xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_main.c (revision 0ad872defa651430758c1bc6515773b8411f9760)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_ipa_obj_mgmt_api.h>
21 #include <qdf_types.h>
22 #include <qdf_lock.h>
23 #include <qdf_net_types.h>
24 #include <qdf_lro.h>
25 #include <qdf_module.h>
26 #include <hal_hw_headers.h>
27 #include <hal_api.h>
28 #include <hif.h>
29 #include <htt.h>
30 #include <wdi_event.h>
31 #include <queue.h>
32 #include "dp_types.h"
33 #include "dp_rings.h"
34 #include "dp_internal.h"
35 #include "dp_tx.h"
36 #include "dp_tx_desc.h"
37 #include "dp_rx.h"
38 #ifdef DP_RATETABLE_SUPPORT
39 #include "dp_ratetable.h"
40 #endif
41 #include <cdp_txrx_handle.h>
42 #include <wlan_cfg.h>
43 #include <wlan_utility.h>
44 #include "cdp_txrx_cmn_struct.h"
45 #include "cdp_txrx_stats_struct.h"
46 #include "cdp_txrx_cmn_reg.h"
47 #include <qdf_util.h>
48 #include "dp_peer.h"
49 #include "htt_stats.h"
50 #include "dp_htt.h"
51 #ifdef WLAN_SUPPORT_RX_FISA
52 #include <wlan_dp_fisa_rx.h>
53 #endif
54 #include "htt_ppdu_stats.h"
55 #include "qdf_mem.h"   /* qdf_mem_malloc,free */
56 #include "cfg_ucfg_api.h"
57 #include <wlan_module_ids.h>
58 #ifdef QCA_MULTIPASS_SUPPORT
59 #include <enet.h>
60 #endif
61 
62 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
63 #include "cdp_txrx_flow_ctrl_v2.h"
64 #else
65 
66 static inline void
67 cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
68 {
69 	return;
70 }
71 #endif
72 #ifdef WIFI_MONITOR_SUPPORT
73 #include <dp_mon.h>
74 #endif
75 #include "dp_ipa.h"
76 #ifdef FEATURE_WDS
77 #include "dp_txrx_wds.h"
78 #endif
79 #ifdef WLAN_SUPPORT_MSCS
80 #include "dp_mscs.h"
81 #endif
82 #ifdef WLAN_SUPPORT_MESH_LATENCY
83 #include "dp_mesh_latency.h"
84 #endif
85 #ifdef WLAN_SUPPORT_SCS
86 #include "dp_scs.h"
87 #endif
88 #ifdef ATH_SUPPORT_IQUE
89 #include "dp_txrx_me.h"
90 #endif
91 #if defined(DP_CON_MON)
92 #ifndef REMOVE_PKT_LOG
93 #include <pktlog_ac_api.h>
94 #include <pktlog_ac.h>
95 #endif
96 #endif
97 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
98 #include <wlan_dp_swlm.h>
99 #endif
100 #ifdef WLAN_DP_PROFILE_SUPPORT
101 #include <wlan_dp_main.h>
102 #endif
103 #ifdef CONFIG_SAWF_DEF_QUEUES
104 #include "dp_sawf.h"
105 #endif
106 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
107 #include "dp_rx_tag.h"
108 #endif
109 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
110 #include <target_if_dp.h>
111 #endif
112 
113 #ifdef QCA_DP_ENABLE_TX_COMP_RING4
114 #define TXCOMP_RING4_NUM 3
115 #else
116 #define TXCOMP_RING4_NUM WBM2SW_TXCOMP_RING4_NUM
117 #endif
118 
119 #if defined(DP_PEER_EXTENDED_API) || defined(WLAN_DP_PENDING_MEM_FLUSH)
120 #define SET_PEER_REF_CNT_ONE(_peer) \
121 	qdf_atomic_set(&(_peer)->ref_cnt, 1)
122 #else
123 #define SET_PEER_REF_CNT_ONE(_peer)
124 #endif
125 
126 #ifdef WLAN_SYSFS_DP_STATS
127 /* sysfs event wait time for firmware stat request unit milliseconds */
128 #define WLAN_SYSFS_STAT_REQ_WAIT_MS 3000
129 #endif
130 
131 #ifdef QCA_DP_TX_FW_METADATA_V2
132 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
133 		HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
134 #else
135 #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val) \
136 		HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
137 #endif
138 #define MLD_MODE_INVALID 0xFF
139 
140 QDF_COMPILE_TIME_ASSERT(max_rx_rings_check,
141 			MAX_REO_DEST_RINGS == CDP_MAX_RX_RINGS);
142 
143 QDF_COMPILE_TIME_ASSERT(max_tx_rings_check,
144 			MAX_TCL_DATA_RINGS == CDP_MAX_TX_COMP_RINGS);
145 
146 void dp_configure_arch_ops(struct dp_soc *soc);
147 qdf_size_t dp_get_soc_context_size(uint16_t device_id);
148 
149 /*
150  * The max size of cdp_peer_stats_param_t is limited to 16 bytes.
151  * If the buffer size is exceeding this size limit,
152  * dp_txrx_get_peer_stats is to be used instead.
153  */
154 QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size,
155 			(sizeof(cdp_peer_stats_param_t) <= 16));
156 
157 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
158 /*
159  * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
160  * also should be updated accordingly
161  */
162 QDF_COMPILE_TIME_ASSERT(num_intr_grps,
163 			HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
164 
165 /*
166  * HIF_EVENT_HIST_MAX should always be power of 2
167  */
168 QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
169 			(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
170 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
171 
172 /*
173  * If WLAN_CFG_INT_NUM_CONTEXTS is changed,
174  * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated
175  */
176 QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs,
177 			WLAN_CFG_INT_NUM_CONTEXTS_MAX >=
178 			WLAN_CFG_INT_NUM_CONTEXTS);
179 
180 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc);
181 static QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl);
182 static QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl);
183 
184 static void dp_pdev_srng_deinit(struct dp_pdev *pdev);
185 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev);
186 static void dp_pdev_srng_free(struct dp_pdev *pdev);
187 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev);
188 
189 static inline
190 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
191 				struct cdp_pdev_attach_params *params);
192 
193 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id);
194 
195 static QDF_STATUS
196 dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
197 		   HTC_HANDLE htc_handle,
198 		   qdf_device_t qdf_osdev,
199 		   uint8_t pdev_id);
200 
201 static QDF_STATUS
202 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force);
203 
204 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc);
205 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc);
206 
207 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
208 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc,
209 				       uint8_t pdev_id,
210 				       int force);
211 static struct dp_soc *
212 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
213 	      struct cdp_soc_attach_params *params);
214 static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl,
215 					      uint8_t vdev_id,
216 					      uint8_t *peer_mac_addr,
217 					      enum cdp_peer_type peer_type);
218 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
219 				       uint8_t vdev_id,
220 				       uint8_t *peer_mac, uint32_t bitmap,
221 				       enum cdp_peer_type peer_type);
222 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
223 				bool unmap_only,
224 				bool mlo_peers_only);
225 #ifdef ENABLE_VERBOSE_DEBUG
226 bool is_dp_verbose_debug_enabled;
227 #endif
228 
229 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
230 static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
231 static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
232 			   bool enable);
233 static inline void
234 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
235 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats);
236 static inline void
237 dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id);
238 #endif
239 
240 #ifdef DP_UMAC_HW_RESET_SUPPORT
241 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc);
242 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc);
243 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc);
244 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc);
245 #endif
246 
247 #define MON_VDEV_TIMER_INIT 0x1
248 #define MON_VDEV_TIMER_RUNNING 0x2
249 
250 #define DP_MCS_LENGTH (6*MAX_MCS)
251 
252 #define DP_CURR_FW_STATS_AVAIL 19
253 #define DP_HTT_DBG_EXT_STATS_MAX 256
254 #define DP_MAX_SLEEP_TIME 100
255 #ifndef QCA_WIFI_3_0_EMU
256 #define SUSPEND_DRAIN_WAIT 500
257 #else
258 #define SUSPEND_DRAIN_WAIT 3000
259 #endif
260 
261 #ifdef IPA_OFFLOAD
262 /* Exclude IPA rings from the interrupt context */
263 #define TX_RING_MASK_VAL	0xb
264 #define RX_RING_MASK_VAL	0x7
265 #else
266 #define TX_RING_MASK_VAL	0xF
267 #define RX_RING_MASK_VAL	0xF
268 #endif
269 
270 #define STR_MAXLEN	64
271 
272 #define RNG_ERR		"SRNG setup failed for"
273 
274 /**
275  * enum dp_stats_type - Select the type of statistics
276  * @STATS_FW: Firmware-based statistic
277  * @STATS_HOST: Host-based statistic
278  * @STATS_TYPE_MAX: maximum enumeration
279  */
280 enum dp_stats_type {
281 	STATS_FW = 0,
282 	STATS_HOST = 1,
283 	STATS_TYPE_MAX = 2,
284 };
285 
286 /**
287  * enum dp_fw_stats - General Firmware statistics options
288  * @TXRX_FW_STATS_INVALID: statistic is not available
289  */
290 enum dp_fw_stats {
291 	TXRX_FW_STATS_INVALID	= -1,
292 };
293 
294 /*
295  * dp_stats_mapping_table - Firmware and Host statistics
296  * currently supported
297  */
298 #ifndef WLAN_SOFTUMAC_SUPPORT
299 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
300 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
301 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
302 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
303 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
304 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
305 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
306 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
307 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
308 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
309 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
310 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
311 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
312 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
313 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
314 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
315 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
316 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
317 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
318 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
319 	/* Last ENUM for HTT FW STATS */
320 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
321 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
322 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
323 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
324 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
325 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
326 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
327 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
328 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
329 	{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
330 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
331 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
332 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
333 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
334 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
335 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
336 	{TXRX_FW_STATS_INVALID, TXRX_SOC_REO_HW_DESC_DUMP},
337 	{TXRX_FW_STATS_INVALID, TXRX_SOC_WBM_IDLE_HPTP_DUMP},
338 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_USAGE_WM_STATS},
339 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
340 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID},
341 	{TXRX_FW_STATS_INVALID, TXRX_PEER_STATS},
342 };
343 #else
344 const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
345 	{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
346 	{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
347 	{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
348 	{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
349 	{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
350 	{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
351 	{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
352 	{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
353 	{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
354 	{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
355 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
356 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
357 	{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
358 	{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
359 	{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
360 	{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
361 	{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
362 	{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
363 	{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
364 	/* Last ENUM for HTT FW STATS */
365 	{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
366 	{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
367 	{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
368 	{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
369 	{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
370 	{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
371 	{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
372 	{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
373 	{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
374 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
375 	{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
376 	{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
377 	{TXRX_FW_STATS_INVALID, TXRX_NAPI_STATS},
378 	{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
379 	{TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS},
380 	{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
381 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
382 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
383 	{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
384 	{HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT, TXRX_HOST_STATS_INVALID},
385 	{HTT_DBG_EXT_STATS_TX_SOUNDING_INFO, TXRX_HOST_STATS_INVALID}
386 };
387 #endif
388 
389 /* MCL specific functions */
390 #if defined(DP_CON_MON)
391 
392 #ifdef IPA_OFFLOAD
393 /**
394  * dp_get_num_rx_contexts() - get number of RX contexts
395  * @soc_hdl: cdp opaque soc handle
396  *
397  * Return: number of RX contexts
398  */
399 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
400 {
401 	int num_rx_contexts;
402 	uint32_t reo_ring_map;
403 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
404 
405 	reo_ring_map = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
406 
407 	switch (soc->arch_id) {
408 	case CDP_ARCH_TYPE_BE:
409 		/* 2 REO rings are used for IPA */
410 		reo_ring_map &=  ~(BIT(3) | BIT(7));
411 
412 		break;
413 	case CDP_ARCH_TYPE_LI:
414 		/* 1 REO ring is used for IPA */
415 		reo_ring_map &=  ~BIT(3);
416 		break;
417 	default:
418 		dp_err("unknown arch_id 0x%x", soc->arch_id);
419 		QDF_BUG(0);
420 	}
421 	/*
422 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
423 	 * in future
424 	 */
425 	num_rx_contexts = qdf_get_hweight32(reo_ring_map);
426 
427 	return num_rx_contexts;
428 }
429 #else
430 #ifdef WLAN_SOFTUMAC_SUPPORT
431 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
432 {
433 	uint32_t rx_rings_config;
434 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
435 
436 	rx_rings_config = wlan_cfg_get_rx_rings_mapping(soc->wlan_cfg_ctx);
437 	/*
438 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
439 	 * in future
440 	 */
441 	return qdf_get_hweight32(rx_rings_config);
442 }
443 #else
444 static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
445 {
446 	int num_rx_contexts;
447 	uint32_t reo_config;
448 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
449 
450 	reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
451 	/*
452 	 * qdf_get_hweight32 prefer over qdf_get_hweight8 in case map is scaled
453 	 * in future
454 	 */
455 	num_rx_contexts = qdf_get_hweight32(reo_config);
456 
457 	return num_rx_contexts;
458 }
459 #endif /* WLAN_SOFTUMAC_SUPPORT */
460 #endif
461 
462 #endif
463 
464 #ifdef FEATURE_MEC
465 void dp_peer_mec_flush_entries(struct dp_soc *soc)
466 {
467 	unsigned int index;
468 	struct dp_mec_entry *mecentry, *mecentry_next;
469 
470 	TAILQ_HEAD(, dp_mec_entry) free_list;
471 	TAILQ_INIT(&free_list);
472 
473 	if (!soc->mec_hash.mask)
474 		return;
475 
476 	if (!soc->mec_hash.bins)
477 		return;
478 
479 	if (!qdf_atomic_read(&soc->mec_cnt))
480 		return;
481 
482 	qdf_spin_lock_bh(&soc->mec_lock);
483 	for (index = 0; index <= soc->mec_hash.mask; index++) {
484 		if (!TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
485 			TAILQ_FOREACH_SAFE(mecentry, &soc->mec_hash.bins[index],
486 					   hash_list_elem, mecentry_next) {
487 			    dp_peer_mec_detach_entry(soc, mecentry, &free_list);
488 			}
489 		}
490 	}
491 	qdf_spin_unlock_bh(&soc->mec_lock);
492 
493 	dp_peer_mec_free_list(soc, &free_list);
494 }
495 
496 /**
497  * dp_print_mec_stats() - Dump MEC entries in table
498  * @soc: Datapath soc handle
499  *
500  * Return: none
501  */
502 static void dp_print_mec_stats(struct dp_soc *soc)
503 {
504 	int i;
505 	uint32_t index;
506 	struct dp_mec_entry *mecentry = NULL, *mec_list;
507 	uint32_t num_entries = 0;
508 
509 	DP_PRINT_STATS("MEC Stats:");
510 	DP_PRINT_STATS("   Entries Added   = %d", soc->stats.mec.added);
511 	DP_PRINT_STATS("   Entries Deleted = %d", soc->stats.mec.deleted);
512 
513 	if (!qdf_atomic_read(&soc->mec_cnt))
514 		return;
515 
516 	mec_list = qdf_mem_malloc(sizeof(*mecentry) * DP_PEER_MAX_MEC_ENTRY);
517 	if (!mec_list) {
518 		dp_peer_warn("%pK: failed to allocate mec_list", soc);
519 		return;
520 	}
521 
522 	DP_PRINT_STATS("MEC Table:");
523 	for (index = 0; index <= soc->mec_hash.mask; index++) {
524 		qdf_spin_lock_bh(&soc->mec_lock);
525 		if (TAILQ_EMPTY(&soc->mec_hash.bins[index])) {
526 			qdf_spin_unlock_bh(&soc->mec_lock);
527 			continue;
528 		}
529 
530 		TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index],
531 			      hash_list_elem) {
532 			qdf_mem_copy(&mec_list[num_entries], mecentry,
533 				     sizeof(*mecentry));
534 			num_entries++;
535 		}
536 		qdf_spin_unlock_bh(&soc->mec_lock);
537 	}
538 
539 	if (!num_entries) {
540 		qdf_mem_free(mec_list);
541 		return;
542 	}
543 
544 	for (i = 0; i < num_entries; i++) {
545 		DP_PRINT_STATS("%6d mac_addr = " QDF_MAC_ADDR_FMT
546 			       " is_active = %d pdev_id = %d vdev_id = %d",
547 			       i,
548 			       QDF_MAC_ADDR_REF(mec_list[i].mac_addr.raw),
549 			       mec_list[i].is_active,
550 			       mec_list[i].pdev_id,
551 			       mec_list[i].vdev_id);
552 	}
553 	qdf_mem_free(mec_list);
554 }
555 #else
556 static void dp_print_mec_stats(struct dp_soc *soc)
557 {
558 }
559 #endif
560 
561 static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
562 				 uint8_t vdev_id,
563 				 uint8_t *peer_mac,
564 				 uint8_t *mac_addr,
565 				 enum cdp_txrx_ast_entry_type type,
566 				 uint32_t flags)
567 {
568 	int ret = -1;
569 	QDF_STATUS status = QDF_STATUS_SUCCESS;
570 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
571 						       peer_mac, 0, vdev_id,
572 						       DP_MOD_ID_CDP);
573 
574 	if (!peer) {
575 		dp_peer_debug("Peer is NULL!");
576 		return ret;
577 	}
578 
579 	status = dp_peer_add_ast((struct dp_soc *)soc_hdl,
580 				 peer,
581 				 mac_addr,
582 				 type,
583 				 flags);
584 	if ((status == QDF_STATUS_SUCCESS) ||
585 	    (status == QDF_STATUS_E_ALREADY) ||
586 	    (status == QDF_STATUS_E_AGAIN))
587 		ret = 0;
588 
589 	dp_hmwds_ast_add_notify(peer, mac_addr,
590 				type, status, false);
591 
592 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
593 
594 	return ret;
595 }
596 
597 static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
598 						uint8_t vdev_id,
599 						uint8_t *peer_mac,
600 						uint8_t *wds_macaddr,
601 						uint32_t flags)
602 {
603 	int status = -1;
604 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
605 	struct dp_ast_entry  *ast_entry = NULL;
606 	struct dp_peer *peer;
607 
608 	if (soc->ast_offload_support)
609 		return status;
610 
611 	peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl,
612 				      peer_mac, 0, vdev_id,
613 				      DP_MOD_ID_CDP);
614 
615 	if (!peer) {
616 		dp_peer_debug("Peer is NULL!");
617 		return status;
618 	}
619 
620 	qdf_spin_lock_bh(&soc->ast_lock);
621 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
622 						    peer->vdev->pdev->pdev_id);
623 
624 	if (ast_entry) {
625 		status = dp_peer_update_ast(soc,
626 					    peer,
627 					    ast_entry, flags);
628 	}
629 	qdf_spin_unlock_bh(&soc->ast_lock);
630 
631 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
632 
633 	return status;
634 }
635 
636 /**
637  * dp_peer_reset_ast_entries() - Deletes all HMWDS entries for a peer
638  * @soc:		Datapath SOC handle
639  * @peer:		DP peer
640  * @arg:		callback argument
641  *
642  * Return: None
643  */
644 static void
645 dp_peer_reset_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
646 {
647 	struct dp_ast_entry *ast_entry = NULL;
648 	struct dp_ast_entry *tmp_ast_entry;
649 
650 	DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
651 		if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
652 		    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
653 			dp_peer_del_ast(soc, ast_entry);
654 	}
655 }
656 
657 /**
658  * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
659  * @soc_hdl:		Datapath SOC handle
660  * @wds_macaddr:	WDS entry MAC Address
661  * @peer_mac_addr:	WDS entry MAC Address
662  * @vdev_id:		id of vdev handle
663  *
664  * Return: QDF_STATUS
665  */
666 static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
667 					 uint8_t *wds_macaddr,
668 					 uint8_t *peer_mac_addr,
669 					 uint8_t vdev_id)
670 {
671 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
672 	struct dp_ast_entry *ast_entry = NULL;
673 	struct dp_peer *peer;
674 	struct dp_pdev *pdev;
675 	struct dp_vdev *vdev;
676 
677 	if (soc->ast_offload_support)
678 		return QDF_STATUS_E_FAILURE;
679 
680 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
681 
682 	if (!vdev)
683 		return QDF_STATUS_E_FAILURE;
684 
685 	pdev = vdev->pdev;
686 
687 	if (peer_mac_addr) {
688 		peer = dp_peer_find_hash_find(soc, peer_mac_addr,
689 					      0, vdev->vdev_id,
690 					      DP_MOD_ID_CDP);
691 		if (!peer) {
692 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
693 			return QDF_STATUS_E_FAILURE;
694 		}
695 
696 		qdf_spin_lock_bh(&soc->ast_lock);
697 		dp_peer_reset_ast_entries(soc, peer, NULL);
698 		qdf_spin_unlock_bh(&soc->ast_lock);
699 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
700 	} else if (wds_macaddr) {
701 		qdf_spin_lock_bh(&soc->ast_lock);
702 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
703 							    pdev->pdev_id);
704 
705 		if (ast_entry) {
706 			if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
707 			    (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
708 				dp_peer_del_ast(soc, ast_entry);
709 		}
710 		qdf_spin_unlock_bh(&soc->ast_lock);
711 	}
712 
713 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
714 	return QDF_STATUS_SUCCESS;
715 }
716 
717 /**
718  * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
719  * @soc_hdl:		Datapath SOC handle
720  * @vdev_id:		id of vdev object
721  *
722  * Return: QDF_STATUS
723  */
724 static QDF_STATUS
725 dp_wds_reset_ast_table_wifi3(struct cdp_soc_t  *soc_hdl,
726 			     uint8_t vdev_id)
727 {
728 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
729 
730 	if (soc->ast_offload_support)
731 		return QDF_STATUS_SUCCESS;
732 
733 	qdf_spin_lock_bh(&soc->ast_lock);
734 
735 	dp_soc_iterate_peer(soc, dp_peer_reset_ast_entries, NULL,
736 			    DP_MOD_ID_CDP);
737 	qdf_spin_unlock_bh(&soc->ast_lock);
738 
739 	return QDF_STATUS_SUCCESS;
740 }
741 
742 /**
743  * dp_peer_flush_ast_entries() - Delete all wds and hmwds ast entries of a peer
744  * @soc:		Datapath SOC
745  * @peer:		Datapath peer
746  * @arg:		arg to callback
747  *
748  * Return: None
749  */
750 static void
751 dp_peer_flush_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
752 {
753 	struct dp_ast_entry *ase = NULL;
754 	struct dp_ast_entry *temp_ase;
755 
756 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
757 		if ((ase->type ==
758 			CDP_TXRX_AST_TYPE_STATIC) ||
759 			(ase->type ==
760 			 CDP_TXRX_AST_TYPE_SELF) ||
761 			(ase->type ==
762 			 CDP_TXRX_AST_TYPE_STA_BSS))
763 			continue;
764 		dp_peer_del_ast(soc, ase);
765 	}
766 }
767 
768 /**
769  * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
770  * @soc_hdl:		Datapath SOC handle
771  *
772  * Return: None
773  */
774 static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t  *soc_hdl)
775 {
776 	struct dp_soc *soc = (struct dp_soc *) soc_hdl;
777 
778 	qdf_spin_lock_bh(&soc->ast_lock);
779 
780 	dp_soc_iterate_peer(soc, dp_peer_flush_ast_entries, NULL,
781 			    DP_MOD_ID_CDP);
782 
783 	qdf_spin_unlock_bh(&soc->ast_lock);
784 	dp_peer_mec_flush_entries(soc);
785 }
786 
787 #if defined(IPA_WDS_EASYMESH_FEATURE) && defined(FEATURE_AST)
788 /**
789  * dp_peer_send_wds_disconnect() - Send Disconnect event to IPA for each peer
790  * @soc: Datapath SOC
791  * @peer: Datapath peer
792  *
793  * Return: None
794  */
795 static void
796 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
797 {
798 	struct dp_ast_entry *ase = NULL;
799 	struct dp_ast_entry *temp_ase;
800 
801 	DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
802 		if (ase->type == CDP_TXRX_AST_TYPE_WDS) {
803 			soc->cdp_soc.ol_ops->peer_send_wds_disconnect(soc->ctrl_psoc,
804 								      ase->mac_addr.raw,
805 								      ase->vdev_id);
806 		}
807 	}
808 }
809 #elif defined(FEATURE_AST)
810 static void
811 dp_peer_send_wds_disconnect(struct dp_soc *soc, struct dp_peer *peer)
812 {
813 }
814 #endif
815 
816 /**
817  * dp_peer_check_ast_offload() - check ast offload support is enable or not
818  * @soc: soc handle
819  *
820  * Return: false in case of IPA and true/false in IPQ case
821  *
822  */
823 #if defined(IPA_OFFLOAD) && defined(QCA_WIFI_QCN9224)
824 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
825 {
826 	return false;
827 }
828 #else
829 static inline bool dp_peer_check_ast_offload(struct dp_soc *soc)
830 {
831 	if (soc->ast_offload_support)
832 		return true;
833 
834 	return false;
835 }
836 #endif
837 
838 /**
839  * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
840  *                                       and return ast entry information
841  *                                       of first ast entry found in the
842  *                                       table with given mac address
843  * @soc_hdl: data path soc handle
844  * @ast_mac_addr: AST entry mac address
845  * @ast_entry_info: ast entry information
846  *
847  * Return: true if ast entry found with ast_mac_addr
848  *          false if ast entry not found
849  */
850 static bool dp_peer_get_ast_info_by_soc_wifi3
851 	(struct cdp_soc_t *soc_hdl,
852 	 uint8_t *ast_mac_addr,
853 	 struct cdp_ast_entry_info *ast_entry_info)
854 {
855 	struct dp_ast_entry *ast_entry = NULL;
856 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
857 	struct dp_peer *peer = NULL;
858 
859 	if (dp_peer_check_ast_offload(soc))
860 		return false;
861 
862 	qdf_spin_lock_bh(&soc->ast_lock);
863 
864 	ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
865 	if ((!ast_entry) ||
866 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
867 		qdf_spin_unlock_bh(&soc->ast_lock);
868 		return false;
869 	}
870 
871 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
872 				     DP_MOD_ID_AST);
873 	if (!peer) {
874 		qdf_spin_unlock_bh(&soc->ast_lock);
875 		return false;
876 	}
877 
878 	ast_entry_info->type = ast_entry->type;
879 	ast_entry_info->pdev_id = ast_entry->pdev_id;
880 	ast_entry_info->vdev_id = ast_entry->vdev_id;
881 	ast_entry_info->peer_id = ast_entry->peer_id;
882 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
883 		     &peer->mac_addr.raw[0],
884 		     QDF_MAC_ADDR_SIZE);
885 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
886 	qdf_spin_unlock_bh(&soc->ast_lock);
887 	return true;
888 }
889 
890 /**
891  * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
892  *                                          and return ast entry information
893  *                                          if mac address and pdev_id matches
894  * @soc_hdl: data path soc handle
895  * @ast_mac_addr: AST entry mac address
896  * @pdev_id: pdev_id
897  * @ast_entry_info: ast entry information
898  *
899  * Return: true if ast entry found with ast_mac_addr
900  *          false if ast entry not found
901  */
902 static bool dp_peer_get_ast_info_by_pdevid_wifi3
903 		(struct cdp_soc_t *soc_hdl,
904 		 uint8_t *ast_mac_addr,
905 		 uint8_t pdev_id,
906 		 struct cdp_ast_entry_info *ast_entry_info)
907 {
908 	struct dp_ast_entry *ast_entry;
909 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
910 	struct dp_peer *peer = NULL;
911 
912 	if (soc->ast_offload_support)
913 		return false;
914 
915 	qdf_spin_lock_bh(&soc->ast_lock);
916 
917 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr,
918 						    pdev_id);
919 
920 	if ((!ast_entry) ||
921 	    (ast_entry->delete_in_progress && !ast_entry->callback)) {
922 		qdf_spin_unlock_bh(&soc->ast_lock);
923 		return false;
924 	}
925 
926 	peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id,
927 				     DP_MOD_ID_AST);
928 	if (!peer) {
929 		qdf_spin_unlock_bh(&soc->ast_lock);
930 		return false;
931 	}
932 
933 	ast_entry_info->type = ast_entry->type;
934 	ast_entry_info->pdev_id = ast_entry->pdev_id;
935 	ast_entry_info->vdev_id = ast_entry->vdev_id;
936 	ast_entry_info->peer_id = ast_entry->peer_id;
937 	qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
938 		     &peer->mac_addr.raw[0],
939 		     QDF_MAC_ADDR_SIZE);
940 	dp_peer_unref_delete(peer, DP_MOD_ID_AST);
941 	qdf_spin_unlock_bh(&soc->ast_lock);
942 	return true;
943 }
944 
945 /**
946  * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
947  *                            with given mac address
948  * @soc_handle: data path soc handle
949  * @mac_addr: AST entry mac address
950  * @callback: callback function to called on ast delete response from FW
951  * @cookie: argument to be passed to callback
952  *
953  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
954  *          is sent
955  *          QDF_STATUS_E_INVAL false if ast entry not found
956  */
957 static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
958 					       uint8_t *mac_addr,
959 					       txrx_ast_free_cb callback,
960 					       void *cookie)
961 
962 {
963 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
964 	struct dp_ast_entry *ast_entry = NULL;
965 	txrx_ast_free_cb cb = NULL;
966 	void *arg = NULL;
967 
968 	if (soc->ast_offload_support)
969 		return -QDF_STATUS_E_INVAL;
970 
971 	qdf_spin_lock_bh(&soc->ast_lock);
972 	ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
973 	if (!ast_entry) {
974 		qdf_spin_unlock_bh(&soc->ast_lock);
975 		return -QDF_STATUS_E_INVAL;
976 	}
977 
978 	if (ast_entry->callback) {
979 		cb = ast_entry->callback;
980 		arg = ast_entry->cookie;
981 	}
982 
983 	ast_entry->callback = callback;
984 	ast_entry->cookie = cookie;
985 
986 	/*
987 	 * if delete_in_progress is set AST delete is sent to target
988 	 * and host is waiting for response should not send delete
989 	 * again
990 	 */
991 	if (!ast_entry->delete_in_progress)
992 		dp_peer_del_ast(soc, ast_entry);
993 
994 	qdf_spin_unlock_bh(&soc->ast_lock);
995 	if (cb) {
996 		cb(soc->ctrl_psoc,
997 		   dp_soc_to_cdp_soc(soc),
998 		   arg,
999 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1000 	}
1001 	return QDF_STATUS_SUCCESS;
1002 }
1003 
1004 /**
1005  * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
1006  *                                   table if mac address and pdev_id matches
1007  * @soc_handle: data path soc handle
1008  * @mac_addr: AST entry mac address
1009  * @pdev_id: pdev id
1010  * @callback: callback function to called on ast delete response from FW
1011  * @cookie: argument to be passed to callback
1012  *
1013  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1014  *          is sent
1015  *          QDF_STATUS_E_INVAL false if ast entry not found
1016  */
1017 
1018 static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
1019 						uint8_t *mac_addr,
1020 						uint8_t pdev_id,
1021 						txrx_ast_free_cb callback,
1022 						void *cookie)
1023 
1024 {
1025 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1026 	struct dp_ast_entry *ast_entry;
1027 	txrx_ast_free_cb cb = NULL;
1028 	void *arg = NULL;
1029 
1030 	if (soc->ast_offload_support)
1031 		return -QDF_STATUS_E_INVAL;
1032 
1033 	qdf_spin_lock_bh(&soc->ast_lock);
1034 	ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
1035 
1036 	if (!ast_entry) {
1037 		qdf_spin_unlock_bh(&soc->ast_lock);
1038 		return -QDF_STATUS_E_INVAL;
1039 	}
1040 
1041 	if (ast_entry->callback) {
1042 		cb = ast_entry->callback;
1043 		arg = ast_entry->cookie;
1044 	}
1045 
1046 	ast_entry->callback = callback;
1047 	ast_entry->cookie = cookie;
1048 
1049 	/*
1050 	 * if delete_in_progress is set AST delete is sent to target
1051 	 * and host is waiting for response should not sent delete
1052 	 * again
1053 	 */
1054 	if (!ast_entry->delete_in_progress)
1055 		dp_peer_del_ast(soc, ast_entry);
1056 
1057 	qdf_spin_unlock_bh(&soc->ast_lock);
1058 
1059 	if (cb) {
1060 		cb(soc->ctrl_psoc,
1061 		   dp_soc_to_cdp_soc(soc),
1062 		   arg,
1063 		   CDP_TXRX_AST_DELETE_IN_PROGRESS);
1064 	}
1065 	return QDF_STATUS_SUCCESS;
1066 }
1067 
1068 /**
1069  * dp_peer_HMWDS_ast_entry_del() - delete the ast entry from soc AST hash
1070  *                                 table if HMWDS rem-addr command is issued
1071  *
1072  * @soc_handle: data path soc handle
1073  * @vdev_id: vdev id
1074  * @wds_macaddr: AST entry mac address to delete
1075  * @type: cdp_txrx_ast_entry_type to send to FW
1076  * @delete_in_fw: flag to indicate AST entry deletion in FW
1077  *
1078  * Return: QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
1079  *         is sent
1080  *         QDF_STATUS_E_INVAL false if ast entry not found
1081  */
1082 static QDF_STATUS dp_peer_HMWDS_ast_entry_del(struct cdp_soc_t *soc_handle,
1083 					      uint8_t vdev_id,
1084 					      uint8_t *wds_macaddr,
1085 					      uint8_t type,
1086 					      uint8_t delete_in_fw)
1087 {
1088 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
1089 
1090 	if (soc->ast_offload_support) {
1091 		dp_del_wds_entry_wrapper(soc, vdev_id, wds_macaddr, type,
1092 					 delete_in_fw);
1093 		return QDF_STATUS_SUCCESS;
1094 	}
1095 
1096 	return -QDF_STATUS_E_INVAL;
1097 }
1098 
1099 #ifdef FEATURE_AST
1100 /**
1101  * dp_print_mlo_ast_stats() - Print AST stats for MLO peers
1102  *
1103  * @soc: core DP soc context
1104  *
1105  * Return: void
1106  */
1107 static void dp_print_mlo_ast_stats(struct dp_soc *soc)
1108 {
1109 	if (soc->arch_ops.print_mlo_ast_stats)
1110 		soc->arch_ops.print_mlo_ast_stats(soc);
1111 }
1112 
1113 void
1114 dp_print_peer_ast_entries(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1115 {
1116 	struct dp_ast_entry *ase, *tmp_ase;
1117 	uint32_t num_entries = 0;
1118 	char type[CDP_TXRX_AST_TYPE_MAX][10] = {
1119 			"NONE", "STATIC", "SELF", "WDS", "HMWDS", "BSS",
1120 			"DA", "HMWDS_SEC", "MLD"};
1121 
1122 	DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
1123 	    DP_PRINT_STATS("%6d mac_addr = "QDF_MAC_ADDR_FMT
1124 		    " peer_mac_addr = "QDF_MAC_ADDR_FMT
1125 		    " peer_id = %u"
1126 		    " type = %s"
1127 		    " next_hop = %d"
1128 		    " is_active = %d"
1129 		    " ast_idx = %d"
1130 		    " ast_hash = %d"
1131 		    " delete_in_progress = %d"
1132 		    " pdev_id = %d"
1133 		    " vdev_id = %d",
1134 		    ++num_entries,
1135 		    QDF_MAC_ADDR_REF(ase->mac_addr.raw),
1136 		    QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1137 		    ase->peer_id,
1138 		    type[ase->type],
1139 		    ase->next_hop,
1140 		    ase->is_active,
1141 		    ase->ast_idx,
1142 		    ase->ast_hash_value,
1143 		    ase->delete_in_progress,
1144 		    ase->pdev_id,
1145 		    ase->vdev_id);
1146 	}
1147 }
1148 
1149 void dp_print_ast_stats(struct dp_soc *soc)
1150 {
1151 	DP_PRINT_STATS("AST Stats:");
1152 	DP_PRINT_STATS("	Entries Added   = %d", soc->stats.ast.added);
1153 	DP_PRINT_STATS("	Entries Deleted = %d", soc->stats.ast.deleted);
1154 	DP_PRINT_STATS("	Entries Agedout = %d", soc->stats.ast.aged_out);
1155 	DP_PRINT_STATS("	Entries MAP ERR  = %d", soc->stats.ast.map_err);
1156 	DP_PRINT_STATS("	Entries Mismatch ERR  = %d",
1157 		       soc->stats.ast.ast_mismatch);
1158 
1159 	DP_PRINT_STATS("AST Table:");
1160 
1161 	qdf_spin_lock_bh(&soc->ast_lock);
1162 
1163 	dp_soc_iterate_peer(soc, dp_print_peer_ast_entries, NULL,
1164 			    DP_MOD_ID_GENERIC_STATS);
1165 
1166 	qdf_spin_unlock_bh(&soc->ast_lock);
1167 
1168 	dp_print_mlo_ast_stats(soc);
1169 }
1170 #else
1171 void dp_print_ast_stats(struct dp_soc *soc)
1172 {
1173 	DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
1174 	return;
1175 }
1176 #endif
1177 
1178 /**
1179  * dp_print_peer_info() - Dump peer info
1180  * @soc: Datapath soc handle
1181  * @peer: Datapath peer handle
1182  * @arg: argument to iter function
1183  *
1184  * Return: void
1185  */
1186 static void
1187 dp_print_peer_info(struct dp_soc *soc, struct dp_peer *peer, void *arg)
1188 {
1189 	struct dp_txrx_peer *txrx_peer = NULL;
1190 
1191 	txrx_peer = dp_get_txrx_peer(peer);
1192 	if (!txrx_peer)
1193 		return;
1194 
1195 	DP_PRINT_STATS(" peer id = %d"
1196 		       " peer_mac_addr = "QDF_MAC_ADDR_FMT
1197 		       " nawds_enabled = %d"
1198 		       " bss_peer = %d"
1199 		       " wds_enabled = %d"
1200 		       " tx_cap_enabled = %d"
1201 		       " rx_cap_enabled = %d",
1202 		       peer->peer_id,
1203 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw),
1204 		       txrx_peer->nawds_enabled,
1205 		       txrx_peer->bss_peer,
1206 		       txrx_peer->wds_enabled,
1207 		       dp_monitor_is_tx_cap_enabled(peer),
1208 		       dp_monitor_is_rx_cap_enabled(peer));
1209 }
1210 
1211 /**
1212  * dp_print_peer_table() - Dump all Peer stats
1213  * @vdev: Datapath Vdev handle
1214  *
1215  * Return: void
1216  */
1217 static void dp_print_peer_table(struct dp_vdev *vdev)
1218 {
1219 	DP_PRINT_STATS("Dumping Peer Table  Stats:");
1220 	dp_vdev_iterate_peer(vdev, dp_print_peer_info, NULL,
1221 			     DP_MOD_ID_GENERIC_STATS);
1222 }
1223 
1224 #ifdef DP_MEM_PRE_ALLOC
1225 
1226 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1227 			   size_t ctxt_size)
1228 {
1229 	void *ctxt_mem;
1230 
1231 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_context) {
1232 		dp_warn("dp_prealloc_get_context null!");
1233 		goto dynamic_alloc;
1234 	}
1235 
1236 	ctxt_mem = soc->cdp_soc.ol_ops->dp_prealloc_get_context(ctxt_type,
1237 								ctxt_size);
1238 
1239 	if (ctxt_mem)
1240 		goto end;
1241 
1242 dynamic_alloc:
1243 	dp_info("switch to dynamic-alloc for type %d, size %zu",
1244 		ctxt_type, ctxt_size);
1245 	ctxt_mem = qdf_mem_malloc(ctxt_size);
1246 end:
1247 	return ctxt_mem;
1248 }
1249 
1250 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
1251 			 void *vaddr)
1252 {
1253 	QDF_STATUS status;
1254 
1255 	if (soc->cdp_soc.ol_ops->dp_prealloc_put_context) {
1256 		status = soc->cdp_soc.ol_ops->dp_prealloc_put_context(
1257 								ctxt_type,
1258 								vaddr);
1259 	} else {
1260 		dp_warn("dp_prealloc_put_context null!");
1261 		status = QDF_STATUS_E_NOSUPPORT;
1262 	}
1263 
1264 	if (QDF_IS_STATUS_ERROR(status)) {
1265 		dp_info("Context type %d not pre-allocated", ctxt_type);
1266 		qdf_mem_free(vaddr);
1267 	}
1268 }
1269 
1270 static inline
1271 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1272 					   struct dp_srng *srng,
1273 					   uint32_t ring_type)
1274 {
1275 	void *mem;
1276 
1277 	qdf_assert(!srng->is_mem_prealloc);
1278 
1279 	if (!soc->cdp_soc.ol_ops->dp_prealloc_get_consistent) {
1280 		dp_warn("dp_prealloc_get_consistent is null!");
1281 		goto qdf;
1282 	}
1283 
1284 	mem =
1285 		soc->cdp_soc.ol_ops->dp_prealloc_get_consistent
1286 						(&srng->alloc_size,
1287 						 &srng->base_vaddr_unaligned,
1288 						 &srng->base_paddr_unaligned,
1289 						 &srng->base_paddr_aligned,
1290 						 DP_RING_BASE_ALIGN, ring_type);
1291 
1292 	if (mem) {
1293 		srng->is_mem_prealloc = true;
1294 		goto end;
1295 	}
1296 qdf:
1297 	mem =  qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1298 						&srng->base_vaddr_unaligned,
1299 						&srng->base_paddr_unaligned,
1300 						&srng->base_paddr_aligned,
1301 						DP_RING_BASE_ALIGN);
1302 end:
1303 	dp_info("%s memory %pK dp_srng %pK ring_type %d alloc_size %d num_entries %d",
1304 		srng->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", mem,
1305 		srng, ring_type, srng->alloc_size, srng->num_entries);
1306 	return mem;
1307 }
1308 
1309 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1310 					       struct dp_srng *srng)
1311 {
1312 	if (srng->is_mem_prealloc) {
1313 		if (!soc->cdp_soc.ol_ops->dp_prealloc_put_consistent) {
1314 			dp_warn("dp_prealloc_put_consistent is null!");
1315 			QDF_BUG(0);
1316 			return;
1317 		}
1318 		soc->cdp_soc.ol_ops->dp_prealloc_put_consistent
1319 						(srng->alloc_size,
1320 						 srng->base_vaddr_unaligned,
1321 						 srng->base_paddr_unaligned);
1322 
1323 	} else {
1324 		qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1325 					srng->alloc_size,
1326 					srng->base_vaddr_unaligned,
1327 					srng->base_paddr_unaligned, 0);
1328 	}
1329 }
1330 
1331 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
1332 				   enum qdf_dp_desc_type desc_type,
1333 				   struct qdf_mem_multi_page_t *pages,
1334 				   size_t element_size,
1335 				   uint32_t element_num,
1336 				   qdf_dma_context_t memctxt,
1337 				   bool cacheable)
1338 {
1339 	if (!soc->cdp_soc.ol_ops->dp_get_multi_pages) {
1340 		dp_warn("dp_get_multi_pages is null!");
1341 		goto qdf;
1342 	}
1343 
1344 	pages->num_pages = 0;
1345 	pages->is_mem_prealloc = 0;
1346 	soc->cdp_soc.ol_ops->dp_get_multi_pages(desc_type,
1347 						element_size,
1348 						element_num,
1349 						pages,
1350 						cacheable);
1351 	if (pages->num_pages)
1352 		goto end;
1353 
1354 qdf:
1355 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
1356 				  element_num, memctxt, cacheable);
1357 end:
1358 	dp_info("%s desc_type %d element_size %d element_num %d cacheable %d",
1359 		pages->is_mem_prealloc ? "pre-alloc" : "dynamic-alloc",
1360 		desc_type, (int)element_size, element_num, cacheable);
1361 }
1362 
1363 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
1364 				  enum qdf_dp_desc_type desc_type,
1365 				  struct qdf_mem_multi_page_t *pages,
1366 				  qdf_dma_context_t memctxt,
1367 				  bool cacheable)
1368 {
1369 	if (pages->is_mem_prealloc) {
1370 		if (!soc->cdp_soc.ol_ops->dp_put_multi_pages) {
1371 			dp_warn("dp_put_multi_pages is null!");
1372 			QDF_BUG(0);
1373 			return;
1374 		}
1375 
1376 		soc->cdp_soc.ol_ops->dp_put_multi_pages(desc_type, pages);
1377 		qdf_mem_zero(pages, sizeof(*pages));
1378 	} else {
1379 		qdf_mem_multi_pages_free(soc->osdev, pages,
1380 					 memctxt, cacheable);
1381 	}
1382 }
1383 
1384 #else
1385 
1386 static inline
1387 void *dp_srng_aligned_mem_alloc_consistent(struct dp_soc *soc,
1388 					   struct dp_srng *srng,
1389 					   uint32_t ring_type)
1390 
1391 {
1392 	void *mem;
1393 
1394 	mem = qdf_aligned_mem_alloc_consistent(soc->osdev, &srng->alloc_size,
1395 					       &srng->base_vaddr_unaligned,
1396 					       &srng->base_paddr_unaligned,
1397 					       &srng->base_paddr_aligned,
1398 					       DP_RING_BASE_ALIGN);
1399 	if (mem)
1400 		qdf_mem_set(srng->base_vaddr_unaligned, 0, srng->alloc_size);
1401 
1402 	return mem;
1403 }
1404 
1405 static inline void dp_srng_mem_free_consistent(struct dp_soc *soc,
1406 					       struct dp_srng *srng)
1407 {
1408 	qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
1409 				srng->alloc_size,
1410 				srng->base_vaddr_unaligned,
1411 				srng->base_paddr_unaligned, 0);
1412 }
1413 
1414 #endif /* DP_MEM_PRE_ALLOC */
1415 
1416 #ifdef QCA_SUPPORT_WDS_EXTENDED
1417 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1418 {
1419 	return vdev->wds_ext_enabled;
1420 }
1421 #else
1422 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev)
1423 {
1424 	return false;
1425 }
1426 #endif
1427 
1428 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev)
1429 {
1430 	struct dp_vdev *vdev = NULL;
1431 	uint8_t rx_fast_flag = true;
1432 
1433 	/* Check if protocol tagging enable */
1434 	if (pdev->is_rx_protocol_tagging_enabled) {
1435 		rx_fast_flag = false;
1436 		goto update_flag;
1437 	}
1438 
1439 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
1440 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
1441 		/* Check if any VDEV has NAWDS enabled */
1442 		if (vdev->nawds_enabled) {
1443 			rx_fast_flag = false;
1444 			break;
1445 		}
1446 
1447 		/* Check if any VDEV has multipass enabled */
1448 		if (vdev->multipass_en) {
1449 			rx_fast_flag = false;
1450 			break;
1451 		}
1452 
1453 		/* Check if any VDEV has mesh enabled */
1454 		if (vdev->mesh_vdev) {
1455 			rx_fast_flag = false;
1456 			break;
1457 		}
1458 	}
1459 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
1460 
1461 update_flag:
1462 	dp_init_info("Updated Rx fast flag to %u", rx_fast_flag);
1463 	pdev->rx_fast_flag = rx_fast_flag;
1464 }
1465 
1466 void dp_soc_set_interrupt_mode(struct dp_soc *soc)
1467 {
1468 	uint32_t msi_base_data, msi_vector_start;
1469 	int msi_vector_count, ret;
1470 
1471 	soc->intr_mode = DP_INTR_INTEGRATED;
1472 
1473 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
1474 	    (dp_is_monitor_mode_using_poll(soc) &&
1475 	     soc->cdp_soc.ol_ops->get_con_mode &&
1476 	     soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
1477 		soc->intr_mode = DP_INTR_POLL;
1478 	} else {
1479 		ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1480 						  &msi_vector_count,
1481 						  &msi_base_data,
1482 						  &msi_vector_start);
1483 		if (ret)
1484 			return;
1485 
1486 		soc->intr_mode = DP_INTR_MSI;
1487 	}
1488 }
1489 
1490 static int dp_srng_calculate_msi_group(struct dp_soc *soc,
1491 				       enum hal_ring_type ring_type,
1492 				       int ring_num,
1493 				       int *reg_msi_grp_num,
1494 				       bool nf_irq_support,
1495 				       int *nf_msi_grp_num)
1496 {
1497 	struct wlan_cfg_dp_soc_ctxt *cfg_ctx = soc->wlan_cfg_ctx;
1498 	uint8_t *grp_mask, *nf_irq_mask = NULL;
1499 	bool nf_irq_enabled = false;
1500 	uint8_t wbm2_sw_rx_rel_ring_id;
1501 
1502 	switch (ring_type) {
1503 	case WBM2SW_RELEASE:
1504 		wbm2_sw_rx_rel_ring_id =
1505 			wlan_cfg_get_rx_rel_ring_id(cfg_ctx);
1506 		if (ring_num == wbm2_sw_rx_rel_ring_id) {
1507 			/* dp_rx_wbm_err_process - soc->rx_rel_ring */
1508 			grp_mask = &cfg_ctx->int_rx_wbm_rel_ring_mask[0];
1509 			ring_num = 0;
1510 		} else if (ring_num == WBM2_SW_PPE_REL_RING_ID) {
1511 			grp_mask = &cfg_ctx->int_ppeds_wbm_release_ring_mask[0];
1512 			ring_num = 0;
1513 		}  else { /* dp_tx_comp_handler - soc->tx_comp_ring */
1514 			grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
1515 			nf_irq_mask = dp_srng_get_near_full_irq_mask(soc,
1516 								     ring_type,
1517 								     ring_num);
1518 			if (nf_irq_mask)
1519 				nf_irq_enabled = true;
1520 
1521 			/*
1522 			 * Using ring 4 as 4th tx completion ring since ring 3
1523 			 * is Rx error ring
1524 			 */
1525 			if (ring_num == WBM2SW_TXCOMP_RING4_NUM)
1526 				ring_num = TXCOMP_RING4_NUM;
1527 		}
1528 	break;
1529 
1530 	case REO_EXCEPTION:
1531 		/* dp_rx_err_process - &soc->reo_exception_ring */
1532 		grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
1533 	break;
1534 
1535 	case REO_DST:
1536 		/* dp_rx_process - soc->reo_dest_ring */
1537 		grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
1538 		nf_irq_mask = dp_srng_get_near_full_irq_mask(soc, ring_type,
1539 							     ring_num);
1540 		if (nf_irq_mask)
1541 			nf_irq_enabled = true;
1542 	break;
1543 
1544 	case REO_STATUS:
1545 		/* dp_reo_status_ring_handler - soc->reo_status_ring */
1546 		grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
1547 	break;
1548 
1549 	/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
1550 	case RXDMA_MONITOR_STATUS:
1551 	/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
1552 	case RXDMA_MONITOR_DST:
1553 		/* dp_mon_process */
1554 		grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
1555 	break;
1556 	case TX_MONITOR_DST:
1557 		/* dp_tx_mon_process */
1558 		grp_mask = &soc->wlan_cfg_ctx->int_tx_mon_ring_mask[0];
1559 	break;
1560 	case RXDMA_DST:
1561 		/* dp_rxdma_err_process */
1562 		grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
1563 	break;
1564 
1565 	case RXDMA_BUF:
1566 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
1567 	break;
1568 
1569 	case RXDMA_MONITOR_BUF:
1570 		grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0];
1571 	break;
1572 
1573 	case TX_MONITOR_BUF:
1574 		grp_mask = &soc->wlan_cfg_ctx->int_host2txmon_ring_mask[0];
1575 	break;
1576 
1577 	case REO2PPE:
1578 		grp_mask = &soc->wlan_cfg_ctx->int_reo2ppe_ring_mask[0];
1579 	break;
1580 
1581 	case PPE2TCL:
1582 		grp_mask = &soc->wlan_cfg_ctx->int_ppe2tcl_ring_mask[0];
1583 	break;
1584 
1585 	case TCL_DATA:
1586 	/* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */
1587 	case TCL_CMD_CREDIT:
1588 	case REO_CMD:
1589 	case SW2WBM_RELEASE:
1590 	case WBM_IDLE_LINK:
1591 		/* normally empty SW_TO_HW rings */
1592 		return -QDF_STATUS_E_NOENT;
1593 	break;
1594 
1595 	case TCL_STATUS:
1596 	case REO_REINJECT:
1597 		/* misc unused rings */
1598 		return -QDF_STATUS_E_NOENT;
1599 	break;
1600 
1601 	case CE_SRC:
1602 	case CE_DST:
1603 	case CE_DST_STATUS:
1604 		/* CE_rings - currently handled by hif */
1605 	default:
1606 		return -QDF_STATUS_E_NOENT;
1607 	break;
1608 	}
1609 
1610 	*reg_msi_grp_num = dp_srng_find_ring_in_mask(ring_num, grp_mask);
1611 
1612 	if (nf_irq_support && nf_irq_enabled) {
1613 		*nf_msi_grp_num = dp_srng_find_ring_in_mask(ring_num,
1614 							    nf_irq_mask);
1615 	}
1616 
1617 	return QDF_STATUS_SUCCESS;
1618 }
1619 
1620 #if defined(IPA_OFFLOAD) && defined(IPA_WDI3_VLAN_SUPPORT)
1621 static void
1622 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1623 			   int ring_num)
1624 {
1625 	if (wlan_ipa_is_vlan_enabled()) {
1626 		if ((ring_type == REO_DST) &&
1627 		    (ring_num == IPA_ALT_REO_DEST_RING_IDX)) {
1628 			ring_params->msi_addr = 0;
1629 			ring_params->msi_data = 0;
1630 			ring_params->flags &= ~HAL_SRNG_MSI_INTR;
1631 		}
1632 	}
1633 }
1634 #else
1635 static inline void
1636 dp_ipa_vlan_srng_msi_setup(struct hal_srng_params *ring_params, int ring_type,
1637 			   int ring_num)
1638 {
1639 }
1640 #endif
1641 
1642 void dp_srng_msi_setup(struct dp_soc *soc, struct dp_srng *srng,
1643 		       struct hal_srng_params *ring_params,
1644 		       int ring_type, int ring_num)
1645 {
1646 	int reg_msi_grp_num;
1647 	/*
1648 	 * nf_msi_grp_num needs to be initialized with negative value,
1649 	 * to avoid configuring near-full msi for WBM2SW3 ring
1650 	 */
1651 	int nf_msi_grp_num = -1;
1652 	int msi_data_count;
1653 	int ret;
1654 	uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
1655 	bool nf_irq_support;
1656 	int vector;
1657 
1658 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
1659 					  &msi_data_count, &msi_data_start,
1660 					  &msi_irq_start);
1661 
1662 	if (ret)
1663 		return;
1664 
1665 	nf_irq_support = hal_srng_is_near_full_irq_supported(soc->hal_soc,
1666 							     ring_type,
1667 							     ring_num);
1668 	ret = dp_srng_calculate_msi_group(soc, ring_type, ring_num,
1669 					  &reg_msi_grp_num,
1670 					  nf_irq_support,
1671 					  &nf_msi_grp_num);
1672 	if (ret < 0) {
1673 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1674 			     soc, ring_type, ring_num);
1675 		ring_params->msi_addr = 0;
1676 		ring_params->msi_data = 0;
1677 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1678 		return;
1679 	}
1680 
1681 	if (reg_msi_grp_num < 0) {
1682 		dp_init_info("%pK: ring not part of an ext_group; ring_type: %d,ring_num %d",
1683 			     soc, ring_type, ring_num);
1684 		ring_params->msi_addr = 0;
1685 		ring_params->msi_data = 0;
1686 		goto configure_msi2;
1687 	}
1688 
1689 	if (dp_is_msi_group_number_invalid(soc, reg_msi_grp_num,
1690 					   msi_data_count)) {
1691 		dp_init_warn("%pK: 2 msi_groups will share an msi; msi_group_num %d",
1692 			     soc, reg_msi_grp_num);
1693 		QDF_ASSERT(0);
1694 	}
1695 
1696 	pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
1697 
1698 	ring_params->msi_addr = addr_low;
1699 	ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
1700 	ring_params->msi_data = (reg_msi_grp_num % msi_data_count)
1701 		+ msi_data_start;
1702 	ring_params->flags |= HAL_SRNG_MSI_INTR;
1703 
1704 	dp_ipa_vlan_srng_msi_setup(ring_params, ring_type, ring_num);
1705 
1706 	dp_debug("ring type %u ring_num %u msi->data %u msi_addr %llx",
1707 		 ring_type, ring_num, ring_params->msi_data,
1708 		 (uint64_t)ring_params->msi_addr);
1709 
1710 	vector = msi_irq_start + (reg_msi_grp_num % msi_data_count);
1711 
1712 	/*
1713 	 * During umac reset ppeds interrupts free is not called.
1714 	 * Avoid registering interrupts again.
1715 	 *
1716 	 */
1717 	if (dp_check_umac_reset_in_progress(soc))
1718 		goto configure_msi2;
1719 
1720 	if (soc->arch_ops.dp_register_ppeds_interrupts)
1721 		if (soc->arch_ops.dp_register_ppeds_interrupts(soc, srng,
1722 							       vector,
1723 							       ring_type,
1724 							       ring_num))
1725 			return;
1726 
1727 configure_msi2:
1728 	if (!nf_irq_support) {
1729 		dp_srng_set_msi2_ring_params(soc, ring_params, 0, 0);
1730 		return;
1731 	}
1732 
1733 	dp_srng_msi2_setup(soc, ring_params, ring_type, ring_num,
1734 			   nf_msi_grp_num);
1735 }
1736 
1737 #ifdef WLAN_DP_PER_RING_TYPE_CONFIG
1738 /**
1739  * dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
1740  * threshold values from the wlan_srng_cfg table for each ring type
1741  * @soc: device handle
1742  * @ring_params: per ring specific parameters
1743  * @ring_type: Ring type
1744  * @ring_num: Ring number for a given ring type
1745  * @num_entries: number of entries to fill
1746  *
1747  * Fill the ring params with the interrupt threshold
1748  * configuration parameters available in the per ring type wlan_srng_cfg
1749  * table.
1750  *
1751  * Return: None
1752  */
1753 void
1754 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1755 				       struct hal_srng_params *ring_params,
1756 				       int ring_type, int ring_num,
1757 				       int num_entries)
1758 {
1759 	uint8_t wbm2_sw_rx_rel_ring_id;
1760 
1761 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1762 
1763 	if (ring_type == REO_DST) {
1764 		ring_params->intr_timer_thres_us =
1765 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1766 		ring_params->intr_batch_cntr_thres_entries =
1767 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1768 	} else if (ring_type == WBM2SW_RELEASE &&
1769 		   (ring_num == wbm2_sw_rx_rel_ring_id)) {
1770 		ring_params->intr_timer_thres_us =
1771 				wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1772 		ring_params->intr_batch_cntr_thres_entries =
1773 				wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1774 	} else {
1775 		ring_params->intr_timer_thres_us =
1776 				soc->wlan_srng_cfg[ring_type].timer_threshold;
1777 		ring_params->intr_batch_cntr_thres_entries =
1778 				soc->wlan_srng_cfg[ring_type].batch_count_threshold;
1779 	}
1780 	ring_params->low_threshold =
1781 			soc->wlan_srng_cfg[ring_type].low_threshold;
1782 	if (ring_params->low_threshold)
1783 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1784 
1785 	dp_srng_configure_nf_interrupt_thresholds(soc, ring_params, ring_type);
1786 }
1787 #else
1788 void
1789 dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
1790 				       struct hal_srng_params *ring_params,
1791 				       int ring_type, int ring_num,
1792 				       int num_entries)
1793 {
1794 	uint8_t wbm2_sw_rx_rel_ring_id;
1795 	bool rx_refill_lt_disable;
1796 
1797 	wbm2_sw_rx_rel_ring_id = wlan_cfg_get_rx_rel_ring_id(soc->wlan_cfg_ctx);
1798 
1799 	if (ring_type == REO_DST || ring_type == REO2PPE) {
1800 		ring_params->intr_timer_thres_us =
1801 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1802 		ring_params->intr_batch_cntr_thres_entries =
1803 			wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
1804 	} else if (ring_type == WBM2SW_RELEASE &&
1805 		   (ring_num < wbm2_sw_rx_rel_ring_id ||
1806 		   ring_num == WBM2SW_TXCOMP_RING4_NUM ||
1807 		   ring_num == WBM2_SW_PPE_REL_RING_ID)) {
1808 		ring_params->intr_timer_thres_us =
1809 			wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
1810 		ring_params->intr_batch_cntr_thres_entries =
1811 			wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
1812 	} else if (ring_type == RXDMA_BUF) {
1813 		rx_refill_lt_disable =
1814 			wlan_cfg_get_dp_soc_rxdma_refill_lt_disable
1815 							(soc->wlan_cfg_ctx);
1816 		ring_params->intr_timer_thres_us =
1817 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1818 
1819 		if (!rx_refill_lt_disable) {
1820 			ring_params->low_threshold = num_entries >> 3;
1821 			ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1822 			ring_params->intr_batch_cntr_thres_entries = 0;
1823 		}
1824 	} else {
1825 		ring_params->intr_timer_thres_us =
1826 			wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
1827 		ring_params->intr_batch_cntr_thres_entries =
1828 			wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
1829 	}
1830 
1831 	/* These rings donot require interrupt to host. Make them zero */
1832 	switch (ring_type) {
1833 	case REO_REINJECT:
1834 	case REO_CMD:
1835 	case TCL_DATA:
1836 	case TCL_CMD_CREDIT:
1837 	case TCL_STATUS:
1838 	case WBM_IDLE_LINK:
1839 	case SW2WBM_RELEASE:
1840 	case SW2RXDMA_NEW:
1841 		ring_params->intr_timer_thres_us = 0;
1842 		ring_params->intr_batch_cntr_thres_entries = 0;
1843 		break;
1844 	case PPE2TCL:
1845 		ring_params->intr_timer_thres_us =
1846 			wlan_cfg_get_int_timer_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1847 		ring_params->intr_batch_cntr_thres_entries =
1848 			wlan_cfg_get_int_batch_threshold_ppe2tcl(soc->wlan_cfg_ctx);
1849 		break;
1850 	case RXDMA_MONITOR_DST:
1851 		ring_params->intr_timer_thres_us =
1852 		  wlan_cfg_get_int_timer_threshold_mon_dest(soc->wlan_cfg_ctx);
1853 		ring_params->intr_batch_cntr_thres_entries =
1854 		  wlan_cfg_get_int_batch_threshold_mon_dest(soc->wlan_cfg_ctx);
1855 		break;
1856 	}
1857 
1858 	/* Enable low threshold interrupts for rx buffer rings (regular and
1859 	 * monitor buffer rings.
1860 	 * TODO: See if this is required for any other ring
1861 	 */
1862 	if ((ring_type == RXDMA_MONITOR_BUF) ||
1863 	    (ring_type == RXDMA_MONITOR_STATUS ||
1864 	    (ring_type == TX_MONITOR_BUF))) {
1865 		/* TODO: Setting low threshold to 1/8th of ring size
1866 		 * see if this needs to be configurable
1867 		 */
1868 		ring_params->low_threshold = num_entries >> 3;
1869 		ring_params->intr_timer_thres_us =
1870 			wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
1871 		ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
1872 		ring_params->intr_batch_cntr_thres_entries = 0;
1873 	}
1874 
1875 	/* During initialisation monitor rings are only filled with
1876 	 * MON_BUF_MIN_ENTRIES entries. So low threshold needs to be set to
1877 	 * a value less than that. Low threshold value is reconfigured again
1878 	 * to 1/8th of the ring size when monitor vap is created.
1879 	 */
1880 	if (ring_type == RXDMA_MONITOR_BUF)
1881 		ring_params->low_threshold = MON_BUF_MIN_ENTRIES >> 1;
1882 
1883 	/* In case of PCI chipsets, we dont have PPDU end interrupts,
1884 	 * so MONITOR STATUS ring is reaped by receiving MSI from srng.
