xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision ed7ed761f307f964abd13da4df8dcb908086bd83)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 
26 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
27 
28 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
29 
30 #define DP_BLOCKMEM_SIZE 4096
31 #define WBM2_SW_PPE_REL_RING_ID 6
32 #define WBM2_SW_PPE_REL_MAP_ID 11
33 /* Alignment for consistent memory for DP rings*/
34 #define DP_RING_BASE_ALIGN 32
35 
36 #define DP_RSSI_INVAL 0x80
37 #define DP_RSSI_AVG_WEIGHT 2
38 /*
39  * Formula to derive avg_rssi is taken from wifi2.o firmware
40  */
41 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
42 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
43 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
44 
45 /* Macro For NYSM value received in VHT TLV */
46 #define VHT_SGI_NYSM 3
47 
48 #define INVALID_WBM_RING_NUM 0xF
49 
50 #ifdef FEATURE_DIRECT_LINK
51 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
52 #ifdef IPA_OFFLOAD
53 #ifdef IPA_WDI3_VLAN_SUPPORT
54 #define DIRECT_LINK_REFILL_RING_IDX     4
55 #else
56 #define DIRECT_LINK_REFILL_RING_IDX     3
57 #endif
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     2
60 #endif
61 #endif
62 
63 /**
64  * struct htt_dbgfs_cfg - structure to maintain required htt data
65  * @msg_word: htt msg sent to upper layer
66  * @m: qdf debugfs file pointer
67  */
68 struct htt_dbgfs_cfg {
69 	uint32_t *msg_word;
70 	qdf_debugfs_file_t m;
71 };
72 
73 /* Cookie MSB bits assigned for different use case.
74  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
75  * If in future number of pdev are more than 3.
76  */
77 /* Reserve for default case */
78 #define DBG_STATS_COOKIE_DEFAULT 0x0
79 
80 /* Reserve for DP Stats: 3rd bit */
81 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
82 
83 /* Reserve for HTT Stats debugfs support: 4th bit */
84 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
85 
86 /*Reserve for HTT Stats debugfs support: 5th bit */
87 #define DBG_SYSFS_STATS_COOKIE BIT(5)
88 
89 /* Reserve for HTT Stats OBSS PD support: 6th bit */
90 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
91 
92 /*
93  * Bitmap of HTT PPDU TLV types for Default mode
94  */
95 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
96 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
97 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
98 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
99 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
100 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
101 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
102 
103 /* PPDU STATS CFG */
104 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
105 
106 /* PPDU stats mask sent to FW to enable enhanced stats */
107 #define DP_PPDU_STATS_CFG_ENH_STATS \
108 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
109 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
110 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
111 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
112 
113 /* PPDU stats mask sent to FW to support debug sniffer feature */
114 #define DP_PPDU_STATS_CFG_SNIFFER \
115 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
116 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
117 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
119 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
120 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
121 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
122 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
123 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
124 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
125 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
126 
127 /* PPDU stats mask sent to FW to support BPR feature*/
128 #define DP_PPDU_STATS_CFG_BPR \
129 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
130 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
131 
132 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
133 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
134 				   DP_PPDU_STATS_CFG_ENH_STATS)
135 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
136 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
137 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
138 
139 /*
140  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
141  */
142 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
143 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
144 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
145 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
146 
147 /*
148  * Bitmap of HTT PPDU TLV types for Delayed BA
149  */
150 #define HTT_PPDU_STATUS_TLV_BITMAP \
151 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
152 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
153 
154 /*
155  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
156  */
157 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
158 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
159 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
161 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
162 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
163 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
164 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
165 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
166 
167 /*
168  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
169  */
170 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
171 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
173 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
174 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
175 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
176 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
177 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
178 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
179 
180 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
181 	[HAL_DOT11A] = DOT11_A,
182 	[HAL_DOT11B] = DOT11_B,
183 	[HAL_DOT11N_MM] = DOT11_N,
184 	[HAL_DOT11AC] = DOT11_AC,
185 	[HAL_DOT11AX] = DOT11_AX,
186 	[HAL_DOT11BA] = DOT11_MAX,
187 #ifdef WLAN_FEATURE_11BE
188 	[HAL_DOT11BE] = DOT11_BE,
189 #else
190 	[HAL_DOT11BE] = DOT11_MAX,
191 #endif
192 	[HAL_DOT11AZ] = DOT11_MAX,
193 	[HAL_DOT11N_GF] = DOT11_MAX,
194 };
195 
196 #ifdef WLAN_FEATURE_11BE
197 /**
198  * dp_get_mcs_array_index_by_pkt_type_mcs() - get the destination mcs index
199  *					      in array
200  * @pkt_type: host SW pkt type
201  * @mcs: mcs value for TX/RX rate
202  *
203  * Return: succeeded - valid index in mcs array
204  *	   fail - same value as MCS_MAX
205  */
206 static inline uint8_t
207 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
208 {
209 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
210 
211 	switch (pkt_type) {
212 	case DOT11_A:
213 		dst_mcs_idx =
214 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
215 		break;
216 	case DOT11_B:
217 		dst_mcs_idx =
218 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
219 		break;
220 	case DOT11_N:
221 		dst_mcs_idx =
222 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
223 		break;
224 	case DOT11_AC:
225 		dst_mcs_idx =
226 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
227 		break;
228 	case DOT11_AX:
229 		dst_mcs_idx =
230 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
231 		break;
232 	case DOT11_BE:
233 		dst_mcs_idx =
234 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
235 		break;
236 	default:
237 		break;
238 	}
239 
240 	return dst_mcs_idx;
241 }
242 #else
243 static inline uint8_t
244 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
245 {
246 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
247 
248 	switch (pkt_type) {
249 	case DOT11_A:
250 		dst_mcs_idx =
251 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
252 		break;
253 	case DOT11_B:
254 		dst_mcs_idx =
255 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
256 		break;
257 	case DOT11_N:
258 		dst_mcs_idx =
259 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
260 		break;
261 	case DOT11_AC:
262 		dst_mcs_idx =
263 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
264 		break;
265 	case DOT11_AX:
266 		dst_mcs_idx =
267 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
268 		break;
269 	default:
270 		break;
271 	}
272 
273 	return dst_mcs_idx;
274 }
275 #endif
276 
277 #ifdef WIFI_MONITOR_SUPPORT
278 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
279 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
280 #else
281 static inline
282 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
283 {
284 	return QDF_STATUS_SUCCESS;
285 }
286 
287 static inline
288 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
289 {
290 	return QDF_STATUS_SUCCESS;
291 }
292 #endif
293 
294 /**
295  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
296  * @eh: Ethernet header of incoming packet
297  * @vdev: dp_vdev object of the VAP on which this data packet is received
298  *
299  * Return: 1 if the destination mac is correct,
300  *         0 if this frame is not correctly destined to this VAP/MLD
301  */
302 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
303 
304 #ifdef MONITOR_MODULARIZED_ENABLE
305 static inline bool dp_monitor_modularized_enable(void)
306 {
307 	return TRUE;
308 }
309 
310 static inline QDF_STATUS
311 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
312 
313 static inline QDF_STATUS
314 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
315 #else
316 static inline bool dp_monitor_modularized_enable(void)
317 {
318 	return FALSE;
319 }
320 
321 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
322 {
323 	return dp_mon_soc_attach(soc);
324 }
325 
326 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
327 {
328 	return dp_mon_soc_detach(soc);
329 }
330 #endif
331 
332 #ifndef WIFI_MONITOR_SUPPORT
333 #define MON_BUF_MIN_ENTRIES 64
334 
335 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
336 {
337 	return QDF_STATUS_SUCCESS;
338 }
339 
340 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
341 {
342 	return QDF_STATUS_SUCCESS;
343 }
344 
345 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
346 {
347 	return QDF_STATUS_E_FAILURE;
348 }
349 
350 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
351 {
352 	return QDF_STATUS_E_FAILURE;
353 }
354 
355 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
356 						struct dp_peer *peer)
357 {
358 	return QDF_STATUS_SUCCESS;
359 }
360 
361 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
362 						struct dp_peer *peer)
363 {
364 	return QDF_STATUS_E_FAILURE;
365 }
366 
367 static inline struct cdp_peer_rate_stats_ctx*
368 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
369 {
370 	return NULL;
371 }
372 
373 static inline
374 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
375 {
376 }
377 
378 static inline
379 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
380 			       void *arg, enum cdp_stat_update_type type)
381 {
382 }
383 
384 static inline
385 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
386 					       struct dp_pdev *pdev)
387 {
388 }
389 
390 static inline
391 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
392 					   struct dp_peer *peer,
393 					   enum cdp_peer_stats_type type,
394 					   cdp_peer_stats_param_t *buf)
395 {
396 	return QDF_STATUS_E_FAILURE;
397 }
398 
399 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
400 {
401 	return QDF_STATUS_SUCCESS;
402 }
403 
404 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
405 {
406 	return QDF_STATUS_SUCCESS;
407 }
408 
409 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
410 {
411 	return QDF_STATUS_SUCCESS;
412 }
413 
414 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
415 							 int val)
416 {
417 	return QDF_STATUS_E_FAILURE;
418 }
419 
420 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
421 {
422 }
423 
424 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
425 						   struct dp_pdev *pdev,
426 						   int mac_id,
427 						   int mac_for_pdev)
428 {
429 	return QDF_STATUS_SUCCESS;
430 }
431 
432 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
433 						uint32_t quota)
434 {
435 }
436 
437 static inline
438 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
439 			    uint32_t mac_id, uint32_t quota)
440 {
441 	return 0;
442 }
443 
444 static inline
445 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
446 					 uint32_t mac_id, uint32_t quota)
447 {
448 	return 0;
449 }
450 
451 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
452 					   struct dp_peer *peer)
453 {
454 }
455 
456 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
457 					      struct dp_peer *peer)
458 {
459 }
460 
461 static inline
462 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
463 					struct dp_peer *peer,
464 					uint16_t peer_id)
465 {
466 }
467 
468 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
469 {
470 }
471 
472 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
473 {
474 }
475 
476 static inline
477 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
478 {
479 	return QDF_STATUS_SUCCESS;
480 }
481 
482 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
483 							   struct dp_peer *peer)
484 {
485 }
486 
487 static inline
488 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
489 					   struct dp_tx_desc_s *desc,
490 					   struct hal_tx_completion_status *ts,
491 					   uint16_t peer_id)
492 {
493 	return QDF_STATUS_E_FAILURE;
494 }
495 
496 static inline
497 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
498 				       struct dp_pdev *pdev,
499 				       struct dp_peer *peer,
500 				       struct hal_tx_completion_status *ts,
501 				       qdf_nbuf_t netbuf)
502 {
503 	return QDF_STATUS_E_FAILURE;
504 }
505 
506 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
507 						     uint32_t *msg_word,
508 						     qdf_nbuf_t htt_t2h_msg)
509 {
510 	return true;
511 }
512 
513 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
514 {
515 	return QDF_STATUS_SUCCESS;
516 }
517 
518 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
519 {
520 }
521 
522 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
523 {
524 }
525 
526 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
527 							  uint32_t val)
528 {
529 	return QDF_STATUS_E_INVAL;
530 }
531 
532 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
533 						   struct dp_peer *peer,
534 						   uint8_t is_tx_pkt_cap_enable,
535 						   uint8_t *peer_mac)
536 {
537 	return QDF_STATUS_E_INVAL;
538 }
539 
540 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
541 							  uint32_t val)
542 {
543 	return QDF_STATUS_E_INVAL;
544 }
545 
546 static inline
547 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
548 {
549 	return QDF_STATUS_E_FAILURE;
550 }
551 
552 static inline
553 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
554 {
555 	return 0;
556 }
557 
558 static inline
559 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
560 {
561 }
562 
563 static inline
564 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
565 {
566 }
567 
568 static inline
569 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
570 {
571 	return false;
572 }
573 
574 static inline
575 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
576 {
577 	return false;
578 }
579 
580 static inline
581 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
582 {
583 	return false;
584 }
585 
586 static inline
587 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
588 				bool enable)
589 {
590 	return 0;
591 }
592 
593 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
594 {
595 }
596 
597 static inline
598 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
599 {
600 	return QDF_STATUS_E_FAILURE;
601 }
602 
603 static inline
604 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
605 {
606 }
607 
608 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
609 							  uint8_t *rx_pkt_hdr)
610 {
611 	return QDF_STATUS_E_FAILURE;
612 }
613 
614 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
615 {
616 }
617 
618 static inline
619 void dp_monitor_reap_timer_init(struct dp_soc *soc)
620 {
621 }
622 
623 static inline
624 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
625 {
626 }
627 
628 static inline
629 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
630 				 enum cdp_mon_reap_source source)
631 {
632 	return false;
633 }
634 
635 static inline
636 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
637 				enum cdp_mon_reap_source source)
638 {
639 	return false;
640 }
641 
642 static inline void
643 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
644 {
645 }
646 
647 static inline
648 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
649 {
650 }
651 
652 static inline
653 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
654 {
655 }
656 
657 static inline
658 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
659 {
660 }
661 
662 static inline
663 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
664 {
665 	return false;
666 }
667 
668 static inline struct qdf_mem_multi_page_t*
669 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
670 {
671 	return NULL;
672 }
673 
674 static inline uint32_t *
675 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
676 {
677 	return NULL;
678 }
679 
680 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
681 {
682 	return QDF_STATUS_E_FAILURE;
683 }
684 
685 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
686 {
687 	return false;
688 }
689 
690 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
691 						 struct ol_txrx_ops *txrx_ops)
692 {
693 }
694 
695 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
696 {
697 	return false;
698 }
699 
700 static inline
701 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
702 {
703 }
704 
705 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
706 					  struct dp_vdev *vdev)
707 {
708 }
709 
710 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
711 {
712 }
713 
714 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
715 						     struct dp_peer *ta_peer,
716 						     uint8_t *mac_addr,
717 						     qdf_nbuf_t nbuf,
718 						     uint32_t flags)
719 {
720 }
721 
722 static inline void
723 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
724 {
725 }
726 
727 static inline void
728 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
729 {
730 }
731 
732 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
733 {
734 }
735 
736 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
737 {
738 	return false;
739 }
740 
741 static inline
742 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
743 					   struct dp_vdev *vdev,
744 					   struct dp_neighbour_peer *peer)
745 {
746 }
747 
748 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
749 {
750 	return false;
751 }
752 
753 static inline enum reg_wifi_band
754 dp_monitor_get_chan_band(struct dp_pdev *pdev)
755 {
756 	return 0;
757 }
758 
759 static inline int
760 dp_monitor_get_chan_num(struct dp_pdev *pdev)
761 {
762 	return 0;
763 }
764 
765 static inline qdf_freq_t
766 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
767 {
768 	return 0;
769 }
770 
771 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
772 					      struct dp_soc *soc,
773 					      uint8_t *rx_tlv_hdr)
774 {
775 }
776 
777 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
778 {
779 }
780 
781 static inline
782 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
783 					  uint16_t peer_id, uint32_t ppdu_id,
784 					  uint8_t first_msdu)
785 {
786 	return QDF_STATUS_SUCCESS;
787 }
788 
789 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
790 {
791 	return false;
792 }
793 
794 static inline struct dp_vdev*
795 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
796 {
797 	return NULL;
798 }
799 
800 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
801 							   void *rx_desc)
802 {
803 	return QDF_STATUS_E_FAILURE;
804 }
805 
806 static inline struct mon_rx_status*
807 dp_monitor_get_rx_status(struct dp_pdev *pdev)
808 {
809 	return NULL;
810 }
811 
812 static inline
813 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
814 {
815 }
816 
817 static inline
818 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
819 						      bool val)
820 {
821 }
822 
823 static inline QDF_STATUS
824 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
825 				     struct cdp_peer_tx_capture_stats *stats)
826 {
827 	return QDF_STATUS_E_FAILURE;
828 }
829 
830 static inline QDF_STATUS
831 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
832 				     struct cdp_pdev_tx_capture_stats *stats)
833 {
834 	return QDF_STATUS_E_FAILURE;
835 }
836 
837 #ifdef DP_POWER_SAVE
838 static inline
839 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
840 {
841 }
842 
843 static inline
844 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
845 {
846 }
847 #endif
848 
849 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
850 {
851 	return false;
852 }
853 
854 static inline void
855 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
856 			 struct htt_rx_ring_tlv_filter *tlv_filter)
857 {
858 }
859 
860 static inline void dp_monitor_soc_init(struct dp_soc *soc)
861 {
862 }
863 
864 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
865 {
866 }
867 
868 static inline
869 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
870 							int val)
871 {
872 	return QDF_STATUS_SUCCESS;
873 }
874 
875 static inline QDF_STATUS
876 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
877 						      int mask1, int mask2)
878 {
879 	return QDF_STATUS_SUCCESS;
880 }
881 
882 static inline QDF_STATUS
883 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
884 						   int *mask, int *mask_cont)
885 {
886 	return QDF_STATUS_SUCCESS;
887 }
888 
889 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
890 {
891 	return QDF_STATUS_E_FAILURE;
892 }
893 
894 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
895 {
896 	return false;
897 }
898 
899 static inline
900 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
901 {
902 	return 0;
903 }
904 
905 static inline uint32_t
906 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
907 		  uint32_t mac_id, uint32_t quota)
908 {
909 	return 0;
910 }
911 
912 static inline uint32_t
913 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
914 {
915 	return 0;
916 }
917 
918 static inline
919 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
920 {
921 	return 0;
922 }
923 
924 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
925 {
926 	return 0;
927 }
928 
929 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
930 {
931 	return 0;
932 }
933 
934 static inline void
935 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
936 		 struct htt_rx_ring_tlv_filter *tlv_filter)
937 {
938 }
939 
940 static inline void
941 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
942 			    struct htt_rx_ring_tlv_filter *tlv_filter)
943 {
944 }
945 
946 static inline void
947 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
948 			      struct htt_rx_ring_tlv_filter *tlv_filter)
949 {
950 }
951 
952 static inline void
953 dp_mon_rx_wmask_subscribe(struct dp_soc *soc, uint32_t *msg_word,
954 			  struct htt_rx_ring_tlv_filter *tlv_filter)
955 {
956 }
957 
958 static inline void
959 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
960 			 struct htt_rx_ring_tlv_filter *tlv_filter)
961 {
962 }
963 
964 static inline void
965 dp_mon_rx_enable_pkt_tlv_offset(struct dp_soc *soc, uint32_t *msg_word,
966 				struct htt_rx_ring_tlv_filter *tlv_filter)
967 {
968 }
969 
970 static inline void
971 dp_mon_rx_enable_fpmo(struct dp_soc *soc, uint32_t *msg_word,
972 		      struct htt_rx_ring_tlv_filter *tlv_filter)
973 {
974 }
975 
976 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
977 static inline
978 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
979 				     struct cdp_peer_telemetry_stats *stats)
980 {
981 }
982 
983 static inline
984 void dp_monitor_peer_deter_stats(struct dp_peer *peer,
985 				 struct cdp_peer_telemetry_stats *stats)
986 {
987 }
988 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
989 #endif /* !WIFI_MONITOR_SUPPORT */
990 
991 /**
992  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
993  * dp soc handle
994  * @psoc: CDP psoc handle
995  *
996  * Return: struct dp_soc pointer
997  */
998 static inline
999 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
1000 {
1001 	return (struct dp_soc *)psoc;
1002 }
1003 
1004 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
1005 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
1006 
1007 /**
1008  * enum timer_yield_status - yield status code used in monitor mode timer.
