QDF_STATUS_E_FAILURE;
5569 
5570 	pdev = vdev->pdev;
5571 	soc = pdev->soc;
5572 
5573 	/*
5574 	 * If a peer entry with given MAC address already exists,
5575 	 * reuse the peer and reset the state of peer.
5576 	 */
5577 	peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
5578 
5579 	if (peer) {
5580 		qdf_atomic_init(&peer->is_default_route_set);
5581 		dp_peer_cleanup(vdev, peer);
5582 
5583 		dp_peer_vdev_list_add(soc, vdev, peer);
5584 		dp_peer_find_hash_add(soc, peer);
5585 
5586 		if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5587 			dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5588 				 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5589 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5590 			return QDF_STATUS_E_FAILURE;
5591 		}
5592 
5593 		if (IS_MLO_DP_MLD_PEER(peer))
5594 			dp_mld_peer_init_link_peers_info(peer);
5595 
5596 		qdf_spin_lock_bh(&soc->ast_lock);
5597 		dp_peer_delete_ast_entries(soc, peer);
5598 		qdf_spin_unlock_bh(&soc->ast_lock);
5599 
5600 		if ((vdev->opmode == wlan_op_mode_sta) &&
5601 		    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5602 		     QDF_MAC_ADDR_SIZE)) {
5603 			ast_type = CDP_TXRX_AST_TYPE_SELF;
5604 		}
5605 		dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5606 
5607 		peer->valid = 1;
5608 		peer->is_tdls_peer = false;
5609 		dp_local_peer_id_alloc(pdev, peer);
5610 
5611 		qdf_spinlock_create(&peer->peer_info_lock);
5612 
5613 		DP_STATS_INIT(peer);
5614 
5615 		/*
5616 		 * In tx_monitor mode, filter may be set for unassociated peer
5617 		 * when unassociated peer get associated peer need to
5618 		 * update tx_cap_enabled flag to support peer filter.
5619 		 */
5620 		if (!IS_MLO_DP_MLD_PEER(peer)) {
5621 			dp_monitor_peer_tx_capture_filter_check(pdev, peer);
5622 			dp_monitor_peer_reset_stats(soc, peer);
5623 		}
5624 
5625 		if (peer->txrx_peer) {
5626 			dp_peer_rx_bufq_resources_init(peer->txrx_peer);
5627 			dp_txrx_peer_stats_clr(peer->txrx_peer);
5628 			dp_set_peer_isolation(peer->txrx_peer, false);
5629 			dp_wds_ext_peer_init(peer->txrx_peer);
5630 			dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
5631 		}
5632 
5633 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5634 					     peer, vdev, 1);
5635 		dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
5636 			") vdev_ref_cnt "
5637 			"%d peer_ref_cnt: %d",
5638 			vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5639 			qdf_atomic_read(&vdev->ref_cnt),
5640 			qdf_atomic_read(&peer->ref_cnt));
5641 			dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5642 
5643 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5644 		return QDF_STATUS_SUCCESS;
5645 	} else {
5646 		/*
5647 		 * When a STA roams from RPTR AP to ROOT AP and vice versa, we
5648 		 * need to remove the AST entry which was earlier added as a WDS
5649 		 * entry.
5650 		 * If an AST entry exists, but no peer entry exists with a given
5651 		 * MAC addresses, we could deduce it as a WDS entry
5652 		 */
5653 		dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
5654 	}
5655 
5656 #ifdef notyet
5657 	peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
5658 		soc->mempool_ol_ath_peer);
5659 #else
5660 	peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
5661 #endif
5662 	wlan_minidump_log(peer,
5663 			  sizeof(*peer),
5664 			  soc->ctrl_psoc,
5665 			  WLAN_MD_DP_PEER, "dp_peer");
5666 	if (!peer) {
5667 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5668 		return QDF_STATUS_E_FAILURE; /* failure */
5669 	}
5670 
5671 	qdf_mem_zero(peer, sizeof(struct dp_peer));
5672 
5673 	/* store provided params */
5674 	peer->vdev = vdev;
5675 
5676 	/* initialize the peer_id */
5677 	peer->peer_id = HTT_INVALID_PEER;
5678 
5679 	qdf_mem_copy(
5680 		&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
5681 
5682 	DP_PEER_SET_TYPE(peer, peer_type);
5683 	if (IS_MLO_DP_MLD_PEER(peer)) {
5684 		if (dp_txrx_peer_attach(soc, peer) !=
5685 				QDF_STATUS_SUCCESS)
5686 			goto fail; /* failure */
5687 
5688 		dp_mld_peer_init_link_peers_info(peer);
5689 	}
5690 
5691 	if (dp_monitor_peer_attach(soc, peer) != QDF_STATUS_SUCCESS)
5692 		dp_warn("peer monitor ctx alloc failed");
5693 
5694 	TAILQ_INIT(&peer->ast_entry_list);
5695 
5696 	/* get the vdev reference for new peer */
5697 	dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
5698 
5699 	if ((vdev->opmode == wlan_op_mode_sta) &&
5700 	    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5701 			 QDF_MAC_ADDR_SIZE)) {
5702 		ast_type = CDP_TXRX_AST_TYPE_SELF;
5703 	}
5704 	qdf_spinlock_create(&peer->peer_state_lock);
5705 	dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5706 	qdf_spinlock_create(&peer->peer_info_lock);
5707 
5708 	/* reset the ast index to flowid table */
5709 	dp_peer_reset_flowq_map(peer);
5710 
5711 	qdf_atomic_init(&peer->ref_cnt);
5712 
5713 	for (i = 0; i < DP_MOD_ID_MAX; i++)
5714 		qdf_atomic_init(&peer->mod_refs[i]);
5715 
5716 	/* keep one reference for attach */
5717 	qdf_atomic_inc(&peer->ref_cnt);
5718 	qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
5719 
5720 	dp_peer_vdev_list_add(soc, vdev, peer);
5721 
5722 	/* TODO: See if hash based search is required */
5723 	dp_peer_find_hash_add(soc, peer);
5724 
5725 	/* Initialize the peer state */
5726 	peer->state = OL_TXRX_PEER_STATE_DISC;
5727 
5728 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5729 				     peer, vdev, 0);
5730 	dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
5731 		"%d peer_ref_cnt: %d",
5732 		vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5733 		qdf_atomic_read(&vdev->ref_cnt),
5734 		qdf_atomic_read(&peer->ref_cnt));
5735 	/*
5736 	 * For every peer MAp message search and set if bss_peer
5737 	 */
5738 	if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5739 			QDF_MAC_ADDR_SIZE) == 0 &&
5740 			(wlan_op_mode_sta != vdev->opmode)) {
5741 		dp_info("vdev bss_peer!!");
5742 		peer->bss_peer = 1;
5743 		if (peer->txrx_peer)
5744 			peer->txrx_peer->bss_peer = 1;
5745 	}
5746 
5747 	if (wlan_op_mode_sta == vdev->opmode &&
5748 	    qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5749 			QDF_MAC_ADDR_SIZE) == 0) {
5750 		peer->sta_self_peer = 1;
5751 	}
5752 
5753 	if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5754 		dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5755 			 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5756 		goto fail;
5757 	}
5758 
5759 	peer->valid = 1;
5760 	dp_local_peer_id_alloc(pdev, peer);
5761 	DP_STATS_INIT(peer);
5762 
5763 	if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
5764 		dp_warn("peer sawf context alloc failed");
5765 
5766 	dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5767 
5768 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5769 
5770 	return QDF_STATUS_SUCCESS;
5771 fail:
5772 	qdf_mem_free(peer);
5773 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5774 
5775 	return QDF_STATUS_E_FAILURE;
5776 }
5777 
5778 QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
5779 {
5780 	/* txrx_peer might exist already in peer reuse case */
5781 	if (peer->txrx_peer)
5782 		return QDF_STATUS_SUCCESS;
5783 
5784 	if (dp_txrx_peer_attach(soc, peer) !=
5785 				QDF_STATUS_SUCCESS) {
5786 		dp_err("peer txrx ctx alloc failed");
5787 		return QDF_STATUS_E_FAILURE;
5788 	}
5789 
5790 	return QDF_STATUS_SUCCESS;
5791 }
5792 
5793 #ifdef WLAN_FEATURE_11BE_MLO
5794 static QDF_STATUS dp_mld_peer_change_vdev(struct dp_soc *soc,
5795 					  struct dp_peer *mld_peer,
5796 					  uint8_t new_vdev_id)
5797 {
5798 	struct dp_vdev *prev_vdev;
5799 
5800 	prev_vdev = mld_peer->vdev;
5801 	/* release the ref to original dp_vdev */
5802 	dp_vdev_unref_delete(soc, mld_peer->vdev,
5803 			     DP_MOD_ID_CHILD);
5804 	/*
5805 	 * get the ref to new dp_vdev,
5806 	 * increase dp_vdev ref_cnt
5807 	 */
5808 	mld_peer->vdev = dp_vdev_get_ref_by_id(soc, new_vdev_id,
5809 					       DP_MOD_ID_CHILD);
5810 	mld_peer->txrx_peer->vdev = mld_peer->vdev;
5811 
5812 	dp_info("Change vdev for ML peer " QDF_MAC_ADDR_FMT
5813 		" old vdev %pK id %d new vdev %pK id %d",
5814 		QDF_MAC_ADDR_REF(mld_peer->mac_addr.raw),
5815 		prev_vdev, prev_vdev->vdev_id, mld_peer->vdev, new_vdev_id);
5816 
5817 	dp_cfg_event_record_mlo_setup_vdev_update_evt(
5818 			soc, mld_peer, prev_vdev,
5819 			mld_peer->vdev);
5820 
5821 	return QDF_STATUS_SUCCESS;
5822 }
5823 
5824 QDF_STATUS dp_peer_mlo_setup(
5825 			struct dp_soc *soc,
5826 			struct dp_peer *peer,
5827 			uint8_t vdev_id,
5828 			struct cdp_peer_setup_info *setup_info)
5829 {
5830 	struct dp_peer *mld_peer = NULL;
5831 	struct cdp_txrx_peer_params_update params = {0};
5832 
5833 	/* Non-MLO connection */
5834 	if (!setup_info || !setup_info->mld_peer_mac) {
5835 		/* To handle downgrade scenarios */
5836 		if (peer->vdev->opmode == wlan_op_mode_sta) {
5837 			struct cdp_txrx_peer_params_update params = {0};
5838 
5839 			params.chip_id = dp_get_chip_id(soc);
5840 			params.pdev_id = peer->vdev->pdev->pdev_id;
5841 			params.vdev_id = peer->vdev->vdev_id;
5842 
5843 			dp_wdi_event_handler(
5844 					WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5845 					soc,
5846 					(void *)&params, peer->peer_id,
5847 					WDI_NO_VAL, params.pdev_id);
5848 		}
5849 		return QDF_STATUS_SUCCESS;
5850 	}
5851 
5852 	dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
5853 					   peer, NULL, vdev_id, setup_info);
5854 	dp_info("link peer: " QDF_MAC_ADDR_FMT "mld peer: " QDF_MAC_ADDR_FMT
5855 		"first_link %d, primary_link %d",
5856 		QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5857 		QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
5858 		setup_info->is_first_link,
5859 		setup_info->is_primary_link);
5860 
5861 	/* if this is the first link peer */
5862 	if (setup_info->is_first_link)
5863 		/* create MLD peer */
5864 		dp_peer_create_wifi3((struct cdp_soc_t *)soc,
5865 				     vdev_id,
5866 				     setup_info->mld_peer_mac,
5867 				     CDP_MLD_PEER_TYPE);
5868 
5869 	if (peer->vdev->opmode == wlan_op_mode_sta &&
5870 	    setup_info->is_primary_link) {
5871 		struct cdp_txrx_peer_params_update params = {0};
5872 
5873 		params.chip_id = dp_get_chip_id(soc);
5874 		params.pdev_id = peer->vdev->pdev->pdev_id;
5875 		params.vdev_id = peer->vdev->vdev_id;
5876 
5877 		dp_wdi_event_handler(
5878 				WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5879 				soc,
5880 				(void *)&params, peer->peer_id,
5881 				WDI_NO_VAL, params.pdev_id);
5882 	}
5883 
5884 	peer->first_link = setup_info->is_first_link;
5885 	peer->primary_link = setup_info->is_primary_link;
5886 	mld_peer = dp_mld_peer_find_hash_find(soc,
5887 					      setup_info->mld_peer_mac,
5888 					      0, vdev_id, DP_MOD_ID_CDP);
5889 	if (mld_peer) {
5890 		if (setup_info->is_first_link) {
5891 			/* assign rx_tid to mld peer */
5892 			mld_peer->rx_tid = peer->rx_tid;
5893 			/* no cdp_peer_setup for MLD peer,
5894 			 * set it for addba processing
5895 			 */
5896 			qdf_atomic_set(&mld_peer->is_default_route_set, 1);
5897 		} else {
5898 			/* free link peer original rx_tids mem */
5899 			dp_peer_rx_tids_destroy(peer);
5900 			/* assign mld peer rx_tid to link peer */
5901 			peer->rx_tid = mld_peer->rx_tid;
5902 		}
5903 
5904 		if (setup_info->is_primary_link &&
5905 		    !setup_info->is_first_link) {
5906 			/*
5907 			 * if first link is not the primary link,
5908 			 * then need to change mld_peer->vdev as
5909 			 * primary link dp_vdev is not same one
5910 			 * during mld peer creation.
5911 			 */
5912 			dp_info("Primary link is not the first link. vdev: %pK "
5913 				"vdev_id %d vdev_ref_cnt %d",
5914 				mld_peer->vdev, vdev_id,
5915 				qdf_atomic_read(&mld_peer->vdev->ref_cnt));
5916 
5917 			dp_mld_peer_change_vdev(soc, mld_peer, vdev_id);
5918 
5919 			params.vdev_id = peer->vdev->vdev_id;
5920 			params.peer_mac = mld_peer->mac_addr.raw;
5921 			params.chip_id = dp_get_chip_id(soc);
5922 			params.pdev_id = peer->vdev->pdev->pdev_id;
5923 
5924 			dp_wdi_event_handler(
5925 					WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
5926 					soc, (void *)&params, peer->peer_id,
5927 					WDI_NO_VAL, params.pdev_id);
5928 		}
5929 
5930 		/* associate mld and link peer */
5931 		dp_link_peer_add_mld_peer(peer, mld_peer);
5932 		dp_mld_peer_add_link_peer(mld_peer, peer);
5933 
5934 		mld_peer->txrx_peer->is_mld_peer = 1;
5935 		dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
5936 	} else {
5937 		peer->mld_peer = NULL;
5938 		dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
5939 		       QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
5940 		return QDF_STATUS_E_FAILURE;
5941 	}
5942 
5943 	return QDF_STATUS_SUCCESS;
5944 }
5945 
5946 /**
5947  * dp_mlo_peer_authorize() - authorize MLO peer
5948  * @soc: soc handle
5949  * @peer: pointer to link peer
5950  *
5951  * Return: void
5952  */
5953 static void dp_mlo_peer_authorize(struct dp_soc *soc,
5954 				  struct dp_peer *peer)
5955 {
5956 	int i;
5957 	struct dp_peer *link_peer = NULL;
5958 	struct dp_peer *mld_peer = peer->mld_peer;
5959 	struct dp_mld_link_peers link_peers_info;
5960 
5961 	if (!mld_peer)
5962 		return;
5963 
5964 	/* get link peers with reference */
5965 	dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
5966 					    &link_peers_info,
5967 					    DP_MOD_ID_CDP);
5968 
5969 	for (i = 0; i < link_peers_info.num_links; i++) {
5970 		link_peer = link_peers_info.link_peers[i];
5971 
5972 		if (!link_peer->authorize) {
5973 			dp_release_link_peers_ref(&link_peers_info,
5974 						  DP_MOD_ID_CDP);
5975 			mld_peer->authorize = false;
5976 			return;
5977 		}
5978 	}
5979 
5980 	/* if we are here all link peers are authorized,
5981 	 * authorize ml_peer also
5982 	 */
5983 	mld_peer->authorize = true;
5984 
5985 	/* release link peers reference */
5986 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5987 }
5988 #endif
5989 
5990 /**
5991  * dp_peer_setup_wifi3_wrapper() - initialize the peer
5992  * @soc_hdl: soc handle object
5993  * @vdev_id : vdev_id of vdev object
5994  * @peer_mac: Peer's mac address
5995  * @setup_info: peer setup info for MLO
5996  *
5997  * Return: QDF_STATUS
5998  */
5999 static QDF_STATUS
6000 dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6001 			    uint8_t *peer_mac,
6002 			    struct cdp_peer_setup_info *setup_info)
6003 {
6004 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6005 
6006 	return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
6007 					     peer_mac, setup_info);
6008 }
6009 
6010 /**
6011  * dp_cp_peer_del_resp_handler() - Handle the peer delete response
6012  * @soc_hdl: Datapath SOC handle
6013  * @vdev_id: id of virtual device object
6014  * @mac_addr: Mac address of the peer
6015  *
6016  * Return: QDF_STATUS
6017  */
6018 static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
6019 					      uint8_t vdev_id,
6020 					      uint8_t *mac_addr)
6021 {
6022 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6023 	struct dp_ast_entry  *ast_entry = NULL;
6024 	txrx_ast_free_cb cb = NULL;
6025 	void *cookie;
6026 
6027 	if (soc->ast_offload_support)
6028 		return QDF_STATUS_E_INVAL;
6029 
6030 	qdf_spin_lock_bh(&soc->ast_lock);
6031 
6032 	ast_entry =
6033 		dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
6034 						vdev_id);
6035 
6036 	/* in case of qwrap we have multiple BSS peers
6037 	 * with same mac address
6038 	 *
6039 	 * AST entry for this mac address will be created
6040 	 * only for one peer hence it will be NULL here
6041 	 */
6042 	if ((!ast_entry || !ast_entry->delete_in_progress) ||
6043 	    (ast_entry->peer_id != HTT_INVALID_PEER)) {
6044 		qdf_spin_unlock_bh(&soc->ast_lock);
6045 		return QDF_STATUS_E_FAILURE;
6046 	}
6047 
6048 	if (ast_entry->is_mapped)
6049 		soc->ast_table[ast_entry->ast_idx] = NULL;
6050 
6051 	DP_STATS_INC(soc, ast.deleted, 1);
6052 	dp_peer_ast_hash_remove(soc, ast_entry);
6053 
6054 	cb = ast_entry->callback;
6055 	cookie = ast_entry->cookie;
6056 	ast_entry->callback = NULL;
6057 	ast_entry->cookie = NULL;
6058 
6059 	soc->num_ast_entries--;
6060 	qdf_spin_unlock_bh(&soc->ast_lock);
6061 
6062 	if (cb) {
6063 		cb(soc->ctrl_psoc,
6064 		   dp_soc_to_cdp_soc(soc),
6065 		   cookie,
6066 		   CDP_TXRX_AST_DELETED);
6067 	}
6068 	qdf_mem_free(ast_entry);
6069 
6070 	return QDF_STATUS_SUCCESS;
6071 }
6072 
6073 #ifdef WLAN_SUPPORT_MSCS
6074 /**
6075  * dp_record_mscs_params() - Record MSCS parameters sent by the STA in
6076  * the MSCS Request to the AP.
6077  * @soc_hdl: Datapath soc handle
6078  * @peer_mac: STA Mac address
6079  * @vdev_id: ID of the vdev handle
6080  * @mscs_params: Structure having MSCS parameters obtained
6081  * from handshake
6082  * @active: Flag to set MSCS active/inactive
6083  *
6084  * The AP makes a note of these parameters while comparing the MSDUs
6085  * sent by the STA, to send the downlink traffic with correct User
6086  * priority.
6087  *
6088  * Return: QDF_STATUS - Success/Invalid
6089  */
6090 static QDF_STATUS
6091 dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
6092 		      uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
6093 		      bool active)
6094 {
6095 	struct dp_peer *peer;
6096 	struct dp_peer *tgt_peer;
6097 	QDF_STATUS status = QDF_STATUS_E_INVAL;
6098 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6099 
6100 	peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
6101 				      DP_MOD_ID_CDP);
6102 
6103 	if (!peer) {
6104 		dp_err("Peer is NULL!");
6105 		goto fail;
6106 	}
6107 
6108 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
6109 	if (!tgt_peer)
6110 		goto fail;
6111 
6112 	if (!active) {
6113 		dp_info("MSCS Procedure is terminated");
6114 		tgt_peer->mscs_active = active;
6115 		goto fail;
6116 	}
6117 
6118 	if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
6119 		/* Populate entries inside IPV4 database first */
6120 		tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
6121 			mscs_params->user_pri_bitmap;
6122 		tgt_peer->mscs_ipv4_parameter.user_priority_limit =
6123 			mscs_params->user_pri_limit;
6124 		tgt_peer->mscs_ipv4_parameter.classifier_mask =
6125 			mscs_params->classifier_mask;
6126 
6127 		/* Populate entries inside IPV6 database */
6128 		tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
6129 			mscs_params->user_pri_bitmap;
6130 		tgt_peer->mscs_ipv6_parameter.user_priority_limit =
6131 			mscs_params->user_pri_limit;
6132 		tgt_peer->mscs_ipv6_parameter.classifier_mask =
6133 			mscs_params->classifier_mask;
6134 		tgt_peer->mscs_active = 1;
6135 		dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
6136 			"\tClassifier_type = %d\tUser priority bitmap = %x\n"
6137 			"\tUser priority limit = %x\tClassifier mask = %x",
6138 			QDF_MAC_ADDR_REF(peer_mac),
6139 			mscs_params->classifier_type,
6140 			tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
6141 			tgt_peer->mscs_ipv4_parameter.user_priority_limit,
6142 			tgt_peer->mscs_ipv4_parameter.classifier_mask);
6143 	}
6144 
6145 	status = QDF_STATUS_SUCCESS;
6146 fail:
6147 	if (peer)
6148 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6149 	return status;
6150 }
6151 #endif
6152 
6153 /**
6154  * dp_get_sec_type() - Get the security type
6155  * @soc: soc handle
6156  * @vdev_id: id of dp handle
6157  * @peer_mac: mac of datapath PEER handle
6158  * @sec_idx:    Security id (mcast, ucast)
6159  *
6160  * return sec_type: Security type
6161  */
6162 static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
6163 			   uint8_t *peer_mac, uint8_t sec_idx)
6164 {
6165 	int sec_type = 0;
6166 	struct dp_peer *peer =
6167 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
6168 						       peer_mac, 0, vdev_id,
6169 						       DP_MOD_ID_CDP);
6170 
6171 	if (!peer) {
6172 		dp_cdp_err("%pK: Peer is NULL!", (struct dp_soc *)soc);
6173 		return sec_type;
6174 	}
6175 
6176 	if (!peer->txrx_peer) {
6177 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6178 		dp_peer_debug("%pK: txrx peer is NULL!", soc);
6179 		return sec_type;
6180 	}
6181 	sec_type = peer->txrx_peer->security[sec_idx].sec_type;
6182 
6183 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6184 	return sec_type;
6185 }
6186 
6187 /**
6188  * dp_peer_authorize() - authorize txrx peer
6189  * @soc_hdl: soc handle
6190  * @vdev_id: id of dp handle
6191  * @peer_mac: mac of datapath PEER handle
6192  * @authorize:
6193  *
6194  * Return: QDF_STATUS
6195  *
6196  */
6197 static QDF_STATUS
6198 dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6199 		  uint8_t *peer_mac, uint32_t authorize)
6200 {
6201 	QDF_STATUS status = QDF_STATUS_SUCCESS;
6202 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6203 	struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
6204 							      0, vdev_id,
6205 							      DP_MOD_ID_CDP);
6206 
6207 	if (!peer) {
6208 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6209 		status = QDF_STATUS_E_FAILURE;
6210 	} else {
6211 		peer->authorize = authorize ? 1 : 0;
6212 		if (peer->txrx_peer)
6213 			peer->txrx_peer->authorize = peer->authorize;
6214 
6215 		if (!peer->authorize)
6216 			dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
6217 
6218 		dp_mlo_peer_authorize(soc, peer);
6219 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6220 	}
6221 
6222 	return status;
6223 }
6224 
6225 /**
6226  * dp_peer_get_authorize() - get peer authorize status
6227  * @soc_hdl: soc handle
6228  * @vdev_id: id of dp handle
6229  * @peer_mac: mac of datapath PEER handle
6230  *
6231  * Return: true is peer is authorized, false otherwise
6232  */
6233 static bool
6234 dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6235 		      uint8_t *peer_mac)
6236 {
6237 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6238 	bool authorize = false;
6239 	struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
6240 						      0, vdev_id,
6241 						      DP_MOD_ID_CDP);
6242 
6243 	if (!peer) {
6244 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6245 		return authorize;
6246 	}
6247 
6248 	authorize = peer->authorize;
6249 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6250 
6251 	return authorize;
6252 }
6253 
6254 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
6255 			  enum dp_mod_id mod_id)
6256 {
6257 	ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
6258 	void *vdev_delete_context = NULL;
6259 	uint8_t vdev_id = vdev->vdev_id;
6260 	struct dp_pdev *pdev = vdev->pdev;
6261 	struct dp_vdev *tmp_vdev = NULL;
6262 	uint8_t found = 0;
6263 
6264 	QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
6265 
6266 	/* Return if this is not the last reference*/
6267 	if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
6268 		return;
6269 
6270 	/*
6271 	 * This should be set as last reference need to released
6272 	 * after cdp_vdev_detach() is called
6273 	 *
6274 	 * if this assert is hit there is a ref count issue
6275 	 */
6276 	QDF_ASSERT(vdev->delete.pending);
6277 
6278 	vdev_delete_cb = vdev->delete.callback;
6279 	vdev_delete_context = vdev->delete.context;
6280 
6281 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
6282 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6283 
6284 	if (wlan_op_mode_monitor == vdev->opmode) {
6285 		dp_monitor_vdev_delete(soc, vdev);
6286 		goto free_vdev;
6287 	}
6288 
6289 	/* all peers are gone, go ahead and delete it */
6290 	dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
6291 			FLOW_TYPE_VDEV, vdev_id);
6292 	dp_tx_vdev_detach(vdev);
6293 	dp_monitor_vdev_detach(vdev);
6294 
6295 free_vdev:
6296 	qdf_spinlock_destroy(&vdev->peer_list_lock);
6297 
6298 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
6299 	TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
6300 		      inactive_list_elem) {
6301 		if (tmp_vdev == vdev) {
6302 			found = 1;
6303 			break;
6304 		}
6305 	}
6306 	if (found)
6307 		TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
6308 			     inactive_list_elem);
6309 	/* delete this peer from the list */
6310 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
6311 
6312 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
6313 				     vdev);
6314 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
6315 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6316 	wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
6317 			     WLAN_MD_DP_VDEV, "dp_vdev");
6318 	qdf_mem_free(vdev);
6319 	vdev = NULL;
6320 
6321 	if (vdev_delete_cb)
6322 		vdev_delete_cb(vdev_delete_context);
6323 }
6324 
6325 qdf_export_symbol(dp_vdev_unref_delete);
6326 
6327 void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
6328 {
6329 	struct dp_vdev *vdev = peer->vdev;
6330 	struct dp_pdev *pdev = vdev->pdev;
6331 	struct dp_soc *soc = pdev->soc;
6332 	uint16_t peer_id;
6333 	struct dp_peer *tmp_peer;
6334 	bool found = false;
6335 
6336 	if (mod_id > DP_MOD_ID_RX)
6337 		QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
6338 
6339 	/*
6340 	 * Hold the lock all the way from checking if the peer ref count
6341 	 * is zero until the peer references are removed from the hash
6342 	 * table and vdev list (if the peer ref count is zero).
6343 	 * This protects against a new HL tx operation starting to use the
6344 	 * peer object just after this function concludes it's done being used.
6345 	 * Furthermore, the lock needs to be held while checking whether the
6346 	 * vdev's list of peers is empty, to make sure that list is not modified
6347 	 * concurrently with the empty check.
6348 	 */
6349 	if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
6350 		peer_id = peer->peer_id;
6351 
6352 		/*
6353 		 * Make sure that the reference to the peer in
6354 		 * peer object map is removed
6355 		 */
6356 		QDF_ASSERT(peer_id == HTT_INVALID_PEER);
6357 
6358 		dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
6359 			     QDF_MAC_ADDR_REF(peer->mac_addr.raw));
6360 
6361 		dp_peer_sawf_ctx_free(soc, peer);
6362 
6363 		wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
6364 				     WLAN_MD_DP_PEER, "dp_peer");
6365 
6366 		qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6367 		TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
6368 			      inactive_list_elem) {
6369 			if (tmp_peer == peer) {
6370 				found = 1;
6371 				break;
6372 			}
6373 		}
6374 		if (found)
6375 			TAILQ_REMOVE(&soc->inactive_peer_list, peer,
6376 				     inactive_list_elem);
6377 		/* delete this peer from the list */
6378 		qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6379 		DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
6380 		dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
6381 
6382 		/* cleanup the peer data */
6383 		dp_peer_cleanup(vdev, peer);
6384 
6385 		dp_monitor_peer_detach(soc, peer);
6386 
6387 		qdf_spinlock_destroy(&peer->peer_state_lock);
6388 
6389 		dp_txrx_peer_detach(soc, peer);
6390 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
6391 					     peer, vdev, 0);
6392 		qdf_mem_free(peer);
6393 
6394 		/*
6395 		 * Decrement ref count taken at peer create
6396 		 */
6397 		dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
6398 			     vdev, qdf_atomic_read(&vdev->ref_cnt));
6399 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
6400 	}
6401 }
6402 
6403 qdf_export_symbol(dp_peer_unref_delete);
6404 
6405 void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
6406 			       enum dp_mod_id mod_id)
6407 {
6408 	dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
6409 }
6410 
6411 qdf_export_symbol(dp_txrx_peer_unref_delete);
6412 
6413 /**
6414  * dp_peer_delete_wifi3() - Delete txrx peer
6415  * @soc_hdl: soc handle
6416  * @vdev_id: id of dp handle
6417  * @peer_mac: mac of datapath PEER handle
6418  * @bitmap: bitmap indicating special handling of request.
6419  * @peer_type: peer type (link or MLD)
6420  *
6421  */
6422 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
6423 				       uint8_t vdev_id,
6424 				       uint8_t *peer_mac, uint32_t bitmap,
6425 				       enum cdp_peer_type peer_type)
6426 {
6427 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6428 	struct dp_peer *peer;
6429 	struct cdp_peer_info peer_info = { 0 };
6430 	struct dp_vdev *vdev = NULL;
6431 
6432 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
6433 				 false, peer_type);
6434 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
6435 
6436 	/* Peer can be null for monitor vap mac address */
6437 	if (!peer) {
6438 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
6439 			  "%s: Invalid peer\n", __func__);
6440 		return QDF_STATUS_E_FAILURE;
6441 	}
6442 
6443 	if (!peer->valid) {
6444 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6445 		dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
6446 			QDF_MAC_ADDR_REF(peer_mac));
6447 		return QDF_STATUS_E_ALREADY;
6448 	}
6449 
6450 	vdev = peer->vdev;
6451 
6452 	if (!vdev) {
6453 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6454 		return QDF_STATUS_E_FAILURE;
6455 	}
6456 
6457 	peer->valid = 0;
6458 
6459 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
6460 				     vdev, 0);
6461 	dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
6462 		     soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
6463 		     qdf_atomic_read(&peer->ref_cnt));
6464 
6465 	dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
6466 
6467 	dp_local_peer_id_free(peer->vdev->pdev, peer);
6468 
6469 	/* Drop all rx packets before deleting peer */
6470 	dp_clear_peer_internal(soc, peer);
6471 
6472 	qdf_spinlock_destroy(&peer->peer_info_lock);
6473 	dp_peer_multipass_list_remove(peer);
6474 
6475 	/* remove the reference to the peer from the hash table */
6476 	dp_peer_find_hash_remove(soc, peer);
6477 
6478 	dp_peer_vdev_list_remove(soc, vdev, peer);
6479 
6480 	dp_peer_mlo_delete(peer);
6481 
6482 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6483 	TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
6484 			  inactive_list_elem);
6485 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6486 
6487 	/*
6488 	 * Remove the reference added during peer_attach.
6489 	 * The peer will still be left allocated until the
6490 	 * PEER_UNMAP message arrives to remove the other
6491 	 * reference, added by the PEER_MAP message.
6492 	 */
6493 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
6494 	/*
6495 	 * Remove the reference taken above
6496 	 */
6497 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6498 
6499 	return QDF_STATUS_SUCCESS;
6500 }
6501 
6502 #ifdef DP_RX_UDP_OVER_PEER_ROAM
6503 static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
6504 					       uint8_t vdev_id,
6505 					       uint8_t *peer_mac,
6506 					       uint32_t auth_status)
6507 {
6508 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6509 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6510 						     DP_MOD_ID_CDP);
6511 	if (!vdev)
6512 		return QDF_STATUS_E_FAILURE;
6513 
6514 	vdev->roaming_peer_status = auth_status;
6515 	qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
6516 		     QDF_MAC_ADDR_SIZE);
6517 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6518 
6519 	return QDF_STATUS_SUCCESS;
6520 }
6521 #endif
6522 /**
6523  * dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
6524  * @soc_hdl: Datapath soc handle
6525  * @vdev_id: virtual interface id
6526  *
6527  * Return: MAC address on success, NULL on failure.