1885 	 * Keep batch threshold as 8 so that interrupt is received for
1886 	 * every 4 packets in MONITOR_STATUS ring
1887 	 */
1888 	if ((ring_type == RXDMA_MONITOR_STATUS) &&
1889 	    (soc->intr_mode == DP_INTR_MSI))
1890 		ring_params->intr_batch_cntr_thres_entries = 4;
1891 }
1892 #endif
1893 
1894 static int dp_process_rxdma_dst_ring(struct dp_soc *soc,
1895 				     struct dp_intr *int_ctx,
1896 				     int mac_for_pdev,
1897 				     int total_budget)
1898 {
1899 	uint32_t target_type;
1900 
1901 	target_type = hal_get_target_type(soc->hal_soc);
1902 	if (target_type == TARGET_TYPE_QCN9160)
1903 		return dp_monitor_process(soc, int_ctx,
1904 					  mac_for_pdev, total_budget);
1905 	else
1906 		return dp_rxdma_err_process(int_ctx, soc, mac_for_pdev,
1907 					    total_budget);
1908 }
1909 
1910 /**
1911  * dp_process_lmac_rings() - Process LMAC rings
1912  * @int_ctx: interrupt context
1913  * @total_budget: budget of work which can be done
1914  *
1915  * Return: work done
1916  */
1917 int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
1918 {
1919 	struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
1920 	struct dp_soc *soc = int_ctx->soc;
1921 	uint32_t remaining_quota = total_budget;
1922 	struct dp_pdev *pdev = NULL;
1923 	uint32_t work_done  = 0;
1924 	int budget = total_budget;
1925 	int ring = 0;
1926 	bool rx_refill_lt_disable;
1927 
1928 	rx_refill_lt_disable =
1929 		wlan_cfg_get_dp_soc_rxdma_refill_lt_disable(soc->wlan_cfg_ctx);
1930 
1931 	/* Process LMAC interrupts */
1932 	for  (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) {
1933 		int mac_for_pdev = ring;
1934 
1935 		pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev);
1936 		if (!pdev)
1937 			continue;
1938 		if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
1939 			work_done = dp_monitor_process(soc, int_ctx,
1940 						       mac_for_pdev,
1941 						       remaining_quota);
1942 			if (work_done)
1943 				intr_stats->num_rx_mon_ring_masks++;
1944 			budget -= work_done;
1945 			if (budget <= 0)
1946 				goto budget_done;
1947 			remaining_quota = budget;
1948 		}
1949 
1950 		if (int_ctx->tx_mon_ring_mask & (1 << mac_for_pdev)) {
1951 			work_done = dp_tx_mon_process(soc, int_ctx,
1952 						      mac_for_pdev,
1953 						      remaining_quota);
1954 			if (work_done)
1955 				intr_stats->num_tx_mon_ring_masks++;
1956 			budget -= work_done;
1957 			if (budget <= 0)
1958 				goto budget_done;
1959 			remaining_quota = budget;
1960 		}
1961 
1962 		if (int_ctx->rxdma2host_ring_mask &
1963 				(1 << mac_for_pdev)) {
1964 			work_done = dp_process_rxdma_dst_ring(soc, int_ctx,
1965 							      mac_for_pdev,
1966 							      remaining_quota);
1967 			if (work_done)
1968 				intr_stats->num_rxdma2host_ring_masks++;
1969 			budget -=  work_done;
1970 			if (budget <= 0)
1971 				goto budget_done;
1972 			remaining_quota = budget;
1973 		}
1974 
1975 		if (int_ctx->host2rxdma_ring_mask & (1 << mac_for_pdev)) {
1976 			union dp_rx_desc_list_elem_t *desc_list = NULL;
1977 			union dp_rx_desc_list_elem_t *tail = NULL;
1978 			struct dp_srng *rx_refill_buf_ring;
1979 			struct rx_desc_pool *rx_desc_pool;
1980 
1981 			rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
1982 			if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
1983 				rx_refill_buf_ring =
1984 					&soc->rx_refill_buf_ring[mac_for_pdev];
1985 			else
1986 				rx_refill_buf_ring =
1987 					&soc->rx_refill_buf_ring[pdev->lmac_id];
1988 
1989 			intr_stats->num_host2rxdma_ring_masks++;
1990 
1991 			if (!rx_refill_lt_disable)
1992 				dp_rx_buffers_lt_replenish_simple(soc,
1993 							  mac_for_pdev,
1994 							  rx_refill_buf_ring,
1995 							  rx_desc_pool,
1996 							  0,
1997 							  &desc_list,
1998 							  &tail);
1999 		}
2000 	}
2001 
2002 	if (int_ctx->host2rxdma_mon_ring_mask)
2003 		dp_rx_mon_buf_refill(int_ctx);
2004 
2005 	if (int_ctx->host2txmon_ring_mask)
2006 		dp_tx_mon_buf_refill(int_ctx);
2007 
2008 budget_done:
2009 	return total_budget - budget;
2010 }
2011 
2012 uint32_t dp_service_srngs_wrapper(void *dp_ctx, uint32_t dp_budget, int cpu)
2013 {
2014 	struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
2015 	struct dp_soc *soc = int_ctx->soc;
2016 
2017 	return soc->arch_ops.dp_service_srngs(dp_ctx, dp_budget, cpu);
2018 }
2019 
2020 #ifdef QCA_SUPPORT_LEGACY_INTERRUPTS
2021 /**
2022  * dp_soc_interrupt_map_calculate_wifi3_pci_legacy() -
2023  * Calculate interrupt map for legacy interrupts
2024  * @soc: DP soc handle
2025  * @intr_ctx_num: Interrupt context number
2026  * @irq_id_map: IRQ map
2027  * @num_irq_r: Number of interrupts assigned for this context
2028  *
2029  * Return: void
2030  */
2031 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2032 							    int intr_ctx_num,
2033 							    int *irq_id_map,
2034 							    int *num_irq_r)
2035 {
2036 	int j;
2037 	int num_irq = 0;
2038 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2039 					soc->wlan_cfg_ctx, intr_ctx_num);
2040 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2041 					soc->wlan_cfg_ctx, intr_ctx_num);
2042 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2043 					soc->wlan_cfg_ctx, intr_ctx_num);
2044 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2045 					soc->wlan_cfg_ctx, intr_ctx_num);
2046 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2047 					soc->wlan_cfg_ctx, intr_ctx_num);
2048 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2049 					soc->wlan_cfg_ctx, intr_ctx_num);
2050 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2051 					soc->wlan_cfg_ctx, intr_ctx_num);
2052 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2053 					soc->wlan_cfg_ctx, intr_ctx_num);
2054 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2055 					soc->wlan_cfg_ctx, intr_ctx_num);
2056 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2057 					soc->wlan_cfg_ctx, intr_ctx_num);
2058 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2059 					soc->wlan_cfg_ctx, intr_ctx_num);
2060 	soc->intr_mode = DP_INTR_LEGACY_VIRTUAL_IRQ;
2061 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2062 		if (tx_mask & (1 << j))
2063 			irq_id_map[num_irq++] = (wbm2sw0_release - j);
2064 		if (rx_mask & (1 << j))
2065 			irq_id_map[num_irq++] = (reo2sw1_intr - j);
2066 		if (rx_mon_mask & (1 << j))
2067 			irq_id_map[num_irq++] = (rxmon2sw_p0_dest0 - j);
2068 		if (rx_err_ring_mask & (1 << j))
2069 			irq_id_map[num_irq++] = (reo2sw0_intr - j);
2070 		if (rx_wbm_rel_ring_mask & (1 << j))
2071 			irq_id_map[num_irq++] = (wbm2sw5_release - j);
2072 		if (reo_status_ring_mask & (1 << j))
2073 			irq_id_map[num_irq++] = (reo_status - j);
2074 		if (rxdma2host_ring_mask & (1 << j))
2075 			irq_id_map[num_irq++] = (rxdma2sw_dst_ring0 - j);
2076 		if (host2rxdma_ring_mask & (1 << j))
2077 			irq_id_map[num_irq++] = (sw2rxdma_0 - j);
2078 		if (host2rxdma_mon_ring_mask & (1 << j))
2079 			irq_id_map[num_irq++] = (sw2rxmon_src_ring - j);
2080 		if (host2txmon_ring_mask & (1 << j))
2081 			irq_id_map[num_irq++] = sw2txmon_src_ring;
2082 		if (txmon2host_mon_ring_mask & (1 << j))
2083 			irq_id_map[num_irq++] = (txmon2sw_p0_dest0 - j);
2084 	}
2085 	*num_irq_r = num_irq;
2086 }
2087 #else
2088 static void dp_soc_interrupt_map_calculate_wifi3_pci_legacy(struct dp_soc *soc,
2089 							    int intr_ctx_num,
2090 							    int *irq_id_map,
2091 							    int *num_irq_r)
2092 {
2093 }
2094 #endif
2095 
2096 static void
2097 dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc, int intr_ctx_num,
2098 					  int *irq_id_map, int *num_irq_r)
2099 {
2100 	int j;
2101 	int num_irq = 0;
2102 
2103 	int tx_mask =
2104 		wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2105 	int rx_mask =
2106 		wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2107 	int rx_mon_mask =
2108 		wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
2109 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2110 					soc->wlan_cfg_ctx, intr_ctx_num);
2111 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2112 					soc->wlan_cfg_ctx, intr_ctx_num);
2113 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2114 					soc->wlan_cfg_ctx, intr_ctx_num);
2115 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2116 					soc->wlan_cfg_ctx, intr_ctx_num);
2117 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2118 					soc->wlan_cfg_ctx, intr_ctx_num);
2119 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2120 					soc->wlan_cfg_ctx, intr_ctx_num);
2121 	int host2txmon_ring_mask = wlan_cfg_get_host2txmon_ring_mask(
2122 					soc->wlan_cfg_ctx, intr_ctx_num);
2123 	int txmon2host_mon_ring_mask = wlan_cfg_get_tx_mon_ring_mask(
2124 					soc->wlan_cfg_ctx, intr_ctx_num);
2125 
2126 	soc->intr_mode = DP_INTR_INTEGRATED;
2127 
2128 	for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
2129 		if (tx_mask & (1 << j)) {
2130 			irq_id_map[num_irq++] =
2131 				(wbm2host_tx_completions_ring1 - j);
2132 		}
2133 
2134 		if (rx_mask & (1 << j)) {
2135 			irq_id_map[num_irq++] =
2136 				(reo2host_destination_ring1 - j);
2137 		}
2138 
2139 		if (rxdma2host_ring_mask & (1 << j)) {
2140 			irq_id_map[num_irq++] =
2141 				rxdma2host_destination_ring_mac1 - j;
2142 		}
2143 
2144 		if (host2rxdma_ring_mask & (1 << j)) {
2145 			irq_id_map[num_irq++] =
2146 				host2rxdma_host_buf_ring_mac1 -	j;
2147 		}
2148 
2149 		if (host2rxdma_mon_ring_mask & (1 << j)) {
2150 			irq_id_map[num_irq++] =
2151 				host2rxdma_monitor_ring1 - j;
2152 		}
2153 
2154 		if (rx_mon_mask & (1 << j)) {
2155 			irq_id_map[num_irq++] =
2156 				ppdu_end_interrupts_mac1 - j;
2157 			irq_id_map[num_irq++] =
2158 				rxdma2host_monitor_status_ring_mac1 - j;
2159 			irq_id_map[num_irq++] =
2160 				rxdma2host_monitor_destination_mac1 - j;
2161 		}
2162 
2163 		if (rx_wbm_rel_ring_mask & (1 << j))
2164 			irq_id_map[num_irq++] = wbm2host_rx_release;
2165 
2166 		if (rx_err_ring_mask & (1 << j))
2167 			irq_id_map[num_irq++] = reo2host_exception;
2168 
2169 		if (reo_status_ring_mask & (1 << j))
2170 			irq_id_map[num_irq++] = reo2host_status;
2171 
2172 		if (host2txmon_ring_mask & (1 << j))
2173 			irq_id_map[num_irq++] = host2tx_monitor_ring1;
2174 
2175 		if (txmon2host_mon_ring_mask & (1 << j)) {
2176 			irq_id_map[num_irq++] =
2177 				(txmon2host_monitor_destination_mac1 - j);
2178 		}
2179 	}
2180 	*num_irq_r = num_irq;
2181 }
2182 
2183 static void
2184 dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc, int intr_ctx_num,
2185 				   int *irq_id_map, int *num_irq_r,
2186 				   int msi_vector_count, int msi_vector_start)
2187 {
2188 	int tx_mask = wlan_cfg_get_tx_ring_mask(
2189 					soc->wlan_cfg_ctx, intr_ctx_num);
2190 	int rx_mask = wlan_cfg_get_rx_ring_mask(
2191 					soc->wlan_cfg_ctx, intr_ctx_num);
2192 	int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
2193 					soc->wlan_cfg_ctx, intr_ctx_num);
2194 	int tx_mon_mask = wlan_cfg_get_tx_mon_ring_mask(
2195 					soc->wlan_cfg_ctx, intr_ctx_num);
2196 	int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
2197 					soc->wlan_cfg_ctx, intr_ctx_num);
2198 	int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
2199 					soc->wlan_cfg_ctx, intr_ctx_num);
2200 	int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
2201 					soc->wlan_cfg_ctx, intr_ctx_num);
2202 	int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
2203 					soc->wlan_cfg_ctx, intr_ctx_num);
2204 	int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
2205 					soc->wlan_cfg_ctx, intr_ctx_num);
2206 	int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
2207 					soc->wlan_cfg_ctx, intr_ctx_num);
2208 	int rx_near_full_grp_1_mask =
2209 		wlan_cfg_get_rx_near_full_grp_1_mask(soc->wlan_cfg_ctx,
2210 						     intr_ctx_num);
2211 	int rx_near_full_grp_2_mask =
2212 		wlan_cfg_get_rx_near_full_grp_2_mask(soc->wlan_cfg_ctx,
2213 						     intr_ctx_num);
2214 	int tx_ring_near_full_mask =
2215 		wlan_cfg_get_tx_ring_near_full_mask(soc->wlan_cfg_ctx,
2216 						    intr_ctx_num);
2217 
2218 	int host2txmon_ring_mask =
2219 		wlan_cfg_get_host2txmon_ring_mask(soc->wlan_cfg_ctx,
2220 						  intr_ctx_num);
2221 	unsigned int vector =
2222 		(intr_ctx_num % msi_vector_count) + msi_vector_start;
2223 	int num_irq = 0;
2224 
2225 	soc->intr_mode = DP_INTR_MSI;
2226 
2227 	if (tx_mask | rx_mask | rx_mon_mask | tx_mon_mask | rx_err_ring_mask |
2228 	    rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask |
2229 	    host2rxdma_ring_mask | host2rxdma_mon_ring_mask |
2230 	    rx_near_full_grp_1_mask | rx_near_full_grp_2_mask |
2231 	    tx_ring_near_full_mask | host2txmon_ring_mask)
2232 		irq_id_map[num_irq++] =
2233 			pld_get_msi_irq(soc->osdev->dev, vector);
2234 
2235 	*num_irq_r = num_irq;
2236 }
2237 
2238 void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
2239 				    int *irq_id_map, int *num_irq)
2240 {
2241 	int msi_vector_count, ret;
2242 	uint32_t msi_base_data, msi_vector_start;
2243 
2244 	if (pld_get_enable_intx(soc->osdev->dev)) {
2245 		return dp_soc_interrupt_map_calculate_wifi3_pci_legacy(soc,
2246 				intr_ctx_num, irq_id_map, num_irq);
2247 	}
2248 
2249 	ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
2250 					  &msi_vector_count,
2251 					  &msi_base_data,
2252 					  &msi_vector_start);
2253 	if (ret)
2254 		return dp_soc_interrupt_map_calculate_integrated(soc,
2255 				intr_ctx_num, irq_id_map, num_irq);
2256 
2257 	else
2258 		dp_soc_interrupt_map_calculate_msi(soc,
2259 				intr_ctx_num, irq_id_map, num_irq,
2260 				msi_vector_count, msi_vector_start);
2261 }
2262 
2263 void dp_srng_free(struct dp_soc *soc, struct dp_srng *srng)
2264 {
2265 	if (srng->alloc_size && srng->base_vaddr_unaligned) {
2266 		if (!srng->cached) {
2267 			dp_srng_mem_free_consistent(soc, srng);
2268 		} else {
2269 			qdf_mem_free(srng->base_vaddr_unaligned);
2270 		}
2271 		srng->alloc_size = 0;
2272 		srng->base_vaddr_unaligned = NULL;
2273 	}
2274 	srng->hal_srng = NULL;
2275 }
2276 
2277 qdf_export_symbol(dp_srng_free);
2278 
2279 QDF_STATUS dp_srng_init(struct dp_soc *soc, struct dp_srng *srng, int ring_type,
2280 			int ring_num, int mac_id)
2281 {
2282 	return soc->arch_ops.txrx_srng_init(soc, srng, ring_type,
2283 					    ring_num, mac_id);
2284 }
2285 
2286 qdf_export_symbol(dp_srng_init);
2287 
2288 QDF_STATUS dp_srng_alloc(struct dp_soc *soc, struct dp_srng *srng,
2289 			 int ring_type, uint32_t num_entries,
2290 			 bool cached)
2291 {
2292 	hal_soc_handle_t hal_soc = soc->hal_soc;
2293 	uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
2294 	uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
2295 
2296 	if (srng->base_vaddr_unaligned) {
2297 		dp_init_err("%pK: Ring type: %d, is already allocated",
2298 			    soc, ring_type);
2299 		return QDF_STATUS_SUCCESS;
2300 	}
2301 
2302 	num_entries = (num_entries > max_entries) ? max_entries : num_entries;
2303 	srng->hal_srng = NULL;
2304 	srng->alloc_size = num_entries * entry_size;
2305 	srng->num_entries = num_entries;
2306 	srng->cached = cached;
2307 
2308 	if (!cached) {
2309 		srng->base_vaddr_aligned =
2310 		    dp_srng_aligned_mem_alloc_consistent(soc,
2311 							 srng,
2312 							 ring_type);
2313 	} else {
2314 		srng->base_vaddr_aligned = qdf_aligned_malloc(
2315 					&srng->alloc_size,
2316 					&srng->base_vaddr_unaligned,
2317 					&srng->base_paddr_unaligned,
2318 					&srng->base_paddr_aligned,
2319 					DP_RING_BASE_ALIGN);
2320 	}
2321 
2322 	if (!srng->base_vaddr_aligned)
2323 		return QDF_STATUS_E_NOMEM;
2324 
2325 	return QDF_STATUS_SUCCESS;
2326 }
2327 
2328 qdf_export_symbol(dp_srng_alloc);
2329 
2330 void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
2331 		    int ring_type, int ring_num)
2332 {
2333 	if (!srng->hal_srng) {
2334 		dp_init_err("%pK: Ring type: %d, num:%d not setup",
2335 			    soc, ring_type, ring_num);
2336 		return;
2337 	}
2338 
2339 	if (dp_check_umac_reset_in_progress(soc))
2340 		goto srng_cleanup;
2341 
2342 	if (soc->arch_ops.dp_free_ppeds_interrupts)
2343 		soc->arch_ops.dp_free_ppeds_interrupts(soc, srng, ring_type,
2344 						       ring_num);
2345 
2346 srng_cleanup:
2347 	hal_srng_cleanup(soc->hal_soc, srng->hal_srng,
2348 			 dp_check_umac_reset_in_progress(soc));
2349 	srng->hal_srng = NULL;
2350 }
2351 
2352 qdf_export_symbol(dp_srng_deinit);
2353 
2354 /* TODO: Need this interface from HIF */
2355 void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle);
2356 
2357 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2358 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2359 			 hal_ring_handle_t hal_ring_hdl)
2360 {
2361 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2362 	uint32_t hp, tp;
2363 	uint8_t ring_id;
2364 
2365 	if (!int_ctx)
2366 		return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2367 
2368 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2369 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2370 
2371 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2372 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
2373 
2374 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2375 }
2376 
2377 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2378 			hal_ring_handle_t hal_ring_hdl)
2379 {
2380 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2381 	uint32_t hp, tp;
2382 	uint8_t ring_id;
2383 
2384 	if (!int_ctx)
2385 		return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2386 
2387 	hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp);
2388 	ring_id = hal_srng_ring_id_get(hal_ring_hdl);
2389 
2390 	hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
2391 			 ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
2392 
2393 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2394 }
2395 
2396 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2397 					      uint8_t hist_group_id)
2398 {
2399 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2400 			 0, 0, 0, HIF_EVENT_TIMER_ENTRY);
2401 }
2402 
2403 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2404 					     uint8_t hist_group_id)
2405 {
2406 	hif_record_event(dp_soc->hif_handle, hist_group_id,
2407 			 0, 0, 0, HIF_EVENT_TIMER_EXIT);
2408 }
2409 #else
2410 
2411 static inline void dp_srng_record_timer_entry(struct dp_soc *dp_soc,
2412 					      uint8_t hist_group_id)
2413 {
2414 }
2415 
2416 static inline void dp_srng_record_timer_exit(struct dp_soc *dp_soc,
2417 					     uint8_t hist_group_id)
2418 {
2419 }
2420 
2421 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2422 
2423 enum timer_yield_status
2424 dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
2425 			  uint64_t start_time)
2426 {
2427 	uint64_t cur_time = qdf_get_log_timestamp();
2428 
2429 	if (!work_done)
2430 		return DP_TIMER_WORK_DONE;
2431 
2432 	if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
2433 		return DP_TIMER_TIME_EXHAUST;
2434 
2435 	return DP_TIMER_NO_YIELD;
2436 }
2437 
2438 qdf_export_symbol(dp_should_timer_irq_yield);
2439 
2440 void dp_interrupt_timer(void *arg)
2441 {
2442 	struct dp_soc *soc = (struct dp_soc *) arg;
2443 	struct dp_pdev *pdev = soc->pdev_list[0];
2444 	enum timer_yield_status yield = DP_TIMER_NO_YIELD;
2445 	uint32_t work_done  = 0, total_work_done = 0;
2446 	int budget = 0xffff, i;
2447 	uint32_t remaining_quota = budget;
2448 	uint64_t start_time;
2449 	uint32_t lmac_id = DP_MON_INVALID_LMAC_ID;
2450 	uint8_t dp_intr_id = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
2451 	uint32_t lmac_iter;
2452 	int max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
2453 	enum reg_wifi_band mon_band;
2454 	int cpu = dp_srng_get_cpu();
2455 
2456 	/*
2457 	 * this logic makes all data path interfacing rings (UMAC/LMAC)
2458 	 * and Monitor rings polling mode when NSS offload is disabled
2459 	 */
2460 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx) &&
2461 	    !wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
2462 		if (qdf_atomic_read(&soc->cmn_init_done)) {
2463 			for (i = 0; i < wlan_cfg_get_num_contexts(
2464 						soc->wlan_cfg_ctx); i++)
2465 				soc->arch_ops.dp_service_srngs(&soc->intr_ctx[i], 0xffff,
2466 							       cpu);
2467 
2468 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2469 		}
2470 		return;
2471 	}
2472 
2473 	if (!qdf_atomic_read(&soc->cmn_init_done))
2474 		return;
2475 
2476 	if (dp_monitor_is_chan_band_known(pdev)) {
2477 		mon_band = dp_monitor_get_chan_band(pdev);
2478 		lmac_id = pdev->ch_band_lmac_id_mapping[mon_band];
2479 		if (qdf_likely(lmac_id != DP_MON_INVALID_LMAC_ID)) {
2480 			dp_intr_id = soc->mon_intr_id_lmac_map[lmac_id];
2481 			dp_srng_record_timer_entry(soc, dp_intr_id);
2482 		}
2483 	}
2484 
2485 	start_time = qdf_get_log_timestamp();
2486 	dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
2487 
2488 	while (yield == DP_TIMER_NO_YIELD) {
2489 		for (lmac_iter = 0; lmac_iter < max_mac_rings; lmac_iter++) {
2490 			if (lmac_iter == lmac_id)
2491 				work_done = dp_monitor_process(soc,
2492 						&soc->intr_ctx[dp_intr_id],
2493 						lmac_iter, remaining_quota);
2494 			else
2495 				work_done =
2496 					dp_monitor_drop_packets_for_mac(pdev,
2497 							     lmac_iter,
2498 							     remaining_quota);
2499 			if (work_done) {
2500 				budget -=  work_done;
2501 				if (budget <= 0) {
2502 					yield = DP_TIMER_WORK_EXHAUST;
2503 					goto budget_done;
2504 				}
2505 				remaining_quota = budget;
2506 				total_work_done += work_done;
2507 			}
2508 		}
2509 
2510 		yield = dp_should_timer_irq_yield(soc, total_work_done,
2511 						  start_time);
2512 		total_work_done = 0;
2513 	}
2514 
2515 budget_done:
2516 	if (yield == DP_TIMER_WORK_EXHAUST ||
2517 	    yield == DP_TIMER_TIME_EXHAUST)
2518 		qdf_timer_mod(&soc->int_timer, 1);
2519 	else
2520 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
2521 
2522 	if (lmac_id != DP_MON_INVALID_LMAC_ID)
2523 		dp_srng_record_timer_exit(soc, dp_intr_id);
2524 }
2525 
2526 /**
2527  * dp_soc_interrupt_detach_wrapper() - wrapper function for interrupt detach
2528  * @txrx_soc: DP SOC handle
2529  *
2530  * Return: None
2531  */
2532 static void dp_soc_interrupt_detach_wrapper(struct cdp_soc_t *txrx_soc)
2533 {
2534 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2535 
2536 	return soc->arch_ops.dp_soc_interrupt_detach(txrx_soc);
2537 }
2538 
2539 #if defined(DP_INTR_POLL_BOTH)
2540 /**
2541  * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
2542  * @txrx_soc: DP SOC handle
2543  *
2544  * Call the appropriate attach function based on the mode of operation.
2545  * This is a WAR for enabling monitor mode.
2546  *
2547  * Return: 0 for success. nonzero for failure.
2548  */
2549 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2550 {
2551 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2552 
2553 	if (!(soc->wlan_cfg_ctx->napi_enabled) ||
2554 	    (dp_is_monitor_mode_using_poll(soc) &&
2555 	     soc->cdp_soc.ol_ops->get_con_mode &&
2556 	     soc->cdp_soc.ol_ops->get_con_mode() ==
2557 	     QDF_GLOBAL_MONITOR_MODE)) {
2558 		dp_info("Poll mode");
2559 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2560 	} else {
2561 		dp_info("Interrupt  mode");
2562 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2563 	}
2564 }
2565 #else
2566 #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
2567 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2568 {
2569 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2570 
2571 	return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2572 }
2573 #else
2574 static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc)
2575 {
2576 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
2577 
2578 	if (wlan_cfg_is_poll_mode_enabled(soc->wlan_cfg_ctx))
2579 		return soc->arch_ops.dp_soc_attach_poll(txrx_soc);
2580 	else
2581 		return soc->arch_ops.dp_soc_interrupt_attach(txrx_soc);
2582 }
2583 #endif
2584 #endif
2585 
2586 void dp_link_desc_ring_replenish(struct dp_soc *soc, uint32_t mac_id)
2587 {
2588 	uint32_t cookie = 0;
2589 	uint32_t page_idx = 0;
2590 	struct qdf_mem_multi_page_t *pages;
2591 	struct qdf_mem_dma_page_t *dma_pages;
2592 	uint32_t offset = 0;
2593 	uint32_t count = 0;
2594 	uint32_t desc_id = 0;
2595 	void *desc_srng;
2596 	int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
2597 	uint32_t *total_link_descs_addr;
2598 	uint32_t total_link_descs;
2599 	uint32_t scatter_buf_num;
2600 	uint32_t num_entries_per_buf = 0;
2601 	uint32_t rem_entries;
2602 	uint32_t num_descs_per_page;
2603 	uint32_t num_scatter_bufs = 0;
2604 	uint8_t *scatter_buf_ptr;
2605 	void *desc;
2606 
2607 	num_scatter_bufs = soc->num_scatter_bufs;
2608 
2609 	if (mac_id == WLAN_INVALID_PDEV_ID) {
2610 		pages = &soc->link_desc_pages;
2611 		total_link_descs = soc->total_link_descs;
2612 		desc_srng = soc->wbm_idle_link_ring.hal_srng;
2613 	} else {
2614 		pages = dp_monitor_get_link_desc_pages(soc, mac_id);
2615 		/* dp_monitor_get_link_desc_pages returns NULL only
2616 		 * if monitor SOC is  NULL
2617 		 */
2618 		if (!pages) {
2619 			dp_err("can not get link desc pages");
2620 			QDF_ASSERT(0);
2621 			return;
2622 		}
2623 		total_link_descs_addr =
2624 				dp_monitor_get_total_link_descs(soc, mac_id);
2625 		total_link_descs = *total_link_descs_addr;
2626 		desc_srng = dp_monitor_get_link_desc_ring(soc, mac_id);
2627 	}
2628 
2629 	dma_pages = pages->dma_pages;
2630 	do {
2631 		qdf_mem_zero(dma_pages[page_idx].page_v_addr_start,
2632 			     pages->page_size);
2633 		page_idx++;
2634 	} while (page_idx < pages->num_pages);
2635 
2636 	if (desc_srng) {
2637 		hal_srng_access_start_unlocked(soc->hal_soc, desc_srng);
2638 		page_idx = 0;
2639 		count = 0;
2640 		offset = 0;
2641 
2642 		qdf_assert(pages->num_element_per_page != 0);
2643 		while ((desc = hal_srng_src_get_next(soc->hal_soc,
2644 						     desc_srng)) &&
2645 			(count < total_link_descs)) {
2646 			page_idx = count / pages->num_element_per_page;
2647 			if (desc_id == pages->num_element_per_page)
2648 				desc_id = 0;
2649 
2650 			offset = count % pages->num_element_per_page;
2651 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2652 						  soc->link_desc_id_start);
2653 
2654 			hal_set_link_desc_addr(soc->hal_soc, desc, cookie,
2655 					       dma_pages[page_idx].page_p_addr
2656 					       + (offset * link_desc_size),
2657 					       soc->idle_link_bm_id);
2658 			count++;
2659 			desc_id++;
2660 		}
2661 		hal_srng_access_end_unlocked(soc->hal_soc, desc_srng);
2662 	} else {
2663 		/* Populate idle list scatter buffers with link descriptor
2664 		 * pointers
2665 		 */
2666 		scatter_buf_num = 0;
2667 		num_entries_per_buf = hal_idle_scatter_buf_num_entries(
2668 					soc->hal_soc,
2669 					soc->wbm_idle_scatter_buf_size);
2670 
2671 		scatter_buf_ptr = (uint8_t *)(
2672 			soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
2673 		rem_entries = num_entries_per_buf;
2674 		page_idx = 0; count = 0;
2675 		offset = 0;
2676 		num_descs_per_page = pages->num_element_per_page;
2677 
2678 		qdf_assert(num_descs_per_page != 0);
2679 		while (count < total_link_descs) {
2680 			page_idx = count / num_descs_per_page;
2681 			offset = count % num_descs_per_page;
2682 			if (desc_id == pages->num_element_per_page)
2683 				desc_id = 0;
2684 
2685 			cookie = LINK_DESC_COOKIE(desc_id, page_idx,
2686 						  soc->link_desc_id_start);
2687 			hal_set_link_desc_addr(soc->hal_soc,
2688 					       (void *)scatter_buf_ptr,
2689 					       cookie,
2690 					       dma_pages[page_idx].page_p_addr +
2691 					       (offset * link_desc_size),
2692 					       soc->idle_link_bm_id);
2693 			rem_entries--;
2694 			if (rem_entries) {
2695 				scatter_buf_ptr += link_desc_size;
2696 			} else {
2697 				rem_entries = num_entries_per_buf;
2698 				scatter_buf_num++;
2699 				if (scatter_buf_num >= num_scatter_bufs)
2700 					break;
2701 				scatter_buf_ptr = (uint8_t *)
2702 					(soc->wbm_idle_scatter_buf_base_vaddr[
2703 					 scatter_buf_num]);
2704 			}
2705 			count++;
2706 			desc_id++;
2707 		}
2708 		/* Setup link descriptor idle list in HW */
2709 		hal_setup_link_idle_list(soc->hal_soc,
2710 			soc->wbm_idle_scatter_buf_base_paddr,
2711 			soc->wbm_idle_scatter_buf_base_vaddr,
2712 			num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
2713 			(uint32_t)(scatter_buf_ptr -
2714 			(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
2715 			scatter_buf_num-1])), total_link_descs);
2716 	}
2717 }
2718 
2719 qdf_export_symbol(dp_link_desc_ring_replenish);
2720 
2721 /**
2722  * dp_soc_ppeds_stop() - Stop PPE DS processing
2723  * @soc_handle: DP SOC handle
2724  *
2725  * Return: none
2726  */
2727 static void dp_soc_ppeds_stop(struct cdp_soc_t *soc_handle)
2728 {
2729 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
2730 
2731 	if (soc->arch_ops.txrx_soc_ppeds_stop)
2732 		soc->arch_ops.txrx_soc_ppeds_stop(soc);
2733 }
2734 
2735 #ifdef ENABLE_VERBOSE_DEBUG
2736 void dp_enable_verbose_debug(struct dp_soc *soc)
2737 {
2738 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2739 
2740 	soc_cfg_ctx = soc->wlan_cfg_ctx;
2741 
2742 	if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
2743 		is_dp_verbose_debug_enabled = true;
2744 
2745 	if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
2746 		hal_set_verbose_debug(true);
2747 	else
2748 		hal_set_verbose_debug(false);
2749 }
2750 #else
2751 void dp_enable_verbose_debug(struct dp_soc *soc)
2752 {
2753 }
2754 #endif
2755 
2756 static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2757 {
2758 	struct cdp_lro_hash_config lro_hash;
2759 	QDF_STATUS status;
2760 
2761 	if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
2762 	    !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
2763 	    !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
2764 		dp_err("LRO, GRO and RX hash disabled");
2765 		return QDF_STATUS_E_FAILURE;
2766 	}
2767 
2768 	qdf_mem_zero(&lro_hash, sizeof(lro_hash));
2769 
2770 	if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
2771 	    wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
2772 		lro_hash.lro_enable = 1;
2773 		lro_hash.tcp_flag = QDF_TCPHDR_ACK;
2774 		lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
2775 			 QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
2776 			 QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
2777 	}
2778 
2779 	soc->arch_ops.get_rx_hash_key(soc, &lro_hash);
2780 
2781 	qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
2782 
2783 	if (!soc->cdp_soc.ol_ops->lro_hash_config) {
2784 		QDF_BUG(0);
2785 		dp_err("lro_hash_config not configured");
2786 		return QDF_STATUS_E_FAILURE;
2787 	}
2788 
2789 	status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc,
2790 						      pdev->pdev_id,
2791 						      &lro_hash);
2792 	if (!QDF_IS_STATUS_SUCCESS(status)) {
2793 		dp_err("failed to send lro_hash_config to FW %u", status);
2794 		return status;
2795 	}
2796 
2797 	dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
2798 		lro_hash.lro_enable, lro_hash.tcp_flag,
2799 		lro_hash.tcp_flag_mask);
2800 
2801 	dp_info("toeplitz_hash_ipv4:");
2802 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2803 			   lro_hash.toeplitz_hash_ipv4,
2804 			   (sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
2805 			   LRO_IPV4_SEED_ARR_SZ));
2806 
2807 	dp_info("toeplitz_hash_ipv6:");
2808 	qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
2809 			   lro_hash.toeplitz_hash_ipv6,
2810 			   (sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
2811 			   LRO_IPV6_SEED_ARR_SZ));
2812 
2813 	return status;
2814 }
2815 
2816 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
2817 /**
2818  * dp_reap_timer_init() - initialize the reap timer
2819  * @soc: data path SoC handle
2820  *
2821  * Return: void
2822  */
2823 static void dp_reap_timer_init(struct dp_soc *soc)
2824 {
2825 	/*
2826 	 * Timer to reap rxdma status rings.
2827 	 * Needed until we enable ppdu end interrupts
2828 	 */
2829 	dp_monitor_reap_timer_init(soc);
2830 	dp_monitor_vdev_timer_init(soc);
2831 }
2832 
2833 /**
2834  * dp_reap_timer_deinit() - de-initialize the reap timer
2835  * @soc: data path SoC handle
2836  *
2837  * Return: void
2838  */
2839 static void dp_reap_timer_deinit(struct dp_soc *soc)
2840 {
2841 	dp_monitor_reap_timer_deinit(soc);
2842 }
2843 #else
2844 /* WIN use case */
2845 static void dp_reap_timer_init(struct dp_soc *soc)
2846 {
2847 	/* Configure LMAC rings in Polled mode */
2848 	if (soc->lmac_polled_mode) {
2849 		/*
2850 		 * Timer to reap lmac rings.
2851 		 */
2852 		qdf_timer_init(soc->osdev, &soc->lmac_reap_timer,
2853 			       dp_service_lmac_rings, (void *)soc,
2854 			       QDF_TIMER_TYPE_WAKE_APPS);
2855 		soc->lmac_timer_init = 1;
2856 		qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS);
2857 	}
2858 }
2859 
2860 static void dp_reap_timer_deinit(struct dp_soc *soc)
2861 {
2862 	if (soc->lmac_timer_init) {
2863 		qdf_timer_stop(&soc->lmac_reap_timer);
2864 		qdf_timer_free(&soc->lmac_reap_timer);
2865 		soc->lmac_timer_init = 0;
2866 	}
2867 }
2868 #endif
2869 
2870 #ifdef QCA_HOST2FW_RXBUF_RING
2871 /**
2872  * dp_rxdma_ring_alloc() - allocate the RXDMA rings
2873  * @soc: data path SoC handle
2874  * @pdev: Physical device handle
2875  *
2876  * Return: 0 - success, > 0 - failure
2877  */
2878 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2879 {
2880 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2881 	int max_mac_rings;
2882 	int i;
2883 	int ring_size;
2884 
2885 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2886 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2887 	ring_size =  wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
2888 
2889 	for (i = 0; i < max_mac_rings; i++) {
2890 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2891 		if (dp_srng_alloc(soc, &pdev->rx_mac_buf_ring[i],
2892 				  RXDMA_BUF, ring_size, 0)) {
2893 			dp_init_err("%pK: failed rx mac ring setup", soc);
2894 			return QDF_STATUS_E_FAILURE;
2895 		}
2896 	}
2897 	return QDF_STATUS_SUCCESS;
2898 }
2899 
2900 /**
2901  * dp_rxdma_ring_setup() - configure the RXDMA rings
2902  * @soc: data path SoC handle
2903  * @pdev: Physical device handle
2904  *
2905  * Return: 0 - success, > 0 - failure
2906  */
2907 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2908 {
2909 	struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
2910 	int max_mac_rings;
2911 	int i;
2912 
2913 	pdev_cfg_ctx = pdev->wlan_cfg_ctx;
2914 	max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
2915 
2916 	for (i = 0; i < max_mac_rings; i++) {
2917 		dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
2918 		if (dp_srng_init(soc, &pdev->rx_mac_buf_ring[i],
2919 				 RXDMA_BUF, 1, i)) {
2920 			dp_init_err("%pK: failed rx mac ring setup", soc);
2921 			return QDF_STATUS_E_FAILURE;
2922 		}
2923 	}
2924 	return QDF_STATUS_SUCCESS;
2925 }
2926 
2927 /**
2928  * dp_rxdma_ring_cleanup() - Deinit the RXDMA rings and reap timer
2929  * @soc: data path SoC handle
2930  * @pdev: Physical device handle
2931  *
2932  * Return: void
2933  */
2934 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2935 {
2936 	int i;
2937 
2938 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2939 		dp_srng_deinit(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1);
2940 
2941 	dp_reap_timer_deinit(soc);
2942 }
2943 
2944 /**
2945  * dp_rxdma_ring_free() - Free the RXDMA rings
2946  * @pdev: Physical device handle
2947  *
2948  * Return: void
2949  */
2950 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2951 {
2952 	int i;
2953 
2954 	for (i = 0; i < MAX_RX_MAC_RINGS; i++)
2955 		dp_srng_free(pdev->soc, &pdev->rx_mac_buf_ring[i]);
2956 }
2957 
2958 #else
2959 static int dp_rxdma_ring_alloc(struct dp_soc *soc, struct dp_pdev *pdev)
2960 {
2961 	return QDF_STATUS_SUCCESS;
2962 }
2963 
2964 static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev)
2965 {
2966 	return QDF_STATUS_SUCCESS;
2967 }
2968 
2969 static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev)
2970 {
2971 	dp_reap_timer_deinit(soc);
2972 }
2973 
2974 static void dp_rxdma_ring_free(struct dp_pdev *pdev)
2975 {
2976 }
2977 #endif
2978 
2979 #ifdef IPA_OFFLOAD
2980 /**
2981  * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
2982  * @soc: data path instance
2983  * @pdev: core txrx pdev context
2984  *
2985  * Return: QDF_STATUS_SUCCESS: success
2986  *         QDF_STATUS_E_RESOURCES: Error return
2987  */
2988 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
2989 					   struct dp_pdev *pdev)
2990 {
2991 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
2992 	int entries;
2993 
2994 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
2995 		soc_cfg_ctx = soc->wlan_cfg_ctx;
2996 		entries =
2997 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
2998 
2999 		/* Setup second Rx refill buffer ring */
3000 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3001 				  entries, 0)) {
3002 			dp_init_err("%pK: dp_srng_alloc failed second"
3003 				    "rx refill ring", soc);
3004 			return QDF_STATUS_E_FAILURE;
3005 		}
3006 	}
3007 
3008 	return QDF_STATUS_SUCCESS;
3009 }
3010 
3011 #ifdef IPA_WDI3_VLAN_SUPPORT
3012 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3013 					       struct dp_pdev *pdev)
3014 {
3015 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3016 	int entries;
3017 
3018 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3019 	    wlan_ipa_is_vlan_enabled()) {
3020 		soc_cfg_ctx = soc->wlan_cfg_ctx;
3021 		entries =
3022 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
3023 
3024 		/* Setup second Rx refill buffer ring */
3025 		if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3026 				  entries, 0)) {
3027 			dp_init_err("%pK: alloc failed for 3rd rx refill ring",
3028 				    soc);
3029 			return QDF_STATUS_E_FAILURE;
3030 		}
3031 	}
3032 
3033 	return QDF_STATUS_SUCCESS;
3034 }
3035 
3036 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3037 					      struct dp_pdev *pdev)
3038 {
3039 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3040 	    wlan_ipa_is_vlan_enabled()) {
3041 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF,
3042 				 IPA_RX_ALT_REFILL_BUF_RING_IDX,
3043 				 pdev->pdev_id)) {
3044 			dp_init_err("%pK: init failed for 3rd rx refill ring",
3045 				    soc);
3046 			return QDF_STATUS_E_FAILURE;
3047 		}
3048 	}
3049 
3050 	return QDF_STATUS_SUCCESS;
3051 }
3052 
3053 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3054 						 struct dp_pdev *pdev)
3055 {
3056 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3057 	    wlan_ipa_is_vlan_enabled())
3058 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring3, RXDMA_BUF, 0);
3059 }
3060 
3061 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3062 					       struct dp_pdev *pdev)
3063 {
3064 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx) &&
3065 	    wlan_ipa_is_vlan_enabled())
3066 		dp_srng_free(soc, &pdev->rx_refill_buf_ring3);
3067 }
3068 #else
3069 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3070 					       struct dp_pdev *pdev)
3071 {
3072 	return QDF_STATUS_SUCCESS;
3073 }
3074 
3075 static int dp_init_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3076 					      struct dp_pdev *pdev)
3077 {
3078 	return QDF_STATUS_SUCCESS;
3079 }
3080 
3081 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3082 						 struct dp_pdev *pdev)
3083 {
3084 }
3085 
3086 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3087 					       struct dp_pdev *pdev)
3088 {
3089 }
3090 #endif
3091 
3092 /**
3093  * dp_deinit_ipa_rx_refill_buf_ring - deinit second Rx refill buffer ring
3094  * @soc: data path instance
3095  * @pdev: core txrx pdev context
3096  *
3097  * Return: void
3098  */
3099 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3100 					     struct dp_pdev *pdev)
3101 {
3102 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3103 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, 0);
3104 }
3105 
3106 /**
3107  * dp_init_ipa_rx_refill_buf_ring - Init second Rx refill buffer ring
3108  * @soc: data path instance
3109  * @pdev: core txrx pdev context
3110  *
3111  * Return: QDF_STATUS_SUCCESS: success
3112  *         QDF_STATUS_E_RESOURCES: Error return
3113  */
3114 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3115 					  struct dp_pdev *pdev)
3116 {
3117 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
3118 		if (dp_srng_init(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
3119 				 IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id)) {
3120 			dp_init_err("%pK: dp_srng_init failed second"
3121 				    "rx refill ring", soc);
3122 			return QDF_STATUS_E_FAILURE;
3123 		}
3124 	}
3125 
3126 	if (dp_init_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3127 		dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
3128 		return QDF_STATUS_E_FAILURE;
3129 	}
3130 
3131 	return QDF_STATUS_SUCCESS;
3132 }
3133 
3134 /**
3135  * dp_free_ipa_rx_refill_buf_ring - free second Rx refill buffer ring
3136  * @soc: data path instance
3137  * @pdev: core txrx pdev context
3138  *
3139  * Return: void
3140  */
3141 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3142 					   struct dp_pdev *pdev)
3143 {
3144 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx))
3145 		dp_srng_free(soc, &pdev->rx_refill_buf_ring2);
3146 }
3147 #else
3148 static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3149 					   struct dp_pdev *pdev)
3150 {
3151 	return QDF_STATUS_SUCCESS;
3152 }
3153 
3154 static int dp_init_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3155 					  struct dp_pdev *pdev)
3156 {
3157 	return QDF_STATUS_SUCCESS;
3158 }
3159 
3160 static void dp_deinit_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3161 					     struct dp_pdev *pdev)
3162 {
3163 }
3164 
3165 static void dp_free_ipa_rx_refill_buf_ring(struct dp_soc *soc,
3166 					   struct dp_pdev *pdev)
3167 {
3168 }
3169 
3170 static int dp_setup_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3171 					       struct dp_pdev *pdev)
3172 {
3173 	return QDF_STATUS_SUCCESS;
3174 }
3175 
3176 static void dp_deinit_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3177 						 struct dp_pdev *pdev)
3178 {
3179 }
3180 
3181 static void dp_free_ipa_rx_alt_refill_buf_ring(struct dp_soc *soc,
3182 					       struct dp_pdev *pdev)
3183 {
3184 }
3185 #endif
3186 
3187 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
3188 
3189 /**
3190  * dp_soc_cfg_history_attach() - Allocate and attach datapath config events
3191  *				 history
3192  * @soc: DP soc handle
3193  *
3194  * Return: None
3195  */
3196 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3197 {
3198 	dp_soc_frag_history_attach(soc, &soc->cfg_event_history,
3199 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3200 				   DP_CFG_EVT_HIST_PER_SLOT_MAX,
3201 				   sizeof(struct dp_cfg_event),
3202 				   true, DP_CFG_EVENT_HIST_TYPE);
3203 }
3204 
3205 /**
3206  * dp_soc_cfg_history_detach() - Detach and free DP config events history
3207  * @soc: DP soc handle
3208  *
3209  * Return: none
3210  */
3211 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3212 {
3213 	dp_soc_frag_history_detach(soc, &soc->cfg_event_history,
3214 				   DP_CFG_EVT_HIST_MAX_SLOTS,
3215 				   true, DP_CFG_EVENT_HIST_TYPE);
3216 }
3217 
3218 #else
3219 static void dp_soc_cfg_history_attach(struct dp_soc *soc)
3220 {
3221 }
3222 
3223 static void dp_soc_cfg_history_detach(struct dp_soc *soc)
3224 {
3225 }
3226 #endif
3227 
3228 #ifdef DP_TX_HW_DESC_HISTORY
3229 /**
3230  * dp_soc_tx_hw_desc_history_attach - Attach TX HW descriptor history
3231  *
3232  * @soc: DP soc handle
3233  *
3234  * Return: None
3235  */
3236 static void dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3237 {
3238 	dp_soc_frag_history_attach(soc, &soc->tx_hw_desc_history,
3239 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3240 				   DP_TX_HW_DESC_HIST_PER_SLOT_MAX,
3241 				   sizeof(struct dp_tx_hw_desc_evt),
3242 				   true, DP_TX_HW_DESC_HIST_TYPE);
3243 }
3244 
3245 static void dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3246 {
3247 	dp_soc_frag_history_detach(soc, &soc->tx_hw_desc_history,
3248 				   DP_TX_HW_DESC_HIST_MAX_SLOTS,
3249 				   true, DP_TX_HW_DESC_HIST_TYPE);
3250 }
3251 
3252 #else /* DP_TX_HW_DESC_HISTORY */
3253 static inline void
3254 dp_soc_tx_hw_desc_history_attach(struct dp_soc *soc)
3255 {
3256 }
3257 
3258 static inline void
3259 dp_soc_tx_hw_desc_history_detach(struct dp_soc *soc)
3260 {
3261 }
3262 #endif /* DP_TX_HW_DESC_HISTORY */
3263 
3264 #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
3265 #ifndef RX_DEFRAG_DO_NOT_REINJECT
3266 /**
3267  * dp_soc_rx_reinject_ring_history_attach - Attach the reo reinject ring
3268  *					    history.
3269  * @soc: DP soc handle
3270  *
3271  * Return: None
3272  */
3273 static void dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3274 {
3275 	soc->rx_reinject_ring_history =
3276 		dp_context_alloc_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3277 				     sizeof(struct dp_rx_reinject_history));
3278 	if (soc->rx_reinject_ring_history)
3279 		qdf_atomic_init(&soc->rx_reinject_ring_history->index);
3280 }
3281 #else /* RX_DEFRAG_DO_NOT_REINJECT */
3282 static inline void
3283 dp_soc_rx_reinject_ring_history_attach(struct dp_soc *soc)
3284 {
3285 }
3286 #endif /* RX_DEFRAG_DO_NOT_REINJECT */
3287 
3288 /**
3289  * dp_soc_rx_history_attach() - Attach the ring history record buffers
3290  * @soc: DP soc structure
3291  *
3292  * This function allocates the memory for recording the rx ring, rx error
3293  * ring and the reinject ring entries. There is no error returned in case
3294  * of allocation failure since the record function checks if the history is
3295  * initialized or not. We do not want to fail the driver load in case of
3296  * failure to allocate memory for debug history.
3297  *
3298  * Return: None
3299  */
3300 static void dp_soc_rx_history_attach(struct dp_soc *soc)
3301 {
3302 	int i;
3303 	uint32_t rx_ring_hist_size;
3304 	uint32_t rx_refill_ring_hist_size;
3305 
3306 	rx_ring_hist_size = sizeof(*soc->rx_ring_history[0]);
3307 	rx_refill_ring_hist_size = sizeof(*soc->rx_refill_ring_history[0]);
3308 
3309 	for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
3310 		soc->rx_ring_history[i] = dp_context_alloc_mem(
3311 				soc, DP_RX_RING_HIST_TYPE, rx_ring_hist_size);
3312 		if (soc->rx_ring_history[i])
3313 			qdf_atomic_init(&soc->rx_ring_history[i]->index);
3314 	}
3315 
3316 	soc->rx_err_ring_history = dp_context_alloc_mem(
3317 			soc, DP_RX_ERR_RING_HIST_TYPE, rx_ring_hist_size);
3318 	if (soc->rx_err_ring_history)
3319 		qdf_atomic_init(&soc->rx_err_ring_history->index);
3320 
3321 	dp_soc_rx_reinject_ring_history_attach(soc);
3322 
3323 	for (i = 0; i < MAX_PDEV_CNT; i++) {
3324 		soc->rx_refill_ring_history[i] = dp_context_alloc_mem(
3325 						soc,
3326 						DP_RX_REFILL_RING_HIST_TYPE,
3327 						rx_refill_ring_hist_size);
3328 
3329 		if (soc->rx_refill_ring_history[i])
3330 			qdf_atomic_init(&soc->rx_refill_ring_history[i]->index);
3331 	}
3332 }
3333 
3334 static void dp_soc_rx_history_detach(struct dp_soc *soc)
3335 {
3336 	int i;
3337 
3338 	for (i = 0; i < MAX_REO_DEST_RINGS; i++)
3339 		dp_context_free_mem(soc, DP_RX_RING_HIST_TYPE,
3340 				    soc->rx_ring_history[i]);
3341 
3342 	dp_context_free_mem(soc, DP_RX_ERR_RING_HIST_TYPE,
3343 			    soc->rx_err_ring_history);
3344 
3345 	/*
3346 	 * No need for a featurized detach since qdf_mem_free takes
3347 	 * care of NULL pointer.
3348 	 */
3349 	dp_context_free_mem(soc, DP_RX_REINJECT_RING_HIST_TYPE,
3350 			    soc->rx_reinject_ring_history);
3351 
3352 	for (i = 0; i < MAX_PDEV_CNT; i++)
3353 		dp_context_free_mem(soc, DP_RX_REFILL_RING_HIST_TYPE,
3354 				    soc->rx_refill_ring_history[i]);
3355 }
3356 
3357 #else
3358 static inline void dp_soc_rx_history_attach(struct dp_soc *soc)
3359 {
3360 }
3361 
3362 static inline void dp_soc_rx_history_detach(struct dp_soc *soc)
3363 {
3364 }
3365 #endif
3366 
3367 #ifdef WLAN_FEATURE_DP_MON_STATUS_RING_HISTORY
3368 /**
3369  * dp_soc_mon_status_ring_history_attach() - Attach the monitor status
3370  *					     buffer record history.
3371  * @soc: DP soc handle
3372  *
3373  * This function allocates memory to track the event for a monitor
3374  * status buffer, before its parsed and freed.
3375  *
3376  * Return: None
3377  */
3378 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3379 {
3380 	soc->mon_status_ring_history = dp_context_alloc_mem(soc,
3381 				DP_MON_STATUS_BUF_HIST_TYPE,
3382 				sizeof(struct dp_mon_status_ring_history));
3383 	if (!soc->mon_status_ring_history) {
3384 		dp_err("Failed to alloc memory for mon status ring history");
3385 		return;
3386 	}
3387 }
3388 
3389 /**
3390  * dp_soc_mon_status_ring_history_detach() - Detach the monitor status buffer
3391  *					     record history.
3392  * @soc: DP soc handle
3393  *
3394  * Return: None
3395  */
3396 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3397 {
3398 	dp_context_free_mem(soc, DP_MON_STATUS_BUF_HIST_TYPE,
3399 			    soc->mon_status_ring_history);
3400 }
3401 #else
3402 static void dp_soc_mon_status_ring_history_attach(struct dp_soc *soc)
3403 {
3404 }
3405 
3406 static void dp_soc_mon_status_ring_history_detach(struct dp_soc *soc)
3407 {
3408 }
3409 #endif
3410 
3411 #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
3412 /**
3413  * dp_soc_tx_history_attach() - Attach the ring history record buffers
3414  * @soc: DP soc structure
3415  *
3416  * This function allocates the memory for recording the tx tcl ring and
3417  * the tx comp ring entries. There is no error returned in case
3418  * of allocation failure since the record function checks if the history is
3419  * initialized or not. We do not want to fail the driver load in case of
3420  * failure to allocate memory for debug history.
3421  *
3422  * Return: None
3423  */
3424 static void dp_soc_tx_history_attach(struct dp_soc *soc)
3425 {
3426 	dp_soc_frag_history_attach(soc, &soc->tx_tcl_history,
3427 				   DP_TX_TCL_HIST_MAX_SLOTS,
3428 				   DP_TX_TCL_HIST_PER_SLOT_MAX,
3429 				   sizeof(struct dp_tx_desc_event),
3430 				   true, DP_TX_TCL_HIST_TYPE);
3431 	dp_soc_frag_history_attach(soc, &soc->tx_comp_history,
3432 				   DP_TX_COMP_HIST_MAX_SLOTS,
3433 				   DP_TX_COMP_HIST_PER_SLOT_MAX,
3434 				   sizeof(struct dp_tx_desc_event),
3435 				   true, DP_TX_COMP_HIST_TYPE);
3436 }
3437 
3438 /**
3439  * dp_soc_tx_history_detach() - Detach the ring history record buffers
3440  * @soc: DP soc structure
3441  *
3442  * This function frees the memory for recording the tx tcl ring and
3443  * the tx comp ring entries.
3444  *
3445  * Return: None
3446  */
3447 static void dp_soc_tx_history_detach(struct dp_soc *soc)
3448 {
3449 	dp_soc_frag_history_detach(soc, &soc->tx_tcl_history,
3450 				   DP_TX_TCL_HIST_MAX_SLOTS,
3451 				   true, DP_TX_TCL_HIST_TYPE);
3452 	dp_soc_frag_history_detach(soc, &soc->tx_comp_history,
3453 				   DP_TX_COMP_HIST_MAX_SLOTS,
3454 				   true, DP_TX_COMP_HIST_TYPE);
3455 }
3456 
3457 #else
3458 static inline void dp_soc_tx_history_attach(struct dp_soc *soc)
3459 {
3460 }
3461 
3462 static inline void dp_soc_tx_history_detach(struct dp_soc *soc)
3463 {
3464 }
3465 #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
3466 
3467 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
3468 QDF_STATUS
3469 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3470 {
3471 	struct dp_rx_fst *rx_fst = NULL;
3472 	QDF_STATUS ret = QDF_STATUS_SUCCESS;
3473 
3474 	/* for Lithium the below API is not registered
3475 	 * hence fst attach happens for each pdev
3476 	 */
3477 	if (!soc->arch_ops.dp_get_rx_fst)
3478 		return dp_rx_fst_attach(soc, pdev);
3479 
3480 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3481 
3482 	/* for BE the FST attach is called only once per
3483 	 * ML context. if rx_fst is already registered
3484 	 * increase the ref count and return.
3485 	 */
3486 	if (rx_fst) {
3487 		soc->rx_fst = rx_fst;
3488 		pdev->rx_fst = rx_fst;
3489 		soc->arch_ops.dp_rx_fst_ref();
3490 	} else {
3491 		ret = dp_rx_fst_attach(soc, pdev);
3492 		if ((ret != QDF_STATUS_SUCCESS) &&
3493 		    (ret != QDF_STATUS_E_NOSUPPORT))
3494 			return ret;
3495 
3496 		soc->arch_ops.dp_set_rx_fst(soc->rx_fst);
3497 		soc->arch_ops.dp_rx_fst_ref();
3498 	}
3499 	return ret;
3500 }
3501 
3502 void
3503 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3504 {
3505 	struct dp_rx_fst *rx_fst = NULL;
3506 
3507 	/* for Lithium the below API is not registered
3508 	 * hence fst detach happens for each pdev
3509 	 */
3510 	if (!soc->arch_ops.dp_get_rx_fst) {
3511 		dp_rx_fst_detach(soc, pdev);
3512 		return;
3513 	}
3514 
3515 	rx_fst = soc->arch_ops.dp_get_rx_fst();
3516 
3517 	/* for BE the FST detach is called only when last
3518 	 * ref count reaches 1.
3519 	 */
3520 	if (rx_fst) {
3521 		if (soc->arch_ops.dp_rx_fst_deref() == 1)
3522 			dp_rx_fst_detach(soc, pdev);
3523 	}
3524 	pdev->rx_fst = NULL;
3525 }
3526 #else
3527 QDF_STATUS
3528 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3529 {
3530 	return QDF_STATUS_SUCCESS;
3531 }
3532 
3533 void
3534 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev)
3535 {
3536 }
3537 #endif
3538 
3539 /**
3540  * dp_pdev_attach_wifi3() - attach txrx pdev
3541  * @txrx_soc: Datapath SOC handle
3542  * @params: Params for PDEV attach
3543  *
3544  * Return: QDF_STATUS
3545  */
3546 static inline
3547 QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
3548 				struct cdp_pdev_attach_params *params)
3549 {
3550 	qdf_size_t pdev_context_size;
3551 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3552 	struct dp_pdev *pdev = NULL;
3553 	uint8_t pdev_id = params->pdev_id;
3554 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
3555 	int nss_cfg;
3556 	QDF_STATUS ret;
3557 
3558 	pdev_context_size =
3559 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_PDEV);
3560 	if (pdev_context_size)
3561 		pdev = dp_context_alloc_mem(soc, DP_PDEV_TYPE,
3562 					    pdev_context_size);
3563 
3564 	if (!pdev) {
3565 		dp_init_err("%pK: DP PDEV memory allocation failed",
3566 			    soc);
3567 		goto fail0;
3568 	}
3569 	wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc,
3570 			  WLAN_MD_DP_PDEV, "dp_pdev");
3571 
3572 	soc_cfg_ctx = soc->wlan_cfg_ctx;
3573 	pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
3574 
3575 	if (!pdev->wlan_cfg_ctx) {
3576 		dp_init_err("%pK: pdev cfg_attach failed", soc);
3577 		goto fail1;
3578 	}
3579 
3580 	pdev->soc = soc;
3581 	pdev->pdev_id = pdev_id;
3582 	soc->pdev_list[pdev_id] = pdev;
3583 
3584 	pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
3585 	soc->pdev_count++;
3586 
3587 	/*sync DP pdev cfg items with profile support after cfg_pdev_attach*/
3588 	wlan_dp_pdev_cfg_sync_profile((struct cdp_soc_t *)soc, pdev_id);
3589 
3590 	/*
3591 	 * set nss pdev config based on soc config
3592 	 */
3593 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
3594 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
3595 					 (nss_cfg & (1 << pdev_id)));
3596 
3597 	/* Allocate memory for pdev srng rings */
3598 	if (dp_pdev_srng_alloc(pdev)) {
3599 		dp_init_err("%pK: dp_pdev_srng_alloc failed", soc);
3600 		goto fail2;
3601 	}
3602 
3603 	/* Setup second Rx refill buffer ring */
3604 	if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) {
3605 		dp_init_err("%pK: dp_srng_alloc failed rxrefill2 ring",
3606 			    soc);
3607 		goto fail3;
3608 	}
3609 
3610 	/* Allocate memory for pdev rxdma rings */
3611 	if (dp_rxdma_ring_alloc(soc, pdev)) {
3612 		dp_init_err("%pK: dp_rxdma_ring_alloc failed", soc);
3613 		goto fail4;
3614 	}
3615 
3616 	/* Rx specific init */
3617 	if (dp_rx_pdev_desc_pool_alloc(pdev)) {
3618 		dp_init_err("%pK: dp_rx_pdev_attach failed", soc);
3619 		goto fail4;
3620 	}
3621 
3622 	if (dp_monitor_pdev_attach(pdev)) {
3623 		dp_init_err("%pK: dp_monitor_pdev_attach failed", soc);
3624 		goto fail5;
3625 	}
3626 
3627 	soc->arch_ops.txrx_pdev_attach(pdev, params);
3628 
3629 	/* Setup third Rx refill buffer ring */
3630 	if (dp_setup_ipa_rx_alt_refill_buf_ring(soc, pdev)) {
3631 		dp_init_err("%pK: dp_srng_alloc failed rxrefill3 ring",
3632 			    soc);
3633 		goto fail6;
3634 	}
3635 
3636 	ret = dp_rx_fst_attach_wrapper(soc, pdev);
3637 	if ((ret != QDF_STATUS_SUCCESS) && (ret != QDF_STATUS_E_NOSUPPORT)) {
3638 		dp_init_err("%pK: RX FST attach failed: pdev %d err %d",
3639 			    soc, pdev_id, ret);
3640 		goto fail7;
3641 	}
3642 
3643 	return QDF_STATUS_SUCCESS;
3644 
3645 fail7:
3646 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3647 fail6:
3648 	dp_monitor_pdev_detach(pdev);
3649 fail5:
3650 	dp_rx_pdev_desc_pool_free(pdev);
3651 fail4:
3652 	dp_rxdma_ring_free(pdev);
3653 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3654 fail3:
3655 	dp_pdev_srng_free(pdev);
3656 fail2:
3657 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3658 fail1:
3659 	soc->pdev_list[pdev_id] = NULL;
3660 	qdf_mem_free(pdev);
3661 fail0:
3662 	return QDF_STATUS_E_FAILURE;
3663 }
3664 
3665 /**
3666  * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
3667  * @pdev: Datapath PDEV handle
3668  *
3669  * This is the last chance to flush all pending dp vdevs/peers,
3670  * some peer/vdev leak case like Non-SSR + peer unmap missing
3671  * will be covered here.
3672  *
3673  * Return: None
3674  */
3675 static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
3676 {
3677 	struct dp_soc *soc = pdev->soc;
3678 	struct dp_vdev *vdev_arr[MAX_VDEV_CNT] = {0};
3679 	uint32_t i = 0;
3680 	uint32_t num_vdevs = 0;
3681 	struct dp_vdev *vdev = NULL;
3682 
3683 	if (TAILQ_EMPTY(&soc->inactive_vdev_list))
3684 		return;
3685 
3686 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
3687 	TAILQ_FOREACH(vdev, &soc->inactive_vdev_list,
3688 		      inactive_list_elem) {
3689 		if (vdev->pdev != pdev)
3690 			continue;
3691 
3692 		vdev_arr[num_vdevs] = vdev;
3693 		num_vdevs++;
3694 		/* take reference to free */
3695 		dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CDP);
3696 	}
3697 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
3698 
3699 	for (i = 0; i < num_vdevs; i++) {
3700 		dp_vdev_flush_peers((struct cdp_vdev *)vdev_arr[i], 0, 0);
3701 		dp_vdev_unref_delete(soc, vdev_arr[i], DP_MOD_ID_CDP);
3702 	}
3703 }
3704 
3705 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
3706 /**
3707  * dp_vdev_stats_hw_offload_target_config() - Send HTT command to FW
3708  *                                          for enable/disable of HW vdev stats
3709  * @soc: Datapath soc handle
3710  * @pdev_id: INVALID_PDEV_ID for all pdevs or 0,1,2 for individual pdev
3711  * @enable: flag to represent enable/disable of hw vdev stats
3712  *
3713  * Return: none
3714  */
3715 static void dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc,
3716 						   uint8_t pdev_id,
3717 						   bool enable)
3718 {
3719 	/* Check SOC level config for HW offload vdev stats support */
3720 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3721 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3722 		return;
3723 	}
3724 
3725 	/* Send HTT command to FW for enable of stats */
3726 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, enable, false, 0);
3727 }
3728 
3729 /**
3730  * dp_vdev_stats_hw_offload_target_clear() - Clear HW vdev stats on target
3731  * @soc: Datapath soc handle
3732  * @pdev_id: pdev_id (0,1,2)
3733  * @vdev_id_bitmask: bitmask with vdev_id(s) for which stats are to be
3734  *                   cleared on HW
3735  *
3736  * Return: none
3737  */
3738 static
3739 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3740 					   uint64_t vdev_id_bitmask)
3741 {
3742 	/* Check SOC level config for HW offload vdev stats support */
3743 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
3744 		dp_debug("%pK: HW vdev offload stats is disabled", soc);
3745 		return;
3746 	}
3747 
3748 	/* Send HTT command to FW for reset of stats */
3749 	dp_h2t_hw_vdev_stats_config_send(soc, pdev_id, true, true,
3750 					 vdev_id_bitmask);
3751 }
3752 #else
3753 static void
3754 dp_vdev_stats_hw_offload_target_config(struct dp_soc *soc, uint8_t pdev_id,
3755 				       bool enable)
3756 {
3757 }
3758 
3759 static
3760 void dp_vdev_stats_hw_offload_target_clear(struct dp_soc *soc, uint8_t pdev_id,
3761 					   uint64_t vdev_id_bitmask)
3762 {
3763 }
3764 #endif /*QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT */
3765 
3766 /**
3767  * dp_pdev_deinit() - Deinit txrx pdev
3768  * @txrx_pdev: Datapath PDEV handle
3769  * @force: Force deinit
3770  *
3771  * Return: None
3772  */
3773 static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
3774 {
3775 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3776 	qdf_nbuf_t curr_nbuf, next_nbuf;
3777 
3778 	if (pdev->pdev_deinit)
3779 		return;
3780 
3781 	dp_tx_me_exit(pdev);
3782 	dp_rx_pdev_buffers_free(pdev);
3783 	dp_rx_pdev_desc_pool_deinit(pdev);
3784 	dp_pdev_bkp_stats_detach(pdev);
3785 	qdf_event_destroy(&pdev->fw_peer_stats_event);
3786 	qdf_event_destroy(&pdev->fw_stats_event);
3787 	qdf_event_destroy(&pdev->fw_obss_stats_event);
3788 	if (pdev->sojourn_buf)
3789 		qdf_nbuf_free(pdev->sojourn_buf);
3790 
3791 	dp_pdev_flush_pending_vdevs(pdev);
3792 	dp_tx_desc_flush(pdev, NULL, true);
3793 
3794 	qdf_spinlock_destroy(&pdev->tx_mutex);
3795 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
3796 
3797 	dp_monitor_pdev_deinit(pdev);
3798 
3799 	dp_pdev_srng_deinit(pdev);
3800 
3801 	dp_ipa_uc_detach(pdev->soc, pdev);
3802 	dp_deinit_ipa_rx_alt_refill_buf_ring(pdev->soc, pdev);
3803 	dp_deinit_ipa_rx_refill_buf_ring(pdev->soc, pdev);
3804 	dp_rxdma_ring_cleanup(pdev->soc, pdev);
3805 
3806 	curr_nbuf = pdev->invalid_peer_head_msdu;
3807 	while (curr_nbuf) {
3808 		next_nbuf = qdf_nbuf_next(curr_nbuf);
3809 		dp_rx_nbuf_free(curr_nbuf);
3810 		curr_nbuf = next_nbuf;
3811 	}
3812 	pdev->invalid_peer_head_msdu = NULL;
3813 	pdev->invalid_peer_tail_msdu = NULL;
3814 
3815 	dp_wdi_event_detach(pdev);
3816 	pdev->pdev_deinit = 1;
3817 }
3818 
3819 /**
3820  * dp_pdev_deinit_wifi3() - Deinit txrx pdev
3821  * @psoc: Datapath psoc handle
3822  * @pdev_id: Id of datapath PDEV handle
3823  * @force: Force deinit
3824  *
3825  * Return: QDF_STATUS
3826  */
3827 static QDF_STATUS
3828 dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3829 		     int force)
3830 {
3831 	struct dp_pdev *txrx_pdev;
3832 
3833 	txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3834 						       pdev_id);
3835 
3836 	if (!txrx_pdev)
3837 		return QDF_STATUS_E_FAILURE;
3838 
3839 	dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force);
3840 
3841 	return QDF_STATUS_SUCCESS;
3842 }
3843 
3844 /**
3845  * dp_pdev_post_attach() - Do post pdev attach after dev_alloc_name
3846  * @txrx_pdev: Datapath PDEV handle
3847  *
3848  * Return: None
3849  */
3850 static void dp_pdev_post_attach(struct cdp_pdev *txrx_pdev)
3851 {
3852 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3853 
3854 	dp_monitor_tx_capture_debugfs_init(pdev);
3855 
3856 	if (dp_pdev_htt_stats_dbgfs_init(pdev)) {
3857 		dp_init_err("%pK: Failed to initialize pdev HTT stats debugfs", pdev->soc);
3858 	}
3859 }
3860 
3861 /**
3862  * dp_pdev_post_attach_wifi3() - attach txrx pdev post
3863  * @soc: Datapath soc handle
3864  * @pdev_id: pdev id of pdev
3865  *
3866  * Return: QDF_STATUS
3867  */
3868 static int dp_pdev_post_attach_wifi3(struct cdp_soc_t *soc,
3869 				     uint8_t pdev_id)
3870 {
3871 	struct dp_pdev *pdev;
3872 
3873 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
3874 						  pdev_id);
3875 
3876 	if (!pdev) {
3877 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3878 			    (struct dp_soc *)soc, pdev_id);
3879 		return QDF_STATUS_E_FAILURE;
3880 	}
3881 
3882 	dp_pdev_post_attach((struct cdp_pdev *)pdev);
3883 	return QDF_STATUS_SUCCESS;
3884 }
3885 
3886 /**
3887  * dp_pdev_detach() - Complete rest of pdev detach
3888  * @txrx_pdev: Datapath PDEV handle
3889  * @force: Force deinit
3890  *
3891  * Return: None
3892  */
3893 static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
3894 {
3895 	struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
3896 	struct dp_soc *soc = pdev->soc;
3897 
3898 	dp_rx_fst_detach_wrapper(soc, pdev);
3899 	dp_pdev_htt_stats_dbgfs_deinit(pdev);
3900 	dp_rx_pdev_desc_pool_free(pdev);
3901 	dp_monitor_pdev_detach(pdev);
3902 	dp_rxdma_ring_free(pdev);
3903 	dp_free_ipa_rx_refill_buf_ring(soc, pdev);
3904 	dp_free_ipa_rx_alt_refill_buf_ring(soc, pdev);
3905 	dp_pdev_srng_free(pdev);
3906 
3907 	soc->pdev_count--;
3908 	soc->pdev_list[pdev->pdev_id] = NULL;
3909 
3910 	wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
3911 	wlan_minidump_remove(pdev, sizeof(*pdev), soc->ctrl_psoc,
3912 			     WLAN_MD_DP_PDEV, "dp_pdev");
3913 	dp_context_free_mem(soc, DP_PDEV_TYPE, pdev);
3914 }
3915 
3916 /**
3917  * dp_pdev_detach_wifi3() - detach txrx pdev
3918  * @psoc: Datapath soc handle
3919  * @pdev_id: pdev id of pdev
3920  * @force: Force detach
3921  *
3922  * Return: QDF_STATUS
3923  */
3924 static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id,
3925 				       int force)
3926 {
3927 	struct dp_pdev *pdev;
3928 	struct dp_soc *soc = (struct dp_soc *)psoc;
3929 
3930 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc,
3931 						  pdev_id);
3932 
3933 	if (!pdev) {
3934 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
3935 			    (struct dp_soc *)psoc, pdev_id);
3936 		return QDF_STATUS_E_FAILURE;
3937 	}
3938 
3939 	soc->arch_ops.txrx_pdev_detach(pdev);
3940 
3941 	dp_pdev_detach((struct cdp_pdev *)pdev, force);
3942 	return QDF_STATUS_SUCCESS;
3943 }
3944 
3945 void dp_soc_print_inactive_objects(struct dp_soc *soc)
3946 {
3947 	struct dp_peer *peer = NULL;
3948 	struct dp_peer *tmp_peer = NULL;
3949 	struct dp_vdev *vdev = NULL;
3950 	struct dp_vdev *tmp_vdev = NULL;
3951 	int i = 0;
3952 	uint32_t count;
3953 
3954 	if (TAILQ_EMPTY(&soc->inactive_peer_list) &&
3955 	    TAILQ_EMPTY(&soc->inactive_vdev_list))
3956 		return;
3957 
3958 	TAILQ_FOREACH_SAFE(peer, &soc->inactive_peer_list,
3959 			   inactive_list_elem, tmp_peer) {
3960 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3961 			count = qdf_atomic_read(&peer->mod_refs[i]);
3962 			if (count)
3963 				DP_PRINT_STATS("peer %pK Module id %u ==> %u",
3964 					       peer, i, count);
3965 		}
3966 	}
3967 
3968 	TAILQ_FOREACH_SAFE(vdev, &soc->inactive_vdev_list,
3969 			   inactive_list_elem, tmp_vdev) {
3970 		for (i = 0; i < DP_MOD_ID_MAX; i++) {
3971 			count = qdf_atomic_read(&vdev->mod_refs[i]);
3972 			if (count)
3973 				DP_PRINT_STATS("vdev %pK Module id %u ==> %u",
3974 					       vdev, i, count);
3975 		}
3976 	}
3977 	QDF_BUG(0);
3978 }
3979 
3980 /**
3981  * dp_soc_deinit_wifi3() - Deinitialize txrx SOC
3982  * @txrx_soc: Opaque DP SOC handle
3983  *
3984  * Return: None
3985  */
3986 static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc)
3987 {
3988 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
3989 
3990 	soc->arch_ops.txrx_soc_deinit(soc);
3991 }
3992 
3993 /**
3994  * dp_soc_detach() - Detach rest of txrx SOC
3995  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
3996  *
3997  * Return: None
3998  */
3999 static void dp_soc_detach(struct cdp_soc_t *txrx_soc)
4000 {
4001 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
4002 
4003 	soc->arch_ops.txrx_soc_detach(soc);
4004 
4005 	dp_runtime_deinit();
4006 
4007 	dp_soc_unset_qref_debug_list(soc);
4008 	dp_sysfs_deinitialize_stats(soc);
4009 	dp_soc_swlm_detach(soc);
4010 	dp_soc_tx_desc_sw_pools_free(soc);
4011 	dp_soc_srng_free(soc);
4012 	dp_hw_link_desc_ring_free(soc);
4013 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
4014 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
4015 	dp_soc_tx_hw_desc_history_detach(soc);
4016 	dp_soc_tx_history_detach(soc);
4017 	dp_soc_mon_status_ring_history_detach(soc);
4018 	dp_soc_rx_history_detach(soc);
4019 	dp_soc_cfg_history_detach(soc);
4020 
4021 	if (!dp_monitor_modularized_enable()) {
4022 		dp_mon_soc_detach_wrapper(soc);
4023 	}
4024 
4025 	qdf_mem_free(soc->cdp_soc.ops);
4026 	qdf_mem_common_free(soc);
4027 }
4028 
4029 /**
4030  * dp_soc_detach_wifi3() - Detach txrx SOC
4031  * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
4032  *
4033  * Return: None
4034  */
4035 static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc)
4036 {
4037 	dp_soc_detach(txrx_soc);
4038 }
4039 
4040 #ifdef QCA_HOST2FW_RXBUF_RING
4041 #ifdef IPA_WDI3_VLAN_SUPPORT
4042 static inline
4043 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4044 				 struct dp_pdev *pdev,
4045 				 uint8_t idx)
4046 {
4047 	if (pdev->rx_refill_buf_ring3.hal_srng)
4048 		htt_srng_setup(soc->htt_handle, idx,
4049 			       pdev->rx_refill_buf_ring3.hal_srng,
4050 			       RXDMA_BUF);
4051 }
4052 #else
4053 static inline
4054 void dp_rxdma_setup_refill_ring3(struct dp_soc *soc,
4055 				 struct dp_pdev *pdev,
4056 				 uint8_t idx)
4057 { }
4058 #endif
4059 
4060 #ifdef WIFI_MONITOR_SUPPORT
4061 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4062 {
4063 	return dp_local_pkt_capture_tx_config(pdev);
4064 }
4065 #else
4066 static inline QDF_STATUS dp_lpc_tx_config(struct dp_pdev *pdev)
4067 {
4068 	return QDF_STATUS_SUCCESS;
4069 }
4070 #endif
4071 
4072 /**
4073  * dp_rxdma_ring_config() - configure the RX DMA rings
4074  * @soc: data path SoC handle
4075  *
4076  * This function is used to configure the MAC rings.