1009  * @DP_TIMER_NO_YIELD: do not yield
1010  * @DP_TIMER_WORK_DONE: yield because work is done
1011  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
1012  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
1013  */
1014 enum timer_yield_status {
1015 	DP_TIMER_NO_YIELD,
1016 	DP_TIMER_WORK_DONE,
1017 	DP_TIMER_WORK_EXHAUST,
1018 	DP_TIMER_TIME_EXHAUST,
1019 };
1020 
1021 #if DP_PRINT_ENABLE
1022 #include <qdf_types.h> /* qdf_vprint */
1023 #include <cdp_txrx_handle.h>
1024 
1025 enum {
1026 	/* FATAL_ERR - print only irrecoverable error messages */
1027 	DP_PRINT_LEVEL_FATAL_ERR,
1028 
1029 	/* ERR - include non-fatal err messages */
1030 	DP_PRINT_LEVEL_ERR,
1031 
1032 	/* WARN - include warnings */
1033 	DP_PRINT_LEVEL_WARN,
1034 
1035 	/* INFO1 - include fundamental, infrequent events */
1036 	DP_PRINT_LEVEL_INFO1,
1037 
1038 	/* INFO2 - include non-fundamental but infrequent events */
1039 	DP_PRINT_LEVEL_INFO2,
1040 };
1041 
1042 #define dp_print(level, fmt, ...) do { \
1043 	if (level <= g_txrx_print_level) \
1044 		qdf_print(fmt, ## __VA_ARGS__); \
1045 while (0)
1046 #define DP_PRINT(level, fmt, ...) do { \
1047 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1048 while (0)
1049 #else
1050 #define DP_PRINT(level, fmt, ...)
1051 #endif /* DP_PRINT_ENABLE */
1052 
1053 #define DP_TRACE(LVL, fmt, args ...)                             \
1054 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1055 		fmt, ## args)
1056 
1057 #ifdef WLAN_SYSFS_DP_STATS
1058 void DP_PRINT_STATS(const char *fmt, ...);
1059 #else /* WLAN_SYSFS_DP_STATS */
1060 #ifdef DP_PRINT_NO_CONSOLE
1061 /* Stat prints should not go to console or kernel logs.*/
1062 #define DP_PRINT_STATS(fmt, args ...)\
1063 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1064 		  fmt, ## args)
1065 #else
1066 #define DP_PRINT_STATS(fmt, args ...)\
1067 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1068 		  fmt, ## args)
1069 #endif
1070 #endif /* WLAN_SYSFS_DP_STATS */
1071 
1072 #define DP_STATS_INIT(_handle) \
1073 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1074 
1075 #define DP_TXRX_PEER_STATS_INIT(_handle, size) \
1076 	qdf_mem_zero(&((_handle)->stats[0]), size)
1077 
1078 #define DP_STATS_CLR(_handle) \
1079 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1080 
1081 #define DP_TXRX_PEER_STATS_CLR(_handle, size) \
1082 	qdf_mem_zero(&((_handle)->stats[0]), size)
1083 
1084 #ifndef DISABLE_DP_STATS
1085 #define DP_STATS_INC(_handle, _field, _delta) \
1086 { \
1087 	if (likely(_handle)) \
1088 		_handle->stats._field += _delta; \
1089 }
1090 
1091 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link) \
1092 { \
1093 	if (likely(_handle)) \
1094 		_handle->stats[_link]._field += _delta; \
1095 }
1096 
1097 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1098 { \
1099 	if (likely(_handle)) \
1100 		_handle->_field += _delta; \
1101 }
1102 
1103 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1104 { \
1105 	if (_cond && likely(_handle)) \
1106 		_handle->stats._field += _delta; \
1107 }
1108 
1109 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1110 { \
1111 	if (_cond && likely(_handle)) \
1112 		_handle->stats[_link]._field += _delta; \
1113 }
1114 
1115 #define DP_STATS_DEC(_handle, _field, _delta) \
1116 { \
1117 	if (likely(_handle)) \
1118 		_handle->stats._field -= _delta; \
1119 }
1120 
1121 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1122 { \
1123 	if (likely(_handle)) \
1124 		_handle->_field -= _delta; \
1125 }
1126 
1127 #define DP_STATS_UPD(_handle, _field, _delta) \
1128 { \
1129 	if (likely(_handle)) \
1130 		_handle->stats._field = _delta; \
1131 }
1132 
1133 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link) \
1134 { \
1135 	if (likely(_handle)) \
1136 		_handle->stats[_link]._field = _delta; \
1137 }
1138 
1139 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1140 { \
1141 	DP_STATS_INC(_handle, _field.num, _count); \
1142 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1143 }
1144 
1145 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1146 { \
1147 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1148 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1149 }
1150 
1151 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1152 { \
1153 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1154 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1155 }
1156 
1157 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1158 { \
1159 	_handle_a->stats._field += _handle_b->stats._field; \
1160 }
1161 
1162 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1163 { \
1164 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1165 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1166 }
1167 
1168 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1169 { \
1170 	_handle_a->stats._field = _handle_b->stats._field; \
1171 }
1172 
1173 #else
1174 #define DP_STATS_INC(_handle, _field, _delta)
1175 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link)
1176 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1177 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1178 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link)
1179 #define DP_STATS_DEC(_handle, _field, _delta)
1180 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1181 #define DP_STATS_UPD(_handle, _field, _delta)
1182 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link)
1183 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1184 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1185 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1186 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1187 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1188 #endif
1189 
1190 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta, _link) \
1191 { \
1192 	DP_PEER_LINK_STATS_INC(_handle, per_pkt_stats._field, _delta, _link); \
1193 }
1194 
1195 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1196 { \
1197 	DP_PEER_LINK_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond, _link); \
1198 }
1199 
1200 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes, _link) \
1201 { \
1202 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count, _link); \
1203 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes, _link) \
1204 }
1205 
1206 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond, _link) \
1207 { \
1208 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond, _link); \
1209 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond, _link) \
1210 }
1211 
1212 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta, _link) \
1213 { \
1214 	DP_PEER_LINK_STATS_UPD(_handle, per_pkt_stats._field, _delta, _link); \
1215 }
1216 
1217 #ifndef QCA_ENHANCED_STATS_SUPPORT
1218 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta, _link) \
1219 { \
1220 	DP_PEER_LINK_STATS_INC(_handle, extd_stats._field, _delta, _link); \
1221 }
1222 
1223 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1224 { \
1225 	DP_PEER_LINK_STATS_INCC(_handle, extd_stats._field, _delta, _cond, _link); \
1226 }
1227 
1228 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta, _link) \
1229 { \
1230 	DP_PEER_LINK_STATS_UPD(_handle, extd_stats._field, _delta, _link); \
1231 }
1232 #endif
1233 
1234 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1235 	defined(QCA_ENHANCED_STATS_SUPPORT)
1236 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1237 { \
1238 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1239 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1240 }
1241 
1242 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1243 { \
1244 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1245 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1246 }
1247 
1248 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1249 { \
1250 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1251 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1252 }
1253 
1254 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1255 { \
1256 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1257 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1258 }
1259 
1260 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1261 { \
1262 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1263 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1264 }
1265 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1266 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1267 { \
1268 	if (!(_handle->hw_txrx_stats_en)) \
1269 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1270 }
1271 
1272 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1273 { \
1274 	if (!(_handle->hw_txrx_stats_en)) \
1275 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1276 }
1277 
1278 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1279 { \
1280 	if (!(_handle->hw_txrx_stats_en)) \
1281 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1282 }
1283 
1284 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1285 { \
1286 	if (!(_handle->hw_txrx_stats_en)) \
1287 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1288 }
1289 
1290 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1291 { \
1292 	if (!(_handle->hw_txrx_stats_en)) \
1293 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1294 }
1295 #else
1296 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1297 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1298 
1299 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1300 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1301 
1302 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1303 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link);
1304 
1305 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1306 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link);
1307 
1308 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1309 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link);
1310 #endif
1311 
1312 #ifdef ENABLE_DP_HIST_STATS
1313 #define DP_HIST_INIT() \
1314 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1315 
1316 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1317 { \
1318 		++num_of_packets[_pdev_id]; \
1319 }
1320 
1321 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1322 	do {                                                              \
1323 		if (_p_cntrs == 1) {                                      \
1324 			DP_STATS_INC(_pdev,                               \
1325 				tx_comp_histogram.pkts_1, 1);             \
1326 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1327 			DP_STATS_INC(_pdev,                               \
1328 				tx_comp_histogram.pkts_2_20, 1);          \
1329 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1330 			DP_STATS_INC(_pdev,                               \
1331 				tx_comp_histogram.pkts_21_40, 1);         \
1332 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1333 			DP_STATS_INC(_pdev,                               \
1334 				tx_comp_histogram.pkts_41_60, 1);         \
1335 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1336 			DP_STATS_INC(_pdev,                               \
1337 				tx_comp_histogram.pkts_61_80, 1);         \
1338 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1339 			DP_STATS_INC(_pdev,                               \
1340 				tx_comp_histogram.pkts_81_100, 1);        \
1341 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1342 			DP_STATS_INC(_pdev,                               \
1343 				tx_comp_histogram.pkts_101_200, 1);       \
1344 		} else if (_p_cntrs > 200) {                              \
1345 			DP_STATS_INC(_pdev,                               \
1346 				tx_comp_histogram.pkts_201_plus, 1);      \
1347 		}                                                         \
1348 	} while (0)
1349 
1350 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1351 	do {                                                              \
1352 		if (_p_cntrs == 1) {                                      \
1353 			DP_STATS_INC(_pdev,                               \
1354 				rx_ind_histogram.pkts_1, 1);              \
1355 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1356 			DP_STATS_INC(_pdev,                               \
1357 				rx_ind_histogram.pkts_2_20, 1);           \
1358 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1359 			DP_STATS_INC(_pdev,                               \
1360 				rx_ind_histogram.pkts_21_40, 1);          \
1361 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1362 			DP_STATS_INC(_pdev,                               \
1363 				rx_ind_histogram.pkts_41_60, 1);          \
1364 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1365 			DP_STATS_INC(_pdev,                               \
1366 				rx_ind_histogram.pkts_61_80, 1);          \
1367 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1368 			DP_STATS_INC(_pdev,                               \
1369 				rx_ind_histogram.pkts_81_100, 1);         \
1370 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1371 			DP_STATS_INC(_pdev,                               \
1372 				rx_ind_histogram.pkts_101_200, 1);        \
1373 		} else if (_p_cntrs > 200) {                              \
1374 			DP_STATS_INC(_pdev,                               \
1375 				rx_ind_histogram.pkts_201_plus, 1);       \
1376 		}                                                         \
1377 	} while (0)
1378 
1379 #define DP_TX_HIST_STATS_PER_PDEV() \
1380 	do { \
1381 		uint8_t hist_stats = 0; \
1382 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1383 				hist_stats++) { \
1384 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1385 					num_of_packets[hist_stats]); \
1386 		} \
1387 	}  while (0)
1388 
1389 
1390 #define DP_RX_HIST_STATS_PER_PDEV() \
1391 	do { \
1392 		uint8_t hist_stats = 0; \
1393 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1394 				hist_stats++) { \
1395 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1396 					num_of_packets[hist_stats]); \
1397 		} \
1398 	}  while (0)
1399 
1400 #else
1401 #define DP_HIST_INIT()
1402 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1403 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1404 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1405 #define DP_RX_HIST_STATS_PER_PDEV()
1406 #define DP_TX_HIST_STATS_PER_PDEV()
1407 #endif /* DISABLE_DP_STATS */
1408 
1409 #define FRAME_MASK_IPV4_ARP   1
1410 #define FRAME_MASK_IPV4_DHCP  2
1411 #define FRAME_MASK_IPV4_EAPOL 4
1412 #define FRAME_MASK_IPV6_DHCP  8
1413 
1414 static inline int dp_log2_ceil(unsigned int value)
1415 {
1416 	unsigned int tmp = value;
1417 	int log2 = -1;
1418 
1419 	while (tmp) {
1420 		log2++;
1421 		tmp >>= 1;
1422 	}
1423 	if (1 << log2 != value)
1424 		log2++;
1425 	return log2;
1426 }
1427 
1428 #ifdef QCA_SUPPORT_PEER_ISOLATION
1429 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1430 
1431 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1432 					 bool val)
1433 {
1434 	txrx_peer->isolation = val;
1435 }
1436 
1437 #else
1438 #define dp_get_peer_isolation(_peer) (0)
1439 
1440 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1441 {
1442 }
1443 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1444 
1445 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev);
1446 
1447 #ifdef QCA_SUPPORT_WDS_EXTENDED
1448 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1449 {
1450 	txrx_peer->wds_ext.init = 0;
1451 }
1452 #else
1453 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1454 {
1455 }
1456 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1457 
1458 #ifdef QCA_HOST2FW_RXBUF_RING
1459 static inline
1460 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1461 {
1462 	return &pdev->rx_mac_buf_ring[lmac_id];
1463 }
1464 #else
1465 static inline
1466 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1467 {
1468 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1469 }
1470 #endif
1471 
1472 /*
1473  * The lmac ID for a particular channel band is fixed.