6528  *
6529  */
6530 static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
6531 					   uint8_t vdev_id)
6532 {
6533 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6534 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6535 						     DP_MOD_ID_CDP);
6536 	uint8_t *mac = NULL;
6537 
6538 	if (!vdev)
6539 		return NULL;
6540 
6541 	mac = vdev->mac_addr.raw;
6542 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6543 
6544 	return mac;
6545 }
6546 
6547 /**
6548  * dp_vdev_set_wds() - Enable per packet stats
6549  * @soc_hdl: DP soc handle
6550  * @vdev_id: id of DP VDEV handle
6551  * @val: value
6552  *
6553  * Return: none
6554  */
6555 static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6556 			   uint32_t val)
6557 {
6558 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6559 	struct dp_vdev *vdev =
6560 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
6561 				      DP_MOD_ID_CDP);
6562 
6563 	if (!vdev)
6564 		return QDF_STATUS_E_FAILURE;
6565 
6566 	vdev->wds_enabled = val;
6567 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6568 
6569 	return QDF_STATUS_SUCCESS;
6570 }
6571 
6572 static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
6573 {
6574 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6575 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6576 						     DP_MOD_ID_CDP);
6577 	int opmode;
6578 
6579 	if (!vdev) {
6580 		dp_err_rl("vdev for id %d is NULL", vdev_id);
6581 		return -EINVAL;
6582 	}
6583 	opmode = vdev->opmode;
6584 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6585 
6586 	return opmode;
6587 }
6588 
6589 /**
6590  * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
6591  * @soc_hdl: ol_txrx_soc_handle handle
6592  * @vdev_id: vdev id for which os rx handles are needed
6593  * @stack_fn_p: pointer to stack function pointer
6594  * @osif_vdev_p: pointer to ol_osif_vdev_handle
6595  *
6596  * Return: void
6597  */
6598 static
6599 void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
6600 					  uint8_t vdev_id,
6601 					  ol_txrx_rx_fp *stack_fn_p,
6602 					  ol_osif_vdev_handle *osif_vdev_p)
6603 {
6604 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6605 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6606 						     DP_MOD_ID_CDP);
6607 
6608 	if (qdf_unlikely(!vdev)) {
6609 		*stack_fn_p = NULL;
6610 		*osif_vdev_p = NULL;
6611 		return;
6612 	}
6613 	*stack_fn_p = vdev->osif_rx_stack;
6614 	*osif_vdev_p = vdev->osif_vdev;
6615 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6616 }
6617 
6618 /**
6619  * dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
6620  * @soc_hdl: datapath soc handle
6621  * @vdev_id: virtual device/interface id
6622  *
6623  * Return: Handle to control pdev
6624  */
6625 static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
6626 						struct cdp_soc_t *soc_hdl,
6627 						uint8_t vdev_id)
6628 {
6629 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6630 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6631 						     DP_MOD_ID_CDP);
6632 	struct dp_pdev *pdev;
6633 
6634 	if (!vdev)
6635 		return NULL;
6636 
6637 	pdev = vdev->pdev;
6638 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6639 	return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
6640 }
6641 
6642 int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
6643 {
6644 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6645 
6646 	return qdf_atomic_read(&pdev->num_tx_outstanding);
6647 }
6648 
6649 /**
6650  * dp_get_peer_mac_from_peer_id() - get peer mac
6651  * @soc: CDP SoC handle
6652  * @peer_id: Peer ID
6653  * @peer_mac: MAC addr of PEER
6654  *
6655  * Return: QDF_STATUS
6656  */
6657 static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
6658 					       uint32_t peer_id,
6659 					       uint8_t *peer_mac)
6660 {
6661 	struct dp_peer *peer;
6662 
6663 	if (soc && peer_mac) {
6664 		peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
6665 					     (uint16_t)peer_id,
6666 					     DP_MOD_ID_CDP);
6667 		if (peer) {
6668 			qdf_mem_copy(peer_mac, peer->mac_addr.raw,
6669 				     QDF_MAC_ADDR_SIZE);
6670 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6671 			return QDF_STATUS_SUCCESS;
6672 		}
6673 	}
6674 
6675 	return QDF_STATUS_E_FAILURE;
6676 }
6677 
6678 #ifdef MESH_MODE_SUPPORT
6679 static
6680 void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
6681 {
6682 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6683 
6684 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6685 	vdev->mesh_vdev = val;
6686 	if (val)
6687 		vdev->skip_sw_tid_classification |=
6688 			DP_TX_MESH_ENABLED;
6689 	else
6690 		vdev->skip_sw_tid_classification &=
6691 			~DP_TX_MESH_ENABLED;
6692 }
6693 
6694 /**
6695  * dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
6696  * @vdev_hdl: virtual device object
6697  * @val: value to be set
6698  *
6699  * Return: void
6700  */
6701 static
6702 void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
6703 {
6704 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6705 
6706 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6707 	vdev->mesh_rx_filter = val;
6708 }
6709 #endif
6710 
6711 /**
6712  * dp_vdev_set_hlos_tid_override() - to set hlos tid override
6713  * @vdev: virtual device object
6714  * @val: value to be set
6715  *
6716  * Return: void
6717  */
6718 static
6719 void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
6720 {
6721 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6722 	if (val)
6723 		vdev->skip_sw_tid_classification |=
6724 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6725 	else
6726 		vdev->skip_sw_tid_classification &=
6727 			~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6728 }
6729 
6730 /**
6731  * dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
6732  * @vdev_hdl: virtual device object
6733  *
6734  * Return: 1 if this flag is set
6735  */
6736 static
6737 uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
6738 {
6739 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6740 
6741 	return !!(vdev->skip_sw_tid_classification &
6742 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
6743 }
6744 
6745 #ifdef VDEV_PEER_PROTOCOL_COUNT
6746 static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
6747 					       int8_t vdev_id,
6748 					       bool enable)
6749 {
6750 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6751 	struct dp_vdev *vdev;
6752 
6753 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6754 	if (!vdev)
6755 		return;
6756 
6757 	dp_info("enable %d vdev_id %d", enable, vdev_id);
6758 	vdev->peer_protocol_count_track = enable;
6759 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6760 }
6761 
6762 static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6763 						   int8_t vdev_id,
6764 						   int drop_mask)
6765 {
6766 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6767 	struct dp_vdev *vdev;
6768 
6769 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6770 	if (!vdev)
6771 		return;
6772 
6773 	dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
6774 	vdev->peer_protocol_count_dropmask = drop_mask;
6775 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6776 }
6777 
6778 static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
6779 						  int8_t vdev_id)
6780 {
6781 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6782 	struct dp_vdev *vdev;
6783 	int peer_protocol_count_track;
6784 
6785 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6786 	if (!vdev)
6787 		return 0;
6788 
6789 	dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
6790 		vdev_id);
6791 	peer_protocol_count_track =
6792 		vdev->peer_protocol_count_track;
6793 
6794 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6795 	return peer_protocol_count_track;
6796 }
6797 
6798 static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6799 					       int8_t vdev_id)
6800 {
6801 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6802 	struct dp_vdev *vdev;
6803 	int peer_protocol_count_dropmask;
6804 
6805 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6806 	if (!vdev)
6807 		return 0;
6808 
6809 	dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
6810 		vdev_id);
6811 	peer_protocol_count_dropmask =
6812 		vdev->peer_protocol_count_dropmask;
6813 
6814 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6815 	return peer_protocol_count_dropmask;
6816 }
6817 
6818 #endif
6819 
6820 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
6821 {
6822 	uint8_t pdev_count;
6823 
6824 	for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
6825 		if (soc->pdev_list[pdev_count] &&
6826 		    soc->pdev_list[pdev_count] == data)
6827 			return true;
6828 	}
6829 	return false;
6830 }
6831 
6832 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
6833 			     struct cdp_vdev_stats *vdev_stats)
6834 {
6835 	if (!vdev || !vdev->pdev)
6836 		return;
6837 
6838 	dp_update_vdev_ingress_stats(vdev);
6839 
6840 	qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
6841 
6842 	dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
6843 			     DP_MOD_ID_GENERIC_STATS);
6844 
6845 	dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
6846 
6847 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6848 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6849 			     vdev_stats, vdev->vdev_id,
6850 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6851 #endif
6852 }
6853 
6854 void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
6855 {
6856 	struct dp_vdev *vdev = NULL;
6857 	struct dp_soc *soc;
6858 	struct cdp_vdev_stats *vdev_stats =
6859 			qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6860 
6861 	if (!vdev_stats) {
6862 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6863 			   pdev->soc);
6864 		return;
6865 	}
6866 
6867 	soc = pdev->soc;
6868 
6869 	qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
6870 	qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
6871 	qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
6872 	qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
6873 
6874 	if (dp_monitor_is_enable_mcopy_mode(pdev))
6875 		dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
6876 
6877 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
6878 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
6879 
6880 		dp_aggregate_vdev_stats(vdev, vdev_stats);
6881 		dp_update_pdev_stats(pdev, vdev_stats);
6882 		dp_update_pdev_ingress_stats(pdev, vdev);
6883 	}
6884 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
6885 	qdf_mem_free(vdev_stats);
6886 
6887 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6888 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
6889 			     pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
6890 #endif
6891 }
6892 
6893 /**
6894  * dp_vdev_getstats() - get vdev packet level stats
6895  * @vdev_handle: Datapath VDEV handle
6896  * @stats: cdp network device stats structure
6897  *
6898  * Return: QDF_STATUS
6899  */
6900 static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
6901 				   struct cdp_dev_stats *stats)
6902 {
6903 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
6904 	struct dp_pdev *pdev;
6905 	struct dp_soc *soc;
6906 	struct cdp_vdev_stats *vdev_stats;
6907 
6908 	if (!vdev)
6909 		return QDF_STATUS_E_FAILURE;
6910 
6911 	pdev = vdev->pdev;
6912 	if (!pdev)
6913 		return QDF_STATUS_E_FAILURE;
6914 
6915 	soc = pdev->soc;
6916 
6917 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6918 
6919 	if (!vdev_stats) {
6920 		dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6921 		       soc);
6922 		return QDF_STATUS_E_FAILURE;
6923 	}
6924 
6925 	dp_aggregate_vdev_stats(vdev, vdev_stats);
6926 
6927 	stats->tx_packets = vdev_stats->tx.comp_pkt.num;
6928 	stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
6929 
6930 	stats->tx_errors = vdev_stats->tx.tx_failed;
6931 	stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
6932 			    vdev_stats->tx_i.sg.dropped_host.num +
6933 			    vdev_stats->tx_i.mcast_en.dropped_map_error +
6934 			    vdev_stats->tx_i.mcast_en.dropped_self_mac +
6935 			    vdev_stats->tx_i.mcast_en.dropped_send_fail +
6936 			    vdev_stats->tx.nawds_mcast_drop;
6937 
6938 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
6939 		stats->rx_packets = vdev_stats->rx.to_stack.num;
6940 		stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
6941 	} else {
6942 		stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
6943 				    vdev_stats->rx_i.null_q_desc_pkt.num +
6944 				    vdev_stats->rx_i.routed_eapol_pkt.num;
6945 		stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
6946 				  vdev_stats->rx_i.null_q_desc_pkt.bytes +
6947 				  vdev_stats->rx_i.routed_eapol_pkt.bytes;
6948 	}
6949 
6950 	stats->rx_errors = vdev_stats->rx.err.mic_err +
6951 			   vdev_stats->rx.err.decrypt_err +
6952 			   vdev_stats->rx.err.fcserr +
6953 			   vdev_stats->rx.err.pn_err +
6954 			   vdev_stats->rx.err.oor_err +
6955 			   vdev_stats->rx.err.jump_2k_err +
6956 			   vdev_stats->rx.err.rxdma_wifi_parse_err;
6957 
6958 	stats->rx_dropped = vdev_stats->rx.mec_drop.num +
6959 			    vdev_stats->rx.multipass_rx_pkt_drop +
6960 			    vdev_stats->rx.peer_unauth_rx_pkt_drop +
6961 			    vdev_stats->rx.policy_check_drop +
6962 			    vdev_stats->rx.nawds_mcast_drop +
6963 			    vdev_stats->rx.mcast_3addr_drop +
6964 			    vdev_stats->rx.ppeds_drop.num;
6965 
6966 	qdf_mem_free(vdev_stats);
6967 
6968 	return QDF_STATUS_SUCCESS;
6969 }
6970 
6971 /**
6972  * dp_pdev_getstats() - get pdev packet level stats
6973  * @pdev_handle: Datapath PDEV handle
6974  * @stats: cdp network device stats structure
6975  *
6976  * Return: QDF_STATUS
6977  */
6978 static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
6979 			     struct cdp_dev_stats *stats)
6980 {
6981 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6982 
6983 	dp_aggregate_pdev_stats(pdev);
6984 
6985 	stats->tx_packets = pdev->stats.tx.comp_pkt.num;
6986 	stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
6987 
6988 	stats->tx_errors = pdev->stats.tx.tx_failed;
6989 	stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
6990 			    pdev->stats.tx_i.sg.dropped_host.num +
6991 			    pdev->stats.tx_i.mcast_en.dropped_map_error +
6992 			    pdev->stats.tx_i.mcast_en.dropped_self_mac +
6993 			    pdev->stats.tx_i.mcast_en.dropped_send_fail +
6994 			    pdev->stats.tx.nawds_mcast_drop +
6995 			    pdev->stats.tso_stats.dropped_host.num;
6996 
6997 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
6998 		stats->rx_packets = pdev->stats.rx.to_stack.num;
6999 		stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
7000 	} else {
7001 		stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
7002 				    pdev->stats.rx_i.null_q_desc_pkt.num +
7003 				    pdev->stats.rx_i.routed_eapol_pkt.num;
7004 		stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
7005 				  pdev->stats.rx_i.null_q_desc_pkt.bytes +
7006 				  pdev->stats.rx_i.routed_eapol_pkt.bytes;
7007 	}
7008 
7009 	stats->rx_errors = pdev->stats.err.ip_csum_err +
7010 		pdev->stats.err.tcp_udp_csum_err +
7011 		pdev->stats.rx.err.mic_err +
7012 		pdev->stats.rx.err.decrypt_err +
7013 		pdev->stats.rx.err.fcserr +
7014 		pdev->stats.rx.err.pn_err +
7015 		pdev->stats.rx.err.oor_err +
7016 		pdev->stats.rx.err.jump_2k_err +
7017 		pdev->stats.rx.err.rxdma_wifi_parse_err;
7018 	stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
7019 		pdev->stats.dropped.mec +
7020 		pdev->stats.dropped.mesh_filter +
7021 		pdev->stats.dropped.wifi_parse +
7022 		pdev->stats.dropped.mon_rx_drop +
7023 		pdev->stats.dropped.mon_radiotap_update_err +
7024 		pdev->stats.rx.mec_drop.num +
7025 		pdev->stats.rx.ppeds_drop.num +
7026 		pdev->stats.rx.multipass_rx_pkt_drop +
7027 		pdev->stats.rx.peer_unauth_rx_pkt_drop +
7028 		pdev->stats.rx.policy_check_drop +
7029 		pdev->stats.rx.nawds_mcast_drop +
7030 		pdev->stats.rx.mcast_3addr_drop;
7031 }
7032 
7033 /**
7034  * dp_get_device_stats() - get interface level packet stats
7035  * @soc_hdl: soc handle
7036  * @id: vdev_id or pdev_id based on type
7037  * @stats: cdp network device stats structure
7038  * @type: device type pdev/vdev
7039  *
7040  * Return: QDF_STATUS
7041  */
7042 static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
7043 				      struct cdp_dev_stats *stats,
7044 				      uint8_t type)
7045 {
7046 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
7047 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
7048 	struct dp_vdev *vdev;
7049 
7050 	switch (type) {
7051 	case UPDATE_VDEV_STATS:
7052 		vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
7053 
7054 		if (vdev) {
7055 			status = dp_vdev_getstats((struct cdp_vdev *)vdev,
7056 						  stats);
7057 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7058 		}
7059 		return status;
7060 	case UPDATE_PDEV_STATS:
7061 		{
7062 			struct dp_pdev *pdev =
7063 				dp_get_pdev_from_soc_pdev_id_wifi3(
7064 						(struct dp_soc *)soc,
7065 						 id);
7066 			if (pdev) {
7067 				dp_pdev_getstats((struct cdp_pdev *)pdev,
7068 						 stats);
7069 				return QDF_STATUS_SUCCESS;
7070 			}
7071 		}
7072 		break;
7073 	default:
7074 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7075 			"apstats cannot be updated for this input "
7076 			"type %d", type);
7077 		break;
7078 	}
7079 
7080 	return QDF_STATUS_E_FAILURE;
7081 }
7082 
7083 const
7084 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
7085 {
7086 	switch (ring_type) {
7087 	case REO_DST:
7088 		return "Reo_dst";
7089 	case REO_EXCEPTION:
7090 		return "Reo_exception";
7091 	case REO_CMD:
7092 		return "Reo_cmd";
7093 	case REO_REINJECT:
7094 		return "Reo_reinject";
7095 	case REO_STATUS:
7096 		return "Reo_status";
7097 	case WBM2SW_RELEASE:
7098 		return "wbm2sw_release";
7099 	case TCL_DATA:
7100 		return "tcl_data";
7101 	case TCL_CMD_CREDIT:
7102 		return "tcl_cmd_credit";
7103 	case TCL_STATUS:
7104 		return "tcl_status";
7105 	case SW2WBM_RELEASE:
7106 		return "sw2wbm_release";
7107 	case RXDMA_BUF:
7108 		return "Rxdma_buf";
7109 	case RXDMA_DST:
7110 		return "Rxdma_dst";
7111 	case RXDMA_MONITOR_BUF:
7112 		return "Rxdma_monitor_buf";
7113 	case RXDMA_MONITOR_DESC:
7114 		return "Rxdma_monitor_desc";
7115 	case RXDMA_MONITOR_STATUS:
7116 		return "Rxdma_monitor_status";
7117 	case RXDMA_MONITOR_DST:
7118 		return "Rxdma_monitor_destination";
7119 	case WBM_IDLE_LINK:
7120 		return "WBM_hw_idle_link";
7121 	case PPE2TCL:
7122 		return "PPE2TCL";
7123 	case REO2PPE:
7124 		return "REO2PPE";
7125 	case TX_MONITOR_DST:
7126 		return "tx_monitor_destination";
7127 	case TX_MONITOR_BUF:
7128 		return "tx_monitor_buf";
7129 	default:
7130 		dp_err("Invalid ring type: %u", ring_type);
7131 		break;
7132 	}
7133 	return "Invalid";
7134 }
7135 
7136 void dp_print_napi_stats(struct dp_soc *soc)
7137 {
7138 	hif_print_napi_stats(soc->hif_handle);
7139 }
7140 
7141 /**
7142  * dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
7143  * @soc: Datapath soc
7144  * @peer: Datatpath peer
7145  * @arg: argument to iter function
7146  *
7147  * Return: QDF_STATUS
7148  */
7149 static inline void
7150 dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
7151 			    struct dp_peer *peer,
7152 			    void *arg)
7153 {
7154 	struct dp_txrx_peer *txrx_peer = NULL;
7155 	struct dp_peer *tgt_peer = NULL;
7156 	struct cdp_interface_peer_stats peer_stats_intf = {0};
7157 
7158 	peer_stats_intf.rx_avg_snr = CDP_INVALID_SNR;
7159 
7160 	DP_STATS_CLR(peer);
7161 	/* Clear monitor peer stats */
7162 	dp_monitor_peer_reset_stats(soc, peer);
7163 
7164 	/* Clear MLD peer stats only when link peer is primary */
7165 	if (dp_peer_is_primary_link_peer(peer)) {
7166 		tgt_peer = dp_get_tgt_peer_from_peer(peer);
7167 		if (tgt_peer) {
7168 			DP_STATS_CLR(tgt_peer);
7169 			txrx_peer = tgt_peer->txrx_peer;
7170 			dp_txrx_peer_stats_clr(txrx_peer);
7171 		}
7172 	}
7173 
7174 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7175 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
7176 			     &peer_stats_intf,  peer->peer_id,
7177 			     UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
7178 #endif
7179 }
7180 
7181 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
7182 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7183 {
7184 	int ring;
7185 
7186 	for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
7187 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
7188 					    soc->reo_dest_ring[ring].hal_srng);
7189 }
7190 #else
7191 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7192 {
7193 }
7194 #endif
7195 
7196 #ifdef WLAN_SUPPORT_PPEDS
7197 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7198 {
7199 	if (soc->arch_ops.dp_ppeds_clear_stats)
7200 		soc->arch_ops.dp_ppeds_clear_stats(soc);
7201 }
7202 
7203 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7204 {
7205 	if (soc->arch_ops.dp_txrx_ppeds_clear_rings_stats)
7206 		soc->arch_ops.dp_txrx_ppeds_clear_rings_stats(soc);
7207 }
7208 #else
7209 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7210 {
7211 }
7212 
7213 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7214 {
7215 }
7216 #endif
7217 
7218 /**
7219  * dp_txrx_host_stats_clr() - Reinitialize the txrx stats
7220  * @vdev: DP_VDEV handle
7221  * @soc: DP_SOC handle
7222  *
7223  * Return: QDF_STATUS
7224  */
7225 static inline QDF_STATUS
7226 dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
7227 {
7228 	struct dp_vdev *var_vdev = NULL;
7229 
7230 	if (!vdev || !vdev->pdev)
7231 		return QDF_STATUS_E_FAILURE;
7232 
7233 	/*
7234 	 * if NSS offload is enabled, then send message
7235 	 * to NSS FW to clear the stats. Once NSS FW clears the statistics
7236 	 * then clear host statistics.
7237 	 */
7238 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
7239 		if (soc->cdp_soc.ol_ops->nss_stats_clr)
7240 			soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
7241 							   vdev->vdev_id);
7242 	}
7243 
7244 	dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
7245 					      (1 << vdev->vdev_id));
7246 
7247 	DP_STATS_CLR(vdev->pdev);
7248 	DP_STATS_CLR(vdev->pdev->soc);
7249 
7250 	dp_clear_tx_ppeds_stats(soc);
7251 	dp_ppeds_clear_ring_util_stats(soc);
7252 
7253 	hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
7254 
7255 	TAILQ_FOREACH(var_vdev, &vdev->pdev->vdev_list, vdev_list_elem) {
7256 		DP_STATS_CLR(var_vdev);
7257 		dp_vdev_iterate_peer(var_vdev, dp_txrx_host_peer_stats_clr,
7258 				     NULL, DP_MOD_ID_GENERIC_STATS);
7259 	}
7260 
7261 	dp_srng_clear_ring_usage_wm_stats(soc);
7262 
7263 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7264 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
7265 			     &vdev->stats,  vdev->vdev_id,
7266 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
7267 #endif
7268 	return QDF_STATUS_SUCCESS;
7269 }
7270 
7271 /**
7272  * dp_get_peer_calibr_stats()- Get peer calibrated stats
7273  * @peer: Datapath peer
7274  * @peer_stats: buffer for peer stats
7275  *
7276  * Return: none
7277  */
7278 static inline
7279 void dp_get_peer_calibr_stats(struct dp_peer *peer,
7280 			      struct cdp_peer_stats *peer_stats)
7281 {
7282 	struct dp_peer *tgt_peer;
7283 
7284 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
7285 	if (!tgt_peer)
7286 		return;
7287 
7288 	peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
7289 	peer_stats->tx.tx_bytes_success_last =
7290 				tgt_peer->stats.tx.tx_bytes_success_last;
7291 	peer_stats->tx.tx_data_success_last =
7292 					tgt_peer->stats.tx.tx_data_success_last;
7293 	peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
7294 	peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
7295 	peer_stats->tx.tx_data_ucast_last =
7296 					tgt_peer->stats.tx.tx_data_ucast_last;
7297 	peer_stats->tx.tx_data_ucast_rate =
7298 					tgt_peer->stats.tx.tx_data_ucast_rate;
7299 	peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
7300 	peer_stats->rx.rx_bytes_success_last =
7301 				tgt_peer->stats.rx.rx_bytes_success_last;
7302 	peer_stats->rx.rx_data_success_last =
7303 				tgt_peer->stats.rx.rx_data_success_last;
7304 	peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
7305 	peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
7306 }
7307 
7308 /**
7309  * dp_get_peer_basic_stats()- Get peer basic stats
7310  * @peer: Datapath peer
7311  * @peer_stats: buffer for peer stats
7312  *
7313  * Return: none
7314  */
7315 static inline
7316 void dp_get_peer_basic_stats(struct dp_peer *peer,
7317 			     struct cdp_peer_stats *peer_stats)
7318 {
7319 	struct dp_txrx_peer *txrx_peer;
7320 
7321 	txrx_peer = dp_get_txrx_peer(peer);
7322 	if (!txrx_peer)
7323 		return;
7324 
7325 	peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
7326 	peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
7327 	peer_stats->tx.tx_failed += txrx_peer->tx_failed;
7328 	peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
7329 	peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
7330 }
7331 
7332 #ifdef QCA_ENHANCED_STATS_SUPPORT
7333 /**
7334  * dp_get_peer_per_pkt_stats()- Get peer per pkt stats
7335  * @peer: Datapath peer
7336  * @peer_stats: buffer for peer stats
7337  *
7338  * Return: none
7339  */
7340 static inline
7341 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7342 			       struct cdp_peer_stats *peer_stats)
7343 {
7344 	struct dp_txrx_peer *txrx_peer;
7345 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7346 	uint8_t inx = 0, link_id = 0;
7347 	struct dp_pdev *pdev;
7348 	struct dp_soc *soc;
7349 	uint8_t stats_arr_size;
7350 
7351 	txrx_peer = dp_get_txrx_peer(peer);
7352 	pdev = peer->vdev->pdev;
7353 
7354 	if (!txrx_peer)
7355 		return;
7356 
7357 	if (!IS_MLO_DP_LINK_PEER(peer)) {
7358 		stats_arr_size = txrx_peer->stats_arr_size;
7359 		for (inx = 0; inx < stats_arr_size; inx++) {
7360 			per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
7361 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7362 		}
7363 	} else {
7364 		soc = pdev->soc;
7365 		link_id = dp_get_peer_hw_link_id(soc, pdev);
7366 		per_pkt_stats =
7367 			&txrx_peer->stats[link_id].per_pkt_stats;
7368 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7369 	}
7370 }
7371 
7372 #ifdef WLAN_FEATURE_11BE_MLO
7373 /**
7374  * dp_get_peer_extd_stats()- Get peer extd stats
7375  * @peer: Datapath peer
7376  * @peer_stats: buffer for peer stats
7377  *
7378  * Return: none
7379  */
7380 static inline
7381 void dp_get_peer_extd_stats(struct dp_peer *peer,
7382 			    struct cdp_peer_stats *peer_stats)
7383 {
7384 	struct dp_soc *soc = peer->vdev->pdev->soc;
7385 
7386 	if (IS_MLO_DP_MLD_PEER(peer)) {
7387 		uint8_t i;
7388 		struct dp_peer *link_peer;
7389 		struct dp_soc *link_peer_soc;
7390 		struct dp_mld_link_peers link_peers_info;
7391 
7392 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7393 						    &link_peers_info,
7394 						    DP_MOD_ID_CDP);
7395 		for (i = 0; i < link_peers_info.num_links; i++) {
7396 			link_peer = link_peers_info.link_peers[i];
7397 			link_peer_soc = link_peer->vdev->pdev->soc;
7398 			dp_monitor_peer_get_stats(link_peer_soc, link_peer,
7399 						  peer_stats,
7400 						  UPDATE_PEER_STATS);
7401 		}
7402 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
7403 	} else {
7404 		dp_monitor_peer_get_stats(soc, peer, peer_stats,
7405 					  UPDATE_PEER_STATS);
7406 	}
7407 }
7408 #else
7409 static inline
7410 void dp_get_peer_extd_stats(struct dp_peer *peer,
7411 			    struct cdp_peer_stats *peer_stats)
7412 {
7413 	struct dp_soc *soc = peer->vdev->pdev->soc;
7414 
7415 	dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
7416 }
7417 #endif
7418 #else
7419 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
7420 /**
7421  * dp_get_peer_link_id() - Get Link peer Link ID
7422  * @peer: Datapath peer
7423  *
7424  * Return: Link peer Link ID
7425  */
7426 static inline
7427 uint8_t dp_get_peer_link_id(struct dp_peer *peer)
7428 {
7429 	uint8_t link_id;
7430 
7431 	link_id = IS_MLO_DP_LINK_PEER(peer) ? peer->link_id + 1 : 0;
7432 	if (link_id < 1 || link_id > DP_MAX_MLO_LINKS)
7433 		link_id = 0;
7434 
7435 	return link_id;
7436 }
7437 
7438 static inline
7439 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7440 			       struct cdp_peer_stats *peer_stats)
7441 {
7442 	uint8_t i, index;
7443 	struct dp_mld_link_peers link_peers_info;
7444 	struct dp_txrx_peer *txrx_peer;
7445 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7446 	struct dp_soc *soc = peer->vdev->pdev->soc;
7447 
7448 	txrx_peer = dp_get_txrx_peer(peer);
7449 	if (!txrx_peer)
7450 		return;
7451 
7452 	if (IS_MLO_DP_MLD_PEER(peer)) {
7453 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7454 						    &link_peers_info,
7455 						    DP_MOD_ID_GENERIC_STATS);
7456 		for (i = 0; i < link_peers_info.num_links; i++) {
7457 			if (i > txrx_peer->stats_arr_size)
7458 				break;
7459 			per_pkt_stats = &txrx_peer->stats[i].per_pkt_stats;
7460 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7461 		}
7462 		dp_release_link_peers_ref(&link_peers_info,
7463 					  DP_MOD_ID_GENERIC_STATS);
7464 	} else {
7465 		index = dp_get_peer_link_id(peer);
7466 		per_pkt_stats = &txrx_peer->stats[index].per_pkt_stats;
7467 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7468 		qdf_mem_copy(&peer_stats->mac_addr,
7469 			     &peer->mac_addr.raw[0],
7470 			     QDF_MAC_ADDR_SIZE);
7471 	}
7472 }
7473 
7474 static inline
7475 void dp_get_peer_extd_stats(struct dp_peer *peer,
7476 			    struct cdp_peer_stats *peer_stats)
7477 {
7478 	uint8_t i, index;
7479 	struct dp_mld_link_peers link_peers_info;
7480 	struct dp_txrx_peer *txrx_peer;
7481 	struct dp_peer_extd_stats *extd_stats;
7482 	struct dp_soc *soc = peer->vdev->pdev->soc;
7483 
7484 	txrx_peer = dp_get_txrx_peer(peer);
7485 	if (qdf_unlikely(!txrx_peer)) {
7486 		dp_err_rl("txrx_peer NULL for peer MAC: " QDF_MAC_ADDR_FMT,
7487 			  QDF_MAC_ADDR_REF(peer->mac_addr.raw));
7488 		return;
7489 	}
7490 
7491 	if (IS_MLO_DP_MLD_PEER(peer)) {
7492 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7493 						    &link_peers_info,
7494 						    DP_MOD_ID_GENERIC_STATS);
7495 		for (i = 0; i < link_peers_info.num_links; i++) {
7496 			if (i > txrx_peer->stats_arr_size)
7497 				break;
7498 			extd_stats = &txrx_peer->stats[i].extd_stats;
7499 			/* Return aggregated stats for MLD peer */
7500 			DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7501 		}
7502 		dp_release_link_peers_ref(&link_peers_info,
7503 					  DP_MOD_ID_GENERIC_STATS);
7504 	} else {
7505 		index = dp_get_peer_link_id(peer);
7506 		extd_stats = &txrx_peer->stats[index].extd_stats;
7507 		DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7508 		qdf_mem_copy(&peer_stats->mac_addr,
7509 			     &peer->mac_addr.raw[0],
7510 			     QDF_MAC_ADDR_SIZE);
7511 	}
7512 }
7513 #else
7514 static inline
7515 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7516 			       struct cdp_peer_stats *peer_stats)
7517 {
7518 	struct dp_txrx_peer *txrx_peer;
7519 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7520 
7521 	txrx_peer = dp_get_txrx_peer(peer);
7522 	if (!txrx_peer)
7523 		return;
7524 
7525 	per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
7526 	DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7527 }
7528 
7529 static inline
7530 void dp_get_peer_extd_stats(struct dp_peer *peer,
7531 			    struct cdp_peer_stats *peer_stats)
7532 {
7533 	struct dp_txrx_peer *txrx_peer;
7534 	struct dp_peer_extd_stats *extd_stats;
7535 
7536 	txrx_peer = dp_get_txrx_peer(peer);
7537 	if (qdf_unlikely(!txrx_peer)) {
7538 		dp_err_rl("txrx_peer NULL");
7539 		return;
7540 	}
7541 
7542 	extd_stats = &txrx_peer->stats[0].extd_stats;
7543 	DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7544 }
7545 #endif
7546 #endif
7547 
7548 /**
7549  * dp_get_peer_tx_per()- Get peer packet error ratio
7550  * @peer_stats: buffer for peer stats
7551  *
7552  * Return: none
7553  */
7554 static inline
7555 void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
7556 {
7557 	if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
7558 		peer_stats->tx.per = qdf_do_div((peer_stats->tx.retries * 100),
7559 				  (peer_stats->tx.tx_success.num +
7560 				   peer_stats->tx.retries));
7561 	else
7562 		peer_stats->tx.per = 0;
7563 }
7564 
7565 void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
7566 {
7567 	dp_get_peer_calibr_stats(peer, peer_stats);
7568 
7569 	dp_get_peer_basic_stats(peer, peer_stats);
7570 
7571 	dp_get_peer_per_pkt_stats(peer, peer_stats);
7572 
7573 	dp_get_peer_extd_stats(peer, peer_stats);
7574 
7575 	dp_get_peer_tx_per(peer_stats);
7576 }
7577 
7578 /**
7579  * dp_get_host_peer_stats()- function to print peer stats
7580  * @soc: dp_soc handle
7581  * @mac_addr: mac address of the peer
7582  *
7583  * Return: QDF_STATUS
7584  */
7585 static QDF_STATUS
7586 dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
7587 {
7588 	struct dp_peer *peer = NULL;
7589 	struct cdp_peer_stats *peer_stats = NULL;
7590 	struct cdp_peer_info peer_info = { 0 };
7591 
7592 	if (!mac_addr) {
7593 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7594 			  "%s: NULL peer mac addr\n", __func__);
7595 		return QDF_STATUS_E_FAILURE;
7596 	}
7597 
7598 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
7599 				 CDP_WILD_PEER_TYPE);
7600 
7601 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
7602 					 DP_MOD_ID_CDP);
7603 	if (!peer) {
7604 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7605 			  "%s: Invalid peer\n", __func__);
7606 		return QDF_STATUS_E_FAILURE;
7607 	}
7608 
7609 	peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
7610 	if (!peer_stats) {
7611 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7612 			  "%s: Memory allocation failed for cdp_peer_stats\n",
7613 			  __func__);
7614 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7615 		return QDF_STATUS_E_NOMEM;
7616 	}
7617 
7618 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
7619 
7620 	dp_get_peer_stats(peer, peer_stats);
7621 	dp_print_peer_stats(peer, peer_stats);
7622 
7623 	dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
7624 			    dp_rx_tid_stats_cb, NULL);
7625 
7626 	qdf_mem_free(peer_stats);
7627 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7628 
7629 	return QDF_STATUS_SUCCESS;
7630 }
7631 
7632 /**
7633  * dp_txrx_stats_help() - Helper function for Txrx_Stats
7634  *
7635  * Return: None
7636  */
7637 static void dp_txrx_stats_help(void)
7638 {
7639 	dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
7640 	dp_info("stats_option:");
7641 	dp_info("  1 -- HTT Tx Statistics");
7642 	dp_info("  2 -- HTT Rx Statistics");
7643 	dp_info("  3 -- HTT Tx HW Queue Statistics");
7644 	dp_info("  4 -- HTT Tx HW Sched Statistics");
7645 	dp_info("  5 -- HTT Error Statistics");
7646 	dp_info("  6 -- HTT TQM Statistics");
7647 	dp_info("  7 -- HTT TQM CMDQ Statistics");
7648 	dp_info("  8 -- HTT TX_DE_CMN Statistics");
7649 	dp_info("  9 -- HTT Tx Rate Statistics");
7650 	dp_info(" 10 -- HTT Rx Rate Statistics");
7651 	dp_info(" 11 -- HTT Peer Statistics");
7652 	dp_info(" 12 -- HTT Tx SelfGen Statistics");
7653 	dp_info(" 13 -- HTT Tx MU HWQ Statistics");
7654 	dp_info(" 14 -- HTT RING_IF_INFO Statistics");
7655 	dp_info(" 15 -- HTT SRNG Statistics");
7656 	dp_info(" 16 -- HTT SFM Info Statistics");
7657 	dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
7658 	dp_info(" 18 -- HTT Peer List Details");
7659 	dp_info(" 20 -- Clear Host Statistics");
7660 	dp_info(" 21 -- Host Rx Rate Statistics");
7661 	dp_info(" 22 -- Host Tx Rate Statistics");
7662 	dp_info(" 23 -- Host Tx Statistics");
7663 	dp_info(" 24 -- Host Rx Statistics");
7664 	dp_info(" 25 -- Host AST Statistics");
7665 	dp_info(" 26 -- Host SRNG PTR Statistics");
7666 	dp_info(" 27 -- Host Mon Statistics");
7667 	dp_info(" 28 -- Host REO Queue Statistics");
7668 	dp_info(" 29 -- Host Soc cfg param Statistics");
7669 	dp_info(" 30 -- Host pdev cfg param Statistics");
7670 	dp_info(" 31 -- Host NAPI stats");
7671 	dp_info(" 32 -- Host Interrupt stats");
7672 	dp_info(" 33 -- Host FISA stats");
7673 	dp_info(" 34 -- Host Register Work stats");
7674 	dp_info(" 35 -- HW REO Queue stats");
7675 	dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
7676 	dp_info(" 37 -- Host SRNG usage watermark stats");
7677 }
7678 
7679 #ifdef DP_UMAC_HW_RESET_SUPPORT
7680 /**
7681  * dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
7682  * @soc: dp soc handle
7683  * @en: ebable/disable
7684  *
7685  * Return: void
7686  */
7687 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7688 {
7689 	soc->umac_reset_ctx.skel_enable = en;
7690 	dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
7691 		     soc->umac_reset_ctx.skel_enable);
7692 }
7693 
7694 /**
7695  * dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
7696  * @soc: dp soc handle
7697  *
7698  * Return: enable/disable flag
7699  */
7700 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7701 {
7702 	return soc->umac_reset_ctx.skel_enable;
7703 }
7704 #else
7705 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7706 {
7707 }
7708 
7709 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7710 {
7711 	return false;
7712 }
7713 #endif
7714 
7715 #ifndef WLAN_SOFTUMAC_SUPPORT
7716 static void dp_print_reg_write_stats(struct dp_soc *soc)
7717 {
7718 	hal_dump_reg_write_stats(soc->hal_soc);
7719 	hal_dump_reg_write_srng_stats(soc->hal_soc);
7720 }
7721 #else
7722 static void dp_print_reg_write_stats(struct dp_soc *soc)
7723 {
7724 	hif_print_reg_write_stats(soc->hif_handle);
7725 }
7726 #endif
7727 
7728 /**
7729  * dp_print_host_stats()- Function to print the stats aggregated at host
7730  * @vdev: DP_VDEV handle
7731  * @req: host stats type
7732  * @soc: dp soc handler
7733  *
7734  * Return: 0 on success, print error message in case of failure
7735  */
7736 static int
7737 dp_print_host_stats(struct dp_vdev *vdev,
7738 		    struct cdp_txrx_stats_req *req,
7739 		    struct dp_soc *soc)
7740 {
7741 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
7742 	enum cdp_host_txrx_stats type =
7743 			dp_stats_mapping_table[req->stats][STATS_HOST];
7744 
7745 	dp_aggregate_pdev_stats(pdev);
7746 
7747 	switch (type) {
7748 	case TXRX_CLEAR_STATS:
7749 		dp_txrx_host_stats_clr(vdev, soc);
7750 		break;
7751 	case TXRX_RX_RATE_STATS:
7752 		dp_print_rx_rates(vdev);
7753 		break;
7754 	case TXRX_TX_RATE_STATS:
7755 		dp_print_tx_rates(vdev);
7756 		break;
7757 	case TXRX_TX_HOST_STATS:
7758 		dp_print_pdev_tx_stats(pdev);
7759 		dp_print_soc_tx_stats(pdev->soc);
7760 		dp_print_global_desc_count();
7761 		dp_print_vdev_mlo_mcast_tx_stats(vdev);
7762 		break;
7763 	case TXRX_RX_HOST_STATS:
7764 		dp_print_pdev_rx_stats(pdev);
7765 		dp_print_soc_rx_stats(pdev->soc);
7766 		break;
7767 	case TXRX_AST_STATS:
7768 		dp_print_ast_stats(pdev->soc);
7769 		dp_print_mec_stats(pdev->soc);
7770 		dp_print_peer_table(vdev);
7771 		if (soc->arch_ops.dp_mlo_print_ptnr_info)
7772 			soc->arch_ops.dp_mlo_print_ptnr_info(vdev);
7773 		break;
7774 	case TXRX_SRNG_PTR_STATS:
7775 		dp_print_ring_stats(pdev);
7776 		break;
7777 	case TXRX_RX_MON_STATS:
7778 		dp_monitor_print_pdev_rx_mon_stats(pdev);
7779 		break;
7780 	case TXRX_REO_QUEUE_STATS:
7781 		dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
7782 				       req->peer_addr);
7783 		break;
7784 	case TXRX_SOC_CFG_PARAMS:
7785 		dp_print_soc_cfg_params(pdev->soc);
7786 		break;
7787 	case TXRX_PDEV_CFG_PARAMS:
7788 		dp_print_pdev_cfg_params(pdev);
7789 		break;
7790 	case TXRX_NAPI_STATS:
7791 		dp_print_napi_stats(pdev->soc);
7792 		break;
7793 	case TXRX_SOC_INTERRUPT_STATS:
7794 		dp_print_soc_interrupt_stats(pdev->soc);
7795 		break;
7796 	case TXRX_SOC_FSE_STATS:
7797 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
7798 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
7799 						CDP_FISA_STATS_ID_DUMP_HW_FST);
7800 		break;
7801 	case TXRX_HAL_REG_WRITE_STATS:
7802 		dp_print_reg_write_stats(pdev->soc);
7803 		break;
7804 	case TXRX_SOC_REO_HW_DESC_DUMP:
7805 		dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
7806 					 vdev->vdev_id);
7807 		break;
7808 	case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
7809 		dp_dump_wbm_idle_hptp(pdev->soc, pdev);
7810 		break;
7811 	case TXRX_SRNG_USAGE_WM_STATS:
7812 		/* Dump usage watermark stats for all SRNGs */
7813 		dp_dump_srng_high_wm_stats(soc, 0xFF);
7814 		break;
7815 	case TXRX_PEER_STATS:
7816 		dp_print_per_link_stats((struct cdp_soc_t *)pdev->soc,
7817 					vdev->vdev_id);
7818 		break;
7819 	default:
7820 		dp_info("Wrong Input For TxRx Host Stats");
7821 		dp_txrx_stats_help();
7822 		break;
7823 	}
7824 	return 0;
7825 }
7826 
7827 /**
7828  * dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
7829  * @pdev: pdev handle
7830  * @val: increase in value
7831  *
7832  * Return: void
7833  */
7834 static void
7835 dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
7836 {
7837 	pdev->stats.tid_stats.ingress_stack += val;
7838 }
7839 
7840 /**
7841  * dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
7842  * @pdev: pdev handle
7843  * @val: increase in value
7844  *
7845  * Return: void
7846  */
7847 static void
7848 dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
7849 {
7850 	pdev->stats.tid_stats.osif_drop += val;
7851 }
7852 
7853 /**
7854  * dp_get_fw_peer_stats()- function to print peer stats
7855  * @soc: soc handle
7856  * @pdev_id: id of the pdev handle
7857  * @mac_addr: mac address of the peer
7858  * @cap: Type of htt stats requested
7859  * @is_wait: if set, wait on completion from firmware response
7860  *
7861  * Currently Supporting only MAC ID based requests Only
7862  *	1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
7863  *	2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
7864  *	3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
7865  *
7866  * Return: QDF_STATUS
7867  */
7868 static QDF_STATUS
7869 dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7870 		     uint8_t *mac_addr,
7871 		     uint32_t cap, uint32_t is_wait)
7872 {
7873 	int i;
7874 	uint32_t config_param0 = 0;
7875 	uint32_t config_param1 = 0;
7876 	uint32_t config_param2 = 0;
7877 	uint32_t config_param3 = 0;
7878 	struct dp_pdev *pdev =
7879 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7880 						   pdev_id);
7881 
7882 	if (!pdev)
7883 		return QDF_STATUS_E_FAILURE;
7884 
7885 	HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
7886 	config_param0 |= (1 << (cap + 1));
7887 
7888 	for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
7889 		config_param1 |= (1 << i);
7890 	}
7891 
7892 	config_param2 |= (mac_addr[0] & 0x000000ff);
7893 	config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
7894 	config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
7895 	config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
7896 
7897 	config_param3 |= (mac_addr[4] & 0x000000ff);
7898 	config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
7899 
7900 	if (is_wait) {
7901 		qdf_event_reset(&pdev->fw_peer_stats_event);
7902 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7903 					  config_param0, config_param1,
7904 					  config_param2, config_param3,
7905 					  0, DBG_STATS_COOKIE_DP_STATS, 0);
7906 		qdf_wait_single_event(&pdev->fw_peer_stats_event,
7907 				      DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
7908 	} else {
7909 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7910 					  config_param0, config_param1,
7911 					  config_param2, config_param3,
7912 					  0, DBG_STATS_COOKIE_DEFAULT, 0);
7913 	}
7914 
7915 	return QDF_STATUS_SUCCESS;
7916 
7917 }
7918 
7919 /* This struct definition will be removed from here
7920  * once it get added in FW headers*/
7921 struct httstats_cmd_req {
7922     uint32_t    config_param0;
7923     uint32_t    config_param1;
7924     uint32_t    config_param2;
7925     uint32_t    config_param3;
7926     int cookie;
7927     u_int8_t    stats_id;
7928 };
7929 
7930 /**
7931  * dp_get_htt_stats: function to process the httstas request
7932  * @soc: DP soc handle
7933  * @pdev_id: id of pdev handle
7934  * @data: pointer to request data
7935  * @data_len: length for request data
7936  *
7937  * Return: QDF_STATUS
7938  */
7939 static QDF_STATUS
7940 dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
7941 		 uint32_t data_len)
7942 {
7943 	struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
7944 	struct dp_pdev *pdev =
7945 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7946 						   pdev_id);
7947 
7948 	if (!pdev)
7949 		return QDF_STATUS_E_FAILURE;
7950 
7951 	QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
7952 	dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
7953 				req->config_param0, req->config_param1,
7954 				req->config_param2, req->config_param3,
7955 				req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
7956 
7957 	return QDF_STATUS_SUCCESS;
7958 }
7959 
7960 /**
7961  * dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
7962  * @pdev: DP_PDEV handle
7963  * @prio: tidmap priority value passed by the user
7964  *
7965  * Return: QDF_STATUS_SUCCESS on success
7966  */
7967 static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
7968 						uint8_t prio)
7969 {
7970 	struct dp_soc *soc = pdev->soc;
7971 
7972 	soc->tidmap_prty = prio;
7973 
7974 	hal_tx_set_tidmap_prty(soc->hal_soc, prio);
7975 	return QDF_STATUS_SUCCESS;
7976 }
7977 
7978 /**
7979  * dp_get_peer_param: function to get parameters in peer
7980  * @cdp_soc: DP soc handle
7981  * @vdev_id: id of vdev handle
7982  * @peer_mac: peer mac address
7983  * @param: parameter type to be set
7984  * @val: address of buffer
7985  *
7986  * Return: val
7987  */
7988 static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
7989 				    uint8_t *peer_mac,
7990 				    enum cdp_peer_param_type param,
7991 				    cdp_config_param_type *val)
7992 {
7993 	return QDF_STATUS_SUCCESS;
7994 }
7995 
7996 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
7997 static inline void
7998 dp_check_map_link_id_band(struct dp_peer *peer)
7999 {
8000 	if (peer->link_id_valid)
8001 		dp_map_link_id_band(peer);
8002 }
8003 #else
8004 static inline void
8005 dp_check_map_link_id_band(struct dp_peer *peer)
8006 {
8007 }
8008 #endif
8009 
8010 /**
8011  * dp_set_peer_freq() - Set peer frequency
8012  * @cdp_soc: DP soc handle
8013  * @vdev_id: id of vdev handle
8014  * @peer_mac: peer mac address
8015  * @param: parameter type to be set
8016  * @val: value of parameter to be set
8017  *
8018  * Return: QDF_STATUS_SUCCESS for success. error code for failure.