4077  * On MCL host provides buffers in Host2FW ring
4078  * FW refills (copies) buffers to the ring and updates
4079  * ring_idx in register
4080  *
4081  * Return: zero on success, non-zero on failure
4082  */
4083 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4084 {
4085 	int i;
4086 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4087 
4088 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4089 		struct dp_pdev *pdev = soc->pdev_list[i];
4090 
4091 		if (pdev) {
4092 			int mac_id;
4093 			int max_mac_rings =
4094 				 wlan_cfg_get_num_mac_rings
4095 				(pdev->wlan_cfg_ctx);
4096 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4097 
4098 			htt_srng_setup(soc->htt_handle, i,
4099 				       soc->rx_refill_buf_ring[lmac_id]
4100 				       .hal_srng,
4101 				       RXDMA_BUF);
4102 
4103 			if (pdev->rx_refill_buf_ring2.hal_srng)
4104 				htt_srng_setup(soc->htt_handle, i,
4105 					       pdev->rx_refill_buf_ring2
4106 					       .hal_srng,
4107 					       RXDMA_BUF);
4108 
4109 			dp_rxdma_setup_refill_ring3(soc, pdev, i);
4110 
4111 			dp_update_num_mac_rings_for_dbs(soc, &max_mac_rings);
4112 			dp_lpc_tx_config(pdev);
4113 			dp_info("pdev_id %d max_mac_rings %d",
4114 			       pdev->pdev_id, max_mac_rings);
4115 
4116 			for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
4117 				int mac_for_pdev =
4118 					dp_get_mac_id_for_pdev(mac_id,
4119 							       pdev->pdev_id);
4120 				/*
4121 				 * Obtain lmac id from pdev to access the LMAC
4122 				 * ring in soc context
4123 				 */
4124 				lmac_id =
4125 				dp_get_lmac_id_for_pdev_id(soc,
4126 							   mac_id,
4127 							   pdev->pdev_id);
4128 				dp_info("mac_id %d", mac_for_pdev);
4129 
4130 				htt_srng_setup(soc->htt_handle, mac_for_pdev,
4131 					 pdev->rx_mac_buf_ring[mac_id]
4132 						.hal_srng,
4133 					 RXDMA_BUF);
4134 
4135 				if (!soc->rxdma2sw_rings_not_supported)
4136 					dp_htt_setup_rxdma_err_dst_ring(soc,
4137 						mac_for_pdev, lmac_id);
4138 
4139 				/* Configure monitor mode rings */
4140 				status = dp_monitor_htt_srng_setup(soc, pdev,
4141 								   lmac_id,
4142 								   mac_for_pdev);
4143 				if (status != QDF_STATUS_SUCCESS) {
4144 					dp_err("Failed to send htt monitor messages to target");
4145 					return status;
4146 				}
4147 
4148 			}
4149 		}
4150 	}
4151 
4152 	dp_reap_timer_init(soc);
4153 	return status;
4154 }
4155 #else
4156 /* This is only for WIN */
4157 static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
4158 {
4159 	int i;
4160 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4161 	int mac_for_pdev;
4162 	int lmac_id;
4163 
4164 	/* Configure monitor mode rings */
4165 	dp_monitor_soc_htt_srng_setup(soc);
4166 
4167 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4168 		struct dp_pdev *pdev =  soc->pdev_list[i];
4169 
4170 		if (!pdev)
4171 			continue;
4172 
4173 		mac_for_pdev = i;
4174 		lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i);
4175 
4176 		if (soc->rx_refill_buf_ring[lmac_id].hal_srng)
4177 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4178 				       soc->rx_refill_buf_ring[lmac_id].
4179 				       hal_srng, RXDMA_BUF);
4180 
4181 		/* Configure monitor mode rings */
4182 		dp_monitor_htt_srng_setup(soc, pdev,
4183 					  lmac_id,
4184 					  mac_for_pdev);
4185 		if (!soc->rxdma2sw_rings_not_supported)
4186 			htt_srng_setup(soc->htt_handle, mac_for_pdev,
4187 				       soc->rxdma_err_dst_ring[lmac_id].hal_srng,
4188 				       RXDMA_DST);
4189 	}
4190 
4191 	dp_reap_timer_init(soc);
4192 	return status;
4193 }
4194 #endif
4195 
4196 /**
4197  * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine
4198  *
4199  * This function is used to configure the FSE HW block in RX OLE on a
4200  * per pdev basis. Here, we will be programming parameters related to
4201  * the Flow Search Table.
4202  *
4203  * @soc: data path SoC handle
4204  *
4205  * Return: zero on success, non-zero on failure
4206  */
4207 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4208 static QDF_STATUS
4209 dp_rx_target_fst_config(struct dp_soc *soc)
4210 {
4211 	int i;
4212 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4213 
4214 	for (i = 0; i < MAX_PDEV_CNT; i++) {
4215 		struct dp_pdev *pdev = soc->pdev_list[i];
4216 
4217 		/* Flow search is not enabled if NSS offload is enabled */
4218 		if (pdev &&
4219 		    !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
4220 			status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev);
4221 			if (status != QDF_STATUS_SUCCESS)
4222 				break;
4223 		}
4224 	}
4225 	return status;
4226 }
4227 #else
4228 static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc)
4229 {
4230 	return QDF_STATUS_SUCCESS;
4231 }
4232 #endif
4233 
4234 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4235 static inline QDF_STATUS dp_print_swlm_stats(struct dp_soc *soc)
4236 {
4237 	return QDF_STATUS_SUCCESS;
4238 }
4239 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4240 
4241 #ifdef WLAN_SUPPORT_PPEDS
4242 /**
4243  * dp_soc_target_ppe_rxole_rxdma_cfg() - Configure the RxOLe and RxDMA for PPE
4244  * @soc: DP Tx/Rx handle
4245  *
4246  * Return: QDF_STATUS
4247  */
4248 static
4249 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4250 {
4251 	struct dp_htt_rxdma_rxole_ppe_config htt_cfg = {0};
4252 	QDF_STATUS status;
4253 
4254 	/*
4255 	 * Program RxDMA to override the reo destination indication
4256 	 * with REO2PPE_DST_IND, when use_ppe is set to 1 in RX_MSDU_END,
4257 	 * thereby driving the packet to REO2PPE ring.
4258 	 * If the MSDU is spanning more than 1 buffer, then this
4259 	 * override is not done.
4260 	 */
4261 	htt_cfg.override = 1;
4262 	htt_cfg.reo_destination_indication = REO2PPE_DST_IND;
4263 	htt_cfg.multi_buffer_msdu_override_en = 0;
4264 
4265 	/*
4266 	 * Override use_ppe to 0 in RxOLE for the following
4267 	 * cases.
4268 	 */
4269 	htt_cfg.intra_bss_override = 1;
4270 	htt_cfg.decap_raw_override = 1;
4271 	htt_cfg.decap_nwifi_override = 1;
4272 	htt_cfg.ip_frag_override = 1;
4273 
4274 	status = dp_htt_rxdma_rxole_ppe_cfg_set(soc, &htt_cfg);
4275 	if (status != QDF_STATUS_SUCCESS)
4276 		dp_err("RxOLE and RxDMA PPE config failed %d", status);
4277 
4278 	return status;
4279 }
4280 
4281 #else
4282 static inline
4283 QDF_STATUS dp_soc_target_ppe_rxole_rxdma_cfg(struct dp_soc *soc)
4284 {
4285 	return QDF_STATUS_SUCCESS;
4286 }
4287 
4288 #endif /* WLAN_SUPPORT_PPEDS */
4289 
4290 #ifdef DP_UMAC_HW_RESET_SUPPORT
4291 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4292 {
4293 	dp_umac_reset_register_rx_action_callback(soc,
4294 					dp_umac_reset_action_trigger_recovery,
4295 					UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY);
4296 
4297 	dp_umac_reset_register_rx_action_callback(soc,
4298 		dp_umac_reset_handle_pre_reset, UMAC_RESET_ACTION_DO_PRE_RESET);
4299 
4300 	dp_umac_reset_register_rx_action_callback(soc,
4301 					dp_umac_reset_handle_post_reset,
4302 					UMAC_RESET_ACTION_DO_POST_RESET_START);
4303 
4304 	dp_umac_reset_register_rx_action_callback(soc,
4305 				dp_umac_reset_handle_post_reset_complete,
4306 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
4307 
4308 }
4309 #else
4310 static void dp_register_umac_reset_handlers(struct dp_soc *soc)
4311 {
4312 }
4313 #endif
4314 /**
4315  * dp_soc_attach_target_wifi3() - SOC initialization in the target
4316  * @cdp_soc: Opaque Datapath SOC handle
4317  *
4318  * Return: zero on success, non-zero on failure
4319  */
4320 static QDF_STATUS
4321 dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
4322 {
4323 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4324 	QDF_STATUS status = QDF_STATUS_SUCCESS;
4325 	struct hal_reo_params reo_params;
4326 
4327 	htt_soc_attach_target(soc->htt_handle);
4328 
4329 	status = dp_soc_target_ppe_rxole_rxdma_cfg(soc);
4330 	if (status != QDF_STATUS_SUCCESS) {
4331 		dp_err("Failed to send htt RxOLE and RxDMA messages to target");
4332 		return status;
4333 	}
4334 
4335 	status = dp_rxdma_ring_config(soc);
4336 	if (status != QDF_STATUS_SUCCESS) {
4337 		dp_err("Failed to send htt srng setup messages to target");
4338 		return status;
4339 	}
4340 
4341 	status = soc->arch_ops.dp_rxdma_ring_sel_cfg(soc);
4342 	if (status != QDF_STATUS_SUCCESS) {
4343 		dp_err("Failed to send htt ring config message to target");
4344 		return status;
4345 	}
4346 
4347 	status = dp_soc_umac_reset_init(cdp_soc);
4348 	if (status != QDF_STATUS_SUCCESS &&
4349 	    status != QDF_STATUS_E_NOSUPPORT) {
4350 		dp_err("Failed to initialize UMAC reset");
4351 		return status;
4352 	}
4353 
4354 	dp_register_umac_reset_handlers(soc);
4355 
4356 	status = dp_rx_target_fst_config(soc);
4357 	if (status != QDF_STATUS_SUCCESS &&
4358 	    status != QDF_STATUS_E_NOSUPPORT) {
4359 		dp_err("Failed to send htt fst setup config message to target");
4360 		return status;
4361 	}
4362 
4363 	DP_STATS_INIT(soc);
4364 
4365 	dp_runtime_init(soc);
4366 
4367 	/* Enable HW vdev offload stats if feature is supported */
4368 	dp_vdev_stats_hw_offload_target_config(soc, INVALID_PDEV_ID, true);
4369 
4370 	/* initialize work queue for stats processing */
4371 	qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
4372 
4373 	wlan_cfg_soc_update_tgt_params(soc->wlan_cfg_ctx,
4374 				       soc->ctrl_psoc);
4375 	/* Setup HW REO */
4376 	qdf_mem_zero(&reo_params, sizeof(reo_params));
4377 
4378 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
4379 		/*
4380 		 * Reo ring remap is not required if both radios
4381 		 * are offloaded to NSS
4382 		 */
4383 
4384 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
4385 						   &reo_params.remap1,
4386 						   &reo_params.remap2))
4387 			reo_params.rx_hash_enabled = true;
4388 		else
4389 			reo_params.rx_hash_enabled = false;
4390 	}
4391 
4392 	/*
4393 	 * set the fragment destination ring
4394 	 */
4395 	dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
4396 
4397 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
4398 		reo_params.alt_dst_ind_0 = REO_REMAP_RELEASE;
4399 
4400 	reo_params.reo_qref = &soc->reo_qref;
4401 	hal_reo_setup(soc->hal_soc, &reo_params, 1);
4402 
4403 	hal_reo_set_err_dst_remap(soc->hal_soc);
4404 
4405 	soc->features.pn_in_reo_dest = hal_reo_enable_pn_in_dest(soc->hal_soc);
4406 
4407 	return QDF_STATUS_SUCCESS;
4408 }
4409 
4410 /**
4411  * dp_vdev_id_map_tbl_add() - Add vdev into vdev_id table
4412  * @soc: SoC handle
4413  * @vdev: vdev handle
4414  * @vdev_id: vdev_id
4415  *
4416  * Return: None
4417  */
4418 static void dp_vdev_id_map_tbl_add(struct dp_soc *soc,
4419 				   struct dp_vdev *vdev,
4420 				   uint8_t vdev_id)
4421 {
4422 	QDF_ASSERT(vdev_id <= MAX_VDEV_CNT);
4423 
4424 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4425 
4426 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4427 			QDF_STATUS_SUCCESS) {
4428 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK vdev_id %u",
4429 			     soc, vdev, vdev_id);
4430 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4431 		return;
4432 	}
4433 
4434 	if (!soc->vdev_id_map[vdev_id])
4435 		soc->vdev_id_map[vdev_id] = vdev;
4436 	else
4437 		QDF_ASSERT(0);
4438 
4439 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4440 }
4441 
4442 /**
4443  * dp_vdev_id_map_tbl_remove() - remove vdev from vdev_id table
4444  * @soc: SoC handle
4445  * @vdev: vdev handle
4446  *
4447  * Return: None
4448  */
4449 static void dp_vdev_id_map_tbl_remove(struct dp_soc *soc,
4450 				      struct dp_vdev *vdev)
4451 {
4452 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4453 	QDF_ASSERT(soc->vdev_id_map[vdev->vdev_id] == vdev);
4454 
4455 	soc->vdev_id_map[vdev->vdev_id] = NULL;
4456 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4457 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4458 }
4459 
4460 /**
4461  * dp_vdev_pdev_list_add() - add vdev into pdev's list
4462  * @soc: soc handle
4463  * @pdev: pdev handle
4464  * @vdev: vdev handle
4465  *
4466  * Return: none
4467  */
4468 static void dp_vdev_pdev_list_add(struct dp_soc *soc,
4469 				  struct dp_pdev *pdev,
4470 				  struct dp_vdev *vdev)
4471 {
4472 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4473 	if (dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CONFIG) !=
4474 			QDF_STATUS_SUCCESS) {
4475 		dp_vdev_info("%pK: unable to get vdev reference at MAP vdev %pK",
4476 			     soc, vdev);
4477 		qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4478 		return;
4479 	}
4480 	/* add this vdev into the pdev's list */
4481 	TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
4482 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4483 }
4484 
4485 /**
4486  * dp_vdev_pdev_list_remove() - remove vdev from pdev's list
4487  * @soc: SoC handle
4488  * @pdev: pdev handle
4489  * @vdev: VDEV handle
4490  *
4491  * Return: none
4492  */
4493 static void dp_vdev_pdev_list_remove(struct dp_soc *soc,
4494 				     struct dp_pdev *pdev,
4495 				     struct dp_vdev *vdev)
4496 {
4497 	uint8_t found = 0;
4498 	struct dp_vdev *tmpvdev = NULL;
4499 
4500 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
4501 	TAILQ_FOREACH(tmpvdev, &pdev->vdev_list, vdev_list_elem) {
4502 		if (tmpvdev == vdev) {
4503 			found = 1;
4504 			break;
4505 		}
4506 	}
4507 
4508 	if (found) {
4509 		TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
4510 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
4511 	} else {
4512 		dp_vdev_debug("%pK: vdev:%pK not found in pdev:%pK vdevlist:%pK",
4513 			      soc, vdev, pdev, &pdev->vdev_list);
4514 		QDF_ASSERT(0);
4515 	}
4516 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
4517 }
4518 
4519 #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
4520 /**
4521  * dp_vdev_init_rx_eapol() - initializing osif_rx_eapol
4522  * @vdev: Datapath VDEV handle
4523  *
4524  * Return: None
4525  */
4526 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4527 {
4528 	vdev->osif_rx_eapol = NULL;
4529 }
4530 
4531 /**
4532  * dp_vdev_register_rx_eapol() - Register VDEV operations for rx_eapol
4533  * @vdev: DP vdev handle
4534  * @txrx_ops: Tx and Rx operations
4535  *
4536  * Return: None
4537  */
4538 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4539 					     struct ol_txrx_ops *txrx_ops)
4540 {
4541 	vdev->osif_rx_eapol = txrx_ops->rx.rx_eapol;
4542 }
4543 #else
4544 static inline void dp_vdev_init_rx_eapol(struct dp_vdev *vdev)
4545 {
4546 }
4547 
4548 static inline void dp_vdev_register_rx_eapol(struct dp_vdev *vdev,
4549 					     struct ol_txrx_ops *txrx_ops)
4550 {
4551 }
4552 #endif
4553 
4554 #ifdef WLAN_FEATURE_11BE_MLO
4555 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4556 					 struct cdp_vdev_info *vdev_info)
4557 {
4558 	if (vdev_info->mld_mac_addr)
4559 		qdf_mem_copy(&vdev->mld_mac_addr.raw[0],
4560 			     vdev_info->mld_mac_addr, QDF_MAC_ADDR_SIZE);
4561 }
4562 
4563 #ifdef WLAN_MLO_MULTI_CHIP
4564 static inline void
4565 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4566 				 struct cdp_vdev_info *vdev_info)
4567 {
4568 	if (vdev_info->is_bridge_vap)
4569 		vdev->is_bridge_vdev = 1;
4570 
4571 	dp_info("is_bridge_link = %d vdev id = %d chip id = %d",
4572 		vdev->is_bridge_vdev, vdev->vdev_id,
4573 		dp_get_chip_id(vdev->pdev->soc));
4574 }
4575 #else
4576 static inline void
4577 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4578 				 struct cdp_vdev_info *vdev_info)
4579 {
4580 }
4581 #endif /* WLAN_MLO_MULTI_CHIP */
4582 
4583 #else
4584 static inline void dp_vdev_save_mld_addr(struct dp_vdev *vdev,
4585 					 struct cdp_vdev_info *vdev_info)
4586 {
4587 
4588 }
4589 
4590 static inline void
4591 dp_vdev_update_bridge_vdev_param(struct dp_vdev *vdev,
4592 				 struct cdp_vdev_info *vdev_info)
4593 {
4594 }
4595 #endif
4596 
4597 #ifdef DP_TRAFFIC_END_INDICATION
4598 /**
4599  * dp_tx_vdev_traffic_end_indication_attach() - Initialize data end indication
4600  *                                              related members in VDEV
4601  * @vdev: DP vdev handle
4602  *
4603  * Return: None
4604  */
4605 static inline void
4606 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4607 {
4608 	qdf_nbuf_queue_init(&vdev->end_ind_pkt_q);
4609 }
4610 
4611 /**
4612  * dp_tx_vdev_traffic_end_indication_detach() - De-init data end indication
4613  *                                              related members in VDEV
4614  * @vdev: DP vdev handle
4615  *
4616  * Return: None
4617  */
4618 static inline void
4619 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4620 {
4621 	qdf_nbuf_t nbuf;
4622 
4623 	while ((nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q)) != NULL)
4624 		qdf_nbuf_free(nbuf);
4625 }
4626 #else
4627 static inline void
4628 dp_tx_vdev_traffic_end_indication_attach(struct dp_vdev *vdev)
4629 {}
4630 
4631 static inline void
4632 dp_tx_vdev_traffic_end_indication_detach(struct dp_vdev *vdev)
4633 {}
4634 #endif
4635 
4636 #ifdef WLAN_DP_VDEV_NO_SELF_PEER
4637 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4638 					      struct dp_vdev *vdev)
4639 {
4640 	return false;
4641 }
4642 #else
4643 static inline bool dp_vdev_self_peer_required(struct dp_soc *soc,
4644 					      struct dp_vdev *vdev)
4645 {
4646 	if (wlan_op_mode_sta == vdev->opmode)
4647 		return true;
4648 
4649 	return false;
4650 }
4651 #endif
4652 
4653 /**
4654  * dp_vdev_attach_wifi3() - attach txrx vdev
4655  * @cdp_soc: CDP SoC context
4656  * @pdev_id: PDEV ID for vdev creation
4657  * @vdev_info: parameters used for vdev creation
4658  *
4659  * Return: status
4660  */
4661 static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc,
4662 				       uint8_t pdev_id,
4663 				       struct cdp_vdev_info *vdev_info)
4664 {
4665 	int i = 0;
4666 	qdf_size_t vdev_context_size;
4667 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
4668 	struct dp_pdev *pdev =
4669 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
4670 						   pdev_id);
4671 	struct dp_vdev *vdev;
4672 	uint8_t *vdev_mac_addr = vdev_info->vdev_mac_addr;
4673 	uint8_t vdev_id = vdev_info->vdev_id;
4674 	enum wlan_op_mode op_mode = vdev_info->op_mode;
4675 	enum wlan_op_subtype subtype = vdev_info->subtype;
4676 	enum QDF_OPMODE qdf_opmode = vdev_info->qdf_opmode;
4677 	uint8_t vdev_stats_id = vdev_info->vdev_stats_id;
4678 
4679 	vdev_context_size =
4680 		soc->arch_ops.txrx_get_context_size(DP_CONTEXT_TYPE_VDEV);
4681 	vdev = qdf_mem_malloc(vdev_context_size);
4682 
4683 	if (!pdev) {
4684 		dp_init_err("%pK: DP PDEV is Null for pdev id %d",
4685 			    cdp_soc, pdev_id);
4686 		qdf_mem_free(vdev);
4687 		goto fail0;
4688 	}
4689 
4690 	if (!vdev) {
4691 		dp_init_err("%pK: DP VDEV memory allocation failed",
4692 			    cdp_soc);
4693 		goto fail0;
4694 	}
4695 
4696 	wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc,
4697 			  WLAN_MD_DP_VDEV, "dp_vdev");
4698 
4699 	vdev->pdev = pdev;
4700 	vdev->vdev_id = vdev_id;
4701 	vdev->vdev_stats_id = vdev_stats_id;
4702 	vdev->opmode = op_mode;
4703 	vdev->subtype = subtype;
4704 	vdev->qdf_opmode = qdf_opmode;
4705 	vdev->osdev = soc->osdev;
4706 
4707 	vdev->osif_rx = NULL;
4708 	vdev->osif_rsim_rx_decap = NULL;
4709 	vdev->osif_get_key = NULL;
4710 	vdev->osif_tx_free_ext = NULL;
4711 	vdev->osif_vdev = NULL;
4712 
4713 	vdev->delete.pending = 0;
4714 	vdev->safemode = 0;
4715 	vdev->drop_unenc = 1;
4716 	vdev->sec_type = cdp_sec_type_none;
4717 	vdev->multipass_en = false;
4718 	vdev->wrap_vdev = false;
4719 	dp_vdev_init_rx_eapol(vdev);
4720 	qdf_atomic_init(&vdev->ref_cnt);
4721 	for (i = 0; i < DP_MOD_ID_MAX; i++)
4722 		qdf_atomic_init(&vdev->mod_refs[i]);
4723 
4724 	/* Take one reference for create*/
4725 	qdf_atomic_inc(&vdev->ref_cnt);
4726 	qdf_atomic_inc(&vdev->mod_refs[DP_MOD_ID_CONFIG]);
4727 	vdev->num_peers = 0;
4728 #ifdef notyet
4729 	vdev->filters_num = 0;
4730 #endif
4731 	vdev->lmac_id = pdev->lmac_id;
4732 
4733 	qdf_mem_copy(&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
4734 
4735 	dp_vdev_update_bridge_vdev_param(vdev, vdev_info);
4736 	dp_vdev_save_mld_addr(vdev, vdev_info);
4737 
4738 	/* TODO: Initialize default HTT meta data that will be used in
4739 	 * TCL descriptors for packets transmitted from this VDEV
4740 	 */
4741 
4742 	qdf_spinlock_create(&vdev->peer_list_lock);
4743 	TAILQ_INIT(&vdev->peer_list);
4744 	dp_peer_multipass_list_init(vdev);
4745 	if ((soc->intr_mode == DP_INTR_POLL) &&
4746 	    wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
4747 		if ((pdev->vdev_count == 0) ||
4748 		    (wlan_op_mode_monitor == vdev->opmode))
4749 			qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
4750 	} else if (dp_soc_get_con_mode(soc) == QDF_GLOBAL_MISSION_MODE &&
4751 		   soc->intr_mode == DP_INTR_MSI &&
4752 		   wlan_op_mode_monitor == vdev->opmode &&
4753 		   !wlan_cfg_get_local_pkt_capture(soc->wlan_cfg_ctx)) {
4754 		/* Timer to reap status ring in mission mode */
4755 		dp_monitor_vdev_timer_start(soc);
4756 	}
4757 
4758 	dp_vdev_id_map_tbl_add(soc, vdev, vdev_id);
4759 
4760 	if (wlan_op_mode_monitor == vdev->opmode) {
4761 		if (dp_monitor_vdev_attach(vdev) == QDF_STATUS_SUCCESS) {
4762 			dp_monitor_pdev_set_mon_vdev(vdev);
4763 			return dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
4764 		}
4765 		return QDF_STATUS_E_FAILURE;
4766 	}
4767 
4768 	vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4769 	vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
4770 	vdev->dscp_tid_map_id = 0;
4771 	vdev->mcast_enhancement_en = 0;
4772 	vdev->igmp_mcast_enhanc_en = 0;
4773 	vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
4774 	vdev->prev_tx_enq_tstamp = 0;
4775 	vdev->prev_rx_deliver_tstamp = 0;
4776 	vdev->skip_sw_tid_classification = DP_TX_HW_DSCP_TID_MAP_VALID;
4777 	dp_tx_vdev_traffic_end_indication_attach(vdev);
4778 
4779 	dp_vdev_pdev_list_add(soc, pdev, vdev);
4780 	pdev->vdev_count++;
4781 
4782 	if (wlan_op_mode_sta != vdev->opmode &&
4783 	    wlan_op_mode_ndi != vdev->opmode)
4784 		vdev->ap_bridge_enabled = true;
4785 	else
4786 		vdev->ap_bridge_enabled = false;
4787 	dp_init_info("%pK: wlan_cfg_ap_bridge_enabled %d",
4788 		     cdp_soc, vdev->ap_bridge_enabled);
4789 
4790 	dp_tx_vdev_attach(vdev);
4791 
4792 	dp_monitor_vdev_attach(vdev);
4793 	if (!pdev->is_lro_hash_configured) {
4794 		if (QDF_IS_STATUS_SUCCESS(dp_lro_hash_setup(soc, pdev)))
4795 			pdev->is_lro_hash_configured = true;
4796 		else
4797 			dp_err("LRO hash setup failure!");
4798 	}
4799 
4800 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_ATTACH, vdev);
4801 	dp_info("Created vdev %pK ("QDF_MAC_ADDR_FMT") vdev_id %d", vdev,
4802 		QDF_MAC_ADDR_REF(vdev->mac_addr.raw), vdev->vdev_id);
4803 	DP_STATS_INIT(vdev);
4804 
4805 	if (QDF_IS_STATUS_ERROR(soc->arch_ops.txrx_vdev_attach(soc, vdev)))
4806 		goto fail0;
4807 
4808 	if (dp_vdev_self_peer_required(soc, vdev))
4809 		dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id,
4810 				     vdev->mac_addr.raw, CDP_LINK_PEER_TYPE);
4811 
4812 	dp_pdev_update_fast_rx_flag(soc, pdev);
4813 
4814 	return QDF_STATUS_SUCCESS;
4815 
4816 fail0:
4817 	return QDF_STATUS_E_FAILURE;
4818 }
4819 
4820 #ifndef QCA_HOST_MODE_WIFI_DISABLED
4821 /**
4822  * dp_vdev_fetch_tx_handler() - Fetch Tx handlers
4823  * @vdev: struct dp_vdev *
4824  * @soc: struct dp_soc *
4825  * @ctx: struct ol_txrx_hardtart_ctxt *
4826  */
4827 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4828 					    struct dp_soc *soc,
4829 					    struct ol_txrx_hardtart_ctxt *ctx)
4830 {
4831 	/* Enable vdev_id check only for ap, if flag is enabled */
4832 	if (vdev->mesh_vdev)
4833 		ctx->tx = dp_tx_send_mesh;
4834 	else if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4835 		 (vdev->opmode == wlan_op_mode_ap)) {
4836 		ctx->tx = dp_tx_send_vdev_id_check;
4837 		ctx->tx_fast = dp_tx_send_vdev_id_check;
4838 	} else {
4839 		ctx->tx = dp_tx_send;
4840 		ctx->tx_fast = soc->arch_ops.dp_tx_send_fast;
4841 	}
4842 
4843 	/* Avoid check in regular exception Path */
4844 	if ((wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx)) &&
4845 	    (vdev->opmode == wlan_op_mode_ap))
4846 		ctx->tx_exception = dp_tx_send_exception_vdev_id_check;
4847 	else
4848 		ctx->tx_exception = dp_tx_send_exception;
4849 }
4850 
4851 /**
4852  * dp_vdev_register_tx_handler() - Register Tx handler
4853  * @vdev: struct dp_vdev *
4854  * @soc: struct dp_soc *
4855  * @txrx_ops: struct ol_txrx_ops *
4856  */
4857 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4858 					       struct dp_soc *soc,
4859 					       struct ol_txrx_ops *txrx_ops)
4860 {
4861 	struct ol_txrx_hardtart_ctxt ctx = {0};
4862 
4863 	dp_vdev_fetch_tx_handler(vdev, soc, &ctx);
4864 
4865 	txrx_ops->tx.tx = ctx.tx;
4866 	txrx_ops->tx.tx_fast = ctx.tx_fast;
4867 	txrx_ops->tx.tx_exception = ctx.tx_exception;
4868 
4869 	dp_info("Configure tx_vdev_id_chk_handler Feature Flag: %d and mode:%d for vdev_id:%d",
4870 		wlan_cfg_is_tx_per_pkt_vdev_id_check_enabled(soc->wlan_cfg_ctx),
4871 		vdev->opmode, vdev->vdev_id);
4872 }
4873 #else /* QCA_HOST_MODE_WIFI_DISABLED */
4874 static inline void dp_vdev_register_tx_handler(struct dp_vdev *vdev,
4875 					       struct dp_soc *soc,
4876 					       struct ol_txrx_ops *txrx_ops)
4877 {
4878 }
4879 
4880 static inline void dp_vdev_fetch_tx_handler(struct dp_vdev *vdev,
4881 					    struct dp_soc *soc,
4882 					    struct ol_txrx_hardtart_ctxt *ctx)
4883 {
4884 }
4885 #endif /* QCA_HOST_MODE_WIFI_DISABLED */
4886 
4887 /**
4888  * dp_vdev_register_wifi3() - Register VDEV operations from osif layer
4889  * @soc_hdl: Datapath soc handle
4890  * @vdev_id: id of Datapath VDEV handle
4891  * @osif_vdev: OSIF vdev handle
4892  * @txrx_ops: Tx and Rx operations
4893  *
4894  * Return: DP VDEV handle on success, NULL on failure
4895  */
4896 static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc_hdl,
4897 					 uint8_t vdev_id,
4898 					 ol_osif_vdev_handle osif_vdev,
4899 					 struct ol_txrx_ops *txrx_ops)
4900 {
4901 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
4902 	struct dp_vdev *vdev =	dp_vdev_get_ref_by_id(soc, vdev_id,
4903 						      DP_MOD_ID_CDP);
4904 
4905 	if (!vdev)
4906 		return QDF_STATUS_E_FAILURE;
4907 
4908 	vdev->osif_vdev = osif_vdev;
4909 	vdev->osif_rx = txrx_ops->rx.rx;
4910 	vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
4911 	vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
4912 	vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
4913 	vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
4914 	vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx;
4915 	vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush;
4916 	vdev->osif_get_key = txrx_ops->get_key;
4917 	dp_monitor_vdev_register_osif(vdev, txrx_ops);
4918 	vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
4919 	vdev->tx_comp = txrx_ops->tx.tx_comp;
4920 	vdev->stats_cb = txrx_ops->rx.stats_rx;
4921 	vdev->tx_classify_critical_pkt_cb =
4922 		txrx_ops->tx.tx_classify_critical_pkt_cb;
4923 #ifdef notyet
4924 #if ATH_SUPPORT_WAPI
4925 	vdev->osif_check_wai = txrx_ops->rx.wai_check;
4926 #endif
4927 #endif
4928 #ifdef UMAC_SUPPORT_PROXY_ARP
4929 	vdev->osif_proxy_arp = txrx_ops->proxy_arp;
4930 #endif
4931 	vdev->me_convert = txrx_ops->me_convert;
4932 	vdev->get_tsf_time = txrx_ops->get_tsf_time;
4933 
4934 	dp_vdev_register_rx_eapol(vdev, txrx_ops);
4935 
4936 	dp_vdev_register_tx_handler(vdev, soc, txrx_ops);
4937 
4938 	dp_init_info("%pK: DP Vdev Register success", soc);
4939 
4940 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
4941 	return QDF_STATUS_SUCCESS;
4942 }
4943 
4944 #ifdef WLAN_FEATURE_11BE_MLO
4945 void dp_peer_delete(struct dp_soc *soc,
4946 		    struct dp_peer *peer,
4947 		    void *arg)
4948 {
4949 	if (!peer->valid)
4950 		return;
4951 
4952 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4953 			     peer->vdev->vdev_id,
4954 			     peer->mac_addr.raw, 0,
4955 			     peer->peer_type);
4956 }
4957 #else
4958 void dp_peer_delete(struct dp_soc *soc,
4959 		    struct dp_peer *peer,
4960 		    void *arg)
4961 {
4962 	if (!peer->valid)
4963 		return;
4964 
4965 	dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4966 			     peer->vdev->vdev_id,
4967 			     peer->mac_addr.raw, 0,
4968 			     CDP_LINK_PEER_TYPE);
4969 }
4970 #endif
4971 
4972 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
4973 static uint8_t
4974 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
4975 {
4976 	if (soc->cdp_soc.ol_ops->peer_get_num_mlo_links)
4977 		return soc->cdp_soc.ol_ops->peer_get_num_mlo_links(
4978 				soc->ctrl_psoc,
4979 				peer->vdev->vdev_id,
4980 				peer->mac_addr.raw,
4981 				IS_MLO_DP_MLD_PEER(peer));
4982 
4983 	return 0;
4984 }
4985 
4986 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
4987 {
4988 	if (!peer->valid)
4989 		return;
4990 
4991 	/* skip deleting the SLO peers */
4992 	if (dp_mlo_get_num_link_peer(soc, peer) == 1)
4993 		return;
4994 
4995 	if (IS_MLO_DP_LINK_PEER(peer))
4996 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc,
4997 				     peer->vdev->vdev_id,
4998 				     peer->mac_addr.raw, 0,
4999 				     CDP_LINK_PEER_TYPE);
5000 }
5001 
5002 /**
5003  * dp_mlo_link_peer_flush() - flush all the link peers
5004  * @soc: Datapath soc handle
5005  * @peer: DP peer handle to be checked
5006  *
5007  * Return: None
5008  */
5009 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5010 {
5011 	int cnt = 0;
5012 	struct dp_peer *link_peer = NULL;
5013 	struct dp_mld_link_peers link_peers_info = {NULL};
5014 
5015 	if (!IS_MLO_DP_MLD_PEER(peer))
5016 		return;
5017 
5018 	/* get link peers with reference */
5019 	dp_get_link_peers_ref_from_mld_peer(soc, peer, &link_peers_info,
5020 					    DP_MOD_ID_CDP);
5021 	for (cnt = 0; cnt < link_peers_info.num_links; cnt++) {
5022 		link_peer = link_peers_info.link_peers[cnt];
5023 		if (!link_peer)
5024 			continue;
5025 
5026 		/* delete all the link peers */
5027 		dp_mlo_peer_delete(link_peer->vdev->pdev->soc, link_peer, NULL);
5028 		/* unmap all the link peers */
5029 		dp_rx_peer_unmap_handler(link_peer->vdev->pdev->soc,
5030 					 link_peer->peer_id,
5031 					 link_peer->vdev->vdev_id,
5032 					 link_peer->mac_addr.raw, 0,
5033 					 DP_PEER_WDS_COUNT_INVALID);
5034 	}
5035 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5036 }
5037 #else
5038 static uint8_t
5039 dp_mlo_get_num_link_peer(struct dp_soc *soc, struct dp_peer *peer)
5040 {
5041 	return 0;
5042 }
5043 
5044 void dp_mlo_peer_delete(struct dp_soc *soc, struct dp_peer *peer, void *arg)
5045 {
5046 }
5047 
5048 static void dp_mlo_link_peer_flush(struct dp_soc *soc, struct dp_peer *peer)
5049 {
5050 }
5051 #endif
5052 /**
5053  * dp_vdev_flush_peers() - Forcibily Flush peers of vdev
5054  * @vdev_handle: Datapath VDEV handle
5055  * @unmap_only: Flag to indicate "only unmap"
5056  * @mlo_peers_only: true if only MLO peers should be flushed
5057  *
5058  * Return: void
5059  */
5060 static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
5061 				bool unmap_only,
5062 				bool mlo_peers_only)
5063 {
5064 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
5065 	struct dp_pdev *pdev = vdev->pdev;
5066 	struct dp_soc *soc = pdev->soc;
5067 	struct dp_peer *peer;
5068 	uint32_t i = 0;
5069 
5070 
5071 	if (!unmap_only) {
5072 		if (!mlo_peers_only)
5073 			dp_vdev_iterate_peer_lock_safe(vdev,
5074 						       dp_peer_delete,
5075 						       NULL,
5076 						       DP_MOD_ID_CDP);
5077 		else
5078 			dp_vdev_iterate_peer_lock_safe(vdev,
5079 						       dp_mlo_peer_delete,
5080 						       NULL,
5081 						       DP_MOD_ID_CDP);
5082 	}
5083 
5084 	for (i = 0; i < soc->max_peer_id ; i++) {
5085 		peer = __dp_peer_get_ref_by_id(soc, i, DP_MOD_ID_CDP);
5086 
5087 		if (!peer)
5088 			continue;
5089 
5090 		if (peer->vdev != vdev) {
5091 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5092 			continue;
5093 		}
5094 
5095 		if (!mlo_peers_only) {
5096 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5097 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5098 			dp_mlo_link_peer_flush(soc, peer);
5099 			dp_rx_peer_unmap_handler(soc, i,
5100 						 vdev->vdev_id,
5101 						 peer->mac_addr.raw, 0,
5102 						 DP_PEER_WDS_COUNT_INVALID);
5103 			if (!IS_MLO_DP_MLD_PEER(peer))
5104 				SET_PEER_REF_CNT_ONE(peer);
5105 		} else if (IS_MLO_DP_LINK_PEER(peer) ||
5106 			   IS_MLO_DP_MLD_PEER(peer)) {
5107 			dp_info("peer: " QDF_MAC_ADDR_FMT " is getting unmap",
5108 				QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5109 
5110 			/* skip deleting the SLO peers */
5111 			if (dp_mlo_get_num_link_peer(soc, peer) ==  1) {
5112 				dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5113 				continue;
5114 			}
5115 
5116 			dp_mlo_link_peer_flush(soc, peer);
5117 			dp_rx_peer_unmap_handler(soc, i,
5118 						 vdev->vdev_id,
5119 						 peer->mac_addr.raw, 0,
5120 						 DP_PEER_WDS_COUNT_INVALID);
5121 			SET_PEER_REF_CNT_ONE(peer);
5122 		}
5123 
5124 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
5125 	}
5126 }
5127 
5128 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5129 /**
5130  * dp_txrx_alloc_vdev_stats_id()- Allocate vdev_stats_id
5131  * @soc_hdl: Datapath soc handle
5132  * @vdev_stats_id: Address of vdev_stats_id
5133  *
5134  * Return: QDF_STATUS
5135  */
5136 static QDF_STATUS dp_txrx_alloc_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5137 					      uint8_t *vdev_stats_id)
5138 {
5139 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5140 	uint8_t id = 0;
5141 
5142 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
5143 		*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5144 		return QDF_STATUS_E_FAILURE;
5145 	}
5146 
5147 	while (id < CDP_MAX_VDEV_STATS_ID) {
5148 		if (!qdf_atomic_test_and_set_bit(id, &soc->vdev_stats_id_map)) {
5149 			*vdev_stats_id = id;
5150 			return QDF_STATUS_SUCCESS;
5151 		}
5152 		id++;
5153 	}
5154 
5155 	*vdev_stats_id = CDP_INVALID_VDEV_STATS_ID;
5156 	return QDF_STATUS_E_FAILURE;
5157 }
5158 
5159 /**
5160  * dp_txrx_reset_vdev_stats_id() - Reset vdev_stats_id in dp_soc
5161  * @soc_hdl: Datapath soc handle
5162  * @vdev_stats_id: vdev_stats_id to reset in dp_soc
5163  *
5164  * Return: none
5165  */
5166 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc_hdl,
5167 					uint8_t vdev_stats_id)
5168 {
5169 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
5170 
5171 	if ((!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) ||
5172 	    (vdev_stats_id >= CDP_MAX_VDEV_STATS_ID))
5173 		return;
5174 
5175 	qdf_atomic_clear_bit(vdev_stats_id, &soc->vdev_stats_id_map);
5176 }
5177 #else
5178 static void dp_txrx_reset_vdev_stats_id(struct cdp_soc_t *soc,
5179 					uint8_t vdev_stats_id)
5180 {}
5181 #endif
5182 /**
5183  * dp_vdev_detach_wifi3() - Detach txrx vdev
5184  * @cdp_soc: Datapath soc handle
5185  * @vdev_id: VDEV Id
5186  * @callback: Callback OL_IF on completion of detach
5187  * @cb_context:	Callback context
5188  *
5189  */
5190 static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc,
5191 				       uint8_t vdev_id,
5192 				       ol_txrx_vdev_delete_cb callback,
5193 				       void *cb_context)
5194 {
5195 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
5196 	struct dp_pdev *pdev;
5197 	struct dp_neighbour_peer *peer = NULL;
5198 	struct dp_peer *vap_self_peer = NULL;
5199 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
5200 						     DP_MOD_ID_CDP);
5201 
5202 	if (!vdev)
5203 		return QDF_STATUS_E_FAILURE;
5204 
5205 	soc->arch_ops.txrx_vdev_detach(soc, vdev);
5206 
5207 	pdev = vdev->pdev;
5208 
5209 	vap_self_peer = dp_sta_vdev_self_peer_ref_n_get(soc, vdev,
5210 							DP_MOD_ID_CONFIG);
5211 	if (vap_self_peer) {
5212 		qdf_spin_lock_bh(&soc->ast_lock);
5213 		if (vap_self_peer->self_ast_entry) {
5214 			dp_peer_del_ast(soc, vap_self_peer->self_ast_entry);
5215 			vap_self_peer->self_ast_entry = NULL;
5216 		}
5217 		qdf_spin_unlock_bh(&soc->ast_lock);
5218 
5219 		dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id,
5220 				     vap_self_peer->mac_addr.raw, 0,
5221 				     CDP_LINK_PEER_TYPE);
5222 		dp_peer_unref_delete(vap_self_peer, DP_MOD_ID_CONFIG);
5223 	}
5224 
5225 	/*
5226 	 * If Target is hung, flush all peers before detaching vdev
5227 	 * this will free all references held due to missing
5228 	 * unmap commands from Target
5229 	 */
5230 	if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
5231 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, false);
5232 	else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
5233 		dp_vdev_flush_peers((struct cdp_vdev *)vdev, true, false);
5234 
5235 	/* indicate that the vdev needs to be deleted */
5236 	vdev->delete.pending = 1;
5237 	dp_rx_vdev_detach(vdev);
5238 	/*
5239 	 * move it after dp_rx_vdev_detach(),
5240 	 * as the call back done in dp_rx_vdev_detach()
5241 	 * still need to get vdev pointer by vdev_id.
5242 	 */
5243 	dp_vdev_id_map_tbl_remove(soc, vdev);
5244 
5245 	dp_monitor_neighbour_peer_list_remove(pdev, vdev, peer);
5246 
5247 	dp_txrx_reset_vdev_stats_id(cdp_soc, vdev->vdev_stats_id);
5248 
5249 	dp_tx_vdev_multipass_deinit(vdev);
5250 	dp_tx_vdev_traffic_end_indication_detach(vdev);
5251 
5252 	if (vdev->vdev_dp_ext_handle) {
5253 		qdf_mem_free(vdev->vdev_dp_ext_handle);
5254 		vdev->vdev_dp_ext_handle = NULL;
5255 	}
5256 	vdev->delete.callback = callback;
5257 	vdev->delete.context = cb_context;
5258 
5259 	if (vdev->opmode != wlan_op_mode_monitor)
5260 		dp_vdev_pdev_list_remove(soc, pdev, vdev);
5261 
5262 	pdev->vdev_count--;
5263 	/* release reference taken above for find */
5264 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5265 
5266 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
5267 	TAILQ_INSERT_TAIL(&soc->inactive_vdev_list, vdev, inactive_list_elem);
5268 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
5269 
5270 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_DETACH, vdev);
5271 	dp_info("detach vdev %pK id %d pending refs %d",
5272 		vdev, vdev->vdev_id, qdf_atomic_read(&vdev->ref_cnt));
5273 
5274 	/* release reference taken at dp_vdev_create */
5275 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CONFIG);
5276 
5277 	return QDF_STATUS_SUCCESS;
5278 }
5279 
5280 #ifdef WLAN_FEATURE_11BE_MLO
5281 /**
5282  * is_dp_peer_can_reuse() - check if the dp_peer match condition to be reused
5283  * @vdev: Target DP vdev handle
5284  * @peer: DP peer handle to be checked
5285  * @peer_mac_addr: Target peer mac address
5286  * @peer_type: Target peer type
5287  *
5288  * Return: true - if match, false - not match
5289  */
5290 static inline
5291 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5292 			  struct dp_peer *peer,
5293 			  uint8_t *peer_mac_addr,
5294 			  enum cdp_peer_type peer_type)
5295 {
5296 	if (peer->bss_peer && (peer->vdev == vdev) &&
5297 	    (peer->peer_type == peer_type) &&
5298 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5299 			 QDF_MAC_ADDR_SIZE) == 0))
5300 		return true;
5301 
5302 	return false;
5303 }
5304 #else
5305 static inline
5306 bool is_dp_peer_can_reuse(struct dp_vdev *vdev,
5307 			  struct dp_peer *peer,
5308 			  uint8_t *peer_mac_addr,
5309 			  enum cdp_peer_type peer_type)
5310 {
5311 	if (peer->bss_peer && (peer->vdev == vdev) &&
5312 	    (qdf_mem_cmp(peer_mac_addr, peer->mac_addr.raw,
5313 			 QDF_MAC_ADDR_SIZE) == 0))
5314 		return true;
5315 
5316 	return false;
5317 }
5318 #endif
5319 
5320 static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
5321 						uint8_t *peer_mac_addr,
5322 						enum cdp_peer_type peer_type)
5323 {
5324 	struct dp_peer *peer;
5325 	struct dp_soc *soc = vdev->pdev->soc;
5326 
5327 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
5328 	TAILQ_FOREACH(peer, &soc->inactive_peer_list,
5329 		      inactive_list_elem) {
5330 
5331 		/* reuse bss peer only when vdev matches*/
5332 		if (is_dp_peer_can_reuse(vdev, peer,
5333 					 peer_mac_addr, peer_type)) {
5334 			/* increment ref count for cdp_peer_create*/
5335 			if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
5336 						QDF_STATUS_SUCCESS) {
5337 				TAILQ_REMOVE(&soc->inactive_peer_list, peer,
5338 					     inactive_list_elem);
5339 				qdf_spin_unlock_bh
5340 					(&soc->inactive_peer_list_lock);
5341 				return peer;
5342 			}
5343 		}
5344 	}
5345 
5346 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
5347 	return NULL;
5348 }
5349 
5350 #ifdef FEATURE_AST
5351 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5352 					       struct dp_pdev *pdev,
5353 					       uint8_t *peer_mac_addr)
5354 {
5355 	struct dp_ast_entry *ast_entry;
5356 
5357 	if (soc->ast_offload_support)
5358 		return;
5359 
5360 	qdf_spin_lock_bh(&soc->ast_lock);
5361 	if (soc->ast_override_support)
5362 		ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
5363 							    pdev->pdev_id);
5364 	else
5365 		ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
5366 
5367 	if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
5368 		dp_peer_del_ast(soc, ast_entry);
5369 
5370 	qdf_spin_unlock_bh(&soc->ast_lock);
5371 }
5372 #else
5373 static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
5374 					       struct dp_pdev *pdev,
5375 					       uint8_t *peer_mac_addr)
5376 {
5377 }
5378 #endif
5379 
5380 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
5381 /**
5382  * dp_peer_hw_txrx_stats_init() - Initialize hw_txrx_stats_en in dp_peer
5383  * @soc: Datapath soc handle
5384  * @txrx_peer: Datapath peer handle
5385  *
5386  * Return: none
5387  */
5388 static inline
5389 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5390 				struct dp_txrx_peer *txrx_peer)
5391 {
5392 	txrx_peer->hw_txrx_stats_en =
5393 		wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx);
5394 }
5395 #else
5396 static inline
5397 void dp_peer_hw_txrx_stats_init(struct dp_soc *soc,
5398 				struct dp_txrx_peer *txrx_peer)
5399 {
5400 	txrx_peer->hw_txrx_stats_en = 0;
5401 }
5402 #endif
5403 
5404 static QDF_STATUS dp_txrx_peer_detach(struct dp_soc *soc, struct dp_peer *peer)
5405 {
5406 	struct dp_txrx_peer *txrx_peer;
5407 	struct dp_pdev *pdev;
5408 	struct cdp_txrx_peer_params_update params = {0};
5409 
5410 	/* dp_txrx_peer exists for mld peer and legacy peer */
5411 	if (peer->txrx_peer) {
5412 		txrx_peer = peer->txrx_peer;
5413 		peer->txrx_peer = NULL;
5414 		pdev = txrx_peer->vdev->pdev;
5415 
5416 		if ((peer->vdev->opmode != wlan_op_mode_sta) &&
5417 		    !peer->bss_peer) {
5418 			params.vdev_id = peer->vdev->vdev_id;
5419 			params.peer_mac = peer->mac_addr.raw;
5420 
5421 			dp_wdi_event_handler(WDI_EVENT_PEER_DELETE, soc,
5422 					     (void *)&params, peer->peer_id,
5423 					     WDI_NO_VAL, pdev->pdev_id);
5424 		}
5425 
5426 		dp_peer_defrag_rx_tids_deinit(txrx_peer);
5427 		/*
5428 		 * Deallocate the extended stats contenxt
5429 		 */
5430 		dp_peer_delay_stats_ctx_dealloc(soc, txrx_peer);
5431 		dp_peer_rx_bufq_resources_deinit(txrx_peer);
5432 		dp_peer_jitter_stats_ctx_dealloc(pdev, txrx_peer);
5433 		dp_peer_sawf_stats_ctx_free(soc, txrx_peer);
5434 
5435 		qdf_mem_free(txrx_peer);
5436 	}
5437 
5438 	return QDF_STATUS_SUCCESS;
5439 }
5440 
5441 static inline
5442 uint8_t dp_txrx_peer_calculate_stats_size(struct dp_soc *soc,
5443 					  struct dp_peer *peer)
5444 {
5445 	if ((wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx)) &&
5446 	    IS_MLO_DP_MLD_PEER(peer)) {
5447 		return (DP_MAX_MLO_LINKS + 1);
5448 	}
5449 	return 1;
5450 }
5451 
5452 static QDF_STATUS dp_txrx_peer_attach(struct dp_soc *soc, struct dp_peer *peer)
5453 {
5454 	struct dp_txrx_peer *txrx_peer;
5455 	struct dp_pdev *pdev;
5456 	struct cdp_txrx_peer_params_update params = {0};
5457 	uint8_t stats_arr_size = 0;
5458 
5459 	stats_arr_size = dp_txrx_peer_calculate_stats_size(soc, peer);
5460 
5461 	txrx_peer = (struct dp_txrx_peer *)qdf_mem_malloc(sizeof(*txrx_peer) +
5462 							  (stats_arr_size *
5463 							   sizeof(struct dp_peer_stats)));
5464 
5465 	if (!txrx_peer)
5466 		return QDF_STATUS_E_NOMEM; /* failure */
5467 
5468 	txrx_peer->peer_id = HTT_INVALID_PEER;
5469 	/* initialize the peer_id */
5470 	txrx_peer->vdev = peer->vdev;
5471 	pdev = peer->vdev->pdev;
5472 	txrx_peer->stats_arr_size = stats_arr_size;
5473 
5474 	DP_TXRX_PEER_STATS_INIT(txrx_peer,
5475 				(txrx_peer->stats_arr_size *
5476 				sizeof(struct dp_peer_stats)));
5477 
5478 	if (!IS_DP_LEGACY_PEER(peer))
5479 		txrx_peer->is_mld_peer = 1;
5480 
5481 	dp_wds_ext_peer_init(txrx_peer);
5482 	dp_peer_rx_bufq_resources_init(txrx_peer);
5483 	dp_peer_hw_txrx_stats_init(soc, txrx_peer);
5484 	/*
5485 	 * Allocate peer extended stats context. Fall through in
5486 	 * case of failure as its not an implicit requirement to have
5487 	 * this object for regular statistics updates.
5488 	 */
5489 	if (dp_peer_delay_stats_ctx_alloc(soc, txrx_peer) !=
5490 					  QDF_STATUS_SUCCESS)
5491 		dp_warn("peer delay_stats ctx alloc failed");
5492 
5493 	/*
5494 	 * Alloctate memory for jitter stats. Fall through in
5495 	 * case of failure as its not an implicit requirement to have
5496 	 * this object for regular statistics updates.
5497 	 */
5498 	if (dp_peer_jitter_stats_ctx_alloc(pdev, txrx_peer) !=
5499 					   QDF_STATUS_SUCCESS)
5500 		dp_warn("peer jitter_stats ctx alloc failed");
5501 
5502 	dp_set_peer_isolation(txrx_peer, false);
5503 
5504 	dp_peer_defrag_rx_tids_init(txrx_peer);
5505 
5506 	if (dp_peer_sawf_stats_ctx_alloc(soc, txrx_peer) != QDF_STATUS_SUCCESS)
5507 		dp_warn("peer sawf stats alloc failed");
5508 
5509 	dp_txrx_peer_attach_add(soc, peer, txrx_peer);
5510 
5511 	if ((peer->vdev->opmode == wlan_op_mode_sta) || peer->bss_peer)
5512 		return QDF_STATUS_SUCCESS;
5513 
5514 	params.peer_mac = peer->mac_addr.raw;
5515 	params.vdev_id = peer->vdev->vdev_id;
5516 	params.chip_id = dp_get_chip_id(soc);
5517 	params.pdev_id = peer->vdev->pdev->pdev_id;
5518 
5519 	dp_wdi_event_handler(WDI_EVENT_TXRX_PEER_CREATE, soc,
5520 			     (void *)&params, peer->peer_id,
5521 			     WDI_NO_VAL, params.pdev_id);
5522 
5523 	return QDF_STATUS_SUCCESS;
5524 }
5525 
5526 static inline
5527 void dp_txrx_peer_stats_clr(struct dp_txrx_peer *txrx_peer)
5528 {
5529 	if (!txrx_peer)
5530 		return;
5531 
5532 	txrx_peer->tx_failed = 0;
5533 	txrx_peer->comp_pkt.num = 0;
5534 	txrx_peer->comp_pkt.bytes = 0;
5535 	txrx_peer->to_stack.num = 0;
5536 	txrx_peer->to_stack.bytes = 0;
5537 
5538 	DP_TXRX_PEER_STATS_CLR(txrx_peer,
5539 			       (txrx_peer->stats_arr_size *
5540 			       sizeof(struct dp_peer_stats)));
5541 	dp_peer_delay_stats_ctx_clr(txrx_peer);
5542 	dp_peer_jitter_stats_ctx_clr(txrx_peer);
5543 }
5544 
5545 /**
5546  * dp_peer_create_wifi3() - attach txrx peer
5547  * @soc_hdl: Datapath soc handle
5548  * @vdev_id: id of vdev
5549  * @peer_mac_addr: Peer MAC address
5550  * @peer_type: link or MLD peer type
5551  *
5552  * Return: 0 on success, -1 on failure
5553  */
5554 static QDF_STATUS
5555 dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5556 		     uint8_t *peer_mac_addr, enum cdp_peer_type peer_type)
5557 {
5558 	struct dp_peer *peer;
5559 	int i;
5560 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
5561 	struct dp_pdev *pdev;
5562 	enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
5563 	struct dp_vdev *vdev = NULL;
5564 
5565 	if (!peer_mac_addr)
5566 		return QDF_STATUS_E_FAILURE;
5567 
5568 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
5569 
5570 	if (!vdev)
5571 		return QDF_STATUS_E_FAILURE;
5572 
5573 	pdev = vdev->pdev;
5574 	soc = pdev->soc;
5575 
5576 	/*
5577 	 * If a peer entry with given MAC address already exists,
5578 	 * reuse the peer and reset the state of peer.
5579 	 */
5580 	peer = dp_peer_can_reuse(vdev, peer_mac_addr, peer_type);
5581 
5582 	if (peer) {
5583 		qdf_atomic_init(&peer->is_default_route_set);
5584 		dp_peer_cleanup(vdev, peer);
5585 
5586 		dp_peer_vdev_list_add(soc, vdev, peer);
5587 		dp_peer_find_hash_add(soc, peer);
5588 
5589 		if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5590 			dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5591 				 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5592 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5593 			return QDF_STATUS_E_FAILURE;
5594 		}
5595 
5596 		if (IS_MLO_DP_MLD_PEER(peer))
5597 			dp_mld_peer_init_link_peers_info(peer);
5598 
5599 		qdf_spin_lock_bh(&soc->ast_lock);
5600 		dp_peer_delete_ast_entries(soc, peer);
5601 		qdf_spin_unlock_bh(&soc->ast_lock);
5602 
5603 		if ((vdev->opmode == wlan_op_mode_sta) &&
5604 		    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5605 		     QDF_MAC_ADDR_SIZE)) {
5606 			ast_type = CDP_TXRX_AST_TYPE_SELF;
5607 		}
5608 		dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5609 
5610 		peer->valid = 1;
5611 		peer->is_tdls_peer = false;
5612 		dp_local_peer_id_alloc(pdev, peer);
5613 
5614 		qdf_spinlock_create(&peer->peer_info_lock);
5615 
5616 		DP_STATS_INIT(peer);
5617 
5618 		/*
5619 		 * In tx_monitor mode, filter may be set for unassociated peer
5620 		 * when unassociated peer get associated peer need to
5621 		 * update tx_cap_enabled flag to support peer filter.
5622 		 */
5623 		if (!IS_MLO_DP_MLD_PEER(peer)) {
5624 			dp_monitor_peer_tx_capture_filter_check(pdev, peer);
5625 			dp_monitor_peer_reset_stats(soc, peer);
5626 		}
5627 
5628 		if (peer->txrx_peer) {
5629 			dp_peer_rx_bufq_resources_init(peer->txrx_peer);
5630 			dp_txrx_peer_stats_clr(peer->txrx_peer);
5631 			dp_set_peer_isolation(peer->txrx_peer, false);
5632 			dp_wds_ext_peer_init(peer->txrx_peer);
5633 			dp_peer_hw_txrx_stats_init(soc, peer->txrx_peer);
5634 		}
5635 
5636 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5637 					     peer, vdev, 1);
5638 		dp_info("vdev %pK Reused peer %pK ("QDF_MAC_ADDR_FMT
5639 			") vdev_ref_cnt "
5640 			"%d peer_ref_cnt: %d",
5641 			vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5642 			qdf_atomic_read(&vdev->ref_cnt),
5643 			qdf_atomic_read(&peer->ref_cnt));
5644 			dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5645 
5646 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5647 		return QDF_STATUS_SUCCESS;
5648 	} else {
5649 		/*
5650 		 * When a STA roams from RPTR AP to ROOT AP and vice versa, we
5651 		 * need to remove the AST entry which was earlier added as a WDS
5652 		 * entry.