1474  * 2.4GHz band uses lmac_id = 1
1475  * 5GHz/6GHz band uses lmac_id=0
1476  */
1477 #define DP_INVALID_LMAC_ID	(-1)
1478 #define DP_MON_INVALID_LMAC_ID	(-1)
1479 #define DP_MAC0_LMAC_ID	0
1480 #define DP_MAC1_LMAC_ID	1
1481 
1482 #ifdef FEATURE_TSO_STATS
1483 /**
1484  * dp_init_tso_stats() - Clear tso stats
1485  * @pdev: pdev handle
1486  *
1487  * Return: None
1488  */
1489 static inline
1490 void dp_init_tso_stats(struct dp_pdev *pdev)
1491 {
1492 	if (pdev) {
1493 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1494 			     sizeof((pdev)->stats.tso_stats));
1495 		qdf_atomic_init(&pdev->tso_idx);
1496 	}
1497 }
1498 
1499 /**
1500  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1501  * @pdev: pdev handle
1502  * @_p_cntrs: number of tso segments for a tso packet
1503  *
1504  * Return: None
1505  */
1506 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1507 					   uint8_t _p_cntrs);
1508 
1509 /**
1510  * dp_tso_segment_update() - Collect tso segment information
1511  * @pdev: pdev handle
1512  * @stats_idx: tso packet number
1513  * @idx: tso segment number
1514  * @seg: tso segment
1515  *
1516  * Return: None
1517  */
1518 void dp_tso_segment_update(struct dp_pdev *pdev,
1519 			   uint32_t stats_idx,
1520 			   uint8_t idx,
1521 			   struct qdf_tso_seg_t seg);
1522 
1523 /**
1524  * dp_tso_packet_update() - TSO Packet information
1525  * @pdev: pdev handle
1526  * @stats_idx: tso packet number
1527  * @msdu: nbuf handle
1528  * @num_segs: tso segments
1529  *
1530  * Return: None
1531  */
1532 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1533 			  qdf_nbuf_t msdu, uint16_t num_segs);
1534 
1535 /**
1536  * dp_tso_segment_stats_update() - TSO Segment stats
1537  * @pdev: pdev handle
1538  * @stats_seg: tso segment list
1539  * @stats_idx: tso packet number
1540  *
1541  * Return: None
1542  */
1543 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1544 				 struct qdf_tso_seg_elem_t *stats_seg,
1545 				 uint32_t stats_idx);
1546 
1547 /**
1548  * dp_print_tso_stats() - dump tso statistics
1549  * @soc:soc handle
1550  * @level: verbosity level
1551  *
1552  * Return: None
1553  */
1554 void dp_print_tso_stats(struct dp_soc *soc,
1555 			enum qdf_stats_verbosity_level level);
1556 
1557 /**
1558  * dp_txrx_clear_tso_stats() - clear tso stats
1559  * @soc: soc handle
1560  *
1561  * Return: None
1562  */
1563 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1564 #else
1565 static inline
1566 void dp_init_tso_stats(struct dp_pdev *pdev)
1567 {
1568 }
1569 
1570 static inline
1571 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1572 					   uint8_t _p_cntrs)
1573 {
1574 }
1575 
1576 static inline
1577 void dp_tso_segment_update(struct dp_pdev *pdev,
1578 			   uint32_t stats_idx,
1579 			   uint32_t idx,
1580 			   struct qdf_tso_seg_t seg)
1581 {
1582 }
1583 
1584 static inline
1585 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1586 			  qdf_nbuf_t msdu, uint16_t num_segs)
1587 {
1588 }
1589 
1590 static inline
1591 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1592 				 struct qdf_tso_seg_elem_t *stats_seg,
1593 				 uint32_t stats_idx)
1594 {
1595 }
1596 
1597 static inline
1598 void dp_print_tso_stats(struct dp_soc *soc,
1599 			enum qdf_stats_verbosity_level level)
1600 {
1601 }
1602 
1603 static inline
1604 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1605 {
1606 }
1607 #endif /* FEATURE_TSO_STATS */
1608 
1609 /**
1610  * dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1611  * @peer: DP peer handle
1612  * @type: Requested stats type
1613  * @buf: Buffer to hold the value
1614  *
1615  * Return: status success/failure
1616  */
1617 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1618 						enum cdp_peer_stats_type type,
1619 						cdp_peer_stats_param_t *buf);
1620 
1621 /**
1622  * dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1623  * @peer: DP peer handle
1624  * @type: Requested stats type
1625  * @buf: Buffer to hold the value
1626  *
1627  * Return: status success/failure
1628  */
1629 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1630 					     enum cdp_peer_stats_type type,
1631 					     cdp_peer_stats_param_t *buf);
1632 
1633 #define DP_HTT_T2H_HP_PIPE 5
1634 /**
1635  * dp_update_pdev_stats(): Update the pdev stats
1636  * @tgtobj: pdev handle
1637  * @srcobj: vdev stats structure
1638  *
1639  * Update the pdev stats from the specified vdev stats
1640  *
1641  * Return: None
1642  */
1643 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1644 			  struct cdp_vdev_stats *srcobj);
1645 
1646 /**
1647  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1648  * @tgtobj: vdev handle
1649  *
1650  * Update the vdev ingress stats
1651  *
1652  * Return: None
1653  */
1654 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1655 
1656 /**
1657  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1658  * @tgtobj: tgt buffer for vdev stats
1659  * @srcobj: srcobj vdev stats
1660  *
1661  * Return: None
1662  */
1663 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1664 			       struct cdp_vdev_stats *srcobj);
1665 
1666 /**
1667  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1668  * @tgtobj: pdev handle
1669  * @srcobj: vdev stats structure
1670  *
1671  * Update the pdev ingress stats from the specified vdev stats
1672  *
1673  * Return: None
1674  */
1675 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1676 				  struct dp_vdev *srcobj);
1677 
1678 /**
1679  * dp_update_vdev_stats(): Update the vdev stats
1680  * @soc: soc handle
1681  * @srcobj: DP_PEER object
1682  * @arg: point to vdev stats structure
1683  *
1684  * Update the vdev stats from the specified peer stats
1685  *
1686  * Return: None
1687  */
1688 void dp_update_vdev_stats(struct dp_soc *soc,
1689 			  struct dp_peer *srcobj,
1690 			  void *arg);
1691 
1692 /**
1693  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1694  * @vdev: DP_VDEV handle
1695  * @peer: DP_PEER handle
1696  *
1697  * Return: None
1698  */
1699 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1700 					struct dp_peer *peer);
1701 
1702 #ifdef IPA_OFFLOAD
1703 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1704 { \
1705 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1706 }
1707 
1708 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1709 { \
1710 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1711 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1712 }
1713 #else
1714 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1715 
1716 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1717 #endif
1718 
1719 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1720 	do {				\
1721 		uint8_t i;		\
1722 		uint8_t pream_type;	\
1723 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1724 			for (i = 0; i < MAX_MCS; i++) { \
1725 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1726 					tx.pkt_type[pream_type].mcs_count[i]); \
1727 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1728 					rx.pkt_type[pream_type].mcs_count[i]); \
1729 			} \
1730 		} \
1731 		  \
1732 		for (i = 0; i < MAX_BW; i++) { \
1733 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1734 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1735 		} \
1736 		  \
1737 		for (i = 0; i < SS_COUNT; i++) { \
1738 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1739 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1740 		} \
1741 		for (i = 0; i < WME_AC_MAX; i++) { \
1742 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1743 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1744 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1745 				      tx.wme_ac_type_bytes[i]); \
1746 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1747 				      rx.wme_ac_type_bytes[i]); \
1748 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1749 		\
1750 		} \
1751 		\
1752 		for (i = 0; i < MAX_GI; i++) { \
1753 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1754 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1755 		} \
1756 		\
1757 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1758 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1759 		\
1760 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1761 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1762 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1763 		} \
1764 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1765 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1766 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1767 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1768 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1769 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1770 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1771 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1772 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1773 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1774 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1775 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1776 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1777 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1778 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1779 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1780 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1781 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1782 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1783 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1784 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1785 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1786 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1787 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1788 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1789 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1790 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1791 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1792 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1793 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1794 								\
1795 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1796 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1797 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1798 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1799 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1800 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1801 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1802 		if (_srcobj->stats.rx.snr != 0) \
1803 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1804 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1805 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1806 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1807 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1808 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1809 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1810 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1811 								\
1812 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1813 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1814 									\
1815 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1816 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1817 									\
1818 		_srcobj->stats.rx.unicast.num = \
1819 			_srcobj->stats.rx.to_stack.num - \
1820 					_srcobj->stats.rx.multicast.num; \
1821 		_srcobj->stats.rx.unicast.bytes = \
1822 			_srcobj->stats.rx.to_stack.bytes - \
1823 					_srcobj->stats.rx.multicast.bytes; \
1824 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1825 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1826 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1827 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1828 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1829 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1830 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1831 								  \
1832 		_tgtobj->stats.tx.last_ack_rssi =	\
1833 			_srcobj->stats.tx.last_ack_rssi; \
1834 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1835 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1836 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1837 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1838 	}  while (0)
1839 
1840 #ifdef VDEV_PEER_PROTOCOL_COUNT
1841 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1842 { \
1843 	uint8_t j; \
1844 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1845 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1846 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1847 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1848 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1849 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1850 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1851 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1852 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1853 	} \
1854 }
1855 #else
1856 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1857 #endif
1858 
1859 #ifdef WLAN_FEATURE_11BE
1860 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1861 	do { \
1862 		uint8_t i, mu_type; \
1863 		for (i = 0; i < MAX_MCS; i++) { \
1864 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1865 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1866 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1867 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1868 		} \
1869 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1870 			for (i = 0; i < MAX_MCS; i++) { \
1871 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1872 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1873 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1874 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1875 			} \
1876 		} \
1877 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1878 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1879 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1880 		} \
1881 	} while (0)
1882 #else
1883 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1884 #endif
1885 
1886 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1887 	do { \
1888 		uint8_t i; \
1889 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1890 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1891 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1892 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1893 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1894 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1895 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1896 		_tgtobj->tx.nawds_mcast.bytes += \
1897 					_srcobj->tx.nawds_mcast.bytes; \
1898 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1899 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1900 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1901 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1902 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1903 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1904 		_tgtobj->tx.dropped.fw_rem.num += \
1905 					_srcobj->tx.dropped.fw_rem.num; \
1906 		_tgtobj->tx.dropped.fw_rem.bytes += \
1907 					_srcobj->tx.dropped.fw_rem.bytes; \
1908 		_tgtobj->tx.dropped.fw_rem_notx += \
1909 					_srcobj->tx.dropped.fw_rem_notx; \
1910 		_tgtobj->tx.dropped.fw_rem_tx += \
1911 					_srcobj->tx.dropped.fw_rem_tx; \
1912 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1913 		_tgtobj->tx.dropped.fw_reason1 += \
1914 					_srcobj->tx.dropped.fw_reason1; \
1915 		_tgtobj->tx.dropped.fw_reason2 += \
1916 					_srcobj->tx.dropped.fw_reason2; \
1917 		_tgtobj->tx.dropped.fw_reason3 += \
1918 					_srcobj->tx.dropped.fw_reason3; \
1919 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1920 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1921 		_tgtobj->tx.dropped.fw_rem_no_match += \
1922 					_srcobj->tx.dropped.fw_rem_no_match; \
1923 		_tgtobj->tx.dropped.drop_threshold += \
1924 					_srcobj->tx.dropped.drop_threshold; \
1925 		_tgtobj->tx.dropped.drop_link_desc_na += \
1926 					_srcobj->tx.dropped.drop_link_desc_na; \
1927 		_tgtobj->tx.dropped.invalid_drop += \
1928 					_srcobj->tx.dropped.invalid_drop; \
1929 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1930 					_srcobj->tx.dropped.mcast_vdev_drop; \
1931 		_tgtobj->tx.dropped.invalid_rr += \
1932 					_srcobj->tx.dropped.invalid_rr; \
1933 		_tgtobj->tx.failed_retry_count += \
1934 					_srcobj->tx.failed_retry_count; \
1935 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1936 		_tgtobj->tx.multiple_retry_count += \
1937 					_srcobj->tx.multiple_retry_count; \
1938 		_tgtobj->tx.tx_success_twt.num += \
1939 					_srcobj->tx.tx_success_twt.num; \
1940 		_tgtobj->tx.tx_success_twt.bytes += \
1941 					_srcobj->tx.tx_success_twt.bytes; \
1942 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1943 		_tgtobj->tx.release_src_not_tqm += \
1944 					_srcobj->tx.release_src_not_tqm; \
1945 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1946 			_tgtobj->tx.no_ack_count[i] += \
1947 					_srcobj->tx.no_ack_count[i];\
1948 		} \
1949 		\
1950 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1951 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1952 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1953 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1954 		_tgtobj->rx.unicast.num += _srcobj->rx.unicast.num; \
1955 		_tgtobj->rx.unicast.bytes += _srcobj->rx.unicast.bytes; \
1956 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1957 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1958 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1959 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1960 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1961 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1962 		_tgtobj->rx.intra_bss.pkts.num += \
1963 					_srcobj->rx.intra_bss.pkts.num; \
1964 		_tgtobj->rx.intra_bss.pkts.bytes += \
1965 					_srcobj->rx.intra_bss.pkts.bytes; \
1966 		_tgtobj->rx.intra_bss.fail.num += \
1967 					_srcobj->rx.intra_bss.fail.num; \
1968 		_tgtobj->rx.intra_bss.fail.bytes += \
1969 					_srcobj->rx.intra_bss.fail.bytes; \
1970 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1971 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1972 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1973 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1974 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1975 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1976 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1977 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1978 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1979 					_srcobj->rx.err.rxdma_wifi_parse_err; \
1980 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
1981 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
1982 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
1983 		_tgtobj->rx.multipass_rx_pkt_drop += \
1984 					_srcobj->rx.multipass_rx_pkt_drop; \
1985 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
1986 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
1987 		_tgtobj->rx.policy_check_drop += \
1988 					_srcobj->rx.policy_check_drop; \
1989 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
1990 		_tgtobj->rx.to_stack_twt.bytes += \
1991 					_srcobj->rx.to_stack_twt.bytes; \
1992 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
1993 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
1994 			_tgtobj->rx.rcvd_reo[i].num += \
1995 					 _srcobj->rx.rcvd_reo[i].num; \
1996 			_tgtobj->rx.rcvd_reo[i].bytes += \
1997 					_srcobj->rx.rcvd_reo[i].bytes; \
1998 		} \
1999 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
2000 			_tgtobj->rx.rx_lmac[i].num += \
2001 					_srcobj->rx.rx_lmac[i].num; \
2002 			_tgtobj->rx.rx_lmac[i].bytes += \
2003 					_srcobj->rx.rx_lmac[i].bytes; \
2004 		} \
2005 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
2006 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
2007 	} while (0)
2008 
2009 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
2010 	do { \
2011 		uint8_t i, pream_type, mu_type; \
2012 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
2013 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
2014 		_tgtobj->tx.retries += _srcobj->tx.retries; \