8019  */
8020 static inline QDF_STATUS
8021 dp_set_peer_freq(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8022 		 uint8_t *peer_mac, enum cdp_peer_param_type param,
8023 		 cdp_config_param_type val)
8024 {
8025 	struct dp_peer *peer = NULL;
8026 	struct cdp_peer_info peer_info = { 0 };
8027 
8028 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
8029 				 false, CDP_LINK_PEER_TYPE);
8030 
8031 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)cdp_soc,
8032 					 &peer_info, DP_MOD_ID_CDP);
8033 	if (!peer) {
8034 		dp_err("peer NULL,MAC " QDF_MAC_ADDR_FMT ", vdev_id %u",
8035 		       QDF_MAC_ADDR_REF(peer_mac), vdev_id);
8036 
8037 		return QDF_STATUS_E_FAILURE;
8038 	}
8039 
8040 	peer->freq = val.cdp_peer_param_freq;
8041 	dp_check_map_link_id_band(peer);
8042 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8043 
8044 	dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %u, frequency %u",
8045 		QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8046 		peer->freq);
8047 
8048 	return QDF_STATUS_SUCCESS;
8049 }
8050 
8051 /**
8052  * dp_set_peer_param: function to set parameters in peer
8053  * @cdp_soc: DP soc handle
8054  * @vdev_id: id of vdev handle
8055  * @peer_mac: peer mac address
8056  * @param: parameter type to be set
8057  * @val: value of parameter to be set
8058  *
8059  * Return: 0 for success. nonzero for failure.
8060  */
8061 static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8062 				    uint8_t *peer_mac,
8063 				    enum cdp_peer_param_type param,
8064 				    cdp_config_param_type val)
8065 {
8066 	struct dp_peer *peer =
8067 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
8068 						       peer_mac, 0, vdev_id,
8069 						       DP_MOD_ID_CDP);
8070 	struct dp_txrx_peer *txrx_peer;
8071 
8072 	if (!peer)
8073 		return QDF_STATUS_E_FAILURE;
8074 
8075 	txrx_peer = peer->txrx_peer;
8076 	if (!txrx_peer) {
8077 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8078 		return QDF_STATUS_E_FAILURE;
8079 	}
8080 
8081 	switch (param) {
8082 	case CDP_CONFIG_NAWDS:
8083 		txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
8084 		break;
8085 	case CDP_CONFIG_ISOLATION:
8086 		dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %d, isolation %d",
8087 			QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8088 			val.cdp_peer_param_isolation);
8089 		dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
8090 		break;
8091 	case CDP_CONFIG_IN_TWT:
8092 		txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
8093 		break;
8094 	case CDP_CONFIG_PEER_FREQ:
8095 		return dp_set_peer_freq(cdp_soc, vdev_id,
8096 					peer_mac, param, val);
8097 		break;
8098 	default:
8099 		break;
8100 	}
8101 
8102 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8103 
8104 	return QDF_STATUS_SUCCESS;
8105 }
8106 
8107 #ifdef WLAN_FEATURE_11BE_MLO
8108 /**
8109  * dp_set_mld_peer_param: function to set parameters in MLD peer
8110  * @cdp_soc: DP soc handle
8111  * @vdev_id: id of vdev handle
8112  * @peer_mac: peer mac address
8113  * @param: parameter type to be set
8114  * @val: value of parameter to be set
8115  *
8116  * Return: 0 for success. nonzero for failure.
8117  */
8118 static QDF_STATUS dp_set_mld_peer_param(struct cdp_soc_t *cdp_soc,
8119 					uint8_t vdev_id,
8120 					uint8_t *peer_mac,
8121 					enum cdp_peer_param_type param,
8122 					cdp_config_param_type val)
8123 {
8124 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8125 	struct dp_peer *peer;
8126 	struct dp_txrx_peer *txrx_peer;
8127 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8128 
8129 	peer = dp_mld_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
8130 					  DP_MOD_ID_CDP);
8131 	if (!peer)
8132 		return QDF_STATUS_E_FAILURE;
8133 
8134 	txrx_peer = peer->txrx_peer;
8135 	if (!txrx_peer) {
8136 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8137 		return QDF_STATUS_E_FAILURE;
8138 	}
8139 
8140 	switch (param) {
8141 	case CDP_CONFIG_MLD_PEER_VDEV:
8142 		status = dp_mld_peer_change_vdev(soc, peer, val.new_vdev_id);
8143 		break;
8144 	default:
8145 		break;
8146 	}
8147 
8148 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8149 
8150 	return status;
8151 }
8152 
8153 /**
8154  * dp_set_peer_param_wrapper: wrapper function to set parameters in
8155  *			      legacy/link/MLD peer
8156  * @cdp_soc: DP soc handle
8157  * @vdev_id: id of vdev handle
8158  * @peer_mac: peer mac address
8159  * @param: parameter type to be set
8160  * @val: value of parameter to be set
8161  *
8162  * Return: 0 for success. nonzero for failure.
8163  */
8164 static QDF_STATUS
8165 dp_set_peer_param_wrapper(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8166 			  uint8_t *peer_mac, enum cdp_peer_param_type param,
8167 			  cdp_config_param_type val)
8168 {
8169 	QDF_STATUS status;
8170 
8171 	switch (param) {
8172 	case CDP_CONFIG_MLD_PEER_VDEV:
8173 		status = dp_set_mld_peer_param(cdp_soc, vdev_id, peer_mac,
8174 					       param, val);
8175 		break;
8176 	default:
8177 		status = dp_set_peer_param(cdp_soc, vdev_id, peer_mac,
8178 					   param, val);
8179 		break;
8180 	}
8181 
8182 	return status;
8183 }
8184 #endif
8185 
8186 /**
8187  * dp_get_pdev_param() - function to get parameters from pdev
8188  * @cdp_soc: DP soc handle
8189  * @pdev_id: id of pdev handle
8190  * @param: parameter type to be get
8191  * @val: buffer for value
8192  *
8193  * Return: status
8194  */
8195 static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8196 				    enum cdp_pdev_param_type param,
8197 				    cdp_config_param_type *val)
8198 {
8199 	struct cdp_pdev *pdev = (struct cdp_pdev *)
8200 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8201 						   pdev_id);
8202 	if (!pdev)
8203 		return QDF_STATUS_E_FAILURE;
8204 
8205 	switch (param) {
8206 	case CDP_CONFIG_VOW:
8207 		val->cdp_pdev_param_cfg_vow =
8208 				((struct dp_pdev *)pdev)->delay_stats_flag;
8209 		break;
8210 	case CDP_TX_PENDING:
8211 		val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
8212 		break;
8213 	case CDP_FILTER_MCAST_DATA:
8214 		val->cdp_pdev_param_fltr_mcast =
8215 				dp_monitor_pdev_get_filter_mcast_data(pdev);
8216 		break;
8217 	case CDP_FILTER_NO_DATA:
8218 		val->cdp_pdev_param_fltr_none =
8219 				dp_monitor_pdev_get_filter_non_data(pdev);
8220 		break;
8221 	case CDP_FILTER_UCAST_DATA:
8222 		val->cdp_pdev_param_fltr_ucast =
8223 				dp_monitor_pdev_get_filter_ucast_data(pdev);
8224 		break;
8225 	case CDP_MONITOR_CHANNEL:
8226 		val->cdp_pdev_param_monitor_chan =
8227 			dp_monitor_get_chan_num((struct dp_pdev *)pdev);
8228 		break;
8229 	case CDP_MONITOR_FREQUENCY:
8230 		val->cdp_pdev_param_mon_freq =
8231 			dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
8232 		break;
8233 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8234 		val->cdp_rxdma_buf_ring_size =
8235 			wlan_cfg_get_rx_dma_buf_ring_size(((struct dp_pdev *)pdev)->wlan_cfg_ctx);
8236 		break;
8237 	default:
8238 		return QDF_STATUS_E_FAILURE;
8239 	}
8240 
8241 	return QDF_STATUS_SUCCESS;
8242 }
8243 
8244 /**
8245  * dp_set_pdev_param() - function to set parameters in pdev
8246  * @cdp_soc: DP soc handle
8247  * @pdev_id: id of pdev handle
8248  * @param: parameter type to be set
8249  * @val: value of parameter to be set
8250  *
8251  * Return: 0 for success. nonzero for failure.
8252  */
8253 static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8254 				    enum cdp_pdev_param_type param,
8255 				    cdp_config_param_type val)
8256 {
8257 	int target_type;
8258 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8259 	struct dp_pdev *pdev =
8260 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8261 						   pdev_id);
8262 	enum reg_wifi_band chan_band;
8263 
8264 	if (!pdev)
8265 		return QDF_STATUS_E_FAILURE;
8266 
8267 	target_type = hal_get_target_type(soc->hal_soc);
8268 	switch (target_type) {
8269 	case TARGET_TYPE_QCA6750:
8270 	case TARGET_TYPE_WCN6450:
8271 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8272 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8273 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8274 		break;
8275 	case TARGET_TYPE_KIWI:
8276 	case TARGET_TYPE_MANGO:
8277 	case TARGET_TYPE_PEACH:
8278 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8279 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8280 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8281 		break;
8282 	default:
8283 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
8284 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8285 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8286 		break;
8287 	}
8288 
8289 	switch (param) {
8290 	case CDP_CONFIG_TX_CAPTURE:
8291 		return dp_monitor_config_debug_sniffer(pdev,
8292 						val.cdp_pdev_param_tx_capture);
8293 	case CDP_CONFIG_DEBUG_SNIFFER:
8294 		return dp_monitor_config_debug_sniffer(pdev,
8295 						val.cdp_pdev_param_dbg_snf);
8296 	case CDP_CONFIG_BPR_ENABLE:
8297 		return dp_monitor_set_bpr_enable(pdev,
8298 						 val.cdp_pdev_param_bpr_enable);
8299 	case CDP_CONFIG_PRIMARY_RADIO:
8300 		pdev->is_primary = val.cdp_pdev_param_primary_radio;
8301 		break;
8302 	case CDP_CONFIG_CAPTURE_LATENCY:
8303 		pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
8304 		break;
8305 	case CDP_INGRESS_STATS:
8306 		dp_pdev_tid_stats_ingress_inc(pdev,
8307 					      val.cdp_pdev_param_ingrs_stats);
8308 		break;
8309 	case CDP_OSIF_DROP:
8310 		dp_pdev_tid_stats_osif_drop(pdev,
8311 					    val.cdp_pdev_param_osif_drop);
8312 		break;
8313 	case CDP_CONFIG_ENH_RX_CAPTURE:
8314 		return dp_monitor_config_enh_rx_capture(pdev,
8315 						val.cdp_pdev_param_en_rx_cap);
8316 	case CDP_CONFIG_ENH_TX_CAPTURE:
8317 		return dp_monitor_config_enh_tx_capture(pdev,
8318 						val.cdp_pdev_param_en_tx_cap);
8319 	case CDP_CONFIG_HMMC_TID_OVERRIDE:
8320 		pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
8321 		break;
8322 	case CDP_CONFIG_HMMC_TID_VALUE:
8323 		pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
8324 		break;
8325 	case CDP_CHAN_NOISE_FLOOR:
8326 		pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
8327 		break;
8328 	case CDP_TIDMAP_PRTY:
8329 		dp_set_pdev_tidmap_prty_wifi3(pdev,
8330 					      val.cdp_pdev_param_tidmap_prty);
8331 		break;
8332 	case CDP_FILTER_NEIGH_PEERS:
8333 		dp_monitor_set_filter_neigh_peers(pdev,
8334 					val.cdp_pdev_param_fltr_neigh_peers);
8335 		break;
8336 	case CDP_MONITOR_CHANNEL:
8337 		dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
8338 		break;
8339 	case CDP_MONITOR_FREQUENCY:
8340 		chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
8341 		dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
8342 		dp_monitor_set_chan_band(pdev, chan_band);
8343 		break;
8344 	case CDP_CONFIG_BSS_COLOR:
8345 		dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
8346 		break;
8347 	case CDP_SET_ATF_STATS_ENABLE:
8348 		dp_monitor_set_atf_stats_enable(pdev,
8349 					val.cdp_pdev_param_atf_stats_enable);
8350 		break;
8351 	case CDP_CONFIG_SPECIAL_VAP:
8352 		dp_monitor_pdev_config_scan_spcl_vap(pdev,
8353 					val.cdp_pdev_param_config_special_vap);
8354 		dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
8355 		break;
8356 	case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
8357 		dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
8358 				val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
8359 		break;
8360 	case CDP_CONFIG_ENHANCED_STATS_ENABLE:
8361 		pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
8362 		break;
8363 	case CDP_ISOLATION:
8364 		pdev->isolation = val.cdp_pdev_param_isolation;
8365 		break;
8366 	case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
8367 		return dp_monitor_config_undecoded_metadata_capture(pdev,
8368 				val.cdp_pdev_param_undecoded_metadata_enable);
8369 		break;
8370 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8371 		wlan_cfg_set_rx_dma_buf_ring_size(pdev->wlan_cfg_ctx,
8372 						  val.cdp_rxdma_buf_ring_size);
8373 		break;
8374 	default:
8375 		return QDF_STATUS_E_INVAL;
8376 	}
8377 	return QDF_STATUS_SUCCESS;
8378 }
8379 
8380 #ifdef QCA_UNDECODED_METADATA_SUPPORT
8381 static
8382 QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8383 					uint8_t pdev_id, uint32_t mask,
8384 					uint32_t mask_cont)
8385 {
8386 	struct dp_pdev *pdev =
8387 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8388 						   pdev_id);
8389 
8390 	if (!pdev)
8391 		return QDF_STATUS_E_FAILURE;
8392 
8393 	return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
8394 				mask, mask_cont);
8395 }
8396 
8397 static
8398 QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8399 					uint8_t pdev_id, uint32_t *mask,
8400 					uint32_t *mask_cont)
8401 {
8402 	struct dp_pdev *pdev =
8403 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8404 						   pdev_id);
8405 
8406 	if (!pdev)
8407 		return QDF_STATUS_E_FAILURE;
8408 
8409 	return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
8410 				mask, mask_cont);
8411 }
8412 #endif
8413 
8414 #ifdef QCA_PEER_EXT_STATS
8415 static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8416 					  qdf_nbuf_t nbuf)
8417 {
8418 	struct dp_peer *peer = NULL;
8419 	uint16_t peer_id, ring_id;
8420 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
8421 	struct dp_peer_delay_stats *delay_stats = NULL;
8422 
8423 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
8424 	if (peer_id > soc->max_peer_id)
8425 		return;
8426 
8427 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
8428 	if (qdf_unlikely(!peer))
8429 		return;
8430 
8431 	if (qdf_unlikely(!peer->txrx_peer)) {
8432 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8433 		return;
8434 	}
8435 
8436 	if (qdf_likely(peer->txrx_peer->delay_stats)) {
8437 		delay_stats = peer->txrx_peer->delay_stats;
8438 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
8439 		dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
8440 					nbuf);
8441 	}
8442 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8443 }
8444 #else
8445 static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8446 						 qdf_nbuf_t nbuf)
8447 {
8448 }
8449 #endif
8450 
8451 /**
8452  * dp_calculate_delay_stats() - function to get rx delay stats
8453  * @cdp_soc: DP soc handle
8454  * @vdev_id: id of DP vdev handle
8455  * @nbuf: skb
8456  *
8457  * Return: QDF_STATUS
8458  */
8459 static QDF_STATUS
8460 dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8461 			 qdf_nbuf_t nbuf)
8462 {
8463 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8464 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8465 						     DP_MOD_ID_CDP);
8466 
8467 	if (!vdev)
8468 		return QDF_STATUS_SUCCESS;
8469 
8470 	if (vdev->pdev->delay_stats_flag)
8471 		dp_rx_compute_delay(vdev, nbuf);
8472 	else
8473 		dp_rx_update_peer_delay_stats(soc, nbuf);
8474 
8475 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8476 	return QDF_STATUS_SUCCESS;
8477 }
8478 
8479 /**
8480  * dp_get_vdev_param() - function to get parameters from vdev
8481  * @cdp_soc: DP soc handle
8482  * @vdev_id: id of DP vdev handle
8483  * @param: parameter type to get value
8484  * @val: buffer address
8485  *
8486  * Return: status
8487  */
8488 static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8489 				    enum cdp_vdev_param_type param,
8490 				    cdp_config_param_type *val)
8491 {
8492 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8493 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8494 						     DP_MOD_ID_CDP);
8495 
8496 	if (!vdev)
8497 		return QDF_STATUS_E_FAILURE;
8498 
8499 	switch (param) {
8500 	case CDP_ENABLE_WDS:
8501 		val->cdp_vdev_param_wds = vdev->wds_enabled;
8502 		break;
8503 	case CDP_ENABLE_MEC:
8504 		val->cdp_vdev_param_mec = vdev->mec_enabled;
8505 		break;
8506 	case CDP_ENABLE_DA_WAR:
8507 		val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
8508 		break;
8509 	case CDP_ENABLE_IGMP_MCAST_EN:
8510 		val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
8511 		break;
8512 	case CDP_ENABLE_MCAST_EN:
8513 		val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
8514 		break;
8515 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8516 		val->cdp_vdev_param_hlos_tid_override =
8517 			    dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
8518 		break;
8519 	case CDP_ENABLE_PEER_AUTHORIZE:
8520 		val->cdp_vdev_param_peer_authorize =
8521 			    vdev->peer_authorize;
8522 		break;
8523 	case CDP_TX_ENCAP_TYPE:
8524 		val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
8525 		break;
8526 	case CDP_ENABLE_CIPHER:
8527 		val->cdp_vdev_param_cipher_en = vdev->sec_type;
8528 		break;
8529 #ifdef WLAN_SUPPORT_MESH_LATENCY
8530 	case CDP_ENABLE_PEER_TID_LATENCY:
8531 		val->cdp_vdev_param_peer_tid_latency_enable =
8532 			vdev->peer_tid_latency_enabled;
8533 		break;
8534 	case CDP_SET_VAP_MESH_TID:
8535 		val->cdp_vdev_param_mesh_tid =
8536 				vdev->mesh_tid_latency_config.latency_tid;
8537 		break;
8538 #endif
8539 	case CDP_DROP_3ADDR_MCAST:
8540 		val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
8541 		break;
8542 	case CDP_SET_MCAST_VDEV:
8543 		soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
8544 		break;
8545 #ifdef QCA_SUPPORT_WDS_EXTENDED
8546 	case CDP_DROP_TX_MCAST:
8547 		val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
8548 		break;
8549 #endif
8550 
8551 #ifdef MESH_MODE_SUPPORT
8552 	case CDP_MESH_RX_FILTER:
8553 		val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
8554 		break;
8555 	case CDP_MESH_MODE:
8556 		val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
8557 		break;
8558 #endif
8559 	case CDP_ENABLE_NAWDS:
8560 		val->cdp_vdev_param_nawds = vdev->nawds_enabled;
8561 		break;
8562 
8563 	case CDP_ENABLE_WRAP:
8564 		val->cdp_vdev_param_wrap = vdev->wrap_vdev;
8565 		break;
8566 
8567 #ifdef DP_TRAFFIC_END_INDICATION
8568 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8569 		val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
8570 		break;
8571 #endif
8572 
8573 	default:
8574 		dp_cdp_err("%pK: param value %d is wrong",
8575 			   soc, param);
8576 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8577 		return QDF_STATUS_E_FAILURE;
8578 	}
8579 
8580 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8581 	return QDF_STATUS_SUCCESS;
8582 }
8583 
8584 /**
8585  * dp_set_vdev_param() - function to set parameters in vdev
8586  * @cdp_soc: DP soc handle
8587  * @vdev_id: id of DP vdev handle
8588  * @param: parameter type to get value
8589  * @val: value
8590  *
8591  * Return: QDF_STATUS
8592  */
8593 static QDF_STATUS
8594 dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8595 		  enum cdp_vdev_param_type param, cdp_config_param_type val)
8596 {
8597 	struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
8598 	struct dp_vdev *vdev =
8599 		dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
8600 	uint32_t var = 0;
8601 
8602 	if (!vdev)
8603 		return QDF_STATUS_E_FAILURE;
8604 
8605 	switch (param) {
8606 	case CDP_ENABLE_WDS:
8607 		dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)",
8608 			   dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
8609 		vdev->wds_enabled = val.cdp_vdev_param_wds;
8610 		break;
8611 	case CDP_ENABLE_MEC:
8612 		dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)",
8613 			   dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
8614 		vdev->mec_enabled = val.cdp_vdev_param_mec;
8615 		break;
8616 	case CDP_ENABLE_DA_WAR:
8617 		dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)",
8618 			   dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
8619 		vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
8620 		dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
8621 					     vdev->pdev->soc));
8622 		break;
8623 	case CDP_ENABLE_NAWDS:
8624 		vdev->nawds_enabled = val.cdp_vdev_param_nawds;
8625 		break;
8626 	case CDP_ENABLE_MCAST_EN:
8627 		vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
8628 		break;
8629 	case CDP_ENABLE_IGMP_MCAST_EN:
8630 		vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
8631 		break;
8632 	case CDP_ENABLE_PROXYSTA:
8633 		vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
8634 		break;
8635 	case CDP_UPDATE_TDLS_FLAGS:
8636 		vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
8637 		break;
8638 	case CDP_CFG_WDS_AGING_TIMER:
8639 		var = val.cdp_vdev_param_aging_tmr;
8640 		if (!var)
8641 			qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
8642 		else if (var != vdev->wds_aging_timer_val)
8643 			qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
8644 
8645 		vdev->wds_aging_timer_val = var;
8646 		break;
8647 	case CDP_ENABLE_AP_BRIDGE:
8648 		if (wlan_op_mode_sta != vdev->opmode)
8649 			vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
8650 		else
8651 			vdev->ap_bridge_enabled = false;
8652 		break;
8653 	case CDP_ENABLE_CIPHER:
8654 		vdev->sec_type = val.cdp_vdev_param_cipher_en;
8655 		break;
8656 	case CDP_ENABLE_QWRAP_ISOLATION:
8657 		vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
8658 		break;
8659 	case CDP_UPDATE_MULTIPASS:
8660 		vdev->multipass_en = val.cdp_vdev_param_update_multipass;
8661 		dp_info("vdev %d Multipass enable %d", vdev_id,
8662 			vdev->multipass_en);
8663 		break;
8664 	case CDP_TX_ENCAP_TYPE:
8665 		vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
8666 		break;
8667 	case CDP_RX_DECAP_TYPE:
8668 		vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
8669 		break;
8670 	case CDP_TID_VDEV_PRTY:
8671 		vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
8672 		break;
8673 	case CDP_TIDMAP_TBL_ID:
8674 		vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
8675 		break;
8676 #ifdef MESH_MODE_SUPPORT
8677 	case CDP_MESH_RX_FILTER:
8678 		dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
8679 					   val.cdp_vdev_param_mesh_rx_filter);
8680 		break;
8681 	case CDP_MESH_MODE:
8682 		dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
8683 				      val.cdp_vdev_param_mesh_mode);
8684 		break;
8685 #endif
8686 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8687 		dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
8688 			val.cdp_vdev_param_hlos_tid_override);
8689 		dp_vdev_set_hlos_tid_override(vdev,
8690 				val.cdp_vdev_param_hlos_tid_override);
8691 		break;
8692 #ifdef QCA_SUPPORT_WDS_EXTENDED
8693 	case CDP_CFG_WDS_EXT:
8694 		if (vdev->opmode == wlan_op_mode_ap)
8695 			vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
8696 		break;
8697 	case CDP_DROP_TX_MCAST:
8698 		dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
8699 			val.cdp_drop_tx_mcast);
8700 		vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
8701 		break;
8702 #endif
8703 	case CDP_ENABLE_PEER_AUTHORIZE:
8704 		vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
8705 		break;
8706 #ifdef WLAN_SUPPORT_MESH_LATENCY
8707 	case CDP_ENABLE_PEER_TID_LATENCY:
8708 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8709 			val.cdp_vdev_param_peer_tid_latency_enable);
8710 		vdev->peer_tid_latency_enabled =
8711 			val.cdp_vdev_param_peer_tid_latency_enable;
8712 		break;
8713 	case CDP_SET_VAP_MESH_TID:
8714 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8715 			val.cdp_vdev_param_mesh_tid);
8716 		vdev->mesh_tid_latency_config.latency_tid
8717 				= val.cdp_vdev_param_mesh_tid;
8718 		break;
8719 #endif
8720 #ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
8721 	case CDP_SKIP_BAR_UPDATE_AP:
8722 		dp_info("vdev_id %d skip BAR update: %u", vdev_id,
8723 			val.cdp_skip_bar_update);
8724 		vdev->skip_bar_update = val.cdp_skip_bar_update;
8725 		vdev->skip_bar_update_last_ts = 0;
8726 		break;
8727 #endif
8728 	case CDP_DROP_3ADDR_MCAST:
8729 		dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
8730 			val.cdp_drop_3addr_mcast);
8731 		vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
8732 		break;
8733 	case CDP_ENABLE_WRAP:
8734 		vdev->wrap_vdev = val.cdp_vdev_param_wrap;
8735 		break;
8736 #ifdef DP_TRAFFIC_END_INDICATION
8737 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8738 		vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
8739 		break;
8740 #endif
8741 #ifdef FEATURE_DIRECT_LINK
8742 	case CDP_VDEV_TX_TO_FW:
8743 		dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
8744 		vdev->to_fw = val.cdp_vdev_tx_to_fw;
8745 		break;
8746 #endif
8747 	case CDP_VDEV_SET_MAC_ADDR:
8748 		dp_info("set mac addr, old mac addr" QDF_MAC_ADDR_FMT
8749 			" new mac addr: " QDF_MAC_ADDR_FMT " for vdev %d",
8750 			QDF_MAC_ADDR_REF(vdev->mac_addr.raw),
8751 			QDF_MAC_ADDR_REF(val.mac_addr), vdev->vdev_id);
8752 		qdf_mem_copy(&vdev->mac_addr.raw[0], val.mac_addr,
8753 			     QDF_MAC_ADDR_SIZE);
8754 		break;
8755 	default:
8756 		break;
8757 	}
8758 
8759 	dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
8760 	dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
8761 
8762 	/* Update PDEV flags as VDEV flags are updated */
8763 	dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
8764 	dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
8765 
8766 	return QDF_STATUS_SUCCESS;
8767 }
8768 
8769 #if defined(FEATURE_WLAN_TDLS) && defined(WLAN_FEATURE_11BE_MLO)
8770 /**
8771  * dp_update_mlo_vdev_for_tdls() - update mlo vdev configuration
8772  *                                 for TDLS
8773  * @cdp_soc: DP soc handle
8774  * @vdev_id: id of DP vdev handle
8775  * @param: parameter type for vdev
8776  * @val: value
8777  *
8778  * If TDLS connection is from secondary vdev, then copy osif_vdev from
8779  * primary vdev to support RX, update TX bank register info for primary
8780  * vdev as well.
8781  * If TDLS connection is from primary vdev, same as before.