5653 		 * If an AST entry exists, but no peer entry exists with a given
5654 		 * MAC addresses, we could deduce it as a WDS entry
5655 		 */
5656 		dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
5657 	}
5658 
5659 #ifdef notyet
5660 	peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
5661 		soc->mempool_ol_ath_peer);
5662 #else
5663 	peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
5664 #endif
5665 	wlan_minidump_log(peer,
5666 			  sizeof(*peer),
5667 			  soc->ctrl_psoc,
5668 			  WLAN_MD_DP_PEER, "dp_peer");
5669 	if (!peer) {
5670 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5671 		return QDF_STATUS_E_FAILURE; /* failure */
5672 	}
5673 
5674 	qdf_mem_zero(peer, sizeof(struct dp_peer));
5675 
5676 	/* store provided params */
5677 	peer->vdev = vdev;
5678 
5679 	/* initialize the peer_id */
5680 	peer->peer_id = HTT_INVALID_PEER;
5681 
5682 	qdf_mem_copy(
5683 		&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
5684 
5685 	DP_PEER_SET_TYPE(peer, peer_type);
5686 	if (IS_MLO_DP_MLD_PEER(peer)) {
5687 		if (dp_txrx_peer_attach(soc, peer) !=
5688 				QDF_STATUS_SUCCESS)
5689 			goto fail; /* failure */
5690 
5691 		dp_mld_peer_init_link_peers_info(peer);
5692 	}
5693 
5694 	if (dp_monitor_peer_attach(soc, peer) != QDF_STATUS_SUCCESS)
5695 		dp_warn("peer monitor ctx alloc failed");
5696 
5697 	TAILQ_INIT(&peer->ast_entry_list);
5698 
5699 	/* get the vdev reference for new peer */
5700 	dp_vdev_get_ref(soc, vdev, DP_MOD_ID_CHILD);
5701 
5702 	if ((vdev->opmode == wlan_op_mode_sta) &&
5703 	    !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
5704 			 QDF_MAC_ADDR_SIZE)) {
5705 		ast_type = CDP_TXRX_AST_TYPE_SELF;
5706 	}
5707 	qdf_spinlock_create(&peer->peer_state_lock);
5708 	dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
5709 	qdf_spinlock_create(&peer->peer_info_lock);
5710 
5711 	/* reset the ast index to flowid table */
5712 	dp_peer_reset_flowq_map(peer);
5713 
5714 	qdf_atomic_init(&peer->ref_cnt);
5715 
5716 	for (i = 0; i < DP_MOD_ID_MAX; i++)
5717 		qdf_atomic_init(&peer->mod_refs[i]);
5718 
5719 	/* keep one reference for attach */
5720 	qdf_atomic_inc(&peer->ref_cnt);
5721 	qdf_atomic_inc(&peer->mod_refs[DP_MOD_ID_CONFIG]);
5722 
5723 	dp_peer_vdev_list_add(soc, vdev, peer);
5724 
5725 	/* TODO: See if hash based search is required */
5726 	dp_peer_find_hash_add(soc, peer);
5727 
5728 	/* Initialize the peer state */
5729 	peer->state = OL_TXRX_PEER_STATE_DISC;
5730 
5731 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_CREATE,
5732 				     peer, vdev, 0);
5733 	dp_info("vdev %pK created peer %pK ("QDF_MAC_ADDR_FMT") vdev_ref_cnt "
5734 		"%d peer_ref_cnt: %d",
5735 		vdev, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5736 		qdf_atomic_read(&vdev->ref_cnt),
5737 		qdf_atomic_read(&peer->ref_cnt));
5738 	/*
5739 	 * For every peer MAp message search and set if bss_peer
5740 	 */
5741 	if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5742 			QDF_MAC_ADDR_SIZE) == 0 &&
5743 			(wlan_op_mode_sta != vdev->opmode)) {
5744 		dp_info("vdev bss_peer!!");
5745 		peer->bss_peer = 1;
5746 		if (peer->txrx_peer)
5747 			peer->txrx_peer->bss_peer = 1;
5748 	}
5749 
5750 	if (wlan_op_mode_sta == vdev->opmode &&
5751 	    qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
5752 			QDF_MAC_ADDR_SIZE) == 0) {
5753 		peer->sta_self_peer = 1;
5754 	}
5755 
5756 	if (dp_peer_rx_tids_create(peer) != QDF_STATUS_SUCCESS) {
5757 		dp_alert("RX tid alloc fail for peer %pK (" QDF_MAC_ADDR_FMT ")",
5758 			 peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw));
5759 		goto fail;
5760 	}
5761 
5762 	peer->valid = 1;
5763 	dp_local_peer_id_alloc(pdev, peer);
5764 	DP_STATS_INIT(peer);
5765 
5766 	if (dp_peer_sawf_ctx_alloc(soc, peer) != QDF_STATUS_SUCCESS)
5767 		dp_warn("peer sawf context alloc failed");
5768 
5769 	dp_peer_update_state(soc, peer, DP_PEER_STATE_INIT);
5770 
5771 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5772 
5773 	return QDF_STATUS_SUCCESS;
5774 fail:
5775 	qdf_mem_free(peer);
5776 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
5777 
5778 	return QDF_STATUS_E_FAILURE;
5779 }
5780 
5781 QDF_STATUS dp_peer_legacy_setup(struct dp_soc *soc, struct dp_peer *peer)
5782 {
5783 	/* txrx_peer might exist already in peer reuse case */
5784 	if (peer->txrx_peer)
5785 		return QDF_STATUS_SUCCESS;
5786 
5787 	if (dp_txrx_peer_attach(soc, peer) !=
5788 				QDF_STATUS_SUCCESS) {
5789 		dp_err("peer txrx ctx alloc failed");
5790 		return QDF_STATUS_E_FAILURE;
5791 	}
5792 
5793 	return QDF_STATUS_SUCCESS;
5794 }
5795 
5796 #ifdef WLAN_FEATURE_11BE_MLO
5797 static QDF_STATUS dp_mld_peer_change_vdev(struct dp_soc *soc,
5798 					  struct dp_peer *mld_peer,
5799 					  uint8_t new_vdev_id)
5800 {
5801 	struct dp_vdev *prev_vdev;
5802 
5803 	prev_vdev = mld_peer->vdev;
5804 	/* release the ref to original dp_vdev */
5805 	dp_vdev_unref_delete(soc, mld_peer->vdev,
5806 			     DP_MOD_ID_CHILD);
5807 	/*
5808 	 * get the ref to new dp_vdev,
5809 	 * increase dp_vdev ref_cnt
5810 	 */
5811 	mld_peer->vdev = dp_vdev_get_ref_by_id(soc, new_vdev_id,
5812 					       DP_MOD_ID_CHILD);
5813 	mld_peer->txrx_peer->vdev = mld_peer->vdev;
5814 
5815 	dp_info("Change vdev for ML peer " QDF_MAC_ADDR_FMT
5816 		" old vdev %pK id %d new vdev %pK id %d",
5817 		QDF_MAC_ADDR_REF(mld_peer->mac_addr.raw),
5818 		prev_vdev, prev_vdev->vdev_id, mld_peer->vdev, new_vdev_id);
5819 
5820 	dp_cfg_event_record_mlo_setup_vdev_update_evt(
5821 			soc, mld_peer, prev_vdev,
5822 			mld_peer->vdev);
5823 
5824 	return QDF_STATUS_SUCCESS;
5825 }
5826 
5827 QDF_STATUS dp_peer_mlo_setup(
5828 			struct dp_soc *soc,
5829 			struct dp_peer *peer,
5830 			uint8_t vdev_id,
5831 			struct cdp_peer_setup_info *setup_info)
5832 {
5833 	struct dp_peer *mld_peer = NULL;
5834 	struct cdp_txrx_peer_params_update params = {0};
5835 
5836 	/* Non-MLO connection */
5837 	if (!setup_info || !setup_info->mld_peer_mac) {
5838 		/* To handle downgrade scenarios */
5839 		if (peer->vdev->opmode == wlan_op_mode_sta) {
5840 			struct cdp_txrx_peer_params_update params = {0};
5841 
5842 			params.chip_id = dp_get_chip_id(soc);
5843 			params.pdev_id = peer->vdev->pdev->pdev_id;
5844 			params.vdev_id = peer->vdev->vdev_id;
5845 
5846 			dp_wdi_event_handler(
5847 					WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5848 					soc,
5849 					(void *)&params, peer->peer_id,
5850 					WDI_NO_VAL, params.pdev_id);
5851 		}
5852 		return QDF_STATUS_SUCCESS;
5853 	}
5854 
5855 	dp_cfg_event_record_peer_setup_evt(soc, DP_CFG_EVENT_MLO_SETUP,
5856 					   peer, NULL, vdev_id, setup_info);
5857 	dp_info("link peer: " QDF_MAC_ADDR_FMT "mld peer: " QDF_MAC_ADDR_FMT
5858 		"first_link %d, primary_link %d",
5859 		QDF_MAC_ADDR_REF(peer->mac_addr.raw),
5860 		QDF_MAC_ADDR_REF(setup_info->mld_peer_mac),
5861 		setup_info->is_first_link,
5862 		setup_info->is_primary_link);
5863 
5864 	/* if this is the first link peer */
5865 	if (setup_info->is_first_link)
5866 		/* create MLD peer */
5867 		dp_peer_create_wifi3((struct cdp_soc_t *)soc,
5868 				     vdev_id,
5869 				     setup_info->mld_peer_mac,
5870 				     CDP_MLD_PEER_TYPE);
5871 
5872 	if (peer->vdev->opmode == wlan_op_mode_sta &&
5873 	    setup_info->is_primary_link) {
5874 		struct cdp_txrx_peer_params_update params = {0};
5875 
5876 		params.chip_id = dp_get_chip_id(soc);
5877 		params.pdev_id = peer->vdev->pdev->pdev_id;
5878 		params.vdev_id = peer->vdev->vdev_id;
5879 
5880 		dp_wdi_event_handler(
5881 				WDI_EVENT_STA_PRIMARY_UMAC_UPDATE,
5882 				soc,
5883 				(void *)&params, peer->peer_id,
5884 				WDI_NO_VAL, params.pdev_id);
5885 	}
5886 
5887 	peer->first_link = setup_info->is_first_link;
5888 	peer->primary_link = setup_info->is_primary_link;
5889 	mld_peer = dp_mld_peer_find_hash_find(soc,
5890 					      setup_info->mld_peer_mac,
5891 					      0, vdev_id, DP_MOD_ID_CDP);
5892 	if (mld_peer) {
5893 		if (setup_info->is_first_link) {
5894 			/* assign rx_tid to mld peer */
5895 			mld_peer->rx_tid = peer->rx_tid;
5896 			/* no cdp_peer_setup for MLD peer,
5897 			 * set it for addba processing
5898 			 */
5899 			qdf_atomic_set(&mld_peer->is_default_route_set, 1);
5900 		} else {
5901 			/* free link peer original rx_tids mem */
5902 			dp_peer_rx_tids_destroy(peer);
5903 			/* assign mld peer rx_tid to link peer */
5904 			peer->rx_tid = mld_peer->rx_tid;
5905 		}
5906 
5907 		if (setup_info->is_primary_link &&
5908 		    !setup_info->is_first_link) {
5909 			/*
5910 			 * if first link is not the primary link,
5911 			 * then need to change mld_peer->vdev as
5912 			 * primary link dp_vdev is not same one
5913 			 * during mld peer creation.
5914 			 */
5915 			dp_info("Primary link is not the first link. vdev: %pK "
5916 				"vdev_id %d vdev_ref_cnt %d",
5917 				mld_peer->vdev, vdev_id,
5918 				qdf_atomic_read(&mld_peer->vdev->ref_cnt));
5919 
5920 			dp_mld_peer_change_vdev(soc, mld_peer, vdev_id);
5921 
5922 			params.vdev_id = peer->vdev->vdev_id;
5923 			params.peer_mac = mld_peer->mac_addr.raw;
5924 			params.chip_id = dp_get_chip_id(soc);
5925 			params.pdev_id = peer->vdev->pdev->pdev_id;
5926 
5927 			dp_wdi_event_handler(
5928 					WDI_EVENT_PEER_PRIMARY_UMAC_UPDATE,
5929 					soc, (void *)&params, peer->peer_id,
5930 					WDI_NO_VAL, params.pdev_id);
5931 		}
5932 
5933 		/* associate mld and link peer */
5934 		dp_link_peer_add_mld_peer(peer, mld_peer);
5935 		dp_mld_peer_add_link_peer(mld_peer, peer);
5936 
5937 		mld_peer->txrx_peer->is_mld_peer = 1;
5938 		dp_peer_unref_delete(mld_peer, DP_MOD_ID_CDP);
5939 	} else {
5940 		peer->mld_peer = NULL;
5941 		dp_err("mld peer" QDF_MAC_ADDR_FMT "not found!",
5942 		       QDF_MAC_ADDR_REF(setup_info->mld_peer_mac));
5943 		return QDF_STATUS_E_FAILURE;
5944 	}
5945 
5946 	return QDF_STATUS_SUCCESS;
5947 }
5948 
5949 /**
5950  * dp_mlo_peer_authorize() - authorize MLO peer
5951  * @soc: soc handle
5952  * @peer: pointer to link peer
5953  *
5954  * Return: void
5955  */
5956 static void dp_mlo_peer_authorize(struct dp_soc *soc,
5957 				  struct dp_peer *peer)
5958 {
5959 	int i;
5960 	struct dp_peer *link_peer = NULL;
5961 	struct dp_peer *mld_peer = peer->mld_peer;
5962 	struct dp_mld_link_peers link_peers_info;
5963 
5964 	if (!mld_peer)
5965 		return;
5966 
5967 	/* get link peers with reference */
5968 	dp_get_link_peers_ref_from_mld_peer(soc, mld_peer,
5969 					    &link_peers_info,
5970 					    DP_MOD_ID_CDP);
5971 
5972 	for (i = 0; i < link_peers_info.num_links; i++) {
5973 		link_peer = link_peers_info.link_peers[i];
5974 
5975 		if (!link_peer->authorize) {
5976 			dp_release_link_peers_ref(&link_peers_info,
5977 						  DP_MOD_ID_CDP);
5978 			mld_peer->authorize = false;
5979 			return;
5980 		}
5981 	}
5982 
5983 	/* if we are here all link peers are authorized,
5984 	 * authorize ml_peer also
5985 	 */
5986 	mld_peer->authorize = true;
5987 
5988 	/* release link peers reference */
5989 	dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
5990 }
5991 #endif
5992 
5993 /**
5994  * dp_peer_setup_wifi3_wrapper() - initialize the peer
5995  * @soc_hdl: soc handle object
5996  * @vdev_id : vdev_id of vdev object
5997  * @peer_mac: Peer's mac address
5998  * @setup_info: peer setup info for MLO
5999  *
6000  * Return: QDF_STATUS
6001  */
6002 static QDF_STATUS
6003 dp_peer_setup_wifi3_wrapper(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6004 			    uint8_t *peer_mac,
6005 			    struct cdp_peer_setup_info *setup_info)
6006 {
6007 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6008 
6009 	return soc->arch_ops.txrx_peer_setup(soc_hdl, vdev_id,
6010 					     peer_mac, setup_info);
6011 }
6012 
6013 /**
6014  * dp_cp_peer_del_resp_handler() - Handle the peer delete response
6015  * @soc_hdl: Datapath SOC handle
6016  * @vdev_id: id of virtual device object
6017  * @mac_addr: Mac address of the peer
6018  *
6019  * Return: QDF_STATUS
6020  */
6021 static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
6022 					      uint8_t vdev_id,
6023 					      uint8_t *mac_addr)
6024 {
6025 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6026 	struct dp_ast_entry  *ast_entry = NULL;
6027 	txrx_ast_free_cb cb = NULL;
6028 	void *cookie;
6029 
6030 	if (soc->ast_offload_support)
6031 		return QDF_STATUS_E_INVAL;
6032 
6033 	qdf_spin_lock_bh(&soc->ast_lock);
6034 
6035 	ast_entry =
6036 		dp_peer_ast_hash_find_by_vdevid(soc, mac_addr,
6037 						vdev_id);
6038 
6039 	/* in case of qwrap we have multiple BSS peers
6040 	 * with same mac address
6041 	 *
6042 	 * AST entry for this mac address will be created
6043 	 * only for one peer hence it will be NULL here
6044 	 */
6045 	if ((!ast_entry || !ast_entry->delete_in_progress) ||
6046 	    (ast_entry->peer_id != HTT_INVALID_PEER)) {
6047 		qdf_spin_unlock_bh(&soc->ast_lock);
6048 		return QDF_STATUS_E_FAILURE;
6049 	}
6050 
6051 	if (ast_entry->is_mapped)
6052 		soc->ast_table[ast_entry->ast_idx] = NULL;
6053 
6054 	DP_STATS_INC(soc, ast.deleted, 1);
6055 	dp_peer_ast_hash_remove(soc, ast_entry);
6056 
6057 	cb = ast_entry->callback;
6058 	cookie = ast_entry->cookie;
6059 	ast_entry->callback = NULL;
6060 	ast_entry->cookie = NULL;
6061 
6062 	soc->num_ast_entries--;
6063 	qdf_spin_unlock_bh(&soc->ast_lock);
6064 
6065 	if (cb) {
6066 		cb(soc->ctrl_psoc,
6067 		   dp_soc_to_cdp_soc(soc),
6068 		   cookie,
6069 		   CDP_TXRX_AST_DELETED);
6070 	}
6071 	qdf_mem_free(ast_entry);
6072 
6073 	return QDF_STATUS_SUCCESS;
6074 }
6075 
6076 #ifdef WLAN_SUPPORT_MSCS
6077 /**
6078  * dp_record_mscs_params() - Record MSCS parameters sent by the STA in
6079  * the MSCS Request to the AP.
6080  * @soc_hdl: Datapath soc handle
6081  * @peer_mac: STA Mac address
6082  * @vdev_id: ID of the vdev handle
6083  * @mscs_params: Structure having MSCS parameters obtained
6084  * from handshake
6085  * @active: Flag to set MSCS active/inactive
6086  *
6087  * The AP makes a note of these parameters while comparing the MSDUs
6088  * sent by the STA, to send the downlink traffic with correct User
6089  * priority.
6090  *
6091  * Return: QDF_STATUS - Success/Invalid
6092  */
6093 static QDF_STATUS
6094 dp_record_mscs_params(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
6095 		      uint8_t vdev_id, struct cdp_mscs_params *mscs_params,
6096 		      bool active)
6097 {
6098 	struct dp_peer *peer;
6099 	struct dp_peer *tgt_peer;
6100 	QDF_STATUS status = QDF_STATUS_E_INVAL;
6101 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6102 
6103 	peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
6104 				      DP_MOD_ID_CDP);
6105 
6106 	if (!peer) {
6107 		dp_err("Peer is NULL!");
6108 		goto fail;
6109 	}
6110 
6111 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
6112 	if (!tgt_peer)
6113 		goto fail;
6114 
6115 	if (!active) {
6116 		dp_info("MSCS Procedure is terminated");
6117 		tgt_peer->mscs_active = active;
6118 		goto fail;
6119 	}
6120 
6121 	if (mscs_params->classifier_type == IEEE80211_TCLAS_MASK_CLA_TYPE_4) {
6122 		/* Populate entries inside IPV4 database first */
6123 		tgt_peer->mscs_ipv4_parameter.user_priority_bitmap =
6124 			mscs_params->user_pri_bitmap;
6125 		tgt_peer->mscs_ipv4_parameter.user_priority_limit =
6126 			mscs_params->user_pri_limit;
6127 		tgt_peer->mscs_ipv4_parameter.classifier_mask =
6128 			mscs_params->classifier_mask;
6129 
6130 		/* Populate entries inside IPV6 database */
6131 		tgt_peer->mscs_ipv6_parameter.user_priority_bitmap =
6132 			mscs_params->user_pri_bitmap;
6133 		tgt_peer->mscs_ipv6_parameter.user_priority_limit =
6134 			mscs_params->user_pri_limit;
6135 		tgt_peer->mscs_ipv6_parameter.classifier_mask =
6136 			mscs_params->classifier_mask;
6137 		tgt_peer->mscs_active = 1;
6138 		dp_info("\n\tMSCS Procedure request based parameters for "QDF_MAC_ADDR_FMT"\n"
6139 			"\tClassifier_type = %d\tUser priority bitmap = %x\n"
6140 			"\tUser priority limit = %x\tClassifier mask = %x",
6141 			QDF_MAC_ADDR_REF(peer_mac),
6142 			mscs_params->classifier_type,
6143 			tgt_peer->mscs_ipv4_parameter.user_priority_bitmap,
6144 			tgt_peer->mscs_ipv4_parameter.user_priority_limit,
6145 			tgt_peer->mscs_ipv4_parameter.classifier_mask);
6146 	}
6147 
6148 	status = QDF_STATUS_SUCCESS;
6149 fail:
6150 	if (peer)
6151 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6152 	return status;
6153 }
6154 #endif
6155 
6156 /**
6157  * dp_get_sec_type() - Get the security type
6158  * @soc: soc handle
6159  * @vdev_id: id of dp handle
6160  * @peer_mac: mac of datapath PEER handle
6161  * @sec_idx:    Security id (mcast, ucast)
6162  *
6163  * return sec_type: Security type
6164  */
6165 static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id,
6166 			   uint8_t *peer_mac, uint8_t sec_idx)
6167 {
6168 	int sec_type = 0;
6169 	struct dp_peer *peer =
6170 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc,
6171 						       peer_mac, 0, vdev_id,
6172 						       DP_MOD_ID_CDP);
6173 
6174 	if (!peer) {
6175 		dp_cdp_err("%pK: Peer is NULL!", (struct dp_soc *)soc);
6176 		return sec_type;
6177 	}
6178 
6179 	if (!peer->txrx_peer) {
6180 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6181 		dp_peer_debug("%pK: txrx peer is NULL!", soc);
6182 		return sec_type;
6183 	}
6184 	sec_type = peer->txrx_peer->security[sec_idx].sec_type;
6185 
6186 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6187 	return sec_type;
6188 }
6189 
6190 /**
6191  * dp_peer_authorize() - authorize txrx peer
6192  * @soc_hdl: soc handle
6193  * @vdev_id: id of dp handle
6194  * @peer_mac: mac of datapath PEER handle
6195  * @authorize:
6196  *
6197  * Return: QDF_STATUS
6198  *
6199  */
6200 static QDF_STATUS
6201 dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6202 		  uint8_t *peer_mac, uint32_t authorize)
6203 {
6204 	QDF_STATUS status = QDF_STATUS_SUCCESS;
6205 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6206 	struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find(soc, peer_mac,
6207 							      0, vdev_id,
6208 							      DP_MOD_ID_CDP);
6209 
6210 	if (!peer) {
6211 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6212 		status = QDF_STATUS_E_FAILURE;
6213 	} else {
6214 		peer->authorize = authorize ? 1 : 0;
6215 		if (peer->txrx_peer)
6216 			peer->txrx_peer->authorize = peer->authorize;
6217 
6218 		if (!peer->authorize)
6219 			dp_peer_flush_frags(soc_hdl, vdev_id, peer_mac);
6220 
6221 		dp_mlo_peer_authorize(soc, peer);
6222 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6223 	}
6224 
6225 	return status;
6226 }
6227 
6228 /**
6229  * dp_peer_get_authorize() - get peer authorize status
6230  * @soc_hdl: soc handle
6231  * @vdev_id: id of dp handle
6232  * @peer_mac: mac of datapath PEER handle
6233  *
6234  * Return: true is peer is authorized, false otherwise
6235  */
6236 static bool
6237 dp_peer_get_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6238 		      uint8_t *peer_mac)
6239 {
6240 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
6241 	bool authorize = false;
6242 	struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac,
6243 						      0, vdev_id,
6244 						      DP_MOD_ID_CDP);
6245 
6246 	if (!peer) {
6247 		dp_cdp_debug("%pK: Peer is NULL!", soc);
6248 		return authorize;
6249 	}
6250 
6251 	authorize = peer->authorize;
6252 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6253 
6254 	return authorize;
6255 }
6256 
6257 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
6258 			  enum dp_mod_id mod_id)
6259 {
6260 	ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
6261 	void *vdev_delete_context = NULL;
6262 	uint8_t vdev_id = vdev->vdev_id;
6263 	struct dp_pdev *pdev = vdev->pdev;
6264 	struct dp_vdev *tmp_vdev = NULL;
6265 	uint8_t found = 0;
6266 
6267 	QDF_ASSERT(qdf_atomic_dec_return(&vdev->mod_refs[mod_id]) >= 0);
6268 
6269 	/* Return if this is not the last reference*/
6270 	if (!qdf_atomic_dec_and_test(&vdev->ref_cnt))
6271 		return;
6272 
6273 	/*
6274 	 * This should be set as last reference need to released
6275 	 * after cdp_vdev_detach() is called
6276 	 *
6277 	 * if this assert is hit there is a ref count issue
6278 	 */
6279 	QDF_ASSERT(vdev->delete.pending);
6280 
6281 	vdev_delete_cb = vdev->delete.callback;
6282 	vdev_delete_context = vdev->delete.context;
6283 
6284 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")- its last peer is done",
6285 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6286 
6287 	if (wlan_op_mode_monitor == vdev->opmode) {
6288 		dp_monitor_vdev_delete(soc, vdev);
6289 		goto free_vdev;
6290 	}
6291 
6292 	/* all peers are gone, go ahead and delete it */
6293 	dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
6294 			FLOW_TYPE_VDEV, vdev_id);
6295 	dp_tx_vdev_detach(vdev);
6296 	dp_monitor_vdev_detach(vdev);
6297 
6298 free_vdev:
6299 	qdf_spinlock_destroy(&vdev->peer_list_lock);
6300 
6301 	qdf_spin_lock_bh(&soc->inactive_vdev_list_lock);
6302 	TAILQ_FOREACH(tmp_vdev, &soc->inactive_vdev_list,
6303 		      inactive_list_elem) {
6304 		if (tmp_vdev == vdev) {
6305 			found = 1;
6306 			break;
6307 		}
6308 	}
6309 	if (found)
6310 		TAILQ_REMOVE(&soc->inactive_vdev_list, vdev,
6311 			     inactive_list_elem);
6312 	/* delete this peer from the list */
6313 	qdf_spin_unlock_bh(&soc->inactive_vdev_list_lock);
6314 
6315 	dp_cfg_event_record_vdev_evt(soc, DP_CFG_EVENT_VDEV_UNREF_DEL,
6316 				     vdev);
6317 	dp_info("deleting vdev object %pK ("QDF_MAC_ADDR_FMT")",
6318 		vdev, QDF_MAC_ADDR_REF(vdev->mac_addr.raw));
6319 	wlan_minidump_remove(vdev, sizeof(*vdev), soc->ctrl_psoc,
6320 			     WLAN_MD_DP_VDEV, "dp_vdev");
6321 	qdf_mem_free(vdev);
6322 	vdev = NULL;
6323 
6324 	if (vdev_delete_cb)
6325 		vdev_delete_cb(vdev_delete_context);
6326 }
6327 
6328 qdf_export_symbol(dp_vdev_unref_delete);
6329 
6330 void dp_peer_unref_delete(struct dp_peer *peer, enum dp_mod_id mod_id)
6331 {
6332 	struct dp_vdev *vdev = peer->vdev;
6333 	struct dp_pdev *pdev = vdev->pdev;
6334 	struct dp_soc *soc = pdev->soc;
6335 	uint16_t peer_id;
6336 	struct dp_peer *tmp_peer;
6337 	bool found = false;
6338 
6339 	if (mod_id > DP_MOD_ID_RX)
6340 		QDF_ASSERT(qdf_atomic_dec_return(&peer->mod_refs[mod_id]) >= 0);
6341 
6342 	/*
6343 	 * Hold the lock all the way from checking if the peer ref count
6344 	 * is zero until the peer references are removed from the hash
6345 	 * table and vdev list (if the peer ref count is zero).
6346 	 * This protects against a new HL tx operation starting to use the
6347 	 * peer object just after this function concludes it's done being used.
6348 	 * Furthermore, the lock needs to be held while checking whether the
6349 	 * vdev's list of peers is empty, to make sure that list is not modified
6350 	 * concurrently with the empty check.
6351 	 */
6352 	if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
6353 		peer_id = peer->peer_id;
6354 
6355 		/*
6356 		 * Make sure that the reference to the peer in
6357 		 * peer object map is removed
6358 		 */
6359 		QDF_ASSERT(peer_id == HTT_INVALID_PEER);
6360 
6361 		dp_peer_info("Deleting peer %pK ("QDF_MAC_ADDR_FMT")", peer,
6362 			     QDF_MAC_ADDR_REF(peer->mac_addr.raw));
6363 
6364 		dp_peer_sawf_ctx_free(soc, peer);
6365 
6366 		wlan_minidump_remove(peer, sizeof(*peer), soc->ctrl_psoc,
6367 				     WLAN_MD_DP_PEER, "dp_peer");
6368 
6369 		qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6370 		TAILQ_FOREACH(tmp_peer, &soc->inactive_peer_list,
6371 			      inactive_list_elem) {
6372 			if (tmp_peer == peer) {
6373 				found = 1;
6374 				break;
6375 			}
6376 		}
6377 		if (found)
6378 			TAILQ_REMOVE(&soc->inactive_peer_list, peer,
6379 				     inactive_list_elem);
6380 		/* delete this peer from the list */
6381 		qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6382 		DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
6383 		dp_peer_update_state(soc, peer, DP_PEER_STATE_FREED);
6384 
6385 		/* cleanup the peer data */
6386 		dp_peer_cleanup(vdev, peer);
6387 
6388 		dp_monitor_peer_detach(soc, peer);
6389 
6390 		qdf_spinlock_destroy(&peer->peer_state_lock);
6391 
6392 		dp_txrx_peer_detach(soc, peer);
6393 		dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_UNREF_DEL,
6394 					     peer, vdev, 0);
6395 		qdf_mem_free(peer);
6396 
6397 		/*
6398 		 * Decrement ref count taken at peer create
6399 		 */
6400 		dp_peer_info("Deleted peer. Unref vdev %pK, vdev_ref_cnt %d",
6401 			     vdev, qdf_atomic_read(&vdev->ref_cnt));
6402 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CHILD);
6403 	}
6404 }
6405 
6406 qdf_export_symbol(dp_peer_unref_delete);
6407 
6408 void dp_txrx_peer_unref_delete(dp_txrx_ref_handle handle,
6409 			       enum dp_mod_id mod_id)
6410 {
6411 	dp_peer_unref_delete((struct dp_peer *)handle, mod_id);
6412 }
6413 
6414 qdf_export_symbol(dp_txrx_peer_unref_delete);
6415 
6416 /**
6417  * dp_peer_delete_wifi3() - Delete txrx peer
6418  * @soc_hdl: soc handle
6419  * @vdev_id: id of dp handle
6420  * @peer_mac: mac of datapath PEER handle
6421  * @bitmap: bitmap indicating special handling of request.
6422  * @peer_type: peer type (link or MLD)
6423  *
6424  */
6425 static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc_hdl,
6426 				       uint8_t vdev_id,
6427 				       uint8_t *peer_mac, uint32_t bitmap,
6428 				       enum cdp_peer_type peer_type)
6429 {
6430 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6431 	struct dp_peer *peer;
6432 	struct cdp_peer_info peer_info = { 0 };
6433 	struct dp_vdev *vdev = NULL;
6434 
6435 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
6436 				 false, peer_type);
6437 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
6438 
6439 	/* Peer can be null for monitor vap mac address */
6440 	if (!peer) {
6441 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
6442 			  "%s: Invalid peer\n", __func__);
6443 		return QDF_STATUS_E_FAILURE;
6444 	}
6445 
6446 	if (!peer->valid) {
6447 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6448 		dp_err("Invalid peer: "QDF_MAC_ADDR_FMT,
6449 			QDF_MAC_ADDR_REF(peer_mac));
6450 		return QDF_STATUS_E_ALREADY;
6451 	}
6452 
6453 	vdev = peer->vdev;
6454 
6455 	if (!vdev) {
6456 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6457 		return QDF_STATUS_E_FAILURE;
6458 	}
6459 
6460 	peer->valid = 0;
6461 
6462 	dp_cfg_event_record_peer_evt(soc, DP_CFG_EVENT_PEER_DELETE, peer,
6463 				     vdev, 0);
6464 	dp_init_info("%pK: peer %pK (" QDF_MAC_ADDR_FMT ") pending-refs %d",
6465 		     soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw),
6466 		     qdf_atomic_read(&peer->ref_cnt));
6467 
6468 	dp_peer_rx_reo_shared_qaddr_delete(soc, peer);
6469 
6470 	dp_local_peer_id_free(peer->vdev->pdev, peer);
6471 
6472 	/* Drop all rx packets before deleting peer */
6473 	dp_clear_peer_internal(soc, peer);
6474 
6475 	qdf_spinlock_destroy(&peer->peer_info_lock);
6476 	dp_peer_multipass_list_remove(peer);
6477 
6478 	/* remove the reference to the peer from the hash table */
6479 	dp_peer_find_hash_remove(soc, peer);
6480 
6481 	dp_peer_vdev_list_remove(soc, vdev, peer);
6482 
6483 	dp_peer_mlo_delete(peer);
6484 
6485 	qdf_spin_lock_bh(&soc->inactive_peer_list_lock);
6486 	TAILQ_INSERT_TAIL(&soc->inactive_peer_list, peer,
6487 			  inactive_list_elem);
6488 	qdf_spin_unlock_bh(&soc->inactive_peer_list_lock);
6489 
6490 	/*
6491 	 * Remove the reference added during peer_attach.
6492 	 * The peer will still be left allocated until the
6493 	 * PEER_UNMAP message arrives to remove the other
6494 	 * reference, added by the PEER_MAP message.
6495 	 */
6496 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
6497 	/*
6498 	 * Remove the reference taken above
6499 	 */
6500 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6501 
6502 	return QDF_STATUS_SUCCESS;
6503 }
6504 
6505 #ifdef DP_RX_UDP_OVER_PEER_ROAM
6506 static QDF_STATUS dp_update_roaming_peer_wifi3(struct cdp_soc_t *soc_hdl,
6507 					       uint8_t vdev_id,
6508 					       uint8_t *peer_mac,
6509 					       uint32_t auth_status)
6510 {
6511 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6512 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6513 						     DP_MOD_ID_CDP);
6514 	if (!vdev)
6515 		return QDF_STATUS_E_FAILURE;
6516 
6517 	vdev->roaming_peer_status = auth_status;
6518 	qdf_mem_copy(vdev->roaming_peer_mac.raw, peer_mac,
6519 		     QDF_MAC_ADDR_SIZE);
6520 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6521 
6522 	return QDF_STATUS_SUCCESS;
6523 }
6524 #endif
6525 /**
6526  * dp_get_vdev_mac_addr_wifi3() - Detach txrx peer
6527  * @soc_hdl: Datapath soc handle
6528  * @vdev_id: virtual interface id
6529  *
6530  * Return: MAC address on success, NULL on failure.
6531  *
6532  */
6533 static uint8_t *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl,
6534 					   uint8_t vdev_id)
6535 {
6536 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6537 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6538 						     DP_MOD_ID_CDP);
6539 	uint8_t *mac = NULL;
6540 
6541 	if (!vdev)
6542 		return NULL;
6543 
6544 	mac = vdev->mac_addr.raw;
6545 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6546 
6547 	return mac;
6548 }
6549 
6550 /**
6551  * dp_vdev_set_wds() - Enable per packet stats
6552  * @soc_hdl: DP soc handle
6553  * @vdev_id: id of DP VDEV handle
6554  * @val: value
6555  *
6556  * Return: none
6557  */
6558 static int dp_vdev_set_wds(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
6559 			   uint32_t val)
6560 {
6561 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6562 	struct dp_vdev *vdev =
6563 		dp_vdev_get_ref_by_id((struct dp_soc *)soc, vdev_id,
6564 				      DP_MOD_ID_CDP);
6565 
6566 	if (!vdev)
6567 		return QDF_STATUS_E_FAILURE;
6568 
6569 	vdev->wds_enabled = val;
6570 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6571 
6572 	return QDF_STATUS_SUCCESS;
6573 }
6574 
6575 static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
6576 {
6577 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6578 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6579 						     DP_MOD_ID_CDP);
6580 	int opmode;
6581 
6582 	if (!vdev) {
6583 		dp_err_rl("vdev for id %d is NULL", vdev_id);
6584 		return -EINVAL;
6585 	}
6586 	opmode = vdev->opmode;
6587 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6588 
6589 	return opmode;
6590 }
6591 
6592 /**
6593  * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev
6594  * @soc_hdl: ol_txrx_soc_handle handle
6595  * @vdev_id: vdev id for which os rx handles are needed
6596  * @stack_fn_p: pointer to stack function pointer
6597  * @osif_vdev_p: pointer to ol_osif_vdev_handle
6598  *
6599  * Return: void
6600  */
6601 static
6602 void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl,
6603 					  uint8_t vdev_id,
6604 					  ol_txrx_rx_fp *stack_fn_p,
6605 					  ol_osif_vdev_handle *osif_vdev_p)
6606 {
6607 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6608 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6609 						     DP_MOD_ID_CDP);
6610 
6611 	if (qdf_unlikely(!vdev)) {
6612 		*stack_fn_p = NULL;
6613 		*osif_vdev_p = NULL;
6614 		return;
6615 	}
6616 	*stack_fn_p = vdev->osif_rx_stack;
6617 	*osif_vdev_p = vdev->osif_vdev;
6618 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6619 }
6620 
6621 /**
6622  * dp_get_ctrl_pdev_from_vdev_wifi3() - Get control pdev of vdev
6623  * @soc_hdl: datapath soc handle
6624  * @vdev_id: virtual device/interface id
6625  *
6626  * Return: Handle to control pdev
6627  */
6628 static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(
6629 						struct cdp_soc_t *soc_hdl,
6630 						uint8_t vdev_id)
6631 {
6632 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6633 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
6634 						     DP_MOD_ID_CDP);
6635 	struct dp_pdev *pdev;
6636 
6637 	if (!vdev)
6638 		return NULL;
6639 
6640 	pdev = vdev->pdev;
6641 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6642 	return pdev ? (struct cdp_cfg *)pdev->wlan_cfg_ctx : NULL;
6643 }
6644 
6645 int32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle)
6646 {
6647 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6648 
6649 	return qdf_atomic_read(&pdev->num_tx_outstanding);
6650 }
6651 
6652 /**
6653  * dp_get_peer_mac_from_peer_id() - get peer mac
6654  * @soc: CDP SoC handle
6655  * @peer_id: Peer ID
6656  * @peer_mac: MAC addr of PEER
6657  *
6658  * Return: QDF_STATUS
6659  */
6660 static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc,
6661 					       uint32_t peer_id,
6662 					       uint8_t *peer_mac)
6663 {
6664 	struct dp_peer *peer;
6665 
6666 	if (soc && peer_mac) {
6667 		peer = dp_peer_get_ref_by_id((struct dp_soc *)soc,
6668 					     (uint16_t)peer_id,
6669 					     DP_MOD_ID_CDP);
6670 		if (peer) {
6671 			qdf_mem_copy(peer_mac, peer->mac_addr.raw,
6672 				     QDF_MAC_ADDR_SIZE);
6673 			dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
6674 			return QDF_STATUS_SUCCESS;
6675 		}
6676 	}
6677 
6678 	return QDF_STATUS_E_FAILURE;
6679 }
6680 
6681 #ifdef MESH_MODE_SUPPORT
6682 static
6683 void dp_vdev_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
6684 {
6685 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6686 
6687 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6688 	vdev->mesh_vdev = val;
6689 	if (val)
6690 		vdev->skip_sw_tid_classification |=
6691 			DP_TX_MESH_ENABLED;
6692 	else
6693 		vdev->skip_sw_tid_classification &=
6694 			~DP_TX_MESH_ENABLED;
6695 }
6696 
6697 /**
6698  * dp_vdev_set_mesh_rx_filter() - to set the mesh rx filter
6699  * @vdev_hdl: virtual device object
6700  * @val: value to be set
6701  *
6702  * Return: void
6703  */
6704 static
6705 void dp_vdev_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
6706 {
6707 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6708 
6709 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6710 	vdev->mesh_rx_filter = val;
6711 }
6712 #endif
6713 
6714 /**
6715  * dp_vdev_set_hlos_tid_override() - to set hlos tid override
6716  * @vdev: virtual device object
6717  * @val: value to be set
6718  *
6719  * Return: void
6720  */
6721 static
6722 void dp_vdev_set_hlos_tid_override(struct dp_vdev *vdev, uint32_t val)
6723 {
6724 	dp_cdp_info("%pK: val %d", vdev->pdev->soc, val);
6725 	if (val)
6726 		vdev->skip_sw_tid_classification |=
6727 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6728 	else
6729 		vdev->skip_sw_tid_classification &=
6730 			~DP_TXRX_HLOS_TID_OVERRIDE_ENABLED;
6731 }
6732 
6733 /**
6734  * dp_vdev_get_hlos_tid_override() - to get hlos tid override flag
6735  * @vdev_hdl: virtual device object
6736  *
6737  * Return: 1 if this flag is set
6738  */
6739 static
6740 uint8_t dp_vdev_get_hlos_tid_override(struct cdp_vdev *vdev_hdl)
6741 {
6742 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
6743 
6744 	return !!(vdev->skip_sw_tid_classification &
6745 			DP_TXRX_HLOS_TID_OVERRIDE_ENABLED);
6746 }
6747 
6748 #ifdef VDEV_PEER_PROTOCOL_COUNT
6749 static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc_hdl,
6750 					       int8_t vdev_id,
6751 					       bool enable)
6752 {
6753 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6754 	struct dp_vdev *vdev;
6755 
6756 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6757 	if (!vdev)
6758 		return;
6759 
6760 	dp_info("enable %d vdev_id %d", enable, vdev_id);
6761 	vdev->peer_protocol_count_track = enable;
6762 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6763 }
6764 
6765 static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6766 						   int8_t vdev_id,
6767 						   int drop_mask)
6768 {
6769 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6770 	struct dp_vdev *vdev;
6771 
6772 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6773 	if (!vdev)
6774 		return;
6775 
6776 	dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id);
6777 	vdev->peer_protocol_count_dropmask = drop_mask;
6778 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6779 }
6780 
6781 static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc_hdl,
6782 						  int8_t vdev_id)
6783 {
6784 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6785 	struct dp_vdev *vdev;
6786 	int peer_protocol_count_track;
6787 
6788 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6789 	if (!vdev)
6790 		return 0;
6791 
6792 	dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track,
6793 		vdev_id);
6794 	peer_protocol_count_track =
6795 		vdev->peer_protocol_count_track;
6796 
6797 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6798 	return peer_protocol_count_track;
6799 }
6800 
6801 static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc_hdl,
6802 					       int8_t vdev_id)
6803 {
6804 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
6805 	struct dp_vdev *vdev;
6806 	int peer_protocol_count_dropmask;
6807 
6808 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
6809 	if (!vdev)
6810 		return 0;
6811 
6812 	dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask,
6813 		vdev_id);
6814 	peer_protocol_count_dropmask =
6815 		vdev->peer_protocol_count_dropmask;
6816 
6817 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
6818 	return peer_protocol_count_dropmask;
6819 }
6820 
6821 #endif
6822 
6823 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
6824 {
6825 	uint8_t pdev_count;
6826 
6827 	for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
6828 		if (soc->pdev_list[pdev_count] &&
6829 		    soc->pdev_list[pdev_count] == data)
6830 			return true;
6831 	}
6832 	return false;
6833 }
6834 
6835 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
6836 			     struct cdp_vdev_stats *vdev_stats)
6837 {
6838 	if (!vdev || !vdev->pdev)
6839 		return;
6840 
6841 	dp_update_vdev_ingress_stats(vdev);
6842 
6843 	qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
6844 
6845 	dp_vdev_iterate_peer(vdev, dp_update_vdev_stats, vdev_stats,
6846 			     DP_MOD_ID_GENERIC_STATS);
6847 
6848 	dp_update_vdev_rate_stats(vdev_stats, &vdev->stats);
6849 
6850 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6851 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
6852 			     vdev_stats, vdev->vdev_id,
6853 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
6854 #endif
6855 }
6856 
6857 void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
6858 {
6859 	struct dp_vdev *vdev = NULL;
6860 	struct dp_soc *soc;
6861 	struct cdp_vdev_stats *vdev_stats =
6862 			qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6863 
6864 	if (!vdev_stats) {
6865 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6866 			   pdev->soc);
6867 		return;
6868 	}
6869 
6870 	soc = pdev->soc;
6871 
6872 	qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
6873 	qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
6874 	qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
6875 	qdf_mem_zero(&pdev->stats.rx_i, sizeof(pdev->stats.rx_i));
6876 
6877 	if (dp_monitor_is_enable_mcopy_mode(pdev))
6878 		dp_monitor_invalid_peer_update_pdev_stats(soc, pdev);
6879 
6880 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
6881 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
6882 
6883 		dp_aggregate_vdev_stats(vdev, vdev_stats);
6884 		dp_update_pdev_stats(pdev, vdev_stats);
6885 		dp_update_pdev_ingress_stats(pdev, vdev);
6886 	}
6887 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
6888 	qdf_mem_free(vdev_stats);
6889 
6890 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
6891 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
6892 			     pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
6893 #endif
6894 }
6895 
6896 /**
6897  * dp_vdev_getstats() - get vdev packet level stats
6898  * @vdev_handle: Datapath VDEV handle
6899  * @stats: cdp network device stats structure
6900  *
6901  * Return: QDF_STATUS
6902  */
6903 static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle,
6904 				   struct cdp_dev_stats *stats)
6905 {
6906 	struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
6907 	struct dp_pdev *pdev;
6908 	struct dp_soc *soc;
6909 	struct cdp_vdev_stats *vdev_stats;
6910 
6911 	if (!vdev)
6912 		return QDF_STATUS_E_FAILURE;
6913 
6914 	pdev = vdev->pdev;
6915 	if (!pdev)
6916 		return QDF_STATUS_E_FAILURE;
6917 
6918 	soc = pdev->soc;
6919 
6920 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
6921 
6922 	if (!vdev_stats) {
6923 		dp_err("%pK: DP alloc failure - unable to get alloc vdev stats",
6924 		       soc);
6925 		return QDF_STATUS_E_FAILURE;
6926 	}
6927 
6928 	dp_aggregate_vdev_stats(vdev, vdev_stats);
6929 
6930 	stats->tx_packets = vdev_stats->tx.comp_pkt.num;
6931 	stats->tx_bytes = vdev_stats->tx.comp_pkt.bytes;
6932 
6933 	stats->tx_errors = vdev_stats->tx.tx_failed;
6934 	stats->tx_dropped = vdev_stats->tx_i.dropped.dropped_pkt.num +
6935 			    vdev_stats->tx_i.sg.dropped_host.num +
6936 			    vdev_stats->tx_i.mcast_en.dropped_map_error +
6937 			    vdev_stats->tx_i.mcast_en.dropped_self_mac +
6938 			    vdev_stats->tx_i.mcast_en.dropped_send_fail +
6939 			    vdev_stats->tx.nawds_mcast_drop;
6940 
6941 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) {
6942 		stats->rx_packets = vdev_stats->rx.to_stack.num;
6943 		stats->rx_bytes = vdev_stats->rx.to_stack.bytes;
6944 	} else {
6945 		stats->rx_packets = vdev_stats->rx_i.reo_rcvd_pkt.num +
6946 				    vdev_stats->rx_i.null_q_desc_pkt.num +
6947 				    vdev_stats->rx_i.routed_eapol_pkt.num;
6948 		stats->rx_bytes = vdev_stats->rx_i.reo_rcvd_pkt.bytes +
6949 				  vdev_stats->rx_i.null_q_desc_pkt.bytes +
6950 				  vdev_stats->rx_i.routed_eapol_pkt.bytes;
6951 	}
6952 
6953 	stats->rx_errors = vdev_stats->rx.err.mic_err +
6954 			   vdev_stats->rx.err.decrypt_err +
6955 			   vdev_stats->rx.err.fcserr +
6956 			   vdev_stats->rx.err.pn_err +
6957 			   vdev_stats->rx.err.oor_err +
6958 			   vdev_stats->rx.err.jump_2k_err +
6959 			   vdev_stats->rx.err.rxdma_wifi_parse_err;
6960 
6961 	stats->rx_dropped = vdev_stats->rx.mec_drop.num +
6962 			    vdev_stats->rx.multipass_rx_pkt_drop +
6963 			    vdev_stats->rx.peer_unauth_rx_pkt_drop +
6964 			    vdev_stats->rx.policy_check_drop +
6965 			    vdev_stats->rx.nawds_mcast_drop +
6966 			    vdev_stats->rx.mcast_3addr_drop +
6967 			    vdev_stats->rx.ppeds_drop.num;
6968 
6969 	qdf_mem_free(vdev_stats);
6970 
6971 	return QDF_STATUS_SUCCESS;
6972 }
6973 
6974 /**
6975  * dp_pdev_getstats() - get pdev packet level stats
6976  * @pdev_handle: Datapath PDEV handle
6977  * @stats: cdp network device stats structure
6978  *
6979  * Return: QDF_STATUS
6980  */
6981 static void dp_pdev_getstats(struct cdp_pdev *pdev_handle,
6982 			     struct cdp_dev_stats *stats)
6983 {
6984 	struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
6985 
6986 	dp_aggregate_pdev_stats(pdev);
6987 
6988 	stats->tx_packets = pdev->stats.tx.comp_pkt.num;
6989 	stats->tx_bytes = pdev->stats.tx.comp_pkt.bytes;
6990 
6991 	stats->tx_errors = pdev->stats.tx.tx_failed;
6992 	stats->tx_dropped = pdev->stats.tx_i.dropped.dropped_pkt.num +
6993 			    pdev->stats.tx_i.sg.dropped_host.num +
6994 			    pdev->stats.tx_i.mcast_en.dropped_map_error +
6995 			    pdev->stats.tx_i.mcast_en.dropped_self_mac +
6996 			    pdev->stats.tx_i.mcast_en.dropped_send_fail +
6997 			    pdev->stats.tx.nawds_mcast_drop +
6998 			    pdev->stats.tso_stats.dropped_host.num;
6999 
7000 	if (!wlan_cfg_get_vdev_stats_hw_offload_config(pdev->soc->wlan_cfg_ctx)) {
7001 		stats->rx_packets = pdev->stats.rx.to_stack.num;
7002 		stats->rx_bytes = pdev->stats.rx.to_stack.bytes;
7003 	} else {
7004 		stats->rx_packets = pdev->stats.rx_i.reo_rcvd_pkt.num +
7005 				    pdev->stats.rx_i.null_q_desc_pkt.num +
7006 				    pdev->stats.rx_i.routed_eapol_pkt.num;
7007 		stats->rx_bytes = pdev->stats.rx_i.reo_rcvd_pkt.bytes +
7008 				  pdev->stats.rx_i.null_q_desc_pkt.bytes +
7009 				  pdev->stats.rx_i.routed_eapol_pkt.bytes;
7010 	}
7011 
7012 	stats->rx_errors = pdev->stats.err.ip_csum_err +
7013 		pdev->stats.err.tcp_udp_csum_err +
7014 		pdev->stats.rx.err.mic_err +
7015 		pdev->stats.rx.err.decrypt_err +
7016 		pdev->stats.rx.err.fcserr +
7017 		pdev->stats.rx.err.pn_err +
7018 		pdev->stats.rx.err.oor_err +
7019 		pdev->stats.rx.err.jump_2k_err +
7020 		pdev->stats.rx.err.rxdma_wifi_parse_err;
7021 	stats->rx_dropped = pdev->stats.dropped.msdu_not_done +
7022 		pdev->stats.dropped.mec +
7023 		pdev->stats.dropped.mesh_filter +
7024 		pdev->stats.dropped.wifi_parse +
7025 		pdev->stats.dropped.mon_rx_drop +
7026 		pdev->stats.dropped.mon_radiotap_update_err +
7027 		pdev->stats.rx.mec_drop.num +
7028 		pdev->stats.rx.ppeds_drop.num +
7029 		pdev->stats.rx.multipass_rx_pkt_drop +
7030 		pdev->stats.rx.peer_unauth_rx_pkt_drop +
7031 		pdev->stats.rx.policy_check_drop +
7032 		pdev->stats.rx.nawds_mcast_drop +
7033 		pdev->stats.rx.mcast_3addr_drop;
7034 }
7035 
7036 /**
7037  * dp_get_device_stats() - get interface level packet stats
7038  * @soc_hdl: soc handle
7039  * @id: vdev_id or pdev_id based on type
7040  * @stats: cdp network device stats structure
7041  * @type: device type pdev/vdev
7042  *
7043  * Return: QDF_STATUS
7044  */
7045 static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc_hdl, uint8_t id,
7046 				      struct cdp_dev_stats *stats,
7047 				      uint8_t type)
7048 {
7049 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
7050 	QDF_STATUS status = QDF_STATUS_E_FAILURE;
7051 	struct dp_vdev *vdev;
7052 
7053 	switch (type) {
7054 	case UPDATE_VDEV_STATS:
7055 		vdev = dp_vdev_get_ref_by_id(soc, id, DP_MOD_ID_CDP);
7056 
7057 		if (vdev) {
7058 			status = dp_vdev_getstats((struct cdp_vdev *)vdev,
7059 						  stats);
7060 			dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
7061 		}
7062 		return status;
7063 	case UPDATE_PDEV_STATS:
7064 		{
7065 			struct dp_pdev *pdev =
7066 				dp_get_pdev_from_soc_pdev_id_wifi3(
7067 						(struct dp_soc *)soc,
7068 						 id);
7069 			if (pdev) {
7070 				dp_pdev_getstats((struct cdp_pdev *)pdev,
7071 						 stats);
7072 				return QDF_STATUS_SUCCESS;
7073 			}
7074 		}
7075 		break;
7076 	default:
7077 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7078 			"apstats cannot be updated for this input "
7079 			"type %d", type);
7080 		break;
7081 	}
7082 
7083 	return QDF_STATUS_E_FAILURE;
7084 }
7085 
7086 const
7087 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
7088 {
7089 	switch (ring_type) {
7090 	case REO_DST:
7091 		return "Reo_dst";
7092 	case REO_EXCEPTION:
7093 		return "Reo_exception";
7094 	case REO_CMD:
7095 		return "Reo_cmd";
7096 	case REO_REINJECT:
7097 		return "Reo_reinject";
7098 	case REO_STATUS:
7099 		return "Reo_status";
7100 	case WBM2SW_RELEASE:
7101 		return "wbm2sw_release";
7102 	case TCL_DATA:
7103 		return "tcl_data";
7104 	case TCL_CMD_CREDIT:
7105 		return "tcl_cmd_credit";
7106 	case TCL_STATUS:
7107 		return "tcl_status";
7108 	case SW2WBM_RELEASE:
7109 		return "sw2wbm_release";
7110 	case RXDMA_BUF:
7111 		return "Rxdma_buf";
7112 	case RXDMA_DST:
7113 		return "Rxdma_dst";
7114 	case RXDMA_MONITOR_BUF:
7115 		return "Rxdma_monitor_buf";
7116 	case RXDMA_MONITOR_DESC:
7117 		return "Rxdma_monitor_desc";
7118 	case RXDMA_MONITOR_STATUS:
7119 		return "Rxdma_monitor_status";
7120 	case RXDMA_MONITOR_DST:
7121 		return "Rxdma_monitor_destination";
7122 	case WBM_IDLE_LINK:
7123 		return "WBM_hw_idle_link";
7124 	case PPE2TCL:
7125 		return "PPE2TCL";
7126 	case REO2PPE:
7127 		return "REO2PPE";
7128 	case TX_MONITOR_DST:
7129 		return "tx_monitor_destination";
7130 	case TX_MONITOR_BUF:
7131 		return "tx_monitor_buf";
7132 	default:
7133 		dp_err("Invalid ring type: %u", ring_type);
7134 		break;
7135 	}
7136 	return "Invalid";
7137 }
7138 
7139 void dp_print_napi_stats(struct dp_soc *soc)
7140 {
7141 	hif_print_napi_stats(soc->hif_handle);
7142 }
7143 
7144 /**
7145  * dp_txrx_host_peer_stats_clr() - Reinitialize the txrx peer stats
7146  * @soc: Datapath soc
7147  * @peer: Datatpath peer
7148  * @arg: argument to iter function
7149  *
7150  * Return: QDF_STATUS
7151  */
7152 static inline void
7153 dp_txrx_host_peer_stats_clr(struct dp_soc *soc,
7154 			    struct dp_peer *peer,
7155 			    void *arg)
7156 {
7157 	struct dp_txrx_peer *txrx_peer = NULL;
7158 	struct dp_peer *tgt_peer = NULL;
7159 	struct cdp_interface_peer_stats peer_stats_intf = {0};
7160 
7161 	peer_stats_intf.rx_avg_snr = CDP_INVALID_SNR;
7162 
7163 	DP_STATS_CLR(peer);
7164 	/* Clear monitor peer stats */
7165 	dp_monitor_peer_reset_stats(soc, peer);
7166 
7167 	/* Clear MLD peer stats only when link peer is primary */
7168 	if (dp_peer_is_primary_link_peer(peer)) {
7169 		tgt_peer = dp_get_tgt_peer_from_peer(peer);
7170 		if (tgt_peer) {
7171 			DP_STATS_CLR(tgt_peer);
7172 			txrx_peer = tgt_peer->txrx_peer;
7173 			dp_txrx_peer_stats_clr(txrx_peer);
7174 		}
7175 	}
7176 
7177 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7178 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, peer->vdev->pdev->soc,
7179 			     &peer_stats_intf,  peer->peer_id,
7180 			     UPDATE_PEER_STATS, peer->vdev->pdev->pdev_id);
7181 #endif
7182 }
7183 
7184 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
7185 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7186 {
7187 	int ring;
7188 
7189 	for (ring = 0; ring < soc->num_reo_dest_rings; ring++)
7190 		hal_srng_clear_ring_usage_wm_locked(soc->hal_soc,
7191 					    soc->reo_dest_ring[ring].hal_srng);
7192 }
7193 #else
7194 static inline void dp_srng_clear_ring_usage_wm_stats(struct dp_soc *soc)
7195 {
7196 }
7197 #endif
7198 
7199 #ifdef WLAN_SUPPORT_PPEDS
7200 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7201 {
7202 	if (soc->arch_ops.dp_ppeds_clear_stats)
7203 		soc->arch_ops.dp_ppeds_clear_stats(soc);
7204 }
7205 
7206 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7207 {
7208 	if (soc->arch_ops.dp_txrx_ppeds_clear_rings_stats)
7209 		soc->arch_ops.dp_txrx_ppeds_clear_rings_stats(soc);
7210 }
7211 #else
7212 static void dp_clear_tx_ppeds_stats(struct dp_soc *soc)
7213 {
7214 }
7215 
7216 static void dp_ppeds_clear_ring_util_stats(struct dp_soc *soc)
7217 {
7218 }
7219 #endif
7220 
7221 /**
7222  * dp_txrx_host_stats_clr() - Reinitialize the txrx stats
7223  * @vdev: DP_VDEV handle
7224  * @soc: DP_SOC handle
7225  *
7226  * Return: QDF_STATUS
7227  */
7228 static inline QDF_STATUS
7229 dp_txrx_host_stats_clr(struct dp_vdev *vdev, struct dp_soc *soc)
7230 {
7231 	struct dp_vdev *var_vdev = NULL;
7232 
7233 	if (!vdev || !vdev->pdev)
7234 		return QDF_STATUS_E_FAILURE;
7235 
7236 	/*
7237 	 * if NSS offload is enabled, then send message
7238 	 * to NSS FW to clear the stats. Once NSS FW clears the statistics
7239 	 * then clear host statistics.