2015 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
2016 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
2017 		_tgtobj->tx.num_ppdu_cookie_valid += \
2018 					_srcobj->tx.num_ppdu_cookie_valid; \
2019 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
2020 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
2021 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
2022 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
2023 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
2024 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
2025 		_tgtobj->tx.mcast_last_tx_rate = \
2026 					_srcobj->tx.mcast_last_tx_rate; \
2027 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
2028 					_srcobj->tx.mcast_last_tx_rate_mcs; \
2029 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
2030 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
2031 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
2032 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
2033 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
2034 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
2035 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
2036 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
2037 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
2038 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
2039 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
2040 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
2041 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
2042 		_tgtobj->tx.mpdu_success_with_retries += \
2043 					_srcobj->tx.mpdu_success_with_retries; \
2044 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
2045 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
2046 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
2047 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
2048 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2049 			for (i = 0; i < MAX_MCS; i++) \
2050 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
2051 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
2052 		} \
2053 		for (i = 0; i < WME_AC_MAX; i++) { \
2054 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
2055 			_tgtobj->tx.wme_ac_type_bytes[i] += \
2056 					_srcobj->tx.wme_ac_type_bytes[i]; \
2057 			_tgtobj->tx.excess_retries_per_ac[i] += \
2058 					_srcobj->tx.excess_retries_per_ac[i]; \
2059 		} \
2060 		for (i = 0; i < MAX_GI; i++) { \
2061 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2062 		} \
2063 		for (i = 0; i < SS_COUNT; i++) { \
2064 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2065 		} \
2066 		for (i = 0; i < MAX_BW; i++) { \
2067 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2068 		} \
2069 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2070 			_tgtobj->tx.ru_loc[i].num_msdu += \
2071 					_srcobj->tx.ru_loc[i].num_msdu; \
2072 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2073 					_srcobj->tx.ru_loc[i].num_mpdu; \
2074 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2075 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2076 		} \
2077 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2078 			_tgtobj->tx.transmit_type[i].num_msdu += \
2079 					_srcobj->tx.transmit_type[i].num_msdu; \
2080 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2081 					_srcobj->tx.transmit_type[i].num_mpdu; \
2082 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2083 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2084 		} \
2085 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2086 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2087 		} \
2088 		_tgtobj->tx.tx_ucast_total.num += \
2089 				_srcobj->tx.tx_ucast_total.num;\
2090 		_tgtobj->tx.tx_ucast_total.bytes += \
2091 				 _srcobj->tx.tx_ucast_total.bytes;\
2092 		_tgtobj->tx.tx_ucast_success.num += \
2093 				_srcobj->tx.tx_ucast_success.num; \
2094 		_tgtobj->tx.tx_ucast_success.bytes += \
2095 				_srcobj->tx.tx_ucast_success.bytes; \
2096 		\
2097 		for (i = 0; i < CDP_RSSI_CHAIN_LEN; i++) \
2098 			_tgtobj->tx.rssi_chain[i] = _srcobj->tx.rssi_chain[i]; \
2099 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2100 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2101 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2102 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2103 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2104 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2105 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2106 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2107 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2108 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2109 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2110 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2111 		_tgtobj->rx.rx_snr_measured_time = \
2112 					_srcobj->rx.rx_snr_measured_time; \
2113 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2114 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2115 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2116 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2117 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2118 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2119 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2120 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2121 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2122 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2123 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2124 			for (i = 0; i < MAX_MCS; i++) { \
2125 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2126 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2127 			} \
2128 		} \
2129 		for (i = 0; i < WME_AC_MAX; i++) { \
2130 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2131 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2132 					_srcobj->rx.wme_ac_type_bytes[i]; \
2133 		} \
2134 		for (i = 0; i < MAX_MCS; i++) { \
2135 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2136 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2137 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2138 		} \
2139 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2140 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2141 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2142 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2143 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2144 			for (i = 0; i < SS_COUNT; i++) \
2145 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2146 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2147 			for (i = 0; i < MAX_MCS; i++) \
2148 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2149 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2150 		} \
2151 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2152 			_tgtobj->rx.reception_type[i] += \
2153 					_srcobj->rx.reception_type[i]; \
2154 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2155 		} \
2156 		for (i = 0; i < MAX_GI; i++) { \
2157 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2158 		} \
2159 		for (i = 0; i < SS_COUNT; i++) { \
2160 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2161 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2162 		} \
2163 		for (i = 0; i < MAX_BW; i++) { \
2164 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2165 		} \
2166 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2167 	} while (0)
2168 
2169 /**
2170  * dp_peer_find_attach() - Allocates memory for peer objects
2171  * @soc: SoC handle
2172  *
2173  * Return: QDF_STATUS
2174  */
2175 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2176 
2177 /**
2178  * dp_peer_find_detach() - Frees memory for peer objects
2179  * @soc: SoC handle
2180  *
2181  * Return: none
2182  */
2183 void dp_peer_find_detach(struct dp_soc *soc);
2184 
2185 /**
2186  * dp_peer_find_hash_add() - add peer to peer_hash_table
2187  * @soc: soc handle
2188  * @peer: peer handle
2189  *
2190  * Return: none
2191  */
2192 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2193 
2194 /**
2195  * dp_peer_find_hash_remove() - remove peer from peer_hash_table
2196  * @soc: soc handle
2197  * @peer: peer handle
2198  *
2199  * Return: none
2200  */
2201 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2202 
2203 /* unused?? */
2204 void dp_peer_find_hash_erase(struct dp_soc *soc);
2205 
2206 /**
2207  * dp_peer_vdev_list_add() - add peer into vdev's peer list
2208  * @soc: soc handle
2209  * @vdev: vdev handle
2210  * @peer: peer handle
2211  *
2212  * Return: none
2213  */
2214 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2215 			   struct dp_peer *peer);
2216 
2217 /**
2218  * dp_peer_vdev_list_remove() - remove peer from vdev's peer list
2219  * @soc: SoC handle
2220  * @vdev: VDEV handle
2221  * @peer: peer handle
2222  *
2223  * Return: none
2224  */
2225 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2226 			      struct dp_peer *peer);
2227 
2228 /**
2229  * dp_peer_find_id_to_obj_add() - Add peer into peer_id table
2230  * @soc: SoC handle
2231  * @peer: peer handle
2232  * @peer_id: peer_id
2233  *
2234  * Return: None
2235  */
2236 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2237 				struct dp_peer *peer,
2238 				uint16_t peer_id);
2239 
2240 /**
2241  * dp_txrx_peer_attach_add() - Attach txrx_peer and add it to peer_id table
2242  * @soc: SoC handle
2243  * @peer: peer handle
2244  * @txrx_peer: txrx peer handle
2245  *
2246  * Return: None
2247  */
2248 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2249 			     struct dp_peer *peer,
2250 			     struct dp_txrx_peer *txrx_peer);
2251 
2252 /**
2253  * dp_peer_find_id_to_obj_remove() - remove peer from peer_id table
2254  * @soc: SoC handle
2255  * @peer_id: peer_id
2256  *
2257  * Return: None
2258  */
2259 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2260 				   uint16_t peer_id);
2261 
2262 /**
2263  * dp_vdev_unref_delete() - check and process vdev delete
2264  * @soc: DP specific soc pointer
2265  * @vdev: DP specific vdev pointer
2266  * @mod_id: module id
2267  *
2268  */
2269 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2270 			  enum dp_mod_id mod_id);
2271 
2272 /**
2273  * dp_peer_ppdu_delayed_ba_cleanup() - free ppdu allocated in peer
2274  * @peer: Datapath peer
2275  *
2276  * Return: void
2277  */
2278 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2279 
2280 /**
2281  * dp_peer_rx_init() - Initialize receive TID state
2282  * @pdev: Datapath pdev
2283  * @peer: Datapath peer
2284  *
2285  */
2286 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2287 
2288 /**
2289  * dp_peer_cleanup() - Cleanup peer information
2290  * @vdev: Datapath vdev
2291  * @peer: Datapath peer
2292  *
2293  */
2294 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2295 
2296 /**
2297  * dp_peer_rx_cleanup() - Cleanup receive TID state
2298  * @vdev: Datapath vdev
2299  * @peer: Datapath peer
2300  *
2301  */
2302 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2303 
2304 #ifdef DP_PEER_EXTENDED_API
2305 /**
2306  * dp_register_peer() - Register peer into physical device
2307  * @soc_hdl: data path soc handle
2308  * @pdev_id: device instance id
2309  * @sta_desc: peer description
2310  *
2311  * Register peer into physical device
2312  *
2313  * Return: QDF_STATUS_SUCCESS registration success
2314  *         QDF_STATUS_E_FAULT peer not found
2315  */
2316 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2317 			    struct ol_txrx_desc_type *sta_desc);
2318 
2319 /**
2320  * dp_clear_peer() - remove peer from physical device
2321  * @soc_hdl: data path soc handle
2322  * @pdev_id: device instance id
2323  * @peer_addr: peer mac address
2324  *
2325  * remove peer from physical device
2326  *
2327  * Return: QDF_STATUS_SUCCESS registration success
2328  *         QDF_STATUS_E_FAULT peer not found
2329  */
2330 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2331 			 struct qdf_mac_addr peer_addr);
2332 
2333 /**
2334  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2335  * @soc_hdl: datapath soc handle
2336  * @vdev_id: vdev instance id
2337  * @peer_addr: peer mac address
2338  *
2339  * Return: true or false
2340  */
2341 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2342 				uint8_t *peer_addr);
2343 
2344 /**
2345  * dp_find_peer_exist_on_other_vdev - find if peer exists
2346  * on other than the given vdev
2347  * @soc_hdl: datapath soc handle
2348  * @vdev_id: vdev instance id
2349  * @peer_addr: peer mac address
2350  * @max_bssid: max number of bssids
2351  *
2352  * Return: true or false
2353  */
2354 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2355 				      uint8_t vdev_id, uint8_t *peer_addr,
2356 				      uint16_t max_bssid);
2357 
2358 /**
2359  * dp_peer_state_update() - update peer local state
2360  * @soc: datapath soc handle
2361  * @peer_mac: peer mac address
2362  * @state: new peer local state
2363  *
2364  * update peer local state
2365  *
2366  * Return: QDF_STATUS_SUCCESS registration success
2367  */
2368 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2369 				enum ol_txrx_peer_state state);
2370 
2371 /**
2372  * dp_get_vdevid() - Get virtual interface id which peer registered
2373  * @soc_hdl: datapath soc handle
2374  * @peer_mac: peer mac address
2375  * @vdev_id: virtual interface id which peer registered
2376  *
2377  * Get virtual interface id which peer registered
2378  *
2379  * Return: QDF_STATUS_SUCCESS registration success
2380  */
2381 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2382 			 uint8_t *vdev_id);
2383 
2384 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2385 		struct qdf_mac_addr peer_addr);
2386 
2387 /**
2388  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2389  * @peer: peer instance
2390  *
2391  * Get virtual interface instance which peer belongs
2392  *
2393  * Return: virtual interface instance pointer
2394  *         NULL in case cannot find
2395  */
2396 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2397 
2398 /**
2399  * dp_peer_get_peer_mac_addr() - Get peer mac address
2400  * @peer: peer instance
2401  *
2402  * Get peer mac address
2403  *
2404  * Return: peer mac address pointer
2405  *         NULL in case cannot find
2406  */
2407 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2408 
2409 /**
2410  * dp_get_peer_state() - Get local peer state
2411  * @soc: datapath soc handle
2412  * @vdev_id: vdev id
2413  * @peer_mac: peer mac addr
2414  *
2415  * Get local peer state
2416  *
2417  * Return: peer status
2418  */
2419 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2420 		      uint8_t *peer_mac);
2421 
2422 /**
2423  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2424  * @pdev: data path device instance
2425  *
2426  * local peer id pool alloc for physical device
2427  *
2428  * Return: none
2429  */
2430 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2431 
2432 /**
2433  * dp_local_peer_id_alloc() - allocate local peer id
2434  * @pdev: data path device instance
2435  * @peer: new peer instance
2436  *
2437  * allocate local peer id
2438  *
2439  * Return: none
2440  */
2441 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2442 
2443 /**
2444  * dp_local_peer_id_free() - remove local peer id
2445  * @pdev: data path device instance
2446  * @peer: peer instance should be removed
2447  *
2448  * remove local peer id
2449  *
2450  * Return: none
2451  */
2452 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2453 
2454 /**
2455  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2456  * @soc_hdl: datapath soc handle
2457  * @vdev_id: vdev_id
2458  * @peer_mac: peer mac addr
2459  * @val: tdls peer flag
2460  *
2461  * Return: none
2462  */
2463 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2464 			      uint8_t *peer_mac, bool val);
2465 #else
2466 static inline
2467 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2468 			 uint8_t *vdev_id)
2469 {
2470 	return QDF_STATUS_E_NOSUPPORT;
2471 }
2472 
2473 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2474 {
2475 }
2476 
2477 static inline
2478 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2479 {
2480 }
2481 
2482 static inline
2483 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2484 {
2485 }
2486 
2487 static inline
2488 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2489 			      uint8_t *peer_mac, bool val)
2490 {
2491 }
2492 #endif
2493 
2494 /**
2495  * dp_find_peer_exist - find peer if already exists
2496  * @soc_hdl: datapath soc handle
2497  * @pdev_id: physical device instance id
2498  * @peer_addr: peer mac address
2499  *
2500  * Return: true or false
2501  */
2502 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2503 			uint8_t *peer_addr);
2504 
2505 /**
2506  * dp_addba_resp_tx_completion_wifi3() - Update Rx Tid State
2507  *
2508  * @cdp_soc: Datapath soc handle
2509  * @peer_mac: Datapath peer mac address
2510  * @vdev_id: id of atapath vdev
2511  * @tid: TID number
2512  * @status: tx completion status
2513  * Return: 0 on success, error code on failure
2514  */
2515 int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
2516 				      uint8_t *peer_mac, uint16_t vdev_id,
2517 				      uint8_t tid,
2518 				      int status);
2519 
2520 /**
2521  * dp_addba_requestprocess_wifi3() - Process ADDBA request from peer
2522  * @cdp_soc: Datapath soc handle
2523  * @peer_mac: Datapath peer mac address
2524  * @vdev_id: id of atapath vdev
2525  * @dialogtoken: dialogtoken from ADDBA frame
2526  * @tid: TID number
2527  * @batimeout: BA timeout
2528  * @buffersize: BA window size
2529  * @startseqnum: Start seq. number received in BA sequence control
2530  *
2531  * Return: 0 on success, error code on failure
2532  */
2533 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
2534 				  uint8_t *peer_mac, uint16_t vdev_id,
2535 				  uint8_t dialogtoken, uint16_t tid,
2536 				  uint16_t batimeout,
2537 				  uint16_t buffersize,
2538 				  uint16_t startseqnum);
2539 
2540 /**
2541  * dp_addba_responsesetup_wifi3() - Process ADDBA request from peer
2542  * @cdp_soc: Datapath soc handle
2543  * @peer_mac: Datapath peer mac address
2544  * @vdev_id: id of atapath vdev
2545  * @tid: TID number
2546  * @dialogtoken: output dialogtoken
2547  * @statuscode: output dialogtoken
2548  * @buffersize: Output BA window size
2549  * @batimeout: Output BA timeout
2550  */
2551 QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc,
2552 					uint8_t *peer_mac, uint16_t vdev_id,
2553 					uint8_t tid, uint8_t *dialogtoken,
2554 					uint16_t *statuscode,
2555 					uint16_t *buffersize,
2556 					uint16_t *batimeout);
2557 
2558 /**
2559  * dp_set_addba_response() - Set a user defined ADDBA response status code
2560  * @cdp_soc: Datapath soc handle
2561  * @peer_mac: Datapath peer mac address
2562  * @vdev_id: id of atapath vdev
2563  * @tid: TID number
2564  * @statuscode: response status code to be set
2565  */
2566 QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc,
2567 				 uint8_t *peer_mac,
2568 				 uint16_t vdev_id, uint8_t tid,
2569 				 uint16_t statuscode);
2570 
2571 /**
2572  * dp_delba_process_wifi3() - Process DELBA from peer
2573  * @cdp_soc: Datapath soc handle
2574  * @peer_mac: Datapath peer mac address
2575  * @vdev_id: id of atapath vdev
2576  * @tid: TID number
2577  * @reasoncode: Reason code received in DELBA frame
2578  *
2579  * Return: 0 on success, error code on failure
2580  */
2581 int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2582 			   uint16_t vdev_id, int tid,
2583 			   uint16_t reasoncode);
2584 
2585 /**
2586  * dp_rx_tid_update_ba_win_size() - Update the DP tid BA window size
2587  * @cdp_soc: soc handle
2588  * @peer_mac: mac address of peer handle
2589  * @vdev_id: id of vdev handle
2590  * @tid: tid
2591  * @buffersize: BA window size
2592  *
2593  * Return: success/failure of tid update
2594  */
2595 QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc,
2596 					uint8_t *peer_mac, uint16_t vdev_id,
2597 					uint8_t tid, uint16_t buffersize);
2598 
2599 /**
2600  * dp_delba_tx_completion_wifi3() -  Handle delba tx completion
2601  * @cdp_soc: soc handle
2602  * @peer_mac: peer mac address
2603  * @vdev_id: id of the vdev handle
2604  * @tid: Tid number
2605  * @status: Tx completion status
2606  *
2607  * Indicate status of delba Tx to DP for stats update and retry
2608  * delba if tx failed.