8782  *
8783  * Return: None
8784  */
8785 static void
8786 dp_update_mlo_vdev_for_tdls(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8787 			    enum cdp_vdev_param_type param,
8788 			    cdp_config_param_type val)
8789 {
8790 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8791 	struct dp_peer *peer;
8792 	struct dp_peer *tmp_peer;
8793 	struct dp_peer *mld_peer;
8794 	struct dp_vdev *vdev = NULL;
8795 	struct dp_vdev *pri_vdev = NULL;
8796 	uint8_t pri_vdev_id = CDP_INVALID_VDEV_ID;
8797 
8798 	if (param != CDP_UPDATE_TDLS_FLAGS)
8799 		return;
8800 
8801 	dp_info("update TDLS flag for vdev_id %d, val %d",
8802 		vdev_id, val.cdp_vdev_param_tdls_flags);
8803 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MISC);
8804 	/* only check for STA mode vdev */
8805 	if (!vdev || vdev->opmode != wlan_op_mode_sta) {
8806 		dp_info("vdev is not as expected for TDLS");
8807 		goto comp_ret;
8808 	}
8809 
8810 	/* Find primary vdev_id */
8811 	qdf_spin_lock_bh(&vdev->peer_list_lock);
8812 	TAILQ_FOREACH_SAFE(peer, &vdev->peer_list,
8813 			   peer_list_elem,
8814 			   tmp_peer) {
8815 		if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
8816 					QDF_STATUS_SUCCESS) {
8817 			/* do check only if MLO link peer exist */
8818 			if (IS_MLO_DP_LINK_PEER(peer)) {
8819 				mld_peer = DP_GET_MLD_PEER_FROM_PEER(peer);
8820 				pri_vdev_id = mld_peer->vdev->vdev_id;
8821 				dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8822 				break;
8823 			}
8824 			dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8825 		}
8826 	}
8827 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
8828 
8829 	if (pri_vdev_id != CDP_INVALID_VDEV_ID)
8830 		pri_vdev = dp_vdev_get_ref_by_id(soc, pri_vdev_id,
8831 						 DP_MOD_ID_MISC);
8832 
8833 	/* If current vdev is not same as primary vdev */
8834 	if (pri_vdev && pri_vdev != vdev) {
8835 		dp_info("primary vdev [%d] %pK different with vdev [%d] %pK",
8836 			pri_vdev->vdev_id, pri_vdev,
8837 			vdev->vdev_id, vdev);
8838 		/* update osif_vdev to support RX for vdev */
8839 		vdev->osif_vdev = pri_vdev->osif_vdev;
8840 		dp_set_vdev_param(cdp_soc, pri_vdev->vdev_id,
8841 				  CDP_UPDATE_TDLS_FLAGS, val);
8842 	}
8843 
8844 comp_ret:
8845 	if (pri_vdev)
8846 		dp_vdev_unref_delete(soc, pri_vdev, DP_MOD_ID_MISC);
8847 	if (vdev)
8848 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
8849 }
8850 
8851 static QDF_STATUS
8852 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8853 			  enum cdp_vdev_param_type param,
8854 			  cdp_config_param_type val)
8855 {
8856 	dp_update_mlo_vdev_for_tdls(cdp_soc, vdev_id, param, val);
8857 
8858 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8859 }
8860 #else
8861 static QDF_STATUS
8862 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8863 			  enum cdp_vdev_param_type param,
8864 			  cdp_config_param_type val)
8865 {
8866 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8867 }
8868 #endif
8869 
8870 /**
8871  * dp_rx_peer_metadata_ver_update() - update rx peer metadata version and
8872  *                                    corresponding filed shift and mask
8873  * @soc: Handle to DP Soc structure
8874  * @peer_md_ver: RX peer metadata version value
8875  *
8876  * Return: None
8877  */
8878 static void
8879 dp_rx_peer_metadata_ver_update(struct dp_soc *soc, uint8_t peer_md_ver)
8880 {
8881 	dp_info("rx_peer_metadata version %d", peer_md_ver);
8882 
8883 	switch (peer_md_ver) {
8884 	case 0: /* htt_rx_peer_metadata_v0 */
8885 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V0_PEER_ID_S;
8886 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V0_PEER_ID_M;
8887 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V0_VDEV_ID_S;
8888 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V0_VDEV_ID_M;
8889 		break;
8890 	case 1: /* htt_rx_peer_metadata_v1 */
8891 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1_PEER_ID_S;
8892 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1_PEER_ID_M;
8893 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1_VDEV_ID_S;
8894 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1_VDEV_ID_M;
8895 		soc->htt_mld_peer_valid_s =
8896 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_S;
8897 		soc->htt_mld_peer_valid_m =
8898 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_M;
8899 		break;
8900 	case 2: /* htt_rx_peer_metadata_v1a */
8901 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1A_PEER_ID_S;
8902 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1A_PEER_ID_M;
8903 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_S;
8904 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_M;
8905 		soc->htt_mld_peer_valid_s =
8906 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_S;
8907 		soc->htt_mld_peer_valid_m =
8908 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_M;
8909 		break;
8910 	case 3: /* htt_rx_peer_metadata_v1b */
8911 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1B_PEER_ID_S;
8912 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1B_PEER_ID_M;
8913 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_S;
8914 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_M;
8915 		soc->htt_mld_peer_valid_s =
8916 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_S;
8917 		soc->htt_mld_peer_valid_m =
8918 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_M;
8919 		break;
8920 	default:
8921 		dp_err("invliad rx_peer_metadata version %d", peer_md_ver);
8922 		break;
8923 	}
8924 
8925 	soc->rx_peer_metadata_ver = peer_md_ver;
8926 }
8927 
8928 /**
8929  * dp_set_psoc_param: function to set parameters in psoc
8930  * @cdp_soc: DP soc handle
8931  * @param: parameter type to be set
8932  * @val: value of parameter to be set
8933  *
8934  * Return: QDF_STATUS
8935  */
8936 static QDF_STATUS
8937 dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
8938 		  enum cdp_psoc_param_type param, cdp_config_param_type val)
8939 {
8940 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8941 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
8942 
8943 	switch (param) {
8944 	case CDP_ENABLE_RATE_STATS:
8945 		soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
8946 		break;
8947 	case CDP_SET_NSS_CFG:
8948 		wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
8949 					    val.cdp_psoc_param_en_nss_cfg);
8950 		/*
8951 		 * TODO: masked out based on the per offloaded radio
8952 		 */
8953 		switch (val.cdp_psoc_param_en_nss_cfg) {
8954 		case dp_nss_cfg_default:
8955 			break;
8956 		case dp_nss_cfg_first_radio:
8957 		/*
8958 		 * This configuration is valid for single band radio which
8959 		 * is also NSS offload.
8960 		 */
8961 		case dp_nss_cfg_dbdc:
8962 		case dp_nss_cfg_dbtc:
8963 			wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
8964 			wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
8965 			wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
8966 			wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
8967 			break;
8968 		default:
8969 			dp_cdp_err("%pK: Invalid offload config %d",
8970 				   soc, val.cdp_psoc_param_en_nss_cfg);
8971 		}
8972 
8973 			dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
8974 				   , soc);
8975 		break;
8976 	case CDP_SET_PREFERRED_HW_MODE:
8977 		soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
8978 		break;
8979 	case CDP_IPA_ENABLE:
8980 		soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
8981 		break;
8982 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
8983 		wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
8984 				val.cdp_psoc_param_vdev_stats_hw_offload);
8985 		break;
8986 	case CDP_SAWF_ENABLE:
8987 		wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
8988 		break;
8989 	case CDP_UMAC_RST_SKEL_ENABLE:
8990 		dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
8991 		break;
8992 	case CDP_UMAC_RESET_STATS:
8993 		dp_umac_reset_stats_print(soc);
8994 		break;
8995 	case CDP_SAWF_STATS:
8996 		wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
8997 					       val.cdp_sawf_stats);
8998 		break;
8999 	case CDP_CFG_RX_PEER_METADATA_VER:
9000 		dp_rx_peer_metadata_ver_update(
9001 				soc, val.cdp_peer_metadata_ver);
9002 		break;
9003 	case CDP_CFG_TX_DESC_NUM:
9004 		wlan_cfg_set_num_tx_desc(wlan_cfg_ctx,
9005 					 val.cdp_tx_desc_num);
9006 		break;
9007 	case CDP_CFG_TX_EXT_DESC_NUM:
9008 		wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx,
9009 					     val.cdp_tx_ext_desc_num);
9010 		break;
9011 	case CDP_CFG_TX_RING_SIZE:
9012 		wlan_cfg_set_tx_ring_size(wlan_cfg_ctx,
9013 					  val.cdp_tx_ring_size);
9014 		break;
9015 	case CDP_CFG_TX_COMPL_RING_SIZE:
9016 		wlan_cfg_set_tx_comp_ring_size(wlan_cfg_ctx,
9017 					       val.cdp_tx_comp_ring_size);
9018 		break;
9019 	case CDP_CFG_RX_SW_DESC_NUM:
9020 		wlan_cfg_set_dp_soc_rx_sw_desc_num(wlan_cfg_ctx,
9021 						   val.cdp_rx_sw_desc_num);
9022 		break;
9023 	case CDP_CFG_REO_DST_RING_SIZE:
9024 		wlan_cfg_set_reo_dst_ring_size(wlan_cfg_ctx,
9025 					       val.cdp_reo_dst_ring_size);
9026 		break;
9027 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9028 		wlan_cfg_set_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx,
9029 					val.cdp_rxdma_refill_ring_size);
9030 		break;
9031 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9032 	case CDP_CFG_RX_REFILL_POOL_NUM:
9033 		wlan_cfg_set_rx_refill_buf_pool_size(wlan_cfg_ctx,
9034 						val.cdp_rx_refill_buf_pool_size);
9035 		break;
9036 #endif
9037 	case CDP_CFG_AST_INDICATION_DISABLE:
9038 		wlan_cfg_set_ast_indication_disable
9039 			(wlan_cfg_ctx, val.cdp_ast_indication_disable);
9040 		break;
9041 	default:
9042 		break;
9043 	}
9044 
9045 	return QDF_STATUS_SUCCESS;
9046 }
9047 
9048 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
9049 /**
9050  * dp_get_mldev_mode: function to get mlo operation mode
9051  * @soc: soc structure for data path
9052  *
9053  * Return: uint8_t
9054  */
9055 static uint8_t dp_get_mldev_mode(struct dp_soc *soc)
9056 {
9057 	return soc->mld_mode_ap;
9058 }
9059 #else
9060 static uint8_t dp_get_mldev_mode(struct dp_soc *cdp_soc)
9061 {
9062 	return MLD_MODE_INVALID;
9063 }
9064 #endif
9065 
9066 /**
9067  * dp_get_psoc_param: function to get parameters in soc
9068  * @cdp_soc: DP soc handle
9069  * @param: parameter type to be get
9070  * @val: address of buffer
9071  *
9072  * Return: status
9073  */
9074 static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
9075 				    enum cdp_psoc_param_type param,
9076 				    cdp_config_param_type *val)
9077 {
9078 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
9079 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx;
9080 
9081 	if (!soc)
9082 		return QDF_STATUS_E_FAILURE;
9083 
9084 	wlan_cfg_ctx = soc->wlan_cfg_ctx;
9085 
9086 	switch (param) {
9087 	case CDP_CFG_PEER_EXT_STATS:
9088 		val->cdp_psoc_param_pext_stats =
9089 			wlan_cfg_is_peer_ext_stats_enabled(wlan_cfg_ctx);
9090 		break;
9091 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
9092 		val->cdp_psoc_param_vdev_stats_hw_offload =
9093 			wlan_cfg_get_vdev_stats_hw_offload_config(wlan_cfg_ctx);
9094 		break;
9095 	case CDP_UMAC_RST_SKEL_ENABLE:
9096 		val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
9097 		break;
9098 	case CDP_TXRX_HAL_SOC_HDL:
9099 		val->hal_soc_hdl = soc->hal_soc;
9100 		break;
9101 	case CDP_CFG_TX_DESC_NUM:
9102 		val->cdp_tx_desc_num = wlan_cfg_get_num_tx_desc(wlan_cfg_ctx);
9103 		break;
9104 	case CDP_CFG_TX_EXT_DESC_NUM:
9105 		val->cdp_tx_ext_desc_num =
9106 			wlan_cfg_get_num_tx_ext_desc(wlan_cfg_ctx);
9107 		break;
9108 	case CDP_CFG_TX_RING_SIZE:
9109 		val->cdp_tx_ring_size = wlan_cfg_tx_ring_size(wlan_cfg_ctx);
9110 		break;
9111 	case CDP_CFG_TX_COMPL_RING_SIZE:
9112 		val->cdp_tx_comp_ring_size =
9113 			wlan_cfg_tx_comp_ring_size(wlan_cfg_ctx);
9114 		break;
9115 	case CDP_CFG_RX_SW_DESC_NUM:
9116 		val->cdp_rx_sw_desc_num =
9117 			wlan_cfg_get_dp_soc_rx_sw_desc_num(wlan_cfg_ctx);
9118 		break;
9119 	case CDP_CFG_REO_DST_RING_SIZE:
9120 		val->cdp_reo_dst_ring_size =
9121 			wlan_cfg_get_reo_dst_ring_size(wlan_cfg_ctx);
9122 		break;
9123 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9124 		val->cdp_rxdma_refill_ring_size =
9125 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx);
9126 		break;
9127 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9128 	case CDP_CFG_RX_REFILL_POOL_NUM:
9129 		val->cdp_rx_refill_buf_pool_size =
9130 			wlan_cfg_get_rx_refill_buf_pool_size(wlan_cfg_ctx);
9131 		break;
9132 #endif
9133 	case CDP_CFG_FISA_PARAMS:
9134 		val->fisa_params.fisa_fst_size = wlan_cfg_get_rx_flow_search_table_size(soc->wlan_cfg_ctx);
9135 		val->fisa_params.rx_flow_max_search =
9136 			wlan_cfg_rx_fst_get_max_search(soc->wlan_cfg_ctx);
9137 		val->fisa_params.rx_toeplitz_hash_key =
9138 			wlan_cfg_rx_fst_get_hash_key(soc->wlan_cfg_ctx);
9139 		break;
9140 	case CDP_RX_PKT_TLV_SIZE:
9141 		val->rx_pkt_tlv_size = soc->rx_pkt_tlv_size;
9142 		break;
9143 	case CDP_CFG_GET_MLO_OPER_MODE:
9144 		val->cdp_psoc_param_mlo_oper_mode = dp_get_mldev_mode(soc);
9145 		break;
9146 	default:
9147 		dp_warn("Invalid param: %u", param);
9148 		break;
9149 	}
9150 
9151 	return QDF_STATUS_SUCCESS;
9152 }
9153 
9154 /**
9155  * dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
9156  * @cdp_soc: CDP SOC handle
9157  * @vdev_id: id of DP_VDEV handle
9158  * @map_id:ID of map that needs to be updated
9159  *
9160  * Return: QDF_STATUS
9161  */
9162 static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
9163 						 uint8_t vdev_id,
9164 						 uint8_t map_id)
9165 {
9166 	cdp_config_param_type val;
9167 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
9168 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9169 						     DP_MOD_ID_CDP);
9170 	if (vdev) {
9171 		vdev->dscp_tid_map_id = map_id;
9172 		val.cdp_vdev_param_dscp_tid_map_id = map_id;
9173 		soc->arch_ops.txrx_set_vdev_param(soc,
9174 						  vdev,
9175 						  CDP_UPDATE_DSCP_TO_TID_MAP,
9176 						  val);
9177 		/* Update flag for transmit tid classification */
9178 		if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
9179 			vdev->skip_sw_tid_classification |=
9180 				DP_TX_HW_DSCP_TID_MAP_VALID;
9181 		else
9182 			vdev->skip_sw_tid_classification &=
9183 				~DP_TX_HW_DSCP_TID_MAP_VALID;
9184 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9185 		return QDF_STATUS_SUCCESS;
9186 	}
9187 
9188 	return QDF_STATUS_E_FAILURE;
9189 }
9190 
9191 #ifdef DP_RATETABLE_SUPPORT
9192 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9193 				int htflag, int gintval)
9194 {
9195 	uint32_t rix;
9196 	uint16_t ratecode;
9197 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
9198 
9199 	return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
9200 			       (uint8_t)preamb, 1, punc_mode,
9201 			       &rix, &ratecode);
9202 }
9203 #else
9204 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9205 				int htflag, int gintval)
9206 {
9207 	return 0;
9208 }
9209 #endif
9210 
9211 /**
9212  * dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
9213  * @soc: DP soc handle
9214  * @pdev_id: id of DP pdev handle
9215  * @pdev_stats: buffer to copy to
9216  *
9217  * Return: status success/failure
9218  */
9219 static QDF_STATUS
9220 dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9221 		       struct cdp_pdev_stats *pdev_stats)
9222 {
9223 	struct dp_pdev *pdev =
9224 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9225 						   pdev_id);
9226 	if (!pdev)
9227 		return QDF_STATUS_E_FAILURE;
9228 
9229 	dp_aggregate_pdev_stats(pdev);
9230 
9231 	qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
9232 	return QDF_STATUS_SUCCESS;
9233 }
9234 
9235 /**
9236  * dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
9237  * @vdev: DP vdev handle
9238  * @buf: buffer containing specific stats structure
9239  *
9240  * Return: void
9241  */
9242 static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
9243 					 void *buf)
9244 {
9245 	struct cdp_tx_ingress_stats *host_stats = NULL;
9246 
9247 	if (!buf) {
9248 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9249 		return;
9250 	}
9251 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9252 
9253 	DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
9254 			 host_stats->mcast_en.mcast_pkt.num,
9255 			 host_stats->mcast_en.mcast_pkt.bytes);
9256 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
9257 		     host_stats->mcast_en.dropped_map_error);
9258 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
9259 		     host_stats->mcast_en.dropped_self_mac);
9260 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
9261 		     host_stats->mcast_en.dropped_send_fail);
9262 	DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
9263 		     host_stats->mcast_en.ucast);
9264 	DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
9265 		     host_stats->mcast_en.fail_seg_alloc);
9266 	DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
9267 		     host_stats->mcast_en.clone_fail);
9268 }
9269 
9270 /**
9271  * dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
9272  * @vdev: DP vdev handle
9273  * @buf: buffer containing specific stats structure
9274  *
9275  * Return: void
9276  */
9277 static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
9278 					      void *buf)
9279 {
9280 	struct cdp_tx_ingress_stats *host_stats = NULL;
9281 
9282 	if (!buf) {
9283 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9284 		return;
9285 	}
9286 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9287 
9288 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_rcvd,
9289 		     host_stats->igmp_mcast_en.igmp_rcvd);
9290 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_ucast_converted,
9291 		     host_stats->igmp_mcast_en.igmp_ucast_converted);
9292 }
9293 
9294 /**
9295  * dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
9296  * @soc_hdl: DP soc handle
9297  * @vdev_id: id of DP vdev handle
9298  * @buf: buffer containing specific stats structure
9299  * @stats_id: stats type
9300  *
9301  * Return: QDF_STATUS
9302  */
9303 static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
9304 						 uint8_t vdev_id,
9305 						 void *buf,
9306 						 uint16_t stats_id)
9307 {
9308 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9309 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9310 						     DP_MOD_ID_CDP);
9311 
9312 	if (!vdev) {
9313 		dp_cdp_err("%pK: Invalid vdev handle", soc);
9314 		return QDF_STATUS_E_FAILURE;
9315 	}
9316 
9317 	switch (stats_id) {
9318 	case DP_VDEV_STATS_PKT_CNT_ONLY:
9319 		break;
9320 	case DP_VDEV_STATS_TX_ME:
9321 		dp_txrx_update_vdev_me_stats(vdev, buf);
9322 		dp_txrx_update_vdev_igmp_me_stats(vdev, buf);
9323 		break;
9324 	default:
9325 		qdf_info("Invalid stats_id %d", stats_id);
9326 		break;
9327 	}
9328 
9329 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9330 	return QDF_STATUS_SUCCESS;
9331 }
9332 
9333 /**
9334  * dp_txrx_get_peer_stats_wrapper() - will get cdp_peer_stats
9335  * @soc: soc handle
9336  * @peer_stats: destination buffer to copy to
9337  * @peer_info: peer info
9338  *
9339  * Return: status success/failure
9340  */
9341 static QDF_STATUS
9342 dp_txrx_get_peer_stats_wrapper(struct cdp_soc_t *soc,
9343 			       struct cdp_peer_stats *peer_stats,
9344 			       struct cdp_peer_info peer_info)
9345 {
9346 	struct dp_peer *peer = NULL;
9347 
9348 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9349 					 DP_MOD_ID_CDP);
9350 
9351 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9352 
9353 	if (!peer)
9354 		return QDF_STATUS_E_FAILURE;
9355 
9356 	dp_get_peer_stats(peer, peer_stats);
9357 
9358 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9359 
9360 	return QDF_STATUS_SUCCESS;
9361 }
9362 
9363 /**
9364  * dp_txrx_get_peer_stats() - will get cdp_peer_stats
9365  * @soc: soc handle
9366  * @vdev_id: id of vdev handle
9367  * @peer_mac: peer mac address of DP_PEER handle
9368  * @peer_stats: destination buffer to copy to
9369  *
9370  * Return: status success/failure
9371  */
9372 static QDF_STATUS
9373 dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9374 		       uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
9375 {
9376 	struct cdp_peer_info peer_info = { 0 };
9377 
9378 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9379 				 CDP_WILD_PEER_TYPE);
9380 
9381 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9382 }
9383 
9384 /**
9385  * dp_txrx_get_peer_stats_based_on_peer_type() - get peer stats based on the
9386  * peer type
9387  * @soc: soc handle
9388  * @vdev_id: id of vdev handle
9389  * @peer_mac: mac of DP_PEER handle
9390  * @peer_stats: buffer to copy to
9391  * @peer_type: type of peer
9392  *
9393  * Return: status success/failure
9394  */
9395 static QDF_STATUS
9396 dp_txrx_get_peer_stats_based_on_peer_type(struct cdp_soc_t *soc, uint8_t vdev_id,
9397 					  uint8_t *peer_mac,
9398 					  struct cdp_peer_stats *peer_stats,
9399 					  enum cdp_peer_type peer_type)
9400 {
9401 	struct cdp_peer_info peer_info = { 0 };
9402 
9403 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9404 				 peer_type);
9405 
9406 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9407 }
9408 
9409 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
9410 /**
9411  * dp_get_per_link_peer_stats() - Get per link stats
9412  * @peer: DP peer
9413  * @peer_stats: buffer to copy to
9414  * @peer_type: Peer type
9415  * @num_link: Number of ML links
9416  *
9417  * Return: status success/failure
9418  */
9419 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9420 				      struct cdp_peer_stats *peer_stats,
9421 				      enum cdp_peer_type peer_type,
9422 				      uint8_t num_link)
9423 {
9424 	uint8_t i, index = 0;
9425 	struct dp_peer *link_peer;
9426 	struct dp_mld_link_peers link_peers_info;
9427 	struct cdp_peer_stats *stats;
9428 	struct dp_soc *soc = peer->vdev->pdev->soc;
9429 
9430 	dp_get_peer_calibr_stats(peer, peer_stats);
9431 	dp_get_peer_basic_stats(peer, peer_stats);
9432 	dp_get_peer_tx_per(peer_stats);
9433 
9434 	if (IS_MLO_DP_MLD_PEER(peer)) {
9435 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9436 						    &link_peers_info,
9437 						    DP_MOD_ID_GENERIC_STATS);
9438 		for (i = 0; i < link_peers_info.num_links; i++) {
9439 			link_peer = link_peers_info.link_peers[i];
9440 			if (qdf_unlikely(!link_peer))
9441 				continue;
9442 			if (index > num_link) {
9443 				dp_err("Request stats for %d link(s) is less than total link(s) %d",
9444 				       num_link, link_peers_info.num_links);
9445 				break;
9446 			}
9447 			stats = &peer_stats[index];
9448 			dp_get_peer_per_pkt_stats(link_peer, stats);
9449 			dp_get_peer_extd_stats(link_peer, stats);
9450 			index++;
9451 		}
9452 		dp_release_link_peers_ref(&link_peers_info,
9453 					  DP_MOD_ID_GENERIC_STATS);
9454 	} else {
9455 		dp_get_peer_per_pkt_stats(peer, peer_stats);
9456 		dp_get_peer_extd_stats(peer, peer_stats);
9457 	}
9458 	return QDF_STATUS_SUCCESS;
9459 }
9460 #else
9461 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9462 				      struct cdp_peer_stats *peer_stats,
9463 				      enum cdp_peer_type peer_type,
9464 				      uint8_t num_link)
9465 {
9466 	dp_err("Per link stats not supported");
9467 	return QDF_STATUS_E_INVAL;
9468 }
9469 #endif
9470 
9471 /**
9472  * dp_txrx_get_per_link_peer_stats() - Get per link peer stats
9473  * @soc: soc handle
9474  * @vdev_id: id of vdev handle
9475  * @peer_mac: peer mac address
9476  * @peer_stats: buffer to copy to
9477  * @peer_type: Peer type
9478  * @num_link: Number of ML links
9479  *
9480  * NOTE: For peer_type = CDP_MLD_PEER_TYPE peer_stats should point to
9481  *       buffer of size = (sizeof(*peer_stats) * num_link)
9482  *
9483  * Return: status success/failure
9484  */
9485 static QDF_STATUS
9486 dp_txrx_get_per_link_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9487 				uint8_t *peer_mac,
9488 				struct cdp_peer_stats *peer_stats,
9489 				enum cdp_peer_type peer_type, uint8_t num_link)
9490 {
9491 	QDF_STATUS status;
9492 	struct dp_peer *peer = NULL;
9493 	struct cdp_peer_info peer_info = { 0 };
9494 
9495 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9496 				 peer_type);
9497 
9498 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9499 					 DP_MOD_ID_GENERIC_STATS);
9500 	if (!peer)
9501 		return QDF_STATUS_E_FAILURE;
9502 
9503 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9504 
9505 	status = dp_get_per_link_peer_stats(peer, peer_stats, peer_type,
9506 					    num_link);
9507 
9508 	dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS);
9509 
9510 	return status;
9511 }
9512 
9513 /**
9514  * dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
9515  * @soc: soc handle
9516  * @vdev_id: vdev_id of vdev object
9517  * @peer_mac: mac address of the peer
9518  * @type: enum of required stats
9519  * @buf: buffer to hold the value
9520  *
9521  * Return: status success/failure
9522  */
9523 static QDF_STATUS
9524 dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
9525 			     uint8_t *peer_mac, enum cdp_peer_stats_type type,
9526 			     cdp_peer_stats_param_t *buf)
9527 {
9528 	QDF_STATUS ret;
9529 	struct dp_peer *peer = NULL;
9530 	struct cdp_peer_info peer_info = { 0 };
9531 
9532 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9533 				 CDP_WILD_PEER_TYPE);
9534 
9535 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9536 				         DP_MOD_ID_CDP);
9537 
9538 	if (!peer) {
9539 		dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
9540 			    soc, QDF_MAC_ADDR_REF(peer_mac));
9541 		return QDF_STATUS_E_FAILURE;
9542 	}
9543 
9544 	if (type >= cdp_peer_per_pkt_stats_min &&
9545 	    type < cdp_peer_per_pkt_stats_max) {
9546 		ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
9547 	} else if (type >= cdp_peer_extd_stats_min &&
9548 		   type < cdp_peer_extd_stats_max) {
9549 		ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
9550 	} else {
9551 		dp_err("%pK: Invalid stat type requested", soc);
9552 		ret = QDF_STATUS_E_FAILURE;
9553 	}
9554 
9555 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9556 
9557 	return ret;
9558 }
9559 
9560 /**
9561  * dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
9562  * @soc_hdl: soc handle
9563  * @vdev_id: id of vdev handle
9564  * @peer_mac: mac of DP_PEER handle
9565  *
9566  * Return: QDF_STATUS
9567  */
9568 #ifdef WLAN_FEATURE_11BE_MLO
9569 static QDF_STATUS
9570 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9571 			 uint8_t *peer_mac)
9572 {
9573 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9574 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9575 	struct dp_peer *peer =
9576 			dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
9577 						       vdev_id, DP_MOD_ID_CDP);
9578 
9579 	if (!peer)
9580 		return QDF_STATUS_E_FAILURE;
9581 
9582 	DP_STATS_CLR(peer);
9583 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9584 
9585 	if (IS_MLO_DP_MLD_PEER(peer)) {
9586 		uint8_t i;
9587 		struct dp_peer *link_peer;
9588 		struct dp_soc *link_peer_soc;
9589 		struct dp_mld_link_peers link_peers_info;
9590 
9591 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9592 						    &link_peers_info,
9593 						    DP_MOD_ID_CDP);
9594 		for (i = 0; i < link_peers_info.num_links; i++) {
9595 			link_peer = link_peers_info.link_peers[i];
9596 			link_peer_soc = link_peer->vdev->pdev->soc;
9597 
9598 			DP_STATS_CLR(link_peer);
9599 			dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
9600 		}
9601 
9602 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
9603 	} else {
9604 		dp_monitor_peer_reset_stats(soc, peer);
9605 	}
9606 
9607 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9608 
9609 	return status;
9610 }
9611 #else
9612 static QDF_STATUS
9613 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9614 			 uint8_t *peer_mac)
9615 {
9616 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9617 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
9618 						      peer_mac, 0, vdev_id,
9619 						      DP_MOD_ID_CDP);
9620 
9621 	if (!peer)
9622 		return QDF_STATUS_E_FAILURE;
9623 
9624 	DP_STATS_CLR(peer);
9625 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9626 	dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
9627 
9628 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9629 
9630 	return status;
9631 }
9632 #endif
9633 
9634 /**
9635  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
9636  * @soc_hdl: CDP SoC handle
9637  * @vdev_id: vdev Id
9638  * @buf: buffer for vdev stats
9639  * @is_aggregate: are aggregate stats being collected
9640  *
9641  * Return: QDF_STATUS
9642  */
9643 QDF_STATUS
9644 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9645 		       void *buf, bool is_aggregate)
9646 {
9647 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9648 	struct cdp_vdev_stats *vdev_stats;
9649 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9650 						     DP_MOD_ID_CDP);
9651 
9652 	if (!vdev)
9653 		return QDF_STATUS_E_RESOURCES;
9654 
9655 	vdev_stats = (struct cdp_vdev_stats *)buf;
9656 
9657 	if (is_aggregate) {
9658 		dp_aggregate_vdev_stats(vdev, buf);
9659 	} else {
9660 		qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
9661 	}
9662 
9663 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9664 	return QDF_STATUS_SUCCESS;
9665 }
9666 
9667 /**
9668  * dp_get_total_per() - get total per
9669  * @soc: DP soc handle
9670  * @pdev_id: id of DP_PDEV handle
9671  *
9672  * Return: % error rate using retries per packet and success packets
9673  */
9674 static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
9675 {
9676 	struct dp_pdev *pdev =
9677 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9678 						   pdev_id);
9679 
9680 	if (!pdev)
9681 		return 0;
9682 
9683 	dp_aggregate_pdev_stats(pdev);
9684 	if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
9685 		return 0;
9686 	return qdf_do_div((pdev->stats.tx.retries * 100),
9687 		((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
9688 }
9689 
9690 /**
9691  * dp_txrx_stats_publish() - publish pdev stats into a buffer
9692  * @soc: DP soc handle
9693  * @pdev_id: id of DP_PDEV handle
9694  * @buf: to hold pdev_stats
9695  *
9696  * Return: int
9697  */
9698 static int
9699 dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
9700 		      struct cdp_stats_extd *buf)
9701 {
9702 	struct cdp_txrx_stats_req req = {0,};
9703 	QDF_STATUS status;
9704 	struct dp_pdev *pdev =
9705 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9706 						   pdev_id);
9707 
9708 	if (!pdev)
9709 		return TXRX_STATS_LEVEL_OFF;
9710 
9711 	if (pdev->pending_fw_stats_response)
9712 		return TXRX_STATS_LEVEL_OFF;
9713 
9714 	dp_aggregate_pdev_stats(pdev);
9715 
9716 	pdev->pending_fw_stats_response = true;
9717 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
9718 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9719 	pdev->fw_stats_tlv_bitmap_rcvd = 0;
9720 	qdf_event_reset(&pdev->fw_stats_event);
9721 	dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9722 				req.param1, req.param2, req.param3, 0,
9723 				req.cookie_val, 0);
9724 
9725 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
9726 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9727 	dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9728 				req.param1, req.param2, req.param3, 0,
9729 				req.cookie_val, 0);
9730 
9731 	status =
9732 		qdf_wait_single_event(&pdev->fw_stats_event, DP_MAX_SLEEP_TIME);
9733 
9734 	if (status != QDF_STATUS_SUCCESS) {
9735 		if (status == QDF_STATUS_E_TIMEOUT)
9736 			qdf_debug("TIMEOUT_OCCURS");
9737 		pdev->pending_fw_stats_response = false;
9738 		return TXRX_STATS_LEVEL_OFF;
9739 	}
9740 	qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
9741 	pdev->pending_fw_stats_response = false;
9742 
9743 	return TXRX_STATS_LEVEL;
9744 }
9745 
9746 /**
9747  * dp_get_obss_stats() - Get Pdev OBSS stats from Fw
9748  * @soc: DP soc handle
9749  * @pdev_id: id of DP_PDEV handle
9750  * @buf: to hold pdev obss stats
9751  * @req: Pointer to CDP TxRx stats
9752  *
9753  * Return: status
9754  */
9755 static QDF_STATUS
9756 dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9757 		  struct cdp_pdev_obss_pd_stats_tlv *buf,
9758 		  struct cdp_txrx_stats_req *req)
9759 {
9760 	QDF_STATUS status;
9761 	struct dp_pdev *pdev =
9762 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9763 						   pdev_id);
9764 
9765 	if (!pdev)
9766 		return QDF_STATUS_E_INVAL;
9767 
9768 	if (pdev->pending_fw_obss_stats_response)
9769 		return QDF_STATUS_E_AGAIN;
9770 
9771 	pdev->pending_fw_obss_stats_response = true;
9772 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9773 	req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
9774 	qdf_event_reset(&pdev->fw_obss_stats_event);
9775 	status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9776 					   req->param1, req->param2,
9777 					   req->param3, 0, req->cookie_val,
9778 					   req->mac_id);
9779 	if (QDF_IS_STATUS_ERROR(status)) {
9780 		pdev->pending_fw_obss_stats_response = false;
9781 		return status;
9782 	}
9783 	status =
9784 		qdf_wait_single_event(&pdev->fw_obss_stats_event,
9785 				      DP_MAX_SLEEP_TIME);
9786 
9787 	if (status != QDF_STATUS_SUCCESS) {
9788 		if (status == QDF_STATUS_E_TIMEOUT)
9789 			qdf_debug("TIMEOUT_OCCURS");
9790 		pdev->pending_fw_obss_stats_response = false;
9791 		return QDF_STATUS_E_TIMEOUT;
9792 	}
9793 	qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
9794 		     sizeof(struct cdp_pdev_obss_pd_stats_tlv));
9795 	pdev->pending_fw_obss_stats_response = false;
9796 	return status;
9797 }
9798 
9799 /**
9800  * dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
9801  * @soc: DP soc handle
9802  * @pdev_id: id of DP_PDEV handle
9803  * @req: Pointer to CDP TxRx stats request mac_id will be
9804  *	 pre-filled and should not be overwritten
9805  *
9806  * Return: status
9807  */
9808 static QDF_STATUS
9809 dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9810 			    struct cdp_txrx_stats_req *req)
9811 {
9812 	struct dp_pdev *pdev =
9813 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9814 						   pdev_id);
9815 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9816 
9817 	if (!pdev)
9818 		return QDF_STATUS_E_INVAL;
9819 
9820 	/*
9821 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9822 	 * from param0 to param3 according to below rule:
9823 	 *
9824 	 * PARAM:
9825 	 *   - config_param0 : start_offset (stats type)
9826 	 *   - config_param1 : stats bmask from start offset
9827 	 *   - config_param2 : stats bmask from start offset + 32
9828 	 *   - config_param3 : stats bmask from start offset + 64
9829 	 */
9830 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
9831 	req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9832 	req->param1 = 0x00000001;
9833 
9834 	return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9835 				  req->param1, req->param2, req->param3, 0,
9836 				cookie_val, req->mac_id);
9837 }
9838 
9839 /**
9840  * dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
9841  * @soc_handle: soc handle
9842  * @pdev_id: id of DP_PDEV handle
9843  * @map_id: ID of map that needs to be updated
9844  * @tos: index value in map
9845  * @tid: tid value passed by the user
9846  *
9847  * Return: QDF_STATUS
9848  */
9849 static QDF_STATUS
9850 dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
9851 			       uint8_t pdev_id,
9852 			       uint8_t map_id,
9853 			       uint8_t tos, uint8_t tid)
9854 {
9855 	uint8_t dscp;
9856 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9857 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
9858 
9859 	if (!pdev)
9860 		return QDF_STATUS_E_FAILURE;
9861 
9862 	dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
9863 	pdev->dscp_tid_map[map_id][dscp] = tid;
9864 
9865 	if (map_id < soc->num_hw_dscp_tid_map)
9866 		hal_tx_update_dscp_tid(soc->hal_soc, tid,
9867 				       map_id, dscp);
9868 	else
9869 		return QDF_STATUS_E_FAILURE;
9870 
9871 	return QDF_STATUS_SUCCESS;
9872 }
9873 
9874 #ifdef WLAN_SYSFS_DP_STATS
9875 /**
9876  * dp_sysfs_event_trigger() - Trigger event to wait for firmware
9877  * stats request response.