7240 	 */
7241 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
7242 		if (soc->cdp_soc.ol_ops->nss_stats_clr)
7243 			soc->cdp_soc.ol_ops->nss_stats_clr(soc->ctrl_psoc,
7244 							   vdev->vdev_id);
7245 	}
7246 
7247 	dp_vdev_stats_hw_offload_target_clear(soc, vdev->pdev->pdev_id,
7248 					      (1 << vdev->vdev_id));
7249 
7250 	DP_STATS_CLR(vdev->pdev);
7251 	DP_STATS_CLR(vdev->pdev->soc);
7252 
7253 	dp_clear_tx_ppeds_stats(soc);
7254 	dp_ppeds_clear_ring_util_stats(soc);
7255 
7256 	hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
7257 
7258 	TAILQ_FOREACH(var_vdev, &vdev->pdev->vdev_list, vdev_list_elem) {
7259 		DP_STATS_CLR(var_vdev);
7260 		dp_vdev_iterate_peer(var_vdev, dp_txrx_host_peer_stats_clr,
7261 				     NULL, DP_MOD_ID_GENERIC_STATS);
7262 	}
7263 
7264 	dp_srng_clear_ring_usage_wm_stats(soc);
7265 
7266 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
7267 	dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
7268 			     &vdev->stats,  vdev->vdev_id,
7269 			     UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
7270 #endif
7271 	return QDF_STATUS_SUCCESS;
7272 }
7273 
7274 /**
7275  * dp_get_peer_calibr_stats()- Get peer calibrated stats
7276  * @peer: Datapath peer
7277  * @peer_stats: buffer for peer stats
7278  *
7279  * Return: none
7280  */
7281 static inline
7282 void dp_get_peer_calibr_stats(struct dp_peer *peer,
7283 			      struct cdp_peer_stats *peer_stats)
7284 {
7285 	struct dp_peer *tgt_peer;
7286 
7287 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
7288 	if (!tgt_peer)
7289 		return;
7290 
7291 	peer_stats->tx.last_per = tgt_peer->stats.tx.last_per;
7292 	peer_stats->tx.tx_bytes_success_last =
7293 				tgt_peer->stats.tx.tx_bytes_success_last;
7294 	peer_stats->tx.tx_data_success_last =
7295 					tgt_peer->stats.tx.tx_data_success_last;
7296 	peer_stats->tx.tx_byte_rate = tgt_peer->stats.tx.tx_byte_rate;
7297 	peer_stats->tx.tx_data_rate = tgt_peer->stats.tx.tx_data_rate;
7298 	peer_stats->tx.tx_data_ucast_last =
7299 					tgt_peer->stats.tx.tx_data_ucast_last;
7300 	peer_stats->tx.tx_data_ucast_rate =
7301 					tgt_peer->stats.tx.tx_data_ucast_rate;
7302 	peer_stats->tx.inactive_time = tgt_peer->stats.tx.inactive_time;
7303 	peer_stats->rx.rx_bytes_success_last =
7304 				tgt_peer->stats.rx.rx_bytes_success_last;
7305 	peer_stats->rx.rx_data_success_last =
7306 				tgt_peer->stats.rx.rx_data_success_last;
7307 	peer_stats->rx.rx_byte_rate = tgt_peer->stats.rx.rx_byte_rate;
7308 	peer_stats->rx.rx_data_rate = tgt_peer->stats.rx.rx_data_rate;
7309 }
7310 
7311 /**
7312  * dp_get_peer_basic_stats()- Get peer basic stats
7313  * @peer: Datapath peer
7314  * @peer_stats: buffer for peer stats
7315  *
7316  * Return: none
7317  */
7318 static inline
7319 void dp_get_peer_basic_stats(struct dp_peer *peer,
7320 			     struct cdp_peer_stats *peer_stats)
7321 {
7322 	struct dp_txrx_peer *txrx_peer;
7323 
7324 	txrx_peer = dp_get_txrx_peer(peer);
7325 	if (!txrx_peer)
7326 		return;
7327 
7328 	peer_stats->tx.comp_pkt.num += txrx_peer->comp_pkt.num;
7329 	peer_stats->tx.comp_pkt.bytes += txrx_peer->comp_pkt.bytes;
7330 	peer_stats->tx.tx_failed += txrx_peer->tx_failed;
7331 	peer_stats->rx.to_stack.num += txrx_peer->to_stack.num;
7332 	peer_stats->rx.to_stack.bytes += txrx_peer->to_stack.bytes;
7333 }
7334 
7335 #ifdef QCA_ENHANCED_STATS_SUPPORT
7336 /**
7337  * dp_get_peer_per_pkt_stats()- Get peer per pkt stats
7338  * @peer: Datapath peer
7339  * @peer_stats: buffer for peer stats
7340  *
7341  * Return: none
7342  */
7343 static inline
7344 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7345 			       struct cdp_peer_stats *peer_stats)
7346 {
7347 	struct dp_txrx_peer *txrx_peer;
7348 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7349 	uint8_t inx = 0, link_id = 0;
7350 	struct dp_pdev *pdev;
7351 	struct dp_soc *soc;
7352 	uint8_t stats_arr_size;
7353 
7354 	txrx_peer = dp_get_txrx_peer(peer);
7355 	pdev = peer->vdev->pdev;
7356 
7357 	if (!txrx_peer)
7358 		return;
7359 
7360 	if (!IS_MLO_DP_LINK_PEER(peer)) {
7361 		stats_arr_size = txrx_peer->stats_arr_size;
7362 		for (inx = 0; inx < stats_arr_size; inx++) {
7363 			per_pkt_stats = &txrx_peer->stats[inx].per_pkt_stats;
7364 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7365 		}
7366 	} else {
7367 		soc = pdev->soc;
7368 		link_id = dp_get_peer_hw_link_id(soc, pdev);
7369 		per_pkt_stats =
7370 			&txrx_peer->stats[link_id].per_pkt_stats;
7371 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7372 	}
7373 }
7374 
7375 #ifdef WLAN_FEATURE_11BE_MLO
7376 /**
7377  * dp_get_peer_extd_stats()- Get peer extd stats
7378  * @peer: Datapath peer
7379  * @peer_stats: buffer for peer stats
7380  *
7381  * Return: none
7382  */
7383 static inline
7384 void dp_get_peer_extd_stats(struct dp_peer *peer,
7385 			    struct cdp_peer_stats *peer_stats)
7386 {
7387 	struct dp_soc *soc = peer->vdev->pdev->soc;
7388 
7389 	if (IS_MLO_DP_MLD_PEER(peer)) {
7390 		uint8_t i;
7391 		struct dp_peer *link_peer;
7392 		struct dp_soc *link_peer_soc;
7393 		struct dp_mld_link_peers link_peers_info;
7394 
7395 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7396 						    &link_peers_info,
7397 						    DP_MOD_ID_CDP);
7398 		for (i = 0; i < link_peers_info.num_links; i++) {
7399 			link_peer = link_peers_info.link_peers[i];
7400 			link_peer_soc = link_peer->vdev->pdev->soc;
7401 			dp_monitor_peer_get_stats(link_peer_soc, link_peer,
7402 						  peer_stats,
7403 						  UPDATE_PEER_STATS);
7404 		}
7405 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
7406 	} else {
7407 		dp_monitor_peer_get_stats(soc, peer, peer_stats,
7408 					  UPDATE_PEER_STATS);
7409 	}
7410 }
7411 #else
7412 static inline
7413 void dp_get_peer_extd_stats(struct dp_peer *peer,
7414 			    struct cdp_peer_stats *peer_stats)
7415 {
7416 	struct dp_soc *soc = peer->vdev->pdev->soc;
7417 
7418 	dp_monitor_peer_get_stats(soc, peer, peer_stats, UPDATE_PEER_STATS);
7419 }
7420 #endif
7421 #else
7422 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
7423 static inline
7424 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7425 			       struct cdp_peer_stats *peer_stats)
7426 {
7427 	uint8_t i, index;
7428 	struct dp_mld_link_peers link_peers_info;
7429 	struct dp_txrx_peer *txrx_peer;
7430 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7431 	struct dp_soc *soc = peer->vdev->pdev->soc;
7432 
7433 	txrx_peer = dp_get_txrx_peer(peer);
7434 	if (!txrx_peer)
7435 		return;
7436 
7437 	if (IS_MLO_DP_MLD_PEER(peer)) {
7438 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7439 						    &link_peers_info,
7440 						    DP_MOD_ID_GENERIC_STATS);
7441 		for (i = 0; i < link_peers_info.num_links; i++) {
7442 			if (i > txrx_peer->stats_arr_size)
7443 				break;
7444 			per_pkt_stats = &txrx_peer->stats[i].per_pkt_stats;
7445 			DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7446 		}
7447 		dp_release_link_peers_ref(&link_peers_info,
7448 					  DP_MOD_ID_GENERIC_STATS);
7449 	} else {
7450 		index = dp_get_peer_link_id(peer);
7451 		per_pkt_stats = &txrx_peer->stats[index].per_pkt_stats;
7452 		DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7453 		qdf_mem_copy(&peer_stats->mac_addr,
7454 			     &peer->mac_addr.raw[0],
7455 			     QDF_MAC_ADDR_SIZE);
7456 	}
7457 }
7458 
7459 static inline
7460 void dp_get_peer_extd_stats(struct dp_peer *peer,
7461 			    struct cdp_peer_stats *peer_stats)
7462 {
7463 	uint8_t i, index;
7464 	struct dp_mld_link_peers link_peers_info;
7465 	struct dp_txrx_peer *txrx_peer;
7466 	struct dp_peer_extd_stats *extd_stats;
7467 	struct dp_soc *soc = peer->vdev->pdev->soc;
7468 
7469 	txrx_peer = dp_get_txrx_peer(peer);
7470 	if (qdf_unlikely(!txrx_peer)) {
7471 		dp_err_rl("txrx_peer NULL for peer MAC: " QDF_MAC_ADDR_FMT,
7472 			  QDF_MAC_ADDR_REF(peer->mac_addr.raw));
7473 		return;
7474 	}
7475 
7476 	if (IS_MLO_DP_MLD_PEER(peer)) {
7477 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
7478 						    &link_peers_info,
7479 						    DP_MOD_ID_GENERIC_STATS);
7480 		for (i = 0; i < link_peers_info.num_links; i++) {
7481 			if (i > txrx_peer->stats_arr_size)
7482 				break;
7483 			extd_stats = &txrx_peer->stats[i].extd_stats;
7484 			/* Return aggregated stats for MLD peer */
7485 			DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7486 		}
7487 		dp_release_link_peers_ref(&link_peers_info,
7488 					  DP_MOD_ID_GENERIC_STATS);
7489 	} else {
7490 		index = dp_get_peer_link_id(peer);
7491 		extd_stats = &txrx_peer->stats[index].extd_stats;
7492 		DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7493 		qdf_mem_copy(&peer_stats->mac_addr,
7494 			     &peer->mac_addr.raw[0],
7495 			     QDF_MAC_ADDR_SIZE);
7496 	}
7497 }
7498 #else
7499 static inline
7500 void dp_get_peer_per_pkt_stats(struct dp_peer *peer,
7501 			       struct cdp_peer_stats *peer_stats)
7502 {
7503 	struct dp_txrx_peer *txrx_peer;
7504 	struct dp_peer_per_pkt_stats *per_pkt_stats;
7505 
7506 	txrx_peer = dp_get_txrx_peer(peer);
7507 	if (!txrx_peer)
7508 		return;
7509 
7510 	per_pkt_stats = &txrx_peer->stats[0].per_pkt_stats;
7511 	DP_UPDATE_PER_PKT_STATS(peer_stats, per_pkt_stats);
7512 }
7513 
7514 static inline
7515 void dp_get_peer_extd_stats(struct dp_peer *peer,
7516 			    struct cdp_peer_stats *peer_stats)
7517 {
7518 	struct dp_txrx_peer *txrx_peer;
7519 	struct dp_peer_extd_stats *extd_stats;
7520 
7521 	txrx_peer = dp_get_txrx_peer(peer);
7522 	if (qdf_unlikely(!txrx_peer)) {
7523 		dp_err_rl("txrx_peer NULL");
7524 		return;
7525 	}
7526 
7527 	extd_stats = &txrx_peer->stats[0].extd_stats;
7528 	DP_UPDATE_EXTD_STATS(peer_stats, extd_stats);
7529 }
7530 #endif
7531 #endif
7532 
7533 /**
7534  * dp_get_peer_tx_per()- Get peer packet error ratio
7535  * @peer_stats: buffer for peer stats
7536  *
7537  * Return: none
7538  */
7539 static inline
7540 void dp_get_peer_tx_per(struct cdp_peer_stats *peer_stats)
7541 {
7542 	if (peer_stats->tx.tx_success.num + peer_stats->tx.retries > 0)
7543 		peer_stats->tx.per = qdf_do_div((peer_stats->tx.retries * 100),
7544 				  (peer_stats->tx.tx_success.num +
7545 				   peer_stats->tx.retries));
7546 	else
7547 		peer_stats->tx.per = 0;
7548 }
7549 
7550 void dp_get_peer_stats(struct dp_peer *peer, struct cdp_peer_stats *peer_stats)
7551 {
7552 	dp_get_peer_calibr_stats(peer, peer_stats);
7553 
7554 	dp_get_peer_basic_stats(peer, peer_stats);
7555 
7556 	dp_get_peer_per_pkt_stats(peer, peer_stats);
7557 
7558 	dp_get_peer_extd_stats(peer, peer_stats);
7559 
7560 	dp_get_peer_tx_per(peer_stats);
7561 }
7562 
7563 /**
7564  * dp_get_host_peer_stats()- function to print peer stats
7565  * @soc: dp_soc handle
7566  * @mac_addr: mac address of the peer
7567  *
7568  * Return: QDF_STATUS
7569  */
7570 static QDF_STATUS
7571 dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr)
7572 {
7573 	struct dp_peer *peer = NULL;
7574 	struct cdp_peer_stats *peer_stats = NULL;
7575 	struct cdp_peer_info peer_info = { 0 };
7576 
7577 	if (!mac_addr) {
7578 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7579 			  "%s: NULL peer mac addr\n", __func__);
7580 		return QDF_STATUS_E_FAILURE;
7581 	}
7582 
7583 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
7584 				 CDP_WILD_PEER_TYPE);
7585 
7586 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
7587 					 DP_MOD_ID_CDP);
7588 	if (!peer) {
7589 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7590 			  "%s: Invalid peer\n", __func__);
7591 		return QDF_STATUS_E_FAILURE;
7592 	}
7593 
7594 	peer_stats = qdf_mem_malloc(sizeof(struct cdp_peer_stats));
7595 	if (!peer_stats) {
7596 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
7597 			  "%s: Memory allocation failed for cdp_peer_stats\n",
7598 			  __func__);
7599 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7600 		return QDF_STATUS_E_NOMEM;
7601 	}
7602 
7603 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
7604 
7605 	dp_get_peer_stats(peer, peer_stats);
7606 	dp_print_peer_stats(peer, peer_stats);
7607 
7608 	dp_peer_rxtid_stats(dp_get_tgt_peer_from_peer(peer),
7609 			    dp_rx_tid_stats_cb, NULL);
7610 
7611 	qdf_mem_free(peer_stats);
7612 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
7613 
7614 	return QDF_STATUS_SUCCESS;
7615 }
7616 
7617 /**
7618  * dp_txrx_stats_help() - Helper function for Txrx_Stats
7619  *
7620  * Return: None
7621  */
7622 static void dp_txrx_stats_help(void)
7623 {
7624 	dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
7625 	dp_info("stats_option:");
7626 	dp_info("  1 -- HTT Tx Statistics");
7627 	dp_info("  2 -- HTT Rx Statistics");
7628 	dp_info("  3 -- HTT Tx HW Queue Statistics");
7629 	dp_info("  4 -- HTT Tx HW Sched Statistics");
7630 	dp_info("  5 -- HTT Error Statistics");
7631 	dp_info("  6 -- HTT TQM Statistics");
7632 	dp_info("  7 -- HTT TQM CMDQ Statistics");
7633 	dp_info("  8 -- HTT TX_DE_CMN Statistics");
7634 	dp_info("  9 -- HTT Tx Rate Statistics");
7635 	dp_info(" 10 -- HTT Rx Rate Statistics");
7636 	dp_info(" 11 -- HTT Peer Statistics");
7637 	dp_info(" 12 -- HTT Tx SelfGen Statistics");
7638 	dp_info(" 13 -- HTT Tx MU HWQ Statistics");
7639 	dp_info(" 14 -- HTT RING_IF_INFO Statistics");
7640 	dp_info(" 15 -- HTT SRNG Statistics");
7641 	dp_info(" 16 -- HTT SFM Info Statistics");
7642 	dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
7643 	dp_info(" 18 -- HTT Peer List Details");
7644 	dp_info(" 20 -- Clear Host Statistics");
7645 	dp_info(" 21 -- Host Rx Rate Statistics");
7646 	dp_info(" 22 -- Host Tx Rate Statistics");
7647 	dp_info(" 23 -- Host Tx Statistics");
7648 	dp_info(" 24 -- Host Rx Statistics");
7649 	dp_info(" 25 -- Host AST Statistics");
7650 	dp_info(" 26 -- Host SRNG PTR Statistics");
7651 	dp_info(" 27 -- Host Mon Statistics");
7652 	dp_info(" 28 -- Host REO Queue Statistics");
7653 	dp_info(" 29 -- Host Soc cfg param Statistics");
7654 	dp_info(" 30 -- Host pdev cfg param Statistics");
7655 	dp_info(" 31 -- Host NAPI stats");
7656 	dp_info(" 32 -- Host Interrupt stats");
7657 	dp_info(" 33 -- Host FISA stats");
7658 	dp_info(" 34 -- Host Register Work stats");
7659 	dp_info(" 35 -- HW REO Queue stats");
7660 	dp_info(" 36 -- Host WBM IDLE link desc ring HP/TP");
7661 	dp_info(" 37 -- Host SRNG usage watermark stats");
7662 }
7663 
7664 #ifdef DP_UMAC_HW_RESET_SUPPORT
7665 /**
7666  * dp_umac_rst_skel_enable_update() - Update skel dbg flag for umac reset
7667  * @soc: dp soc handle
7668  * @en: ebable/disable
7669  *
7670  * Return: void
7671  */
7672 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7673 {
7674 	soc->umac_reset_ctx.skel_enable = en;
7675 	dp_cdp_debug("UMAC HW reset debug skeleton code enabled :%u",
7676 		     soc->umac_reset_ctx.skel_enable);
7677 }
7678 
7679 /**
7680  * dp_umac_rst_skel_enable_get() - Get skel dbg flag for umac reset
7681  * @soc: dp soc handle
7682  *
7683  * Return: enable/disable flag
7684  */
7685 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7686 {
7687 	return soc->umac_reset_ctx.skel_enable;
7688 }
7689 #else
7690 static void dp_umac_rst_skel_enable_update(struct dp_soc *soc, bool en)
7691 {
7692 }
7693 
7694 static bool dp_umac_rst_skel_enable_get(struct dp_soc *soc)
7695 {
7696 	return false;
7697 }
7698 #endif
7699 
7700 #ifndef WLAN_SOFTUMAC_SUPPORT
7701 static void dp_print_reg_write_stats(struct dp_soc *soc)
7702 {
7703 	hal_dump_reg_write_stats(soc->hal_soc);
7704 	hal_dump_reg_write_srng_stats(soc->hal_soc);
7705 }
7706 #else
7707 static void dp_print_reg_write_stats(struct dp_soc *soc)
7708 {
7709 	hif_print_reg_write_stats(soc->hif_handle);
7710 }
7711 #endif
7712 
7713 /**
7714  * dp_print_host_stats()- Function to print the stats aggregated at host
7715  * @vdev: DP_VDEV handle
7716  * @req: host stats type
7717  * @soc: dp soc handler
7718  *
7719  * Return: 0 on success, print error message in case of failure
7720  */
7721 static int
7722 dp_print_host_stats(struct dp_vdev *vdev,
7723 		    struct cdp_txrx_stats_req *req,
7724 		    struct dp_soc *soc)
7725 {
7726 	struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
7727 	enum cdp_host_txrx_stats type =
7728 			dp_stats_mapping_table[req->stats][STATS_HOST];
7729 
7730 	dp_aggregate_pdev_stats(pdev);
7731 
7732 	switch (type) {
7733 	case TXRX_CLEAR_STATS:
7734 		dp_txrx_host_stats_clr(vdev, soc);
7735 		break;
7736 	case TXRX_RX_RATE_STATS:
7737 		dp_print_rx_rates(vdev);
7738 		break;
7739 	case TXRX_TX_RATE_STATS:
7740 		dp_print_tx_rates(vdev);
7741 		break;
7742 	case TXRX_TX_HOST_STATS:
7743 		dp_print_pdev_tx_stats(pdev);
7744 		dp_print_soc_tx_stats(pdev->soc);
7745 		dp_print_global_desc_count();
7746 		dp_print_vdev_mlo_mcast_tx_stats(vdev);
7747 		break;
7748 	case TXRX_RX_HOST_STATS:
7749 		dp_print_pdev_rx_stats(pdev);
7750 		dp_print_soc_rx_stats(pdev->soc);
7751 		break;
7752 	case TXRX_AST_STATS:
7753 		dp_print_ast_stats(pdev->soc);
7754 		dp_print_mec_stats(pdev->soc);
7755 		dp_print_peer_table(vdev);
7756 		if (soc->arch_ops.dp_mlo_print_ptnr_info)
7757 			soc->arch_ops.dp_mlo_print_ptnr_info(vdev);
7758 		break;
7759 	case TXRX_SRNG_PTR_STATS:
7760 		dp_print_ring_stats(pdev);
7761 		break;
7762 	case TXRX_RX_MON_STATS:
7763 		dp_monitor_print_pdev_rx_mon_stats(pdev);
7764 		break;
7765 	case TXRX_REO_QUEUE_STATS:
7766 		dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc,
7767 				       req->peer_addr);
7768 		break;
7769 	case TXRX_SOC_CFG_PARAMS:
7770 		dp_print_soc_cfg_params(pdev->soc);
7771 		break;
7772 	case TXRX_PDEV_CFG_PARAMS:
7773 		dp_print_pdev_cfg_params(pdev);
7774 		break;
7775 	case TXRX_NAPI_STATS:
7776 		dp_print_napi_stats(pdev->soc);
7777 		break;
7778 	case TXRX_SOC_INTERRUPT_STATS:
7779 		dp_print_soc_interrupt_stats(pdev->soc);
7780 		break;
7781 	case TXRX_SOC_FSE_STATS:
7782 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
7783 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
7784 						CDP_FISA_STATS_ID_DUMP_HW_FST);
7785 		break;
7786 	case TXRX_HAL_REG_WRITE_STATS:
7787 		dp_print_reg_write_stats(pdev->soc);
7788 		break;
7789 	case TXRX_SOC_REO_HW_DESC_DUMP:
7790 		dp_get_rx_reo_queue_info((struct cdp_soc_t *)pdev->soc,
7791 					 vdev->vdev_id);
7792 		break;
7793 	case TXRX_SOC_WBM_IDLE_HPTP_DUMP:
7794 		dp_dump_wbm_idle_hptp(pdev->soc, pdev);
7795 		break;
7796 	case TXRX_SRNG_USAGE_WM_STATS:
7797 		/* Dump usage watermark stats for all SRNGs */
7798 		dp_dump_srng_high_wm_stats(soc, 0xFF);
7799 		break;
7800 	case TXRX_PEER_STATS:
7801 		dp_print_per_link_stats((struct cdp_soc_t *)pdev->soc,
7802 					vdev->vdev_id);
7803 		break;
7804 	default:
7805 		dp_info("Wrong Input For TxRx Host Stats");
7806 		dp_txrx_stats_help();
7807 		break;
7808 	}
7809 	return 0;
7810 }
7811 
7812 /**
7813  * dp_pdev_tid_stats_ingress_inc() - increment ingress_stack counter
7814  * @pdev: pdev handle
7815  * @val: increase in value
7816  *
7817  * Return: void
7818  */
7819 static void
7820 dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val)
7821 {
7822 	pdev->stats.tid_stats.ingress_stack += val;
7823 }
7824 
7825 /**
7826  * dp_pdev_tid_stats_osif_drop() - increment osif_drop counter
7827  * @pdev: pdev handle
7828  * @val: increase in value
7829  *
7830  * Return: void
7831  */
7832 static void
7833 dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val)
7834 {
7835 	pdev->stats.tid_stats.osif_drop += val;
7836 }
7837 
7838 /**
7839  * dp_get_fw_peer_stats()- function to print peer stats
7840  * @soc: soc handle
7841  * @pdev_id: id of the pdev handle
7842  * @mac_addr: mac address of the peer
7843  * @cap: Type of htt stats requested
7844  * @is_wait: if set, wait on completion from firmware response
7845  *
7846  * Currently Supporting only MAC ID based requests Only
7847  *	1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
7848  *	2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
7849  *	3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
7850  *
7851  * Return: QDF_STATUS
7852  */
7853 static QDF_STATUS
7854 dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
7855 		     uint8_t *mac_addr,
7856 		     uint32_t cap, uint32_t is_wait)
7857 {
7858 	int i;
7859 	uint32_t config_param0 = 0;
7860 	uint32_t config_param1 = 0;
7861 	uint32_t config_param2 = 0;
7862 	uint32_t config_param3 = 0;
7863 	struct dp_pdev *pdev =
7864 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7865 						   pdev_id);
7866 
7867 	if (!pdev)
7868 		return QDF_STATUS_E_FAILURE;
7869 
7870 	HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
7871 	config_param0 |= (1 << (cap + 1));
7872 
7873 	for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
7874 		config_param1 |= (1 << i);
7875 	}
7876 
7877 	config_param2 |= (mac_addr[0] & 0x000000ff);
7878 	config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
7879 	config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
7880 	config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
7881 
7882 	config_param3 |= (mac_addr[4] & 0x000000ff);
7883 	config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
7884 
7885 	if (is_wait) {
7886 		qdf_event_reset(&pdev->fw_peer_stats_event);
7887 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7888 					  config_param0, config_param1,
7889 					  config_param2, config_param3,
7890 					  0, DBG_STATS_COOKIE_DP_STATS, 0);
7891 		qdf_wait_single_event(&pdev->fw_peer_stats_event,
7892 				      DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
7893 	} else {
7894 		dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
7895 					  config_param0, config_param1,
7896 					  config_param2, config_param3,
7897 					  0, DBG_STATS_COOKIE_DEFAULT, 0);
7898 	}
7899 
7900 	return QDF_STATUS_SUCCESS;
7901 
7902 }
7903 
7904 /* This struct definition will be removed from here
7905  * once it get added in FW headers*/
7906 struct httstats_cmd_req {
7907     uint32_t    config_param0;
7908     uint32_t    config_param1;
7909     uint32_t    config_param2;
7910     uint32_t    config_param3;
7911     int cookie;
7912     u_int8_t    stats_id;
7913 };
7914 
7915 /**
7916  * dp_get_htt_stats: function to process the httstas request
7917  * @soc: DP soc handle
7918  * @pdev_id: id of pdev handle
7919  * @data: pointer to request data
7920  * @data_len: length for request data
7921  *
7922  * Return: QDF_STATUS
7923  */
7924 static QDF_STATUS
7925 dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data,
7926 		 uint32_t data_len)
7927 {
7928 	struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
7929 	struct dp_pdev *pdev =
7930 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
7931 						   pdev_id);
7932 
7933 	if (!pdev)
7934 		return QDF_STATUS_E_FAILURE;
7935 
7936 	QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
7937 	dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
7938 				req->config_param0, req->config_param1,
7939 				req->config_param2, req->config_param3,
7940 				req->cookie, DBG_STATS_COOKIE_DEFAULT, 0);
7941 
7942 	return QDF_STATUS_SUCCESS;
7943 }
7944 
7945 /**
7946  * dp_set_pdev_tidmap_prty_wifi3() - update tidmap priority in pdev
7947  * @pdev: DP_PDEV handle
7948  * @prio: tidmap priority value passed by the user
7949  *
7950  * Return: QDF_STATUS_SUCCESS on success
7951  */
7952 static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev,
7953 						uint8_t prio)
7954 {
7955 	struct dp_soc *soc = pdev->soc;
7956 
7957 	soc->tidmap_prty = prio;
7958 
7959 	hal_tx_set_tidmap_prty(soc->hal_soc, prio);
7960 	return QDF_STATUS_SUCCESS;
7961 }
7962 
7963 /**
7964  * dp_get_peer_param: function to get parameters in peer
7965  * @cdp_soc: DP soc handle
7966  * @vdev_id: id of vdev handle
7967  * @peer_mac: peer mac address
7968  * @param: parameter type to be set
7969  * @val: address of buffer
7970  *
7971  * Return: val
7972  */
7973 static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
7974 				    uint8_t *peer_mac,
7975 				    enum cdp_peer_param_type param,
7976 				    cdp_config_param_type *val)
7977 {
7978 	return QDF_STATUS_SUCCESS;
7979 }
7980 
7981 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
7982 static inline void
7983 dp_check_map_link_id_band(struct dp_peer *peer)
7984 {
7985 	if (peer->link_id_valid)
7986 		dp_map_link_id_band(peer);
7987 }
7988 #else
7989 static inline void
7990 dp_check_map_link_id_band(struct dp_peer *peer)
7991 {
7992 }
7993 #endif
7994 
7995 /**
7996  * dp_set_peer_freq() - Set peer frequency
7997  * @cdp_soc: DP soc handle
7998  * @vdev_id: id of vdev handle
7999  * @peer_mac: peer mac address
8000  * @param: parameter type to be set
8001  * @val: value of parameter to be set
8002  *
8003  * Return: QDF_STATUS_SUCCESS for success. error code for failure.
8004  */
8005 static inline QDF_STATUS
8006 dp_set_peer_freq(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8007 		 uint8_t *peer_mac, enum cdp_peer_param_type param,
8008 		 cdp_config_param_type val)
8009 {
8010 	struct dp_peer *peer = NULL;
8011 	struct cdp_peer_info peer_info = { 0 };
8012 
8013 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac,
8014 				 false, CDP_LINK_PEER_TYPE);
8015 
8016 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)cdp_soc,
8017 					 &peer_info, DP_MOD_ID_CDP);
8018 	if (!peer) {
8019 		dp_err("peer NULL,MAC " QDF_MAC_ADDR_FMT ", vdev_id %u",
8020 		       QDF_MAC_ADDR_REF(peer_mac), vdev_id);
8021 
8022 		return QDF_STATUS_E_FAILURE;
8023 	}
8024 
8025 	peer->freq = val.cdp_peer_param_freq;
8026 	dp_check_map_link_id_band(peer);
8027 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8028 
8029 	dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %u, frequency %u",
8030 		QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8031 		peer->freq);
8032 
8033 	return QDF_STATUS_SUCCESS;
8034 }
8035 
8036 /**
8037  * dp_set_peer_param: function to set parameters in peer
8038  * @cdp_soc: DP soc handle
8039  * @vdev_id: id of vdev handle
8040  * @peer_mac: peer mac address
8041  * @param: parameter type to be set
8042  * @val: value of parameter to be set
8043  *
8044  * Return: 0 for success. nonzero for failure.
8045  */
8046 static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8047 				    uint8_t *peer_mac,
8048 				    enum cdp_peer_param_type param,
8049 				    cdp_config_param_type val)
8050 {
8051 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8052 	struct dp_peer *peer =
8053 			dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc,
8054 						       peer_mac, 0, vdev_id,
8055 						       DP_MOD_ID_CDP);
8056 	struct dp_txrx_peer *txrx_peer;
8057 
8058 	if (!peer)
8059 		return QDF_STATUS_E_FAILURE;
8060 
8061 	txrx_peer = peer->txrx_peer;
8062 	if (!txrx_peer) {
8063 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8064 		return QDF_STATUS_E_FAILURE;
8065 	}
8066 
8067 	switch (param) {
8068 	case CDP_CONFIG_NAWDS:
8069 		txrx_peer->nawds_enabled = val.cdp_peer_param_nawds;
8070 		break;
8071 	case CDP_CONFIG_ISOLATION:
8072 		dp_info("Peer " QDF_MAC_ADDR_FMT " vdev_id %d, isolation %d",
8073 			QDF_MAC_ADDR_REF(peer_mac), vdev_id,
8074 			val.cdp_peer_param_isolation);
8075 		dp_set_peer_isolation(txrx_peer, val.cdp_peer_param_isolation);
8076 		break;
8077 	case CDP_CONFIG_IN_TWT:
8078 		txrx_peer->in_twt = !!(val.cdp_peer_param_in_twt);
8079 		break;
8080 	case CDP_CONFIG_PEER_FREQ:
8081 		status =  dp_set_peer_freq(cdp_soc, vdev_id,
8082 					   peer_mac, param, val);
8083 		break;
8084 	default:
8085 		break;
8086 	}
8087 
8088 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8089 
8090 	return status;
8091 }
8092 
8093 #ifdef WLAN_FEATURE_11BE_MLO
8094 /**
8095  * dp_set_mld_peer_param: function to set parameters in MLD peer
8096  * @cdp_soc: DP soc handle
8097  * @vdev_id: id of vdev handle
8098  * @peer_mac: peer mac address
8099  * @param: parameter type to be set
8100  * @val: value of parameter to be set
8101  *
8102  * Return: 0 for success. nonzero for failure.
8103  */
8104 static QDF_STATUS dp_set_mld_peer_param(struct cdp_soc_t *cdp_soc,
8105 					uint8_t vdev_id,
8106 					uint8_t *peer_mac,
8107 					enum cdp_peer_param_type param,
8108 					cdp_config_param_type val)
8109 {
8110 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8111 	struct dp_peer *peer;
8112 	struct dp_txrx_peer *txrx_peer;
8113 	QDF_STATUS status = QDF_STATUS_SUCCESS;
8114 
8115 	peer = dp_mld_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
8116 					  DP_MOD_ID_CDP);
8117 	if (!peer)
8118 		return QDF_STATUS_E_FAILURE;
8119 
8120 	txrx_peer = peer->txrx_peer;
8121 	if (!txrx_peer) {
8122 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8123 		return QDF_STATUS_E_FAILURE;
8124 	}
8125 
8126 	switch (param) {
8127 	case CDP_CONFIG_MLD_PEER_VDEV:
8128 		status = dp_mld_peer_change_vdev(soc, peer, val.new_vdev_id);
8129 		break;
8130 	default:
8131 		break;
8132 	}
8133 
8134 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8135 
8136 	return status;
8137 }
8138 
8139 /**
8140  * dp_set_peer_param_wrapper: wrapper function to set parameters in
8141  *			      legacy/link/MLD peer
8142  * @cdp_soc: DP soc handle
8143  * @vdev_id: id of vdev handle
8144  * @peer_mac: peer mac address
8145  * @param: parameter type to be set
8146  * @val: value of parameter to be set
8147  *
8148  * Return: 0 for success. nonzero for failure.
8149  */
8150 static QDF_STATUS
8151 dp_set_peer_param_wrapper(struct cdp_soc_t *cdp_soc,  uint8_t vdev_id,
8152 			  uint8_t *peer_mac, enum cdp_peer_param_type param,
8153 			  cdp_config_param_type val)
8154 {
8155 	QDF_STATUS status;
8156 
8157 	switch (param) {
8158 	case CDP_CONFIG_MLD_PEER_VDEV:
8159 		status = dp_set_mld_peer_param(cdp_soc, vdev_id, peer_mac,
8160 					       param, val);
8161 		break;
8162 	default:
8163 		status = dp_set_peer_param(cdp_soc, vdev_id, peer_mac,
8164 					   param, val);
8165 		break;
8166 	}
8167 
8168 	return status;
8169 }
8170 #endif
8171 
8172 /**
8173  * dp_get_pdev_param() - function to get parameters from pdev
8174  * @cdp_soc: DP soc handle
8175  * @pdev_id: id of pdev handle
8176  * @param: parameter type to be get
8177  * @val: buffer for value
8178  *
8179  * Return: status
8180  */
8181 static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8182 				    enum cdp_pdev_param_type param,
8183 				    cdp_config_param_type *val)
8184 {
8185 	struct cdp_pdev *pdev = (struct cdp_pdev *)
8186 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8187 						   pdev_id);
8188 	if (!pdev)
8189 		return QDF_STATUS_E_FAILURE;
8190 
8191 	switch (param) {
8192 	case CDP_CONFIG_VOW:
8193 		val->cdp_pdev_param_cfg_vow =
8194 				((struct dp_pdev *)pdev)->vow_stats;
8195 		break;
8196 	case CDP_TX_PENDING:
8197 		val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev);
8198 		break;
8199 	case CDP_FILTER_MCAST_DATA:
8200 		val->cdp_pdev_param_fltr_mcast =
8201 				dp_monitor_pdev_get_filter_mcast_data(pdev);
8202 		break;
8203 	case CDP_FILTER_NO_DATA:
8204 		val->cdp_pdev_param_fltr_none =
8205 				dp_monitor_pdev_get_filter_non_data(pdev);
8206 		break;
8207 	case CDP_FILTER_UCAST_DATA:
8208 		val->cdp_pdev_param_fltr_ucast =
8209 				dp_monitor_pdev_get_filter_ucast_data(pdev);
8210 		break;
8211 	case CDP_MONITOR_CHANNEL:
8212 		val->cdp_pdev_param_monitor_chan =
8213 			dp_monitor_get_chan_num((struct dp_pdev *)pdev);
8214 		break;
8215 	case CDP_MONITOR_FREQUENCY:
8216 		val->cdp_pdev_param_mon_freq =
8217 			dp_monitor_get_chan_freq((struct dp_pdev *)pdev);
8218 		break;
8219 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8220 		val->cdp_rxdma_buf_ring_size =
8221 			wlan_cfg_get_rx_dma_buf_ring_size(((struct dp_pdev *)pdev)->wlan_cfg_ctx);
8222 		break;
8223 	case CDP_CONFIG_DELAY_STATS:
8224 		val->cdp_pdev_param_cfg_delay_stats =
8225 				((struct dp_pdev *)pdev)->delay_stats_flag;
8226 		break;
8227 	default:
8228 		return QDF_STATUS_E_FAILURE;
8229 	}
8230 
8231 	return QDF_STATUS_SUCCESS;
8232 }
8233 
8234 /**
8235  * dp_set_pdev_param() - function to set parameters in pdev
8236  * @cdp_soc: DP soc handle
8237  * @pdev_id: id of pdev handle
8238  * @param: parameter type to be set
8239  * @val: value of parameter to be set
8240  *
8241  * Return: 0 for success. nonzero for failure.
8242  */
8243 static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
8244 				    enum cdp_pdev_param_type param,
8245 				    cdp_config_param_type val)
8246 {
8247 	int target_type;
8248 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8249 	struct dp_pdev *pdev =
8250 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8251 						   pdev_id);
8252 	enum reg_wifi_band chan_band;
8253 
8254 	if (!pdev)
8255 		return QDF_STATUS_E_FAILURE;
8256 
8257 	target_type = hal_get_target_type(soc->hal_soc);
8258 	switch (target_type) {
8259 	case TARGET_TYPE_QCA6750:
8260 	case TARGET_TYPE_WCN6450:
8261 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8262 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8263 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8264 		break;
8265 	case TARGET_TYPE_KIWI:
8266 	case TARGET_TYPE_MANGO:
8267 	case TARGET_TYPE_PEACH:
8268 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC0_LMAC_ID;
8269 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8270 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8271 		break;
8272 	default:
8273 		pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MAC1_LMAC_ID;
8274 		pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MAC0_LMAC_ID;
8275 		pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MAC0_LMAC_ID;
8276 		break;
8277 	}
8278 
8279 	switch (param) {
8280 	case CDP_CONFIG_TX_CAPTURE:
8281 		return dp_monitor_config_debug_sniffer(pdev,
8282 						val.cdp_pdev_param_tx_capture);
8283 	case CDP_CONFIG_DEBUG_SNIFFER:
8284 		return dp_monitor_config_debug_sniffer(pdev,
8285 						val.cdp_pdev_param_dbg_snf);
8286 	case CDP_CONFIG_BPR_ENABLE:
8287 		return dp_monitor_set_bpr_enable(pdev,
8288 						 val.cdp_pdev_param_bpr_enable);
8289 	case CDP_CONFIG_PRIMARY_RADIO:
8290 		pdev->is_primary = val.cdp_pdev_param_primary_radio;
8291 		break;
8292 	case CDP_CONFIG_CAPTURE_LATENCY:
8293 		pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy;
8294 		break;
8295 	case CDP_INGRESS_STATS:
8296 		dp_pdev_tid_stats_ingress_inc(pdev,
8297 					      val.cdp_pdev_param_ingrs_stats);
8298 		break;
8299 	case CDP_OSIF_DROP:
8300 		dp_pdev_tid_stats_osif_drop(pdev,
8301 					    val.cdp_pdev_param_osif_drop);
8302 		break;
8303 	case CDP_CONFIG_ENH_RX_CAPTURE:
8304 		return dp_monitor_config_enh_rx_capture(pdev,
8305 						val.cdp_pdev_param_en_rx_cap);
8306 	case CDP_CONFIG_ENH_TX_CAPTURE:
8307 		return dp_monitor_config_enh_tx_capture(pdev,
8308 						val.cdp_pdev_param_en_tx_cap);
8309 	case CDP_CONFIG_HMMC_TID_OVERRIDE:
8310 		pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd;
8311 		break;
8312 	case CDP_CONFIG_HMMC_TID_VALUE:
8313 		pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid;
8314 		break;
8315 	case CDP_CHAN_NOISE_FLOOR:
8316 		pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr;
8317 		break;
8318 	case CDP_TIDMAP_PRTY:
8319 		dp_set_pdev_tidmap_prty_wifi3(pdev,
8320 					      val.cdp_pdev_param_tidmap_prty);
8321 		break;
8322 	case CDP_FILTER_NEIGH_PEERS:
8323 		dp_monitor_set_filter_neigh_peers(pdev,
8324 					val.cdp_pdev_param_fltr_neigh_peers);
8325 		break;
8326 	case CDP_MONITOR_CHANNEL:
8327 		dp_monitor_set_chan_num(pdev, val.cdp_pdev_param_monitor_chan);
8328 		break;
8329 	case CDP_MONITOR_FREQUENCY:
8330 		chan_band = wlan_reg_freq_to_band(val.cdp_pdev_param_mon_freq);
8331 		dp_monitor_set_chan_freq(pdev, val.cdp_pdev_param_mon_freq);
8332 		dp_monitor_set_chan_band(pdev, chan_band);
8333 		break;
8334 	case CDP_CONFIG_BSS_COLOR:
8335 		dp_monitor_set_bsscolor(pdev, val.cdp_pdev_param_bss_color);
8336 		break;
8337 	case CDP_SET_ATF_STATS_ENABLE:
8338 		dp_monitor_set_atf_stats_enable(pdev,
8339 					val.cdp_pdev_param_atf_stats_enable);
8340 		break;
8341 	case CDP_CONFIG_SPECIAL_VAP:
8342 		dp_monitor_pdev_config_scan_spcl_vap(pdev,
8343 					val.cdp_pdev_param_config_special_vap);
8344 		dp_monitor_vdev_set_monitor_mode_buf_rings(pdev);
8345 		break;
8346 	case CDP_RESET_SCAN_SPCL_VAP_STATS_ENABLE:
8347 		dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(pdev,
8348 				val.cdp_pdev_param_reset_scan_spcl_vap_stats_enable);
8349 		break;
8350 	case CDP_CONFIG_ENHANCED_STATS_ENABLE:
8351 		pdev->enhanced_stats_en = val.cdp_pdev_param_enhanced_stats_enable;
8352 		break;
8353 	case CDP_ISOLATION:
8354 		pdev->isolation = val.cdp_pdev_param_isolation;
8355 		break;
8356 	case CDP_CONFIG_UNDECODED_METADATA_CAPTURE_ENABLE:
8357 		return dp_monitor_config_undecoded_metadata_capture(pdev,
8358 				val.cdp_pdev_param_undecoded_metadata_enable);
8359 		break;
8360 	case CDP_CONFIG_RXDMA_BUF_RING_SIZE:
8361 		wlan_cfg_set_rx_dma_buf_ring_size(pdev->wlan_cfg_ctx,
8362 						  val.cdp_rxdma_buf_ring_size);
8363 		break;
8364 	case CDP_CONFIG_VOW:
8365 		pdev->vow_stats = val.cdp_pdev_param_cfg_vow;
8366 		break;
8367 	default:
8368 		return QDF_STATUS_E_INVAL;
8369 	}
8370 	return QDF_STATUS_SUCCESS;
8371 }
8372 
8373 #ifdef QCA_UNDECODED_METADATA_SUPPORT
8374 static
8375 QDF_STATUS dp_set_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8376 					uint8_t pdev_id, uint32_t mask,
8377 					uint32_t mask_cont)
8378 {
8379 	struct dp_pdev *pdev =
8380 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8381 						   pdev_id);
8382 
8383 	if (!pdev)
8384 		return QDF_STATUS_E_FAILURE;
8385 
8386 	return dp_monitor_config_undecoded_metadata_phyrx_error_mask(pdev,
8387 				mask, mask_cont);
8388 }
8389 
8390 static
8391 QDF_STATUS dp_get_pdev_phyrx_error_mask(struct cdp_soc_t *cdp_soc,
8392 					uint8_t pdev_id, uint32_t *mask,
8393 					uint32_t *mask_cont)
8394 {
8395 	struct dp_pdev *pdev =
8396 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc,
8397 						   pdev_id);
8398 
8399 	if (!pdev)
8400 		return QDF_STATUS_E_FAILURE;
8401 
8402 	return dp_monitor_get_undecoded_metadata_phyrx_error_mask(pdev,
8403 				mask, mask_cont);
8404 }
8405 #endif
8406 
8407 #ifdef QCA_PEER_EXT_STATS
8408 static void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8409 					  qdf_nbuf_t nbuf)
8410 {
8411 	struct dp_peer *peer = NULL;
8412 	uint16_t peer_id, ring_id;
8413 	uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
8414 	struct dp_peer_delay_stats *delay_stats = NULL;
8415 
8416 	peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
8417 	if (peer_id > soc->max_peer_id)
8418 		return;
8419 
8420 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_CDP);
8421 	if (qdf_unlikely(!peer))
8422 		return;
8423 
8424 	if (qdf_unlikely(!peer->txrx_peer)) {
8425 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8426 		return;
8427 	}
8428 
8429 	if (qdf_likely(peer->txrx_peer->delay_stats)) {
8430 		delay_stats = peer->txrx_peer->delay_stats;
8431 		ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
8432 		dp_rx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
8433 					nbuf);
8434 	}
8435 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
8436 }
8437 #else
8438 static inline void dp_rx_update_peer_delay_stats(struct dp_soc *soc,
8439 						 qdf_nbuf_t nbuf)
8440 {
8441 }
8442 #endif
8443 
8444 /**
8445  * dp_calculate_delay_stats() - function to get rx delay stats
8446  * @cdp_soc: DP soc handle
8447  * @vdev_id: id of DP vdev handle
8448  * @nbuf: skb
8449  *
8450  * Return: QDF_STATUS
8451  */
8452 static QDF_STATUS
8453 dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8454 			 qdf_nbuf_t nbuf)
8455 {
8456 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8457 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8458 						     DP_MOD_ID_CDP);
8459 
8460 	if (!vdev)
8461 		return QDF_STATUS_SUCCESS;
8462 
8463 	if (vdev->pdev->delay_stats_flag)
8464 		dp_rx_compute_delay(vdev, nbuf);
8465 	else
8466 		dp_rx_update_peer_delay_stats(soc, nbuf);
8467 
8468 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8469 	return QDF_STATUS_SUCCESS;
8470 }
8471 
8472 /**
8473  * dp_get_vdev_param() - function to get parameters from vdev
8474  * @cdp_soc: DP soc handle
8475  * @vdev_id: id of DP vdev handle
8476  * @param: parameter type to get value
8477  * @val: buffer address
8478  *
8479  * Return: status
8480  */
8481 static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8482 				    enum cdp_vdev_param_type param,
8483 				    cdp_config_param_type *val)
8484 {
8485 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
8486 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
8487 						     DP_MOD_ID_CDP);
8488 
8489 	if (!vdev)
8490 		return QDF_STATUS_E_FAILURE;
8491 
8492 	switch (param) {
8493 	case CDP_ENABLE_WDS:
8494 		val->cdp_vdev_param_wds = vdev->wds_enabled;
8495 		break;
8496 	case CDP_ENABLE_MEC:
8497 		val->cdp_vdev_param_mec = vdev->mec_enabled;
8498 		break;
8499 	case CDP_ENABLE_DA_WAR:
8500 		val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled;
8501 		break;
8502 	case CDP_ENABLE_IGMP_MCAST_EN:
8503 		val->cdp_vdev_param_igmp_mcast_en = vdev->igmp_mcast_enhanc_en;
8504 		break;
8505 	case CDP_ENABLE_MCAST_EN:
8506 		val->cdp_vdev_param_mcast_en = vdev->mcast_enhancement_en;
8507 		break;
8508 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8509 		val->cdp_vdev_param_hlos_tid_override =
8510 			    dp_vdev_get_hlos_tid_override((struct cdp_vdev *)vdev);
8511 		break;
8512 	case CDP_ENABLE_PEER_AUTHORIZE:
8513 		val->cdp_vdev_param_peer_authorize =
8514 			    vdev->peer_authorize;
8515 		break;
8516 	case CDP_TX_ENCAP_TYPE:
8517 		val->cdp_vdev_param_tx_encap = vdev->tx_encap_type;
8518 		break;
8519 	case CDP_ENABLE_CIPHER:
8520 		val->cdp_vdev_param_cipher_en = vdev->sec_type;
8521 		break;
8522 #ifdef WLAN_SUPPORT_MESH_LATENCY
8523 	case CDP_ENABLE_PEER_TID_LATENCY:
8524 		val->cdp_vdev_param_peer_tid_latency_enable =
8525 			vdev->peer_tid_latency_enabled;
8526 		break;
8527 	case CDP_SET_VAP_MESH_TID:
8528 		val->cdp_vdev_param_mesh_tid =
8529 				vdev->mesh_tid_latency_config.latency_tid;
8530 		break;
8531 #endif
8532 	case CDP_DROP_3ADDR_MCAST:
8533 		val->cdp_drop_3addr_mcast = vdev->drop_3addr_mcast;
8534 		break;
8535 	case CDP_SET_MCAST_VDEV:
8536 		soc->arch_ops.txrx_get_vdev_mcast_param(soc, vdev, val);
8537 		break;
8538 #ifdef QCA_SUPPORT_WDS_EXTENDED
8539 	case CDP_DROP_TX_MCAST:
8540 		val->cdp_drop_tx_mcast = vdev->drop_tx_mcast;
8541 		break;
8542 #endif
8543 
8544 #ifdef MESH_MODE_SUPPORT
8545 	case CDP_MESH_RX_FILTER:
8546 		val->cdp_vdev_param_mesh_rx_filter = vdev->mesh_rx_filter;
8547 		break;
8548 	case CDP_MESH_MODE:
8549 		val->cdp_vdev_param_mesh_mode = vdev->mesh_vdev;
8550 		break;
8551 #endif
8552 	case CDP_ENABLE_NAWDS:
8553 		val->cdp_vdev_param_nawds = vdev->nawds_enabled;
8554 		break;
8555 
8556 	case CDP_ENABLE_WRAP:
8557 		val->cdp_vdev_param_wrap = vdev->wrap_vdev;
8558 		break;
8559 
8560 #ifdef DP_TRAFFIC_END_INDICATION
8561 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8562 		val->cdp_vdev_param_traffic_end_ind = vdev->traffic_end_ind_en;
8563 		break;
8564 #endif
8565 
8566 	default:
8567 		dp_cdp_err("%pK: param value %d is wrong",
8568 			   soc, param);
8569 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8570 		return QDF_STATUS_E_FAILURE;
8571 	}
8572 
8573 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
8574 	return QDF_STATUS_SUCCESS;
8575 }
8576 
8577 /**
8578  * dp_set_vdev_param() - function to set parameters in vdev
8579  * @cdp_soc: DP soc handle
8580  * @vdev_id: id of DP vdev handle
8581  * @param: parameter type to get value
8582  * @val: value
8583  *
8584  * Return: QDF_STATUS
8585  */
8586 static QDF_STATUS
8587 dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8588 		  enum cdp_vdev_param_type param, cdp_config_param_type val)
8589 {
8590 	struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
8591 	struct dp_vdev *vdev =
8592 		dp_vdev_get_ref_by_id(dsoc, vdev_id, DP_MOD_ID_CDP);
8593 	uint32_t var = 0;
8594 
8595 	if (!vdev)
8596 		return QDF_STATUS_E_FAILURE;
8597 
8598 	switch (param) {
8599 	case CDP_ENABLE_WDS:
8600 		dp_cdp_err("%pK: wds_enable %d for vdev(%pK) id(%d)",
8601 			   dsoc, val.cdp_vdev_param_wds, vdev, vdev->vdev_id);
8602 		vdev->wds_enabled = val.cdp_vdev_param_wds;
8603 		break;
8604 	case CDP_ENABLE_MEC:
8605 		dp_cdp_err("%pK: mec_enable %d for vdev(%pK) id(%d)",
8606 			   dsoc, val.cdp_vdev_param_mec, vdev, vdev->vdev_id);
8607 		vdev->mec_enabled = val.cdp_vdev_param_mec;
8608 		break;
8609 	case CDP_ENABLE_DA_WAR:
8610 		dp_cdp_err("%pK: da_war_enable %d for vdev(%pK) id(%d)",
8611 			   dsoc, val.cdp_vdev_param_da_war, vdev, vdev->vdev_id);
8612 		vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war;
8613 		dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
8614 					     vdev->pdev->soc));
8615 		break;
8616 	case CDP_ENABLE_NAWDS:
8617 		vdev->nawds_enabled = val.cdp_vdev_param_nawds;
8618 		break;
8619 	case CDP_ENABLE_MCAST_EN:
8620 		vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en;
8621 		break;
8622 	case CDP_ENABLE_IGMP_MCAST_EN:
8623 		vdev->igmp_mcast_enhanc_en = val.cdp_vdev_param_igmp_mcast_en;
8624 		break;
8625 	case CDP_ENABLE_PROXYSTA:
8626 		vdev->proxysta_vdev = val.cdp_vdev_param_proxysta;
8627 		break;
8628 	case CDP_UPDATE_TDLS_FLAGS:
8629 		vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags;
8630 		break;
8631 	case CDP_CFG_WDS_AGING_TIMER:
8632 		var = val.cdp_vdev_param_aging_tmr;
8633 		if (!var)
8634 			qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
8635 		else if (var != vdev->wds_aging_timer_val)
8636 			qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var);
8637 
8638 		vdev->wds_aging_timer_val = var;
8639 		break;
8640 	case CDP_ENABLE_AP_BRIDGE:
8641 		if (wlan_op_mode_sta != vdev->opmode)
8642 			vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en;
8643 		else
8644 			vdev->ap_bridge_enabled = false;
8645 		break;
8646 	case CDP_ENABLE_CIPHER:
8647 		vdev->sec_type = val.cdp_vdev_param_cipher_en;
8648 		break;
8649 	case CDP_ENABLE_QWRAP_ISOLATION:
8650 		vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation;
8651 		break;
8652 	case CDP_UPDATE_MULTIPASS:
8653 		vdev->multipass_en = val.cdp_vdev_param_update_multipass;
8654 		dp_info("vdev %d Multipass enable %d", vdev_id,
8655 			vdev->multipass_en);
8656 		break;
8657 	case CDP_TX_ENCAP_TYPE:
8658 		vdev->tx_encap_type = val.cdp_vdev_param_tx_encap;
8659 		break;
8660 	case CDP_RX_DECAP_TYPE:
8661 		vdev->rx_decap_type = val.cdp_vdev_param_rx_decap;
8662 		break;
8663 	case CDP_TID_VDEV_PRTY:
8664 		vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty;
8665 		break;
8666 	case CDP_TIDMAP_TBL_ID:
8667 		vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id;
8668 		break;
8669 #ifdef MESH_MODE_SUPPORT
8670 	case CDP_MESH_RX_FILTER:
8671 		dp_vdev_set_mesh_rx_filter((struct cdp_vdev *)vdev,
8672 					   val.cdp_vdev_param_mesh_rx_filter);
8673 		break;
8674 	case CDP_MESH_MODE:
8675 		dp_vdev_set_mesh_mode((struct cdp_vdev *)vdev,
8676 				      val.cdp_vdev_param_mesh_mode);
8677 		break;
8678 #endif
8679 	case CDP_ENABLE_HLOS_TID_OVERRIDE:
8680 		dp_info("vdev_id %d enable hlod tid override %d", vdev_id,
8681 			val.cdp_vdev_param_hlos_tid_override);
8682 		dp_vdev_set_hlos_tid_override(vdev,
8683 				val.cdp_vdev_param_hlos_tid_override);
8684 		break;
8685 #ifdef QCA_SUPPORT_WDS_EXTENDED
8686 	case CDP_CFG_WDS_EXT:
8687 		if (vdev->opmode == wlan_op_mode_ap)
8688 			vdev->wds_ext_enabled = val.cdp_vdev_param_wds_ext;
8689 		break;
8690 	case CDP_DROP_TX_MCAST:
8691 		dp_info("vdev_id %d drop tx mcast :%d", vdev_id,
8692 			val.cdp_drop_tx_mcast);
8693 		vdev->drop_tx_mcast = val.cdp_drop_tx_mcast;
8694 		break;
8695 #endif
8696 	case CDP_ENABLE_PEER_AUTHORIZE:
8697 		vdev->peer_authorize = val.cdp_vdev_param_peer_authorize;
8698 		break;
8699 #ifdef WLAN_SUPPORT_MESH_LATENCY
8700 	case CDP_ENABLE_PEER_TID_LATENCY:
8701 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8702 			val.cdp_vdev_param_peer_tid_latency_enable);
8703 		vdev->peer_tid_latency_enabled =
8704 			val.cdp_vdev_param_peer_tid_latency_enable;
8705 		break;
8706 	case CDP_SET_VAP_MESH_TID:
8707 		dp_info("vdev_id %d enable peer tid latency %d", vdev_id,
8708 			val.cdp_vdev_param_mesh_tid);
8709 		vdev->mesh_tid_latency_config.latency_tid
8710 				= val.cdp_vdev_param_mesh_tid;
8711 		break;
8712 #endif
8713 #ifdef WLAN_VENDOR_SPECIFIC_BAR_UPDATE
8714 	case CDP_SKIP_BAR_UPDATE_AP:
8715 		dp_info("vdev_id %d skip BAR update: %u", vdev_id,
8716 			val.cdp_skip_bar_update);
8717 		vdev->skip_bar_update = val.cdp_skip_bar_update;
8718 		vdev->skip_bar_update_last_ts = 0;
8719 		break;
8720 #endif
8721 	case CDP_DROP_3ADDR_MCAST:
8722 		dp_info("vdev_id %d drop 3 addr mcast :%d", vdev_id,
8723 			val.cdp_drop_3addr_mcast);
8724 		vdev->drop_3addr_mcast = val.cdp_drop_3addr_mcast;
8725 		break;
8726 	case CDP_ENABLE_WRAP:
8727 		vdev->wrap_vdev = val.cdp_vdev_param_wrap;
8728 		break;
8729 #ifdef DP_TRAFFIC_END_INDICATION
8730 	case CDP_ENABLE_TRAFFIC_END_INDICATION:
8731 		vdev->traffic_end_ind_en = val.cdp_vdev_param_traffic_end_ind;
8732 		break;
8733 #endif
8734 #ifdef FEATURE_DIRECT_LINK
8735 	case CDP_VDEV_TX_TO_FW:
8736 		dp_info("vdev_id %d to_fw :%d", vdev_id, val.cdp_vdev_tx_to_fw);
8737 		vdev->to_fw = val.cdp_vdev_tx_to_fw;
8738 		break;
8739 #endif
8740 	case CDP_VDEV_SET_MAC_ADDR:
8741 		dp_info("set mac addr, old mac addr" QDF_MAC_ADDR_FMT
8742 			" new mac addr: " QDF_MAC_ADDR_FMT " for vdev %d",
8743 			QDF_MAC_ADDR_REF(vdev->mac_addr.raw),
8744 			QDF_MAC_ADDR_REF(val.mac_addr), vdev->vdev_id);
8745 		qdf_mem_copy(&vdev->mac_addr.raw[0], val.mac_addr,
8746 			     QDF_MAC_ADDR_SIZE);
8747 		break;
8748 	default:
8749 		break;
8750 	}
8751 
8752 	dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev);
8753 	dsoc->arch_ops.txrx_set_vdev_param(dsoc, vdev, param, val);
8754 
8755 	/* Update PDEV flags as VDEV flags are updated */
8756 	dp_pdev_update_fast_rx_flag(dsoc, vdev->pdev);
8757 	dp_vdev_unref_delete(dsoc, vdev, DP_MOD_ID_CDP);
8758 
8759 	return QDF_STATUS_SUCCESS;
8760 }
8761 
8762 #if defined(FEATURE_WLAN_TDLS) && defined(WLAN_FEATURE_11BE_MLO)
8763 /**
8764  * dp_update_mlo_vdev_for_tdls() - update mlo vdev configuration
8765  *                                 for TDLS
8766  * @cdp_soc: DP soc handle
8767  * @vdev_id: id of DP vdev handle
8768  * @param: parameter type for vdev
8769  * @val: value
8770  *
8771  * If TDLS connection is from secondary vdev, then copy osif_vdev from
8772  * primary vdev to support RX, update TX bank register info for primary
8773  * vdev as well.
8774  * If TDLS connection is from primary vdev, same as before.
8775  *
8776  * Return: None
8777  */
8778 static void
8779 dp_update_mlo_vdev_for_tdls(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8780 			    enum cdp_vdev_param_type param,
8781 			    cdp_config_param_type val)
8782 {
8783 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8784 	struct dp_peer *peer;
8785 	struct dp_peer *tmp_peer;
8786 	struct dp_peer *mld_peer;
8787 	struct dp_vdev *vdev = NULL;
8788 	struct dp_vdev *pri_vdev = NULL;
8789 	uint8_t pri_vdev_id = CDP_INVALID_VDEV_ID;
8790 
8791 	if (param != CDP_UPDATE_TDLS_FLAGS)
8792 		return;
8793 
8794 	dp_info("update TDLS flag for vdev_id %d, val %d",
8795 		vdev_id, val.cdp_vdev_param_tdls_flags);
8796 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MISC);
8797 	/* only check for STA mode vdev */
8798 	if (!vdev || vdev->opmode != wlan_op_mode_sta) {
8799 		dp_info("vdev is not as expected for TDLS");
8800 		goto comp_ret;
8801 	}
8802 
8803 	/* Find primary vdev_id */
8804 	qdf_spin_lock_bh(&vdev->peer_list_lock);
8805 	TAILQ_FOREACH_SAFE(peer, &vdev->peer_list,
8806 			   peer_list_elem,
8807 			   tmp_peer) {
8808 		if (dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG) ==
8809 					QDF_STATUS_SUCCESS) {
8810 			/* do check only if MLO link peer exist */
8811 			if (IS_MLO_DP_LINK_PEER(peer)) {
8812 				mld_peer = DP_GET_MLD_PEER_FROM_PEER(peer);
8813 				pri_vdev_id = mld_peer->vdev->vdev_id;
8814 				dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8815 				break;
8816 			}
8817 			dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
8818 		}
8819 	}
8820 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
8821 
8822 	if (pri_vdev_id != CDP_INVALID_VDEV_ID)
8823 		pri_vdev = dp_vdev_get_ref_by_id(soc, pri_vdev_id,
8824 						 DP_MOD_ID_MISC);
8825 
8826 	/* If current vdev is not same as primary vdev */
8827 	if (pri_vdev && pri_vdev != vdev) {
8828 		dp_info("primary vdev [%d] %pK different with vdev [%d] %pK",
8829 			pri_vdev->vdev_id, pri_vdev,
8830 			vdev->vdev_id, vdev);
8831 		/* update osif_vdev to support RX for vdev */
8832 		vdev->osif_vdev = pri_vdev->osif_vdev;
8833 		dp_set_vdev_param(cdp_soc, pri_vdev->vdev_id,
8834 				  CDP_UPDATE_TDLS_FLAGS, val);
8835 	}
8836 
8837 comp_ret:
8838 	if (pri_vdev)
8839 		dp_vdev_unref_delete(soc, pri_vdev, DP_MOD_ID_MISC);
8840 	if (vdev)
8841 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MISC);
8842 }
8843 
8844 static QDF_STATUS
8845 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8846 			  enum cdp_vdev_param_type param,
8847 			  cdp_config_param_type val)
8848 {
8849 	dp_update_mlo_vdev_for_tdls(cdp_soc, vdev_id, param, val);
8850 
8851 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8852 }
8853 #else
8854 static QDF_STATUS
8855 dp_set_vdev_param_wrapper(struct cdp_soc_t *cdp_soc, uint8_t vdev_id,
8856 			  enum cdp_vdev_param_type param,
8857 			  cdp_config_param_type val)
8858 {
8859 	return dp_set_vdev_param(cdp_soc, vdev_id, param, val);
8860 }
8861 #endif
8862 
8863 /**
8864  * dp_rx_peer_metadata_ver_update() - update rx peer metadata version and
8865  *                                    corresponding filed shift and mask
8866  * @soc: Handle to DP Soc structure
8867  * @peer_md_ver: RX peer metadata version value
8868  *
8869  * Return: None
8870  */
8871 static void
8872 dp_rx_peer_metadata_ver_update(struct dp_soc *soc, uint8_t peer_md_ver)
8873 {
8874 	dp_info("rx_peer_metadata version %d", peer_md_ver);
8875 
8876 	switch (peer_md_ver) {
8877 	case 0: /* htt_rx_peer_metadata_v0 */
8878 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V0_PEER_ID_S;
8879 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V0_PEER_ID_M;
8880 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V0_VDEV_ID_S;
8881 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V0_VDEV_ID_M;
8882 		break;
8883 	case 1: /* htt_rx_peer_metadata_v1 */
8884 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1_PEER_ID_S;
8885 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1_PEER_ID_M;
8886 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1_VDEV_ID_S;
8887 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1_VDEV_ID_M;
8888 		soc->htt_mld_peer_valid_s =
8889 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_S;
8890 		soc->htt_mld_peer_valid_m =
8891 				HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_M;
8892 		break;
8893 	case 2: /* htt_rx_peer_metadata_v1a */
8894 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1A_PEER_ID_S;
8895 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1A_PEER_ID_M;
8896 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_S;
8897 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1A_VDEV_ID_M;
8898 		soc->htt_mld_peer_valid_s =
8899 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_S;
8900 		soc->htt_mld_peer_valid_m =
8901 				HTT_RX_PEER_META_DATA_V1A_ML_PEER_VALID_M;
8902 		break;
8903 	case 3: /* htt_rx_peer_metadata_v1b */
8904 		soc->htt_peer_id_s = HTT_RX_PEER_META_DATA_V1B_PEER_ID_S;
8905 		soc->htt_peer_id_m = HTT_RX_PEER_META_DATA_V1B_PEER_ID_M;
8906 		soc->htt_vdev_id_s = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_S;
8907 		soc->htt_vdev_id_m = HTT_RX_PEER_META_DATA_V1B_VDEV_ID_M;
8908 		soc->htt_mld_peer_valid_s =
8909 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_S;
8910 		soc->htt_mld_peer_valid_m =
8911 				HTT_RX_PEER_META_DATA_V1B_ML_PEER_VALID_M;
8912 		break;
8913 	default:
8914 		dp_err("invliad rx_peer_metadata version %d", peer_md_ver);
8915 		break;
8916 	}
8917 
8918 	soc->rx_peer_metadata_ver = peer_md_ver;
8919 }
8920 
8921 /**
8922  * dp_set_psoc_param: function to set parameters in psoc
8923  * @cdp_soc: DP soc handle
8924  * @param: parameter type to be set
8925  * @val: value of parameter to be set
8926  *
8927  * Return: QDF_STATUS
8928  */
8929 static QDF_STATUS
8930 dp_set_psoc_param(struct cdp_soc_t *cdp_soc,
8931 		  enum cdp_psoc_param_type param, cdp_config_param_type val)
8932 {
8933 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
8934 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx;
8935 
8936 	switch (param) {
8937 	case CDP_ENABLE_RATE_STATS:
8938 		soc->peerstats_enabled = val.cdp_psoc_param_en_rate_stats;
8939 		break;
8940 	case CDP_SET_NSS_CFG:
8941 		wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx,
8942 					    val.cdp_psoc_param_en_nss_cfg);
8943 		/*
8944 		 * TODO: masked out based on the per offloaded radio
8945 		 */
8946 		switch (val.cdp_psoc_param_en_nss_cfg) {
8947 		case dp_nss_cfg_default:
8948 			break;
8949 		case dp_nss_cfg_first_radio:
8950 		/*
8951 		 * This configuration is valid for single band radio which
8952 		 * is also NSS offload.