2609  *
2610  * Return: 0 on success, error code on failure
2611  */
2612 int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2613 				 uint16_t vdev_id, uint8_t tid,
2614 				 int status);
2615 
2616 /**
2617  * dp_rx_tid_setup_wifi3() - Setup receive TID state
2618  * @peer: Datapath peer handle
2619  * @tid: TID
2620  * @ba_window_size: BlockAck window size
2621  * @start_seq: Starting sequence number
2622  *
2623  * Return: QDF_STATUS code
2624  */
2625 QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
2626 				 uint32_t ba_window_size,
2627 				 uint32_t start_seq);
2628 
2629 #ifdef DP_UMAC_HW_RESET_SUPPORT
2630 /**
2631  * dp_pause_reo_send_cmd() - Pause Reo send commands.
2632  * @soc: dp soc
2633  *
2634  * Return: none
2635  */
2636 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2637 
2638 /**
2639  * dp_resume_reo_send_cmd() - Resume Reo send commands.
2640  * @soc: dp soc
2641  *
2642  * Return: none
2643  */
2644 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2645 
2646 /**
2647  * dp_cleanup_reo_cmd_module - Clean up the reo cmd module
2648  * @soc: DP SoC handle
2649  *
2650  * Return: none
2651  */
2652 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2653 
2654 /**
2655  * dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
2656  * @soc: DP SOC handle
2657  *
2658  * Return: none
2659  */
2660 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2661 
2662 /**
2663  * dp_reset_rx_reo_tid_queue() - Reset the reo tid queues
2664  * @soc: dp soc
2665  * @hw_qdesc_vaddr: starting address of the tid queues
2666  * @size: size of the memory pointed to by hw_qdesc_vaddr
2667  *
2668  * Return: none
2669  */
2670 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2671 			       uint32_t size);
2672 
2673 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2674 /**
2675  * dp_umac_reset_complete_umac_recovery() - Complete Umac reset session
2676  * @soc: dp soc handle
2677  *
2678  * Return: void
2679  */
2680 void dp_umac_reset_complete_umac_recovery(struct dp_soc *soc);
2681 
2682 /**
2683  * dp_umac_reset_initiate_umac_recovery() - Initiate Umac reset session
2684  * @soc: dp soc handle
2685  * @is_target_recovery: Flag to indicate if it is triggered for target recovery
2686  *
2687  * Return: void
2688  */
2689 void dp_umac_reset_initiate_umac_recovery(struct dp_soc *soc,
2690 					  bool is_target_recovery);
2691 
2692 /**
2693  * dp_umac_reset_handle_action_cb() - Function to call action callback
2694  * @soc: dp soc handle
2695  * @umac_reset_ctx: Umac reset context
2696  * @action: Action to call the callback for
2697  *
2698  * Return: QDF_STATUS status
2699  */
2700 QDF_STATUS dp_umac_reset_handle_action_cb(struct dp_soc *soc,
2701 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2702 				enum umac_reset_action action);
2703 
2704 /**
2705  * dp_umac_reset_post_tx_cmd() - Iterate partner socs and post Tx command
2706  * @umac_reset_ctx: UMAC reset context
2707  * @tx_cmd: Tx command to be posted
2708  *
2709  * Return: QDF status of operation
2710  */
2711 QDF_STATUS
2712 dp_umac_reset_post_tx_cmd(struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2713 			  enum umac_reset_tx_cmd tx_cmd);
2714 
2715 /**
2716  * dp_umac_reset_initiator_check() - Check if soc is the Umac reset initiator
2717  * @soc: dp soc handle
2718  *
2719  * Return: true if the soc is initiator or false otherwise
2720  */
2721 bool dp_umac_reset_initiator_check(struct dp_soc *soc);
2722 
2723 /**
2724  * dp_umac_reset_target_recovery_check() - Check if this is for target recovery
2725  * @soc: dp soc handle
2726  *
2727  * Return: true if the session is for target recovery or false otherwise
2728  */
2729 bool dp_umac_reset_target_recovery_check(struct dp_soc *soc);
2730 
2731 /**
2732  * dp_umac_reset_is_soc_ignored() - Check if this soc is to be ignored
2733  * @soc: dp soc handle
2734  *
2735  * Return: true if the soc is ignored or false otherwise
2736  */
2737 bool dp_umac_reset_is_soc_ignored(struct dp_soc *soc);
2738 
2739 /**
2740  * dp_mlo_umac_reset_stats_print() - API to print MLO umac reset stats
2741  * @soc: dp soc handle
2742  *
2743  * Return: QDF_STATUS
2744  */
2745 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc);
2746 #else
2747 static inline
2748 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc)
2749 {
2750 	return QDF_STATUS_SUCCESS;
2751 }
2752 #endif
2753 
2754 #endif
2755 
2756 #if defined(DP_UMAC_HW_RESET_SUPPORT) && defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2757 /**
2758  * dp_umac_reset_notify_asserted_soc() - API to notify the asserted SOC
2759  * @soc: dp soc
2760  *
2761  * Return: QDF_STATUS
2762  */
2763 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc);
2764 #else
2765 static inline
2766 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc)
2767 {
2768 	return QDF_STATUS_SUCCESS;
2769 }
2770 #endif
2771 
2772 QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc, enum hal_reo_cmd_type type,
2773 			   struct hal_reo_cmd_params *params,
2774 			   void (*callback_fn), void *data);
2775 
2776 /**
2777  * dp_reo_cmdlist_destroy() - Free REO commands in the queue
2778  * @soc: DP SoC handle
2779  *
2780  * Return: none
2781  */
2782 void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2783 
2784 /**
2785  * dp_reo_status_ring_handler() - Handler for REO Status ring
2786  * @int_ctx: pointer to DP interrupt context
2787  * @soc: DP Soc handle
2788  *
2789  * Return: Number of descriptors reaped
2790  */
2791 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2792 				    struct dp_soc *soc);
2793 
2794 /**
2795  * dp_aggregate_vdev_stats() - Consolidate stats at VDEV level
2796  * @vdev: DP VDEV handle
2797  * @vdev_stats: aggregate statistics
2798  *
2799  * return: void
2800  */
2801 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2802 			     struct cdp_vdev_stats *vdev_stats);
2803 
2804 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2805 	union hal_reo_status *reo_status);
2806 
2807 /**
2808  * dp_rx_bar_stats_cb() - BAR received stats callback
2809  * @soc: SOC handle
2810  * @cb_ctxt: Call back context
2811  * @reo_status: Reo status
2812  *
2813  * Return: void
2814  */
2815 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2816 			union hal_reo_status *reo_status);
2817 
2818 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2819 				     qdf_nbuf_t nbuf,
2820 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2821 				     uint8_t new_mac_cnt, uint8_t tid,
2822 				     bool is_igmp, bool is_dms_pkt);
2823 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2824 
2825 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2826 
2827 /**
2828  * dp_h2t_ext_stats_msg_send(): function to construct HTT message to pass to FW
2829  * @pdev: DP PDEV handle
2830  * @stats_type_upload_mask: stats type requested by user
2831  * @config_param_0: extra configuration parameters
2832  * @config_param_1: extra configuration parameters
2833  * @config_param_2: extra configuration parameters
2834  * @config_param_3: extra configuration parameters
2835  * @cookie:
2836  * @cookie_msb:
2837  * @mac_id: mac number
2838  *
2839  * Return: QDF STATUS
2840  */
2841 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2842 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2843 		uint32_t config_param_1, uint32_t config_param_2,
2844 		uint32_t config_param_3, int cookie, int cookie_msb,
2845 		uint8_t mac_id);
2846 
2847 /**
2848  * dp_htt_stats_print_tag() - function to select the tag type and
2849  * print the corresponding tag structure
2850  * @pdev: pdev pointer
2851  * @tag_type: tag type that is to be printed
2852  * @tag_buf: pointer to the tag structure
2853  *
2854  * Return: void
2855  */
2856 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2857 			    uint8_t tag_type, uint32_t *tag_buf);
2858 
2859 /**
2860  * dp_htt_stats_copy_tag() - function to select the tag type and
2861  * copy the corresponding tag structure
2862  * @pdev: DP_PDEV handle
2863  * @tag_type: tag type that is to be printed
2864  * @tag_buf: pointer to the tag structure
2865  *
2866  * Return: void
2867  */
2868 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2869 
2870 /**
2871  * dp_h2t_3tuple_config_send(): function to construct 3 tuple configuration
2872  * HTT message to pass to FW
2873  * @pdev: DP PDEV handle
2874  * @tuple_mask: tuple configuration to report 3 tuple hash value in either
2875  * toeplitz_2_or_4 or flow_id_toeplitz in MSDU START TLV.
2876  *
2877  * tuple_mask[1:0]:
2878  *   00 - Do not report 3 tuple hash value
2879  *   10 - Report 3 tuple hash value in toeplitz_2_or_4
2880  *   01 - Report 3 tuple hash value in flow_id_toeplitz
2881  *   11 - Report 3 tuple hash value in both toeplitz_2_or_4 & flow_id_toeplitz
2882  * @mac_id: MAC ID
2883  *
2884  * Return: QDF STATUS
2885  */
2886 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2887 				     uint8_t mac_id);
2888 /**
2889  * typedef dp_rxtid_stats_cmd_cb() - function pointer for peer
2890  *			             rx tid stats cmd call_back
2891  * @soc:
2892  * @cb_ctxt:
2893  * @reo_status:
2894  */
2895 typedef void (*dp_rxtid_stats_cmd_cb)(struct dp_soc *soc, void *cb_ctxt,
2896 				      union hal_reo_status *reo_status);
2897 
2898 /**
2899  * dp_peer_rxtid_stats() - Retried Rx TID (REO queue) stats from HW
2900  * @peer: DP peer handle
2901  * @dp_stats_cmd_cb: REO command callback function
2902  * @cb_ctxt: Callback context
2903  *
2904  * Return: count of tid stats cmd send succeeded
2905  */
2906 int dp_peer_rxtid_stats(struct dp_peer *peer,
2907 			dp_rxtid_stats_cmd_cb dp_stats_cmd_cb,
2908 			void *cb_ctxt);
2909 
2910 #ifdef IPA_OFFLOAD
2911 /**
2912  * dp_peer_update_tid_stats_from_reo() - update rx pkt and byte count from reo
2913  * @soc: soc handle
2914  * @cb_ctxt: combination of peer_id and tid
2915  * @reo_status: reo status
2916  *
2917  * Return: void
2918  */
2919 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2920 				       union hal_reo_status *reo_status);
2921 
2922 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2923 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2924 #ifdef IPA_OPT_WIFI_DP
2925 void dp_ipa_wdi_opt_dpath_notify_flt_rlsd(int flt0_rslt,
2926 					  int flt1_rslt);
2927 void dp_ipa_wdi_opt_dpath_notify_flt_add_rem_cb(int flt0_rslt, int flt1_rslt);
2928 void dp_ipa_wdi_opt_dpath_notify_flt_rsvd(bool is_success);
2929 #endif
2930 #ifdef QCA_ENHANCED_STATS_SUPPORT
2931 /**
2932  * dp_peer_aggregate_tid_stats - aggregate rx tid stats
2933  * @peer: Data Path peer
2934  *
2935  * Return: void
2936  */
2937 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
2938 #endif
2939 #else
2940 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
2941 {
2942 }
2943 #endif
2944 
2945 /**
2946  * dp_set_pn_check_wifi3() - enable PN check in REO for security
2947  * @soc: Datapath soc handle
2948  * @vdev_id: id of atapath vdev
2949  * @peer_mac: Datapath peer mac address
2950  * @sec_type: security type
2951  * @rx_pn: Receive pn starting number
2952  *
2953  */
2954 QDF_STATUS
2955 dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2956 		      uint8_t *peer_mac, enum cdp_sec_type sec_type,
2957 		      uint32_t *rx_pn);
2958 
2959 /**
2960  * dp_set_key_sec_type_wifi3() - set security mode of key
2961  * @soc: Datapath soc handle
2962  * @vdev_id: id of atapath vdev
2963  * @peer_mac: Datapath peer mac address
2964  * @sec_type: security type
2965  * @is_unicast: key type
2966  *
2967  */
2968 QDF_STATUS
2969 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2970 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
2971 			  bool is_unicast);
2972 
2973 /**
2974  * dp_get_pdev_for_mac_id() -  Return pdev for mac_id
2975  * @soc: handle to DP soc
2976  * @mac_id: MAC id
2977  *
2978  * Return: Return pdev corresponding to MAC
2979  */
2980 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
2981 
2982 QDF_STATUS
2983 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
2984 		   uint8_t *peer_mac,
2985 		   bool is_unicast, uint32_t *key);
2986 
2987 /**
2988  * dp_check_pdev_exists() - Validate pdev before use
2989  * @soc: dp soc handle
2990  * @data: pdev handle
2991  *
2992  * Return: 0 - success/invalid - failure
2993  */
2994 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
2995 
2996 /**
2997  * dp_update_delay_stats() - Update delay statistics in structure
2998  *				and fill min, max and avg delay
2999  * @tstats: tid tx stats
3000  * @rstats: tid rx stats
3001  * @delay: delay in ms
3002  * @tid: tid value
3003  * @mode: type of tx delay mode
3004  * @ring_id: ring number
3005  * @delay_in_us: flag to indicate whether the delay is in ms or us
3006  *
3007  * Return: none
3008  */
3009 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
3010 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
3011 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
3012 			   bool delay_in_us);
3013 
3014 /**