9878  * @soc: soc handle
9879  * @cookie_val: cookie value
9880  *
9881  * Return: QDF_STATUS
9882  */
9883 static QDF_STATUS
9884 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9885 {
9886 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9887 	/* wait for firmware response for sysfs stats request */
9888 	if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
9889 		if (!soc) {
9890 			dp_cdp_err("soc is NULL");
9891 			return QDF_STATUS_E_FAILURE;
9892 		}
9893 		/* wait for event completion */
9894 		status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
9895 					       WLAN_SYSFS_STAT_REQ_WAIT_MS);
9896 		if (status == QDF_STATUS_SUCCESS)
9897 			dp_cdp_info("sysfs_txrx_fw_request_done event completed");
9898 		else if (status == QDF_STATUS_E_TIMEOUT)
9899 			dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
9900 		else
9901 			dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
9902 	}
9903 
9904 	return status;
9905 }
9906 #else /* WLAN_SYSFS_DP_STATS */
9907 static QDF_STATUS
9908 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9909 {
9910 	return QDF_STATUS_SUCCESS;
9911 }
9912 #endif /* WLAN_SYSFS_DP_STATS */
9913 
9914 /**
9915  * dp_fw_stats_process() - Process TXRX FW stats request.
9916  * @vdev: DP VDEV handle
9917  * @req: stats request
9918  *
9919  * Return: QDF_STATUS
9920  */
9921 static QDF_STATUS
9922 dp_fw_stats_process(struct dp_vdev *vdev,
9923 		    struct cdp_txrx_stats_req *req)
9924 {
9925 	struct dp_pdev *pdev = NULL;
9926 	struct dp_soc *soc = NULL;
9927 	uint32_t stats = req->stats;
9928 	uint8_t mac_id = req->mac_id;
9929 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9930 
9931 	if (!vdev) {
9932 		DP_TRACE(NONE, "VDEV not found");
9933 		return QDF_STATUS_E_FAILURE;
9934 	}
9935 
9936 	pdev = vdev->pdev;
9937 	if (!pdev) {
9938 		DP_TRACE(NONE, "PDEV not found");
9939 		return QDF_STATUS_E_FAILURE;
9940 	}
9941 
9942 	soc = pdev->soc;
9943 	if (!soc) {
9944 		DP_TRACE(NONE, "soc not found");
9945 		return QDF_STATUS_E_FAILURE;
9946 	}
9947 
9948 	/* In case request is from host sysfs for displaying stats on console */
9949 	if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
9950 		cookie_val = DBG_SYSFS_STATS_COOKIE;
9951 
9952 	/*
9953 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9954 	 * from param0 to param3 according to below rule:
9955 	 *
9956 	 * PARAM:
9957 	 *   - config_param0 : start_offset (stats type)
9958 	 *   - config_param1 : stats bmask from start offset
9959 	 *   - config_param2 : stats bmask from start offset + 32
9960 	 *   - config_param3 : stats bmask from start offset + 64
9961 	 */
9962 	if (req->stats == CDP_TXRX_STATS_0) {
9963 		req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
9964 		req->param1 = 0xFFFFFFFF;
9965 		req->param2 = 0xFFFFFFFF;
9966 		req->param3 = 0xFFFFFFFF;
9967 	} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
9968 		req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
9969 	}
9970 
9971 	if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
9972 		dp_h2t_ext_stats_msg_send(pdev,
9973 					  HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
9974 					  req->param0, req->param1, req->param2,
9975 					  req->param3, 0, cookie_val,
9976 					  mac_id);
9977 	} else {
9978 		dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
9979 					  req->param1, req->param2, req->param3,
9980 					  0, cookie_val, mac_id);
9981 	}
9982 
9983 	dp_sysfs_event_trigger(soc, cookie_val);
9984 
9985 	return QDF_STATUS_SUCCESS;
9986 }
9987 
9988 /**
9989  * dp_txrx_stats_request - function to map to firmware and host stats
9990  * @soc_handle: soc handle
9991  * @vdev_id: virtual device ID
9992  * @req: stats request
9993  *
9994  * Return: QDF_STATUS
9995  */
9996 static
9997 QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
9998 				 uint8_t vdev_id,
9999 				 struct cdp_txrx_stats_req *req)
10000 {
10001 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
10002 	int host_stats;
10003 	int fw_stats;
10004 	enum cdp_stats stats;
10005 	int num_stats;
10006 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10007 						     DP_MOD_ID_CDP);
10008 	QDF_STATUS status = QDF_STATUS_E_INVAL;
10009 
10010 	if (!vdev || !req) {
10011 		dp_cdp_err("%pK: Invalid vdev/req instance", soc);
10012 		status = QDF_STATUS_E_INVAL;
10013 		goto fail0;
10014 	}
10015 
10016 	if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
10017 		dp_err("Invalid mac_id: %u request", req->mac_id);
10018 		status = QDF_STATUS_E_INVAL;
10019 		goto fail0;
10020 	}
10021 
10022 	stats = req->stats;
10023 	if (stats >= CDP_TXRX_MAX_STATS) {
10024 		status = QDF_STATUS_E_INVAL;
10025 		goto fail0;
10026 	}
10027 
10028 	/*
10029 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10030 	 *			has to be updated if new FW HTT stats added
10031 	 */
10032 	if (stats > CDP_TXRX_STATS_HTT_MAX)
10033 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10034 
10035 	num_stats  = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10036 
10037 	if (stats >= num_stats) {
10038 		dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
10039 		status = QDF_STATUS_E_INVAL;
10040 		goto fail0;
10041 	}
10042 
10043 	req->stats = stats;
10044 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10045 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10046 
10047 	dp_info("stats: %u fw_stats_type: %d host_stats: %d",
10048 		stats, fw_stats, host_stats);
10049 
10050 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10051 		/* update request with FW stats type */
10052 		req->stats = fw_stats;
10053 		status = dp_fw_stats_process(vdev, req);
10054 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10055 			(host_stats <= TXRX_HOST_STATS_MAX))
10056 		status = dp_print_host_stats(vdev, req, soc);
10057 	else
10058 		dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
10059 fail0:
10060 	if (vdev)
10061 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10062 	return status;
10063 }
10064 
10065 /**
10066  * dp_soc_notify_asserted_soc() - API to notify asserted soc info
10067  * @psoc: CDP soc handle
10068  *
10069  * Return: QDF_STATUS
10070  */
10071 static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
10072 {
10073 	struct dp_soc *soc = (struct dp_soc *)psoc;
10074 
10075 	if (!soc) {
10076 		dp_cdp_err("%pK: soc is NULL", soc);
10077 		return QDF_STATUS_E_INVAL;
10078 	}
10079 
10080 	return dp_umac_reset_notify_asserted_soc(soc);
10081 }
10082 
10083 /**
10084  * dp_txrx_dump_stats() -  Dump statistics
10085  * @psoc: CDP soc handle
10086  * @value: Statistics option
10087  * @level: verbosity level
10088  */
10089 static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
10090 				     enum qdf_stats_verbosity_level level)
10091 {
10092 	struct dp_soc *soc =
10093 		(struct dp_soc *)psoc;
10094 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10095 
10096 	if (!soc) {
10097 		dp_cdp_err("%pK: soc is NULL", soc);
10098 		return QDF_STATUS_E_INVAL;
10099 	}
10100 
10101 	switch (value) {
10102 	case CDP_TXRX_PATH_STATS:
10103 		dp_txrx_path_stats(soc);
10104 		dp_print_soc_interrupt_stats(soc);
10105 		dp_print_reg_write_stats(soc);
10106 		dp_pdev_print_tx_delay_stats(soc);
10107 		/* Dump usage watermark stats for core TX/RX SRNGs */
10108 		dp_dump_srng_high_wm_stats(soc, (1 << REO_DST));
10109 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10110 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10111 						CDP_FISA_STATS_ID_ERR_STATS);
10112 		break;
10113 
10114 	case CDP_RX_RING_STATS:
10115 		dp_print_per_ring_stats(soc);
10116 		break;
10117 
10118 	case CDP_TXRX_TSO_STATS:
10119 		dp_print_tso_stats(soc, level);
10120 		break;
10121 
10122 	case CDP_DUMP_TX_FLOW_POOL_INFO:
10123 		if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
10124 			cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
10125 		else
10126 			dp_tx_dump_flow_pool_info_compact(soc);
10127 		break;
10128 
10129 	case CDP_DP_NAPI_STATS:
10130 		dp_print_napi_stats(soc);
10131 		break;
10132 
10133 	case CDP_TXRX_DESC_STATS:
10134 		/* TODO: NOT IMPLEMENTED */
10135 		break;
10136 
10137 	case CDP_DP_RX_FISA_STATS:
10138 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10139 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10140 						CDP_FISA_STATS_ID_DUMP_SW_FST);
10141 		break;
10142 
10143 	case CDP_DP_SWLM_STATS:
10144 		dp_print_swlm_stats(soc);
10145 		break;
10146 
10147 	case CDP_DP_TX_HW_LATENCY_STATS:
10148 		dp_pdev_print_tx_delay_stats(soc);
10149 		break;
10150 
10151 	default:
10152 		status = QDF_STATUS_E_INVAL;
10153 		break;
10154 	}
10155 
10156 	return status;
10157 
10158 }
10159 
10160 #ifdef WLAN_SYSFS_DP_STATS
10161 static
10162 void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
10163 			    uint32_t *stat_type)
10164 {
10165 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10166 	*stat_type = soc->sysfs_config->stat_type_requested;
10167 	*mac_id   = soc->sysfs_config->mac_id;
10168 
10169 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10170 }
10171 
10172 static
10173 void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
10174 				       uint32_t curr_len,
10175 				       uint32_t max_buf_len,
10176 				       char *buf)
10177 {
10178 	qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
10179 	/* set sysfs_config parameters */
10180 	soc->sysfs_config->buf = buf;
10181 	soc->sysfs_config->curr_buffer_length = curr_len;
10182 	soc->sysfs_config->max_buffer_length = max_buf_len;
10183 	qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
10184 }
10185 
10186 static
10187 QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
10188 			       char *buf, uint32_t buf_size)
10189 {
10190 	uint32_t mac_id = 0;
10191 	uint32_t stat_type = 0;
10192 	uint32_t fw_stats = 0;
10193 	uint32_t host_stats = 0;
10194 	enum cdp_stats stats;
10195 	struct cdp_txrx_stats_req req;
10196 	uint32_t num_stats;
10197 	struct dp_soc *soc = NULL;
10198 
10199 	if (!soc_hdl) {
10200 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10201 		return QDF_STATUS_E_INVAL;
10202 	}
10203 
10204 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
10205 
10206 	if (!soc) {
10207 		dp_cdp_err("%pK: soc is NULL", soc);
10208 		return QDF_STATUS_E_INVAL;
10209 	}
10210 
10211 	dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
10212 
10213 	stats = stat_type;
10214 	if (stats >= CDP_TXRX_MAX_STATS) {
10215 		dp_cdp_info("sysfs stat type requested is invalid");
10216 		return QDF_STATUS_E_INVAL;
10217 	}
10218 	/*
10219 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10220 	 *			has to be updated if new FW HTT stats added
10221 	 */
10222 	if (stats > CDP_TXRX_MAX_STATS)
10223 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10224 
10225 	num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10226 
10227 	if (stats >= num_stats) {
10228 		dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
10229 				soc, stats, num_stats);
10230 		return QDF_STATUS_E_INVAL;
10231 	}
10232 
10233 	/* build request */
10234 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10235 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10236 
10237 	req.stats = stat_type;
10238 	req.mac_id = mac_id;
10239 	/* request stats to be printed */
10240 	qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
10241 
10242 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10243 		/* update request with FW stats type */
10244 		req.cookie_val = DBG_SYSFS_STATS_COOKIE;
10245 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10246 			(host_stats <= TXRX_HOST_STATS_MAX)) {
10247 		req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
10248 		soc->sysfs_config->process_id = qdf_get_current_pid();
10249 		soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
10250 	}
10251 
10252 	dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
10253 
10254 	dp_txrx_stats_request(soc_hdl, mac_id, &req);
10255 	soc->sysfs_config->process_id = 0;
10256 	soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
10257 
10258 	dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
10259 
10260 	qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
10261 	return QDF_STATUS_SUCCESS;
10262 }
10263 
10264 static
10265 QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
10266 				  uint32_t stat_type, uint32_t mac_id)
10267 {
10268 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10269 
10270 	if (!soc_hdl) {
10271 		dp_cdp_err("%pK: soc is NULL", soc);
10272 		return QDF_STATUS_E_INVAL;
10273 	}
10274 
10275 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10276 
10277 	soc->sysfs_config->stat_type_requested = stat_type;
10278 	soc->sysfs_config->mac_id = mac_id;
10279 
10280 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10281 
10282 	return QDF_STATUS_SUCCESS;
10283 }
10284 
10285 static
10286 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10287 {
10288 	struct dp_soc *soc;
10289 	QDF_STATUS status;
10290 
10291 	if (!soc_hdl) {
10292 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10293 		return QDF_STATUS_E_INVAL;
10294 	}
10295 
10296 	soc = soc_hdl;
10297 
10298 	soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
10299 	if (!soc->sysfs_config) {
10300 		dp_cdp_err("failed to allocate memory for sysfs_config no memory");
10301 		return QDF_STATUS_E_NOMEM;
10302 	}
10303 
10304 	status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10305 	/* create event for fw stats request from sysfs */
10306 	if (status != QDF_STATUS_SUCCESS) {
10307 		dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
10308 		qdf_mem_free(soc->sysfs_config);
10309 		soc->sysfs_config = NULL;
10310 		return QDF_STATUS_E_FAILURE;
10311 	}
10312 
10313 	qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
10314 	qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
10315 	qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
10316 
10317 	return QDF_STATUS_SUCCESS;
10318 }
10319 
10320 static
10321 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10322 {
10323 	struct dp_soc *soc;
10324 	QDF_STATUS status;
10325 
10326 	if (!soc_hdl) {
10327 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10328 		return QDF_STATUS_E_INVAL;
10329 	}
10330 
10331 	soc = soc_hdl;
10332 	if (!soc->sysfs_config) {
10333 		dp_cdp_err("soc->sysfs_config is NULL");
10334 		return QDF_STATUS_E_FAILURE;
10335 	}
10336 
10337 	status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10338 	if (status != QDF_STATUS_SUCCESS)
10339 		dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
10340 
10341 	qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
10342 	qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
10343 	qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
10344 
10345 	qdf_mem_free(soc->sysfs_config);
10346 
10347 	return QDF_STATUS_SUCCESS;
10348 }
10349 
10350 #else /* WLAN_SYSFS_DP_STATS */
10351 
10352 static
10353 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10354 {
10355 	return QDF_STATUS_SUCCESS;
10356 }
10357 
10358 static
10359 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10360 {
10361 	return QDF_STATUS_SUCCESS;
10362 }
10363 #endif /* WLAN_SYSFS_DP_STATS */
10364 
10365 /**
10366  * dp_txrx_clear_dump_stats() - clear dumpStats
10367  * @soc_hdl: soc handle
10368  * @pdev_id: pdev ID
10369  * @value: stats option
10370  *
10371  * Return: 0 - Success, non-zero - failure
10372  */
10373 static
10374 QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10375 				    uint8_t value)
10376 {
10377 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10378 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10379 
10380 	if (!soc) {
10381 		dp_err("soc is NULL");
10382 		return QDF_STATUS_E_INVAL;
10383 	}
10384 
10385 	switch (value) {
10386 	case CDP_TXRX_TSO_STATS:
10387 		dp_txrx_clear_tso_stats(soc);
10388 		break;
10389 
10390 	case CDP_DP_TX_HW_LATENCY_STATS:
10391 		dp_pdev_clear_tx_delay_stats(soc);
10392 		break;
10393 
10394 	default:
10395 		status = QDF_STATUS_E_INVAL;
10396 		break;
10397 	}
10398 
10399 	return status;
10400 }
10401 
10402 static QDF_STATUS
10403 dp_txrx_get_interface_stats(struct cdp_soc_t *soc_hdl,
10404 			    uint8_t vdev_id,
10405 			    void *buf,
10406 			    bool is_aggregate)
10407 {
10408 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10409 
10410 	if (soc && soc->arch_ops.dp_get_interface_stats)
10411 		return soc->arch_ops.dp_get_interface_stats(soc_hdl,
10412 							    vdev_id,
10413 							    buf,
10414 							    is_aggregate);
10415 	return QDF_STATUS_E_FAILURE;
10416 }
10417 
10418 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
10419 /**
10420  * dp_update_flow_control_parameters() - API to store datapath
10421  *                            config parameters
10422  * @soc: soc handle
10423  * @params: ini parameter handle
10424  *
10425  * Return: void
10426  */
10427 static inline
10428 void dp_update_flow_control_parameters(struct dp_soc *soc,
10429 				struct cdp_config_params *params)
10430 {
10431 	soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
10432 					params->tx_flow_stop_queue_threshold;
10433 	soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
10434 					params->tx_flow_start_queue_offset;
10435 }
10436 #else
10437 static inline
10438 void dp_update_flow_control_parameters(struct dp_soc *soc,
10439 				struct cdp_config_params *params)
10440 {
10441 }
10442 #endif
10443 
10444 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
10445 /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
10446 #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
10447 
10448 /* Max packet limit for RX REAP Loop (dp_rx_process) */
10449 #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
10450 
10451 static
10452 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10453 					struct cdp_config_params *params)
10454 {
10455 	soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
10456 				params->tx_comp_loop_pkt_limit;
10457 
10458 	if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
10459 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
10460 	else
10461 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
10462 
10463 	soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
10464 				params->rx_reap_loop_pkt_limit;
10465 
10466 	if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
10467 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
10468 	else
10469 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
10470 
10471 	soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
10472 				params->rx_hp_oos_update_limit;
10473 
10474 	dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
10475 		soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
10476 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
10477 		soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
10478 		soc->wlan_cfg_ctx->rx_enable_eol_data_check,
10479 		soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
10480 }
10481 
10482 #else
10483 static inline
10484 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10485 					struct cdp_config_params *params)
10486 { }
10487 
10488 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
10489 
10490 /**
10491  * dp_update_config_parameters() - API to store datapath
10492  *                            config parameters
10493  * @psoc: soc handle
10494  * @params: ini parameter handle
10495  *
10496  * Return: status
10497  */
10498 static
10499 QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
10500 				struct cdp_config_params *params)
10501 {
10502 	struct dp_soc *soc = (struct dp_soc *)psoc;
10503 
10504 	if (!(soc)) {
10505 		dp_cdp_err("%pK: Invalid handle", soc);
10506 		return QDF_STATUS_E_INVAL;
10507 	}
10508 
10509 	soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
10510 	soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
10511 	soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
10512 	soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
10513 				params->p2p_tcp_udp_checksumoffload;
10514 	soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
10515 				params->nan_tcp_udp_checksumoffload;
10516 	soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
10517 				params->tcp_udp_checksumoffload;
10518 	soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
10519 	soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
10520 	soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
10521 
10522 	dp_update_rx_soft_irq_limit_params(soc, params);
10523 	dp_update_flow_control_parameters(soc, params);
10524 
10525 	return QDF_STATUS_SUCCESS;
10526 }
10527 
10528 static struct cdp_wds_ops dp_ops_wds = {
10529 	.vdev_set_wds = dp_vdev_set_wds,
10530 #ifdef WDS_VENDOR_EXTENSION
10531 	.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
10532 	.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
10533 #endif
10534 };
10535 
10536 /**
10537  * dp_txrx_data_tx_cb_set() - set the callback for non standard tx
10538  * @soc_hdl: datapath soc handle
10539  * @vdev_id: virtual interface id
10540  * @callback: callback function
10541  * @ctxt: callback context
10542  *
10543  */
10544 static void
10545 dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10546 		       ol_txrx_data_tx_cb callback, void *ctxt)
10547 {
10548 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10549 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10550 						     DP_MOD_ID_CDP);
10551 
10552 	if (!vdev)
10553 		return;
10554 
10555 	vdev->tx_non_std_data_callback.func = callback;
10556 	vdev->tx_non_std_data_callback.ctxt = ctxt;
10557 
10558 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10559 }
10560 
10561 /**
10562  * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
10563  * @soc: datapath soc handle
10564  * @pdev_id: id of datapath pdev handle
10565  *
10566  * Return: opaque pointer to dp txrx handle
10567  */
10568 static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
10569 {
10570 	struct dp_pdev *pdev =
10571 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10572 						   pdev_id);
10573 	if (qdf_unlikely(!pdev))
10574 		return NULL;
10575 
10576 	return pdev->dp_txrx_handle;
10577 }
10578 
10579 /**
10580  * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
10581  * @soc: datapath soc handle
10582  * @pdev_id: id of datapath pdev handle
10583  * @dp_txrx_hdl: opaque pointer for dp_txrx_handle
10584  *
10585  * Return: void
10586  */
10587 static void
10588 dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
10589 			   void *dp_txrx_hdl)
10590 {
10591 	struct dp_pdev *pdev =
10592 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10593 						   pdev_id);
10594 
10595 	if (!pdev)
10596 		return;
10597 
10598 	pdev->dp_txrx_handle = dp_txrx_hdl;
10599 }
10600 
10601 /**
10602  * dp_vdev_get_dp_ext_handle() - get dp handle from vdev
10603  * @soc_hdl: datapath soc handle
10604  * @vdev_id: vdev id
10605  *
10606  * Return: opaque pointer to dp txrx handle
10607  */
10608 static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
10609 				       uint8_t vdev_id)
10610 {
10611 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10612 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10613 						     DP_MOD_ID_CDP);
10614 	void *dp_ext_handle;
10615 
10616 	if (!vdev)
10617 		return NULL;
10618 	dp_ext_handle = vdev->vdev_dp_ext_handle;
10619 
10620 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10621 	return dp_ext_handle;
10622 }
10623 
10624 /**
10625  * dp_vdev_set_dp_ext_handle() - set dp handle in vdev
10626  * @soc_hdl: datapath soc handle
10627  * @vdev_id: vdev id
10628  * @size: size of advance dp handle
10629  *
10630  * Return: QDF_STATUS
10631  */
10632 static QDF_STATUS
10633 dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
10634 			  uint16_t size)
10635 {
10636 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10637 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10638 						     DP_MOD_ID_CDP);
10639 	void *dp_ext_handle;
10640 
10641 	if (!vdev)
10642 		return QDF_STATUS_E_FAILURE;
10643 
10644 	dp_ext_handle = qdf_mem_malloc(size);
10645 
10646 	if (!dp_ext_handle) {
10647 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10648 		return QDF_STATUS_E_FAILURE;
10649 	}
10650 
10651 	vdev->vdev_dp_ext_handle = dp_ext_handle;
10652 
10653 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10654 	return QDF_STATUS_SUCCESS;
10655 }
10656 
10657 /**
10658  * dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
10659  *			      connection for this vdev
10660  * @soc_hdl: CDP soc handle
10661  * @vdev_id: vdev ID
10662  * @action: Add/Delete action
10663  *
10664  * Return: QDF_STATUS.
10665  */
10666 static QDF_STATUS
10667 dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10668 		       enum vdev_ll_conn_actions action)
10669 {
10670 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10671 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10672 						     DP_MOD_ID_CDP);
10673 
10674 	if (!vdev) {
10675 		dp_err("LL connection action for invalid vdev %d", vdev_id);
10676 		return QDF_STATUS_E_FAILURE;
10677 	}
10678 
10679 	switch (action) {
10680 	case CDP_VDEV_LL_CONN_ADD:
10681 		vdev->num_latency_critical_conn++;
10682 		break;
10683 
10684 	case CDP_VDEV_LL_CONN_DEL:
10685 		vdev->num_latency_critical_conn--;
10686 		break;
10687 
10688 	default:
10689 		dp_err("LL connection action invalid %d", action);
10690 		break;
10691 	}
10692 
10693 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10694 	return QDF_STATUS_SUCCESS;
10695 }
10696 
10697 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
10698 /**
10699  * dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
10700  * @soc_hdl: CDP Soc handle
10701  * @value: Enable/Disable value
10702  *
10703  * Return: QDF_STATUS
10704  */
10705 static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
10706 					 uint8_t value)
10707 {
10708 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10709 
10710 	if (!soc->swlm.is_init) {
10711 		dp_err("SWLM is not initialized");
10712 		return QDF_STATUS_E_FAILURE;
10713 	}
10714 
10715 	soc->swlm.is_enabled = !!value;
10716 
10717 	return QDF_STATUS_SUCCESS;
10718 }
10719 
10720 /**
10721  * dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
10722  * @soc_hdl: CDP Soc handle
10723  *
10724  * Return: QDF_STATUS
10725  */
10726 static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
10727 {
10728 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10729 
10730 	return soc->swlm.is_enabled;
10731 }
10732 #endif
10733 
10734 /**
10735  * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
10736  * @soc_handle: datapath soc handle
10737  *
10738  * Return: opaque pointer to external dp (non-core DP)
10739  */
10740 static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
10741 {
10742 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10743 
10744 	return soc->external_txrx_handle;
10745 }
10746 
10747 /**
10748  * dp_soc_set_dp_txrx_handle() - set external dp handle in soc
10749  * @soc_handle: datapath soc handle
10750  * @txrx_handle: opaque pointer to external dp (non-core DP)
10751  *
10752  * Return: void
10753  */
10754 static void
10755 dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
10756 {
10757 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10758 
10759 	soc->external_txrx_handle = txrx_handle;
10760 }
10761 
10762 /**
10763  * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
10764  * @soc_hdl: datapath soc handle
10765  * @pdev_id: id of the datapath pdev handle
10766  * @lmac_id: lmac id
10767  *
10768  * Return: QDF_STATUS
10769  */
10770 static QDF_STATUS
10771 dp_soc_map_pdev_to_lmac
10772 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10773 	 uint32_t lmac_id)
10774 {
10775 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10776 
10777 	wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
10778 				pdev_id,
10779 				lmac_id);
10780 
10781 	/*Set host PDEV ID for lmac_id*/
10782 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10783 			      pdev_id,
10784 			      lmac_id);
10785 
10786 	return QDF_STATUS_SUCCESS;
10787 }
10788 
10789 /**
10790  * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
10791  * @soc_hdl: datapath soc handle
10792  * @pdev_id: id of the datapath pdev handle
10793  * @lmac_id: lmac id
10794  *
10795  * In the event of a dynamic mode change, update the pdev to lmac mapping
10796  *
10797  * Return: QDF_STATUS
10798  */
10799 static QDF_STATUS
10800 dp_soc_handle_pdev_mode_change
10801 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10802 	 uint32_t lmac_id)
10803 {
10804 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10805 	struct dp_vdev *vdev = NULL;
10806 	uint8_t hw_pdev_id, mac_id;
10807 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
10808 								  pdev_id);
10809 	int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
10810 
10811 	if (qdf_unlikely(!pdev))
10812 		return QDF_STATUS_E_FAILURE;
10813 
10814 	pdev->lmac_id = lmac_id;
10815 	pdev->target_pdev_id =
10816 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
10817 	dp_info("mode change %d %d", pdev->pdev_id, pdev->lmac_id);
10818 
10819 	/*Set host PDEV ID for lmac_id*/
10820 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10821 			      pdev->pdev_id,
10822 			      lmac_id);
10823 
10824 	hw_pdev_id =
10825 		dp_get_target_pdev_id_for_host_pdev_id(soc,
10826 						       pdev->pdev_id);
10827 
10828 	/*
10829 	 * When NSS offload is enabled, send pdev_id->lmac_id
10830 	 * and pdev_id to hw_pdev_id to NSS FW
10831 	 */
10832 	if (nss_config) {
10833 		mac_id = pdev->lmac_id;
10834 		if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
10835 			soc->cdp_soc.ol_ops->
10836 				pdev_update_lmac_n_target_pdev_id(
10837 				soc->ctrl_psoc,
10838 				&pdev_id, &mac_id, &hw_pdev_id);
10839 	}
10840 
10841 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
10842 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10843 		DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
10844 					       hw_pdev_id);
10845 		vdev->lmac_id = pdev->lmac_id;
10846 	}
10847 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
10848 
10849 	return QDF_STATUS_SUCCESS;
10850 }
10851 
10852 /**
10853  * dp_soc_set_pdev_status_down() - set pdev down/up status
10854  * @soc: datapath soc handle
10855  * @pdev_id: id of datapath pdev handle
10856  * @is_pdev_down: pdev down/up status
10857  *
10858  * Return: QDF_STATUS
10859  */
10860 static QDF_STATUS
10861 dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
10862 			    bool is_pdev_down)
10863 {
10864 	struct dp_pdev *pdev =
10865 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10866 						   pdev_id);
10867 	if (!pdev)
10868 		return QDF_STATUS_E_FAILURE;
10869 
10870 	pdev->is_pdev_down = is_pdev_down;
10871 	return QDF_STATUS_SUCCESS;
10872 }
10873 
10874 /**
10875  * dp_get_cfg_capabilities() - get dp capabilities
10876  * @soc_handle: datapath soc handle
10877  * @dp_caps: enum for dp capabilities
10878  *
10879  * Return: bool to determine if dp caps is enabled
10880  */
10881 static bool
10882 dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
10883 			enum cdp_capabilities dp_caps)
10884 {
10885 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10886 
10887 	return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
10888 }
10889 
10890 #ifdef FEATURE_AST
10891 static QDF_STATUS
10892 dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10893 		       uint8_t *peer_mac)
10894 {
10895 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10896 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10897 	struct dp_peer *peer =
10898 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
10899 					       DP_MOD_ID_CDP);
10900 
10901 	/* Peer can be null for monitor vap mac address */
10902 	if (!peer) {
10903 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
10904 			  "%s: Invalid peer\n", __func__);
10905 		return QDF_STATUS_E_FAILURE;
10906 	}
10907 
10908 	dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
10909 
10910 	qdf_spin_lock_bh(&soc->ast_lock);
10911 	dp_peer_send_wds_disconnect(soc, peer);
10912 	dp_peer_delete_ast_entries(soc, peer);
10913 	qdf_spin_unlock_bh(&soc->ast_lock);
10914 
10915 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
10916 	return status;
10917 }
10918 #endif
10919 
10920 #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
10921 /**
10922  * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
10923  * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
10924  * @soc: cdp_soc handle
10925  * @pdev_id: id of cdp_pdev handle
10926  * @protocol_type: protocol type for which stats should be displayed
10927  *
10928  * Return: none
10929  */
10930 static inline void
10931 dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t  *soc, uint8_t pdev_id,
10932 				   uint16_t protocol_type)
10933 {
10934 }
10935 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
10936 
10937 #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
10938 /**
10939  * dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
10940  * applied to the desired protocol type packets
10941  * @soc: soc handle
10942  * @pdev_id: id of cdp_pdev handle
10943  * @enable_rx_protocol_tag: bitmask that indicates what protocol types
10944  * are enabled for tagging. zero indicates disable feature, non-zero indicates
10945  * enable feature
10946  * @protocol_type: new protocol type for which the tag is being added
10947  * @tag: user configured tag for the new protocol
10948  *
10949  * Return: Success
10950  */
10951 static inline QDF_STATUS
10952 dp_update_pdev_rx_protocol_tag(struct cdp_soc_t  *soc, uint8_t pdev_id,
10953 			       uint32_t enable_rx_protocol_tag,
10954 			       uint16_t protocol_type,
10955 			       uint16_t tag)
10956 {
10957 	return QDF_STATUS_SUCCESS;
10958 }
10959 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
10960 
10961 #ifndef WLAN_SUPPORT_RX_FLOW_TAG
10962 /**
10963  * dp_set_rx_flow_tag() - add/delete a flow
10964  * @cdp_soc: CDP soc handle
10965  * @pdev_id: id of cdp_pdev handle
10966  * @flow_info: flow tuple that is to be added to/deleted from flow search table
10967  *
10968  * Return: Success
10969  */
10970 static inline QDF_STATUS
10971 dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
10972 		   struct cdp_rx_flow_info *flow_info)
10973 {
10974 	return QDF_STATUS_SUCCESS;
10975 }
10976 /**
10977  * dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
10978  * given flow 5-tuple
10979  * @cdp_soc: soc handle
10980  * @pdev_id: id of cdp_pdev handle
10981  * @flow_info: flow 5-tuple for which stats should be displayed
10982  *
10983  * Return: Success
10984  */
10985 static inline QDF_STATUS
10986 dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
10987 			  struct cdp_rx_flow_info *flow_info)
10988 {
10989 	return QDF_STATUS_SUCCESS;
10990 }
10991 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
10992 
10993 static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t  *soc_hdl,
10994 					   uint32_t max_peers,
10995 					   uint32_t max_ast_index,
10996 					   uint8_t peer_map_unmap_versions)
10997 {
10998 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10999 	QDF_STATUS status;
11000 
11001 	soc->max_peers = max_peers;
11002 
11003 	wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
11004 
11005 	status = soc->arch_ops.txrx_peer_map_attach(soc);
11006 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11007 		dp_err("failure in allocating peer tables");
11008 		return QDF_STATUS_E_FAILURE;
11009 	}
11010 
11011 	dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u",
11012 		max_peers, soc->max_peer_id, max_ast_index);
11013 
11014 	status = dp_peer_find_attach(soc);
11015 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11016 		dp_err("Peer find attach failure");
11017 		goto fail;
11018 	}
11019 
11020 	soc->peer_map_unmap_versions = peer_map_unmap_versions;
11021 	soc->peer_map_attach_success = TRUE;
11022 
11023 	return QDF_STATUS_SUCCESS;
11024 fail:
11025 	soc->arch_ops.txrx_peer_map_detach(soc);
11026 
11027 	return status;
11028 }
11029 
11030 static QDF_STATUS dp_soc_set_param(struct cdp_soc_t  *soc_hdl,
11031 				   enum cdp_soc_param_t param,
11032 				   uint32_t value)
11033 {
11034 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11035 
11036 	switch (param) {
11037 	case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
11038 		soc->num_msdu_exception_desc = value;
11039 		dp_info("num_msdu exception_desc %u",
11040 			value);
11041 		break;
11042 	case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
11043 		if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
11044 			soc->fst_in_cmem = !!value;
11045 		dp_info("FW supports CMEM FSE %u", value);
11046 		break;
11047 	case DP_SOC_PARAM_MAX_AST_AGEOUT:
11048 		soc->max_ast_ageout_count = value;
11049 		dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
11050 		break;
11051 	case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
11052 		soc->eapol_over_control_port = value;
11053 		dp_info("Eapol over control_port:%d",
11054 			soc->eapol_over_control_port);
11055 		break;
11056 	case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
11057 		soc->multi_peer_grp_cmd_supported = value;
11058 		dp_info("Multi Peer group command support:%d",
11059 			soc->multi_peer_grp_cmd_supported);
11060 		break;
11061 	case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
11062 		soc->features.rssi_dbm_conv_support = value;
11063 		dp_info("Rssi dbm conversion support:%u",
11064 			soc->features.rssi_dbm_conv_support);
11065 		break;
11066 	case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
11067 		soc->features.umac_hw_reset_support = value;
11068 		dp_info("UMAC HW reset support :%u",
11069 			soc->features.umac_hw_reset_support);
11070 		break;
11071 	default:
11072 		dp_info("not handled param %d ", param);
11073 		break;
11074 	}
11075 
11076 	return QDF_STATUS_SUCCESS;
11077 }
11078 
11079 static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
11080 				      void *stats_ctx)
11081 {
11082 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11083 
11084 	soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
11085 }
11086 
11087 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11088 /**
11089  * dp_peer_flush_rate_stats_req() - Flush peer rate stats
11090  * @soc: Datapath SOC handle
11091  * @peer: Datapath peer
11092  * @arg: argument to iter function
11093  *
11094  * Return: QDF_STATUS
11095  */
11096 static void
11097 dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
11098 			     void *arg)
11099 {
11100 	/* Skip self peer */
11101 	if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
11102 			 QDF_MAC_ADDR_SIZE))
11103 		return;
11104 
11105 	dp_wdi_event_handler(
11106 		WDI_EVENT_FLUSH_RATE_STATS_REQ,
11107 		soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
11108 		peer->peer_id,
11109 		WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11110 }
11111 
11112 /**
11113  * dp_flush_rate_stats_req() - Flush peer rate stats in pdev
11114  * @soc_hdl: Datapath SOC handle
11115  * @pdev_id: pdev_id
11116  *
11117  * Return: QDF_STATUS
11118  */
11119 static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11120 					  uint8_t pdev_id)
11121 {
11122 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11123 	struct dp_pdev *pdev =
11124 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11125 						   pdev_id);
11126 	if (!pdev)
11127 		return QDF_STATUS_E_FAILURE;
11128 
11129 	dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
11130 			     DP_MOD_ID_CDP);
11131 
11132 	return QDF_STATUS_SUCCESS;
11133 }
11134 #else
11135 static inline QDF_STATUS
11136 dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11137 			uint8_t pdev_id)
11138 {
11139 	return QDF_STATUS_SUCCESS;
11140 }
11141 #endif
11142 
11143 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11144 #ifdef WLAN_FEATURE_11BE_MLO
11145 /**
11146  * dp_get_peer_extd_rate_link_stats() - function to get peer
11147  *				extended rate and link stats
11148  * @soc_hdl: dp soc handler
11149  * @mac_addr: mac address of peer
11150  *
11151  * Return: QDF_STATUS
11152  */
11153 static QDF_STATUS
11154 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11155 {
11156 	uint8_t i;
11157 	struct dp_peer *link_peer;
11158 	struct dp_soc *link_peer_soc;
11159 	struct dp_mld_link_peers link_peers_info;
11160 	struct dp_peer *peer = NULL;
11161 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11162 	struct cdp_peer_info peer_info = { 0 };
11163 
11164 	if (!mac_addr) {
11165 		dp_err("NULL peer mac addr");
11166 		return QDF_STATUS_E_FAILURE;
11167 	}
11168 
11169 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
11170 				 CDP_WILD_PEER_TYPE);
11171 
11172 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
11173 	if (!peer) {
11174 		dp_err("Peer is NULL");
11175 		return QDF_STATUS_E_FAILURE;
11176 	}
11177 
11178 	if (IS_MLO_DP_MLD_PEER(peer)) {
11179 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
11180 						    &link_peers_info,
11181 						    DP_MOD_ID_CDP);
11182 		for (i = 0; i < link_peers_info.num_links; i++) {
11183 			link_peer = link_peers_info.link_peers[i];
11184 			link_peer_soc = link_peer->vdev->pdev->soc;
11185 			dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
11186 					     link_peer_soc,
11187 					     dp_monitor_peer_get_peerstats_ctx
11188 					     (link_peer_soc, link_peer),
11189 					     link_peer->peer_id,
11190 					     WDI_NO_VAL,
11191 					     link_peer->vdev->pdev->pdev_id);
11192 		}
11193 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
11194 	} else {
11195 		dp_wdi_event_handler(
11196 				WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11197 				dp_monitor_peer_get_peerstats_ctx(soc, peer),
11198 				peer->peer_id,
11199 				WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11200 	}
11201 
11202 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11203 	return QDF_STATUS_SUCCESS;
11204 }
11205 #else
11206 static QDF_STATUS
11207 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11208 {
11209 	struct dp_peer *peer = NULL;
11210 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11211 
11212 	if (!mac_addr) {
11213 		dp_err("NULL peer mac addr");
11214 		return QDF_STATUS_E_FAILURE;
11215 	}
11216 
11217 	peer = dp_peer_find_hash_find(soc, mac_addr, 0,
11218 				      DP_VDEV_ALL, DP_MOD_ID_CDP);
11219 	if (!peer) {
11220 		dp_err("Peer is NULL");
11221 		return QDF_STATUS_E_FAILURE;
11222 	}
11223 
11224 	dp_wdi_event_handler(
11225 			WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11226 			dp_monitor_peer_get_peerstats_ctx(soc, peer),
11227 			peer->peer_id,
11228 			WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11229 
11230 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11231 	return QDF_STATUS_SUCCESS;
11232 }
11233 #endif
11234 #else
11235 static inline QDF_STATUS
11236 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11237 {
11238 	return QDF_STATUS_SUCCESS;
11239 }
11240 #endif
11241 
11242 static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
11243 				       uint8_t vdev_id,
11244 				       uint8_t *mac_addr)
11245 {
11246 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11247 	struct dp_peer *peer;
11248 	void *peerstats_ctx = NULL;
11249 
11250 	if (mac_addr) {
11251 		peer = dp_peer_find_hash_find(soc, mac_addr,
11252 					      0, vdev_id,
11253 					      DP_MOD_ID_CDP);
11254 		if (!peer)
11255 			return NULL;
11256 
11257 		if (!IS_MLO_DP_MLD_PEER(peer))
11258 			peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
11259 									  peer);
11260 
11261 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11262 	}
11263 
11264 	return peerstats_ctx;
11265 }
11266 
11267 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11268 static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11269 					   uint8_t pdev_id,
11270 					   void *buf)
11271 {
11272 	 dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
11273 			      (struct dp_soc *)soc, buf, HTT_INVALID_PEER,
11274 			      WDI_NO_VAL, pdev_id);
11275 	return QDF_STATUS_SUCCESS;
11276 }
11277 #else
11278 static inline QDF_STATUS
11279 dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11280 			 uint8_t pdev_id,
11281 			 void *buf)
11282 {
11283 	return QDF_STATUS_SUCCESS;
11284 }
11285 #endif
11286 
11287 static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
11288 {
11289 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11290 
11291 	return soc->rate_stats_ctx;
11292 }
11293 
11294 /**
11295  * dp_get_cfg() - get dp cfg
11296  * @soc: cdp soc handle
11297  * @cfg: cfg enum
11298  *
11299  * Return: cfg value
11300  */
11301 static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
11302 {
11303 	struct dp_soc *dpsoc = (struct dp_soc *)soc;
11304 	uint32_t value = 0;
11305 
11306 	switch (cfg) {
11307 	case cfg_dp_enable_data_stall:
11308 		value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
11309 		break;
11310 	case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
11311 		value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
11312 		break;
11313 	case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
11314 		value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
11315 		break;
11316 	case cfg_dp_enable_ip_tcp_udp_checksum_offload:
11317 		value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
11318 		break;
11319 	case cfg_dp_disable_legacy_mode_csum_offload:
11320 		value = dpsoc->wlan_cfg_ctx->
11321 					legacy_mode_checksumoffload_disable;
11322 		break;
11323 	case cfg_dp_tso_enable:
11324 		value = dpsoc->wlan_cfg_ctx->tso_enabled;
11325 		break;
11326 	case cfg_dp_lro_enable:
11327 		value = dpsoc->wlan_cfg_ctx->lro_enabled;
11328 		break;
11329 	case cfg_dp_gro_enable:
11330 		value = dpsoc->wlan_cfg_ctx->gro_enabled;
11331 		break;
11332 	case cfg_dp_tc_based_dyn_gro_enable:
11333 		value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
11334 		break;
11335 	case cfg_dp_tc_ingress_prio:
11336 		value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
11337 		break;
11338 	case cfg_dp_sg_enable:
11339 		value = dpsoc->wlan_cfg_ctx->sg_enabled;
11340 		break;
11341 	case cfg_dp_tx_flow_start_queue_offset:
11342 		value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
11343 		break;
11344 	case cfg_dp_tx_flow_stop_queue_threshold:
11345 		value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
11346 		break;
11347 	case cfg_dp_disable_intra_bss_fwd:
11348 		value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
11349 		break;
11350 	case cfg_dp_pktlog_buffer_size:
11351 		value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
11352 		break;
11353 	case cfg_dp_wow_check_rx_pending:
11354 		value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
11355 		break;
11356 	case cfg_dp_local_pkt_capture:
11357 		value = wlan_cfg_get_local_pkt_capture(dpsoc->wlan_cfg_ctx);
11358 		break;
11359 	default:
11360 		value =  0;
11361 	}
11362 
11363 	return value;
11364 }
11365 
11366 #ifdef PEER_FLOW_CONTROL
11367 /**
11368  * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
11369  * @soc_handle: datapath soc handle
11370  * @pdev_id: id of datapath pdev handle
11371  * @param: ol ath params
11372  * @value: value of the flag
11373  * @buff: Buffer to be passed
11374  *
11375  * Implemented this function same as legacy function. In legacy code, single
11376  * function is used to display stats and update pdev params.