8953 		 */
8954 		case dp_nss_cfg_dbdc:
8955 		case dp_nss_cfg_dbtc:
8956 			wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
8957 			wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
8958 			wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
8959 			wlan_cfg_set_num_tx_spl_desc(soc->wlan_cfg_ctx, 0);
8960 			wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
8961 			break;
8962 		default:
8963 			dp_cdp_err("%pK: Invalid offload config %d",
8964 				   soc, val.cdp_psoc_param_en_nss_cfg);
8965 		}
8966 
8967 			dp_cdp_err("%pK: nss-wifi<0> nss config is enabled"
8968 				   , soc);
8969 		break;
8970 	case CDP_SET_PREFERRED_HW_MODE:
8971 		soc->preferred_hw_mode = val.cdp_psoc_param_preferred_hw_mode;
8972 		break;
8973 	case CDP_IPA_ENABLE:
8974 		soc->wlan_cfg_ctx->ipa_enabled = val.cdp_ipa_enabled;
8975 		break;
8976 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
8977 		wlan_cfg_set_vdev_stats_hw_offload_config(wlan_cfg_ctx,
8978 				val.cdp_psoc_param_vdev_stats_hw_offload);
8979 		break;
8980 	case CDP_SAWF_ENABLE:
8981 		wlan_cfg_set_sawf_config(wlan_cfg_ctx, val.cdp_sawf_enabled);
8982 		break;
8983 	case CDP_UMAC_RST_SKEL_ENABLE:
8984 		dp_umac_rst_skel_enable_update(soc, val.cdp_umac_rst_skel);
8985 		break;
8986 	case CDP_UMAC_RESET_STATS:
8987 		dp_umac_reset_stats_print(soc);
8988 		break;
8989 	case CDP_SAWF_STATS:
8990 		wlan_cfg_set_sawf_stats_config(wlan_cfg_ctx,
8991 					       val.cdp_sawf_stats);
8992 		break;
8993 	case CDP_CFG_RX_PEER_METADATA_VER:
8994 		dp_rx_peer_metadata_ver_update(
8995 				soc, val.cdp_peer_metadata_ver);
8996 		break;
8997 	case CDP_CFG_TX_DESC_NUM:
8998 		wlan_cfg_set_num_tx_desc(wlan_cfg_ctx,
8999 					 val.cdp_tx_desc_num);
9000 		break;
9001 	case CDP_CFG_TX_EXT_DESC_NUM:
9002 		wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx,
9003 					     val.cdp_tx_ext_desc_num);
9004 		break;
9005 	case CDP_CFG_TX_RING_SIZE:
9006 		wlan_cfg_set_tx_ring_size(wlan_cfg_ctx,
9007 					  val.cdp_tx_ring_size);
9008 		break;
9009 	case CDP_CFG_TX_COMPL_RING_SIZE:
9010 		wlan_cfg_set_tx_comp_ring_size(wlan_cfg_ctx,
9011 					       val.cdp_tx_comp_ring_size);
9012 		break;
9013 	case CDP_CFG_RX_SW_DESC_NUM:
9014 		wlan_cfg_set_dp_soc_rx_sw_desc_num(wlan_cfg_ctx,
9015 						   val.cdp_rx_sw_desc_num);
9016 		break;
9017 	case CDP_CFG_REO_DST_RING_SIZE:
9018 		wlan_cfg_set_reo_dst_ring_size(wlan_cfg_ctx,
9019 					       val.cdp_reo_dst_ring_size);
9020 		break;
9021 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9022 		wlan_cfg_set_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx,
9023 					val.cdp_rxdma_refill_ring_size);
9024 		break;
9025 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9026 	case CDP_CFG_RX_REFILL_POOL_NUM:
9027 		wlan_cfg_set_rx_refill_buf_pool_size(wlan_cfg_ctx,
9028 						val.cdp_rx_refill_buf_pool_size);
9029 		break;
9030 #endif
9031 	case CDP_CFG_AST_INDICATION_DISABLE:
9032 		wlan_cfg_set_ast_indication_disable
9033 			(wlan_cfg_ctx, val.cdp_ast_indication_disable);
9034 		break;
9035 	default:
9036 		break;
9037 	}
9038 
9039 	return QDF_STATUS_SUCCESS;
9040 }
9041 
9042 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
9043 /**
9044  * dp_get_mldev_mode: function to get mlo operation mode
9045  * @soc: soc structure for data path
9046  *
9047  * Return: uint8_t
9048  */
9049 static uint8_t dp_get_mldev_mode(struct dp_soc *soc)
9050 {
9051 	return soc->mld_mode_ap;
9052 }
9053 #else
9054 static uint8_t dp_get_mldev_mode(struct dp_soc *cdp_soc)
9055 {
9056 	return MLD_MODE_INVALID;
9057 }
9058 #endif
9059 
9060 /**
9061  * dp_get_psoc_param: function to get parameters in soc
9062  * @cdp_soc: DP soc handle
9063  * @param: parameter type to be get
9064  * @val: address of buffer
9065  *
9066  * Return: status
9067  */
9068 static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc,
9069 				    enum cdp_psoc_param_type param,
9070 				    cdp_config_param_type *val)
9071 {
9072 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
9073 	struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx;
9074 
9075 	if (!soc)
9076 		return QDF_STATUS_E_FAILURE;
9077 
9078 	wlan_cfg_ctx = soc->wlan_cfg_ctx;
9079 
9080 	switch (param) {
9081 	case CDP_ENABLE_RATE_STATS:
9082 		val->cdp_psoc_param_en_rate_stats = soc->peerstats_enabled;
9083 		break;
9084 	case CDP_CFG_PEER_EXT_STATS:
9085 		val->cdp_psoc_param_pext_stats =
9086 			wlan_cfg_is_peer_ext_stats_enabled(wlan_cfg_ctx);
9087 		break;
9088 	case CDP_CFG_VDEV_STATS_HW_OFFLOAD:
9089 		val->cdp_psoc_param_vdev_stats_hw_offload =
9090 			wlan_cfg_get_vdev_stats_hw_offload_config(wlan_cfg_ctx);
9091 		break;
9092 	case CDP_UMAC_RST_SKEL_ENABLE:
9093 		val->cdp_umac_rst_skel = dp_umac_rst_skel_enable_get(soc);
9094 		break;
9095 	case CDP_TXRX_HAL_SOC_HDL:
9096 		val->hal_soc_hdl = soc->hal_soc;
9097 		break;
9098 	case CDP_CFG_TX_DESC_NUM:
9099 		val->cdp_tx_desc_num = wlan_cfg_get_num_tx_desc(wlan_cfg_ctx);
9100 		break;
9101 	case CDP_CFG_TX_EXT_DESC_NUM:
9102 		val->cdp_tx_ext_desc_num =
9103 			wlan_cfg_get_num_tx_ext_desc(wlan_cfg_ctx);
9104 		break;
9105 	case CDP_CFG_TX_RING_SIZE:
9106 		val->cdp_tx_ring_size = wlan_cfg_tx_ring_size(wlan_cfg_ctx);
9107 		break;
9108 	case CDP_CFG_TX_COMPL_RING_SIZE:
9109 		val->cdp_tx_comp_ring_size =
9110 			wlan_cfg_tx_comp_ring_size(wlan_cfg_ctx);
9111 		break;
9112 	case CDP_CFG_RX_SW_DESC_NUM:
9113 		val->cdp_rx_sw_desc_num =
9114 			wlan_cfg_get_dp_soc_rx_sw_desc_num(wlan_cfg_ctx);
9115 		break;
9116 	case CDP_CFG_REO_DST_RING_SIZE:
9117 		val->cdp_reo_dst_ring_size =
9118 			wlan_cfg_get_reo_dst_ring_size(wlan_cfg_ctx);
9119 		break;
9120 	case CDP_CFG_RXDMA_REFILL_RING_SIZE:
9121 		val->cdp_rxdma_refill_ring_size =
9122 			wlan_cfg_get_dp_soc_rxdma_refill_ring_size(wlan_cfg_ctx);
9123 		break;
9124 #ifdef WLAN_FEATURE_RX_PREALLOC_BUFFER_POOL
9125 	case CDP_CFG_RX_REFILL_POOL_NUM:
9126 		val->cdp_rx_refill_buf_pool_size =
9127 			wlan_cfg_get_rx_refill_buf_pool_size(wlan_cfg_ctx);
9128 		break;
9129 #endif
9130 	case CDP_CFG_FISA_PARAMS:
9131 		val->fisa_params.fisa_fst_size = wlan_cfg_get_rx_flow_search_table_size(soc->wlan_cfg_ctx);
9132 		val->fisa_params.rx_flow_max_search =
9133 			wlan_cfg_rx_fst_get_max_search(soc->wlan_cfg_ctx);
9134 		val->fisa_params.rx_toeplitz_hash_key =
9135 			wlan_cfg_rx_fst_get_hash_key(soc->wlan_cfg_ctx);
9136 		break;
9137 	case CDP_RX_PKT_TLV_SIZE:
9138 		val->rx_pkt_tlv_size = soc->rx_pkt_tlv_size;
9139 		break;
9140 	case CDP_CFG_GET_MLO_OPER_MODE:
9141 		val->cdp_psoc_param_mlo_oper_mode = dp_get_mldev_mode(soc);
9142 		break;
9143 	case CDP_CFG_PEER_JITTER_STATS:
9144 		val->cdp_psoc_param_jitter_stats =
9145 			wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx);
9146 		break;
9147 	default:
9148 		dp_warn("Invalid param: %u", param);
9149 		break;
9150 	}
9151 
9152 	return QDF_STATUS_SUCCESS;
9153 }
9154 
9155 /**
9156  * dp_set_vdev_dscp_tid_map_wifi3() - Update Map ID selected for particular vdev
9157  * @cdp_soc: CDP SOC handle
9158  * @vdev_id: id of DP_VDEV handle
9159  * @map_id:ID of map that needs to be updated
9160  *
9161  * Return: QDF_STATUS
9162  */
9163 static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle cdp_soc,
9164 						 uint8_t vdev_id,
9165 						 uint8_t map_id)
9166 {
9167 	cdp_config_param_type val;
9168 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(cdp_soc);
9169 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9170 						     DP_MOD_ID_CDP);
9171 	if (vdev) {
9172 		vdev->dscp_tid_map_id = map_id;
9173 		val.cdp_vdev_param_dscp_tid_map_id = map_id;
9174 		soc->arch_ops.txrx_set_vdev_param(soc,
9175 						  vdev,
9176 						  CDP_UPDATE_DSCP_TO_TID_MAP,
9177 						  val);
9178 		/* Update flag for transmit tid classification */
9179 		if (vdev->dscp_tid_map_id < soc->num_hw_dscp_tid_map)
9180 			vdev->skip_sw_tid_classification |=
9181 				DP_TX_HW_DSCP_TID_MAP_VALID;
9182 		else
9183 			vdev->skip_sw_tid_classification &=
9184 				~DP_TX_HW_DSCP_TID_MAP_VALID;
9185 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9186 		return QDF_STATUS_SUCCESS;
9187 	}
9188 
9189 	return QDF_STATUS_E_FAILURE;
9190 }
9191 
9192 #ifdef DP_RATETABLE_SUPPORT
9193 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9194 				int htflag, int gintval)
9195 {
9196 	uint32_t rix;
9197 	uint16_t ratecode;
9198 	enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
9199 
9200 	return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
9201 			       (uint8_t)preamb, 1, punc_mode,
9202 			       &rix, &ratecode);
9203 }
9204 #else
9205 static int dp_txrx_get_ratekbps(int preamb, int mcs,
9206 				int htflag, int gintval)
9207 {
9208 	return 0;
9209 }
9210 #endif
9211 
9212 /**
9213  * dp_txrx_get_pdev_stats() - Returns cdp_pdev_stats
9214  * @soc: DP soc handle
9215  * @pdev_id: id of DP pdev handle
9216  * @pdev_stats: buffer to copy to
9217  *
9218  * Return: status success/failure
9219  */
9220 static QDF_STATUS
9221 dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9222 		       struct cdp_pdev_stats *pdev_stats)
9223 {
9224 	struct dp_pdev *pdev =
9225 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9226 						   pdev_id);
9227 	if (!pdev)
9228 		return QDF_STATUS_E_FAILURE;
9229 
9230 	dp_aggregate_pdev_stats(pdev);
9231 
9232 	qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats));
9233 	return QDF_STATUS_SUCCESS;
9234 }
9235 
9236 /**
9237  * dp_txrx_update_vdev_me_stats() - Update vdev ME stats sent from CDP
9238  * @vdev: DP vdev handle
9239  * @buf: buffer containing specific stats structure
9240  *
9241  * Return: void
9242  */
9243 static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev,
9244 					 void *buf)
9245 {
9246 	struct cdp_tx_ingress_stats *host_stats = NULL;
9247 
9248 	if (!buf) {
9249 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9250 		return;
9251 	}
9252 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9253 
9254 	DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
9255 			 host_stats->mcast_en.mcast_pkt.num,
9256 			 host_stats->mcast_en.mcast_pkt.bytes);
9257 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
9258 		     host_stats->mcast_en.dropped_map_error);
9259 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
9260 		     host_stats->mcast_en.dropped_self_mac);
9261 	DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
9262 		     host_stats->mcast_en.dropped_send_fail);
9263 	DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
9264 		     host_stats->mcast_en.ucast);
9265 	DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
9266 		     host_stats->mcast_en.fail_seg_alloc);
9267 	DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
9268 		     host_stats->mcast_en.clone_fail);
9269 }
9270 
9271 /**
9272  * dp_txrx_update_vdev_igmp_me_stats() - Update vdev IGMP ME stats sent from CDP
9273  * @vdev: DP vdev handle
9274  * @buf: buffer containing specific stats structure
9275  *
9276  * Return: void
9277  */
9278 static void dp_txrx_update_vdev_igmp_me_stats(struct dp_vdev *vdev,
9279 					      void *buf)
9280 {
9281 	struct cdp_tx_ingress_stats *host_stats = NULL;
9282 
9283 	if (!buf) {
9284 		dp_cdp_err("%pK: Invalid host stats buf", vdev->pdev->soc);
9285 		return;
9286 	}
9287 	host_stats = (struct cdp_tx_ingress_stats *)buf;
9288 
9289 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_rcvd,
9290 		     host_stats->igmp_mcast_en.igmp_rcvd);
9291 	DP_STATS_INC(vdev, tx_i.igmp_mcast_en.igmp_ucast_converted,
9292 		     host_stats->igmp_mcast_en.igmp_ucast_converted);
9293 }
9294 
9295 /**
9296  * dp_txrx_update_vdev_host_stats() - Update stats sent through CDP
9297  * @soc_hdl: DP soc handle
9298  * @vdev_id: id of DP vdev handle
9299  * @buf: buffer containing specific stats structure
9300  * @stats_id: stats type
9301  *
9302  * Return: QDF_STATUS
9303  */
9304 static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc_hdl,
9305 						 uint8_t vdev_id,
9306 						 void *buf,
9307 						 uint16_t stats_id)
9308 {
9309 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9310 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9311 						     DP_MOD_ID_CDP);
9312 
9313 	if (!vdev) {
9314 		dp_cdp_err("%pK: Invalid vdev handle", soc);
9315 		return QDF_STATUS_E_FAILURE;
9316 	}
9317 
9318 	switch (stats_id) {
9319 	case DP_VDEV_STATS_PKT_CNT_ONLY:
9320 		break;
9321 	case DP_VDEV_STATS_TX_ME:
9322 		dp_txrx_update_vdev_me_stats(vdev, buf);
9323 		dp_txrx_update_vdev_igmp_me_stats(vdev, buf);
9324 		break;
9325 	default:
9326 		qdf_info("Invalid stats_id %d", stats_id);
9327 		break;
9328 	}
9329 
9330 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9331 	return QDF_STATUS_SUCCESS;
9332 }
9333 
9334 /**
9335  * dp_txrx_get_peer_stats_wrapper() - will get cdp_peer_stats
9336  * @soc: soc handle
9337  * @peer_stats: destination buffer to copy to
9338  * @peer_info: peer info
9339  *
9340  * Return: status success/failure
9341  */
9342 static QDF_STATUS
9343 dp_txrx_get_peer_stats_wrapper(struct cdp_soc_t *soc,
9344 			       struct cdp_peer_stats *peer_stats,
9345 			       struct cdp_peer_info peer_info)
9346 {
9347 	struct dp_peer *peer = NULL;
9348 
9349 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9350 					 DP_MOD_ID_CDP);
9351 
9352 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9353 
9354 	if (!peer)
9355 		return QDF_STATUS_E_FAILURE;
9356 
9357 	dp_get_peer_stats(peer, peer_stats);
9358 
9359 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9360 
9361 	return QDF_STATUS_SUCCESS;
9362 }
9363 
9364 /**
9365  * dp_txrx_get_peer_stats() - will get cdp_peer_stats
9366  * @soc: soc handle
9367  * @vdev_id: id of vdev handle
9368  * @peer_mac: peer mac address of DP_PEER handle
9369  * @peer_stats: destination buffer to copy to
9370  *
9371  * Return: status success/failure
9372  */
9373 static QDF_STATUS
9374 dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9375 		       uint8_t *peer_mac, struct cdp_peer_stats *peer_stats)
9376 {
9377 	struct cdp_peer_info peer_info = { 0 };
9378 
9379 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9380 				 CDP_WILD_PEER_TYPE);
9381 
9382 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9383 }
9384 
9385 /**
9386  * dp_txrx_get_peer_stats_based_on_peer_type() - get peer stats based on the
9387  * peer type
9388  * @soc: soc handle
9389  * @vdev_id: id of vdev handle
9390  * @peer_mac: mac of DP_PEER handle
9391  * @peer_stats: buffer to copy to
9392  * @peer_type: type of peer
9393  *
9394  * Return: status success/failure
9395  */
9396 static QDF_STATUS
9397 dp_txrx_get_peer_stats_based_on_peer_type(struct cdp_soc_t *soc, uint8_t vdev_id,
9398 					  uint8_t *peer_mac,
9399 					  struct cdp_peer_stats *peer_stats,
9400 					  enum cdp_peer_type peer_type)
9401 {
9402 	struct cdp_peer_info peer_info = { 0 };
9403 
9404 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9405 				 peer_type);
9406 
9407 	return dp_txrx_get_peer_stats_wrapper(soc, peer_stats, peer_info);
9408 }
9409 
9410 #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT
9411 /**
9412  * dp_get_per_link_peer_stats() - Get per link stats
9413  * @peer: DP peer
9414  * @peer_stats: buffer to copy to
9415  * @peer_type: Peer type
9416  * @num_link: Number of ML links
9417  *
9418  * Return: status success/failure
9419  */
9420 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9421 				      struct cdp_peer_stats *peer_stats,
9422 				      enum cdp_peer_type peer_type,
9423 				      uint8_t num_link)
9424 {
9425 	uint8_t i, index = 0;
9426 	struct dp_peer *link_peer;
9427 	struct dp_mld_link_peers link_peers_info;
9428 	struct cdp_peer_stats *stats;
9429 	struct dp_soc *soc = peer->vdev->pdev->soc;
9430 
9431 	dp_get_peer_calibr_stats(peer, peer_stats);
9432 	dp_get_peer_basic_stats(peer, peer_stats);
9433 	dp_get_peer_tx_per(peer_stats);
9434 
9435 	if (IS_MLO_DP_MLD_PEER(peer)) {
9436 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9437 						    &link_peers_info,
9438 						    DP_MOD_ID_GENERIC_STATS);
9439 		for (i = 0; i < link_peers_info.num_links; i++) {
9440 			link_peer = link_peers_info.link_peers[i];
9441 			if (qdf_unlikely(!link_peer))
9442 				continue;
9443 			if (index > num_link) {
9444 				dp_err("Request stats for %d link(s) is less than total link(s) %d",
9445 				       num_link, link_peers_info.num_links);
9446 				break;
9447 			}
9448 			stats = &peer_stats[index];
9449 			dp_get_peer_per_pkt_stats(link_peer, stats);
9450 			dp_get_peer_extd_stats(link_peer, stats);
9451 			index++;
9452 		}
9453 		dp_release_link_peers_ref(&link_peers_info,
9454 					  DP_MOD_ID_GENERIC_STATS);
9455 	} else {
9456 		dp_get_peer_per_pkt_stats(peer, peer_stats);
9457 		dp_get_peer_extd_stats(peer, peer_stats);
9458 	}
9459 	return QDF_STATUS_SUCCESS;
9460 }
9461 #else
9462 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
9463 				      struct cdp_peer_stats *peer_stats,
9464 				      enum cdp_peer_type peer_type,
9465 				      uint8_t num_link)
9466 {
9467 	dp_err("Per link stats not supported");
9468 	return QDF_STATUS_E_INVAL;
9469 }
9470 #endif
9471 
9472 /**
9473  * dp_txrx_get_per_link_peer_stats() - Get per link peer stats
9474  * @soc: soc handle
9475  * @vdev_id: id of vdev handle
9476  * @peer_mac: peer mac address
9477  * @peer_stats: buffer to copy to
9478  * @peer_type: Peer type
9479  * @num_link: Number of ML links
9480  *
9481  * NOTE: For peer_type = CDP_MLD_PEER_TYPE peer_stats should point to
9482  *       buffer of size = (sizeof(*peer_stats) * num_link)
9483  *
9484  * Return: status success/failure
9485  */
9486 static QDF_STATUS
9487 dp_txrx_get_per_link_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9488 				uint8_t *peer_mac,
9489 				struct cdp_peer_stats *peer_stats,
9490 				enum cdp_peer_type peer_type, uint8_t num_link)
9491 {
9492 	QDF_STATUS status;
9493 	struct dp_peer *peer = NULL;
9494 	struct cdp_peer_info peer_info = { 0 };
9495 
9496 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9497 				 peer_type);
9498 
9499 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9500 					 DP_MOD_ID_GENERIC_STATS);
9501 	if (!peer)
9502 		return QDF_STATUS_E_FAILURE;
9503 
9504 	qdf_mem_zero(peer_stats, sizeof(struct cdp_peer_stats));
9505 
9506 	status = dp_get_per_link_peer_stats(peer, peer_stats, peer_type,
9507 					    num_link);
9508 
9509 	dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS);
9510 
9511 	return status;
9512 }
9513 
9514 /**
9515  * dp_txrx_get_peer_stats_param() - will return specified cdp_peer_stats
9516  * @soc: soc handle
9517  * @vdev_id: vdev_id of vdev object
9518  * @peer_mac: mac address of the peer
9519  * @type: enum of required stats
9520  * @buf: buffer to hold the value
9521  *
9522  * Return: status success/failure
9523  */
9524 static QDF_STATUS
9525 dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id,
9526 			     uint8_t *peer_mac, enum cdp_peer_stats_type type,
9527 			     cdp_peer_stats_param_t *buf)
9528 {
9529 	QDF_STATUS ret;
9530 	struct dp_peer *peer = NULL;
9531 	struct cdp_peer_info peer_info = { 0 };
9532 
9533 	DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, peer_mac, false,
9534 				 CDP_WILD_PEER_TYPE);
9535 
9536 	peer = dp_peer_hash_find_wrapper((struct dp_soc *)soc, &peer_info,
9537 				         DP_MOD_ID_CDP);
9538 
9539 	if (!peer) {
9540 		dp_peer_err("%pK: Invalid Peer for Mac " QDF_MAC_ADDR_FMT,
9541 			    soc, QDF_MAC_ADDR_REF(peer_mac));
9542 		return QDF_STATUS_E_FAILURE;
9543 	}
9544 
9545 	if (type >= cdp_peer_per_pkt_stats_min &&
9546 	    type < cdp_peer_per_pkt_stats_max) {
9547 		ret = dp_txrx_get_peer_per_pkt_stats_param(peer, type, buf);
9548 	} else if (type >= cdp_peer_extd_stats_min &&
9549 		   type < cdp_peer_extd_stats_max) {
9550 		ret = dp_txrx_get_peer_extd_stats_param(peer, type, buf);
9551 	} else {
9552 		dp_err("%pK: Invalid stat type requested", soc);
9553 		ret = QDF_STATUS_E_FAILURE;
9554 	}
9555 
9556 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9557 
9558 	return ret;
9559 }
9560 
9561 /**
9562  * dp_txrx_reset_peer_stats() - reset cdp_peer_stats for particular peer
9563  * @soc_hdl: soc handle
9564  * @vdev_id: id of vdev handle
9565  * @peer_mac: mac of DP_PEER handle
9566  *
9567  * Return: QDF_STATUS
9568  */
9569 #ifdef WLAN_FEATURE_11BE_MLO
9570 static QDF_STATUS
9571 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9572 			 uint8_t *peer_mac)
9573 {
9574 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9575 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
9576 	struct dp_peer *peer =
9577 			dp_peer_get_tgt_peer_hash_find(soc, peer_mac, 0,
9578 						       vdev_id, DP_MOD_ID_CDP);
9579 
9580 	if (!peer)
9581 		return QDF_STATUS_E_FAILURE;
9582 
9583 	DP_STATS_CLR(peer);
9584 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9585 
9586 	if (IS_MLO_DP_MLD_PEER(peer)) {
9587 		uint8_t i;
9588 		struct dp_peer *link_peer;
9589 		struct dp_soc *link_peer_soc;
9590 		struct dp_mld_link_peers link_peers_info;
9591 
9592 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
9593 						    &link_peers_info,
9594 						    DP_MOD_ID_CDP);
9595 		for (i = 0; i < link_peers_info.num_links; i++) {
9596 			link_peer = link_peers_info.link_peers[i];
9597 			link_peer_soc = link_peer->vdev->pdev->soc;
9598 
9599 			DP_STATS_CLR(link_peer);
9600 			dp_monitor_peer_reset_stats(link_peer_soc, link_peer);
9601 		}
9602 
9603 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
9604 	} else {
9605 		dp_monitor_peer_reset_stats(soc, peer);
9606 	}
9607 
9608 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9609 
9610 	return status;
9611 }
9612 #else
9613 static QDF_STATUS
9614 dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id,
9615 			 uint8_t *peer_mac)
9616 {
9617 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9618 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
9619 						      peer_mac, 0, vdev_id,
9620 						      DP_MOD_ID_CDP);
9621 
9622 	if (!peer)
9623 		return QDF_STATUS_E_FAILURE;
9624 
9625 	DP_STATS_CLR(peer);
9626 	dp_txrx_peer_stats_clr(peer->txrx_peer);
9627 	dp_monitor_peer_reset_stats((struct dp_soc *)soc, peer);
9628 
9629 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
9630 
9631 	return status;
9632 }
9633 #endif
9634 
9635 /**
9636  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
9637  * @soc_hdl: CDP SoC handle
9638  * @vdev_id: vdev Id
9639  * @buf: buffer for vdev stats
9640  * @is_aggregate: are aggregate stats being collected
9641  *
9642  * Return: QDF_STATUS
9643  */
9644 QDF_STATUS
9645 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
9646 		       void *buf, bool is_aggregate)
9647 {
9648 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
9649 	struct cdp_vdev_stats *vdev_stats;
9650 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
9651 						     DP_MOD_ID_CDP);
9652 
9653 	if (!vdev)
9654 		return QDF_STATUS_E_RESOURCES;
9655 
9656 	vdev_stats = (struct cdp_vdev_stats *)buf;
9657 
9658 	if (is_aggregate) {
9659 		dp_aggregate_vdev_stats(vdev, buf);
9660 	} else {
9661 		qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
9662 	}
9663 
9664 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
9665 	return QDF_STATUS_SUCCESS;
9666 }
9667 
9668 /**
9669  * dp_get_total_per() - get total per
9670  * @soc: DP soc handle
9671  * @pdev_id: id of DP_PDEV handle
9672  *
9673  * Return: % error rate using retries per packet and success packets
9674  */
9675 static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id)
9676 {
9677 	struct dp_pdev *pdev =
9678 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9679 						   pdev_id);
9680 
9681 	if (!pdev)
9682 		return 0;
9683 
9684 	dp_aggregate_pdev_stats(pdev);
9685 	if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
9686 		return 0;
9687 	return qdf_do_div((pdev->stats.tx.retries * 100),
9688 		((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
9689 }
9690 
9691 /**
9692  * dp_txrx_stats_publish() - publish pdev stats into a buffer
9693  * @soc: DP soc handle
9694  * @pdev_id: id of DP_PDEV handle
9695  * @buf: to hold pdev_stats
9696  *
9697  * Return: int
9698  */
9699 static int
9700 dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id,
9701 		      struct cdp_stats_extd *buf)
9702 {
9703 	struct cdp_txrx_stats_req req = {0,};
9704 	QDF_STATUS status;
9705 	struct dp_pdev *pdev =
9706 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9707 						   pdev_id);
9708 
9709 	if (!pdev)
9710 		return TXRX_STATS_LEVEL_OFF;
9711 
9712 	if (pdev->pending_fw_stats_response) {
9713 		dp_warn("pdev%d: prev req pending\n", pdev->pdev_id);
9714 		return TXRX_STATS_LEVEL_OFF;
9715 	}
9716 
9717 	dp_aggregate_pdev_stats(pdev);
9718 
9719 	pdev->pending_fw_stats_response = true;
9720 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
9721 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9722 	pdev->fw_stats_tlv_bitmap_rcvd = 0;
9723 	qdf_event_reset(&pdev->fw_stats_event);
9724 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9725 					   req.param1, req.param2, req.param3, 0,
9726 					   req.cookie_val, 0);
9727 
9728 	if (status != QDF_STATUS_SUCCESS) {
9729 		dp_warn("pdev%d: tx stats req failed\n", pdev->pdev_id);
9730 		pdev->pending_fw_stats_response = false;
9731 		return TXRX_STATS_LEVEL_OFF;
9732 	}
9733 
9734 	req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
9735 	req.cookie_val = DBG_STATS_COOKIE_DP_STATS;
9736 	status = dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
9737 					   req.param1, req.param2, req.param3, 0,
9738 					   req.cookie_val, 0);
9739 	if (status != QDF_STATUS_SUCCESS) {
9740 		dp_warn("pdev%d: rx stats req failed\n", pdev->pdev_id);
9741 		pdev->pending_fw_stats_response = false;
9742 		return TXRX_STATS_LEVEL_OFF;
9743 	}
9744 
9745 	/* The event may have already been signaled. Wait only if it's pending */
9746 	if (!pdev->fw_stats_event.done) {
9747 		status =
9748 			qdf_wait_single_event(&pdev->fw_stats_event,
9749 					      DP_MAX_SLEEP_TIME);
9750 
9751 		if (status != QDF_STATUS_SUCCESS) {
9752 			if (status == QDF_STATUS_E_TIMEOUT)
9753 				dp_warn("pdev%d: fw stats timeout. TLVs rcvd 0x%llx\n",
9754 					     pdev->pdev_id,
9755 					     pdev->fw_stats_tlv_bitmap_rcvd);
9756 			pdev->pending_fw_stats_response = false;
9757 			return TXRX_STATS_LEVEL_OFF;
9758 		}
9759 	}
9760 
9761 	qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats));
9762 	pdev->pending_fw_stats_response = false;
9763 
9764 	return TXRX_STATS_LEVEL;
9765 }
9766 
9767 /**
9768  * dp_get_obss_stats() - Get Pdev OBSS stats from Fw
9769  * @soc: DP soc handle
9770  * @pdev_id: id of DP_PDEV handle
9771  * @buf: to hold pdev obss stats
9772  * @req: Pointer to CDP TxRx stats
9773  *
9774  * Return: status
9775  */
9776 static QDF_STATUS
9777 dp_get_obss_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9778 		  struct cdp_pdev_obss_pd_stats_tlv *buf,
9779 		  struct cdp_txrx_stats_req *req)
9780 {
9781 	QDF_STATUS status;
9782 	struct dp_pdev *pdev =
9783 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9784 						   pdev_id);
9785 
9786 	if (!pdev)
9787 		return QDF_STATUS_E_INVAL;
9788 
9789 	if (pdev->pending_fw_obss_stats_response)
9790 		return QDF_STATUS_E_AGAIN;
9791 
9792 	pdev->pending_fw_obss_stats_response = true;
9793 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9794 	req->cookie_val = DBG_STATS_COOKIE_HTT_OBSS;
9795 	qdf_event_reset(&pdev->fw_obss_stats_event);
9796 	status = dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9797 					   req->param1, req->param2,
9798 					   req->param3, 0, req->cookie_val,
9799 					   req->mac_id);
9800 	if (QDF_IS_STATUS_ERROR(status)) {
9801 		pdev->pending_fw_obss_stats_response = false;
9802 		return status;
9803 	}
9804 	status =
9805 		qdf_wait_single_event(&pdev->fw_obss_stats_event,
9806 				      DP_MAX_SLEEP_TIME);
9807 
9808 	if (status != QDF_STATUS_SUCCESS) {
9809 		if (status == QDF_STATUS_E_TIMEOUT)
9810 			qdf_debug("TIMEOUT_OCCURS");
9811 		pdev->pending_fw_obss_stats_response = false;
9812 		return QDF_STATUS_E_TIMEOUT;
9813 	}
9814 	qdf_mem_copy(buf, &pdev->stats.htt_tx_pdev_stats.obss_pd_stats_tlv,
9815 		     sizeof(struct cdp_pdev_obss_pd_stats_tlv));
9816 	pdev->pending_fw_obss_stats_response = false;
9817 	return status;
9818 }
9819 
9820 /**
9821  * dp_clear_pdev_obss_pd_stats() - Clear pdev obss stats
9822  * @soc: DP soc handle
9823  * @pdev_id: id of DP_PDEV handle
9824  * @req: Pointer to CDP TxRx stats request mac_id will be
9825  *	 pre-filled and should not be overwritten
9826  *
9827  * Return: status
9828  */
9829 static QDF_STATUS
9830 dp_clear_pdev_obss_pd_stats(struct cdp_soc_t *soc, uint8_t pdev_id,
9831 			    struct cdp_txrx_stats_req *req)
9832 {
9833 	struct dp_pdev *pdev =
9834 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
9835 						   pdev_id);
9836 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9837 
9838 	if (!pdev)
9839 		return QDF_STATUS_E_INVAL;
9840 
9841 	/*
9842 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9843 	 * from param0 to param3 according to below rule:
9844 	 *
9845 	 * PARAM:
9846 	 *   - config_param0 : start_offset (stats type)
9847 	 *   - config_param1 : stats bmask from start offset
9848 	 *   - config_param2 : stats bmask from start offset + 32
9849 	 *   - config_param3 : stats bmask from start offset + 64
9850 	 */
9851 	req->stats = (enum cdp_stats)HTT_DBG_EXT_STATS_RESET;
9852 	req->param0 = HTT_DBG_EXT_STATS_PDEV_OBSS_PD_STATS;
9853 	req->param1 = 0x00000001;
9854 
9855 	return dp_h2t_ext_stats_msg_send(pdev, req->stats, req->param0,
9856 				  req->param1, req->param2, req->param3, 0,
9857 				cookie_val, req->mac_id);
9858 }
9859 
9860 /**
9861  * dp_set_pdev_dscp_tid_map_wifi3() - update dscp tid map in pdev
9862  * @soc_handle: soc handle
9863  * @pdev_id: id of DP_PDEV handle
9864  * @map_id: ID of map that needs to be updated
9865  * @tos: index value in map
9866  * @tid: tid value passed by the user
9867  *
9868  * Return: QDF_STATUS
9869  */
9870 static QDF_STATUS
9871 dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle,
9872 			       uint8_t pdev_id,
9873 			       uint8_t map_id,
9874 			       uint8_t tos, uint8_t tid)
9875 {
9876 	uint8_t dscp;
9877 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
9878 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
9879 
9880 	if (!pdev)
9881 		return QDF_STATUS_E_FAILURE;
9882 
9883 	dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
9884 	pdev->dscp_tid_map[map_id][dscp] = tid;
9885 
9886 	if (map_id < soc->num_hw_dscp_tid_map)
9887 		hal_tx_update_dscp_tid(soc->hal_soc, tid,
9888 				       map_id, dscp);
9889 	else
9890 		return QDF_STATUS_E_FAILURE;
9891 
9892 	return QDF_STATUS_SUCCESS;
9893 }
9894 
9895 #ifdef WLAN_SYSFS_DP_STATS
9896 /**
9897  * dp_sysfs_event_trigger() - Trigger event to wait for firmware
9898  * stats request response.
9899  * @soc: soc handle
9900  * @cookie_val: cookie value
9901  *
9902  * Return: QDF_STATUS
9903  */
9904 static QDF_STATUS
9905 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9906 {
9907 	QDF_STATUS status = QDF_STATUS_SUCCESS;
9908 	/* wait for firmware response for sysfs stats request */
9909 	if (cookie_val == DBG_SYSFS_STATS_COOKIE) {
9910 		if (!soc) {
9911 			dp_cdp_err("soc is NULL");
9912 			return QDF_STATUS_E_FAILURE;
9913 		}
9914 		/* wait for event completion */
9915 		status = qdf_wait_single_event(&soc->sysfs_config->sysfs_txrx_fw_request_done,
9916 					       WLAN_SYSFS_STAT_REQ_WAIT_MS);
9917 		if (status == QDF_STATUS_SUCCESS)
9918 			dp_cdp_info("sysfs_txrx_fw_request_done event completed");
9919 		else if (status == QDF_STATUS_E_TIMEOUT)
9920 			dp_cdp_warn("sysfs_txrx_fw_request_done event expired");
9921 		else
9922 			dp_cdp_warn("sysfs_txrx_fw_request_done event error code %d", status);
9923 	}
9924 
9925 	return status;
9926 }
9927 #else /* WLAN_SYSFS_DP_STATS */
9928 static QDF_STATUS
9929 dp_sysfs_event_trigger(struct dp_soc *soc, uint32_t cookie_val)
9930 {
9931 	return QDF_STATUS_SUCCESS;
9932 }
9933 #endif /* WLAN_SYSFS_DP_STATS */
9934 
9935 /**
9936  * dp_fw_stats_process() - Process TXRX FW stats request.
9937  * @vdev: DP VDEV handle
9938  * @req: stats request
9939  *
9940  * Return: QDF_STATUS
9941  */
9942 static QDF_STATUS
9943 dp_fw_stats_process(struct dp_vdev *vdev,
9944 		    struct cdp_txrx_stats_req *req)
9945 {
9946 	struct dp_pdev *pdev = NULL;
9947 	struct dp_soc *soc = NULL;
9948 	uint32_t stats = req->stats;
9949 	uint8_t mac_id = req->mac_id;
9950 	uint32_t cookie_val = DBG_STATS_COOKIE_DEFAULT;
9951 
9952 	if (!vdev) {
9953 		DP_TRACE(NONE, "VDEV not found");
9954 		return QDF_STATUS_E_FAILURE;
9955 	}
9956 
9957 	pdev = vdev->pdev;
9958 	if (!pdev) {
9959 		DP_TRACE(NONE, "PDEV not found");
9960 		return QDF_STATUS_E_FAILURE;
9961 	}
9962 
9963 	soc = pdev->soc;
9964 	if (!soc) {
9965 		DP_TRACE(NONE, "soc not found");
9966 		return QDF_STATUS_E_FAILURE;
9967 	}
9968 
9969 	/* In case request is from host sysfs for displaying stats on console */
9970 	if (req->cookie_val == DBG_SYSFS_STATS_COOKIE)
9971 		cookie_val = DBG_SYSFS_STATS_COOKIE;
9972 
9973 	/*
9974 	 * For HTT_DBG_EXT_STATS_RESET command, FW need to config
9975 	 * from param0 to param3 according to below rule:
9976 	 *
9977 	 * PARAM:
9978 	 *   - config_param0 : start_offset (stats type)
9979 	 *   - config_param1 : stats bmask from start offset
9980 	 *   - config_param2 : stats bmask from start offset + 32
9981 	 *   - config_param3 : stats bmask from start offset + 64
9982 	 */
9983 	if (req->stats == CDP_TXRX_STATS_0) {
9984 		req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
9985 		req->param1 = 0xFFFFFFFF;
9986 		req->param2 = 0xFFFFFFFF;
9987 		req->param3 = 0xFFFFFFFF;
9988 	} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
9989 		req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
9990 	}
9991 
9992 	if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT) {
9993 		dp_h2t_ext_stats_msg_send(pdev,
9994 					  HTT_DBG_EXT_STATS_PDEV_RX_RATE_EXT,
9995 					  req->param0, req->param1, req->param2,
9996 					  req->param3, 0, cookie_val,
9997 					  mac_id);
9998 	} else {
9999 		dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
10000 					  req->param1, req->param2, req->param3,
10001 					  0, cookie_val, mac_id);
10002 	}
10003 
10004 	dp_sysfs_event_trigger(soc, cookie_val);
10005 
10006 	return QDF_STATUS_SUCCESS;
10007 }
10008 
10009 /**
10010  * dp_txrx_stats_request - function to map to firmware and host stats
10011  * @soc_handle: soc handle
10012  * @vdev_id: virtual device ID
10013  * @req: stats request
10014  *
10015  * Return: QDF_STATUS
10016  */
10017 static
10018 QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle,
10019 				 uint8_t vdev_id,
10020 				 struct cdp_txrx_stats_req *req)
10021 {
10022 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle);
10023 	int host_stats;
10024 	int fw_stats;
10025 	enum cdp_stats stats;
10026 	int num_stats;
10027 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10028 						     DP_MOD_ID_CDP);
10029 	QDF_STATUS status = QDF_STATUS_E_INVAL;
10030 
10031 	if (!vdev || !req) {
10032 		dp_cdp_err("%pK: Invalid vdev/req instance", soc);
10033 		status = QDF_STATUS_E_INVAL;
10034 		goto fail0;
10035 	}
10036 
10037 	if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
10038 		dp_err("Invalid mac_id: %u request", req->mac_id);
10039 		status = QDF_STATUS_E_INVAL;
10040 		goto fail0;
10041 	}
10042 
10043 	stats = req->stats;
10044 	if (stats >= CDP_TXRX_MAX_STATS) {
10045 		status = QDF_STATUS_E_INVAL;
10046 		goto fail0;
10047 	}
10048 
10049 	/*
10050 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10051 	 *			has to be updated if new FW HTT stats added
10052 	 */
10053 	if (stats > CDP_TXRX_STATS_HTT_MAX)
10054 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10055 
10056 	num_stats  = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10057 
10058 	if (stats >= num_stats) {
10059 		dp_cdp_err("%pK : Invalid stats option: %d", soc, stats);
10060 		status = QDF_STATUS_E_INVAL;
10061 		goto fail0;
10062 	}
10063 
10064 	req->stats = stats;
10065 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10066 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10067 
10068 	dp_info("stats: %u fw_stats_type: %d host_stats: %d",
10069 		stats, fw_stats, host_stats);
10070 
10071 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10072 		/* update request with FW stats type */
10073 		req->stats = fw_stats;
10074 		status = dp_fw_stats_process(vdev, req);
10075 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10076 			(host_stats <= TXRX_HOST_STATS_MAX))
10077 		status = dp_print_host_stats(vdev, req, soc);
10078 	else
10079 		dp_cdp_info("%pK: Wrong Input for TxRx Stats", soc);
10080 fail0:
10081 	if (vdev)
10082 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10083 	return status;
10084 }
10085 
10086 /**
10087  * dp_soc_notify_asserted_soc() - API to notify asserted soc info
10088  * @psoc: CDP soc handle
10089  *
10090  * Return: QDF_STATUS
10091  */
10092 static QDF_STATUS dp_soc_notify_asserted_soc(struct cdp_soc_t *psoc)
10093 {
10094 	struct dp_soc *soc = (struct dp_soc *)psoc;
10095 
10096 	if (!soc) {
10097 		dp_cdp_err("%pK: soc is NULL", soc);
10098 		return QDF_STATUS_E_INVAL;
10099 	}
10100 
10101 	return dp_umac_reset_notify_asserted_soc(soc);
10102 }
10103 
10104 /**
10105  * dp_txrx_dump_stats() -  Dump statistics
10106  * @psoc: CDP soc handle
10107  * @value: Statistics option
10108  * @level: verbosity level
10109  */
10110 static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value,
10111 				     enum qdf_stats_verbosity_level level)
10112 {
10113 	struct dp_soc *soc =
10114 		(struct dp_soc *)psoc;
10115 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10116 
10117 	if (!soc) {
10118 		dp_cdp_err("%pK: soc is NULL", soc);
10119 		return QDF_STATUS_E_INVAL;
10120 	}
10121 
10122 	switch (value) {
10123 	case CDP_TXRX_PATH_STATS:
10124 		dp_txrx_path_stats(soc);
10125 		dp_print_soc_interrupt_stats(soc);
10126 		dp_print_reg_write_stats(soc);
10127 		dp_pdev_print_tx_delay_stats(soc);
10128 		/* Dump usage watermark stats for core TX/RX SRNGs */
10129 		dp_dump_srng_high_wm_stats(soc, (1 << REO_DST));
10130 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10131 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10132 						CDP_FISA_STATS_ID_ERR_STATS);
10133 		break;
10134 
10135 	case CDP_RX_RING_STATS:
10136 		dp_print_per_ring_stats(soc);
10137 		break;
10138 
10139 	case CDP_TXRX_TSO_STATS:
10140 		dp_print_tso_stats(soc, level);
10141 		break;
10142 
10143 	case CDP_DUMP_TX_FLOW_POOL_INFO:
10144 		if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH)
10145 			cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
10146 		else
10147 			dp_tx_dump_flow_pool_info_compact(soc);
10148 		break;
10149 
10150 	case CDP_DP_NAPI_STATS:
10151 		dp_print_napi_stats(soc);
10152 		break;
10153 
10154 	case CDP_TXRX_DESC_STATS:
10155 		/* TODO: NOT IMPLEMENTED */
10156 		break;
10157 
10158 	case CDP_DP_RX_FISA_STATS:
10159 		if (soc->cdp_soc.ol_ops->dp_print_fisa_stats)
10160 			soc->cdp_soc.ol_ops->dp_print_fisa_stats(
10161 						CDP_FISA_STATS_ID_DUMP_SW_FST);
10162 		break;
10163 
10164 	case CDP_DP_SWLM_STATS:
10165 		dp_print_swlm_stats(soc);
10166 		break;
10167 
10168 	case CDP_DP_TX_HW_LATENCY_STATS:
10169 		dp_pdev_print_tx_delay_stats(soc);
10170 		break;
10171 
10172 	default:
10173 		status = QDF_STATUS_E_INVAL;
10174 		break;
10175 	}
10176 
10177 	return status;
10178 
10179 }
10180 
10181 #ifdef WLAN_SYSFS_DP_STATS
10182 static
10183 void dp_sysfs_get_stat_type(struct dp_soc *soc, uint32_t *mac_id,
10184 			    uint32_t *stat_type)
10185 {
10186 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10187 	*stat_type = soc->sysfs_config->stat_type_requested;
10188 	*mac_id   = soc->sysfs_config->mac_id;
10189 
10190 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10191 }
10192 
10193 static
10194 void dp_sysfs_update_config_buf_params(struct dp_soc *soc,
10195 				       uint32_t curr_len,
10196 				       uint32_t max_buf_len,
10197 				       char *buf)
10198 {
10199 	qdf_spinlock_acquire(&soc->sysfs_config->sysfs_write_user_buffer);
10200 	/* set sysfs_config parameters */
10201 	soc->sysfs_config->buf = buf;
10202 	soc->sysfs_config->curr_buffer_length = curr_len;
10203 	soc->sysfs_config->max_buffer_length = max_buf_len;
10204 	qdf_spinlock_release(&soc->sysfs_config->sysfs_write_user_buffer);
10205 }
10206 
10207 static
10208 QDF_STATUS dp_sysfs_fill_stats(ol_txrx_soc_handle soc_hdl,
10209 			       char *buf, uint32_t buf_size)
10210 {
10211 	uint32_t mac_id = 0;
10212 	uint32_t stat_type = 0;
10213 	uint32_t fw_stats = 0;
10214 	uint32_t host_stats = 0;
10215 	enum cdp_stats stats;
10216 	struct cdp_txrx_stats_req req;
10217 	uint32_t num_stats;
10218 	struct dp_soc *soc = NULL;
10219 
10220 	if (!soc_hdl) {
10221 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10222 		return QDF_STATUS_E_INVAL;
10223 	}
10224 
10225 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
10226 
10227 	if (!soc) {
10228 		dp_cdp_err("%pK: soc is NULL", soc);
10229 		return QDF_STATUS_E_INVAL;
10230 	}
10231 
10232 	dp_sysfs_get_stat_type(soc, &mac_id, &stat_type);
10233 
10234 	stats = stat_type;
10235 	if (stats >= CDP_TXRX_MAX_STATS) {
10236 		dp_cdp_info("sysfs stat type requested is invalid");
10237 		return QDF_STATUS_E_INVAL;
10238 	}
10239 	/*
10240 	 * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
10241 	 *			has to be updated if new FW HTT stats added
10242 	 */
10243 	if (stats > CDP_TXRX_MAX_STATS)
10244 		stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
10245 
10246 	num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
10247 
10248 	if (stats >= num_stats) {
10249 		dp_cdp_err("%pK : Invalid stats option: %d, max num stats: %d",
10250 				soc, stats, num_stats);
10251 		return QDF_STATUS_E_INVAL;
10252 	}
10253 
10254 	/* build request */
10255 	fw_stats = dp_stats_mapping_table[stats][STATS_FW];
10256 	host_stats = dp_stats_mapping_table[stats][STATS_HOST];
10257 
10258 	req.stats = stat_type;
10259 	req.mac_id = mac_id;
10260 	/* request stats to be printed */
10261 	qdf_mutex_acquire(&soc->sysfs_config->sysfs_read_lock);
10262 
10263 	if (fw_stats != TXRX_FW_STATS_INVALID) {
10264 		/* update request with FW stats type */
10265 		req.cookie_val = DBG_SYSFS_STATS_COOKIE;
10266 	} else if ((host_stats != TXRX_HOST_STATS_INVALID) &&
10267 			(host_stats <= TXRX_HOST_STATS_MAX)) {
10268 		req.cookie_val = DBG_STATS_COOKIE_DEFAULT;
10269 		soc->sysfs_config->process_id = qdf_get_current_pid();
10270 		soc->sysfs_config->printing_mode = PRINTING_MODE_ENABLED;
10271 	}
10272 
10273 	dp_sysfs_update_config_buf_params(soc, 0, buf_size, buf);
10274 
10275 	dp_txrx_stats_request(soc_hdl, mac_id, &req);
10276 	soc->sysfs_config->process_id = 0;
10277 	soc->sysfs_config->printing_mode = PRINTING_MODE_DISABLED;
10278 
10279 	dp_sysfs_update_config_buf_params(soc, 0, 0, NULL);
10280 
10281 	qdf_mutex_release(&soc->sysfs_config->sysfs_read_lock);
10282 	return QDF_STATUS_SUCCESS;
10283 }
10284 
10285 static
10286 QDF_STATUS dp_sysfs_set_stat_type(ol_txrx_soc_handle soc_hdl,
10287 				  uint32_t stat_type, uint32_t mac_id)
10288 {
10289 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10290 
10291 	if (!soc_hdl) {
10292 		dp_cdp_err("%pK: soc is NULL", soc);
10293 		return QDF_STATUS_E_INVAL;
10294 	}
10295 
10296 	qdf_spinlock_acquire(&soc->sysfs_config->rw_stats_lock);
10297 
10298 	soc->sysfs_config->stat_type_requested = stat_type;
10299 	soc->sysfs_config->mac_id = mac_id;
10300 
10301 	qdf_spinlock_release(&soc->sysfs_config->rw_stats_lock);
10302 
10303 	return QDF_STATUS_SUCCESS;
10304 }
10305 
10306 static
10307 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10308 {
10309 	struct dp_soc *soc;
10310 	QDF_STATUS status;
10311 
10312 	if (!soc_hdl) {
10313 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10314 		return QDF_STATUS_E_INVAL;
10315 	}
10316 
10317 	soc = soc_hdl;
10318 
10319 	soc->sysfs_config = qdf_mem_malloc(sizeof(struct sysfs_stats_config));
10320 	if (!soc->sysfs_config) {
10321 		dp_cdp_err("failed to allocate memory for sysfs_config no memory");
10322 		return QDF_STATUS_E_NOMEM;
10323 	}
10324 
10325 	status = qdf_event_create(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10326 	/* create event for fw stats request from sysfs */
10327 	if (status != QDF_STATUS_SUCCESS) {
10328 		dp_cdp_err("failed to create event sysfs_txrx_fw_request_done");
10329 		qdf_mem_free(soc->sysfs_config);
10330 		soc->sysfs_config = NULL;
10331 		return QDF_STATUS_E_FAILURE;
10332 	}
10333 
10334 	qdf_spinlock_create(&soc->sysfs_config->rw_stats_lock);
10335 	qdf_mutex_create(&soc->sysfs_config->sysfs_read_lock);
10336 	qdf_spinlock_create(&soc->sysfs_config->sysfs_write_user_buffer);
10337 
10338 	return QDF_STATUS_SUCCESS;
10339 }
10340 
10341 static
10342 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10343 {
10344 	struct dp_soc *soc;
10345 	QDF_STATUS status;
10346 
10347 	if (!soc_hdl) {
10348 		dp_cdp_err("%pK: soc_hdl is NULL", soc_hdl);
10349 		return QDF_STATUS_E_INVAL;
10350 	}
10351 
10352 	soc = soc_hdl;
10353 	if (!soc->sysfs_config) {
10354 		dp_cdp_err("soc->sysfs_config is NULL");
10355 		return QDF_STATUS_E_FAILURE;
10356 	}
10357 
10358 	status = qdf_event_destroy(&soc->sysfs_config->sysfs_txrx_fw_request_done);
10359 	if (status != QDF_STATUS_SUCCESS)
10360 		dp_cdp_err("Failed to destroy event sysfs_txrx_fw_request_done");
10361 
10362 	qdf_mutex_destroy(&soc->sysfs_config->sysfs_read_lock);
10363 	qdf_spinlock_destroy(&soc->sysfs_config->rw_stats_lock);
10364 	qdf_spinlock_destroy(&soc->sysfs_config->sysfs_write_user_buffer);
10365 
10366 	qdf_mem_free(soc->sysfs_config);
10367 
10368 	return QDF_STATUS_SUCCESS;
10369 }
10370 
10371 #else /* WLAN_SYSFS_DP_STATS */
10372 
10373 static
10374 QDF_STATUS dp_sysfs_deinitialize_stats(struct dp_soc *soc_hdl)
10375 {
10376 	return QDF_STATUS_SUCCESS;
10377 }
10378 
10379 static
10380 QDF_STATUS dp_sysfs_initialize_stats(struct dp_soc *soc_hdl)
10381 {
10382 	return QDF_STATUS_SUCCESS;
10383 }
10384 #endif /* WLAN_SYSFS_DP_STATS */
10385 
10386 /**
10387  * dp_txrx_clear_dump_stats() - clear dumpStats
10388  * @soc_hdl: soc handle
10389  * @pdev_id: pdev ID
10390  * @value: stats option
10391  *
10392  * Return: 0 - Success, non-zero - failure
10393  */
10394 static
10395 QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10396 				    uint8_t value)
10397 {
10398 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10399 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10400 
10401 	if (!soc) {
10402 		dp_err("soc is NULL");
10403 		return QDF_STATUS_E_INVAL;
10404 	}
10405 
10406 	switch (value) {
10407 	case CDP_TXRX_TSO_STATS:
10408 		dp_txrx_clear_tso_stats(soc);
10409 		break;
10410 
10411 	case CDP_DP_TX_HW_LATENCY_STATS:
10412 		dp_pdev_clear_tx_delay_stats(soc);
10413 		break;
10414 
10415 	default:
10416 		status = QDF_STATUS_E_INVAL;
10417 		break;
10418 	}
10419 
10420 	return status;
10421 }
10422 
10423 static QDF_STATUS
10424 dp_txrx_get_interface_stats(struct cdp_soc_t *soc_hdl,
10425 			    uint8_t vdev_id,
10426 			    void *buf,
10427 			    bool is_aggregate)
10428 {
10429 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10430 
10431 	if (soc && soc->arch_ops.dp_get_interface_stats)
10432 		return soc->arch_ops.dp_get_interface_stats(soc_hdl,
10433 							    vdev_id,
10434 							    buf,
10435 							    is_aggregate);
10436 	return QDF_STATUS_E_FAILURE;
10437 }
10438 
10439 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
10440 /**
10441  * dp_update_flow_control_parameters() - API to store datapath
10442  *                            config parameters
10443  * @soc: soc handle
10444  * @params: ini parameter handle
10445  *
10446  * Return: void
10447  */
10448 static inline
10449 void dp_update_flow_control_parameters(struct dp_soc *soc,
10450 				struct cdp_config_params *params)
10451 {
10452 	soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
10453 					params->tx_flow_stop_queue_threshold;
10454 	soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
10455 					params->tx_flow_start_queue_offset;
10456 }
10457 #else
10458 static inline
10459 void dp_update_flow_control_parameters(struct dp_soc *soc,
10460 				struct cdp_config_params *params)
10461 {
10462 }
10463 #endif
10464 
10465 #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
10466 /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
10467 #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
10468 
10469 /* Max packet limit for RX REAP Loop (dp_rx_process) */
10470 #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
10471 
10472 static
10473 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10474 					struct cdp_config_params *params)
10475 {
10476 	soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
10477 				params->tx_comp_loop_pkt_limit;
10478 
10479 	if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
10480 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
10481 	else
10482 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
10483 
10484 	soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
10485 				params->rx_reap_loop_pkt_limit;
10486 
10487 	if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
10488 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
10489 	else
10490 		soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
10491 
10492 	soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
10493 				params->rx_hp_oos_update_limit;
10494 
10495 	dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
10496 		soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
10497 		soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
10498 		soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
10499 		soc->wlan_cfg_ctx->rx_enable_eol_data_check,
10500 		soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
10501 }
10502 
10503 #else
10504 static inline
10505 void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
10506 					struct cdp_config_params *params)
10507 { }
10508 
10509 #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
10510 
10511 /**
10512  * dp_update_config_parameters() - API to store datapath
10513  *                            config parameters
10514  * @psoc: soc handle
10515  * @params: ini parameter handle
10516  *
10517  * Return: status
10518  */
10519 static
10520 QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
10521 				struct cdp_config_params *params)
10522 {
10523 	struct dp_soc *soc = (struct dp_soc *)psoc;
10524 
10525 	if (!(soc)) {
10526 		dp_cdp_err("%pK: Invalid handle", soc);
10527 		return QDF_STATUS_E_INVAL;
10528 	}
10529 
10530 	soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
10531 	soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
10532 	soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
10533 	soc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload =
10534 				params->p2p_tcp_udp_checksumoffload;
10535 	soc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload =
10536 				params->nan_tcp_udp_checksumoffload;
10537 	soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
10538 				params->tcp_udp_checksumoffload;
10539 	soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
10540 	soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
10541 	soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
10542 
10543 	dp_update_rx_soft_irq_limit_params(soc, params);
10544 	dp_update_flow_control_parameters(soc, params);
10545 
10546 	return QDF_STATUS_SUCCESS;
10547 }
10548 
10549 static struct cdp_wds_ops dp_ops_wds = {
10550 	.vdev_set_wds = dp_vdev_set_wds,
10551 #ifdef WDS_VENDOR_EXTENSION
10552 	.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
10553 	.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
10554 #endif
10555 };
10556 
10557 /**
10558  * dp_txrx_data_tx_cb_set() - set the callback for non standard tx
10559  * @soc_hdl: datapath soc handle
10560  * @vdev_id: virtual interface id
10561  * @callback: callback function
10562  * @ctxt: callback context
10563  *
10564  */
10565 static void
10566 dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10567 		       ol_txrx_data_tx_cb callback, void *ctxt)
10568 {
10569 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10570 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10571 						     DP_MOD_ID_CDP);
10572 
10573 	if (!vdev)
10574 		return;
10575 
10576 	vdev->tx_non_std_data_callback.func = callback;
10577 	vdev->tx_non_std_data_callback.ctxt = ctxt;
10578 
10579 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10580 }
10581 
10582 /**
10583  * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
10584  * @soc: datapath soc handle
10585  * @pdev_id: id of datapath pdev handle
10586  *
10587  * Return: opaque pointer to dp txrx handle
10588  */
10589 static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id)
10590 {
10591 	struct dp_pdev *pdev =
10592 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10593 						   pdev_id);
10594 	if (qdf_unlikely(!pdev))
10595 		return NULL;
10596 
10597 	return pdev->dp_txrx_handle;
10598 }
10599 
10600 /**
10601  * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
10602  * @soc: datapath soc handle
10603  * @pdev_id: id of datapath pdev handle
10604  * @dp_txrx_hdl: opaque pointer for dp_txrx_handle
10605  *
10606  * Return: void
10607  */
10608 static void
10609 dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id,
10610 			   void *dp_txrx_hdl)
10611 {
10612 	struct dp_pdev *pdev =
10613 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10614 						   pdev_id);
10615 
10616 	if (!pdev)
10617 		return;
10618 
10619 	pdev->dp_txrx_handle = dp_txrx_hdl;
10620 }
10621 
10622 /**
10623  * dp_vdev_get_dp_ext_handle() - get dp handle from vdev
10624  * @soc_hdl: datapath soc handle
10625  * @vdev_id: vdev id
10626  *
10627  * Return: opaque pointer to dp txrx handle
10628  */
10629 static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc_hdl,
10630 				       uint8_t vdev_id)
10631 {
10632 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10633 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10634 						     DP_MOD_ID_CDP);
10635 	void *dp_ext_handle;
10636 
10637 	if (!vdev)
10638 		return NULL;
10639 	dp_ext_handle = vdev->vdev_dp_ext_handle;
10640 
10641 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10642 	return dp_ext_handle;
10643 }
10644 
10645 /**
10646  * dp_vdev_set_dp_ext_handle() - set dp handle in vdev
10647  * @soc_hdl: datapath soc handle
10648  * @vdev_id: vdev id
10649  * @size: size of advance dp handle
10650  *
10651  * Return: QDF_STATUS
10652  */
10653 static QDF_STATUS
10654 dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc_hdl, uint8_t vdev_id,
10655 			  uint16_t size)
10656 {
10657 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10658 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10659 						     DP_MOD_ID_CDP);
10660 	void *dp_ext_handle;
10661 
10662 	if (!vdev)
10663 		return QDF_STATUS_E_FAILURE;
10664 
10665 	dp_ext_handle = qdf_mem_malloc(size);
10666 
10667 	if (!dp_ext_handle) {
10668 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10669 		return QDF_STATUS_E_FAILURE;
10670 	}
10671 
10672 	vdev->vdev_dp_ext_handle = dp_ext_handle;
10673 
10674 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10675 	return QDF_STATUS_SUCCESS;
10676 }
10677 
10678 /**
10679  * dp_vdev_inform_ll_conn() - Inform vdev to add/delete a latency critical
10680  *			      connection for this vdev
10681  * @soc_hdl: CDP soc handle
10682  * @vdev_id: vdev ID
10683  * @action: Add/Delete action
10684  *
10685  * Return: QDF_STATUS.
10686  */
10687 static QDF_STATUS
10688 dp_vdev_inform_ll_conn(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10689 		       enum vdev_ll_conn_actions action)
10690 {
10691 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10692 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
10693 						     DP_MOD_ID_CDP);
10694 
10695 	if (!vdev) {
10696 		dp_err("LL connection action for invalid vdev %d", vdev_id);
10697 		return QDF_STATUS_E_FAILURE;
10698 	}
10699 
10700 	switch (action) {
10701 	case CDP_VDEV_LL_CONN_ADD:
10702 		vdev->num_latency_critical_conn++;
10703 		break;
10704 
10705 	case CDP_VDEV_LL_CONN_DEL:
10706 		vdev->num_latency_critical_conn--;
10707 		break;
10708 
10709 	default:
10710 		dp_err("LL connection action invalid %d", action);
10711 		break;
10712 	}
10713 
10714 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
10715 	return QDF_STATUS_SUCCESS;
10716 }
10717 
10718 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
10719 /**
10720  * dp_soc_set_swlm_enable() - Enable/Disable SWLM if initialized.
10721  * @soc_hdl: CDP Soc handle
10722  * @value: Enable/Disable value
10723  *
10724  * Return: QDF_STATUS
10725  */
10726 static QDF_STATUS dp_soc_set_swlm_enable(struct cdp_soc_t *soc_hdl,
10727 					 uint8_t value)
10728 {
10729 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10730 
10731 	if (!soc->swlm.is_init) {
10732 		dp_err("SWLM is not initialized");
10733 		return QDF_STATUS_E_FAILURE;
10734 	}
10735 
10736 	soc->swlm.is_enabled = !!value;
10737 
10738 	return QDF_STATUS_SUCCESS;
10739 }
10740 
10741 /**
10742  * dp_soc_is_swlm_enabled() - Check if SWLM is enabled.
10743  * @soc_hdl: CDP Soc handle
10744  *
10745  * Return: QDF_STATUS
10746  */
10747 static uint8_t dp_soc_is_swlm_enabled(struct cdp_soc_t *soc_hdl)
10748 {
10749 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
10750 
10751 	return soc->swlm.is_enabled;
10752 }
10753 #endif
10754 
10755 /**
10756  * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
10757  * @soc_handle: datapath soc handle
10758  *
10759  * Return: opaque pointer to external dp (non-core DP)
10760  */
10761 static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
10762 {
10763 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10764 
10765 	return soc->external_txrx_handle;
10766 }
10767 
10768 /**
10769  * dp_soc_set_dp_txrx_handle() - set external dp handle in soc
10770  * @soc_handle: datapath soc handle
10771  * @txrx_handle: opaque pointer to external dp (non-core DP)
10772  *
10773  * Return: void
10774  */
10775 static void
10776 dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
10777 {
10778 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10779 
10780 	soc->external_txrx_handle = txrx_handle;
10781 }
10782 
10783 /**
10784  * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
10785  * @soc_hdl: datapath soc handle
10786  * @pdev_id: id of the datapath pdev handle
10787  * @lmac_id: lmac id
10788  *
10789  * Return: QDF_STATUS
10790  */
10791 static QDF_STATUS
10792 dp_soc_map_pdev_to_lmac
10793 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10794 	 uint32_t lmac_id)
10795 {
10796 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10797 
10798 	wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx,
10799 				pdev_id,
10800 				lmac_id);
10801 
10802 	/*Set host PDEV ID for lmac_id*/
10803 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10804 			      pdev_id,
10805 			      lmac_id);
10806 
10807 	return QDF_STATUS_SUCCESS;
10808 }
10809 
10810 /**
10811  * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping
10812  * @soc_hdl: datapath soc handle
10813  * @pdev_id: id of the datapath pdev handle
10814  * @lmac_id: lmac id
10815  *
10816  * In the event of a dynamic mode change, update the pdev to lmac mapping
10817  *
10818  * Return: QDF_STATUS
10819  */
10820 static QDF_STATUS
10821 dp_soc_handle_pdev_mode_change
10822 	(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
10823 	 uint32_t lmac_id)
10824 {
10825 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10826 	struct dp_vdev *vdev = NULL;
10827 	uint8_t hw_pdev_id, mac_id;
10828 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc,
10829 								  pdev_id);
10830 	int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
10831 
10832 	if (qdf_unlikely(!pdev))
10833 		return QDF_STATUS_E_FAILURE;
10834 
10835 	pdev->lmac_id = lmac_id;
10836 	pdev->target_pdev_id =
10837 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
10838 	dp_info("mode change %d %d", pdev->pdev_id, pdev->lmac_id);
10839 
10840 	/*Set host PDEV ID for lmac_id*/
10841 	wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
10842 			      pdev->pdev_id,
10843 			      lmac_id);
10844 
10845 	hw_pdev_id =
10846 		dp_get_target_pdev_id_for_host_pdev_id(soc,
10847 						       pdev->pdev_id);
10848 
10849 	/*
10850 	 * When NSS offload is enabled, send pdev_id->lmac_id
10851 	 * and pdev_id to hw_pdev_id to NSS FW
10852 	 */
10853 	if (nss_config) {
10854 		mac_id = pdev->lmac_id;
10855 		if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id)
10856 			soc->cdp_soc.ol_ops->
10857 				pdev_update_lmac_n_target_pdev_id(
10858 				soc->ctrl_psoc,
10859 				&pdev_id, &mac_id, &hw_pdev_id);
10860 	}
10861 
10862 	qdf_spin_lock_bh(&pdev->vdev_list_lock);
10863 	TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
10864 		DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
10865 					       hw_pdev_id);
10866 		vdev->lmac_id = pdev->lmac_id;
10867 	}
10868 	qdf_spin_unlock_bh(&pdev->vdev_list_lock);
10869 
10870 	return QDF_STATUS_SUCCESS;
10871 }
10872 
10873 /**
10874  * dp_soc_set_pdev_status_down() - set pdev down/up status
10875  * @soc: datapath soc handle
10876  * @pdev_id: id of datapath pdev handle
10877  * @is_pdev_down: pdev down/up status
10878  *
10879  * Return: QDF_STATUS
10880  */
10881 static QDF_STATUS
10882 dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id,
10883 			    bool is_pdev_down)
10884 {
10885 	struct dp_pdev *pdev =
10886 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
10887 						   pdev_id);
10888 	if (!pdev)
10889 		return QDF_STATUS_E_FAILURE;
10890 
10891 	pdev->is_pdev_down = is_pdev_down;
10892 	return QDF_STATUS_SUCCESS;
10893 }
10894 
10895 /**
10896  * dp_get_cfg_capabilities() - get dp capabilities
10897  * @soc_handle: datapath soc handle
10898  * @dp_caps: enum for dp capabilities
10899  *
10900  * Return: bool to determine if dp caps is enabled
10901  */
10902 static bool
10903 dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
10904 			enum cdp_capabilities dp_caps)
10905 {
10906 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
10907 
10908 	return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
10909 }
10910 
10911 #ifdef FEATURE_AST
10912 static QDF_STATUS
10913 dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
10914 		       uint8_t *peer_mac)
10915 {
10916 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
10917 	QDF_STATUS status = QDF_STATUS_SUCCESS;
10918 	struct dp_peer *peer =
10919 			dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id,
10920 					       DP_MOD_ID_CDP);
10921 
10922 	/* Peer can be null for monitor vap mac address */
10923 	if (!peer) {
10924 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
10925 			  "%s: Invalid peer\n", __func__);
10926 		return QDF_STATUS_E_FAILURE;
10927 	}
10928 
10929 	dp_peer_update_state(soc, peer, DP_PEER_STATE_LOGICAL_DELETE);
10930 
10931 	qdf_spin_lock_bh(&soc->ast_lock);
10932 	dp_peer_send_wds_disconnect(soc, peer);
10933 	dp_peer_delete_ast_entries(soc, peer);
10934 	qdf_spin_unlock_bh(&soc->ast_lock);
10935 
10936 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
10937 	return status;
10938 }
10939 #endif
10940 
10941 #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS
10942 /**
10943  * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
10944  * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
10945  * @soc: cdp_soc handle
10946  * @pdev_id: id of cdp_pdev handle
10947  * @protocol_type: protocol type for which stats should be displayed
10948  *
10949  * Return: none
10950  */
10951 static inline void
10952 dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t  *soc, uint8_t pdev_id,
10953 				   uint16_t protocol_type)
10954 {
10955 }
10956 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
10957 
10958 #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
10959 /**
10960  * dp_update_pdev_rx_protocol_tag() - Add/remove a protocol tag that should be
10961  * applied to the desired protocol type packets
10962  * @soc: soc handle
10963  * @pdev_id: id of cdp_pdev handle
10964  * @enable_rx_protocol_tag: bitmask that indicates what protocol types
10965  * are enabled for tagging. zero indicates disable feature, non-zero indicates
10966  * enable feature
10967  * @protocol_type: new protocol type for which the tag is being added
10968  * @tag: user configured tag for the new protocol
10969  *
10970  * Return: Success
10971  */
10972 static inline QDF_STATUS
10973 dp_update_pdev_rx_protocol_tag(struct cdp_soc_t  *soc, uint8_t pdev_id,
10974 			       uint32_t enable_rx_protocol_tag,
10975 			       uint16_t protocol_type,
10976 			       uint16_t tag)
10977 {
10978 	return QDF_STATUS_SUCCESS;
10979 }
10980 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
10981 
10982 #ifndef WLAN_SUPPORT_RX_FLOW_TAG
10983 /**
10984  * dp_set_rx_flow_tag() - add/delete a flow
10985  * @cdp_soc: CDP soc handle
10986  * @pdev_id: id of cdp_pdev handle
10987  * @flow_info: flow tuple that is to be added to/deleted from flow search table
10988  *
10989  * Return: Success
10990  */
10991 static inline QDF_STATUS
10992 dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
10993 		   struct cdp_rx_flow_info *flow_info)
10994 {
10995 	return QDF_STATUS_SUCCESS;
10996 }
10997 /**
10998  * dp_dump_rx_flow_tag_stats() - dump the number of packets tagged for
10999  * given flow 5-tuple
11000  * @cdp_soc: soc handle
11001  * @pdev_id: id of cdp_pdev handle
11002  * @flow_info: flow 5-tuple for which stats should be displayed
11003  *
11004  * Return: Success
11005  */
11006 static inline QDF_STATUS
11007 dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id,
11008 			  struct cdp_rx_flow_info *flow_info)
11009 {
11010 	return QDF_STATUS_SUCCESS;
11011 }
11012 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
11013 
11014 static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t  *soc_hdl,
11015 					   uint32_t max_peers,
11016 					   uint32_t max_ast_index,
11017 					   uint8_t peer_map_unmap_versions)
11018 {
11019 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11020 	QDF_STATUS status;
11021 
11022 	soc->max_peers = max_peers;
11023 
11024 	wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
11025 
11026 	status = soc->arch_ops.txrx_peer_map_attach(soc);
11027 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11028 		dp_err("failure in allocating peer tables");
11029 		return QDF_STATUS_E_FAILURE;
11030 	}
11031 
11032 	dp_info("max_peers %u, calculated max_peers %u max_ast_index: %u",
11033 		max_peers, soc->max_peer_id, max_ast_index);
11034 
11035 	status = dp_peer_find_attach(soc);
11036 	if (!QDF_IS_STATUS_SUCCESS(status)) {
11037 		dp_err("Peer find attach failure");
11038 		goto fail;
11039 	}
11040 
11041 	soc->peer_map_unmap_versions = peer_map_unmap_versions;
11042 	soc->peer_map_attach_success = TRUE;
11043 
11044 	return QDF_STATUS_SUCCESS;
11045 fail:
11046 	soc->arch_ops.txrx_peer_map_detach(soc);
11047 
11048 	return status;
11049 }
11050 
11051 static QDF_STATUS dp_soc_set_param(struct cdp_soc_t  *soc_hdl,
11052 				   enum cdp_soc_param_t param,
11053 				   uint32_t value)
11054 {
11055 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11056 
11057 	switch (param) {
11058 	case DP_SOC_PARAM_MSDU_EXCEPTION_DESC:
11059 		soc->num_msdu_exception_desc = value;
11060 		dp_info("num_msdu exception_desc %u",
11061 			value);
11062 		break;
11063 	case DP_SOC_PARAM_CMEM_FSE_SUPPORT:
11064 		if (wlan_cfg_is_fst_in_cmem_enabled(soc->wlan_cfg_ctx))
11065 			soc->fst_in_cmem = !!value;
11066 		dp_info("FW supports CMEM FSE %u", value);
11067 		break;
11068 	case DP_SOC_PARAM_MAX_AST_AGEOUT:
11069 		soc->max_ast_ageout_count = value;
11070 		dp_info("Max ast ageout count %u", soc->max_ast_ageout_count);
11071 		break;
11072 	case DP_SOC_PARAM_EAPOL_OVER_CONTROL_PORT:
11073 		soc->eapol_over_control_port = value;
11074 		dp_info("Eapol over control_port:%d",
11075 			soc->eapol_over_control_port);
11076 		break;
11077 	case DP_SOC_PARAM_MULTI_PEER_GRP_CMD_SUPPORT:
11078 		soc->multi_peer_grp_cmd_supported = value;
11079 		dp_info("Multi Peer group command support:%d",
11080 			soc->multi_peer_grp_cmd_supported);
11081 		break;
11082 	case DP_SOC_PARAM_RSSI_DBM_CONV_SUPPORT:
11083 		soc->features.rssi_dbm_conv_support = value;
11084 		dp_info("Rssi dbm conversion support:%u",
11085 			soc->features.rssi_dbm_conv_support);
11086 		break;
11087 	case DP_SOC_PARAM_UMAC_HW_RESET_SUPPORT:
11088 		soc->features.umac_hw_reset_support = value;
11089 		dp_info("UMAC HW reset support :%u",
11090 			soc->features.umac_hw_reset_support);
11091 		break;
11092 	default:
11093 		dp_info("not handled param %d ", param);
11094 		break;
11095 	}
11096 
11097 	return QDF_STATUS_SUCCESS;
11098 }
11099 
11100 static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
11101 				      void *stats_ctx)
11102 {
11103 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11104 
11105 	soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx;
11106 }
11107 
11108 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11109 /**
11110  * dp_peer_flush_rate_stats_req() - Flush peer rate stats
11111  * @soc: Datapath SOC handle
11112  * @peer: Datapath peer
11113  * @arg: argument to iter function
11114  *
11115  * Return: QDF_STATUS
11116  */
11117 static void
11118 dp_peer_flush_rate_stats_req(struct dp_soc *soc, struct dp_peer *peer,
11119 			     void *arg)
11120 {
11121 	/* Skip self peer */
11122 	if (!qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw,
11123 			 QDF_MAC_ADDR_SIZE))
11124 		return;
11125 
11126 	dp_wdi_event_handler(
11127 		WDI_EVENT_FLUSH_RATE_STATS_REQ,
11128 		soc, dp_monitor_peer_get_peerstats_ctx(soc, peer),
11129 		peer->peer_id,
11130 		WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11131 }
11132 
11133 /**
11134  * dp_flush_rate_stats_req() - Flush peer rate stats in pdev
11135  * @soc_hdl: Datapath SOC handle
11136  * @pdev_id: pdev_id
11137  *
11138  * Return: QDF_STATUS
11139  */
11140 static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11141 					  uint8_t pdev_id)
11142 {
11143 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11144 	struct dp_pdev *pdev =
11145 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11146 						   pdev_id);
11147 	if (!pdev)
11148 		return QDF_STATUS_E_FAILURE;
11149 
11150 	dp_pdev_iterate_peer(pdev, dp_peer_flush_rate_stats_req, NULL,
11151 			     DP_MOD_ID_CDP);
11152 
11153 	return QDF_STATUS_SUCCESS;
11154 }
11155 #else
11156 static inline QDF_STATUS
11157 dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
11158 			uint8_t pdev_id)
11159 {
11160 	return QDF_STATUS_SUCCESS;
11161 }
11162 #endif
11163 
11164 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11165 #ifdef WLAN_FEATURE_11BE_MLO
11166 /**
11167  * dp_get_peer_extd_rate_link_stats() - function to get peer
11168  *				extended rate and link stats
11169  * @soc_hdl: dp soc handler
11170  * @mac_addr: mac address of peer
11171  *
11172  * Return: QDF_STATUS
11173  */
11174 static QDF_STATUS
11175 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11176 {
11177 	uint8_t i;
11178 	struct dp_peer *link_peer;
11179 	struct dp_soc *link_peer_soc;
11180 	struct dp_mld_link_peers link_peers_info;
11181 	struct dp_peer *peer = NULL;
11182 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11183 	struct cdp_peer_info peer_info = { 0 };
11184 
11185 	if (!mac_addr) {
11186 		dp_err("NULL peer mac addr");
11187 		return QDF_STATUS_E_FAILURE;
11188 	}
11189 
11190 	DP_PEER_INFO_PARAMS_INIT(&peer_info, DP_VDEV_ALL, mac_addr, false,
11191 				 CDP_WILD_PEER_TYPE);
11192 
11193 	peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
11194 	if (!peer) {
11195 		dp_err("Peer is NULL");
11196 		return QDF_STATUS_E_FAILURE;
11197 	}
11198 
11199 	if (IS_MLO_DP_MLD_PEER(peer)) {
11200 		dp_get_link_peers_ref_from_mld_peer(soc, peer,
11201 						    &link_peers_info,
11202 						    DP_MOD_ID_CDP);
11203 		for (i = 0; i < link_peers_info.num_links; i++) {
11204 			link_peer = link_peers_info.link_peers[i];
11205 			link_peer_soc = link_peer->vdev->pdev->soc;
11206 			dp_wdi_event_handler(WDI_EVENT_FLUSH_RATE_STATS_REQ,
11207 					     link_peer_soc,
11208 					     dp_monitor_peer_get_peerstats_ctx
11209 					     (link_peer_soc, link_peer),
11210 					     link_peer->peer_id,
11211 					     WDI_NO_VAL,
11212 					     link_peer->vdev->pdev->pdev_id);
11213 		}
11214 		dp_release_link_peers_ref(&link_peers_info, DP_MOD_ID_CDP);
11215 	} else {
11216 		dp_wdi_event_handler(
11217 				WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11218 				dp_monitor_peer_get_peerstats_ctx(soc, peer),
11219 				peer->peer_id,
11220 				WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11221 	}
11222 
11223 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11224 	return QDF_STATUS_SUCCESS;
11225 }
11226 #else
11227 static QDF_STATUS
11228 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11229 {
11230 	struct dp_peer *peer = NULL;
11231 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11232 
11233 	if (!mac_addr) {
11234 		dp_err("NULL peer mac addr");
11235 		return QDF_STATUS_E_FAILURE;
11236 	}
11237 
11238 	peer = dp_peer_find_hash_find(soc, mac_addr, 0,
11239 				      DP_VDEV_ALL, DP_MOD_ID_CDP);
11240 	if (!peer) {
11241 		dp_err("Peer is NULL");
11242 		return QDF_STATUS_E_FAILURE;
11243 	}
11244 
11245 	dp_wdi_event_handler(
11246 			WDI_EVENT_FLUSH_RATE_STATS_REQ, soc,
11247 			dp_monitor_peer_get_peerstats_ctx(soc, peer),
11248 			peer->peer_id,
11249 			WDI_NO_VAL, peer->vdev->pdev->pdev_id);
11250 
11251 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11252 	return QDF_STATUS_SUCCESS;
11253 }
11254 #endif
11255 #else
11256 static inline QDF_STATUS
11257 dp_get_peer_extd_rate_link_stats(struct cdp_soc_t *soc_hdl, uint8_t *mac_addr)
11258 {
11259 	return QDF_STATUS_SUCCESS;
11260 }
11261 #endif
11262 
11263 static void *dp_peer_get_peerstats_ctx(struct cdp_soc_t *soc_hdl,
11264 				       uint8_t vdev_id,
11265 				       uint8_t *mac_addr)
11266 {
11267 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
11268 	struct dp_peer *peer;
11269 	void *peerstats_ctx = NULL;
11270 
11271 	if (mac_addr) {
11272 		peer = dp_peer_find_hash_find(soc, mac_addr,
11273 					      0, vdev_id,
11274 					      DP_MOD_ID_CDP);
11275 		if (!peer)
11276 			return NULL;
11277 
11278 		if (!IS_MLO_DP_MLD_PEER(peer))
11279 			peerstats_ctx = dp_monitor_peer_get_peerstats_ctx(soc,
11280 									  peer);
11281 
11282 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
11283 	}
11284 
11285 	return peerstats_ctx;
11286 }
11287 
11288 #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
11289 static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11290 					   uint8_t pdev_id,
11291 					   void *buf)
11292 {
11293 	 dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
11294 			      (struct dp_soc *)soc, buf, HTT_INVALID_PEER,
11295 			      WDI_NO_VAL, pdev_id);
11296 	return QDF_STATUS_SUCCESS;
11297 }
11298 #else
11299 static inline QDF_STATUS
11300 dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
11301 			 uint8_t pdev_id,
11302 			 void *buf)
11303 {
11304 	return QDF_STATUS_SUCCESS;
11305 }
11306 #endif
11307 
11308 static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
11309 {
11310 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11311 
11312 	return soc->rate_stats_ctx;
11313 }
11314 
11315 /**
11316  * dp_get_cfg() - get dp cfg
11317  * @soc: cdp soc handle
11318  * @cfg: cfg enum
11319  *
11320  * Return: cfg value
11321  */
11322 static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg)
11323 {
11324 	struct dp_soc *dpsoc = (struct dp_soc *)soc;
11325 	uint32_t value = 0;
11326 
11327 	switch (cfg) {
11328 	case cfg_dp_enable_data_stall:
11329 		value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
11330 		break;
11331 	case cfg_dp_enable_p2p_ip_tcp_udp_checksum_offload:
11332 		value = dpsoc->wlan_cfg_ctx->p2p_tcp_udp_checksumoffload;
11333 		break;
11334 	case cfg_dp_enable_nan_ip_tcp_udp_checksum_offload:
11335 		value = dpsoc->wlan_cfg_ctx->nan_tcp_udp_checksumoffload;
11336 		break;
11337 	case cfg_dp_enable_ip_tcp_udp_checksum_offload:
11338 		value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
11339 		break;
11340 	case cfg_dp_disable_legacy_mode_csum_offload:
11341 		value = dpsoc->wlan_cfg_ctx->
11342 					legacy_mode_checksumoffload_disable;
11343 		break;
11344 	case cfg_dp_tso_enable:
11345 		value = dpsoc->wlan_cfg_ctx->tso_enabled;
11346 		break;
11347 	case cfg_dp_lro_enable:
11348 		value = dpsoc->wlan_cfg_ctx->lro_enabled;
11349 		break;
11350 	case cfg_dp_gro_enable:
11351 		value = dpsoc->wlan_cfg_ctx->gro_enabled;
11352 		break;
11353 	case cfg_dp_tc_based_dyn_gro_enable:
11354 		value = dpsoc->wlan_cfg_ctx->tc_based_dynamic_gro;
11355 		break;
11356 	case cfg_dp_tc_ingress_prio:
11357 		value = dpsoc->wlan_cfg_ctx->tc_ingress_prio;
11358 		break;
11359 	case cfg_dp_sg_enable:
11360 		value = dpsoc->wlan_cfg_ctx->sg_enabled;
11361 		break;
11362 	case cfg_dp_tx_flow_start_queue_offset:
11363 		value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
11364 		break;
11365 	case cfg_dp_tx_flow_stop_queue_threshold:
11366 		value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
11367 		break;
11368 	case cfg_dp_disable_intra_bss_fwd:
11369 		value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
11370 		break;
11371 	case cfg_dp_pktlog_buffer_size:
11372 		value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
11373 		break;
11374 	case cfg_dp_wow_check_rx_pending:
11375 		value = dpsoc->wlan_cfg_ctx->wow_check_rx_pending_enable;
11376 		break;
11377 	case cfg_dp_local_pkt_capture:
11378 		value = wlan_cfg_get_local_pkt_capture(dpsoc->wlan_cfg_ctx);
11379 		break;
11380 	default:
11381 		value =  0;
11382 	}
11383 
11384 	return value;
11385 }
11386 
11387 #ifdef PEER_FLOW_CONTROL
11388 /**
11389  * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
11390  * @soc_handle: datapath soc handle
11391  * @pdev_id: id of datapath pdev handle
11392  * @param: ol ath params
11393  * @value: value of the flag
11394  * @buff: Buffer to be passed
11395  *
11396  * Implemented this function same as legacy function. In legacy code, single
11397  * function is used to display stats and update pdev params.