3015  * dp_print_ring_stats(): Print tail and head pointer
3016  * @pdev: DP_PDEV handle
3017  *
3018  * Return: void
3019  */
3020 void dp_print_ring_stats(struct dp_pdev *pdev);
3021 
3022 /**
3023  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
3024  * @soc: soc handle
3025  * @srng: srng handle
3026  * @ring_type: ring type
3027  *
3028  * Return: void
3029  */
3030 void
3031 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
3032 			    enum hal_ring_type ring_type);
3033 
3034 /**
3035  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
3036  * @pdev: DP pdev handle
3037  *
3038  * Return: void
3039  */
3040 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
3041 
3042 /**
3043  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
3044  * @soc: Soc handle
3045  *
3046  * Return: void
3047  */
3048 void dp_print_soc_cfg_params(struct dp_soc *soc);
3049 
3050 /**
3051  * dp_srng_get_str_from_hal_ring_type() - Return string name for a ring
3052  * @ring_type: Ring
3053  *
3054  * Return: char const pointer
3055  */
3056 const
3057 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
3058 
3059 /**
3060  * dp_txrx_path_stats() - Function to display dump stats
3061  * @soc: soc handle
3062  *
3063  * Return: none
3064  */
3065 void dp_txrx_path_stats(struct dp_soc *soc);
3066 
3067 /**
3068  * dp_print_per_ring_stats(): Packet count per ring
3069  * @soc: soc handle
3070  *
3071  * Return: None
3072  */
3073 void dp_print_per_ring_stats(struct dp_soc *soc);
3074 
3075 /**
3076  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
3077  * @pdev: DP PDEV handle
3078  *
3079  * Return: void
3080  */
3081 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
3082 
3083 /**
3084  * dp_print_rx_rates(): Print Rx rate stats
3085  * @vdev: DP_VDEV handle
3086  *
3087  * Return:void
3088  */
3089 void dp_print_rx_rates(struct dp_vdev *vdev);
3090 
3091 /**
3092  * dp_print_tx_rates(): Print tx rates
3093  * @vdev: DP_VDEV handle
3094  *
3095  * Return:void
3096  */
3097 void dp_print_tx_rates(struct dp_vdev *vdev);
3098 
3099 /**
3100  * dp_print_peer_stats():print peer stats
3101  * @peer: DP_PEER handle
3102  * @peer_stats: buffer holding peer stats
3103  *
3104  * return void
3105  */
3106 void dp_print_peer_stats(struct dp_peer *peer,
3107 			 struct cdp_peer_stats *peer_stats);
3108 
3109 /**
3110  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
3111  * @pdev: DP_PDEV Handle
3112  *
3113  * Return:void
3114  */
3115 void
3116 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
3117 
3118 /**
3119  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
3120  * @pdev: DP_PDEV Handle
3121  *
3122  * Return: void
3123  */
3124 void
3125 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
3126 
3127 /**
3128  * dp_print_soc_tx_stats(): Print SOC level  stats
3129  * @soc: DP_SOC Handle
3130  *
3131  * Return: void
3132  */
3133 void dp_print_soc_tx_stats(struct dp_soc *soc);
3134 
3135 #ifdef QCA_SUPPORT_DP_GLOBAL_CTX
3136 /**
3137  * dp_print_global_desc_count(): Print global desc in use
3138  *
3139  * Return: void
3140  */
3141 void dp_print_global_desc_count(void);
3142 #else
3143 /**
3144  * dp_print_global_desc_count(): Print global desc in use
3145  *
3146  * Return: void
3147  */
3148 static inline
3149 void dp_print_global_desc_count(void)
3150 {
3151 }
3152 #endif
3153 
3154 /**
3155  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
3156  * @soc: dp_soc handle
3157  *
3158  * Return: None
3159  */
3160 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
3161 
3162 /**
3163  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
3164  * @soc: dp_soc handle
3165  *
3166  * Return: None
3167  */
3168 
3169 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
3170 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
3171 /**
3172  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
3173  *				  for all SRNGs
3174  * @soc: DP soc handle
3175  * @srng_mask: SRNGs mask for dumping usage watermark stats
3176  *
3177  * Return: None
3178  */
3179 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
3180 #else
3181 static inline
3182 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
3183 {
3184 }
3185 #endif
3186 
3187 /**
3188  * dp_print_soc_rx_stats() - Print SOC level Rx stats
3189  * @soc: DP_SOC Handle
3190  *
3191  * Return: void
3192  */
3193 void dp_print_soc_rx_stats(struct dp_soc *soc);
3194 
3195 /**
3196  * dp_get_mac_id_for_pdev() - Return mac corresponding to pdev for mac
3197  *
3198  * @mac_id: MAC id
3199  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3200  *
3201  * Single pdev using both MACs will operate on both MAC rings,
3202  * which is the case for MCL.
3203  * For WIN each PDEV will operate one ring, so index is zero.
3204  *
3205  */
3206 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
3207 {
3208 	if (mac_id && pdev_id) {
3209 		qdf_print("Both mac_id and pdev_id cannot be non zero");
3210 		QDF_BUG(0);
3211 		return 0;
3212 	}
3213 	return (mac_id + pdev_id);
3214 }
3215 
3216 /**
3217  * dp_get_lmac_id_for_pdev_id() - Return lmac id corresponding to host pdev id
3218  * @soc: soc pointer
3219  * @mac_id: MAC id
3220  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3221  *
3222  * For MCL, Single pdev using both MACs will operate on both MAC rings.
3223  *
3224  * For WIN, each PDEV will operate one ring.
3225  *
3226  */
3227 static inline int
3228 dp_get_lmac_id_for_pdev_id
3229 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
3230 {
3231 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3232 		if (mac_id && pdev_id) {
3233 			qdf_print("Both mac_id and pdev_id cannot be non zero");
3234 			QDF_BUG(0);
3235 			return 0;
3236 		}
3237 		return (mac_id + pdev_id);
3238 	}
3239 
3240 	return soc->pdev_list[pdev_id]->lmac_id;
3241 }
3242 
3243 /**
3244  * dp_get_pdev_for_lmac_id() - Return pdev pointer corresponding to lmac id
3245  * @soc: soc pointer
3246  * @lmac_id: LMAC id
3247  *
3248  * For MCL, Single pdev exists
3249  *
3250  * For WIN, each PDEV will operate one ring.
3251  *
3252  */
3253 static inline struct dp_pdev *
3254 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
3255 {
3256 	uint8_t i = 0;
3257 
3258 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3259 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
3260 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
3261 	}
3262 
3263 	/* Typically for MCL as there only 1 PDEV*/
3264 	return soc->pdev_list[0];
3265 }
3266 
3267 /**
3268  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
3269  *                                          corresponding to host pdev id
3270  * @soc: soc pointer
3271  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3272  *
3273  * Return: target pdev_id for host pdev id. For WIN, this is derived through
3274  * a two step process:
3275  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
3276  *    during mode switch)
3277  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
3278  *
3279  * For MCL, return the offset-1 translated mac_id
3280  */
3281 static inline int
3282 dp_calculate_target_pdev_id_from_host_pdev_id
3283 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3284 {
3285 	struct dp_pdev *pdev;
3286 
3287 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3288 		return DP_SW2HW_MACID(mac_for_pdev);
3289 
3290 	pdev = soc->pdev_list[mac_for_pdev];
3291 
3292 	/*non-MCL case, get original target_pdev mapping*/
3293 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
3294 }
3295 
3296 /**
3297  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
3298  *                                         to host pdev id
3299  * @soc: soc pointer
3300  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3301  *
3302  * Return: target pdev_id for host pdev id.
3303  * For WIN, return the value stored in pdev object.
3304  * For MCL, return the offset-1 translated mac_id.
3305  */
3306 static inline int
3307 dp_get_target_pdev_id_for_host_pdev_id
3308 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3309 {
3310 	struct dp_pdev *pdev;
3311 
3312 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3313 		return DP_SW2HW_MACID(mac_for_pdev);
3314 
3315 	pdev = soc->pdev_list[mac_for_pdev];
3316 
3317 	return pdev->target_pdev_id;
3318 }
3319 
3320 /**
3321  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
3322  *                                         to target pdev id
3323  * @soc: soc pointer
3324  * @pdev_id: pdev_id corresponding to target pdev
3325  *
3326  * Return: host pdev_id for target pdev id. For WIN, this is derived through
3327  * a two step process:
3328  * 1. Get lmac_id corresponding to target pdev_id
3329  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
3330  *
3331  * For MCL, return the 0-offset pdev_id
3332  */
3333 static inline int
3334 dp_get_host_pdev_id_for_target_pdev_id
3335 	(struct dp_soc *soc, uint32_t pdev_id)
3336 {
3337 	struct dp_pdev *pdev;
3338 	int lmac_id;
3339 
3340 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3341 		return DP_HW2SW_MACID(pdev_id);
3342 
3343 	/*non-MCL case, get original target_lmac mapping from target pdev*/
3344 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
3345 					  DP_HW2SW_MACID(pdev_id));
3346 
3347 	/*Get host pdev from lmac*/
3348 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
3349 
3350 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
3351 }
3352 
3353 /**
3354  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
3355  *
3356  * @soc: handle to DP soc
3357  * @mac_id: MAC id
3358  *
3359  * Single pdev using both MACs will operate on both MAC rings,
3360  * which is the case for MCL.
3361  * For WIN each PDEV will operate one ring, so index is zero.
3362  *
3363  */
3364 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
3365 {
3366 	/*
3367 	 * Single pdev using both MACs will operate on both MAC rings,
3368 	 * which is the case for MCL.
3369 	 */
3370 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3371 		return mac_id;
3372 
3373 	/* For WIN each PDEV will operate one ring, so index is zero. */
3374 	return 0;
3375 }
3376 
3377 /**
3378  * dp_is_subtype_data() - check if the frame subtype is data
3379  *
3380  * @frame_ctrl: Frame control field
3381  *
3382  * check the frame control field and verify if the packet
3383  * is a data packet.
3384  *
3385  * Return: true or false
3386  */
3387 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
3388 {
3389 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
3390 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
3391 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3392 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
3393 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3394 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
3395 		return true;
3396 	}
3397 
3398 	return false;
3399 }
3400 
3401 #ifdef WDI_EVENT_ENABLE
3402 /**
3403  * dp_h2t_cfg_stats_msg_send(): function to construct HTT message to pass to FW
3404  * @pdev: DP PDEV handle
3405  * @stats_type_upload_mask: stats type requested by user
3406  * @mac_id: Mac id number
3407  *
3408  * return: QDF STATUS
3409  */
3410 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3411 				uint32_t stats_type_upload_mask,
3412 				uint8_t mac_id);
3413 
3414 /**
3415  * dp_wdi_event_unsub() - WDI event unsubscribe
3416  * @soc: soc handle
3417  * @pdev_id: id of pdev
3418  * @event_cb_sub_handle: subscribed event handle
3419  * @event: Event to be unsubscribe
3420  *
3421  * Return: 0 for success. nonzero for failure.
3422  */
3423 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3424 		       wdi_event_subscribe *event_cb_sub_handle,
3425 		       uint32_t event);
3426 
3427 /**
3428  * dp_wdi_event_sub() - Subscribe WDI event
3429  * @soc: soc handle
3430  * @pdev_id: id of pdev
3431  * @event_cb_sub_handle: subscribe event handle
3432  * @event: Event to be subscribe
3433  *
3434  * Return: 0 for success. nonzero for failure.
3435  */
3436 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3437 		     wdi_event_subscribe *event_cb_sub_handle,
3438 		     uint32_t event);
3439 
3440 /**
3441  * dp_wdi_event_handler() - Event handler for WDI event
3442  * @event: wdi event number
3443  * @soc: soc handle
3444  * @data: pointer to data
3445  * @peer_id: peer id number
3446  * @status: HTT rx status
3447  * @pdev_id: id of pdev
3448  *
3449  * It will be called to register WDI event
3450  *
3451  * Return: None
3452  */
3453 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
3454 			  void *data, u_int16_t peer_id,
3455 			  int status, u_int8_t pdev_id);
3456 
3457 /**
3458  * dp_wdi_event_attach() - Attach wdi event
3459  * @txrx_pdev: DP pdev handle
3460  *
3461  * Return: 0 for success. nonzero for failure.
3462  */
3463 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
3464 
3465 /**
3466  * dp_wdi_event_detach() - Detach WDI event
3467  * @txrx_pdev: DP pdev handle
3468  *
3469  * Return: 0 for success. nonzero for failure.