11377  *
11378  * Return: 0 for success. nonzero for failure.
11379  */
11380 static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
11381 					       uint8_t pdev_id,
11382 					       enum _dp_param_t param,
11383 					       uint32_t value, void *buff)
11384 {
11385 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11386 	struct dp_pdev *pdev =
11387 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11388 						   pdev_id);
11389 
11390 	if (qdf_unlikely(!pdev))
11391 		return 1;
11392 
11393 	soc = pdev->soc;
11394 	if (!soc)
11395 		return 1;
11396 
11397 	switch (param) {
11398 #ifdef QCA_ENH_V3_STATS_SUPPORT
11399 	case DP_PARAM_VIDEO_DELAY_STATS_FC:
11400 		if (value)
11401 			pdev->delay_stats_flag = true;
11402 		else
11403 			pdev->delay_stats_flag = false;
11404 		break;
11405 	case DP_PARAM_VIDEO_STATS_FC:
11406 		qdf_print("------- TID Stats ------\n");
11407 		dp_pdev_print_tid_stats(pdev);
11408 		qdf_print("------ Delay Stats ------\n");
11409 		dp_pdev_print_delay_stats(pdev);
11410 		qdf_print("------ Rx Error Stats ------\n");
11411 		dp_pdev_print_rx_error_stats(pdev);
11412 		break;
11413 #endif
11414 	case DP_PARAM_TOTAL_Q_SIZE:
11415 		{
11416 			uint32_t tx_min, tx_max;
11417 
11418 			tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
11419 			tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
11420 
11421 			if (!buff) {
11422 				if ((value >= tx_min) && (value <= tx_max)) {
11423 					pdev->num_tx_allowed = value;
11424 				} else {
11425 					dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
11426 						   soc, tx_min, tx_max);
11427 					break;
11428 				}
11429 			} else {
11430 				*(int *)buff = pdev->num_tx_allowed;
11431 			}
11432 		}
11433 		break;
11434 	default:
11435 		dp_tx_info("%pK: not handled param %d ", soc, param);
11436 		break;
11437 	}
11438 
11439 	return 0;
11440 }
11441 #endif
11442 
11443 #ifdef DP_UMAC_HW_RESET_SUPPORT
11444 /**
11445  * dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
11446  * @soc: dp soc handle
11447  *
11448  * Return: void
11449  */
11450 static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
11451 {
11452 	struct dp_intr_bkp *intr_bkp;
11453 	struct dp_intr *intr_ctx;
11454 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11455 	int i;
11456 
11457 	intr_bkp =
11458 	(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
11459 			num_ctxt);
11460 
11461 	qdf_assert_always(intr_bkp);
11462 
11463 	soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
11464 	for (i = 0; i < num_ctxt; i++) {
11465 		intr_ctx = &soc->intr_ctx[i];
11466 
11467 		intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
11468 		intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
11469 		intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
11470 		intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
11471 		intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
11472 		intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
11473 		intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
11474 		intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
11475 		intr_bkp->host2rxdma_mon_ring_mask =
11476 					intr_ctx->host2rxdma_mon_ring_mask;
11477 		intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
11478 
11479 		intr_ctx->tx_ring_mask = 0;
11480 		intr_ctx->rx_ring_mask = 0;
11481 		intr_ctx->rx_mon_ring_mask = 0;
11482 		intr_ctx->rx_err_ring_mask = 0;
11483 		intr_ctx->rx_wbm_rel_ring_mask = 0;
11484 		intr_ctx->reo_status_ring_mask = 0;
11485 		intr_ctx->rxdma2host_ring_mask = 0;
11486 		intr_ctx->host2rxdma_ring_mask = 0;
11487 		intr_ctx->host2rxdma_mon_ring_mask = 0;
11488 		intr_ctx->tx_mon_ring_mask = 0;
11489 
11490 		intr_bkp++;
11491 	}
11492 }
11493 
11494 /**
11495  * dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
11496  * @soc: dp soc handle
11497  *
11498  * Return: void
11499  */
11500 static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
11501 {
11502 	struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
11503 	struct dp_intr_bkp *intr_bkp_base = intr_bkp;
11504 	struct dp_intr *intr_ctx;
11505 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11506 	int i;
11507 
11508 	if (!intr_bkp)
11509 		return;
11510 
11511 	for (i = 0; i < num_ctxt; i++) {
11512 		intr_ctx = &soc->intr_ctx[i];
11513 
11514 		intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
11515 		intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
11516 		intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
11517 		intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
11518 		intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
11519 		intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
11520 		intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
11521 		intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
11522 		intr_ctx->host2rxdma_mon_ring_mask =
11523 			intr_bkp->host2rxdma_mon_ring_mask;
11524 		intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
11525 
11526 		intr_bkp++;
11527 	}
11528 
11529 	qdf_mem_free(intr_bkp_base);
11530 	soc->umac_reset_ctx.intr_ctx_bkp = NULL;
11531 }
11532 
11533 /**
11534  * dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
11535  * @soc: dp soc handle
11536  *
11537  * Return: void
11538  */
11539 static void dp_resume_tx_hardstart(struct dp_soc *soc)
11540 {
11541 	struct dp_vdev *vdev;
11542 	struct ol_txrx_hardtart_ctxt ctxt = {0};
11543 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11544 	int i;
11545 
11546 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11547 		struct dp_pdev *pdev = soc->pdev_list[i];
11548 
11549 		if (!pdev)
11550 			continue;
11551 
11552 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11553 			uint8_t vdev_id = vdev->vdev_id;
11554 
11555 			dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
11556 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11557 								    vdev_id,
11558 								    &ctxt);
11559 		}
11560 	}
11561 }
11562 
11563 /**
11564  * dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
11565  * @soc: dp soc handle
11566  *
11567  * Return: void
11568  */
11569 static void dp_pause_tx_hardstart(struct dp_soc *soc)
11570 {
11571 	struct dp_vdev *vdev;
11572 	struct ol_txrx_hardtart_ctxt ctxt;
11573 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11574 	int i;
11575 
11576 	ctxt.tx = &dp_tx_drop;
11577 	ctxt.tx_fast = &dp_tx_drop;
11578 	ctxt.tx_exception = &dp_tx_exc_drop;
11579 
11580 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11581 		struct dp_pdev *pdev = soc->pdev_list[i];
11582 
11583 		if (!pdev)
11584 			continue;
11585 
11586 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11587 			uint8_t vdev_id = vdev->vdev_id;
11588 
11589 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11590 								    vdev_id,
11591 								    &ctxt);
11592 		}
11593 	}
11594 }
11595 
11596 /**
11597  * dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
11598  * @soc: dp soc handle
11599  *
11600  * Return: void
11601  */
11602 static inline
11603 void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11604 {
11605 	soc->notify_fw_callback = NULL;
11606 }
11607 
11608 /**
11609  * dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
11610  * @soc: dp soc handle
11611  *
11612  * Return: void
11613  */
11614 static inline
11615 void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
11616 {
11617 	/* Some Cpu(s) is processing the umac rings*/
11618 	if (soc->service_rings_running)
11619 		return;
11620 
11621 	/* Notify the firmware that Umac pre reset is complete */
11622 	dp_umac_reset_notify_action_completion(soc,
11623 					       UMAC_RESET_ACTION_DO_PRE_RESET);
11624 
11625 	/* Unregister the callback */
11626 	dp_unregister_notify_umac_pre_reset_fw_callback(soc);
11627 }
11628 
11629 /**
11630  * dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
11631  * @soc: dp soc handle
11632  *
11633  * Return: void
11634  */
11635 static inline
11636 void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11637 {
11638 	soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
11639 }
11640 
11641 #ifdef DP_UMAC_HW_HARD_RESET
11642 /**
11643  * dp_set_umac_regs() - Reinitialize host umac registers
11644  * @soc: dp soc handle
11645  *
11646  * Return: void
11647  */
11648 static void dp_set_umac_regs(struct dp_soc *soc)
11649 {
11650 	int i;
11651 	struct hal_reo_params reo_params;
11652 
11653 	qdf_mem_zero(&reo_params, sizeof(reo_params));
11654 
11655 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
11656 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
11657 						   &reo_params.remap1,
11658 						   &reo_params.remap2))
11659 			reo_params.rx_hash_enabled = true;
11660 		else
11661 			reo_params.rx_hash_enabled = false;
11662 	}
11663 
11664 	reo_params.reo_qref = &soc->reo_qref;
11665 	hal_reo_setup(soc->hal_soc, &reo_params, 0);
11666 
11667 	soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
11668 
11669 	for (i = 0; i < PCP_TID_MAP_MAX; i++)
11670 		hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
11671 
11672 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11673 		struct dp_vdev *vdev = NULL;
11674 		struct dp_pdev *pdev = soc->pdev_list[i];
11675 
11676 		if (!pdev)
11677 			continue;
11678 
11679 		for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
11680 			hal_tx_set_dscp_tid_map(soc->hal_soc,
11681 						pdev->dscp_tid_map[i], i);
11682 
11683 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11684 			soc->arch_ops.dp_bank_reconfig(soc, vdev);
11685 			soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
11686 								      vdev);
11687 		}
11688 	}
11689 }
11690 #else
11691 static void dp_set_umac_regs(struct dp_soc *soc)
11692 {
11693 }
11694 #endif
11695 
11696 /**
11697  * dp_reinit_rings() - Reinitialize host managed rings
11698  * @soc: dp soc handle
11699  *
11700  * Return: QDF_STATUS
11701  */
11702 static void dp_reinit_rings(struct dp_soc *soc)
11703 {
11704 	unsigned long end;
11705 
11706 	dp_soc_srng_deinit(soc);
11707 	dp_hw_link_desc_ring_deinit(soc);
11708 
11709 	/* Busy wait for 2 ms to make sure the rings are in idle state
11710 	 * before we enable them again
11711 	 */
11712 	end = jiffies + msecs_to_jiffies(2);
11713 	while (time_before(jiffies, end))
11714 		;
11715 
11716 	dp_hw_link_desc_ring_init(soc);
11717 	dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
11718 	dp_soc_srng_init(soc);
11719 }
11720 
11721 /**
11722  * dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
11723  * @soc: dp soc handle
11724  *
11725  * Return: QDF_STATUS
11726  */
11727 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
11728 {
11729 	enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
11730 
11731 	return dp_umac_reset_notify_action_completion(soc, action);
11732 }
11733 
11734 #ifdef WLAN_SUPPORT_PPEDS
11735 /**
11736  * dp_umac_reset_service_handle_n_notify_done()
11737  *	Handle Umac pre reset for direct switch
11738  * @soc: dp soc handle
11739  *
11740  * Return: QDF_STATUS
11741  */
11742 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11743 {
11744 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11745 	    !soc->arch_ops.txrx_soc_ppeds_service_status_update ||
11746 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
11747 		goto non_ppeds;
11748 
11749 	/*
11750 	 * Check if ppeds is enabled on SoC.
11751 	 */
11752 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11753 		goto non_ppeds;
11754 
11755 	/*
11756 	 * Start the UMAC pre reset done service.
11757 	 */
11758 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
11759 
11760 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11761 
11762 	soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
11763 
11764 	dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
11765 
11766 	/*
11767 	 * UMAC pre reset service complete
11768 	 */
11769 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
11770 
11771 	soc->umac_reset_ctx.nbuf_list = NULL;
11772 	return QDF_STATUS_SUCCESS;
11773 
11774 non_ppeds:
11775 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11776 	dp_check_n_notify_umac_prereset_done(soc);
11777 	soc->umac_reset_ctx.nbuf_list = NULL;
11778 	return QDF_STATUS_SUCCESS;
11779 }
11780 
11781 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11782 							 qdf_nbuf_t *nbuf_list)
11783 {
11784 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11785 	    !soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
11786 		return;
11787 
11788 	/*
11789 	 * Deinit of PPEDS Tx desc rings.
11790 	 */
11791 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11792 		soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
11793 }
11794 
11795 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11796 {
11797 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11798 	    !soc->arch_ops.txrx_soc_ppeds_start ||
11799 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_start)
11800 		return;
11801 
11802 	/*
11803 	 * Start PPEDS node and enable interrupt.
11804 	 */
11805 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
11806 		soc->arch_ops.txrx_soc_ppeds_start(soc);
11807 		soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
11808 	}
11809 }
11810 #else
11811 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11812 {
11813 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11814 	dp_check_n_notify_umac_prereset_done(soc);
11815 	soc->umac_reset_ctx.nbuf_list = NULL;
11816 	return QDF_STATUS_SUCCESS;
11817 }
11818 
11819 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11820 							 qdf_nbuf_t *nbuf_list)
11821 {
11822 }
11823 
11824 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11825 {
11826 }
11827 #endif
11828 
11829 /**
11830  * dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
11831  * @soc: dp soc handle
11832  *
11833  * Return: QDF_STATUS
11834  */
11835 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
11836 {
11837 	dp_reset_interrupt_ring_masks(soc);
11838 
11839 	dp_pause_tx_hardstart(soc);
11840 	dp_pause_reo_send_cmd(soc);
11841 	dp_umac_reset_service_handle_n_notify_done(soc);
11842 	return QDF_STATUS_SUCCESS;
11843 }
11844 
11845 /**
11846  * dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
11847  * @soc: dp soc handle
11848  *
11849  * Return: QDF_STATUS
11850  */
11851 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
11852 {
11853 	if (!soc->umac_reset_ctx.skel_enable) {
11854 		qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
11855 
11856 		dp_set_umac_regs(soc);
11857 
11858 		dp_reinit_rings(soc);
11859 
11860 		dp_rx_desc_reuse(soc, nbuf_list);
11861 
11862 		dp_cleanup_reo_cmd_module(soc);
11863 
11864 		dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
11865 
11866 		dp_tx_desc_pool_cleanup(soc, nbuf_list);
11867 
11868 		dp_reset_tid_q_setup(soc);
11869 	}
11870 
11871 	return dp_umac_reset_notify_action_completion(soc,
11872 					UMAC_RESET_ACTION_DO_POST_RESET_START);
11873 }
11874 
11875 /**
11876  * dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
11877  *						interrupt from FW
11878  * @soc: dp soc handle
11879  *
11880  * Return: QDF_STATUS
11881  */
11882 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
11883 {
11884 	QDF_STATUS status;
11885 	qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
11886 
11887 	soc->umac_reset_ctx.nbuf_list = NULL;
11888 
11889 	dp_resume_reo_send_cmd(soc);
11890 
11891 	dp_umac_reset_ppeds_start(soc);
11892 
11893 	dp_restore_interrupt_ring_masks(soc);
11894 
11895 	dp_resume_tx_hardstart(soc);
11896 
11897 	status = dp_umac_reset_notify_action_completion(soc,
11898 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
11899 
11900 	while (nbuf_list) {
11901 		qdf_nbuf_t nbuf = nbuf_list->next;
11902 
11903 		qdf_nbuf_free(nbuf_list);
11904 		nbuf_list = nbuf;
11905 	}
11906 
11907 	dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
11908 			   "trigger done : %u us prereset : %u us\n"
11909 			   "postreset : %u us \n postreset complete: %u us \n",
11910 			   soc,
11911 			   soc->umac_reset_ctx.ts.trigger_done -
11912 			   soc->umac_reset_ctx.ts.trigger_start,
11913 			   soc->umac_reset_ctx.ts.pre_reset_done -
11914 			   soc->umac_reset_ctx.ts.pre_reset_start,
11915 			   soc->umac_reset_ctx.ts.post_reset_done -
11916 			   soc->umac_reset_ctx.ts.post_reset_start,
11917 			   soc->umac_reset_ctx.ts.post_reset_complete_done -
11918 			   soc->umac_reset_ctx.ts.post_reset_complete_start);
11919 
11920 	return status;
11921 }
11922 #endif
11923 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
11924 static void
11925 dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
11926 {
11927 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11928 
11929 	soc->wlan_cfg_ctx->pkt_capture_mode = val;
11930 }
11931 #endif
11932 
11933 #ifdef HW_TX_DELAY_STATS_ENABLE
11934 /**
11935  * dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
11936  * @soc_hdl: DP soc handle
11937  * @vdev_id: vdev id
11938  * @value: value
11939  *
11940  * Return: None
11941  */
11942 static void
11943 dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
11944 				      uint8_t vdev_id,
11945 				      uint8_t value)
11946 {
11947 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11948 	struct dp_vdev *vdev = NULL;
11949 
11950 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11951 	if (!vdev)
11952 		return;
11953 
11954 	vdev->hw_tx_delay_stats_enabled = value;
11955 
11956 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11957 }
11958 
11959 /**
11960  * dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
11961  * @soc_hdl: DP soc handle
11962  * @vdev_id: vdev id
11963  *
11964  * Return: 1 if enabled, 0 if disabled
11965  */
11966 static uint8_t
11967 dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
11968 				     uint8_t vdev_id)
11969 {
11970 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11971 	struct dp_vdev *vdev;
11972 	uint8_t ret_val = 0;
11973 
11974 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11975 	if (!vdev)
11976 		return ret_val;
11977 
11978 	ret_val = vdev->hw_tx_delay_stats_enabled;
11979 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11980 
11981 	return ret_val;
11982 }
11983 #endif
11984 
11985 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
11986 static void
11987 dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
11988 			     uint8_t vdev_id,
11989 			     bool mlo_peers_only)
11990 {
11991 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
11992 	struct dp_vdev *vdev;
11993 
11994 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11995 
11996 	if (!vdev)
11997 		return;
11998 
11999 	dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
12000 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12001 }
12002 #endif
12003 #ifdef QCA_GET_TSF_VIA_REG
12004 /**
12005  * dp_get_tsf_time() - get tsf time
12006  * @soc_hdl: Datapath soc handle
12007  * @tsf_id: TSF identifier
12008  * @mac_id: mac_id
12009  * @tsf: pointer to update tsf value
12010  * @tsf_sync_soc_time: pointer to update tsf sync time
12011  *
12012  * Return: None.
12013  */
12014 static inline void
12015 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12016 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12017 {
12018 	hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
12019 			 tsf, tsf_sync_soc_time);
12020 }
12021 #else
12022 static inline void
12023 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12024 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12025 {
12026 }
12027 #endif
12028 
12029 /**
12030  * dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
12031  * @soc_hdl: Datapath soc handle
12032  * @mac_id: mac_id
12033  * @value: pointer to update tsf2 offset value
12034  *
12035  * Return: None.
12036  */
12037 static inline void
12038 dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
12039 			uint64_t *value)
12040 {
12041 	hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
12042 }
12043 
12044 /**
12045  * dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
12046  * @soc_hdl: Datapath soc handle
12047  * @value: pointer to update tqm offset value
12048  *
12049  * Return: None.
12050  */
12051 static inline void
12052 dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
12053 {
12054 	hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
12055 }
12056 
12057 /**
12058  * dp_set_tx_pause() - Pause or resume tx path
12059  * @soc_hdl: Datapath soc handle
12060  * @flag: set or clear is_tx_pause
12061  *
12062  * Return: None.
12063  */
12064 static inline
12065 void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
12066 {
12067 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12068 
12069 	soc->is_tx_pause = flag;
12070 }
12071 
12072 static inline uint64_t dp_rx_fisa_get_cmem_base(struct cdp_soc_t *soc_hdl,
12073 						uint64_t size)
12074 {
12075 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12076 
12077 	if (soc->arch_ops.dp_get_fst_cmem_base)
12078 		return soc->arch_ops.dp_get_fst_cmem_base(soc, size);
12079 
12080 	return 0;
12081 }
12082 
12083 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
12084 /**
12085  * dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
12086  *                                      ILP configuration
12087  * @soc_hdl: CDP SOC handle
12088  * @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
12089  * @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
12090  *
12091  * This function will check: (a) TX ILP INI configuration,
12092  * (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
12093  * only if both (a) and (b) condition is met, then TX ILP feature is
12094  * considered to be enabled.
12095  *
12096  * Return: Final updated TX ILP enable result in dp_soc,
12097  *         true is enabled, false is not
12098  */
12099 static
12100 bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
12101 				      uint8_t num_msdu_idx_map,
12102 				      uint8_t *msdu_idx_map_arr)
12103 {
12104 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12105 	bool enable_tx_ilp = false;
12106 
12107 	/**
12108 	 * Check INI configuration firstly, if it's disabled,
12109 	 * then keep feature disabled.