11398  *
11399  * Return: 0 for success. nonzero for failure.
11400  */
11401 static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle,
11402 					       uint8_t pdev_id,
11403 					       enum _dp_param_t param,
11404 					       uint32_t value, void *buff)
11405 {
11406 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11407 	struct dp_pdev *pdev =
11408 		dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc,
11409 						   pdev_id);
11410 
11411 	if (qdf_unlikely(!pdev))
11412 		return 1;
11413 
11414 	soc = pdev->soc;
11415 	if (!soc)
11416 		return 1;
11417 
11418 	switch (param) {
11419 #ifdef QCA_ENH_V3_STATS_SUPPORT
11420 	case DP_PARAM_VIDEO_DELAY_STATS_FC:
11421 		if (value)
11422 			pdev->delay_stats_flag = true;
11423 		else
11424 			pdev->delay_stats_flag = false;
11425 		break;
11426 	case DP_PARAM_VIDEO_STATS_FC:
11427 		qdf_print("------- TID Stats ------\n");
11428 		dp_pdev_print_tid_stats(pdev);
11429 		qdf_print("------ Delay Stats ------\n");
11430 		dp_pdev_print_delay_stats(pdev);
11431 		qdf_print("------ Rx Error Stats ------\n");
11432 		dp_pdev_print_rx_error_stats(pdev);
11433 		break;
11434 #endif
11435 	case DP_PARAM_TOTAL_Q_SIZE:
11436 		{
11437 			uint32_t tx_min, tx_max;
11438 
11439 			tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
11440 			tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
11441 
11442 			if (!buff) {
11443 				if ((value >= tx_min) && (value <= tx_max)) {
11444 					pdev->num_tx_allowed = value;
11445 				} else {
11446 					dp_tx_info("%pK: Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
11447 						   soc, tx_min, tx_max);
11448 					break;
11449 				}
11450 			} else {
11451 				*(int *)buff = pdev->num_tx_allowed;
11452 			}
11453 		}
11454 		break;
11455 	default:
11456 		dp_tx_info("%pK: not handled param %d ", soc, param);
11457 		break;
11458 	}
11459 
11460 	return 0;
11461 }
11462 #endif
11463 
11464 #ifdef DP_UMAC_HW_RESET_SUPPORT
11465 /**
11466  * dp_reset_interrupt_ring_masks() - Reset rx interrupt masks
11467  * @soc: dp soc handle
11468  *
11469  * Return: void
11470  */
11471 static void dp_reset_interrupt_ring_masks(struct dp_soc *soc)
11472 {
11473 	struct dp_intr_bkp *intr_bkp;
11474 	struct dp_intr *intr_ctx;
11475 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11476 	int i;
11477 
11478 	intr_bkp =
11479 	(struct dp_intr_bkp *)qdf_mem_malloc_atomic(sizeof(struct dp_intr_bkp) *
11480 			num_ctxt);
11481 
11482 	qdf_assert_always(intr_bkp);
11483 
11484 	soc->umac_reset_ctx.intr_ctx_bkp = intr_bkp;
11485 	for (i = 0; i < num_ctxt; i++) {
11486 		intr_ctx = &soc->intr_ctx[i];
11487 
11488 		intr_bkp->tx_ring_mask = intr_ctx->tx_ring_mask;
11489 		intr_bkp->rx_ring_mask = intr_ctx->rx_ring_mask;
11490 		intr_bkp->rx_mon_ring_mask = intr_ctx->rx_mon_ring_mask;
11491 		intr_bkp->rx_err_ring_mask = intr_ctx->rx_err_ring_mask;
11492 		intr_bkp->rx_wbm_rel_ring_mask = intr_ctx->rx_wbm_rel_ring_mask;
11493 		intr_bkp->reo_status_ring_mask = intr_ctx->reo_status_ring_mask;
11494 		intr_bkp->rxdma2host_ring_mask = intr_ctx->rxdma2host_ring_mask;
11495 		intr_bkp->host2rxdma_ring_mask = intr_ctx->host2rxdma_ring_mask;
11496 		intr_bkp->host2rxdma_mon_ring_mask =
11497 					intr_ctx->host2rxdma_mon_ring_mask;
11498 		intr_bkp->tx_mon_ring_mask = intr_ctx->tx_mon_ring_mask;
11499 
11500 		intr_ctx->tx_ring_mask = 0;
11501 		intr_ctx->rx_ring_mask = 0;
11502 		intr_ctx->rx_mon_ring_mask = 0;
11503 		intr_ctx->rx_err_ring_mask = 0;
11504 		intr_ctx->rx_wbm_rel_ring_mask = 0;
11505 		intr_ctx->reo_status_ring_mask = 0;
11506 		intr_ctx->rxdma2host_ring_mask = 0;
11507 		intr_ctx->host2rxdma_ring_mask = 0;
11508 		intr_ctx->host2rxdma_mon_ring_mask = 0;
11509 		intr_ctx->tx_mon_ring_mask = 0;
11510 
11511 		intr_bkp++;
11512 	}
11513 }
11514 
11515 /**
11516  * dp_restore_interrupt_ring_masks() - Restore rx interrupt masks
11517  * @soc: dp soc handle
11518  *
11519  * Return: void
11520  */
11521 static void dp_restore_interrupt_ring_masks(struct dp_soc *soc)
11522 {
11523 	struct dp_intr_bkp *intr_bkp = soc->umac_reset_ctx.intr_ctx_bkp;
11524 	struct dp_intr_bkp *intr_bkp_base = intr_bkp;
11525 	struct dp_intr *intr_ctx;
11526 	int num_ctxt = wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx);
11527 	int i;
11528 
11529 	if (!intr_bkp)
11530 		return;
11531 
11532 	for (i = 0; i < num_ctxt; i++) {
11533 		intr_ctx = &soc->intr_ctx[i];
11534 
11535 		intr_ctx->tx_ring_mask = intr_bkp->tx_ring_mask;
11536 		intr_ctx->rx_ring_mask = intr_bkp->rx_ring_mask;
11537 		intr_ctx->rx_mon_ring_mask = intr_bkp->rx_mon_ring_mask;
11538 		intr_ctx->rx_err_ring_mask = intr_bkp->rx_err_ring_mask;
11539 		intr_ctx->rx_wbm_rel_ring_mask = intr_bkp->rx_wbm_rel_ring_mask;
11540 		intr_ctx->reo_status_ring_mask = intr_bkp->reo_status_ring_mask;
11541 		intr_ctx->rxdma2host_ring_mask = intr_bkp->rxdma2host_ring_mask;
11542 		intr_ctx->host2rxdma_ring_mask = intr_bkp->host2rxdma_ring_mask;
11543 		intr_ctx->host2rxdma_mon_ring_mask =
11544 			intr_bkp->host2rxdma_mon_ring_mask;
11545 		intr_ctx->tx_mon_ring_mask = intr_bkp->tx_mon_ring_mask;
11546 
11547 		intr_bkp++;
11548 	}
11549 
11550 	qdf_mem_free(intr_bkp_base);
11551 	soc->umac_reset_ctx.intr_ctx_bkp = NULL;
11552 }
11553 
11554 /**
11555  * dp_resume_tx_hardstart() - Restore the old Tx hardstart functions
11556  * @soc: dp soc handle
11557  *
11558  * Return: void
11559  */
11560 static void dp_resume_tx_hardstart(struct dp_soc *soc)
11561 {
11562 	struct dp_vdev *vdev;
11563 	struct ol_txrx_hardtart_ctxt ctxt = {0};
11564 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11565 	int i;
11566 
11567 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11568 		struct dp_pdev *pdev = soc->pdev_list[i];
11569 
11570 		if (!pdev)
11571 			continue;
11572 
11573 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11574 			uint8_t vdev_id = vdev->vdev_id;
11575 
11576 			dp_vdev_fetch_tx_handler(vdev, soc, &ctxt);
11577 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11578 								    vdev_id,
11579 								    &ctxt);
11580 		}
11581 	}
11582 }
11583 
11584 /**
11585  * dp_pause_tx_hardstart() - Register Tx hardstart functions to drop packets
11586  * @soc: dp soc handle
11587  *
11588  * Return: void
11589  */
11590 static void dp_pause_tx_hardstart(struct dp_soc *soc)
11591 {
11592 	struct dp_vdev *vdev;
11593 	struct ol_txrx_hardtart_ctxt ctxt;
11594 	struct cdp_ctrl_objmgr_psoc *psoc = soc->ctrl_psoc;
11595 	int i;
11596 
11597 	ctxt.tx = &dp_tx_drop;
11598 	ctxt.tx_fast = &dp_tx_drop;
11599 	ctxt.tx_exception = &dp_tx_exc_drop;
11600 
11601 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11602 		struct dp_pdev *pdev = soc->pdev_list[i];
11603 
11604 		if (!pdev)
11605 			continue;
11606 
11607 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11608 			uint8_t vdev_id = vdev->vdev_id;
11609 
11610 			soc->cdp_soc.ol_ops->dp_update_tx_hardstart(psoc,
11611 								    vdev_id,
11612 								    &ctxt);
11613 		}
11614 	}
11615 }
11616 
11617 /**
11618  * dp_unregister_notify_umac_pre_reset_fw_callback() - unregister notify_fw_cb
11619  * @soc: dp soc handle
11620  *
11621  * Return: void
11622  */
11623 static inline
11624 void dp_unregister_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11625 {
11626 	soc->notify_fw_callback = NULL;
11627 }
11628 
11629 /**
11630  * dp_check_n_notify_umac_prereset_done() - Send pre reset done to firmware
11631  * @soc: dp soc handle
11632  *
11633  * Return: void
11634  */
11635 static inline
11636 void dp_check_n_notify_umac_prereset_done(struct dp_soc *soc)
11637 {
11638 	/* Some Cpu(s) is processing the umac rings*/
11639 	if (soc->service_rings_running)
11640 		return;
11641 
11642 	/* Unregister the callback */
11643 	dp_unregister_notify_umac_pre_reset_fw_callback(soc);
11644 
11645 	/* Check if notify was already sent by any other thread */
11646 	if (qdf_atomic_test_and_set_bit(DP_UMAC_RESET_NOTIFY_DONE,
11647 					&soc->service_rings_running))
11648 		return;
11649 
11650 	/* Notify the firmware that Umac pre reset is complete */
11651 	dp_umac_reset_notify_action_completion(soc,
11652 					       UMAC_RESET_ACTION_DO_PRE_RESET);
11653 }
11654 
11655 /**
11656  * dp_register_notify_umac_pre_reset_fw_callback() - register notify_fw_cb
11657  * @soc: dp soc handle
11658  *
11659  * Return: void
11660  */
11661 static inline
11662 void dp_register_notify_umac_pre_reset_fw_callback(struct dp_soc *soc)
11663 {
11664 	soc->notify_fw_callback = dp_check_n_notify_umac_prereset_done;
11665 }
11666 
11667 #ifdef DP_UMAC_HW_HARD_RESET
11668 /**
11669  * dp_set_umac_regs() - Reinitialize host umac registers
11670  * @soc: dp soc handle
11671  *
11672  * Return: void
11673  */
11674 static void dp_set_umac_regs(struct dp_soc *soc)
11675 {
11676 	int i;
11677 	struct hal_reo_params reo_params;
11678 
11679 	qdf_mem_zero(&reo_params, sizeof(reo_params));
11680 
11681 	if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
11682 		if (soc->arch_ops.reo_remap_config(soc, &reo_params.remap0,
11683 						   &reo_params.remap1,
11684 						   &reo_params.remap2))
11685 			reo_params.rx_hash_enabled = true;
11686 		else
11687 			reo_params.rx_hash_enabled = false;
11688 	}
11689 
11690 	reo_params.reo_qref = &soc->reo_qref;
11691 	hal_reo_setup(soc->hal_soc, &reo_params, 0);
11692 
11693 	soc->arch_ops.dp_cc_reg_cfg_init(soc, true);
11694 
11695 	for (i = 0; i < PCP_TID_MAP_MAX; i++)
11696 		hal_tx_update_pcp_tid_map(soc->hal_soc, soc->pcp_tid_map[i], i);
11697 
11698 	for (i = 0; i < MAX_PDEV_CNT; i++) {
11699 		struct dp_vdev *vdev = NULL;
11700 		struct dp_pdev *pdev = soc->pdev_list[i];
11701 
11702 		if (!pdev)
11703 			continue;
11704 
11705 		for (i = 0; i < soc->num_hw_dscp_tid_map; i++)
11706 			hal_tx_set_dscp_tid_map(soc->hal_soc,
11707 						pdev->dscp_tid_map[i], i);
11708 
11709 		TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
11710 			soc->arch_ops.dp_bank_reconfig(soc, vdev);
11711 			soc->arch_ops.dp_reconfig_tx_vdev_mcast_ctrl(soc,
11712 								      vdev);
11713 		}
11714 	}
11715 }
11716 #else
11717 static void dp_set_umac_regs(struct dp_soc *soc)
11718 {
11719 }
11720 #endif
11721 
11722 /**
11723  * dp_reinit_rings() - Reinitialize host managed rings
11724  * @soc: dp soc handle
11725  *
11726  * Return: QDF_STATUS
11727  */
11728 static void dp_reinit_rings(struct dp_soc *soc)
11729 {
11730 	unsigned long end;
11731 
11732 	dp_soc_srng_deinit(soc);
11733 	dp_hw_link_desc_ring_deinit(soc);
11734 
11735 	/* Busy wait for 2 ms to make sure the rings are in idle state
11736 	 * before we enable them again
11737 	 */
11738 	end = jiffies + msecs_to_jiffies(2);
11739 	while (time_before(jiffies, end))
11740 		;
11741 
11742 	dp_hw_link_desc_ring_init(soc);
11743 	dp_link_desc_ring_replenish(soc, WLAN_INVALID_PDEV_ID);
11744 	dp_soc_srng_init(soc);
11745 }
11746 
11747 /**
11748  * dp_umac_reset_action_trigger_recovery() - Handle FW Umac recovery trigger
11749  * @soc: dp soc handle
11750  *
11751  * Return: QDF_STATUS
11752  */
11753 static QDF_STATUS dp_umac_reset_action_trigger_recovery(struct dp_soc *soc)
11754 {
11755 	enum umac_reset_action action = UMAC_RESET_ACTION_DO_TRIGGER_RECOVERY;
11756 
11757 	return dp_umac_reset_notify_action_completion(soc, action);
11758 }
11759 
11760 #ifdef WLAN_SUPPORT_PPEDS
11761 /**
11762  * dp_umac_reset_service_handle_n_notify_done()
11763  *	Handle Umac pre reset for direct switch
11764  * @soc: dp soc handle
11765  *
11766  * Return: QDF_STATUS
11767  */
11768 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11769 {
11770 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11771 	    !soc->arch_ops.txrx_soc_ppeds_service_status_update ||
11772 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_stop)
11773 		goto non_ppeds;
11774 
11775 	/*
11776 	 * Check if ppeds is enabled on SoC.
11777 	 */
11778 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11779 		goto non_ppeds;
11780 
11781 	/*
11782 	 * Start the UMAC pre reset done service.
11783 	 */
11784 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, true);
11785 
11786 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11787 
11788 	soc->arch_ops.txrx_soc_ppeds_interrupt_stop(soc);
11789 
11790 	dp_soc_ppeds_stop((struct cdp_soc_t *)soc);
11791 
11792 	/*
11793 	 * UMAC pre reset service complete
11794 	 */
11795 	soc->arch_ops.txrx_soc_ppeds_service_status_update(soc, false);
11796 
11797 	soc->umac_reset_ctx.nbuf_list = NULL;
11798 	return QDF_STATUS_SUCCESS;
11799 
11800 non_ppeds:
11801 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11802 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11803 	soc->umac_reset_ctx.nbuf_list = NULL;
11804 	return QDF_STATUS_SUCCESS;
11805 }
11806 
11807 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11808 							 qdf_nbuf_t *nbuf_list)
11809 {
11810 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11811 	    !soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset)
11812 		return;
11813 
11814 	/*
11815 	 * Deinit of PPEDS Tx desc rings.
11816 	 */
11817 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc))
11818 		soc->arch_ops.txrx_soc_ppeds_txdesc_pool_reset(soc, nbuf_list);
11819 }
11820 
11821 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11822 {
11823 	if (!soc->arch_ops.txrx_soc_ppeds_enabled_check ||
11824 	    !soc->arch_ops.txrx_soc_ppeds_start ||
11825 	    !soc->arch_ops.txrx_soc_ppeds_interrupt_start)
11826 		return;
11827 
11828 	/*
11829 	 * Start PPEDS node and enable interrupt.
11830 	 */
11831 	if (soc->arch_ops.txrx_soc_ppeds_enabled_check(soc)) {
11832 		soc->arch_ops.txrx_soc_ppeds_start(soc);
11833 		soc->arch_ops.txrx_soc_ppeds_interrupt_start(soc);
11834 	}
11835 }
11836 #else
11837 static QDF_STATUS dp_umac_reset_service_handle_n_notify_done(struct dp_soc *soc)
11838 {
11839 	dp_register_notify_umac_pre_reset_fw_callback(soc);
11840 	dp_umac_reset_trigger_pre_reset_notify_cb(soc);
11841 	soc->umac_reset_ctx.nbuf_list = NULL;
11842 	return QDF_STATUS_SUCCESS;
11843 }
11844 
11845 static inline void dp_umac_reset_ppeds_txdesc_pool_reset(struct dp_soc *soc,
11846 							 qdf_nbuf_t *nbuf_list)
11847 {
11848 }
11849 
11850 static inline void dp_umac_reset_ppeds_start(struct dp_soc *soc)
11851 {
11852 }
11853 #endif
11854 
11855 /**
11856  * dp_umac_reset_handle_pre_reset() - Handle Umac prereset interrupt from FW
11857  * @soc: dp soc handle
11858  *
11859  * Return: QDF_STATUS
11860  */
11861 static QDF_STATUS dp_umac_reset_handle_pre_reset(struct dp_soc *soc)
11862 {
11863 	dp_reset_interrupt_ring_masks(soc);
11864 
11865 	dp_pause_tx_hardstart(soc);
11866 	dp_pause_reo_send_cmd(soc);
11867 	dp_umac_reset_service_handle_n_notify_done(soc);
11868 	return QDF_STATUS_SUCCESS;
11869 }
11870 
11871 /**
11872  * dp_umac_reset_handle_post_reset() - Handle Umac postreset interrupt from FW
11873  * @soc: dp soc handle
11874  *
11875  * Return: QDF_STATUS
11876  */
11877 static QDF_STATUS dp_umac_reset_handle_post_reset(struct dp_soc *soc)
11878 {
11879 	if (!soc->umac_reset_ctx.skel_enable) {
11880 		qdf_nbuf_t *nbuf_list = &soc->umac_reset_ctx.nbuf_list;
11881 
11882 		dp_set_umac_regs(soc);
11883 
11884 		dp_reinit_rings(soc);
11885 
11886 		dp_rx_desc_reuse(soc, nbuf_list);
11887 
11888 		dp_cleanup_reo_cmd_module(soc);
11889 
11890 		dp_umac_reset_ppeds_txdesc_pool_reset(soc, nbuf_list);
11891 
11892 		dp_tx_desc_pool_cleanup(soc, nbuf_list);
11893 
11894 		dp_reset_tid_q_setup(soc);
11895 	}
11896 
11897 	return dp_umac_reset_notify_action_completion(soc,
11898 					UMAC_RESET_ACTION_DO_POST_RESET_START);
11899 }
11900 
11901 /**
11902  * dp_umac_reset_handle_post_reset_complete() - Handle Umac postreset_complete
11903  *						interrupt from FW
11904  * @soc: dp soc handle
11905  *
11906  * Return: QDF_STATUS
11907  */
11908 static QDF_STATUS dp_umac_reset_handle_post_reset_complete(struct dp_soc *soc)
11909 {
11910 	QDF_STATUS status;
11911 	qdf_nbuf_t nbuf_list = soc->umac_reset_ctx.nbuf_list;
11912 
11913 	soc->umac_reset_ctx.nbuf_list = NULL;
11914 
11915 	soc->service_rings_running = 0;
11916 
11917 	dp_resume_reo_send_cmd(soc);
11918 
11919 	dp_umac_reset_ppeds_start(soc);
11920 
11921 	dp_restore_interrupt_ring_masks(soc);
11922 
11923 	dp_resume_tx_hardstart(soc);
11924 
11925 	status = dp_umac_reset_notify_action_completion(soc,
11926 				UMAC_RESET_ACTION_DO_POST_RESET_COMPLETE);
11927 
11928 	while (nbuf_list) {
11929 		qdf_nbuf_t nbuf = nbuf_list->next;
11930 
11931 		qdf_nbuf_free(nbuf_list);
11932 		nbuf_list = nbuf;
11933 	}
11934 
11935 	dp_umac_reset_info("Umac reset done on soc %pK\n trigger start : %u us "
11936 			   "trigger done : %u us prereset : %u us\n"
11937 			   "postreset : %u us \n postreset complete: %u us \n",
11938 			   soc,
11939 			   soc->umac_reset_ctx.ts.trigger_done -
11940 			   soc->umac_reset_ctx.ts.trigger_start,
11941 			   soc->umac_reset_ctx.ts.pre_reset_done -
11942 			   soc->umac_reset_ctx.ts.pre_reset_start,
11943 			   soc->umac_reset_ctx.ts.post_reset_done -
11944 			   soc->umac_reset_ctx.ts.post_reset_start,
11945 			   soc->umac_reset_ctx.ts.post_reset_complete_done -
11946 			   soc->umac_reset_ctx.ts.post_reset_complete_start);
11947 
11948 	return status;
11949 }
11950 #endif
11951 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
11952 static void
11953 dp_set_pkt_capture_mode(struct cdp_soc_t *soc_handle, bool val)
11954 {
11955 	struct dp_soc *soc = (struct dp_soc *)soc_handle;
11956 
11957 	soc->wlan_cfg_ctx->pkt_capture_mode = val;
11958 }
11959 #endif
11960 
11961 #ifdef HW_TX_DELAY_STATS_ENABLE
11962 /**
11963  * dp_enable_disable_vdev_tx_delay_stats() - Start/Stop tx delay stats capture
11964  * @soc_hdl: DP soc handle
11965  * @vdev_id: vdev id
11966  * @value: value
11967  *
11968  * Return: None
11969  */
11970 static void
11971 dp_enable_disable_vdev_tx_delay_stats(struct cdp_soc_t *soc_hdl,
11972 				      uint8_t vdev_id,
11973 				      uint8_t value)
11974 {
11975 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11976 	struct dp_vdev *vdev = NULL;
11977 
11978 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
11979 	if (!vdev)
11980 		return;
11981 
11982 	vdev->hw_tx_delay_stats_enabled = value;
11983 
11984 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
11985 }
11986 
11987 /**
11988  * dp_check_vdev_tx_delay_stats_enabled() - check the feature is enabled or not
11989  * @soc_hdl: DP soc handle
11990  * @vdev_id: vdev id
11991  *
11992  * Return: 1 if enabled, 0 if disabled
11993  */
11994 static uint8_t
11995 dp_check_vdev_tx_delay_stats_enabled(struct cdp_soc_t *soc_hdl,
11996 				     uint8_t vdev_id)
11997 {
11998 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
11999 	struct dp_vdev *vdev;
12000 	uint8_t ret_val = 0;
12001 
12002 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12003 	if (!vdev)
12004 		return ret_val;
12005 
12006 	ret_val = vdev->hw_tx_delay_stats_enabled;
12007 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12008 
12009 	return ret_val;
12010 }
12011 #endif
12012 
12013 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12014 static void
12015 dp_recovery_vdev_flush_peers(struct cdp_soc_t *cdp_soc,
12016 			     uint8_t vdev_id,
12017 			     bool mlo_peers_only)
12018 {
12019 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
12020 	struct dp_vdev *vdev;
12021 
12022 	vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
12023 
12024 	if (!vdev)
12025 		return;
12026 
12027 	dp_vdev_flush_peers((struct cdp_vdev *)vdev, false, mlo_peers_only);
12028 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12029 }
12030 #endif
12031 #ifdef QCA_GET_TSF_VIA_REG
12032 /**
12033  * dp_get_tsf_time() - get tsf time
12034  * @soc_hdl: Datapath soc handle
12035  * @tsf_id: TSF identifier
12036  * @mac_id: mac_id
12037  * @tsf: pointer to update tsf value
12038  * @tsf_sync_soc_time: pointer to update tsf sync time
12039  *
12040  * Return: None.
12041  */
12042 static inline void
12043 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12044 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12045 {
12046 	hal_get_tsf_time(((struct dp_soc *)soc_hdl)->hal_soc, tsf_id, mac_id,
12047 			 tsf, tsf_sync_soc_time);
12048 }
12049 #else
12050 static inline void
12051 dp_get_tsf_time(struct cdp_soc_t *soc_hdl, uint32_t tsf_id, uint32_t mac_id,
12052 		uint64_t *tsf, uint64_t *tsf_sync_soc_time)
12053 {
12054 }
12055 #endif
12056 
12057 /**
12058  * dp_get_tsf2_scratch_reg() - get tsf2 offset from the scratch register
12059  * @soc_hdl: Datapath soc handle
12060  * @mac_id: mac_id
12061  * @value: pointer to update tsf2 offset value
12062  *
12063  * Return: None.
12064  */
12065 static inline void
12066 dp_get_tsf2_scratch_reg(struct cdp_soc_t *soc_hdl, uint8_t mac_id,
12067 			uint64_t *value)
12068 {
12069 	hal_get_tsf2_offset(((struct dp_soc *)soc_hdl)->hal_soc, mac_id, value);
12070 }
12071 
12072 /**
12073  * dp_get_tqm_scratch_reg() - get tqm offset from the scratch register
12074  * @soc_hdl: Datapath soc handle
12075  * @value: pointer to update tqm offset value
12076  *
12077  * Return: None.
12078  */
12079 static inline void
12080 dp_get_tqm_scratch_reg(struct cdp_soc_t *soc_hdl, uint64_t *value)
12081 {
12082 	hal_get_tqm_offset(((struct dp_soc *)soc_hdl)->hal_soc, value);
12083 }
12084 
12085 /**
12086  * dp_set_tx_pause() - Pause or resume tx path
12087  * @soc_hdl: Datapath soc handle
12088  * @flag: set or clear is_tx_pause
12089  *
12090  * Return: None.
12091  */
12092 static inline
12093 void dp_set_tx_pause(struct cdp_soc_t *soc_hdl, bool flag)
12094 {
12095 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12096 
12097 	soc->is_tx_pause = flag;
12098 }
12099 
12100 static inline uint64_t dp_rx_fisa_get_cmem_base(struct cdp_soc_t *soc_hdl,
12101 						uint64_t size)
12102 {
12103 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12104 
12105 	if (soc->arch_ops.dp_get_fst_cmem_base)
12106 		return soc->arch_ops.dp_get_fst_cmem_base(soc, size);
12107 
12108 	return 0;
12109 }
12110 
12111 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
12112 /**
12113  * dp_evaluate_update_tx_ilp_config() - Evaluate and update DP TX
12114  *                                      ILP configuration
12115  * @soc_hdl: CDP SOC handle
12116  * @num_msdu_idx_map: Number of HTT msdu index to qtype map in array
12117  * @msdu_idx_map_arr: Pointer to HTT msdu index to qtype map array
12118  *
12119  * This function will check: (a) TX ILP INI configuration,
12120  * (b) index 3 value in array same as HTT_MSDU_QTYPE_LATENCY_TOLERANT,
12121  * only if both (a) and (b) condition is met, then TX ILP feature is
12122  * considered to be enabled.
12123  *
12124  * Return: Final updated TX ILP enable result in dp_soc,
12125  *         true is enabled, false is not
12126  */
12127 static
12128 bool dp_evaluate_update_tx_ilp_config(struct cdp_soc_t *soc_hdl,
12129 				      uint8_t num_msdu_idx_map,
12130 				      uint8_t *msdu_idx_map_arr)
12131 {
12132 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12133 	bool enable_tx_ilp = false;
12134 
12135 	/**
12136 	 * Check INI configuration firstly, if it's disabled,
12137 	 * then keep feature disabled.
12138 	 */
12139 	if (!wlan_cfg_get_tx_ilp_inspect_config(soc->wlan_cfg_ctx)) {
12140 		dp_info("TX ILP INI is disabled already");
12141 		goto update_tx_ilp;
12142 	}
12143 
12144 	/* Check if the msdu index to qtype map table is valid */
12145 	if (num_msdu_idx_map != HTT_MSDUQ_MAX_INDEX || !msdu_idx_map_arr) {
12146 		dp_info("Invalid msdu_idx qtype map num: 0x%x, arr_addr %pK",
12147 			num_msdu_idx_map, msdu_idx_map_arr);
12148 		goto update_tx_ilp;
12149 	}
12150 
12151 	dp_info("msdu_idx_map_arr idx 0x%x value 0x%x",
12152 		HTT_MSDUQ_INDEX_CUSTOM_PRIO_1,
12153 		msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1]);
12154 
12155 	if (HTT_MSDU_QTYPE_USER_SPECIFIED ==
12156 	    msdu_idx_map_arr[HTT_MSDUQ_INDEX_CUSTOM_PRIO_1])
12157 		enable_tx_ilp = true;
12158 
12159 update_tx_ilp:
12160 	soc->tx_ilp_enable = enable_tx_ilp;
12161 	dp_info("configure tx ilp enable %d", soc->tx_ilp_enable);
12162 
12163 	return soc->tx_ilp_enable;
12164 }
12165 #endif
12166 
12167 static struct cdp_cmn_ops dp_ops_cmn = {
12168 	.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
12169 	.txrx_vdev_attach = dp_vdev_attach_wifi3,
12170 	.txrx_vdev_detach = dp_vdev_detach_wifi3,
12171 	.txrx_pdev_attach = dp_pdev_attach_wifi3,
12172 	.txrx_pdev_post_attach = dp_pdev_post_attach_wifi3,
12173 	.txrx_pdev_detach = dp_pdev_detach_wifi3,
12174 	.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
12175 	.txrx_peer_create = dp_peer_create_wifi3,
12176 	.txrx_peer_setup = dp_peer_setup_wifi3_wrapper,
12177 #ifdef FEATURE_AST
12178 	.txrx_peer_teardown = dp_peer_teardown_wifi3,
12179 #else
12180 	.txrx_peer_teardown = NULL,
12181 #endif
12182 	.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
12183 	.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
12184 	.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
12185 	.txrx_peer_get_ast_info_by_pdev =
12186 		dp_peer_get_ast_info_by_pdevid_wifi3,
12187 	.txrx_peer_ast_delete_by_soc =
12188 		dp_peer_ast_entry_del_by_soc,
12189 	.txrx_peer_ast_delete_by_pdev =
12190 		dp_peer_ast_entry_del_by_pdev,
12191 	.txrx_peer_HMWDS_ast_delete = dp_peer_HMWDS_ast_entry_del,
12192 	.txrx_peer_delete = dp_peer_delete_wifi3,
12193 #ifdef DP_RX_UDP_OVER_PEER_ROAM
12194 	.txrx_update_roaming_peer = dp_update_roaming_peer_wifi3,
12195 #endif
12196 	.txrx_vdev_register = dp_vdev_register_wifi3,
12197 	.txrx_soc_detach = dp_soc_detach_wifi3,
12198 	.txrx_soc_deinit = dp_soc_deinit_wifi3,
12199 	.txrx_soc_init = dp_soc_init_wifi3,
12200 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12201 	.txrx_tso_soc_attach = dp_tso_soc_attach,
12202 	.txrx_tso_soc_detach = dp_tso_soc_detach,
12203 	.tx_send = dp_tx_send,
12204 	.tx_send_exc = dp_tx_send_exception,
12205 #endif
12206 	.set_tx_pause = dp_set_tx_pause,
12207 	.txrx_pdev_init = dp_pdev_init_wifi3,
12208 	.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
12209 	.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
12210 	.txrx_ath_getstats = dp_get_device_stats,
12211 #ifndef WLAN_SOFTUMAC_SUPPORT
12212 	.addba_requestprocess = dp_addba_requestprocess_wifi3,
12213 	.addba_responsesetup = dp_addba_responsesetup_wifi3,
12214 	.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
12215 	.delba_process = dp_delba_process_wifi3,
12216 	.set_addba_response = dp_set_addba_response,
12217 	.flush_cache_rx_queue = NULL,
12218 	.tid_update_ba_win_size = dp_rx_tid_update_ba_win_size,
12219 #endif
12220 	/* TODO: get API's for dscp-tid need to be added*/
12221 	.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
12222 	.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
12223 	.txrx_get_total_per = dp_get_total_per,
12224 	.txrx_stats_request = dp_txrx_stats_request,
12225 	.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
12226 	.display_stats = dp_txrx_dump_stats,
12227 	.notify_asserted_soc = dp_soc_notify_asserted_soc,
12228 	.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
12229 	.txrx_intr_detach = dp_soc_interrupt_detach_wrapper,
12230 	.txrx_ppeds_stop = dp_soc_ppeds_stop,
12231 	.set_key_sec_type = dp_set_key_sec_type_wifi3,
12232 	.update_config_parameters = dp_update_config_parameters,
12233 	/* TODO: Add other functions */
12234 	.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
12235 	.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
12236 	.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
12237 	.get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle,
12238 	.set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle,
12239 	.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
12240 	.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
12241 	.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
12242 	.handle_mode_change = dp_soc_handle_pdev_mode_change,
12243 	.set_pdev_status_down = dp_soc_set_pdev_status_down,
12244 	.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
12245 	.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
12246 	.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
12247 	.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
12248 	.set_soc_param = dp_soc_set_param,
12249 	.txrx_get_os_rx_handles_from_vdev =
12250 					dp_get_os_rx_handles_from_vdev_wifi3,
12251 #ifndef WLAN_SOFTUMAC_SUPPORT
12252 	.set_pn_check = dp_set_pn_check_wifi3,
12253 	.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
12254 	.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
12255 	.delba_tx_completion = dp_delba_tx_completion_wifi3,
12256 	.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
12257 	.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
12258 #endif
12259 	.get_dp_capabilities = dp_get_cfg_capabilities,
12260 	.txrx_get_cfg = dp_get_cfg,
12261 	.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
12262 	.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
12263 	.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
12264 	.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
12265 	.txrx_peer_get_peerstats_ctx = dp_peer_get_peerstats_ctx,
12266 
12267 	.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
12268 #ifdef QCA_MULTIPASS_SUPPORT
12269 	.set_vlan_groupkey = dp_set_vlan_groupkey,
12270 #endif
12271 	.get_peer_mac_list = dp_get_peer_mac_list,
12272 	.get_peer_id = dp_get_peer_id,
12273 #ifdef QCA_SUPPORT_WDS_EXTENDED
12274 	.set_wds_ext_peer_rx = dp_wds_ext_set_peer_rx,
12275 	.get_wds_ext_peer_osif_handle = dp_wds_ext_get_peer_osif_handle,
12276 	.set_wds_ext_peer_bit = dp_wds_ext_set_peer_bit,
12277 #endif /* QCA_SUPPORT_WDS_EXTENDED */
12278 
12279 #if defined(FEATURE_RUNTIME_PM) || defined(DP_POWER_SAVE)
12280 	.txrx_drain = dp_drain_txrx,
12281 #endif
12282 #if defined(FEATURE_RUNTIME_PM)
12283 	.set_rtpm_tput_policy = dp_set_rtpm_tput_policy_requirement,
12284 #endif
12285 #ifdef WLAN_SYSFS_DP_STATS
12286 	.txrx_sysfs_fill_stats = dp_sysfs_fill_stats,
12287 	.txrx_sysfs_set_stat_type = dp_sysfs_set_stat_type,
12288 #endif /* WLAN_SYSFS_DP_STATS */
12289 #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
12290 	.set_pkt_capture_mode = dp_set_pkt_capture_mode,
12291 #endif
12292 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
12293 	.txrx_recovery_vdev_flush_peers = dp_recovery_vdev_flush_peers,
12294 #endif
12295 	.txrx_umac_reset_deinit = dp_soc_umac_reset_deinit,
12296 	.txrx_umac_reset_init = dp_soc_umac_reset_init,
12297 	.txrx_get_tsf_time = dp_get_tsf_time,
12298 	.txrx_get_tsf2_offset = dp_get_tsf2_scratch_reg,
12299 	.txrx_get_tqm_offset = dp_get_tqm_scratch_reg,
12300 #ifdef WLAN_SUPPORT_RX_FISA
12301 	.get_fst_cmem_base = dp_rx_fisa_get_cmem_base,
12302 #endif
12303 };
12304 
12305 static struct cdp_ctrl_ops dp_ops_ctrl = {
12306 	.txrx_peer_authorize = dp_peer_authorize,
12307 	.txrx_peer_get_authorize = dp_peer_get_authorize,
12308 #ifdef VDEV_PEER_PROTOCOL_COUNT
12309 	.txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count,
12310 	.txrx_set_peer_protocol_drop_mask =
12311 		dp_enable_vdev_peer_protocol_drop_mask,
12312 	.txrx_is_peer_protocol_count_enabled =
12313 		dp_is_vdev_peer_protocol_count_enabled,
12314 	.txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask,
12315 #endif
12316 	.txrx_set_vdev_param = dp_set_vdev_param_wrapper,
12317 	.txrx_set_psoc_param = dp_set_psoc_param,
12318 	.txrx_get_psoc_param = dp_get_psoc_param,
12319 #ifndef WLAN_SOFTUMAC_SUPPORT
12320 	.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
12321 	.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
12322 #endif
12323 	.txrx_get_sec_type = dp_get_sec_type,
12324 	.txrx_wdi_event_sub = dp_wdi_event_sub,
12325 	.txrx_wdi_event_unsub = dp_wdi_event_unsub,
12326 	.txrx_set_pdev_param = dp_set_pdev_param,
12327 	.txrx_get_pdev_param = dp_get_pdev_param,
12328 #ifdef WLAN_FEATURE_11BE_MLO
12329 	.txrx_set_peer_param = dp_set_peer_param_wrapper,
12330 #else
12331 	.txrx_set_peer_param = dp_set_peer_param,
12332 #endif
12333 	.txrx_get_peer_param = dp_get_peer_param,
12334 #ifdef VDEV_PEER_PROTOCOL_COUNT
12335 	.txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt,
12336 #endif
12337 #ifdef WLAN_SUPPORT_MSCS
12338 	.txrx_record_mscs_params = dp_record_mscs_params,
12339 #endif
12340 	.set_key = dp_set_michael_key,
12341 	.txrx_get_vdev_param = dp_get_vdev_param,
12342 	.calculate_delay_stats = dp_calculate_delay_stats,
12343 #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
12344 	.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
12345 #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
12346 	.txrx_dump_pdev_rx_protocol_tag_stats =
12347 				dp_dump_pdev_rx_protocol_tag_stats,
12348 #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
12349 #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
12350 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12351 	.txrx_set_rx_flow_tag = dp_set_rx_flow_tag,
12352 	.txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats,
12353 #endif /* WLAN_SUPPORT_RX_FLOW_TAG */
12354 #ifdef QCA_MULTIPASS_SUPPORT
12355 	.txrx_peer_set_vlan_id = dp_peer_set_vlan_id,
12356 #endif /*QCA_MULTIPASS_SUPPORT*/
12357 #if defined(WLAN_FEATURE_TSF_AUTO_REPORT) || defined(WLAN_CONFIG_TX_DELAY)
12358 	.txrx_set_delta_tsf = dp_set_delta_tsf,
12359 #endif
12360 #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
12361 	.txrx_set_tsf_ul_delay_report = dp_set_tsf_ul_delay_report,
12362 	.txrx_get_uplink_delay = dp_get_uplink_delay,
12363 #endif
12364 #ifdef QCA_UNDECODED_METADATA_SUPPORT
12365 	.txrx_set_pdev_phyrx_error_mask = dp_set_pdev_phyrx_error_mask,
12366 	.txrx_get_pdev_phyrx_error_mask = dp_get_pdev_phyrx_error_mask,
12367 #endif
12368 	.txrx_peer_flush_frags = dp_peer_flush_frags,
12369 #ifdef DP_UMAC_HW_RESET_SUPPORT
12370 	.get_umac_reset_in_progress_state = dp_get_umac_reset_in_progress_state,
12371 #endif
12372 #ifdef WLAN_SUPPORT_RX_FISA
12373 	.txrx_fisa_config = dp_fisa_config,
12374 #endif
12375 };
12376 
12377 static struct cdp_me_ops dp_ops_me = {
12378 #ifndef QCA_HOST_MODE_WIFI_DISABLED
12379 #ifdef ATH_SUPPORT_IQUE
12380 	.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
12381 	.tx_me_free_descriptor = dp_tx_me_free_descriptor,
12382 	.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
12383 #endif
12384 #endif
12385 };
12386 
12387 static struct cdp_host_stats_ops dp_ops_host_stats = {
12388 	.txrx_per_peer_stats = dp_get_host_peer_stats,
12389 	.get_fw_peer_stats = dp_get_fw_peer_stats,
12390 	.get_htt_stats = dp_get_htt_stats,
12391 	.txrx_stats_publish = dp_txrx_stats_publish,
12392 	.txrx_get_vdev_stats  = dp_txrx_get_vdev_stats,
12393 	.txrx_get_peer_stats = dp_txrx_get_peer_stats,
12394 	.txrx_get_peer_stats_based_on_peer_type =
12395 			dp_txrx_get_peer_stats_based_on_peer_type,
12396 	.txrx_get_soc_stats = dp_txrx_get_soc_stats,
12397 	.txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param,
12398 	.txrx_get_per_link_stats = dp_txrx_get_per_link_peer_stats,
12399 	.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
12400 	.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
12401 #if defined(IPA_OFFLOAD) && defined(QCA_ENHANCED_STATS_SUPPORT)
12402 	.txrx_get_peer_stats = dp_ipa_txrx_get_peer_stats,
12403 	.txrx_get_vdev_stats  = dp_ipa_txrx_get_vdev_stats,
12404 	.txrx_get_pdev_stats = dp_ipa_txrx_get_pdev_stats,
12405 #endif
12406 	.txrx_get_ratekbps = dp_txrx_get_ratekbps,
12407 	.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
12408 	.txrx_get_peer_delay_stats = dp_txrx_get_peer_delay_stats,
12409 	.txrx_get_peer_jitter_stats = dp_txrx_get_peer_jitter_stats,
12410 #ifdef QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT
12411 	.txrx_alloc_vdev_stats_id = dp_txrx_alloc_vdev_stats_id,
12412 	.txrx_reset_vdev_stats_id = dp_txrx_reset_vdev_stats_id,
12413 #endif
12414 #ifdef WLAN_TX_PKT_CAPTURE_ENH
12415 	.get_peer_tx_capture_stats = dp_peer_get_tx_capture_stats,
12416 	.get_pdev_tx_capture_stats = dp_pdev_get_tx_capture_stats,
12417 #endif /* WLAN_TX_PKT_CAPTURE_ENH */
12418 #ifdef HW_TX_DELAY_STATS_ENABLE
12419 	.enable_disable_vdev_tx_delay_stats =
12420 				dp_enable_disable_vdev_tx_delay_stats,
12421 	.is_tx_delay_stats_enabled = dp_check_vdev_tx_delay_stats_enabled,
12422 #endif
12423 	.txrx_get_pdev_tid_stats = dp_pdev_get_tid_stats,
12424 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
12425 	.txrx_pdev_telemetry_stats = dp_get_pdev_telemetry_stats,
12426 	.txrx_peer_telemetry_stats = dp_get_peer_telemetry_stats,
12427 	.txrx_pdev_deter_stats = dp_get_pdev_deter_stats,
12428 	.txrx_peer_deter_stats = dp_get_peer_deter_stats,
12429 	.txrx_update_pdev_chan_util_stats = dp_update_pdev_chan_util_stats,
12430 #endif
12431 	.txrx_get_peer_extd_rate_link_stats =
12432 					dp_get_peer_extd_rate_link_stats,
12433 	.get_pdev_obss_stats = dp_get_obss_stats,
12434 	.clear_pdev_obss_pd_stats = dp_clear_pdev_obss_pd_stats,
12435 	.txrx_get_interface_stats  = dp_txrx_get_interface_stats,
12436 #ifdef WLAN_FEATURE_TX_LATENCY_STATS
12437 	.tx_latency_stats_fetch = dp_tx_latency_stats_fetch,
12438 	.tx_latency_stats_config = dp_tx_latency_stats_config,
12439 	.tx_latency_stats_register_cb = dp_tx_latency_stats_register_cb,
12440 #endif
12441 	/* TODO */
12442 };
12443 
12444 static struct cdp_raw_ops dp_ops_raw = {
12445 	/* TODO */
12446 };
12447 
12448 #ifdef PEER_FLOW_CONTROL
12449 static struct cdp_pflow_ops dp_ops_pflow = {
12450 	dp_tx_flow_ctrl_configure_pdev,
12451 };
12452 #endif
12453 
12454 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
12455 static struct cdp_cfr_ops dp_ops_cfr = {
12456 	.txrx_get_cfr_rcc = dp_get_cfr_rcc,
12457 	.txrx_set_cfr_rcc = dp_set_cfr_rcc,
12458 	.txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats,
12459 	.txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats,
12460 };
12461 #endif
12462 
12463 #ifdef WLAN_SUPPORT_MSCS
12464 static struct cdp_mscs_ops dp_ops_mscs = {
12465 	.mscs_peer_lookup_n_get_priority = dp_mscs_peer_lookup_n_get_priority,
12466 };
12467 #endif
12468 
12469 #ifdef WLAN_SUPPORT_MESH_LATENCY
12470 static struct cdp_mesh_latency_ops dp_ops_mesh_latency = {
12471 	.mesh_latency_update_peer_parameter =
12472 		dp_mesh_latency_update_peer_parameter,
12473 };
12474 #endif
12475 
12476 #ifdef WLAN_SUPPORT_SCS
12477 static struct cdp_scs_ops dp_ops_scs = {
12478 	.scs_peer_lookup_n_rule_match = dp_scs_peer_lookup_n_rule_match,
12479 };
12480 #endif
12481 
12482 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
12483 static struct cdp_fse_ops dp_ops_fse = {
12484 	.fse_rule_add = dp_rx_sfe_add_flow_entry,
12485 	.fse_rule_delete = dp_rx_sfe_delete_flow_entry,
12486 };
12487 #endif
12488 
12489 #ifdef CONFIG_SAWF_DEF_QUEUES
12490 static struct cdp_sawf_ops dp_ops_sawf = {
12491 	.sawf_def_queues_map_req = dp_sawf_def_queues_map_req,
12492 	.sawf_def_queues_unmap_req = dp_sawf_def_queues_unmap_req,
12493 	.sawf_def_queues_get_map_report =
12494 		dp_sawf_def_queues_get_map_report,
12495 #ifdef CONFIG_SAWF_STATS
12496 	.sawf_get_peer_msduq_info = dp_sawf_get_peer_msduq_info,
12497 	.txrx_get_peer_sawf_delay_stats = dp_sawf_get_peer_delay_stats,
12498 	.txrx_get_peer_sawf_tx_stats = dp_sawf_get_peer_tx_stats,
12499 	.sawf_mpdu_stats_req = dp_sawf_mpdu_stats_req,
12500 	.sawf_mpdu_details_stats_req = dp_sawf_mpdu_details_stats_req,
12501 	.txrx_sawf_set_mov_avg_params = dp_sawf_set_mov_avg_params,
12502 	.txrx_sawf_set_sla_params = dp_sawf_set_sla_params,
12503 	.txrx_sawf_init_telemtery_params = dp_sawf_init_telemetry_params,
12504 	.telemetry_get_throughput_stats = dp_sawf_get_tx_stats,
12505 	.telemetry_get_mpdu_stats = dp_sawf_get_mpdu_sched_stats,
12506 	.telemetry_get_drop_stats = dp_sawf_get_drop_stats,
12507 	.peer_config_ul = dp_sawf_peer_config_ul,
12508 	.swaf_peer_sla_configuration = dp_swaf_peer_sla_configuration,
12509 	.sawf_peer_flow_count = dp_sawf_peer_flow_count,
12510 #endif
12511 };
12512 #endif
12513 
12514 #ifdef DP_TX_TRACKING
12515 
12516 #define DP_TX_COMP_MAX_LATENCY_MS 60000
12517 /**
12518  * dp_tx_comp_delay_check() - calculate time latency for tx completion per pkt
12519  * @tx_desc: tx descriptor
12520  *
12521  * Calculate time latency for tx completion per pkt and trigger self recovery
12522  * when the delay is more than threshold value.
12523  *
12524  * Return: True if delay is more than threshold
12525  */
12526 static bool dp_tx_comp_delay_check(struct dp_tx_desc_s *tx_desc)
12527 {
12528 	uint64_t time_latency, timestamp_tick = tx_desc->timestamp_tick;
12529 	qdf_ktime_t current_time = qdf_ktime_real_get();
12530 	qdf_ktime_t timestamp = tx_desc->timestamp;
12531 
12532 	if (dp_tx_pkt_tracepoints_enabled()) {
12533 		if (!timestamp)
12534 			return false;
12535 
12536 		time_latency = qdf_ktime_to_ms(current_time) -
12537 				qdf_ktime_to_ms(timestamp);
12538 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12539 			dp_err_rl("enqueued: %llu ms, current : %llu ms",
12540 				  timestamp, current_time);
12541 			return true;
12542 		}
12543 	} else {
12544 		if (!timestamp_tick)
12545 			return false;
12546 
12547 		current_time = qdf_system_ticks();
12548 		time_latency = qdf_system_ticks_to_msecs(current_time -
12549 							 timestamp_tick);
12550 		if (time_latency >= DP_TX_COMP_MAX_LATENCY_MS) {
12551 			dp_err_rl("enqueued: %u ms, current : %u ms",
12552 				  qdf_system_ticks_to_msecs(timestamp_tick),
12553 				  qdf_system_ticks_to_msecs(current_time));
12554 			return true;
12555 		}
12556 	}
12557 
12558 	return false;
12559 }
12560 
12561 void dp_find_missing_tx_comp(struct dp_soc *soc)
12562 {
12563 	uint8_t i;
12564 	uint32_t j;
12565 	uint32_t num_desc, page_id, offset;
12566 	uint16_t num_desc_per_page;
12567 	struct dp_tx_desc_s *tx_desc = NULL;
12568 	struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
12569 
12570 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
12571 		tx_desc_pool = &soc->tx_desc[i];
12572 		if (!(tx_desc_pool->pool_size) ||
12573 		    IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
12574 		    !(tx_desc_pool->desc_pages.cacheable_pages))
12575 			continue;
12576 
12577 		num_desc = tx_desc_pool->pool_size;
12578 		num_desc_per_page =
12579 			tx_desc_pool->desc_pages.num_element_per_page;
12580 		for (j = 0; j < num_desc; j++) {
12581 			page_id = j / num_desc_per_page;
12582 			offset = j % num_desc_per_page;
12583 
12584 			if (qdf_unlikely(!(tx_desc_pool->
12585 					 desc_pages.cacheable_pages)))
12586 				break;
12587 
12588 			tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
12589 						  false);
12590 			if (tx_desc->magic == DP_TX_MAGIC_PATTERN_FREE) {
12591 				continue;
12592 			} else if (tx_desc->magic ==
12593 				   DP_TX_MAGIC_PATTERN_INUSE) {
12594 				if (dp_tx_comp_delay_check(tx_desc)) {
12595 					dp_err_rl("Tx completion not rcvd for id: %u",
12596 						  tx_desc->id);
12597 					if (tx_desc->vdev_id == DP_INVALID_VDEV_ID) {
12598 						tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
12599 						dp_err_rl("Freed tx_desc %u",
12600 							  tx_desc->id);
12601 						dp_tx_comp_free_buf(soc,
12602 								    tx_desc,
12603 								    false);
12604 						dp_tx_desc_release(soc, tx_desc,
12605 								   i);
12606 						DP_STATS_INC(soc,
12607 							     tx.tx_comp_force_freed, 1);
12608 					}
12609 				}
12610 			} else {
12611 				dp_err_rl("tx desc %u corrupted, flags: 0x%x",
12612 					  tx_desc->id, tx_desc->flags);
12613 			}
12614 		}
12615 	}
12616 }
12617 #else
12618 inline void dp_find_missing_tx_comp(struct dp_soc *soc)
12619 {
12620 }
12621 #endif
12622 
12623 #ifdef FEATURE_RUNTIME_PM
12624 /**
12625  * dp_runtime_suspend() - ensure DP is ready to runtime suspend
12626  * @soc_hdl: Datapath soc handle
12627  * @pdev_id: id of data path pdev handle
12628  *
12629  * DP is ready to runtime suspend if there are no pending TX packets.
12630  *
12631  * Return: QDF_STATUS
12632  */
12633 static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12634 {
12635 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12636 	struct dp_pdev *pdev;
12637 	int32_t tx_pending;
12638 
12639 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12640 	if (!pdev) {
12641 		dp_err("pdev is NULL");
12642 		return QDF_STATUS_E_INVAL;
12643 	}
12644 
12645 	/* Abort if there are any pending TX packets */
12646 	tx_pending = dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev));
12647 	if (tx_pending) {
12648 		dp_info_rl("%pK: Abort suspend due to pending TX packets %d",
12649 			   soc, tx_pending);
12650 		dp_find_missing_tx_comp(soc);
12651 		/* perform a force flush if tx is pending */
12652 		soc->arch_ops.dp_update_ring_hptp(soc, true);
12653 		qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12654 
12655 		return QDF_STATUS_E_AGAIN;
12656 	}
12657 
12658 	if (dp_runtime_get_refcount(soc)) {
12659 		dp_init_info("refcount: %d", dp_runtime_get_refcount(soc));
12660 
12661 		return QDF_STATUS_E_AGAIN;
12662 	}
12663 
12664 	if (soc->intr_mode == DP_INTR_POLL)
12665 		qdf_timer_stop(&soc->int_timer);
12666 
12667 	return QDF_STATUS_SUCCESS;
12668 }
12669 
12670 #define DP_FLUSH_WAIT_CNT 10
12671 #define DP_RUNTIME_SUSPEND_WAIT_MS 10
12672 /**
12673  * dp_runtime_resume() - ensure DP is ready to runtime resume
12674  * @soc_hdl: Datapath soc handle
12675  * @pdev_id: id of data path pdev handle
12676  *
12677  * Resume DP for runtime PM.
12678  *
12679  * Return: QDF_STATUS
12680  */
12681 static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
12682 {
12683 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12684 	int suspend_wait = 0;
12685 
12686 	if (soc->intr_mode == DP_INTR_POLL)
12687 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
12688 
12689 	/*
12690 	 * Wait until dp runtime refcount becomes zero or time out, then flush
12691 	 * pending tx for runtime suspend.