3470  */
3471 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
3472 
3473 static inline void
3474 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
3475 			    void *cb_context,
3476 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3477 			    uint8_t pipe_id)
3478 {
3479 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
3480 
3481 	/* TODO: Temporary change to bypass HTC connection for this new
3482 	 * HIF pipe, which will be used for packet log and other high-
3483 	 * priority HTT messages. Proper HTC connection to be added
3484 	 * later once required FW changes are available
3485 	 */
3486 	hif_pipe_callbacks.rxCompletionHandler = callback;
3487 	hif_pipe_callbacks.Context = cb_context;
3488 	hif_update_pipe_callback(dp_soc->hif_handle,
3489 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
3490 }
3491 #else
3492 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3493 				     wdi_event_subscribe *event_cb_sub_handle,
3494 				     uint32_t event)
3495 {
3496 	return 0;
3497 }
3498 
3499 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3500 				   wdi_event_subscribe *event_cb_sub_handle,
3501 				   uint32_t event)
3502 {
3503 	return 0;
3504 }
3505 
3506 static inline
3507 void dp_wdi_event_handler(enum WDI_EVENT event,
3508 			  struct dp_soc *soc,
3509 			  void *data, u_int16_t peer_id,
3510 			  int status, u_int8_t pdev_id)
3511 {
3512 }
3513 
3514 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
3515 {
3516 	return 0;
3517 }
3518 
3519 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
3520 {
3521 	return 0;
3522 }
3523 
3524 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3525 		uint32_t stats_type_upload_mask, uint8_t mac_id)
3526 {
3527 	return 0;
3528 }
3529 
3530 static inline void
3531 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
3532 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3533 			    uint8_t pipe_id)
3534 {
3535 }
3536 #endif
3537 
3538 #ifdef VDEV_PEER_PROTOCOL_COUNT
3539 /**
3540  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3541  * @vdev: VDEV DP object
3542  * @nbuf: data packet
3543  * @txrx_peer: DP TXRX Peer object
3544  * @is_egress: whether egress or ingress
3545  * @is_rx: whether rx or tx
3546  *
3547  * This function updates the per-peer protocol counters
3548  * Return: void
3549  */
3550 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
3551 					    qdf_nbuf_t nbuf,
3552 					    struct dp_txrx_peer *txrx_peer,
3553 					    bool is_egress,
3554 					    bool is_rx);
3555 
3556 /**
3557  * dp_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3558  * @soc: SOC DP object
3559  * @vdev_id: vdev_id
3560  * @nbuf: data packet
3561  * @is_egress: whether egress or ingress
3562  * @is_rx: whether rx or tx
3563  *
3564  * This function updates the per-peer protocol counters
3565  *
3566  * Return: void
3567  */
3568 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
3569 				       int8_t vdev_id,
3570 				       qdf_nbuf_t nbuf,
3571 				       bool is_egress,
3572 				       bool is_rx);
3573 
3574 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3575 					       qdf_nbuf_t nbuf);
3576 
3577 #else
3578 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
3579 					       is_egress, is_rx)
3580 
3581 static inline
3582 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3583 					       qdf_nbuf_t nbuf)
3584 {
3585 }
3586 
3587 #endif
3588 
3589 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3590 /**
3591  * dp_tx_dump_flow_pool_info() - dump global_pool and flow_pool info
3592  * @soc_hdl: Handle to struct cdp_soc
3593  *
3594  * Return: none
3595  */
3596 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
3597 
3598 /**
3599  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
3600  * @soc: DP soc context
3601  *
3602  * Return: none
3603  */
3604 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3605 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3606 	bool force);
3607 #else
3608 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3609 {
3610 }
3611 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3612 
3613 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3614 static inline int
3615 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3616 {
3617 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3618 }
3619 
3620 static inline void
3621 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3622 {
3623 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3624 }
3625 
3626 #else
3627 static inline int
3628 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3629 {
3630 	return hal_srng_access_start(soc, hal_ring_hdl);
3631 }
3632 
3633 static inline void
3634 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3635 {
3636 	hal_srng_access_end(soc, hal_ring_hdl);
3637 }
3638 #endif
3639 
3640 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
3641 /**
3642  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
3643  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3644  * @dp_soc: DP Soc handle
3645  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3646  *                serviced
3647  *
3648  * Return: 0 on success; error on failure
3649  */
3650 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3651 			 hal_ring_handle_t hal_ring_hdl);
3652 
3653 /**
3654  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
3655  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3656  * @dp_soc: DP Soc handle
3657  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3658  *                serviced
3659  *
3660  * Return: void
3661  */
3662 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3663 			hal_ring_handle_t hal_ring_hdl);
3664 
3665 #else
3666 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
3667 				       struct dp_soc *dp_soc,
3668 				       hal_ring_handle_t hal_ring_hdl)
3669 {
3670 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3671 
3672 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
3673 }
3674 
3675 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
3676 				      struct dp_soc *dp_soc,
3677 				      hal_ring_handle_t hal_ring_hdl)
3678 {
3679 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3680 
3681 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
3682 }
3683 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
3684 
3685 #ifdef QCA_CACHED_RING_DESC
3686 /**
3687  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
3688  * @dp_soc: DP Soc handle
3689  * @hal_ring_hdl: opaque pointer to the HAL Destination Ring
3690  *
3691  * Return: HAL ring descriptor
3692  */
3693 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3694 					 hal_ring_handle_t hal_ring_hdl)
3695 {
3696 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3697 
3698 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
3699 }
3700 
3701 /**
3702  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
3703  * descriptors
3704  * @dp_soc: DP Soc handle
3705  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3706  * @num_entries: Entry count
3707  *
3708  * Return: None
3709  */
3710 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3711 						hal_ring_handle_t hal_ring_hdl,
3712 						uint32_t num_entries)
3713 {
3714 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3715 
3716 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
3717 }
3718 #else
3719 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3720 					 hal_ring_handle_t hal_ring_hdl)
3721 {
3722 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3723 
3724 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3725 }
3726 
3727 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3728 						hal_ring_handle_t hal_ring_hdl,
3729 						uint32_t num_entries)
3730 {
3731 }
3732 #endif /* QCA_CACHED_RING_DESC */
3733 
3734 #if defined(QCA_CACHED_RING_DESC) && \
3735 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3736 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3737 /**
3738  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3739  * @hal_soc: HAL SOC handle
3740  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3741  * @num_entries: Entry count
3742  *
3743  * Return: None
3744  */
3745 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3746 					 hal_ring_handle_t hal_ring_hdl,
3747 					 uint32_t num_entries)
3748 {
3749 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3750 }
3751 
3752 /**
3753  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3754  *					 32 byte descriptor starting at
3755  *					 64 byte offset
3756  * @hal_soc: HAL SOC handle
3757  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3758  * @num_entries: Entry count
3759  *
3760  * Return: None
3761  */
3762 static inline
3763 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3764 					hal_ring_handle_t hal_ring_hdl,
3765 					uint32_t num_entries)
3766 {
3767 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3768 						  num_entries);
3769 }
3770 #else
3771 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3772 					 hal_ring_handle_t hal_ring_hdl,
3773 					 uint32_t num_entries)
3774 {
3775 	return NULL;
3776 }
3777 
3778 static inline
3779 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3780 					hal_ring_handle_t hal_ring_hdl,
3781 					uint32_t num_entries)
3782 {
3783 	return NULL;
3784 }
3785 #endif
3786 
3787 #ifdef QCA_ENH_V3_STATS_SUPPORT
3788 /**
3789  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3790  * @pdev: DP_PDEV handle
3791  *
3792  * Return:void
3793  */
3794 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3795 
3796 /**
3797  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3798  * @pdev: DP_PDEV handle
3799  *
3800  * Return:void
3801  */
3802 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3803 
3804 /**
3805  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3806  * @pdev: DP_PDEV handle
3807  *
3808  * Return:void
3809  */
3810 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3811 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3812 
3813 /**
3814  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3815  * @soc_hdl: soc handle
3816  * @pdev_id: id of dp_pdev handle
3817  * @tid_stats: Pointer for cdp_tid_stats_intf
3818  *
3819  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3820  */
3821 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3822 				 struct cdp_tid_stats_intf *tid_stats);
3823 
3824 /**
3825  * dp_soc_set_txrx_ring_map()
3826  * @soc: DP handler for soc
3827  *
3828  * Return: Void
3829  */
3830 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3831 
3832 /**
3833  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3834  * @vdev: DP vdev handle
3835  *
3836  * Return: struct cdp_vdev pointer
3837  */
3838 static inline
3839 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3840 {
3841 	return (struct cdp_vdev *)vdev;
3842 }
3843 
3844 /**
3845  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3846  * @pdev: DP pdev handle
3847  *
3848  * Return: struct cdp_pdev pointer
3849  */
3850 static inline
3851 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3852 {
3853 	return (struct cdp_pdev *)pdev;
3854 }
3855 
3856 /**
3857  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3858  * @psoc: DP psoc handle
3859  *
3860  * Return: struct cdp_soc pointer
3861  */
3862 static inline
3863 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3864 {
3865 	return (struct cdp_soc *)psoc;
3866 }
3867 
3868 /**
3869  * dp_soc_to_cdp_soc_t() - typecast dp psoc to ol txrx soc handle
3870  * @psoc: DP psoc handle
3871  *
3872  * Return: struct cdp_soc_t pointer
3873  */
3874 static inline
3875 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
3876 {
3877 	return (struct cdp_soc_t *)psoc;
3878 }
3879 
3880 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
3881 /**
3882  * dp_rx_flow_get_fse_stats() - Retrieve a flow's statistics
3883  * @pdev: pdev handle
3884  * @rx_flow_info: flow information in the Rx FST
3885  * @stats: stats to update
3886  *
3887  * Return: Success when flow statistcs is updated, error on failure
3888  */
3889 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3890 				    struct cdp_rx_flow_info *rx_flow_info,
3891 				    struct cdp_flow_stats *stats);
3892 
3893 /**
3894  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3895  * @pdev: pdev handle
3896  * @rx_flow_info: DP flow parameters
3897  *
3898  * Return: Success when flow is deleted, error on failure
3899  */
3900 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3901 				   struct cdp_rx_flow_info *rx_flow_info);
3902 
3903 /**
3904  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3905  * @pdev: DP pdev instance
3906  * @rx_flow_info: DP flow parameters
3907  *
3908  * Return: Success when flow is added, no-memory or already exists on error
3909  */
3910 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3911 				struct cdp_rx_flow_info *rx_flow_info);
3912 
3913 /**
3914  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3915  * @soc: SoC handle
3916  * @pdev: Pdev handle
3917  *
3918  * Return: Handle to flow search table entry
3919  */
3920 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3921 
3922 /**
3923  * dp_rx_fst_detach() - De-initialize Rx FST
3924  * @soc: SoC handle
3925  * @pdev: Pdev handle
3926  *
3927  * Return: None
3928  */
3929 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3930 
3931 /**
3932  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3933  * @soc: SoC handle
3934  * @pdev: Pdev handle
3935  *
3936  * Return: Success when fst parameters are programmed in FW, error otherwise
3937  */
3938 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3939 					struct dp_pdev *pdev);
3940 
3941 /**
3942  * dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3943  * @pdev: pdev handle
3944  * @flow_id: flow index (truncated hash) in the Rx FST
3945  *
3946  * Return: Success when flow statistcs is updated, error on failure
3947  */
3948 QDF_STATUS
3949 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3950 
3951 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3952 
3953 /**
3954  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3955  * @soc: SoC handle
3956  * @pdev: Pdev handle
3957  *
3958  * Return: Handle to flow search table entry
3959  */
3960 static inline
3961 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3962 {
3963 	return QDF_STATUS_SUCCESS;
3964 }
3965 
3966 /**
3967  * dp_rx_fst_detach() - De-initialize Rx FST
3968  * @soc: SoC handle
3969  * @pdev: Pdev handle
3970  *
3971  * Return: None
3972  */
3973 static inline
3974 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
3975 {
3976 }
3977 #endif
3978 
3979 /**
3980  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
3981  * @soc: SoC handle
3982  * @pdev: Pdev handle
3983  *
3984  * Return: Handle to flow search table entry
3985  */
3986 extern QDF_STATUS
3987 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
3988 
3989 /**
3990  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
3991  * @soc: SoC handle
3992  * @pdev: Pdev handle
3993  *
3994  * Return: None
3995  */
3996 extern void
3997 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
3998 
3999 /**
4000  * dp_vdev_get_ref() - API to take a reference for VDEV object
4001  *
4002  * @soc		: core DP soc context
4003  * @vdev	: DP vdev
4004  * @mod_id	: module id
4005  *
4006  * Return:	QDF_STATUS_SUCCESS if reference held successfully
4007  *		else QDF_STATUS_E_INVAL
4008  */
4009 static inline
4010 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
4011 			   enum dp_mod_id mod_id)
4012 {
4013 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
4014 		return QDF_STATUS_E_INVAL;
4015 
4016 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
4017 
4018 	return QDF_STATUS_SUCCESS;
4019 }
4020 
4021 /**
4022  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
4023  * @soc: core DP soc context
4024  * @vdev_id: vdev id from vdev object can be retrieved
4025  * @mod_id: module id which is requesting the reference
4026  *
4027  * Return: struct dp_vdev*: Pointer to DP vdev object
4028  */
4029 static inline struct dp_vdev *
4030 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
4031 		      enum dp_mod_id mod_id)
4032 {
4033 	struct dp_vdev *vdev = NULL;
4034 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
4035 		return NULL;
4036 
4037 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4038 	vdev = soc->vdev_id_map[vdev_id];
4039 
4040 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
4041 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4042 		return NULL;
4043 	}
4044 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4045 
4046 	return vdev;
4047 }
4048 
4049 /**
4050  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
4051  * @soc: core DP soc context
4052  * @pdev_id: pdev id from pdev object can be retrieved
4053  *
4054  * Return: struct dp_pdev*: Pointer to DP pdev object
4055  */
4056 static inline struct dp_pdev *
4057 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
4058 				   uint8_t pdev_id)
4059 {
4060 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
4061 		return NULL;
4062 
4063 	return soc->pdev_list[pdev_id];
4064 }
4065 
4066 /**
4067  * dp_rx_tid_update_wifi3() - Update receive TID state
4068  * @peer: Datapath peer handle
4069  * @tid: TID
4070  * @ba_window_size: BlockAck window size
4071  * @start_seq: Starting sequence number
4072  * @bar_update: BAR update triggered
4073  *
4074  * Return: QDF_STATUS code
4075  */
4076 QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid,
4077 				  uint32_t ba_window_size, uint32_t start_seq,
4078 				  bool bar_update);
4079 
4080 /**
4081  * dp_get_peer_mac_list(): function to get peer mac list of vdev
4082  * @soc: Datapath soc handle
4083  * @vdev_id: vdev id
4084  * @newmac: Table of the clients mac
4085  * @mac_cnt: No. of MACs required
4086  * @limit: Limit the number of clients
4087  *
4088  * Return: no of clients
4089  */
4090 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
4091 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
4092 			      u_int16_t mac_cnt, bool limit);
4093 
4094 /**
4095  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
4096  *				       DBS check
4097  * @soc: DP SoC context
4098  * @max_mac_rings: Pointer to variable for No of MAC rings
4099  *
4100  * Return: None
4101  */
4102 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
4103 				     int *max_mac_rings);
4104 
4105 
4106 #if defined(WLAN_SUPPORT_RX_FISA)
4107 void dp_rx_dump_fisa_table(struct dp_soc *soc);
4108 
4109 /**
4110  * dp_print_fisa_stats() - Print FISA stats
4111  * @soc: DP soc handle
4112  *
4113  * Return: None
4114  */
4115 void dp_print_fisa_stats(struct dp_soc *soc);
4116 
4117 /**
4118  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
4119  * @soc:		DP SoC context
4120  * @num_entries:	Number of flow search entries
4121  * @cmem_ba_lo:		CMEM base address low
4122  * @cmem_ba_hi:		CMEM base address high
4123  *
4124  * Return: None
4125  */
4126 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4127 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
4128 
4129 void
4130 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
4131 
4132 /**
4133  * dp_rx_fst_requeue_wq() - Re-queue pending work queue tasks
4134  * @soc:		DP SoC context
4135  *
4136  * Return: None
4137  */
4138 void dp_rx_fst_requeue_wq(struct dp_soc *soc);
4139 #else
4140 static inline void
4141 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4142 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
4143 {
4144 }
4145 
4146 static inline void
4147 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
4148 {
4149 }
4150 
4151 static inline void
4152 dp_rx_fst_requeue_wq(struct dp_soc *soc)
4153 {
4154 }
4155 
4156 static inline void dp_print_fisa_stats(struct dp_soc *soc)
4157 {
4158 }
4159 #endif /* WLAN_SUPPORT_RX_FISA */
4160 
4161 #ifdef MAX_ALLOC_PAGE_SIZE
4162 /**
4163  * dp_set_max_page_size() - Set the max page size for hw link desc.
4164  * @pages: link desc page handle
4165  * @max_alloc_size: max_alloc_size
4166  *
4167  * For MCL the page size is set to OS defined value and for WIN
4168  * the page size is set to the max_alloc_size cfg ini
4169  * param.
4170  * This is to ensure that WIN gets contiguous memory allocations
4171  * as per requirement.
4172  *
4173  * Return: None
4174  */
4175 static inline
4176 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4177 			  uint32_t max_alloc_size)
4178 {
4179 	pages->page_size = qdf_page_size;
4180 }
4181 
4182 #else
4183 static inline
4184 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4185 			  uint32_t max_alloc_size)
4186 {
4187 	pages->page_size = max_alloc_size;
4188 }
4189 #endif /* MAX_ALLOC_PAGE_SIZE */
4190 
4191 /**
4192  * dp_history_get_next_index() - get the next entry to record an entry
4193  *				 in the history.
4194  * @curr_idx: Current index where the last entry is written.
4195  * @max_entries: Max number of entries in the history
4196  *
4197  * This function assumes that the max number os entries is a power of 2.
4198  *
4199  * Return: The index where the next entry is to be written.