12110 	 */
12111 	if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
12112 		dp_info("TX ILP INI is disabled already");
12113 		goto update_tx_ilp;
12114 	}
12115 
12116 	/* Check if the msdu index to qtype map table is valid */
12117 	if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
12118 		dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
12119 			num_msdu_idx_map, msdu_idx_map_arr);
12120 		goto update_tx_ilp;
12121 	}
12122 
12123 	dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
12124 		HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
12125 		msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
12126 
12127 	if (HTT_MSDU_QTYPE_USER_SPECIFIED ==
12128 	    msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
12129 		enable_tx_ilp = true;
12130 
12131 update_tx_ilp:
12132 	soc->tx_ilp_enable = enable_tx_ilp;
12133 	dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
12134 
12135 	return soc->tx_ilp_enable;
12136 }
12137 #endif
12138 
12139 static struct cdp_cmn_ops dp_ops_cmn = {
12140 	.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
12141 	.txrx_vdev_attach = dp_vdev_attach_wifi3,
12142 	.txrx_vdev_detach = dp_vdev_detach_wifi3,
12143 	.txrx_pdev_attach = dp_pdev_attach_wifi3,
12144 	.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
12145 	.txrx_pdev_detach = dp_pdev_detach_wifi3,
12146 	.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
12147 	.txrx_peer_create = dp_peer_create_wifi3,
12148 	.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
12149 #ifdef FEATURE_AST
12150 	.txrx_peer_teardown = dp_peer_teardown_wifi3,
12151 #else
12152 	.txrx_peer_teardown = NULL,
12153 #endif
12154 	.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
12155 	.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
12156 	.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
12157 	.txrx_peer_get_ast_info_by_pdev =
12158 		dp_peer_get_ast_info_by_pdevid_wifi3,
12159 	.txrx_peer_ast_delete_by_soc =
12160 		dp_peer_ast_entry_del_by_soc,
12161 	.txrx_peer_ast_delete_by_pdev =
12162 		dp_peer_ast_entry_del_by_pdev,
12163 	.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
12164 	.txrx_peer_delete = dp_peer_delete_wifi3,
12165 #ifdef DP_RX_UDP_OVER_PEER_ROAM
12166 	.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
12167 #endif
12168 	.txrx_vdev_register = dp_vdev_register_wifi3,
12169 	.txrx_soc_detach = dp_soc_detach_wifi3,
12170 	.txrx_soc_deinit = dp_soc_deinit_wifi3,
12171 	.txrx_soc_init = dp_soc_init_wifi3,
12172 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12173 	.txrx_tso_soc_attach = dp_tso_soc_attach,
12174 	.txrx_tso_soc_detach = dp_tso_soc_detach,
12175 	.tx_send = dp_tx_send,
12176 	.tx_send_exc = dp_tx_send_exception,
12177 #endif
12178 	.set_tx_pause = dp_set_tx_pause,
12179 	.txrx_pdev_init = dp_pdev_init_wifi3,
12180 	.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
12181 	.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
12182 	.txrx_ath_getstats = dp_get_device_stats,
12183 #ifndef WLAN_SOFTUMAC_SUPPORT
12184 	.addba_requestprocess = dp_addba_requestprocess_wifi3,
12185 	.addba_responsesetup = dp_addba_responsesetup_wifi3,
12186 	.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
12187 	.delba_process = dp_delba_process_wifi3,
12188 	.set_addba_response = dp_set_addba_response,
12189 	.flush_cache_rx_queue = NULL,
12190 	.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
12191 #endif
12192 	/* TODO: get API's for dscp-tid need to be added*/
12193 	.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
12194 	.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
12195 	.txrx_get_total_per = dp_get_total_per,
12196 	.txrx_stats_request = dp_txrx_stats_request,
12197 	.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
12198 	.display_stats = dp_txrx_dump_stats,
12199 	.notify_asserted_soc = dp_soc_notify_asserted_soc,
12200 	.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
12201 	.txrx_intr_detach = dp_soc_interrupt_detach_wrapper,
12202 	.txrx_ppeds_stop = dp_soc_ppeds_stop,
12203 	.set_key_sec_type = dp_set_key_sec_type_wifi3,
12204 	.update_config_parameters = dp_update_config_parameters,
12205 	/* TODO: Add other functions */
12206 	.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
12207 	.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
12208 	.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
12209 	.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
12210 	.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
12211 	.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
12212 	.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
12213 	.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
12214 	.handle_mode_change = dp_soc_handle_pdev_mode_change,
12215 	.set_pdev_status_down = dp_soc_set_pdev_status_down,
12216 	.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
12217 	.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
12218 	.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
12219 	.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
12220 	.set_soc_param = dp_soc_set_param,
12221 	.txrx_get_os_rx_handles_from_vdev =
12222 					dp_get_os_rx_handles_from_vdev_wifi3,
12223 #ifndef WLAN_SOFTUMAC_SUPPORT
12224 	.set_pn_check = dp_set_pn_check_wifi3,
12225 	.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
12226 	.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
12227 	.delba_tx_completion = dp_delba_tx_completion_wifi3,
12228 	.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
12229 	.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
12230 #endif
12231 	.get_dp_capabilities = dp_get_cfg_capabilities,
12232 	.txrx_get_cfg = dp_get_cfg,
12233 	.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
12234 	.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
12235 	.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
12236 	.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
12237 	.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
12238 
12239 	.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
12240 #ifdef QCA_MULTIPASS_SUPPORT
12241 	.set_vlan_groupkey = dp_set_vlan_groupkey,
12242 #endif
12243 	.get_peer_mac_list = dp_get_peer_mac_list,
12244 	.get_peer_id = dp_get_peer_id,
12245 #ifdef QCA_SUPPORT_WDS_EXTENDED
12246 	.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
12247 	.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
12248 #endif /* QCA_SUPPORT_WDS_EXTENDED */
12249 
12250 #if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
12251 	.txrx_drain = dp_drain_txrx,
12252 #endif
12253 #if defined(FEATURE_RUNTIME_PM)
12254 	.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
12255 #endif
12256 #ifdef WLAN_SYSFS_DP_STATS
12257 	.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
12258 	.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
12259 #endif /* WLAN_SYSFS_DP_STATS */
12260 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
12261 	.set_pkt_capture_mode = dp_set_pkt_capture_mode,
12262 #endif
12263 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12264 	.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
12265 #endif
12266 	.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
12267 	.txrx_umac_reset_init = dp_soc_umac_reset_init,
12268 	.txrx_get_tsf_time = dp_get_tsf_time,
12269 	.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
12270 	.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
12271 #ifdef WLAN_SUPPORT_RX_FISA
12272 	.get_fst_cmem_base = dp_rx_fisa_get_cmem_base,
12273 #endif
12274 };
12275 
12276 static struct cdp_ctrl_ops dp_ops_ctrl = {
12277 	.txrx_peer_authorize = dp_peer_authorize,
12278 	.txrx_peer_get_authorize = dp_peer_get_authorize,
12279 #ifdef VDEV_PEER_PROTOCOL_COUNT
12280 	.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
12281 	.txrx_set_peer_protocol_drop_mask =
12282 		dp_enable_vdev_peer_protocol_drop_mask,
12283 	.txrx_is_peer_protocol_count_enabled =
12284 		dp_is_vdev_peer_protocol_count_enabled,
12285 	.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
12286 #endif
12287 	.txrx_set_vdev_param = dp_set_vdev_param_wrapper,
12288 	.txrx_set_psoc_param = dp_set_psoc_param,
12289 	.txrx_get_psoc_param = dp_get_psoc_param,
12290 #ifndef WLAN_SOFTUMAC_SUPPORT
12291 	.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
12292 	.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
12293 #endif
12294 	.txrx_get_sec_type = dp_get_sec_type,
12295 	.txrx_wdi_event_sub = dp_wdi_event_sub,
12296 	.txrx_wdi_event_unsub = dp_wdi_event_unsub,
12297 	.txrx_set_pdev_param = dp_set_pdev_param,
12298 	.txrx_get_pdev_param = dp_get_pdev_param,
12299 #ifdef WLAN_FEATURE_11BE_MLO
12300 	.txrx_set_peer_param = dp_set_peer_param_wrapper,
12301 #else
12302 	.txrx_set_peer_param = dp_set_peer_param,
12303 #endif
12304 	.txrx_get_peer_param = dp_get_peer_param,
12305 #ifdef VDEV_PEER_PROTOCOL_COUNT
12306 	.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
12307 #endif
12308 #ifdef WLAN_SUPPORT_MSCS
12309 	.txrx_record_mscs_params = dp_record_mscs_params,
12310 #endif
12311 	.set_key = dp_set_michael_key,
12312 	.txrx_get_vdev_param = dp_get_vdev_param,
12313 	.calculate_delay_stats = dp_calculate_delay_stats,
12314 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
12315 	.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
12316 #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
12317 	.txrx_dump_pdev_rx_protocol_tag_stats =
12318 				dp_dump_pdev_rx_protocol_tag_stats,
12319 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
12320 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
12321 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12322 	.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
12323 	.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
12324 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
12325 #ifdef QCA_MULTIPASS_SUPPORT
12326 	.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
12327 #endif /*QCA_MULTIPASS_SUPPORT*/
12328 #if defined(WLAN_FEATURE_TSF_UPLINK_DELAY) || defined(WLAN_CONFIG_TX_DELAY)
12329 	.txrx_set_delta_tsf = dp_set_delta_tsf,
12330 #endif
12331 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
12332 	.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
12333 	.txrx_get_uplink_delay = dp_get_uplink_delay,
12334 #endif
12335 #ifdef QCA_UNDECODED_METADATA_SUPPORT
12336 	.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
12337 	.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
12338 #endif
12339 	.txrx_peer_flush_frags = dp_peer_flush_frags,
12340 #ifdef DP_UMAC_HW_RESET_SUPPORT
12341 	.get_umac_reset_in_progress_state = dp_get_umac_reset_in_progress_state,
12342 #endif
12343 #ifdef WLAN_SUPPORT_RX_FISA
12344 	.txrx_fisa_config = dp_fisa_config,
12345 #endif
12346 };
12347 
12348 static struct cdp_me_ops dp_ops_me = {
12349 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12350 #ifdef ATH_SUPPORT_IQUE
12351 	.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
12352 	.tx_me_free_descriptor = dp_tx_me_free_descriptor,
12353 	.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
12354 #endif
12355 #endif
12356 };
12357 
12358 static struct cdp_host_stats_ops dp_ops_host_stats = {
12359 	.txrx_per_peer_stats = dp_get_host_peer_stats,
12360 	.get_fw_peer_stats = dp_get_fw_peer_stats,
12361 	.get_htt_stats = dp_get_htt_stats,
12362 	.txrx_stats_publish = dp_txrx_stats_publish,
12363 	.txrx_get_vdev_stats  = dp_txrx_get_vdev_stats,
12364 	.txrx_get_peer_stats = dp_txrx_get_peer_stats,
12365 	.txrx_get_peer_stats_based_on_peer_type =
12366 			dp_txrx_get_peer_stats_based_on_peer_type,
12367 	.txrx_get_soc_stats = dp_txrx_get_soc_stats,
12368 	.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
12369 	.txrx_get_per_link_stats = dp_txrx_get_per_link_peer_stats,
12370 	.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
12371 	.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
12372 #if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
12373 	.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
12374 	.txrx_get_vdev_stats  = dp_ipa_txrx_get_vdev_stats,
12375 	.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
12376 #endif
12377 	.txrx_get_ratekbps = dp_txrx_get_ratekbps,
12378 	.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
12379 	.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
12380 	.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
12381 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
12382 	.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
12383 	.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
12384 #endif
12385 #ifdef WLAN_TX_PKT_CAPTURE_ENH
12386 	.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
12387 	.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
12388 #endif /* WLAN_TX_PKT_CAPTURE_ENH */
12389 #ifdef HW_TX_DELAY_STATS_ENABLE
12390 	.enable_disable_vdev_tx_delay_stats =
12391 				dp_enable_disable_vdev_tx_delay_stats,
12392 	.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
12393 #endif
12394 	.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
12395 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
12396 	.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
12397 	.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
12398 	.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
12399 	.txrx_peer_deter_stats = dp_get_peer_deter_stats,
12400 	.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
12401 #endif
12402 	.txrx_get_peer_extd_rate_link_stats =
12403 					dp_get_peer_extd_rate_link_stats,
12404 	.get_pdev_obss_stats = dp_get_obss_stats,
12405 	.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
12406 	.txrx_get_interface_stats  = dp_txrx_get_interface_stats,
12407 	/* TODO */
12408 };
12409 
12410 static struct cdp_raw_ops dp_ops_raw = {
12411 	/* TODO */
12412 };
12413 
12414 #ifdef PEER_FLOW_CONTROL
12415 static struct cdp_pflow_ops dp_ops_pflow = {
12416 	dp_tx_flow_ctrl_configure_pdev,
12417 };
12418 #endif
12419 
12420 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
12421 static struct cdp_cfr_ops dp_ops_cfr = {
12422 	.txrx_get_cfr_rcc = dp_get_cfr_rcc,
12423 	.txrx_set_cfr_rcc = dp_set_cfr_rcc,
12424 	.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
12425 	.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
12426 };
12427 #endif
12428 
12429 #ifdef WLAN_SUPPORT_MSCS
12430 static struct cdp_mscs_ops dp_ops_mscs = {
12431 	.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
12432 };
12433 #endif
12434 
12435 #ifdef WLAN_SUPPORT_MESH_LATENCY
12436 static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
12437 	.mesh_latency_update_peer_parameter =
12438 		dp_mesh_latency_update_peer_parameter,
12439 };
12440 #endif
12441 
12442 #ifdef WLAN_SUPPORT_SCS
12443 static struct cdp_scs_ops dp_ops_scs = {
12444 	.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
12445 };
12446 #endif
12447 
12448 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12449 static struct cdp_fse_ops dp_ops_fse = {
12450 	.fse_rule_add = dp_rx_sfe_add_flow_entry,
12451 	.fse_rule_delete = dp_rx_sfe_delete_flow_entry,
12452 };
12453 #endif
12454 
12455 #ifdef CONFIG_SAWF_DEF_QUEUES
12456 static struct cdp_sawf_ops dp_ops_sawf = {
12457 	.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
12458 	.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
12459 	.sawf_def_queues_get_map_report =
12460 		dp_sawf_def_queues_get_map_report,
12461 #ifdef CONFIG_SAWF_STATS
12462 	.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
12463 	.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
12464 	.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
12465 	.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
12466 	.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
12467 	.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
12468 	.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
12469 	.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
12470 	.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
12471 	.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
12472 	.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
12473 	.peer_config_ul = dp_sawf_peer_config_ul,
12474 	.swaf_peer_sla_configuration = dp_swaf_peer_sla_configuration,
12475 	.sawf_peer_flow_count = dp_sawf_peer_flow_count,
12476 #endif
12477 };
12478 #endif
12479 
12480 #ifdef DP_TX_TRACKING
12481 
12482 #define DP_TX_COMP_MAX_LATENCY_MS 60000
12483 /**
12484  * dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
12485  * @tx_desc: tx descriptor
12486  *
12487  * Calculate time latency for tx completion per pkt and trigger self recovery
12488  * when the delay is more than threshold value.
12489  *
12490  * Return: True if delay is more than threshold
12491  */
12492 static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
12493 {
12494 	uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
12495 	qdf_ktime_t current_time = qdf_ktime_real_get();
12496 	qdf_ktime_t timestamp = tx_desc->timestamp;
12497 
12498 	if (dp_tx_pkt_tracepoints_enabled()) {
12499 		if (!timestamp)
12500 			return false;
12501 
12502 		time_latency = qdf_ktime_to_ms(current_time) -
12503 				qdf_ktime_to_ms(timestamp);
12504 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12505 			dp_err_rl("enqueued: %llu ms, current : %llu ms",
12506 				  timestamp, current_time);
12507 			return true;
12508 		}
12509 	} else {
12510 		if (!timestamp_tick)
12511 			return false;
12512 
12513 		current_time = qdf_system_ticks();
12514 		time_latency = qdf_system_ticks_to_msecs(current_time -
12515 							 timestamp_tick);
12516 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12517 			dp_err_rl("enqueued: %u ms, current : %u ms",
12518 				  qdf_system_ticks_to_msecs(timestamp_tick),
12519 				  qdf_system_ticks_to_msecs(current_time));
12520 			return true;
12521 		}
12522 	}
12523 
12524 	return false;
12525 }
12526 
12527 void dp_find_missing_tx_comp(struct dp_soc *soc)
12528 {
12529 	uint8_t i;
12530 	uint32_t j;
12531 	uint32_t num_desc, page_id, offset;
12532 	uint16_t num_desc_per_page;
12533 	struct dp_tx_desc_s *tx_desc = NULL;
12534 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
12535 
12536 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
12537 		tx_desc_pool = &soc->tx_desc[i];
12538 		if (!(tx_desc_pool->pool_size) ||
12539 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
12540 		    !(tx_desc_pool->desc_pages.cacheable_pages))
12541 			continue;
12542 
12543 		num_desc = tx_desc_pool->pool_size;
12544 		num_desc_per_page =
12545 			tx_desc_pool->desc_pages.num_element_per_page;
12546 		for (j = 0; j < num_desc; j++) {
12547 			page_id = j / num_desc_per_page;
12548 			offset = j % num_desc_per_page;
12549 
12550 			if (qdf_unlikely(!(tx_desc_pool->
12551 					 desc_pages.cacheable_pages)))
12552 				break;
12553 
12554 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
12555 			if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
12556 				continue;
12557 			} else if (tx_desc->magic ==
12558 				   DP_TX_MAGIC_PATTERN_INUSE) {
12559 				if (dp_tx_comp_delay_check(tx_desc)) {
12560 					dp_err_rl("Tx completion not rcvd for id: %u",
12561 						  tx_desc->id);
12562 					if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
12563 						tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
12564 						dp_err_rl("Freed tx_desc %u",
12565 							  tx_desc->id);
12566 						dp_tx_comp_free_buf(soc,
12567 								    tx_desc,
12568 								    false);
12569 						dp_tx_desc_release(soc, tx_desc,
12570 								   i);
12571 						DP_STATS_INC(soc,
12572 							     tx.tx_comp_force_freed, 1);
12573 					}
12574 				}
12575 			} else {
12576 				dp_err_rl("tx desc %u corrupted, flags: 0x%x",
12577 					  tx_desc->id, tx_desc->flags);
12578 			}
12579 		}
12580 	}
12581 }
12582 #else
12583 inline void dp_find_missing_tx_comp(struct dp_soc *soc)
12584 {
12585 }
12586 #endif
12587 
12588 #ifdef FEATURE_RUNTIME_PM
12589 /**
12590  * dp_runtime_suspend() - ensure DP is ready to runtime suspend
12591  * @soc_hdl: Datapath soc handle
12592  * @pdev_id: id of data path pdev handle
12593  *
12594  * DP is ready to runtime suspend if there are no pending TX packets.
12595  *
12596  * Return: QDF_STATUS
12597  */
12598 static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12599 {
12600 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12601 	struct dp_pdev *pdev;
12602 	int32_t tx_pending;
12603 
12604 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12605 	if (!pdev) {
12606 		dp_err("pdev is NULL");
12607 		return QDF_STATUS_E_INVAL;
12608 	}
12609 
12610 	/* Abort if there are any pending TX packets */
12611 	tx_pending = dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev));
12612 	if (tx_pending) {
12613 		dp_info_rl("%pK: Abort suspend due to pending TX packets %d",
12614 			   soc, tx_pending);
12615 		dp_find_missing_tx_comp(soc);
12616 		/* perform a force flush if tx is pending */
12617 		soc->arch_ops.dp_update_ring_hptp(soc, true);
12618 		qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12619 
12620 		return QDF_STATUS_E_AGAIN;
12621 	}
12622 
12623 	if (dp_runtime_get_refcount(soc)) {
12624 		dp_init_info("refcount: %d", dp_runtime_get_refcount(soc));
12625 
12626 		return QDF_STATUS_E_AGAIN;
12627 	}
12628 
12629 	if (soc->intr_mode == DP_INTR_POLL)
12630 		qdf_timer_stop(&soc->int_timer);
12631 
12632 	return QDF_STATUS_SUCCESS;
12633 }
12634 
12635 #define DP_FLUSH_WAIT_CNT 10
12636 #define DP_RUNTIME_SUSPEND_WAIT_MS 10
12637 /**
12638  * dp_runtime_resume() - ensure DP is ready to runtime resume
12639  * @soc_hdl: Datapath soc handle
12640  * @pdev_id: id of data path pdev handle
12641  *
12642  * Resume DP for runtime PM.
12643  *
12644  * Return: QDF_STATUS
12645  */
12646 static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12647 {
12648 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12649 	int suspend_wait = 0;
12650 
12651 	if (soc->intr_mode == DP_INTR_POLL)
12652 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
12653 
12654 	/*
12655 	 * Wait until dp runtime refcount becomes zero or time out, then flush
12656 	 * pending tx for runtime suspend.
12657 	 */
12658 	while (dp_runtime_get_refcount(soc) &&
12659 	       suspend_wait < DP_FLUSH_WAIT_CNT) {
12660 		qdf_sleep(DP_RUNTIME_SUSPEND_WAIT_MS);
12661 		suspend_wait++;
12662 	}
12663 
12664 	soc->arch_ops.dp_update_ring_hptp(soc, false);
12665 	qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12666 
12667 	return QDF_STATUS_SUCCESS;
12668 }
12669 #endif /* FEATURE_RUNTIME_PM */
12670 
12671 /**
12672  * dp_tx_get_success_ack_stats() - get tx success completion count
12673  * @soc_hdl: Datapath soc handle
12674  * @vdev_id: vdev identifier
12675  *
12676  * Return: tx success ack count
12677  */
12678 static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
12679 					    uint8_t vdev_id)
12680 {
12681 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12682 	struct cdp_vdev_stats *vdev_stats = NULL;
12683 	uint32_t tx_success;
12684 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
12685 						     DP_MOD_ID_CDP);
12686 
12687 	if (!vdev) {
12688 		dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
12689 		return 0;
12690 	}
12691 
12692 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
12693 	if (!vdev_stats) {
12694 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
12695 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12696 		return 0;
12697 	}
12698 
12699 	dp_aggregate_vdev_stats(vdev, vdev_stats);
12700 
12701 	tx_success = vdev_stats->tx.tx_success.num;
12702 	qdf_mem_free(vdev_stats);
12703 
12704 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12705 	return tx_success;
12706 }
12707 
12708 #ifdef WLAN_SUPPORT_DATA_STALL
12709 /**
12710  * dp_register_data_stall_detect_cb() - register data stall callback
12711  * @soc_hdl: Datapath soc handle
12712  * @pdev_id: id of data path pdev handle
12713  * @data_stall_detect_callback: data stall callback function
12714  *
12715  * Return: QDF_STATUS Enumeration
12716  */
12717 static
12718 QDF_STATUS dp_register_data_stall_detect_cb(
12719 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12720 			data_stall_detect_cb data_stall_detect_callback)
12721 {
12722 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12723 	struct dp_pdev *pdev;
12724 
12725 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12726 	if (!pdev) {
12727 		dp_err("pdev NULL!");
12728 		return QDF_STATUS_E_INVAL;
12729 	}
12730 
12731 	pdev->data_stall_detect_callback = data_stall_detect_callback;
12732 	return QDF_STATUS_SUCCESS;
12733 }
12734 
12735 /**
12736  * dp_deregister_data_stall_detect_cb() - de-register data stall callback
12737  * @soc_hdl: Datapath soc handle
12738  * @pdev_id: id of data path pdev handle
12739  * @data_stall_detect_callback: data stall callback function
12740  *
12741  * Return: QDF_STATUS Enumeration
12742  */
12743 static
12744 QDF_STATUS dp_deregister_data_stall_detect_cb(
12745 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12746 			data_stall_detect_cb data_stall_detect_callback)
12747 {
12748 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12749 	struct dp_pdev *pdev;
12750 
12751 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12752 	if (!pdev) {
12753 		dp_err("pdev NULL!");
12754 		return QDF_STATUS_E_INVAL;
12755 	}
12756 
12757 	pdev->data_stall_detect_callback = NULL;
12758 	return QDF_STATUS_SUCCESS;
12759 }
12760 
12761 /**
12762  * dp_txrx_post_data_stall_event() - post data stall event
12763  * @soc_hdl: Datapath soc handle
12764  * @indicator: Module triggering data stall
12765  * @data_stall_type: data stall event type
12766  * @pdev_id: pdev id
12767  * @vdev_id_bitmap: vdev id bitmap
12768  * @recovery_type: data stall recovery type
12769  *
12770  * Return: None
12771  */
12772 static void
12773 dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
12774 			      enum data_stall_log_event_indicator indicator,
12775 			      enum data_stall_log_event_type data_stall_type,
12776 			      uint32_t pdev_id, uint32_t vdev_id_bitmap,
12777 			      enum data_stall_log_recovery_type recovery_type)
12778 {
12779 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12780 	struct data_stall_event_info data_stall_info;
12781 	struct dp_pdev *pdev;
12782 
12783 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12784 	if (!pdev) {
12785 		dp_err("pdev NULL!");
12786 		return;
12787 	}
12788 
12789 	if (!pdev->data_stall_detect_callback) {
12790 		dp_err("data stall cb not registered!");
12791 		return;
12792 	}
12793 
12794 	dp_info("data_stall_type: %x pdev_id: %d",
12795 		data_stall_type, pdev_id);
12796 
12797 	data_stall_info.indicator = indicator;
12798 	data_stall_info.data_stall_type = data_stall_type;
12799 	data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
12800 	data_stall_info.pdev_id = pdev_id;
12801 	data_stall_info.recovery_type = recovery_type;
12802 
12803 	pdev->data_stall_detect_callback(&data_stall_info);
12804 }
12805 #endif /* WLAN_SUPPORT_DATA_STALL */
12806 
12807 #ifdef WLAN_FEATURE_STATS_EXT
12808 /**
12809  * dp_txrx_ext_stats_request() - request dp txrx extended stats request
12810  * @soc_hdl: soc handle
12811  * @pdev_id: pdev id
12812  * @req: stats request
12813  *
12814  * Return: QDF_STATUS
12815  */
12816 static QDF_STATUS
12817 dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12818 			  struct cdp_txrx_ext_stats *req)
12819 {
12820 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
12821 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12822 	int i = 0;
12823 	int tcl_ring_full = 0;
12824 
12825 	if (!pdev) {
12826 		dp_err("pdev is null");
12827 		return QDF_STATUS_E_INVAL;
12828 	}
12829 
12830 	dp_aggregate_pdev_stats(pdev);
12831 
12832 	for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
12833 		tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
12834 
12835 	req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
12836 	req->tx_msdu_overflow = tcl_ring_full;
12837 	/* Error rate at LMAC */
12838 	req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
12839 				pdev->stats.err.fw_reported_rxdma_error;
12840 	/* only count error source from RXDMA */
12841 	req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
12842 
12843 	/* Error rate at above the MAC */
12844 	req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
12845 	req->rx_mpdu_missed = pdev->stats.err.reo_error;
12846 
12847 	dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
12848 		"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
12849 		"rx_mpdu_missed = %u, rx_mpdu_error = %u",
12850 		req->tx_msdu_enqueue,
12851 		req->tx_msdu_overflow,
12852 		req->rx_mpdu_received,
12853 		req->rx_mpdu_delivered,
12854 		req->rx_mpdu_missed,
12855 		req->rx_mpdu_error);
12856 
12857 	return QDF_STATUS_SUCCESS;
12858 }
12859 
12860 #endif /* WLAN_FEATURE_STATS_EXT */
12861 
12862 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
12863 /**
12864  * dp_mark_first_wakeup_packet() - set flag to indicate that
12865  *    fw is compatible for marking first packet after wow wakeup
12866  * @soc_hdl: Datapath soc handle
12867  * @pdev_id: id of data path pdev handle
12868  * @value: 1 for enabled/ 0 for disabled
12869  *
12870  * Return: None
12871  */
12872 static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
12873 					uint8_t pdev_id, uint8_t value)
12874 {
12875 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12876 	struct dp_pdev *pdev;
12877 
12878 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12879 	if (!pdev) {
12880 		dp_err("pdev is NULL");
12881 		return;
12882 	}
12883 
12884 	pdev->is_first_wakeup_packet = value;
12885 }
12886 #endif
12887 
12888 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
12889 /**
12890  * dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
12891  * @soc_hdl: Opaque handle to the DP soc object
12892  * @vdev_id: VDEV identifier
12893  * @mac: MAC address of the peer
12894  * @ac: access category mask
12895  * @tid: TID mask
12896  * @policy: Flush policy
12897  *
12898  * Return: 0 on success, errno on failure
12899  */
12900 static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
12901 					uint8_t vdev_id, uint8_t *mac,
12902 					uint8_t ac, uint32_t tid,
12903 					enum cdp_peer_txq_flush_policy policy)
12904 {
12905 	struct dp_soc *soc;
12906 
12907 	if (!soc_hdl) {
12908 		dp_err("soc is null");
12909 		return -EINVAL;
12910 	}
12911 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
12912 	return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
12913 					       mac, ac, tid, policy);
12914 }
12915 #endif
12916 
12917 #ifdef CONNECTIVITY_PKTLOG
12918 /**
12919  * dp_register_packetdump_callback() - registers
12920  *  tx data packet, tx mgmt. packet and rx data packet
12921  *  dump callback handler.
12922  *
12923  * @soc_hdl: Datapath soc handle
12924  * @pdev_id: id of data path pdev handle
12925  * @dp_tx_packetdump_cb: tx packetdump cb
12926  * @dp_rx_packetdump_cb: rx packetdump cb
12927  *
12928  * This function is used to register tx data pkt, tx mgmt.
12929  * pkt and rx data pkt dump callback
12930  *
12931  * Return: None
12932  *
12933  */
12934 static inline
12935 void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12936 				     ol_txrx_pktdump_cb dp_tx_packetdump_cb,
12937 				     ol_txrx_pktdump_cb dp_rx_packetdump_cb)
12938 {
12939 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12940 	struct dp_pdev *pdev;
12941 
12942 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12943 	if (!pdev) {
12944 		dp_err("pdev is NULL!");
12945 		return;
12946 	}
12947 
12948 	pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
12949 	pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
12950 }
12951 
12952 /**
12953  * dp_deregister_packetdump_callback() - deregidters
12954  *  tx data packet, tx mgmt. packet and rx data packet
12955  *  dump callback handler
12956  * @soc_hdl: Datapath soc handle
12957  * @pdev_id: id of data path pdev handle
12958  *
12959  * This function is used to deregidter tx data pkt.,
12960  * tx mgmt. pkt and rx data pkt. dump callback
12961  *
12962  * Return: None
12963  *
12964  */
12965 static inline
12966 void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
12967 				       uint8_t pdev_id)
12968 {
12969 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12970 	struct dp_pdev *pdev;
12971 
12972 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12973 	if (!pdev) {
12974 		dp_err("pdev is NULL!");
12975 		return;
12976 	}
12977 
12978 	pdev->dp_tx_packetdump_cb = NULL;
12979 	pdev->dp_rx_packetdump_cb = NULL;
12980 }
12981 #endif
12982 
12983 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
12984 /**
12985  * dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
12986  * @soc_hdl: Datapath soc handle
12987  * @high: whether the bus bw is high or not
12988  *
12989  * Return: void
12990  */
12991 static void
12992 dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
12993 {
12994 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12995 
12996 	soc->high_throughput = high;
12997 }
12998 
12999 /**
13000  * dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
13001  * @soc_hdl: Datapath soc handle
13002  *
13003  * Return: bool
13004  */
13005 static bool
13006 dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
13007 {
13008 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13009 
13010 	return soc->high_throughput;
13011 }
13012 #endif
13013 
13014 #ifdef DP_PEER_EXTENDED_API
13015 static struct cdp_misc_ops dp_ops_misc = {
13016 #ifdef FEATURE_WLAN_TDLS
13017 	.tx_non_std = dp_tx_non_std,
13018 #endif /* FEATURE_WLAN_TDLS */
13019 	.get_opmode = dp_get_opmode,
13020 #ifdef FEATURE_RUNTIME_PM
13021 	.runtime_suspend = dp_runtime_suspend,
13022 	.runtime_resume = dp_runtime_resume,
13023 #endif /* FEATURE_RUNTIME_PM */
13024 	.get_num_rx_contexts = dp_get_num_rx_contexts,
13025 	.get_tx_ack_stats = dp_tx_get_success_ack_stats,
13026 #ifdef WLAN_SUPPORT_DATA_STALL
13027 	.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
13028 	.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
13029 	.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
13030 #endif
13031 
13032 #ifdef WLAN_FEATURE_STATS_EXT
13033 	.txrx_ext_stats_request = dp_txrx_ext_stats_request,
13034 #ifndef WLAN_SOFTUMAC_SUPPORT
13035 	.request_rx_hw_stats = dp_request_rx_hw_stats,
13036 	.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
13037 #endif
13038 #endif /* WLAN_FEATURE_STATS_EXT */
13039 	.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
13040 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
13041 	.set_swlm_enable = dp_soc_set_swlm_enable,
13042 	.is_swlm_enabled = dp_soc_is_swlm_enabled,
13043 #endif
13044 	.display_txrx_hw_info = dp_display_srng_info,
13045 #ifndef WLAN_SOFTUMAC_SUPPORT
13046 	.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
13047 #endif
13048 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
13049 	.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
13050 #endif
13051 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
13052 	.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
13053 #endif
13054 #ifdef CONNECTIVITY_PKTLOG
13055 	.register_pktdump_cb = dp_register_packetdump_callback,
13056 	.unregister_pktdump_cb = dp_deregister_packetdump_callback,
13057 #endif
13058 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13059 	.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
13060 	.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
13061 #endif
13062 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13063 	.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
13064 #endif
13065 };
13066 #endif
13067 
13068 #ifdef DP_FLOW_CTL
13069 static struct cdp_flowctl_ops dp_ops_flowctl = {
13070 	/* WIFI 3.0 DP implement as required. */
13071 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
13072 #ifndef WLAN_SOFTUMAC_SUPPORT
13073 	.flow_pool_map_handler = dp_tx_flow_pool_map,
13074 	.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
13075 #endif /*WLAN_SOFTUMAC_SUPPORT */
13076 	.register_pause_cb = dp_txrx_register_pause_cb,
13077 	.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
13078 	.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
13079 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
13080 };
13081 
13082 static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
13083 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13084 };
13085 #endif
13086 
13087 #ifdef IPA_OFFLOAD
13088 static struct cdp_ipa_ops dp_ops_ipa = {
13089 	.ipa_get_resource = dp_ipa_get_resource,
13090 	.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
13091 	.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
13092 	.ipa_op_response = dp_ipa_op_response,
13093 	.ipa_register_op_cb = dp_ipa_register_op_cb,
13094 	.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
13095 	.ipa_get_stat = dp_ipa_get_stat,
13096 	.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
13097 	.ipa_enable_autonomy = dp_ipa_enable_autonomy,
13098 	.ipa_disable_autonomy = dp_ipa_disable_autonomy,
13099 	.ipa_setup = dp_ipa_setup,
13100 	.ipa_cleanup = dp_ipa_cleanup,
13101 	.ipa_setup_iface = dp_ipa_setup_iface,
13102 	.ipa_cleanup_iface = dp_ipa_cleanup_iface,
13103 	.ipa_enable_pipes = dp_ipa_enable_pipes,
13104 	.ipa_disable_pipes = dp_ipa_disable_pipes,
13105 	.ipa_set_perf_level = dp_ipa_set_perf_level,
13106 	.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
13107 	.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
13108 	.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
13109 	.ipa_rx_buf_smmu_pool_mapping = dp_ipa_rx_buf_pool_smmu_mapping,
13110 	.ipa_set_smmu_mapped = dp_ipa_set_smmu_mapped,
13111 	.ipa_get_smmu_mapped = dp_ipa_get_smmu_mapped,
13112 #ifdef QCA_ENHANCED_STATS_SUPPORT
13113 	.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
13114 #endif
13115 #ifdef IPA_OPT_WIFI_DP
13116 	.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
13117 	.ipa_pcie_link_up = dp_ipa_pcie_link_up,
13118 	.ipa_pcie_link_down = dp_ipa_pcie_link_down,
13119 #endif
13120 #ifdef IPA_WDS_EASYMESH_FEATURE
13121 	.ipa_ast_create = dp_ipa_ast_create,
13122 #endif
13123 	.ipa_get_wdi_version = dp_ipa_get_wdi_version,
13124 };
13125 #endif
13126 
13127 #ifdef DP_POWER_SAVE
13128 static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13129 {
13130 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13131 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13132 	int timeout = SUSPEND_DRAIN_WAIT;
13133 	int drain_wait_delay = 50; /* 50 ms */
13134 	int32_t tx_pending;
13135 
13136 	if (qdf_unlikely(!pdev)) {
13137 		dp_err("pdev is NULL");
13138 		return QDF_STATUS_E_INVAL;
13139 	}
13140 
13141 	/* Abort if there are any pending TX packets */
13142 	while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
13143 		qdf_sleep(drain_wait_delay);
13144 		if (timeout <= 0) {
13145 			dp_info("TX frames are pending %d, abort suspend",
13146 				tx_pending);
13147 			dp_find_missing_tx_comp(soc);
13148 			return QDF_STATUS_E_TIMEOUT;
13149 		}
13150 		timeout = timeout - drain_wait_delay;
13151 	}
13152 
13153 	if (soc->intr_mode == DP_INTR_POLL)
13154 		qdf_timer_stop(&soc->int_timer);
13155 
13156 	/* Stop monitor reap timer and reap any pending frames in ring */
13157 	dp_monitor_reap_timer_suspend(soc);
13158 
13159 	return QDF_STATUS_SUCCESS;
13160 }
13161 
13162 static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13163 {
13164 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13165 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13166 
13167 	if (qdf_unlikely(!pdev)) {
13168 		dp_err("pdev is NULL");
13169 		return QDF_STATUS_E_INVAL;
13170 	}
13171 
13172 	if (soc->intr_mode == DP_INTR_POLL)
13173 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
13174 
13175 	/* Start monitor reap timer */
13176 	dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
13177 
13178 	soc->arch_ops.dp_update_ring_hptp(soc, false);
13179 
13180 	return QDF_STATUS_SUCCESS;
13181 }
13182 
13183 /**
13184  * dp_process_wow_ack_rsp() - process wow ack response
13185  * @soc_hdl: datapath soc handle
13186  * @pdev_id: data path pdev handle id
13187  *
13188  * Return: none
13189  */
13190 static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13191 {
13192 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13193 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13194 
13195 	if (qdf_unlikely(!pdev)) {
13196 		dp_err("pdev is NULL");
13197 		return;
13198 	}
13199 
13200 	/*
13201 	 * As part of wow enable FW disables the mon status ring and in wow ack
13202 	 * response from FW reap mon status ring to make sure no packets pending
13203 	 * in the ring.