12692 	 */
12693 	while (dp_runtime_get_refcount(soc) &&
12694 	       suspend_wait < DP_FLUSH_WAIT_CNT) {
12695 		qdf_sleep(DP_RUNTIME_SUSPEND_WAIT_MS);
12696 		suspend_wait++;
12697 	}
12698 
12699 	soc->arch_ops.dp_update_ring_hptp(soc, false);
12700 	qdf_atomic_set(&soc->tx_pending_rtpm, 0);
12701 
12702 	return QDF_STATUS_SUCCESS;
12703 }
12704 #endif /* FEATURE_RUNTIME_PM */
12705 
12706 /**
12707  * dp_tx_get_success_ack_stats() - get tx success completion count
12708  * @soc_hdl: Datapath soc handle
12709  * @vdev_id: vdev identifier
12710  *
12711  * Return: tx success ack count
12712  */
12713 static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl,
12714 					    uint8_t vdev_id)
12715 {
12716 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12717 	struct cdp_vdev_stats *vdev_stats = NULL;
12718 	uint32_t tx_success;
12719 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
12720 						     DP_MOD_ID_CDP);
12721 
12722 	if (!vdev) {
12723 		dp_cdp_err("%pK: Invalid vdev id %d", soc, vdev_id);
12724 		return 0;
12725 	}
12726 
12727 	vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
12728 	if (!vdev_stats) {
12729 		dp_cdp_err("%pK: DP alloc failure - unable to get alloc vdev stats", soc);
12730 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12731 		return 0;
12732 	}
12733 
12734 	dp_aggregate_vdev_stats(vdev, vdev_stats);
12735 
12736 	tx_success = vdev_stats->tx.tx_success.num;
12737 	qdf_mem_free(vdev_stats);
12738 
12739 	dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
12740 	return tx_success;
12741 }
12742 
12743 #ifdef WLAN_SUPPORT_DATA_STALL
12744 /**
12745  * dp_register_data_stall_detect_cb() - register data stall callback
12746  * @soc_hdl: Datapath soc handle
12747  * @pdev_id: id of data path pdev handle
12748  * @data_stall_detect_callback: data stall callback function
12749  *
12750  * Return: QDF_STATUS Enumeration
12751  */
12752 static
12753 QDF_STATUS dp_register_data_stall_detect_cb(
12754 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12755 			data_stall_detect_cb data_stall_detect_callback)
12756 {
12757 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12758 	struct dp_pdev *pdev;
12759 
12760 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12761 	if (!pdev) {
12762 		dp_err("pdev NULL!");
12763 		return QDF_STATUS_E_INVAL;
12764 	}
12765 
12766 	pdev->data_stall_detect_callback = data_stall_detect_callback;
12767 	return QDF_STATUS_SUCCESS;
12768 }
12769 
12770 /**
12771  * dp_deregister_data_stall_detect_cb() - de-register data stall callback
12772  * @soc_hdl: Datapath soc handle
12773  * @pdev_id: id of data path pdev handle
12774  * @data_stall_detect_callback: data stall callback function
12775  *
12776  * Return: QDF_STATUS Enumeration
12777  */
12778 static
12779 QDF_STATUS dp_deregister_data_stall_detect_cb(
12780 			struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12781 			data_stall_detect_cb data_stall_detect_callback)
12782 {
12783 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12784 	struct dp_pdev *pdev;
12785 
12786 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12787 	if (!pdev) {
12788 		dp_err("pdev NULL!");
12789 		return QDF_STATUS_E_INVAL;
12790 	}
12791 
12792 	pdev->data_stall_detect_callback = NULL;
12793 	return QDF_STATUS_SUCCESS;
12794 }
12795 
12796 /**
12797  * dp_txrx_post_data_stall_event() - post data stall event
12798  * @soc_hdl: Datapath soc handle
12799  * @indicator: Module triggering data stall
12800  * @data_stall_type: data stall event type
12801  * @pdev_id: pdev id
12802  * @vdev_id_bitmap: vdev id bitmap
12803  * @recovery_type: data stall recovery type
12804  *
12805  * Return: None
12806  */
12807 static void
12808 dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl,
12809 			      enum data_stall_log_event_indicator indicator,
12810 			      enum data_stall_log_event_type data_stall_type,
12811 			      uint32_t pdev_id, uint32_t vdev_id_bitmap,
12812 			      enum data_stall_log_recovery_type recovery_type)
12813 {
12814 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12815 	struct data_stall_event_info data_stall_info;
12816 	struct dp_pdev *pdev;
12817 
12818 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12819 	if (!pdev) {
12820 		dp_err("pdev NULL!");
12821 		return;
12822 	}
12823 
12824 	if (!pdev->data_stall_detect_callback) {
12825 		dp_err("data stall cb not registered!");
12826 		return;
12827 	}
12828 
12829 	dp_info("data_stall_type: %x pdev_id: %d",
12830 		data_stall_type, pdev_id);
12831 
12832 	data_stall_info.indicator = indicator;
12833 	data_stall_info.data_stall_type = data_stall_type;
12834 	data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
12835 	data_stall_info.pdev_id = pdev_id;
12836 	data_stall_info.recovery_type = recovery_type;
12837 
12838 	pdev->data_stall_detect_callback(&data_stall_info);
12839 }
12840 #endif /* WLAN_SUPPORT_DATA_STALL */
12841 
12842 #ifdef WLAN_FEATURE_STATS_EXT
12843 /**
12844  * dp_txrx_ext_stats_request() - request dp txrx extended stats request
12845  * @soc_hdl: soc handle
12846  * @pdev_id: pdev id
12847  * @req: stats request
12848  *
12849  * Return: QDF_STATUS
12850  */
12851 static QDF_STATUS
12852 dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12853 			  struct cdp_txrx_ext_stats *req)
12854 {
12855 	struct dp_soc *soc = (struct dp_soc *)soc_hdl;
12856 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12857 	int i = 0;
12858 	int tcl_ring_full = 0;
12859 
12860 	if (!pdev) {
12861 		dp_err("pdev is null");
12862 		return QDF_STATUS_E_INVAL;
12863 	}
12864 
12865 	dp_aggregate_pdev_stats(pdev);
12866 
12867 	for(i = 0 ; i < MAX_TCL_DATA_RINGS; i++)
12868 		tcl_ring_full += soc->stats.tx.tcl_ring_full[i];
12869 
12870 	req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
12871 	req->tx_msdu_overflow = tcl_ring_full;
12872 	/* Error rate at LMAC */
12873 	req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received +
12874 				pdev->stats.err.fw_reported_rxdma_error;
12875 	/* only count error source from RXDMA */
12876 	req->rx_mpdu_error = pdev->stats.err.fw_reported_rxdma_error;
12877 
12878 	/* Error rate at above the MAC */
12879 	req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
12880 	req->rx_mpdu_missed = pdev->stats.err.reo_error;
12881 
12882 	dp_info("ext stats: tx_msdu_enq = %u, tx_msdu_overflow = %u, "
12883 		"rx_mpdu_receive = %u, rx_mpdu_delivered = %u, "
12884 		"rx_mpdu_missed = %u, rx_mpdu_error = %u",
12885 		req->tx_msdu_enqueue,
12886 		req->tx_msdu_overflow,
12887 		req->rx_mpdu_received,
12888 		req->rx_mpdu_delivered,
12889 		req->rx_mpdu_missed,
12890 		req->rx_mpdu_error);
12891 
12892 	return QDF_STATUS_SUCCESS;
12893 }
12894 
12895 #endif /* WLAN_FEATURE_STATS_EXT */
12896 
12897 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
12898 /**
12899  * dp_mark_first_wakeup_packet() - set flag to indicate that
12900  *    fw is compatible for marking first packet after wow wakeup
12901  * @soc_hdl: Datapath soc handle
12902  * @pdev_id: id of data path pdev handle
12903  * @value: 1 for enabled/ 0 for disabled
12904  *
12905  * Return: None
12906  */
12907 static void dp_mark_first_wakeup_packet(struct cdp_soc_t *soc_hdl,
12908 					uint8_t pdev_id, uint8_t value)
12909 {
12910 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12911 	struct dp_pdev *pdev;
12912 
12913 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12914 	if (!pdev) {
12915 		dp_err("pdev is NULL");
12916 		return;
12917 	}
12918 
12919 	pdev->is_first_wakeup_packet = value;
12920 }
12921 #endif
12922 
12923 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
12924 /**
12925  * dp_set_peer_txq_flush_config() - Set the peer txq flush configuration
12926  * @soc_hdl: Opaque handle to the DP soc object
12927  * @vdev_id: VDEV identifier
12928  * @mac: MAC address of the peer
12929  * @ac: access category mask
12930  * @tid: TID mask
12931  * @policy: Flush policy
12932  *
12933  * Return: 0 on success, errno on failure
12934  */
12935 static int dp_set_peer_txq_flush_config(struct cdp_soc_t *soc_hdl,
12936 					uint8_t vdev_id, uint8_t *mac,
12937 					uint8_t ac, uint32_t tid,
12938 					enum cdp_peer_txq_flush_policy policy)
12939 {
12940 	struct dp_soc *soc;
12941 
12942 	if (!soc_hdl) {
12943 		dp_err("soc is null");
12944 		return -EINVAL;
12945 	}
12946 	soc = cdp_soc_t_to_dp_soc(soc_hdl);
12947 	return target_if_peer_txq_flush_config(soc->ctrl_psoc, vdev_id,
12948 					       mac, ac, tid, policy);
12949 }
12950 #endif
12951 
12952 #ifdef CONNECTIVITY_PKTLOG
12953 /**
12954  * dp_register_packetdump_callback() - registers
12955  *  tx data packet, tx mgmt. packet and rx data packet
12956  *  dump callback handler.
12957  *
12958  * @soc_hdl: Datapath soc handle
12959  * @pdev_id: id of data path pdev handle
12960  * @dp_tx_packetdump_cb: tx packetdump cb
12961  * @dp_rx_packetdump_cb: rx packetdump cb
12962  *
12963  * This function is used to register tx data pkt, tx mgmt.
12964  * pkt and rx data pkt dump callback
12965  *
12966  * Return: None
12967  *
12968  */
12969 static inline
12970 void dp_register_packetdump_callback(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
12971 				     ol_txrx_pktdump_cb dp_tx_packetdump_cb,
12972 				     ol_txrx_pktdump_cb dp_rx_packetdump_cb)
12973 {
12974 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
12975 	struct dp_pdev *pdev;
12976 
12977 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
12978 	if (!pdev) {
12979 		dp_err("pdev is NULL!");
12980 		return;
12981 	}
12982 
12983 	pdev->dp_tx_packetdump_cb = dp_tx_packetdump_cb;
12984 	pdev->dp_rx_packetdump_cb = dp_rx_packetdump_cb;
12985 }
12986 
12987 /**
12988  * dp_deregister_packetdump_callback() - deregidters
12989  *  tx data packet, tx mgmt. packet and rx data packet
12990  *  dump callback handler
12991  * @soc_hdl: Datapath soc handle
12992  * @pdev_id: id of data path pdev handle
12993  *
12994  * This function is used to deregidter tx data pkt.,
12995  * tx mgmt. pkt and rx data pkt. dump callback
12996  *
12997  * Return: None
12998  *
12999  */
13000 static inline
13001 void dp_deregister_packetdump_callback(struct cdp_soc_t *soc_hdl,
13002 				       uint8_t pdev_id)
13003 {
13004 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13005 	struct dp_pdev *pdev;
13006 
13007 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13008 	if (!pdev) {
13009 		dp_err("pdev is NULL!");
13010 		return;
13011 	}
13012 
13013 	pdev->dp_tx_packetdump_cb = NULL;
13014 	pdev->dp_rx_packetdump_cb = NULL;
13015 }
13016 #endif
13017 
13018 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13019 /**
13020  * dp_set_bus_vote_lvl_high() - Take a vote on bus bandwidth from dp
13021  * @soc_hdl: Datapath soc handle
13022  * @high: whether the bus bw is high or not
13023  *
13024  * Return: void
13025  */
13026 static void
13027 dp_set_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl, bool high)
13028 {
13029 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13030 
13031 	soc->high_throughput = high;
13032 }
13033 
13034 /**
13035  * dp_get_bus_vote_lvl_high() - get bus bandwidth vote to dp
13036  * @soc_hdl: Datapath soc handle
13037  *
13038  * Return: bool
13039  */
13040 static bool
13041 dp_get_bus_vote_lvl_high(ol_txrx_soc_handle soc_hdl)
13042 {
13043 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13044 
13045 	return soc->high_throughput;
13046 }
13047 #endif
13048 
13049 #ifdef DP_PEER_EXTENDED_API
13050 static struct cdp_misc_ops dp_ops_misc = {
13051 #ifdef FEATURE_WLAN_TDLS
13052 	.tx_non_std = dp_tx_non_std,
13053 #endif /* FEATURE_WLAN_TDLS */
13054 	.get_opmode = dp_get_opmode,
13055 #ifdef FEATURE_RUNTIME_PM
13056 	.runtime_suspend = dp_runtime_suspend,
13057 	.runtime_resume = dp_runtime_resume,
13058 #endif /* FEATURE_RUNTIME_PM */
13059 	.get_num_rx_contexts = dp_get_num_rx_contexts,
13060 	.get_tx_ack_stats = dp_tx_get_success_ack_stats,
13061 #ifdef WLAN_SUPPORT_DATA_STALL
13062 	.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
13063 	.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
13064 	.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
13065 #endif
13066 
13067 #ifdef WLAN_FEATURE_STATS_EXT
13068 	.txrx_ext_stats_request = dp_txrx_ext_stats_request,
13069 #ifndef WLAN_SOFTUMAC_SUPPORT
13070 	.request_rx_hw_stats = dp_request_rx_hw_stats,
13071 	.reset_rx_hw_ext_stats = dp_reset_rx_hw_ext_stats,
13072 #endif
13073 #endif /* WLAN_FEATURE_STATS_EXT */
13074 	.vdev_inform_ll_conn = dp_vdev_inform_ll_conn,
13075 #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
13076 	.set_swlm_enable = dp_soc_set_swlm_enable,
13077 	.is_swlm_enabled = dp_soc_is_swlm_enabled,
13078 #endif
13079 	.display_txrx_hw_info = dp_display_srng_info,
13080 #ifndef WLAN_SOFTUMAC_SUPPORT
13081 	.get_tx_rings_grp_bitmap = dp_get_tx_rings_grp_bitmap,
13082 #endif
13083 #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
13084 	.mark_first_wakeup_packet = dp_mark_first_wakeup_packet,
13085 #endif
13086 #ifdef WLAN_FEATURE_PEER_TXQ_FLUSH_CONF
13087 	.set_peer_txq_flush_config = dp_set_peer_txq_flush_config,
13088 #endif
13089 #ifdef CONNECTIVITY_PKTLOG
13090 	.register_pktdump_cb = dp_register_packetdump_callback,
13091 	.unregister_pktdump_cb = dp_deregister_packetdump_callback,
13092 #endif
13093 #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
13094 	.set_bus_vote_lvl_high = dp_set_bus_vote_lvl_high,
13095 	.get_bus_vote_lvl_high = dp_get_bus_vote_lvl_high,
13096 #endif
13097 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13098 	.evaluate_update_tx_ilp_cfg = dp_evaluate_update_tx_ilp_config,
13099 #endif
13100 };
13101 #endif
13102 
13103 #ifdef DP_FLOW_CTL
13104 static struct cdp_flowctl_ops dp_ops_flowctl = {
13105 	/* WIFI 3.0 DP implement as required. */
13106 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
13107 #ifndef WLAN_SOFTUMAC_SUPPORT
13108 	.flow_pool_map_handler = dp_tx_flow_pool_map,
13109 	.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
13110 #endif /*WLAN_SOFTUMAC_SUPPORT */
13111 	.register_pause_cb = dp_txrx_register_pause_cb,
13112 	.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
13113 	.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
13114 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
13115 };
13116 
13117 static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
13118 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13119 };
13120 #endif
13121 
13122 #ifdef IPA_OFFLOAD
13123 static struct cdp_ipa_ops dp_ops_ipa = {
13124 	.ipa_get_resource = dp_ipa_get_resource,
13125 	.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
13126 	.ipa_iounmap_doorbell_vaddr = dp_ipa_iounmap_doorbell_vaddr,
13127 	.ipa_op_response = dp_ipa_op_response,
13128 	.ipa_register_op_cb = dp_ipa_register_op_cb,
13129 	.ipa_deregister_op_cb = dp_ipa_deregister_op_cb,
13130 	.ipa_get_stat = dp_ipa_get_stat,
13131 	.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
13132 	.ipa_enable_autonomy = dp_ipa_enable_autonomy,
13133 	.ipa_disable_autonomy = dp_ipa_disable_autonomy,
13134 	.ipa_setup = dp_ipa_setup,
13135 	.ipa_cleanup = dp_ipa_cleanup,
13136 	.ipa_setup_iface = dp_ipa_setup_iface,
13137 	.ipa_cleanup_iface = dp_ipa_cleanup_iface,
13138 	.ipa_enable_pipes = dp_ipa_enable_pipes,
13139 	.ipa_disable_pipes = dp_ipa_disable_pipes,
13140 	.ipa_set_perf_level = dp_ipa_set_perf_level,
13141 	.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd,
13142 	.ipa_tx_buf_smmu_mapping = dp_ipa_tx_buf_smmu_mapping,
13143 	.ipa_tx_buf_smmu_unmapping = dp_ipa_tx_buf_smmu_unmapping,
13144 	.ipa_rx_buf_smmu_pool_mapping = dp_ipa_rx_buf_pool_smmu_mapping,
13145 	.ipa_set_smmu_mapped = dp_ipa_set_smmu_mapped,
13146 	.ipa_get_smmu_mapped = dp_ipa_get_smmu_mapped,
13147 #ifdef QCA_SUPPORT_WDS_EXTENDED
13148 	.ipa_rx_wdsext_iface = dp_ipa_rx_wdsext_iface,
13149 #endif
13150 #ifdef QCA_ENHANCED_STATS_SUPPORT
13151 	.ipa_update_peer_rx_stats = dp_ipa_update_peer_rx_stats,
13152 #endif
13153 #ifdef IPA_OPT_WIFI_DP
13154 	.ipa_rx_super_rule_setup = dp_ipa_rx_super_rule_setup,
13155 	.ipa_pcie_link_up = dp_ipa_pcie_link_up,
13156 	.ipa_pcie_link_down = dp_ipa_pcie_link_down,
13157 #endif
13158 #ifdef IPA_WDS_EASYMESH_FEATURE
13159 	.ipa_ast_create = dp_ipa_ast_create,
13160 #endif
13161 	.ipa_get_wdi_version = dp_ipa_get_wdi_version,
13162 };
13163 #endif
13164 
13165 #ifdef DP_POWER_SAVE
13166 static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13167 {
13168 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13169 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13170 	int timeout = SUSPEND_DRAIN_WAIT;
13171 	int drain_wait_delay = 50; /* 50 ms */
13172 	int32_t tx_pending;
13173 
13174 	if (qdf_unlikely(!pdev)) {
13175 		dp_err("pdev is NULL");
13176 		return QDF_STATUS_E_INVAL;
13177 	}
13178 
13179 	/* Abort if there are any pending TX packets */
13180 	while ((tx_pending = dp_get_tx_pending((struct cdp_pdev *)pdev))) {
13181 		qdf_sleep(drain_wait_delay);
13182 		if (timeout <= 0) {
13183 			dp_info("TX frames are pending %d, abort suspend",
13184 				tx_pending);
13185 			dp_find_missing_tx_comp(soc);
13186 			return QDF_STATUS_E_TIMEOUT;
13187 		}
13188 		timeout = timeout - drain_wait_delay;
13189 	}
13190 
13191 	if (soc->intr_mode == DP_INTR_POLL)
13192 		qdf_timer_stop(&soc->int_timer);
13193 
13194 	/* Stop monitor reap timer and reap any pending frames in ring */
13195 	dp_monitor_reap_timer_suspend(soc);
13196 
13197 	return QDF_STATUS_SUCCESS;
13198 }
13199 
13200 static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13201 {
13202 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13203 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13204 
13205 	if (qdf_unlikely(!pdev)) {
13206 		dp_err("pdev is NULL");
13207 		return QDF_STATUS_E_INVAL;
13208 	}
13209 
13210 	if (soc->intr_mode == DP_INTR_POLL)
13211 		qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
13212 
13213 	/* Start monitor reap timer */
13214 	dp_monitor_reap_timer_start(soc, CDP_MON_REAP_SOURCE_ANY);
13215 
13216 	soc->arch_ops.dp_update_ring_hptp(soc, false);
13217 
13218 	return QDF_STATUS_SUCCESS;
13219 }
13220 
13221 /**
13222  * dp_process_wow_ack_rsp() - process wow ack response
13223  * @soc_hdl: datapath soc handle
13224  * @pdev_id: data path pdev handle id
13225  *
13226  * Return: none
13227  */
13228 static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13229 {
13230 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13231 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13232 
13233 	if (qdf_unlikely(!pdev)) {
13234 		dp_err("pdev is NULL");
13235 		return;
13236 	}
13237 
13238 	/*
13239 	 * As part of wow enable FW disables the mon status ring and in wow ack
13240 	 * response from FW reap mon status ring to make sure no packets pending
13241 	 * in the ring.
13242 	 */
13243 	dp_monitor_reap_timer_suspend(soc);
13244 }
13245 
13246 /**
13247  * dp_process_target_suspend_req() - process target suspend request
13248  * @soc_hdl: datapath soc handle
13249  * @pdev_id: data path pdev handle id
13250  *
13251  * Return: none
13252  */
13253 static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
13254 					  uint8_t pdev_id)
13255 {
13256 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13257 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13258 
13259 	if (qdf_unlikely(!pdev)) {
13260 		dp_err("pdev is NULL");
13261 		return;
13262 	}
13263 
13264 	/* Stop monitor reap timer and reap any pending frames in ring */
13265 	dp_monitor_reap_timer_suspend(soc);
13266 }
13267 
13268 static struct cdp_bus_ops dp_ops_bus = {
13269 	.bus_suspend = dp_bus_suspend,
13270 	.bus_resume = dp_bus_resume,
13271 	.process_wow_ack_rsp = dp_process_wow_ack_rsp,
13272 	.process_target_suspend_req = dp_process_target_suspend_req
13273 };
13274 #endif
13275 
13276 #ifdef DP_FLOW_CTL
13277 static struct cdp_throttle_ops dp_ops_throttle = {
13278 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13279 };
13280 
13281 static struct cdp_cfg_ops dp_ops_cfg = {
13282 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13283 };
13284 #endif
13285 
13286 #ifdef DP_PEER_EXTENDED_API
13287 static struct cdp_ocb_ops dp_ops_ocb = {
13288 	/* WIFI 3.0 DP NOT IMPLEMENTED YET */
13289 };
13290 
13291 static struct cdp_mob_stats_ops dp_ops_mob_stats = {
13292 	.clear_stats = dp_txrx_clear_dump_stats,
13293 };
13294 
13295 static struct cdp_peer_ops dp_ops_peer = {
13296 	.register_peer = dp_register_peer,
13297 	.clear_peer = dp_clear_peer,
13298 	.find_peer_exist = dp_find_peer_exist,
13299 	.find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev,
13300 	.find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev,
13301 	.peer_state_update = dp_peer_state_update,
13302 	.get_vdevid = dp_get_vdevid,
13303 	.get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr,
13304 	.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
13305 	.get_peer_state = dp_get_peer_state,
13306 	.peer_flush_frags = dp_peer_flush_frags,
13307 	.set_peer_as_tdls_peer = dp_set_peer_as_tdls_peer,
13308 };
13309 #endif
13310 
13311 static void dp_soc_txrx_ops_attach(struct dp_soc *soc)
13312 {
13313 	soc->cdp_soc.ops->cmn_drv_ops = &dp_ops_cmn;
13314 	soc->cdp_soc.ops->ctrl_ops = &dp_ops_ctrl;
13315 	soc->cdp_soc.ops->me_ops = &dp_ops_me;
13316 	soc->cdp_soc.ops->host_stats_ops = &dp_ops_host_stats;
13317 	soc->cdp_soc.ops->wds_ops = &dp_ops_wds;
13318 	soc->cdp_soc.ops->raw_ops = &dp_ops_raw;
13319 #ifdef PEER_FLOW_CONTROL
13320 	soc->cdp_soc.ops->pflow_ops = &dp_ops_pflow;
13321 #endif /* PEER_FLOW_CONTROL */
13322 #ifdef DP_PEER_EXTENDED_API
13323 	soc->cdp_soc.ops->misc_ops = &dp_ops_misc;
13324 	soc->cdp_soc.ops->ocb_ops = &dp_ops_ocb;
13325 	soc->cdp_soc.ops->peer_ops = &dp_ops_peer;
13326 	soc->cdp_soc.ops->mob_stats_ops = &dp_ops_mob_stats;
13327 #endif
13328 #ifdef DP_FLOW_CTL
13329 	soc->cdp_soc.ops->cfg_ops = &dp_ops_cfg;
13330 	soc->cdp_soc.ops->flowctl_ops = &dp_ops_flowctl;
13331 	soc->cdp_soc.ops->l_flowctl_ops = &dp_ops_l_flowctl;
13332 	soc->cdp_soc.ops->throttle_ops = &dp_ops_throttle;
13333 #endif
13334 #ifdef IPA_OFFLOAD
13335 	soc->cdp_soc.ops->ipa_ops = &dp_ops_ipa;
13336 #endif
13337 #ifdef DP_POWER_SAVE
13338 	soc->cdp_soc.ops->bus_ops = &dp_ops_bus;
13339 #endif
13340 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13341 	soc->cdp_soc.ops->cfr_ops = &dp_ops_cfr;
13342 #endif
13343 #ifdef WLAN_SUPPORT_MSCS
13344 	soc->cdp_soc.ops->mscs_ops = &dp_ops_mscs;
13345 #endif
13346 #ifdef WLAN_SUPPORT_MESH_LATENCY
13347 	soc->cdp_soc.ops->mesh_latency_ops = &dp_ops_mesh_latency;
13348 #endif
13349 #ifdef CONFIG_SAWF_DEF_QUEUES
13350 	soc->cdp_soc.ops->sawf_ops = &dp_ops_sawf;
13351 #endif
13352 #ifdef WLAN_SUPPORT_SCS
13353 	soc->cdp_soc.ops->scs_ops = &dp_ops_scs;
13354 #endif
13355 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
13356 	soc->cdp_soc.ops->fse_ops = &dp_ops_fse;
13357 #endif
13358 };
13359 
13360 #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \
13361 	defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \
13362 	defined(QCA_WIFI_QCA5332)
13363 
13364 /**
13365  * dp_soc_attach_wifi3() - Attach txrx SOC
13366  * @ctrl_psoc: Opaque SOC handle from control plane
13367  * @params: SOC attach params
13368  *
13369  * Return: DP SOC handle on success, NULL on failure
13370  */
13371 struct cdp_soc_t *
13372 dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13373 		    struct cdp_soc_attach_params *params)
13374 {
13375 	struct dp_soc *dp_soc = NULL;
13376 
13377 	dp_soc = dp_soc_attach(ctrl_psoc, params);
13378 
13379 	return dp_soc_to_cdp_soc_t(dp_soc);
13380 }
13381 
13382 static inline void dp_soc_set_def_pdev(struct dp_soc *soc)
13383 {
13384 	int lmac_id;
13385 
13386 	for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) {
13387 		/*Set default host PDEV ID for lmac_id*/
13388 		wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx,
13389 				      INVALID_PDEV_ID, lmac_id);
13390 	}
13391 }
13392 
13393 static void dp_soc_unset_qref_debug_list(struct dp_soc *soc)
13394 {
13395 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13396 
13397 	if (max_list_size == 0)
13398 		return;
13399 
13400 	qdf_mem_free(soc->list_shared_qaddr_del);
13401 	qdf_mem_free(soc->reo_write_list);
13402 	qdf_mem_free(soc->list_qdesc_addr_free);
13403 	qdf_mem_free(soc->list_qdesc_addr_alloc);
13404 }
13405 
13406 static void dp_soc_set_qref_debug_list(struct dp_soc *soc)
13407 {
13408 	uint32_t max_list_size = soc->wlan_cfg_ctx->qref_control_size;
13409 
13410 	if (max_list_size == 0)
13411 		return;
13412 
13413 	soc->list_shared_qaddr_del =
13414 			(struct test_qaddr_del *)
13415 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13416 					       max_list_size);
13417 	soc->reo_write_list =
13418 			(struct test_qaddr_del *)
13419 				qdf_mem_malloc(sizeof(struct test_qaddr_del) *
13420 					       max_list_size);
13421 	soc->list_qdesc_addr_free =
13422 			(struct test_mem_free *)
13423 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13424 					       max_list_size);
13425 	soc->list_qdesc_addr_alloc =
13426 			(struct test_mem_free *)
13427 				qdf_mem_malloc(sizeof(struct test_mem_free) *
13428 					       max_list_size);
13429 }
13430 
13431 static uint32_t
13432 dp_get_link_desc_id_start(uint16_t arch_id)
13433 {
13434 	switch (arch_id) {
13435 	case CDP_ARCH_TYPE_LI:
13436 	case CDP_ARCH_TYPE_RH:
13437 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13438 	case CDP_ARCH_TYPE_BE:
13439 		return LINK_DESC_ID_START_20_BITS_COOKIE;
13440 	default:
13441 		dp_err("unknown arch_id 0x%x", arch_id);
13442 		QDF_BUG(0);
13443 		return LINK_DESC_ID_START_21_BITS_COOKIE;
13444 	}
13445 }
13446 
13447 #ifdef DP_TX_PACKET_INSPECT_FOR_ILP
13448 static inline
13449 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13450 {
13451 	soc->tx_ilp_enable = false;
13452 }
13453 #else
13454 static inline
13455 void dp_soc_init_tx_ilp(struct dp_soc *soc)
13456 {
13457 }
13458 #endif
13459 
13460 /**
13461  * dp_soc_attach() - Attach txrx SOC
13462  * @ctrl_psoc: Opaque SOC handle from control plane
13463  * @params: SOC attach params
13464  *
13465  * Return: DP SOC handle on success, NULL on failure
13466  */
13467 static struct dp_soc *
13468 dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13469 	      struct cdp_soc_attach_params *params)
13470 {
13471 	struct dp_soc *soc =  NULL;
13472 	uint16_t arch_id;
13473 	struct hif_opaque_softc *hif_handle = params->hif_handle;
13474 	qdf_device_t qdf_osdev = params->qdf_osdev;
13475 	struct ol_if_ops *ol_ops = params->ol_ops;
13476 	uint16_t device_id = params->device_id;
13477 
13478 	if (!hif_handle) {
13479 		dp_err("HIF handle is NULL");
13480 		goto fail0;
13481 	}
13482 	arch_id = cdp_get_arch_type_from_devid(device_id);
13483 	soc = qdf_mem_common_alloc(dp_get_soc_context_size(device_id));
13484 	if (!soc) {
13485 		dp_err("DP SOC memory allocation failed");
13486 		goto fail0;
13487 	}
13488 
13489 	dp_info("soc memory allocated %pK", soc);
13490 	soc->hif_handle = hif_handle;
13491 	soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
13492 	if (!soc->hal_soc)
13493 		goto fail1;
13494 
13495 	hif_get_cmem_info(soc->hif_handle,
13496 			  &soc->cmem_base,
13497 			  &soc->cmem_total_size);
13498 	soc->cmem_avail_size = soc->cmem_total_size;
13499 	soc->device_id = device_id;
13500 	soc->cdp_soc.ops =
13501 		(struct cdp_ops *)qdf_mem_malloc(sizeof(struct cdp_ops));
13502 	if (!soc->cdp_soc.ops)
13503 		goto fail1;
13504 
13505 	dp_soc_txrx_ops_attach(soc);
13506 	soc->cdp_soc.ol_ops = ol_ops;
13507 	soc->ctrl_psoc = ctrl_psoc;
13508 	soc->osdev = qdf_osdev;
13509 	soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
13510 	dp_soc_init_tx_ilp(soc);
13511 	hal_rx_get_tlv_size(soc->hal_soc, &soc->rx_pkt_tlv_size,
13512 			    &soc->rx_mon_pkt_tlv_size);
13513 	soc->idle_link_bm_id = hal_get_idle_link_bm_id(soc->hal_soc,
13514 						       params->mlo_chip_id);
13515 	soc->features.dmac_cmn_src_rxbuf_ring_enabled =
13516 		hal_dmac_cmn_src_rxbuf_ring_get(soc->hal_soc);
13517 	soc->arch_id = arch_id;
13518 	soc->link_desc_id_start =
13519 			dp_get_link_desc_id_start(soc->arch_id);
13520 	dp_configure_arch_ops(soc);
13521 
13522 	/* Reset wbm sg list and flags */
13523 	dp_rx_wbm_sg_list_reset(soc);
13524 
13525 	dp_soc_cfg_history_attach(soc);
13526 	dp_soc_tx_hw_desc_history_attach(soc);
13527 	dp_soc_rx_history_attach(soc);
13528 	dp_soc_mon_status_ring_history_attach(soc);
13529 	dp_soc_tx_history_attach(soc);
13530 	wlan_set_srng_cfg(&soc->wlan_srng_cfg);
13531 	soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
13532 	if (!soc->wlan_cfg_ctx) {
13533 		dp_err("wlan_cfg_ctx failed");
13534 		goto fail2;
13535 	}
13536 
13537 	/*sync DP soc cfg items with profile support after cfg_soc_attach*/
13538 	wlan_dp_soc_cfg_sync_profile((struct cdp_soc_t *)soc);
13539 
13540 	soc->arch_ops.soc_cfg_attach(soc);
13541 
13542 	if (dp_hw_link_desc_pool_banks_alloc(soc, WLAN_INVALID_PDEV_ID)) {
13543 		dp_err("failed to allocate link desc pool banks");
13544 		goto fail3;
13545 	}
13546 
13547 	if (dp_hw_link_desc_ring_alloc(soc)) {
13548 		dp_err("failed to allocate link_desc_ring");
13549 		goto fail4;
13550 	}
13551 
13552 	if (!QDF_IS_STATUS_SUCCESS(soc->arch_ops.txrx_soc_attach(soc,
13553 								 params))) {
13554 		dp_err("unable to do target specific attach");
13555 		goto fail5;
13556 	}
13557 
13558 	if (dp_soc_srng_alloc(soc)) {
13559 		dp_err("failed to allocate soc srng rings");
13560 		goto fail6;
13561 	}
13562 
13563 	if (dp_soc_tx_desc_sw_pools_alloc(soc)) {
13564 		dp_err("dp_soc_tx_desc_sw_pools_alloc failed");
13565 		goto fail7;
13566 	}
13567 
13568 	if (!dp_monitor_modularized_enable()) {
13569 		if (dp_mon_soc_attach_wrapper(soc)) {
13570 			dp_err("failed to attach monitor");
13571 			goto fail8;
13572 		}
13573 	}
13574 
13575 	if (hal_reo_shared_qaddr_setup((hal_soc_handle_t)soc->hal_soc,
13576 				       &soc->reo_qref)
13577 	    != QDF_STATUS_SUCCESS) {
13578 		dp_err("unable to setup reo shared qaddr");
13579 		goto fail9;
13580 	}
13581 
13582 	if (dp_sysfs_initialize_stats(soc) != QDF_STATUS_SUCCESS) {
13583 		dp_err("failed to initialize dp stats sysfs file");
13584 		dp_sysfs_deinitialize_stats(soc);
13585 	}
13586 
13587 	dp_soc_swlm_attach(soc);
13588 	dp_soc_set_interrupt_mode(soc);
13589 	dp_soc_set_def_pdev(soc);
13590 	dp_soc_set_qref_debug_list(soc);
13591 
13592 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
13593 		qdf_dma_mem_stats_read(),
13594 		qdf_heap_mem_stats_read(),
13595 		qdf_skb_total_mem_stats_read());
13596 
13597 	return soc;
13598 fail9:
13599 	if (!dp_monitor_modularized_enable())
13600 		dp_mon_soc_detach_wrapper(soc);
13601 fail8:
13602 	dp_soc_tx_desc_sw_pools_free(soc);
13603 fail7:
13604 	dp_soc_srng_free(soc);
13605 fail6:
13606 	soc->arch_ops.txrx_soc_detach(soc);
13607 fail5:
13608 	dp_hw_link_desc_ring_free(soc);
13609 fail4:
13610 	dp_hw_link_desc_pool_banks_free(soc, WLAN_INVALID_PDEV_ID);
13611 fail3:
13612 	wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
13613 fail2:
13614 	qdf_mem_free(soc->cdp_soc.ops);
13615 fail1:
13616 	qdf_mem_common_free(soc);
13617 fail0:
13618 	return NULL;
13619 }
13620 
13621 void *dp_soc_init_wifi3(struct cdp_soc_t *cdp_soc,
13622 			struct cdp_ctrl_objmgr_psoc *ctrl_psoc,
13623 			struct hif_opaque_softc *hif_handle,
13624 			HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
13625 			struct ol_if_ops *ol_ops, uint16_t device_id)
13626 {
13627 	struct dp_soc *soc = (struct dp_soc *)cdp_soc;
13628 
13629 	return soc->arch_ops.txrx_soc_init(soc, htc_handle, hif_handle);
13630 }
13631 
13632 #endif
13633 
13634 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
13635 {
13636 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
13637 		return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL;
13638 
13639 	/* Typically for MCL as there only 1 PDEV*/
13640 	return soc->pdev_list[0];
13641 }
13642 
13643 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
13644 				     int *max_mac_rings)
13645 {
13646 	bool dbs_enable = false;
13647 
13648 	if (soc->cdp_soc.ol_ops->is_hw_dbs_capable)
13649 		dbs_enable = soc->cdp_soc.ol_ops->
13650 				is_hw_dbs_capable((void *)soc->ctrl_psoc);
13651 
13652 	*max_mac_rings = dbs_enable ? (*max_mac_rings) : 1;
13653 	dp_info("dbs_enable %d, max_mac_rings %d",
13654 		dbs_enable, *max_mac_rings);
13655 }
13656 
13657 qdf_export_symbol(dp_update_num_mac_rings_for_dbs);
13658 
13659 #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE)
13660 /**
13661  * dp_get_cfr_rcc() - get cfr rcc config
13662  * @soc_hdl: Datapath soc handle
13663  * @pdev_id: id of objmgr pdev
13664  *
13665  * Return: true/false based on cfr mode setting
13666  */
13667 static
13668 bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id)
13669 {
13670 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13671 	struct dp_pdev *pdev = NULL;
13672 
13673 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13674 	if (!pdev) {
13675 		dp_err("pdev is NULL");
13676 		return false;
13677 	}
13678 
13679 	return pdev->cfr_rcc_mode;
13680 }
13681 
13682 /**
13683  * dp_set_cfr_rcc() - enable/disable cfr rcc config
13684  * @soc_hdl: Datapath soc handle
13685  * @pdev_id: id of objmgr pdev
13686  * @enable: Enable/Disable cfr rcc mode
13687  *
13688  * Return: none
13689  */
13690 static
13691 void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable)
13692 {
13693 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13694 	struct dp_pdev *pdev = NULL;
13695 
13696 	pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13697 	if (!pdev) {
13698 		dp_err("pdev is NULL");
13699 		return;
13700 	}
13701 
13702 	pdev->cfr_rcc_mode = enable;
13703 }
13704 
13705 /**
13706  * dp_get_cfr_dbg_stats - Get the debug statistics for CFR
13707  * @soc_hdl: Datapath soc handle
13708  * @pdev_id: id of data path pdev handle
13709  * @cfr_rcc_stats: CFR RCC debug statistics buffer
13710  *
13711  * Return: none
13712  */
13713 static inline void
13714 dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
13715 		     struct cdp_cfr_rcc_stats *cfr_rcc_stats)
13716 {
13717 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13718 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13719 
13720 	if (!pdev) {
13721 		dp_err("pdev is NULL");
13722 		return;
13723 	}
13724 
13725 	qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc,
13726 		     sizeof(struct cdp_cfr_rcc_stats));
13727 }
13728 
13729 /**
13730  * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR
13731  * @soc_hdl: Datapath soc handle
13732  * @pdev_id: id of data path pdev handle
13733  *
13734  * Return: none
13735  */
13736 static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl,
13737 				   uint8_t pdev_id)
13738 {
13739 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
13740 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
13741 
13742 	if (!pdev) {
13743 		dp_err("dp pdev is NULL");
13744 		return;
13745 	}
13746 
13747 	qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc));
13748 }
13749 #endif
13750 
13751 /**
13752  * dp_bucket_index() - Return index from array
13753  *
13754  * @delay: delay measured
13755  * @array: array used to index corresponding delay
13756  * @delay_in_us: flag to indicate whether the delay in ms or us
13757  *
13758  * Return: index
13759  */
13760 static uint8_t
13761 dp_bucket_index(uint32_t delay, uint16_t *array, bool delay_in_us)
13762 {
13763 	uint8_t i = CDP_DELAY_BUCKET_0;
13764 	uint32_t thr_low, thr_high;
13765 
13766 	for (; i < CDP_DELAY_BUCKET_MAX - 1; i++) {
13767 		thr_low = array[i];
13768 		thr_high = array[i + 1];
13769 
13770 		if (delay_in_us) {
13771 			thr_low = thr_low * USEC_PER_MSEC;
13772 			thr_high = thr_high * USEC_PER_MSEC;
13773 		}
13774 		if (delay >= thr_low && delay <= thr_high)
13775 			return i;
13776 	}
13777 	return (CDP_DELAY_BUCKET_MAX - 1);
13778 }
13779 
13780 #ifdef HW_TX_DELAY_STATS_ENABLE
13781 /*
13782  * cdp_fw_to_hw_delay_range
13783  * Fw to hw delay ranges in milliseconds
13784  */
13785 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13786 	0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
13787 #else
13788 static uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
13789 	0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 100, 250, 500};
13790 #endif
13791 
13792 /*
13793  * cdp_sw_enq_delay_range
13794  * Software enqueue delay ranges in milliseconds
13795  */
13796 static uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
13797 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
13798 
13799 /*
13800  * cdp_intfrm_delay_range
13801  * Interframe delay ranges in milliseconds
13802  */
13803 static uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
13804 	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
13805 
13806 /**
13807  * dp_fill_delay_buckets() - Fill delay statistics bucket for each
13808  *				type of delay
13809  * @tstats: tid tx stats
13810  * @rstats: tid rx stats
13811  * @delay: delay in ms
13812  * @tid: tid value
13813  * @mode: type of tx delay mode
13814  * @ring_id: ring number
13815  * @delay_in_us: flag to indicate whether the delay in ms or us
13816  *
13817  * Return: pointer to cdp_delay_stats structure
13818  */
13819 static struct cdp_delay_stats *
13820 dp_fill_delay_buckets(struct cdp_tid_tx_stats *tstats,
13821 		      struct cdp_tid_rx_stats *rstats, uint32_t delay,
13822 		      uint8_t tid, uint8_t mode, uint8_t ring_id,
13823 		      bool delay_in_us)
13824 {
13825 	uint8_t delay_index = 0;
13826 	struct cdp_delay_stats *stats = NULL;
13827 
13828 	/*
13829 	 * Update delay stats in proper bucket
13830 	 */
13831 	switch (mode) {
13832 	/* Software Enqueue delay ranges */
13833 	case CDP_DELAY_STATS_SW_ENQ:
13834 		if (!tstats)
13835 			break;
13836 
13837 		delay_index = dp_bucket_index(delay, cdp_sw_enq_delay,
13838 					      delay_in_us);
13839 		tstats->swq_delay.delay_bucket[delay_index]++;
13840 		stats = &tstats->swq_delay;
13841 		break;
13842 
13843 	/* Tx Completion delay ranges */
13844 	case CDP_DELAY_STATS_FW_HW_TRANSMIT:
13845 		if (!tstats)
13846 			break;
13847 
13848 		delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay,
13849 					      delay_in_us);
13850 		tstats->hwtx_delay.delay_bucket[delay_index]++;
13851 		stats = &tstats->hwtx_delay;
13852 		break;
13853 
13854 	/* Interframe tx delay ranges */
13855 	case CDP_DELAY_STATS_TX_INTERFRAME:
13856 		if (!tstats)
13857 			break;
13858 
13859 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13860 					      delay_in_us);
13861 		tstats->intfrm_delay.delay_bucket[delay_index]++;
13862 		stats = &tstats->intfrm_delay;
13863 		break;
13864 
13865 	/* Interframe rx delay ranges */
13866 	case CDP_DELAY_STATS_RX_INTERFRAME:
13867 		if (!rstats)
13868 			break;
13869 
13870 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13871 					      delay_in_us);
13872 		rstats->intfrm_delay.delay_bucket[delay_index]++;
13873 		stats = &rstats->intfrm_delay;
13874 		break;
13875 
13876 	/* Ring reap to indication to network stack */
13877 	case CDP_DELAY_STATS_REAP_STACK:
13878 		if (!rstats)
13879 			break;
13880 
13881 		delay_index = dp_bucket_index(delay, cdp_intfrm_delay,
13882 					      delay_in_us);
13883 		rstats->to_stack_delay.delay_bucket[delay_index]++;
13884 		stats = &rstats->to_stack_delay;
13885 		break;
13886 	default:
13887 		dp_debug("Incorrect delay mode: %d", mode);
13888 	}
13889 
13890 	return stats;
13891 }
13892 
13893 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
13894 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
13895 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
13896 			   bool delay_in_us)
13897 {
13898 	struct cdp_delay_stats *dstats = NULL;
13899 
13900 	/*
13901 	 * Delay ranges are different for different delay modes
13902 	 * Get the correct index to update delay bucket
13903 	 */
13904 	dstats = dp_fill_delay_buckets(tstats, rstats, delay, tid, mode,
13905 				       ring_id, delay_in_us);
13906 	if (qdf_unlikely(!dstats))
13907 		return;
13908 
13909 	if (delay != 0) {
13910 		/*
13911 		 * Compute minimum,average and maximum
13912 		 * delay
13913 		 */
13914 		if (delay < dstats->min_delay)
13915 			dstats->min_delay = delay;
13916 
13917 		if (delay > dstats->max_delay)
13918 			dstats->max_delay = delay;
13919 
13920 		/*
13921 		 * Average over delay measured till now
13922 		 */
13923 		if (!dstats->avg_delay)
13924 			dstats->avg_delay = delay;
13925 		else
13926 			dstats->avg_delay = ((delay + dstats->avg_delay) >> 1);
13927 	}
13928 }
13929 
13930 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
13931 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
13932 			      u_int16_t mac_cnt, bool limit)
13933 {
13934 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
13935 	struct dp_vdev *vdev =
13936 		dp_vdev_get_ref_by_id(dp_soc, vdev_id, DP_MOD_ID_CDP);
13937 	struct dp_peer *peer;
13938 	uint16_t new_mac_cnt = 0;
13939 
13940 	if (!vdev)
13941 		return new_mac_cnt;
13942 
13943 	if (limit && (vdev->num_peers > mac_cnt)) {
13944 		dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
13945 		return 0;
13946 	}
13947 
13948 	qdf_spin_lock_bh(&vdev->peer_list_lock);
13949 	TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
13950 		if (peer->bss_peer)
13951 			continue;
13952 		if (new_mac_cnt < mac_cnt) {
13953 			WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw);
13954 			new_mac_cnt++;
13955 		}
13956 	}
13957 	qdf_spin_unlock_bh(&vdev->peer_list_lock);
13958 	dp_vdev_unref_delete(dp_soc, vdev, DP_MOD_ID_CDP);
13959 	return new_mac_cnt;
13960 }
13961 
13962 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac)
13963 {
13964 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
13965 						       mac, 0, vdev_id,
13966 						       DP_MOD_ID_CDP);
13967 	uint16_t peer_id = HTT_INVALID_PEER;
13968 
13969 	if (!peer) {
13970 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
13971 		return peer_id;
13972 	}
13973 
13974 	peer_id = peer->peer_id;
13975 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
13976 	return peer_id;
13977 }
13978 
13979 #ifdef QCA_SUPPORT_WDS_EXTENDED
13980 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
13981 				  uint8_t vdev_id,
13982 				  uint8_t *mac,
13983 				  ol_txrx_rx_fp rx,
13984 				  ol_osif_peer_handle osif_peer)
13985 {
13986 	struct dp_txrx_peer *txrx_peer = NULL;
13987 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
13988 						       mac, 0, vdev_id,
13989 						       DP_MOD_ID_CDP);
13990 	QDF_STATUS status = QDF_STATUS_E_INVAL;
13991 
13992 	if (!peer) {
13993 		dp_cdp_debug("%pK: Peer is NULL!", (struct dp_soc *)soc);
13994 		return status;
13995 	}
13996 
13997 	txrx_peer = dp_get_txrx_peer(peer);
13998 	if (!txrx_peer) {
13999 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14000 		return status;
14001 	}
14002 
14003 	if (rx) {
14004 		if (txrx_peer->osif_rx) {
14005 			status = QDF_STATUS_E_ALREADY;
14006 		} else {
14007 			txrx_peer->osif_rx = rx;
14008 			status = QDF_STATUS_SUCCESS;
14009 		}
14010 	} else {
14011 		if (txrx_peer->osif_rx) {
14012 			txrx_peer->osif_rx = NULL;
14013 			status = QDF_STATUS_SUCCESS;
14014 		} else {
14015 			status = QDF_STATUS_E_ALREADY;
14016 		}
14017 	}
14018 
14019 	txrx_peer->wds_ext.osif_peer = osif_peer;
14020 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14021 
14022 	return status;
14023 }
14024 
14025 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
14026 				ol_txrx_soc_handle soc,
14027 				uint8_t vdev_id,
14028 				uint8_t *mac,
14029 				ol_osif_peer_handle *osif_peer)
14030 {
14031 	struct dp_soc *dp_soc = (struct dp_soc *)soc;
14032 	struct dp_txrx_peer *txrx_peer = NULL;
14033 	struct dp_peer *peer = dp_peer_find_hash_find(dp_soc,
14034 						      mac, 0, vdev_id,
14035 						      DP_MOD_ID_CDP);
14036 
14037 	if (!peer) {
14038 		dp_cdp_debug("%pK: Peer is NULL!", dp_soc);
14039 		return QDF_STATUS_E_INVAL;
14040 	}
14041 
14042 	txrx_peer = dp_get_txrx_peer(peer);
14043 	if (!txrx_peer) {
14044 		dp_cdp_debug("%pK: TXRX Peer is NULL!", dp_soc);
14045 		dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14046 		return QDF_STATUS_E_INVAL;
14047 	}
14048 
14049 	*osif_peer = txrx_peer->wds_ext.osif_peer;
14050 	dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
14051 
14052 	return QDF_STATUS_SUCCESS;
14053 }
14054 
14055 QDF_STATUS dp_wds_ext_set_peer_bit(ol_txrx_soc_handle soc, uint8_t *mac)
14056 {
14057 	struct dp_txrx_peer *txrx_peer = NULL;
14058 	struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
14059 						       mac, 0, DP_VDEV_ALL,
14060 						       DP_MOD_ID_IPA);
14061 	if (!peer) {
14062 		dp_cdp_debug("%pK: Peer is NULL!\n", (struct dp_soc *)soc);
14063 		return QDF_STATUS_E_INVAL;
14064 	}
14065 
14066 	txrx_peer = dp_get_txrx_peer(peer);
14067 	if (!txrx_peer) {
14068 		dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14069 		return QDF_STATUS_E_INVAL;
14070 	}
14071 	qdf_atomic_test_and_set_bit(WDS_EXT_PEER_INIT_BIT,
14072 				    &txrx_peer->wds_ext.init);
14073 	dp_peer_unref_delete(peer, DP_MOD_ID_IPA);
14074 
14075 	return QDF_STATUS_SUCCESS;
14076 }
14077 #endif /* QCA_SUPPORT_WDS_EXTENDED */
14078 
14079 /**
14080  * dp_pdev_srng_deinit() - de-initialize all pdev srng ring including
14081  *			   monitor rings
14082  * @pdev: Datapath pdev handle
14083  *
14084  */
14085 static void dp_pdev_srng_deinit(struct dp_pdev *pdev)
14086 {
14087 	struct dp_soc *soc = pdev->soc;
14088 	uint8_t i;
14089 
14090 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14091 		dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14092 			       RXDMA_BUF,
14093 			       pdev->lmac_id);
14094 
14095 	if (!soc->rxdma2sw_rings_not_supported) {
14096 		for (i = 0;
14097 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14098 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14099 								 pdev->pdev_id);
14100 
14101 			wlan_minidump_remove(soc->rxdma_err_dst_ring[lmac_id].
14102 							base_vaddr_unaligned,
14103 					     soc->rxdma_err_dst_ring[lmac_id].
14104 								alloc_size,
14105 					     soc->ctrl_psoc,
14106 					     WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14107 					     "rxdma_err_dst");
14108 			dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id],
14109 				       RXDMA_DST, lmac_id);
14110 		}
14111 	}
14112 
14113 
14114 }
14115 
14116 /**
14117  * dp_pdev_srng_init() - initialize all pdev srng rings including
14118  *			   monitor rings
14119  * @pdev: Datapath pdev handle
14120  *
14121  * Return: QDF_STATUS_SUCCESS on success
14122  *	   QDF_STATUS_E_NOMEM on failure
14123  */
14124 static QDF_STATUS dp_pdev_srng_init(struct dp_pdev *pdev)
14125 {
14126 	struct dp_soc *soc = pdev->soc;
14127 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14128 	uint32_t i;
14129 
14130 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14131 
14132 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14133 		if (dp_srng_init(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14134 				 RXDMA_BUF, 0, pdev->lmac_id)) {
14135 			dp_init_err("%pK: dp_srng_init failed rx refill ring",
14136 				    soc);
14137 			goto fail1;
14138 		}
14139 	}
14140 
14141 	/* LMAC RxDMA to SW Rings configuration */
14142 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14143 		/* Only valid for MCL */
14144 		pdev = soc->pdev_list[0];
14145 
14146 	if (!soc->rxdma2sw_rings_not_supported) {
14147 		for (i = 0;
14148 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14149 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14150 								 pdev->pdev_id);
14151 			struct dp_srng *srng =
14152 				&soc->rxdma_err_dst_ring[lmac_id];
14153 
14154 			if (srng->hal_srng)
14155 				continue;
14156 
14157 			if (dp_srng_init(soc, srng, RXDMA_DST, 0, lmac_id)) {
14158 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14159 					    soc);
14160 				goto fail1;
14161 			}
14162 			wlan_minidump_log(soc->rxdma_err_dst_ring[lmac_id].
14163 						base_vaddr_unaligned,
14164 					  soc->rxdma_err_dst_ring[lmac_id].
14165 						alloc_size,
14166 					  soc->ctrl_psoc,
14167 					  WLAN_MD_DP_SRNG_RXDMA_ERR_DST,
14168 					  "rxdma_err_dst");
14169 		}
14170 	}
14171 	return QDF_STATUS_SUCCESS;
14172 
14173 fail1:
14174 	dp_pdev_srng_deinit(pdev);
14175 	return QDF_STATUS_E_NOMEM;
14176 }
14177 
14178 /**
14179  * dp_pdev_srng_free() - free all pdev srng rings including monitor rings
14180  * @pdev: Datapath pdev handle
14181  *
14182  */
14183 static void dp_pdev_srng_free(struct dp_pdev *pdev)
14184 {
14185 	struct dp_soc *soc = pdev->soc;
14186 	uint8_t i;
14187 
14188 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled)
14189 		dp_srng_free(soc, &soc->rx_refill_buf_ring[pdev->lmac_id]);
14190 
14191 	if (!soc->rxdma2sw_rings_not_supported) {
14192 		for (i = 0;
14193 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14194 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14195 								 pdev->pdev_id);
14196 
14197 			dp_srng_free(soc, &soc->rxdma_err_dst_ring[lmac_id]);
14198 		}
14199 	}
14200 }
14201 
14202 /**
14203  * dp_pdev_srng_alloc() - allocate memory for all pdev srng rings including
14204  *			  monitor rings
14205  * @pdev: Datapath pdev handle
14206  *
14207  * Return: QDF_STATUS_SUCCESS on success
14208  *	   QDF_STATUS_E_NOMEM on failure
14209  */
14210 static QDF_STATUS dp_pdev_srng_alloc(struct dp_pdev *pdev)
14211 {
14212 	struct dp_soc *soc = pdev->soc;
14213 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14214 	uint32_t ring_size;
14215 	uint32_t i;
14216 
14217 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14218 
14219 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
14220 	if (!soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
14221 		if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[pdev->lmac_id],
14222 				  RXDMA_BUF, ring_size, 0)) {
14223 			dp_init_err("%pK: dp_srng_alloc failed rx refill ring",
14224 				    soc);
14225 			goto fail1;
14226 		}
14227 	}
14228 
14229 	ring_size = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
14230 	/* LMAC RxDMA to SW Rings configuration */
14231 	if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx))
14232 		/* Only valid for MCL */
14233 		pdev = soc->pdev_list[0];
14234 
14235 	if (!soc->rxdma2sw_rings_not_supported) {
14236 		for (i = 0;
14237 		     i < soc->wlan_cfg_ctx->num_rxdma_dst_rings_per_pdev; i++) {
14238 			int lmac_id = dp_get_lmac_id_for_pdev_id(soc, i,
14239 								 pdev->pdev_id);
14240 			struct dp_srng *srng =
14241 				&soc->rxdma_err_dst_ring[lmac_id];
14242 
14243 			if (srng->base_vaddr_unaligned)
14244 				continue;
14245 
14246 			if (dp_srng_alloc(soc, srng, RXDMA_DST, ring_size, 0)) {
14247 				dp_init_err("%pK:" RNG_ERR "rxdma_err_dst_ring",
14248 					    soc);
14249 				goto fail1;
14250 			}
14251 		}
14252 	}
14253 
14254 	return QDF_STATUS_SUCCESS;
14255 fail1:
14256 	dp_pdev_srng_free(pdev);
14257 	return QDF_STATUS_E_NOMEM;
14258 }
14259 
14260 #if defined(WLAN_FEATURE_11BE_MLO) && defined(DP_MLO_LINK_STATS_SUPPORT)
14261 /**
14262  * dp_init_link_peer_stats_enabled() - Init link_peer_stats as per config
14263  * @pdev: DP pdev
14264  *
14265  * Return: None
14266  */
14267 static inline void
14268 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14269 {
14270 	pdev->link_peer_stats = wlan_cfg_is_peer_link_stats_enabled(
14271 						pdev->soc->wlan_cfg_ctx);
14272 }
14273 #else
14274 static inline void
14275 dp_init_link_peer_stats_enabled(struct dp_pdev *pdev)
14276 {
14277 }
14278 #endif
14279 
14280 static QDF_STATUS dp_pdev_init(struct cdp_soc_t *txrx_soc,
14281 				      HTC_HANDLE htc_handle,
14282 				      qdf_device_t qdf_osdev,
14283 				      uint8_t pdev_id)
14284 {
14285 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
14286 	int nss_cfg;
14287 	void *sojourn_buf;
14288 
14289 	struct dp_soc *soc = (struct dp_soc *)txrx_soc;
14290 	struct dp_pdev *pdev = soc->pdev_list[pdev_id];
14291 
14292 	soc_cfg_ctx = soc->wlan_cfg_ctx;
14293 	pdev->soc = soc;
14294 	pdev->pdev_id = pdev_id;
14295 
14296 	/*
14297 	 * Variable to prevent double pdev deinitialization during
14298 	 * radio detach execution .i.e. in the absence of any vdev.
14299 	 */
14300 	pdev->pdev_deinit = 0;
14301 
14302 	if (dp_wdi_event_attach(pdev)) {
14303 		QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
14304 			  "dp_wdi_evet_attach failed");
14305 		goto fail0;
14306 	}
14307 
14308 	if (dp_pdev_srng_init(pdev)) {
14309 		dp_init_err("%pK: Failed to initialize pdev srng rings", soc);
14310 		goto fail1;
14311 	}
14312 
14313 	/* Initialize descriptors in TCL Rings used by IPA */
14314 	if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
14315 		hal_tx_init_data_ring(soc->hal_soc,
14316 				      soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng);
14317 		dp_ipa_hal_tx_init_alt_data_ring(soc);
14318 	}
14319 
14320 	/*
14321 	 * Initialize command/credit ring descriptor
14322 	 * Command/CREDIT ring also used for sending DATA cmds
14323 	 */
14324 	dp_tx_init_cmd_credit_ring(soc);
14325 
14326 	dp_tx_pdev_init(pdev);
14327 
14328 	/*
14329 	 * set nss pdev config based on soc config
14330 	 */
14331 	nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
14332 	wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
14333 					 (nss_cfg & (1 << pdev_id)));
14334 	pdev->target_pdev_id =
14335 		dp_calculate_target_pdev_id_from_host_pdev_id(soc, pdev_id);
14336 
14337 	if (soc->preferred_hw_mode == WMI_HOST_HW_MODE_2G_PHYB &&
14338 	    pdev->lmac_id == PHYB_2G_LMAC_ID) {
14339 		pdev->target_pdev_id = PHYB_2G_TARGET_PDEV_ID;
14340 	}
14341 
14342 	/* Reset the cpu ring map if radio is NSS offloaded */
14343 	if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
14344 		dp_soc_reset_cpu_ring_map(soc);
14345 		dp_soc_reset_intr_mask(soc);
14346 	}
14347 
14348 	/* Reset the cpu ring map if radio is NSS offloaded */
14349 	dp_soc_reset_ipa_vlan_intr_mask(soc);
14350 
14351 	TAILQ_INIT(&pdev->vdev_list);
14352 	qdf_spinlock_create(&pdev->vdev_list_lock);
14353 	pdev->vdev_count = 0;
14354 	pdev->is_lro_hash_configured = 0;
14355 
14356 	qdf_spinlock_create(&pdev->tx_mutex);
14357 	pdev->ch_band_lmac_id_mapping[REG_BAND_2G] = DP_MON_INVALID_LMAC_ID;
14358 	pdev->ch_band_lmac_id_mapping[REG_BAND_5G] = DP_MON_INVALID_LMAC_ID;
14359 	pdev->ch_band_lmac_id_mapping[REG_BAND_6G] = DP_MON_INVALID_LMAC_ID;
14360 
14361 	DP_STATS_INIT(pdev);
14362 
14363 	dp_local_peer_id_pool_init(pdev);
14364 
14365 	dp_dscp_tid_map_setup(pdev);
14366 	dp_pcp_tid_map_setup(pdev);
14367 
14368 	/* set the reo destination during initialization */
14369 	dp_pdev_set_default_reo(pdev);
14370 
14371 	qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
14372 
14373 	pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
14374 			      sizeof(struct cdp_tx_sojourn_stats), 0, 4,
14375 			      TRUE);
14376 
14377 	if (!pdev->sojourn_buf) {
14378 		dp_init_err("%pK: Failed to allocate sojourn buf", soc);
14379 		goto fail2;
14380 	}
14381 	sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
14382 	qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
14383 
14384 	qdf_event_create(&pdev->fw_peer_stats_event);
14385 	qdf_event_create(&pdev->fw_stats_event);
14386 	qdf_event_create(&pdev->fw_obss_stats_event);
14387 
14388 	pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
14389 	pdev->num_tx_spl_allowed =
14390 		wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
14391 	pdev->num_reg_tx_allowed =
14392 		pdev->num_tx_allowed - pdev->num_tx_spl_allowed;
14393 	if (dp_rxdma_ring_setup(soc, pdev)) {
14394 		dp_init_err("%pK: RXDMA ring config failed", soc);
14395 		goto fail3;
14396 	}
14397 
14398 	if (dp_init_ipa_rx_refill_buf_ring(soc, pdev))
14399 		goto fail3;
14400 
14401 	if (dp_ipa_ring_resource_setup(soc, pdev))
14402 		goto fail4;
14403 
14404 	if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
14405 		dp_init_err("%pK: dp_ipa_uc_attach failed", soc);
14406 		goto fail4;
14407 	}
14408 
14409 	if (dp_pdev_bkp_stats_attach(pdev) != QDF_STATUS_SUCCESS) {
14410 		QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
14411 			  FL("dp_pdev_bkp_stats_attach failed"));
14412 		goto fail5;
14413 	}
14414 
14415 	if (dp_monitor_pdev_init(pdev)) {
14416 		dp_init_err("%pK: dp_monitor_pdev_init failed", soc);
14417 		goto fail6;
14418 	}
14419 
14420 	/* initialize sw rx descriptors */
14421 	dp_rx_pdev_desc_pool_init(pdev);
14422 	/* allocate buffers and replenish the RxDMA ring */
14423 	dp_rx_pdev_buffers_alloc(pdev);
14424 
14425 	dp_init_tso_stats(pdev);
14426 	dp_init_link_peer_stats_enabled(pdev);
14427 
14428 	/* Initialize dp tx fast path flag */
14429 	pdev->tx_fast_flag = DP_TX_DESC_FLAG_SIMPLE;
14430 	if (soc->hw_txrx_stats_en)
14431 		pdev->tx_fast_flag |= DP_TX_DESC_FLAG_FASTPATH_SIMPLE;
14432 
14433 	pdev->rx_fast_flag = false;
14434 	dp_info("Mem stats: DMA = %u HEAP = %u SKB = %u",
14435 		qdf_dma_mem_stats_read(),
14436 		qdf_heap_mem_stats_read(),
14437 		qdf_skb_total_mem_stats_read());
14438 
14439 	return QDF_STATUS_SUCCESS;
14440 fail6:
14441 	dp_pdev_bkp_stats_detach(pdev);
14442 fail5:
14443 	dp_ipa_uc_detach(soc, pdev);
14444 fail4:
14445 	dp_deinit_ipa_rx_refill_buf_ring(soc, pdev);
14446 fail3:
14447 	dp_rxdma_ring_cleanup(soc, pdev);
14448 	qdf_nbuf_free(pdev->sojourn_buf);
14449 fail2:
14450 	qdf_spinlock_destroy(&pdev->tx_mutex);
14451 	qdf_spinlock_destroy(&pdev->vdev_list_lock);
14452 	dp_pdev_srng_deinit(pdev);
14453 fail1:
14454 	dp_wdi_event_detach(pdev);
14455 fail0:
14456 	return QDF_STATUS_E_FAILURE;
14457 }
14458 
14459 /**
14460  * dp_pdev_init_wifi3() - Init txrx pdev
14461  * @txrx_soc:
14462  * @htc_handle: HTC handle for host-target interface
14463  * @qdf_osdev: QDF OS device
14464  * @pdev_id: pdev Id
14465  *
14466  * Return: QDF_STATUS
14467  */
14468 static QDF_STATUS dp_pdev_init_wifi3(struct cdp_soc_t *txrx_soc,
14469 				     HTC_HANDLE htc_handle,
14470 				     qdf_device_t qdf_osdev,
14471 				     uint8_t pdev_id)
14472 {
14473 	return dp_pdev_init(txrx_soc, htc_handle, qdf_osdev, pdev_id);
14474 }
14475 
14476 #ifdef FEATURE_DIRECT_LINK
14477 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14478 						 uint8_t pdev_id)
14479 {
14480 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14481 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14482 
14483 	if (!pdev) {
14484 		dp_err("DP pdev is NULL");
14485 		return NULL;
14486 	}
14487 
14488 	if (dp_srng_alloc(soc, &pdev->rx_refill_buf_ring4,
14489 			  RXDMA_BUF, DIRECT_LINK_REFILL_RING_ENTRIES, false)) {
14490 		dp_err("SRNG alloc failed for rx_refill_buf_ring4");
14491 		return NULL;
14492 	}
14493 
14494 	if (dp_srng_init(soc, &pdev->rx_refill_buf_ring4,
14495 			 RXDMA_BUF, DIRECT_LINK_REFILL_RING_IDX, 0)) {
14496 		dp_err("SRNG init failed for rx_refill_buf_ring4");
14497 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14498 		return NULL;
14499 	}
14500 
14501 	if (htt_srng_setup(soc->htt_handle, pdev_id,
14502 			   pdev->rx_refill_buf_ring4.hal_srng, RXDMA_BUF)) {
14503 		dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF,
14504 			       DIRECT_LINK_REFILL_RING_IDX);
14505 		dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14506 		return NULL;
14507 	}
14508 
14509 	return &pdev->rx_refill_buf_ring4;
14510 }
14511 
14512 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
14513 					uint8_t pdev_id)
14514 {
14515 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14516 	struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id);
14517 
14518 	if (!pdev) {
14519 		dp_err("DP pdev is NULL");
14520 		return;
14521 	}
14522 
14523 	dp_srng_deinit(soc, &pdev->rx_refill_buf_ring4, RXDMA_BUF, 0);
14524 	dp_srng_free(soc, &pdev->rx_refill_buf_ring4);
14525 }
14526 #endif
14527 
14528 #ifdef QCA_MULTIPASS_SUPPORT
14529 QDF_STATUS dp_set_vlan_groupkey(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
14530 				uint16_t vlan_id, uint16_t group_key)
14531 {
14532 	struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
14533 	struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
14534 						     DP_MOD_ID_TX_MULTIPASS);
14535 	QDF_STATUS status;
14536 
14537 	dp_info("Try: vdev_id %d, vdev %pK, multipass_en %d, vlan_id %d, group_key %d",
14538 		vdev_id, vdev, vdev ? vdev->multipass_en : 0, vlan_id,
14539 		group_key);
14540 	if (!vdev || !vdev->multipass_en) {
14541 		status = QDF_STATUS_E_INVAL;
14542 		goto fail;
14543 	}
14544 
14545 	if (!vdev->iv_vlan_map) {
14546 		uint16_t vlan_map_size = (sizeof(uint16_t)) * DP_MAX_VLAN_IDS;
14547 
14548 		vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
14549 		if (!vdev->iv_vlan_map) {
14550 			QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
14551 			status = QDF_STATUS_E_NOMEM;
14552 			goto fail;
14553 		}
14554 
14555 		/*
14556 		 * 0 is invalid group key.
14557 		 * Initilalize array with invalid group keys.
14558 		 */
14559 		qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
14560 	}
14561 
14562 	if (vlan_id >= DP_MAX_VLAN_IDS) {
14563 		status = QDF_STATUS_E_INVAL;
14564 		goto fail;
14565 	}
14566 
14567 	dp_info("Successful setting: vdev_id %d, vlan_id %d, group_key %d",
14568 		vdev_id, vlan_id, group_key);
14569 	vdev->iv_vlan_map[vlan_id] = group_key;
14570 	status = QDF_STATUS_SUCCESS;
14571 fail:
14572 	if (vdev)
14573 		dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_MULTIPASS);
14574 	return status;
14575 }
14576 
14577 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
14578 {
14579 	struct vlan_ethhdr veth_hdr;
14580 	struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
14581 
14582 	/*
14583 	 * Extract VLAN header of 4 bytes:
14584 	 * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4],
14585 	 *		   EtherType[2], Payload}
14586 	 * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02
14587 	 *		    08 00 45 00 00...
14588 	 * After Removal  : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00
14589 	 *		    00...
14590 	 */
14591 	qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
14592 	qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
14593 	veh = (struct vlan_ethhdr *)nbuf->data;
14594 	qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
14595 }
14596 
14597 void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
14598 {
14599 	struct dp_txrx_peer *txrx_peer = NULL;
14600 
14601 	qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
14602 	TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
14603 		qdf_err("Peers present in mpass list : %d", txrx_peer->peer_id);
14604 	qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
14605 
14606 	if (vdev->iv_vlan_map) {
14607 		qdf_mem_free(vdev->iv_vlan_map);
14608 		vdev->iv_vlan_map = NULL;
14609 	}
14610 
14611 	qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
14612 }
14613 
14614 void dp_peer_multipass_list_init(struct dp_vdev *vdev)
14615 {
14616 	/*
14617 	 * vdev->iv_vlan_map is allocated when the first configuration command
14618 	 * is issued to avoid unnecessary allocation for regular mode VAP.
14619 	 */
14620 	TAILQ_INIT(&vdev->mpass_peer_list);
14621 	qdf_spinlock_create(&vdev->mpass_peer_mutex);
14622 }
14623 #endif /* QCA_MULTIPASS_SUPPORT */
14624