13204 	 */
13205 	dp_monitor_reap_timer_suspend(soc);
13206 }
13207 
13208 /**
13209  * dp_process_target_suspend_req() - process target suspend request
13210  * @soc_hdl: datapath soc handle
13211  * @pdev_id: data path pdev handle id
13212  *
13213  * Return: none
13214  */
13215 static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
13216 					  uint8_t pdev_id)
13217 {
13218 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13219 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13220 
13221 	if (qdf_unlikely(!pdev)) {
13222 		dp_err("pdev is NULL");
13223 		return;
13224 	}
13225 
13226 	/* Stop monitor reap timer and reap any pending frames in ring */
13227 	dp_monitor_reap_timer_suspend(soc);
13228 }
13229 
13230 static struct cdp_bus_ops dp_ops_bus = {
13231 	.bus_suspend = dp_bus_suspend,
13232 	.bus_resume = dp_bus_resume,
13233 	.process_wow_ack_rsp = dp_process_wow_ack_rsp,
13234 	.process_target_suspend_req = dp_process_target_suspend_req
13235 };
13236 #endif
13237 
13238 #ifdef DP_FLOW_CTL
13239 static struct cdp_throttle_ops dp_ops_throttle = {
13240 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13241 };
13242 
13243 static struct cdp_cfg_ops dp_ops_cfg = {
13244 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13245 };
13246 #endif
13247 
13248 #ifdef DP_PEER_EXTENDED_API
13249 static struct cdp_ocb_ops dp_ops_ocb = {
13250 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13251 };
13252 
13253 static struct cdp_mob_stats_ops dp_ops_mob_stats = {
13254 	.clear_stats = dp_txrx_clear_dump_stats,
13255 };
13256 
13257 static struct cdp_peer_ops dp_ops_peer = {
13258 	.register_peer = dp_register_peer,
13259 	.clear_peer = dp_clear_peer,
13260 	.find_peer_exist = dp_find_peer_exist,
13261 	.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
13262 	.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
13263 	.peer_state_update = dp_peer_state_update,
13264 	.get_vdevid = dp_get_vdevid,
13265 	.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
13266 	.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
13267 	.get_peer_state = dp_get_peer_state,
13268 	.peer_flush_frags = dp_peer_flush_frags,
13269 	.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
13270 };
13271 #endif
13272 
13273 static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
13274 {
13275 	soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
13276 	soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
13277 	soc->cdp_soc.ops->me_ops = &dp_ops_me;
13278 	soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
13279 	soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
13280 	soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
13281 #ifdef PEER_FLOW_CONTROL
13282 	soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
13283 #endif /* PEER_FLOW_CONTROL */
13284 #ifdef DP_PEER_EXTENDED_API
13285 	soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
13286 	soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
13287 	soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
13288 	soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
13289 #endif
13290 #ifdef DP_FLOW_CTL
13291 	soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
13292 	soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
13293 	soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
13294 	soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
13295 #endif
13296 #ifdef IPA_OFFLOAD
13297 	soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
13298 #endif
13299 #ifdef DP_POWER_SAVE
13300 	soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
13301 #endif
13302 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13303 	soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
13304 #endif
13305 #ifdef WLAN_SUPPORT_MSCS
13306 	soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
13307 #endif
13308 #ifdef WLAN_SUPPORT_MESH_LATENCY
13309 	soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
13310 #endif
13311 #ifdef CONFIG_SAWF_DEF_QUEUES
13312 	soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
13313 #endif
13314 #ifdef WLAN_SUPPORT_SCS
13315 	soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
13316 #endif
13317 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
13318 	soc->cdp_soc.ops->fse_ops = &dp_ops_fse;
13319 #endif
13320 };
13321 
13322 #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
13323 	defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
13324 	defined(QCA_WIFI_QCA5332)
13325 
13326 /**
13327  * dp_soc_attach_wifi3() - Attach txrx SOC
13328  * @ctrl_psoc: Opaque SOC handle from control plane
13329  * @params: SOC attach params
13330  *
13331  * Return: DP SOC handle on success, NULL on failure
13332  */
13333 struct cdp_soc_t *
13334 dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13335 		    struct cdp_soc_attach_params *params)
13336 {
13337 	struct dp_soc *dp_soc = NULL;
13338 
13339 	dp_soc = dp_soc_attach(ctrl_psoc, params);
13340 
13341 	return dp_soc_to_cdp_soc_t(dp_soc);
13342 }
13343 
13344 static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
13345 {
13346 	int lmac_id;
13347 
13348 	for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
13349 		/*Set default host PDEV ID for lmac_id*/
13350 		wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
13351 				      INVALID_PDEV_ID, lmac_id);
13352 	}
13353 }
13354 
13355 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc)
13356 {
13357 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13358 
13359 	if (max_list_size == 0)
13360 		return;
13361 
13362 	qdf_mem_free(soc->list_shared_qaddr_del);
13363 	qdf_mem_free(soc->reo_write_list);
13364 	qdf_mem_free(soc->list_qdesc_addr_free);
13365 	qdf_mem_free(soc->list_qdesc_addr_alloc);
13366 }
13367 
13368 static void dp_soc_set_qref_debug_list(struct dp_soc *soc)
13369 {
13370 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13371 
13372 	if (max_list_size == 0)
13373 		return;
13374 
13375 	soc->list_shared_qaddr_del =
13376 			(struct test_qaddr_del *)
13377 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13378 					       max_list_size);
13379 	soc->reo_write_list =
13380 			(struct test_qaddr_del *)
13381 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13382 					       max_list_size);
13383 	soc->list_qdesc_addr_free =
13384 			(struct test_mem_free *)
13385 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13386 					       max_list_size);
13387 	soc->list_qdesc_addr_alloc =
13388 			(struct test_mem_free *)
13389 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13390 					       max_list_size);
13391 }
13392 
13393 static uint32_t
13394 dp_get_link_desc_id_start(uint16_t arch_id)
13395 {
13396 	switch (arch_id) {
13397 	case CDP_ARCH_TYPE_LI:
13398 	case CDP_ARCH_TYPE_RH:
13399 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13400 	case CDP_ARCH_TYPE_BE:
13401 		return LINK_DESC_ID_START_20_BITS_COOKIE;
13402 	default:
13403 		dp_err("unknown arch_id 0x%x", arch_id);
13404 		QDF_BUG(0);
13405 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13406 	}
13407 }
13408 
13409 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13410 static inline
13411 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13412 {
13413 	soc->tx_ilp_enable = false;
13414 }
13415 #else
13416 static inline
13417 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13418 {
13419 }
13420 #endif
13421 
13422 /**
13423  * dp_soc_attach() - Attach txrx SOC
13424  * @ctrl_psoc: Opaque SOC handle from control plane
13425  * @params: SOC attach params
13426  *
13427  * Return: DP SOC handle on success, NULL on failure
13428  */
13429 static struct dp_soc *
13430 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13431 	      struct cdp_soc_attach_params *params)
13432 {
13433 	struct dp_soc *soc =  NULL;
13434 	uint16_t arch_id;
13435 	struct hif_opaque_softc *hif_handle = params->hif_handle;
13436 	qdf_device_t qdf_osdev = params->qdf_osdev;
13437 	struct ol_if_ops *ol_ops = params->ol_ops;
13438 	uint16_t device_id = params->device_id;
13439 
13440 	if (!hif_handle) {
13441 		dp_err("HIF handle is NULL");
13442 		goto fail0;
13443 	}
13444 	arch_id = cdp_get_arch_type_from_devid(device_id);
13445 	soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
13446 	if (!soc) {
13447 		dp_err("DP SOC memory allocation failed");
13448 		goto fail0;
13449 	}
13450 
13451 	dp_info("soc memory allocated %pK", soc);
13452 	soc->hif_handle = hif_handle;
13453 	soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
13454 	if (!soc->hal_soc)
13455 		goto fail1;
13456 
13457 	hif_get_cmem_info(soc->hif_handle,
13458 			  &soc->cmem_base,
13459 			  &soc->cmem_total_size);
13460 	soc->cmem_avail_size = soc->cmem_total_size;
13461 	soc->device_id = device_id;
13462 	soc->cdp_soc.ops =
13463 		(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
13464 	if (!soc->cdp_soc.ops)
13465 		goto fail1;
13466 
13467 	dp_soc_txrx_ops_attach(soc);
13468 	soc->cdp_soc.ol_ops = ol_ops;
13469 	soc->ctrl_psoc = ctrl_psoc;
13470 	soc->osdev = qdf_osdev;
13471 	soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
13472 	dp_soc_init_tx_ilp(soc);
13473 	hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
13474 			    &soc->rx_mon_pkt_tlv_size);
13475 	soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
13476 						       params->mlo_chip_id);
13477 	soc->features.dmac_cmn_src_rxbuf_ring_enabled =
13478 		hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
13479 	soc->arch_id = arch_id;
13480 	soc->link_desc_id_start =
13481 			dp_get_link_desc_id_start(soc->arch_id);
13482 	dp_configure_arch_ops(soc);
13483 
13484 	/* Reset wbm sg list and flags */
13485 	dp_rx_wbm_sg_list_reset(soc);
13486 
13487 	dp_soc_cfg_history_attach(soc);
13488 	dp_soc_tx_hw_desc_history_attach(soc);
13489 	dp_soc_rx_history_attach(soc);
13490 	dp_soc_mon_status_ring_history_attach(soc);
13491 	dp_soc_tx_history_attach(soc);
13492 	wlan_set_srng_cfg(&soc->wlan_srng_cfg);
13493 	soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
13494 	if (!soc->wlan_cfg_ctx) {
13495 		dp_err("wlan_cfg_ctx failed");
13496 		goto fail2;
13497 	}
13498 
13499 	/*sync DP soc cfg items with profile support after cfg_soc_attach*/
13500 	wlan_dp_soc_cfg_sync_profile((struct cdp_soc_t *)soc);
13501 
13502 	soc->arch_ops.soc_cfg_attach(soc);
13503 
13504 	if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
13505 		dp_err("failed to allocate link desc pool banks");
13506 		goto fail3;
13507 	}
13508 
13509 	if (dp_hw_link_desc_ring_alloc(soc)) {
13510 		dp_err("failed to allocate link_desc_ring");
13511 		goto fail4;
13512 	}
13513 
13514 	if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
13515 								 params))) {
13516 		dp_err("unable to do target specific attach");
13517 		goto fail5;
13518 	}
13519 
13520 	if (dp_soc_srng_alloc(soc)) {
13521 		dp_err("failed to allocate soc srng rings");
13522 		goto fail6;
13523 	}
13524 
13525 	if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
13526 		dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
13527 		goto fail7;
13528 	}
13529 
13530 	if (!dp_monitor_modularized_enable()) {
13531 		if (dp_mon_soc_attach_wrapper(soc)) {
13532 			dp_err("failed to attach monitor");
13533 			goto fail8;
13534 		}
13535 	}
13536 
13537 	if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
13538 				       &soc->reo_qref)
13539 	    != QDF_STATUS_SUCCESS) {
13540 		dp_err("unable to setup reo shared qaddr");
13541 		goto fail9;
13542 	}
13543 
13544 	if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
13545 		dp_err("failed to initialize dp stats sysfs file");
13546 		dp_sysfs_deinitialize_stats(soc);
13547 	}
13548 
13549 	dp_soc_swlm_attach(soc);
13550 	dp_soc_set_interrupt_mode(soc);
13551 	dp_soc_set_def_pdev(soc);
13552 	dp_soc_set_qref_debug_list(soc);
13553 
13554 	if (!ipa_config_is_opt_wifi_dp_enabled())
13555 		qdf_atomic_set(&soc->ipa_mapped, 1);
13556 
13557 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
13558 		qdf_dma_mem_stats_read(),
13559 		qdf_heap_mem_stats_read(),
13560 		qdf_skb_total_mem_stats_read());
13561 
13562 	return soc;
13563 fail9:
13564 	if (!dp_monitor_modularized_enable())
13565 		dp_mon_soc_detach_wrapper(soc);
13566 fail8:
13567 	dp_soc_tx_desc_sw_pools_free(soc);
13568 fail7:
13569 	dp_soc_srng_free(soc);
13570 fail6:
13571 	soc->arch_ops.txrx_soc_detach(soc);
13572 fail5:
13573 	dp_hw_link_desc_ring_free(soc);
13574 fail4:
13575 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
13576 fail3:
13577 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
13578 fail2:
13579 	qdf_mem_free(soc->cdp_soc.ops);
13580 fail1:
13581 	qdf_mem_common_free(soc);
13582 fail0:
13583 	return NULL;
13584 }
13585 
13586 void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
13587 			struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13588 			struct hif_opaque_softc *hif_handle,
13589 			HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
13590 			struct ol_if_ops *ol_ops, uint16_t device_id)
13591 {
13592 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
13593 
13594 	return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
13595 }
13596 
13597 #endif
13598 
13599 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
13600 {
13601 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
13602 		return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
13603 
13604 	/* Typically for MCL as there only 1 PDEV*/
13605 	return soc->pdev_list[0];
13606 }
13607 
13608 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
13609 				     int *max_mac_rings)
13610 {
13611 	bool dbs_enable = false;
13612 
13613 	if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
13614 		dbs_enable = soc->cdp_soc.ol_ops->
13615 				is_hw_dbs_capable((void *)soc->ctrl_psoc);
13616 
13617 	*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
13618 	dp_info("dbs_enable %d, max_mac_rings %d",
13619 		dbs_enable, *max_mac_rings);
13620 }
13621 
13622 qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
13623 
13624 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13625 /**
13626  * dp_get_cfr_rcc() - get cfr rcc config
13627  * @soc_hdl: Datapath soc handle
13628  * @pdev_id: id of objmgr pdev
13629  *
13630  * Return: true/false based on cfr mode setting
13631  */
13632 static
13633 bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13634 {
13635 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13636 	struct dp_pdev *pdev = NULL;
13637 
13638 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13639 	if (!pdev) {
13640 		dp_err("pdev is NULL");
13641 		return false;
13642 	}
13643 
13644 	return pdev->cfr_rcc_mode;
13645 }
13646 
13647 /**
13648  * dp_set_cfr_rcc() - enable/disable cfr rcc config
13649  * @soc_hdl: Datapath soc handle
13650  * @pdev_id: id of objmgr pdev
13651  * @enable: Enable/Disable cfr rcc mode
13652  *
13653  * Return: none
13654  */
13655 static
13656 void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
13657 {
13658 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13659 	struct dp_pdev *pdev = NULL;
13660 
13661 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13662 	if (!pdev) {
13663 		dp_err("pdev is NULL");
13664 		return;
13665 	}
13666 
13667 	pdev->cfr_rcc_mode = enable;
13668 }
13669 
13670 /**
13671  * dp_get_cfr_dbg_stats - Get the debug statistics for CFR
13672  * @soc_hdl: Datapath soc handle
13673  * @pdev_id: id of data path pdev handle
13674  * @cfr_rcc_stats: CFR RCC debug statistics buffer
13675  *
13676  * Return: none
13677  */
13678 static inline void
13679 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13680 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats)
13681 {
13682 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13683 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13684 
13685 	if (!pdev) {
13686 		dp_err("pdev is NULL");
13687 		return;
13688 	}
13689 
13690 	qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
13691 		     sizeof(struct cdp_cfr_rcc_stats));
13692 }
13693 
13694 /**
13695  * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
13696  * @soc_hdl: Datapath soc handle
13697  * @pdev_id: id of data path pdev handle
13698  *
13699  * Return: none
13700  */
13701 static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
13702 				   uint8_t pdev_id)
13703 {
13704 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13705 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13706 
13707 	if (!pdev) {
13708 		dp_err("dp pdev is NULL");
13709 		return;
13710 	}
13711 
13712 	qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
13713 }
13714 #endif
13715 
13716 /**
13717  * dp_bucket_index() - Return index from array
13718  *
13719  * @delay: delay measured
13720  * @array: array used to index corresponding delay
13721  * @delay_in_us: flag to indicate whether the delay in ms or us
13722  *
13723  * Return: index
13724  */
13725 static uint8_t
13726 dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
13727 {
13728 	uint8_t i = CDP_DELAY_BUCKET_0;
13729 	uint32_t thr_low, thr_high;
13730 
13731 	for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
13732 		thr_low = array[i];
13733 		thr_high = array[i + 1];
13734 
13735 		if (delay_in_us) {
13736 			thr_low = thr_low * USEC_PER_MSEC;
13737 			thr_high = thr_high * USEC_PER_MSEC;
13738 		}
13739 		if (delay >= thr_low && delay <= thr_high)
13740 			return i;
13741 	}
13742 	return (CDP_DELAY_BUCKET_MAX - 1);
13743 }
13744 
13745 #ifdef HW_TX_DELAY_STATS_ENABLE
13746 /*
13747  * cdp_fw_to_hw_delay_range
13748  * Fw to hw delay ranges in milliseconds
13749  */
13750 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13751 	0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
13752 #else
13753 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13754 	0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
13755 #endif
13756 
13757 /*
13758  * cdp_sw_enq_delay_range
13759  * Software enqueue delay ranges in milliseconds
13760  */
13761 static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
13762 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
13763 
13764 /*
13765  * cdp_intfrm_delay_range
13766  * Interframe delay ranges in milliseconds
13767  */
13768 static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
13769 	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
13770 
13771 /**
13772  * dp_fill_delay_buckets() - Fill delay statistics bucket for each
13773  *				type of delay
13774  * @tstats: tid tx stats
13775  * @rstats: tid rx stats
13776  * @delay: delay in ms
13777  * @tid: tid value
13778  * @mode: type of tx delay mode
13779  * @ring_id: ring number
13780  * @delay_in_us: flag to indicate whether the delay in ms or us
13781  *
13782  * Return: pointer to cdp_delay_stats structure
13783  */
13784 static struct cdp_delay_stats *
13785 dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
13786 		      struct cdp_tid_rx_stats *rstats, uint32_t delay,
13787 		      uint8_t tid, uint8_t mode, uint8_t ring_id,
13788 		      bool delay_in_us)
13789 {
13790 	uint8_t delay_index = 0;
13791 	struct cdp_delay_stats *stats = NULL;
13792 
13793 	/*
13794 	 * Update delay stats in proper bucket
13795 	 */
13796 	switch (mode) {
13797 	/* Software Enqueue delay ranges */
13798 	case CDP_DELAY_STATS_SW_ENQ:
13799 		if (!tstats)
13800 			break;
13801 
13802 		delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
13803 					      delay_in_us);
13804 		tstats->swq_delay.delay_bucket[delay_index]++;
13805 		stats = &tstats->swq_delay;
13806 		break;
13807 
13808 	/* Tx Completion delay ranges */
13809 	case CDP_DELAY_STATS_FW_HW_TRANSMIT:
13810 		if (!tstats)
13811 			break;
13812 
13813 		delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
13814 					      delay_in_us);
13815 		tstats->hwtx_delay.delay_bucket[delay_index]++;
13816 		stats = &tstats->hwtx_delay;
13817 		break;
13818 
13819 	/* Interframe tx delay ranges */
13820 	case CDP_DELAY_STATS_TX_INTERFRAME:
13821 		if (!tstats)
13822 			break;
13823 
13824 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13825 					      delay_in_us);
13826 		tstats->intfrm_delay.delay_bucket[delay_index]++;
13827 		stats = &tstats->intfrm_delay;
13828 		break;
13829 
13830 	/* Interframe rx delay ranges */
13831 	case CDP_DELAY_STATS_RX_INTERFRAME:
13832 		if (!rstats)
13833 			break;
13834 
13835 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13836 					      delay_in_us);
13837 		rstats->intfrm_delay.delay_bucket[delay_index]++;
13838 		stats = &rstats->intfrm_delay;
13839 		break;
13840 
13841 	/* Ring reap to indication to network stack */
13842 	case CDP_DELAY_STATS_REAP_STACK:
13843 		if (!rstats)
13844 			break;
13845 
13846 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13847 					      delay_in_us);
13848 		rstats->to_stack_delay.delay_bucket[delay_index]++;
13849 		stats = &rstats->to_stack_delay;
13850 		break;
13851 	default:
13852 		dp_debug("Incorrect delay mode: %d", mode);
13853 	}
13854 
13855 	return stats;
13856 }
13857 
13858 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
13859 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
13860 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
13861 			   bool delay_in_us)
13862 {
13863 	struct cdp_delay_stats *dstats = NULL;
13864 
13865 	/*
13866 	 * Delay ranges are different for different delay modes
13867 	 * Get the correct index to update delay bucket
13868 	 */
13869 	dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
13870 				       ring_id, delay_in_us);
13871 	if (qdf_unlikely(!dstats))
13872 		return;
13873 
13874 	if (delay != 0) {
13875 		/*
13876 		 * Compute minimum,average and maximum
13877 		 * delay
13878 		 */
13879 		if (delay < dstats->min_delay)
13880 			dstats->min_delay = delay;
13881 
13882 		if (delay > dstats->max_delay)
13883 			dstats->max_delay = delay;
13884 
13885 		/*
13886 		 * Average over delay measured till now
13887 		 */
13888 		if (!dstats->avg_delay)
13889 			dstats->avg_delay = delay;
13890 		else
13891 			dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
13892 	}
13893 }
13894 
13895 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
13896 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
13897 			      u_int16_t mac_cnt, bool limit)
13898 {
13899 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
13900 	struct dp_vdev *vdev =
13901 		dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
13902 	struct dp_peer *peer;
13903 	uint16_t new_mac_cnt = 0;
13904 
13905 	if (!vdev)
13906 		return new_mac_cnt;
13907 
13908 	if (limit && (vdev->num_peers > mac_cnt)) {
13909 		dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
13910 		return 0;
13911 	}
13912 
13913 	qdf_spin_lock_bh(&vdev->peer_list_lock);
13914 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
13915 		if (peer->bss_peer)
13916 			continue;
13917 		if (new_mac_cnt < mac_cnt) {
13918 			WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
13919 			new_mac_cnt++;
13920 		}
13921 	}
13922 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
13923 	dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
13924 	return new_mac_cnt;
13925 }
13926 
13927 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
13928 {
13929 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
13930 						       mac, 0, vdev_id,
13931 						       DP_MOD_ID_CDP);
13932 	uint16_t peer_id = HTT_INVALID_PEER;
13933 
13934 	if (!peer) {
13935 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
13936 		return peer_id;
13937 	}
13938 
13939 	peer_id = peer->peer_id;
13940 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13941 	return peer_id;
13942 }
13943 
13944 #ifdef QCA_SUPPORT_WDS_EXTENDED
13945 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
13946 				  uint8_t vdev_id,
13947 				  uint8_t *mac,
13948 				  ol_txrx_rx_fp rx,
13949 				  ol_osif_peer_handle osif_peer)
13950 {
13951 	struct dp_txrx_peer *txrx_peer = NULL;
13952 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
13953 						       mac, 0, vdev_id,
13954 						       DP_MOD_ID_CDP);
13955 	QDF_STATUS status = QDF_STATUS_E_INVAL;
13956 
13957 	if (!peer) {
13958 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
13959 		return status;
13960 	}
13961 
13962 	txrx_peer = dp_get_txrx_peer(peer);
13963 	if (!txrx_peer) {
13964 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13965 		return status;
13966 	}
13967 
13968 	if (rx) {
13969 		if (txrx_peer->osif_rx) {
13970 			status = QDF_STATUS_E_ALREADY;
13971 		} else {
13972 			txrx_peer->osif_rx = rx;
13973 			status = QDF_STATUS_SUCCESS;
13974 		}
13975 	} else {
13976 		if (txrx_peer->osif_rx) {
13977 			txrx_peer->osif_rx = NULL;
13978 			status = QDF_STATUS_SUCCESS;
13979 		} else {
13980 			status = QDF_STATUS_E_ALREADY;
13981 		}
13982 	}
13983 
13984 	txrx_peer->wds_ext.osif_peer = osif_peer;
13985 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13986 
13987 	return status;
13988 }
13989 
13990 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
13991 				ol_txrx_soc_handle soc,
13992 				uint8_t vdev_id,
13993 				uint8_t *mac,
13994 				ol_osif_peer_handle *osif_peer)
13995 {
13996 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
13997 	struct dp_txrx_peer *txrx_peer = NULL;
13998 	struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
13999 						      mac, 0, vdev_id,
14000 						      DP_MOD_ID_CDP);
14001 
14002 	if (!peer) {
14003 		dp_cdp_debug("%pK: Peer is NULL!", dp_soc);
14004 		return QDF_STATUS_E_INVAL;
14005 	}
14006 
14007 	txrx_peer = dp_get_txrx_peer(peer);
14008 	if (!txrx_peer) {
14009 		dp_cdp_debug("%pK: TXRX Peer is NULL!", dp_soc);
14010 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14011 		return QDF_STATUS_E_INVAL;
14012 	}
14013 
14014 	*osif_peer = txrx_peer->wds_ext.osif_peer;
14015 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14016 
14017 	return QDF_STATUS_SUCCESS;
14018 }
14019 #endif /* QCA_SUPPORT_WDS_EXTENDED */
14020 
14021 /**
14022  * dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
14023  *			   monitor rings
14024  * @pdev: Datapath pdev handle
14025  *
14026  */
14027 static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
14028 {
14029 	struct dp_soc *soc = pdev->soc;
14030 	uint8_t i;
14031 
14032 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14033 		dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14034 			       RXDMA_BUF,
14035 			       pdev->lmac_id);
14036 
14037 	if (!soc->rxdma2sw_rings_not_supported) {
14038 		for (i = 0;
14039 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14040 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14041 								 pdev->pdev_id);
14042 
14043 			wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
14044 							base_vaddr_unaligned,
14045 					     soc->rxdma_err_dst_ring[lmac_id].
14046 								alloc_size,
14047 					     soc->ctrl_psoc,
14048 					     WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14049 					     "rxdma_err_dst");
14050 			dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
14051 				       RXDMA_DST, lmac_id);
14052 		}
14053 	}
14054 
14055 
14056 }
14057 
14058 /**
14059  * dp_pdev_srng_init() - initialize all pdev srng rings including
14060  *			   monitor rings
14061  * @pdev: Datapath pdev handle
14062  *
14063  * Return: QDF_STATUS_SUCCESS on success
14064  *	   QDF_STATUS_E_NOMEM on failure
14065  */
14066 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
14067 {
14068 	struct dp_soc *soc = pdev->soc;
14069 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14070 	uint32_t i;
14071 
14072 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14073 
14074 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14075 		if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14076 				 RXDMA_BUF, 0, pdev->lmac_id)) {
14077 			dp_init_err("%pK: dp_srng_init failed rx refill ring",
14078 				    soc);
14079 			goto fail1;
14080 		}
14081 	}
14082 
14083 	/* LMAC RxDMA to SW Rings configuration */
14084 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14085 		/* Only valid for MCL */
14086 		pdev = soc->pdev_list[0];
14087 
14088 	if (!soc->rxdma2sw_rings_not_supported) {
14089 		for (i = 0;
14090 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14091 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14092 								 pdev->pdev_id);
14093 			struct dp_srng *srng =
14094 				&soc->rxdma_err_dst_ring[lmac_id];
14095 
14096 			if (srng->hal_srng)
14097 				continue;
14098 
14099 			if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
14100 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14101 					    soc);
14102 				goto fail1;
14103 			}
14104 			wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
14105 						base_vaddr_unaligned,
14106 					  soc->rxdma_err_dst_ring[lmac_id].
14107 						alloc_size,
14108 					  soc->ctrl_psoc,
14109 					  WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14110 					  "rxdma_err_dst");
14111 		}
14112 	}
14113 	return QDF_STATUS_SUCCESS;
14114 
14115 fail1:
14116 	dp_pdev_srng_deinit(pdev);
14117 	return QDF_STATUS_E_NOMEM;
14118 }
14119 
14120 /**
14121  * dp_pdev_srng_free() - free all pdev srng rings including monitor rings
14122  * @pdev: Datapath pdev handle
14123  *
14124  */
14125 static void dp_pdev_srng_free(struct dp_pdev *pdev)
14126 {
14127 	struct dp_soc *soc = pdev->soc;
14128 	uint8_t i;
14129 
14130 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14131 		dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
14132 
14133 	if (!soc->rxdma2sw_rings_not_supported) {
14134 		for (i = 0;
14135 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14136 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14137 								 pdev->pdev_id);
14138 
14139 			dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
14140 		}
14141 	}
14142 }
14143 
14144 /**
14145  * dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
14146  *			  monitor rings
14147  * @pdev: Datapath pdev handle
14148  *
14149  * Return: QDF_STATUS_SUCCESS on success
14150  *	   QDF_STATUS_E_NOMEM on failure
14151  */
14152 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
14153 {
14154 	struct dp_soc *soc = pdev->soc;
14155 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14156 	uint32_t ring_size;
14157 	uint32_t i;
14158 
14159 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14160 
14161 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
14162 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14163 		if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14164 				  RXDMA_BUF, ring_size, 0)) {
14165 			dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
14166 				    soc);
14167 			goto fail1;
14168 		}
14169 	}
14170 
14171 	ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
14172 	/* LMAC RxDMA to SW Rings configuration */
14173 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14174 		/* Only valid for MCL */
14175 		pdev = soc->pdev_list[0];
14176 
14177 	if (!soc->rxdma2sw_rings_not_supported) {
14178 		for (i = 0;
14179 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14180 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14181 								 pdev->pdev_id);
14182 			struct dp_srng *srng =
14183 				&soc->rxdma_err_dst_ring[lmac_id];
14184 
14185 			if (srng->base_vaddr_unaligned)
14186 				continue;
14187 
14188 			if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
14189 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14190 					    soc);
14191 				goto fail1;
14192 			}
14193 		}
14194 	}
14195 
14196 	return QDF_STATUS_SUCCESS;
14197 fail1:
14198 	dp_pdev_srng_free(pdev);
14199 	return QDF_STATUS_E_NOMEM;
14200 }
14201 
14202 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
14203 /**
14204  * dp_init_link_peer_stats_enabled() - Init link_peer_stats as per config
14205  * @pdev: DP pdev
14206  *
14207  * Return: None
14208  */
14209 static inline void
14210 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14211 {
14212 	pdev->link_peer_stats = wlan_cfg_is_peer_link_stats_enabled(
14213 						pdev->soc->wlan_cfg_ctx);
14214 }
14215 #else
14216 static inline void
14217 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14218 {
14219 }
14220 #endif
14221 
14222 static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
14223 				      HTC_HANDLE htc_handle,
14224 				      qdf_device_t qdf_osdev,
14225 				      uint8_t pdev_id)
14226 {
14227 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14228 	int nss_cfg;
14229 	void *sojourn_buf;
14230 
14231 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
14232 	struct dp_pdev *pdev = soc->pdev_list[pdev_id];
14233 
14234 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14235 	pdev->soc = soc;
14236 	pdev->pdev_id = pdev_id;
14237 
14238 	/*
14239 	 * Variable to prevent double pdev deinitialization during
14240 	 * radio detach execution .i.e. in the absence of any vdev.
14241 	 */
14242 	pdev->pdev_deinit = 0;
14243 
14244 	if (dp_wdi_event_attach(pdev)) {
14245 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
14246 			  "dp_wdi_evet_attach failed");
14247 		goto fail0;
14248 	}
14249 
14250 	if (dp_pdev_srng_init(pdev)) {
14251 		dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
14252 		goto fail1;
14253 	}
14254 
14255 	/* Initialize descriptors in TCL Rings used by IPA */
14256 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
14257 		hal_tx_init_data_ring(soc->hal_soc,
14258 				      soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
14259 		dp_ipa_hal_tx_init_alt_data_ring(soc);
14260 	}
14261 
14262 	/*
14263 	 * Initialize command/credit ring descriptor
14264 	 * Command/CREDIT ring also used for sending DATA cmds
14265 	 */
14266 	dp_tx_init_cmd_credit_ring(soc);
14267 
14268 	dp_tx_pdev_init(pdev);
14269 
14270 	/*
14271 	 * set nss pdev config based on soc config
14272 	 */
14273 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
14274 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
14275 					 (nss_cfg & (1 << pdev_id)));
14276 	pdev->target_pdev_id =
14277 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
14278 
14279 	if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
14280 	    pdev->lmac_id == PHYB_2G_LMAC_ID) {
14281 		pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
14282 	}
14283 
14284 	/* Reset the cpu ring map if radio is NSS offloaded */
14285 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
14286 		dp_soc_reset_cpu_ring_map(soc);
14287 		dp_soc_reset_intr_mask(soc);
14288 	}
14289 
14290 	/* Reset the cpu ring map if radio is NSS offloaded */
14291 	dp_soc_reset_ipa_vlan_intr_mask(soc);
14292 
14293 	TAILQ_INIT(&pdev->vdev_list);
14294 	qdf_spinlock_create(&pdev->vdev_list_lock);
14295 	pdev->vdev_count = 0;
14296 	pdev->is_lro_hash_configured = 0;
14297 
14298 	qdf_spinlock_create(&pdev->tx_mutex);
14299 	pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
14300 	pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
14301 	pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
14302 
14303 	DP_STATS_INIT(pdev);
14304 
14305 	dp_local_peer_id_pool_init(pdev);
14306 
14307 	dp_dscp_tid_map_setup(pdev);
14308 	dp_pcp_tid_map_setup(pdev);
14309 
14310 	/* set the reo destination during initialization */
14311 	dp_pdev_set_default_reo(pdev);
14312 
14313 	qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
14314 
14315 	pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
14316 			      sizeof(struct cdp_tx_sojourn_stats), 0, 4,
14317 			      TRUE);
14318 
14319 	if (!pdev->sojourn_buf) {
14320 		dp_init_err("%pK: Failed to allocate sojourn buf", soc);
14321 		goto fail2;
14322 	}
14323 	sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
14324 	qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
14325 
14326 	qdf_event_create(&pdev->fw_peer_stats_event);
14327 	qdf_event_create(&pdev->fw_stats_event);
14328 	qdf_event_create(&pdev->fw_obss_stats_event);
14329 
14330 	pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
14331 	pdev->num_tx_spl_allowed =
14332 		wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
14333 	pdev->num_reg_tx_allowed =
14334 		pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
14335 	if (dp_rxdma_ring_setup(soc, pdev)) {
14336 		dp_init_err("%pK: RXDMA ring config failed", soc);
14337 		goto fail3;
14338 	}
14339 
14340 	if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
14341 		goto fail3;
14342 
14343 	if (dp_ipa_ring_resource_setup(soc, pdev))
14344 		goto fail4;
14345 
14346 	if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
14347 		dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
14348 		goto fail4;
14349 	}
14350 
14351 	if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
14352 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
14353 			  FL("dp_pdev_bkp_stats_attach failed"));
14354 		goto fail5;
14355 	}
14356 
14357 	if (dp_monitor_pdev_init(pdev)) {
14358 		dp_init_err("%pK: dp_monitor_pdev_init failed", soc);
14359 		goto fail6;
14360 	}
14361 
14362 	/* initialize sw rx descriptors */
14363 	dp_rx_pdev_desc_pool_init(pdev);
14364 	/* allocate buffers and replenish the RxDMA ring */
14365 	dp_rx_pdev_buffers_alloc(pdev);
14366 
14367 	dp_init_tso_stats(pdev);
14368 	dp_init_link_peer_stats_enabled(pdev);
14369 
14370 	pdev->rx_fast_flag = false;
14371 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
14372 		qdf_dma_mem_stats_read(),
14373 		qdf_heap_mem_stats_read(),
14374 		qdf_skb_total_mem_stats_read());
14375 
14376 	return QDF_STATUS_SUCCESS;
14377 fail6:
14378 	dp_pdev_bkp_stats_detach(pdev);
14379 fail5:
14380 	dp_ipa_uc_detach(soc, pdev);
14381 fail4:
14382 	dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
14383 fail3:
14384 	dp_rxdma_ring_cleanup(soc, pdev);
14385 	qdf_nbuf_free(pdev->sojourn_buf);
14386 fail2:
14387 	qdf_spinlock_destroy(&pdev->tx_mutex);
14388 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
14389 	dp_pdev_srng_deinit(pdev);
14390 fail1:
14391 	dp_wdi_event_detach(pdev);
14392 fail0:
14393 	return QDF_STATUS_E_FAILURE;
14394 }
14395 
14396 /**
14397  * dp_pdev_init_wifi3() - Init txrx pdev
14398  * @txrx_soc:
14399  * @htc_handle: HTC handle for host-target interface
14400  * @qdf_osdev: QDF OS device
14401  * @pdev_id: pdev Id
14402  *
14403  * Return: QDF_STATUS
14404  */
14405 static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
14406 				     HTC_HANDLE htc_handle,
14407 				     qdf_device_t qdf_osdev,
14408 				     uint8_t pdev_id)
14409 {
14410 	return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
14411 }
14412 
14413 #ifdef FEATURE_DIRECT_LINK
14414 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14415 						 uint8_t pdev_id)
14416 {
14417 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14418 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14419 
14420 	if (!pdev) {
14421 		dp_err("DP pdev is NULL");
14422 		return NULL;
14423 	}
14424 
14425 	if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
14426 			  RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
14427 		dp_err("SRNG alloc failed for rx_refill_buf_ring4");
14428 		return NULL;
14429 	}
14430 
14431 	if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
14432 			 RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
14433 		dp_err("SRNG init failed for rx_refill_buf_ring4");
14434 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14435 		return NULL;
14436 	}
14437 
14438 	if (htt_srng_setup(soc->htt_handle, pdev_id,
14439 			   pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
14440 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
14441 			       DIRECT_LINK_REFILL_RING_IDX);
14442 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14443 		return NULL;
14444 	}
14445 
14446 	return &pdev->rx_refill_buf_ring4;
14447 }
14448 
14449 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14450 					uint8_t pdev_id)
14451 {
14452 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14453 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14454 
14455 	if (!pdev) {
14456 		dp_err("DP pdev is NULL");
14457 		return;
14458 	}
14459 
14460 	dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
14461 	dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14462 }
14463 #endif
14464 
14465 #ifdef QCA_MULTIPASS_SUPPORT
14466 QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
14467 				uint16_t vlan_id, uint16_t group_key)
14468 {
14469 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14470 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
14471 						     DP_MOD_ID_TX_MULTIPASS);
14472 	QDF_STATUS status;
14473 
14474 	dp_info("Try: vdev_id %d, vdev %pK, multipass_en %d, vlan_id %d, group_key %d",
14475 		vdev_id, vdev, vdev ? vdev->multipass_en : 0, vlan_id,
14476 		group_key);
14477 	if (!vdev || !vdev->multipass_en) {
14478 		status = QDF_STATUS_E_INVAL;
14479 		goto fail;
14480 	}
14481 
14482 	if (!vdev->iv_vlan_map) {
14483 		uint16_t vlan_map_size = (sizeof(uint16_t)) * DP_MAX_VLAN_IDS;
14484 
14485 		vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
14486 		if (!vdev->iv_vlan_map) {
14487 			QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
14488 			status = QDF_STATUS_E_NOMEM;
14489 			goto fail;
14490 		}
14491 
14492 		/*
14493 		 * 0 is invalid group key.
14494 		 * Initilalize array with invalid group keys.
14495 		 */
14496 		qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
14497 	}
14498 
14499 	if (vlan_id >= DP_MAX_VLAN_IDS) {
14500 		status = QDF_STATUS_E_INVAL;
14501 		goto fail;
14502 	}
14503 
14504 	dp_info("Successful setting: vdev_id %d, vlan_id %d, group_key %d",
14505 		vdev_id, vlan_id, group_key);
14506 	vdev->iv_vlan_map[vlan_id] = group_key;
14507 	status = QDF_STATUS_SUCCESS;
14508 fail:
14509 	if (vdev)
14510 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
14511 	return status;
14512 }
14513 
14514 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
14515 {
14516 	struct vlan_ethhdr veth_hdr;
14517 	struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
14518 
14519 	/*
14520 	 * Extract VLAN header of 4 bytes:
14521 	 * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4],
14522 	 *		   EtherType[2], Payload}
14523 	 * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02
14524 	 *		    08 00 45 00 00...
14525 	 * After Removal  : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00
14526 	 *		    00...
14527 	 */
14528 	qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
14529 	qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
14530 	veh = (struct vlan_ethhdr *)nbuf->data;
14531 	qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
14532 }
14533 
14534 void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
14535 {
14536 	struct dp_txrx_peer *txrx_peer = NULL;
14537 
14538 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
14539 	TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
14540 		qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
14541 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
14542 
14543 	if (vdev->iv_vlan_map) {
14544 		qdf_mem_free(vdev->iv_vlan_map);
14545 		vdev->iv_vlan_map = NULL;
14546 	}
14547 
14548 	qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
14549 }
14550 
14551 void dp_peer_multipass_list_init(struct dp_vdev *vdev)
14552 {
14553 	/*
14554 	 * vdev->iv_vlan_map is allocated when the first configuration command
14555 	 * is issued to avoid unnecessary allocation for regular mode VAP.
14556 	 */
14557 	TAILQ_INIT(&vdev->mpass_peer_list);
14558 	qdf_spinlock_create(&vdev->mpass_peer_mutex);
14559 }
14560 #endif /* QCA_MULTIPASS_SUPPORT */
14561