4200  */
4201 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
4202 						 uint32_t max_entries)
4203 {
4204 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
4205 
4206 	return idx & (max_entries - 1);
4207 }
4208 
4209 /**
4210  * dp_rx_skip_tlvs() - Skip TLVs len + L3 padding, save in nbuf->cb
4211  * @soc: Datapath soc handle
4212  * @nbuf: nbuf cb to be updated
4213  * @l3_padding: L3 padding
4214  *
4215  * Return: None
4216  */
4217 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
4218 
4219 #ifndef FEATURE_WDS
4220 static inline void
4221 dp_hmwds_ast_add_notify(struct dp_peer *peer,
4222 			uint8_t *mac_addr,
4223 			enum cdp_txrx_ast_entry_type type,
4224 			QDF_STATUS err,
4225 			bool is_peer_map)
4226 {
4227 }
4228 #endif
4229 
4230 #ifdef HTT_STATS_DEBUGFS_SUPPORT
4231 /**
4232  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4233  * debugfs for HTT stats
4234  * @pdev: dp pdev handle
4235  *
4236  * Return: QDF_STATUS
4237  */
4238 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
4239 
4240 /**
4241  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4242  * HTT stats
4243  * @pdev: dp pdev handle
4244  *
4245  * Return: none
4246  */
4247 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
4248 #else
4249 
4250 /**
4251  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4252  * debugfs for HTT stats
4253  * @pdev: dp pdev handle
4254  *
4255  * Return: QDF_STATUS
4256  */
4257 static inline QDF_STATUS
4258 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
4259 {
4260 	return QDF_STATUS_SUCCESS;
4261 }
4262 
4263 /**
4264  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4265  * HTT stats
4266  * @pdev: dp pdev handle
4267  *
4268  * Return: none
4269  */
4270 static inline void
4271 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
4272 {
4273 }
4274 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
4275 
4276 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4277 /**
4278  * dp_soc_swlm_attach() - attach the software latency manager resources
4279  * @soc: Datapath global soc handle
4280  *
4281  * Return: QDF_STATUS
4282  */
4283 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
4284 {
4285 	return QDF_STATUS_SUCCESS;
4286 }
4287 
4288 /**
4289  * dp_soc_swlm_detach() - detach the software latency manager resources
4290  * @soc: Datapath global soc handle
4291  *
4292  * Return: QDF_STATUS
4293  */
4294 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
4295 {
4296 	return QDF_STATUS_SUCCESS;
4297 }
4298 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4299 
4300 /**
4301  * dp_get_peer_id(): function to get peer id by mac
4302  * @soc: Datapath soc handle
4303  * @vdev_id: vdev id
4304  * @mac: Peer mac address
4305  *
4306  * Return: valid peer id on success
4307  *         HTT_INVALID_PEER on failure
4308  */
4309 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
4310 
4311 #ifdef QCA_SUPPORT_WDS_EXTENDED
4312 /**
4313  * dp_wds_ext_set_peer_rx(): function to set peer rx handler
4314  * @soc: Datapath soc handle
4315  * @vdev_id: vdev id
4316  * @mac: Peer mac address
4317  * @rx: rx function pointer
4318  * @osif_peer: OSIF peer handle
4319  *
4320  * Return: QDF_STATUS_SUCCESS on success
4321  *         QDF_STATUS_E_INVAL if peer is not found
4322  *         QDF_STATUS_E_ALREADY if rx is already set/unset
4323  */
4324 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
4325 				  uint8_t vdev_id,
4326 				  uint8_t *mac,
4327 				  ol_txrx_rx_fp rx,
4328 				  ol_osif_peer_handle osif_peer);
4329 
4330 /**
4331  * dp_wds_ext_get_peer_osif_handle(): function to get peer osif handle
4332  * @soc: Datapath soc handle
4333  * @vdev_id: vdev id
4334  * @mac: Peer mac address
4335  * @osif_peer: OSIF peer handle
4336  *
4337  * Return: QDF_STATUS_SUCCESS on success
4338  *         QDF_STATUS_E_INVAL if peer is not found
4339  */
4340 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
4341 				ol_txrx_soc_handle soc,
4342 				uint8_t vdev_id,
4343 				uint8_t *mac,
4344 				ol_osif_peer_handle *osif_peer);
4345 
4346 #endif /* QCA_SUPPORT_WDS_EXTENDED */
4347 
4348 #ifdef DP_MEM_PRE_ALLOC
4349 
4350 /**
4351  * dp_context_alloc_mem() - allocate memory for DP context
4352  * @soc: datapath soc handle
4353  * @ctxt_type: DP context type
4354  * @ctxt_size: DP context size
4355  *
4356  * Return: DP context address
4357  */
4358 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4359 			   size_t ctxt_size);
4360 
4361 /**
4362  * dp_context_free_mem() - Free memory of DP context
4363  * @soc: datapath soc handle
4364  * @ctxt_type: DP context type
4365  * @vaddr: Address of context memory
4366  *
4367  * Return: None
4368  */
4369 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4370 			 void *vaddr);
4371 
4372 /**
4373  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
4374  * @soc: datapath soc handle
4375  * @desc_type: memory request source type
4376  * @pages: multi page information storage
4377  * @element_size: each element size
4378  * @element_num: total number of elements should be allocated
4379  * @memctxt: memory context
4380  * @cacheable: coherent memory or cacheable memory
4381  *
4382  * This function is a wrapper for memory allocation over multiple
4383  * pages, if dp prealloc method is registered, then will try prealloc
4384  * firstly. if prealloc failed, fall back to regular way over
4385  * qdf_mem_multi_pages_alloc().
4386  *
4387  * Return: None
4388  */
4389 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4390 				   enum dp_desc_type desc_type,
4391 				   struct qdf_mem_multi_page_t *pages,
4392 				   size_t element_size,
4393 				   uint32_t element_num,
4394 				   qdf_dma_context_t memctxt,
4395 				   bool cacheable);
4396 
4397 /**
4398  * dp_desc_multi_pages_mem_free() - free multiple pages memory
4399  * @soc: datapath soc handle
4400  * @desc_type: memory request source type
4401  * @pages: multi page information storage
4402  * @memctxt: memory context
4403  * @cacheable: coherent memory or cacheable memory
4404  *
4405  * This function is a wrapper for multiple pages memory free,
4406  * if memory is got from prealloc pool, put it back to pool.
4407  * otherwise free by qdf_mem_multi_pages_free().
4408  *
4409  * Return: None
4410  */
4411 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4412 				  enum dp_desc_type desc_type,
4413 				  struct qdf_mem_multi_page_t *pages,
4414 				  qdf_dma_context_t memctxt,
4415 				  bool cacheable);
4416 
4417 #else
4418 static inline
4419 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4420 			   size_t ctxt_size)
4421 {
4422 	return qdf_mem_malloc(ctxt_size);
4423 }
4424 
4425 static inline
4426 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4427 			 void *vaddr)
4428 {
4429 	qdf_mem_free(vaddr);
4430 }
4431 
4432 static inline
4433 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4434 				   enum dp_desc_type desc_type,
4435 				   struct qdf_mem_multi_page_t *pages,
4436 				   size_t element_size,
4437 				   uint32_t element_num,
4438 				   qdf_dma_context_t memctxt,
4439 				   bool cacheable)
4440 {
4441 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
4442 				  element_num, memctxt, cacheable);
4443 }
4444 
4445 static inline
4446 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4447 				  enum dp_desc_type desc_type,
4448 				  struct qdf_mem_multi_page_t *pages,
4449 				  qdf_dma_context_t memctxt,
4450 				  bool cacheable)
4451 {
4452 	qdf_mem_multi_pages_free(soc->osdev, pages,
4453 				 memctxt, cacheable);
4454 }
4455 #endif
4456 
4457 /**
4458  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
4459  *					  history.
4460  * @index: atomic index
4461  * @num_entries_per_slot: Number of entries per slot
4462  * @allocated: is allocated or not
4463  * @entry: pointers to array of records
4464  */
4465 struct dp_frag_history_opaque_atomic {
4466 	qdf_atomic_t index;
4467 	uint16_t num_entries_per_slot;
4468 	uint16_t allocated;
4469 	void *entry[0];
4470 };
4471 
4472 static inline QDF_STATUS
4473 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
4474 			   uint32_t max_slots, uint32_t max_entries_per_slot,
4475 			   uint32_t entry_size,
4476 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
4477 {
4478 	struct dp_frag_history_opaque_atomic *history =
4479 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4480 	size_t alloc_size = max_entries_per_slot * entry_size;
4481 	int i;
4482 
4483 	for (i = 0; i < max_slots; i++) {
4484 		if (attempt_prealloc)
4485 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
4486 								 alloc_size);
4487 		else
4488 			history->entry[i] = qdf_mem_malloc(alloc_size);
4489 
4490 		if (!history->entry[i])
4491 			goto exit;
4492 	}
4493 
4494 	qdf_atomic_init(&history->index);
4495 	history->allocated = 1;
4496 	history->num_entries_per_slot = max_entries_per_slot;
4497 
4498 	return QDF_STATUS_SUCCESS;
4499 exit:
4500 	for (i = i - 1; i >= 0; i--) {
4501 		if (attempt_prealloc)
4502 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4503 		else
4504 			qdf_mem_free(history->entry[i]);
4505 	}
4506 
4507 	return QDF_STATUS_E_NOMEM;
4508 }
4509 
4510 static inline
4511 void dp_soc_frag_history_detach(struct dp_soc *soc,
4512 				void *history_hdl, uint32_t max_slots,
4513 				bool attempt_prealloc,
4514 				enum dp_ctxt_type ctxt_type)
4515 {
4516 	struct dp_frag_history_opaque_atomic *history =
4517 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4518 	int i;
4519 
4520 	for (i = 0; i < max_slots; i++) {
4521 		if (attempt_prealloc)
4522 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4523 		else
4524 			qdf_mem_free(history->entry[i]);
4525 	}
4526 
4527 	history->allocated = 0;
4528 }
4529 
4530 /**
4531  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
4532  *					entry in a fragmented history with
4533  *					index being atomic.
4534  * @curr_idx: address of the current index where the last entry was written
4535  * @next_idx: pointer to update the next index
4536  * @slot: pointer to update the history slot to be selected
4537  * @slot_shift: BITwise shift mask for slot (in index)
4538  * @max_entries_per_slot: Max number of entries in a slot of history
4539  * @max_entries: Total number of entries in the history (sum of all slots)
4540  *
4541  * This function assumes that the "max_entries_per_slot" and "max_entries"
4542  * are a power-of-2.
4543  *
4544  * Return: None
4545  */
4546 static inline void
4547 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
4548 				 uint16_t *slot, uint32_t slot_shift,
4549 				 uint32_t max_entries_per_slot,
4550 				 uint32_t max_entries)
4551 {
4552 	uint32_t idx;
4553 
4554 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
4555 
4556 	*slot = idx >> slot_shift;
4557 	*next_idx = idx & (max_entries_per_slot - 1);
4558 }
4559 
4560 #ifdef FEATURE_RUNTIME_PM
4561 /**
4562  * dp_runtime_get() - Get dp runtime refcount
4563  * @soc: Datapath soc handle
4564  *
4565  * Get dp runtime refcount by increment of an atomic variable, which can block
4566  * dp runtime resume to wait to flush pending tx by runtime suspend.
4567  *
4568  * Return: Current refcount
4569  */
4570 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4571 {
4572 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
4573 }
4574 
4575 /**
4576  * dp_runtime_put() - Return dp runtime refcount
4577  * @soc: Datapath soc handle
4578  *
4579  * Return dp runtime refcount by decrement of an atomic variable, allow dp
4580  * runtime resume finish.
4581  *
4582  * Return: Current refcount
4583  */
4584 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4585 {
4586 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
4587 }
4588 
4589 /**
4590  * dp_runtime_get_refcount() - Get dp runtime refcount
4591  * @soc: Datapath soc handle
4592  *
4593  * Get dp runtime refcount by returning an atomic variable
4594  *
4595  * Return: Current refcount
4596  */
4597 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
4598 {
4599 	return qdf_atomic_read(&soc->dp_runtime_refcount);
4600 }
4601 
4602 /**
4603  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
4604  * @soc: Datapath soc handle
4605  *
4606  * Return: QDF_STATUS
4607  */
4608 static inline void dp_runtime_init(struct dp_soc *soc)
4609 {
4610 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
4611 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
4612 	qdf_atomic_init(&soc->dp_runtime_refcount);
4613 }
4614 
4615 /**
4616  * dp_runtime_deinit() - Deinit DP related runtime PM clients
4617  *
4618  * Return: None
4619  */
4620 static inline void dp_runtime_deinit(void)
4621 {
4622 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
4623 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
4624 }
4625 
4626 /**
4627  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
4628  * @soc: Datapath soc handle
4629  *
4630  * Return: None
4631  */
4632 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4633 {
4634 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
4635 
4636 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4637 }
4638 #else
4639 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4640 {
4641 	return 0;
4642 }
4643 
4644 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4645 {
4646 	return 0;
4647 }
4648 
4649 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4650 {
4651 	return QDF_STATUS_SUCCESS;
4652 }
4653 
4654 static inline void dp_runtime_deinit(void)
4655 {
4656 }
4657 
4658 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4659 {
4660 }
4661 #endif
4662 
4663 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
4664 {
4665 	if (soc->cdp_soc.ol_ops->get_con_mode)
4666 		return soc->cdp_soc.ol_ops->get_con_mode();
4667 
4668 	return QDF_GLOBAL_MAX_MODE;
4669 }
4670 
4671 /**
4672  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
4673  *				processing
4674  * @pdev: Datapath PDEV handle
4675  *
4676  */
4677 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
4678 
4679 /**
4680  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
4681  *				processing
4682  * @pdev: Datapath PDEV handle
4683  *
4684  * Return: QDF_STATUS_SUCCESS: Success
4685  *         QDF_STATUS_E_NOMEM: Error
4686  */
4687 
4688 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
4689 
4690 /**
4691  * dp_peer_flush_frags() - Flush all fragments for a particular
4692  *  peer
4693  * @soc_hdl: data path soc handle
4694  * @vdev_id: vdev id
4695  * @peer_mac: peer mac address
4696  *
4697  * Return: None
4698  */
4699 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4700 			 uint8_t *peer_mac);
4701 
4702 /**
4703  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
4704  * @soc: pointer to dp_soc handle
4705  *
4706  * Return:
4707  */
4708 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
4709 
4710 /**
4711  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
4712  * @soc_hdl: soc handle
4713  * @soc_stats: buffer to hold the values
4714  *
4715  * Return: QDF_STATUS_SUCCESS: Success
4716  *         QDF_STATUS_E_FAILURE: Error
4717  */
4718 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
4719 				 struct cdp_soc_stats *soc_stats);
4720 
4721 /**
4722  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
4723  * @soc_hdl: soc handle
4724  * @vdev_id: id of vdev handle
4725  * @peer_mac: mac of DP_PEER handle
4726  * @delay_stats: pointer to delay stats array
4727  *
4728  * Return: QDF_STATUS_SUCCESS: Success
4729  *         QDF_STATUS_E_FAILURE: Error
4730  */
4731 QDF_STATUS
4732 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4733 			     uint8_t *peer_mac,
4734 			     struct cdp_delay_tid_stats *delay_stats);
4735 
4736 /**
4737  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
4738  * @soc_hdl: soc handle
4739  * @pdev_id: id of pdev handle
4740  * @vdev_id: id of vdev handle
4741  * @peer_mac: mac of DP_PEER handle
4742  * @tid_stats: pointer to jitter stats array
4743  *
4744  * Return: QDF_STATUS_SUCCESS: Success
4745  *         QDF_STATUS_E_FAILURE: Error
4746  */
4747 QDF_STATUS
4748 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4749 			      uint8_t vdev_id, uint8_t *peer_mac,
4750 			      struct cdp_peer_tid_stats *tid_stats);
4751 
4752 /**
4753  * dp_peer_get_tx_capture_stats() - to get peer Tx Capture stats
4754  * @soc_hdl: soc handle
4755  * @vdev_id: id of vdev handle
4756  * @peer_mac: mac of DP_PEER handle
4757  * @stats: pointer to peer tx capture stats
4758  *
4759  * Return: QDF_STATUS_SUCCESS: Success
4760  *         QDF_STATUS_E_FAILURE: Error
4761  */
4762 QDF_STATUS
4763 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
4764 			     uint8_t vdev_id, uint8_t *peer_mac,
4765 			     struct cdp_peer_tx_capture_stats *stats);
4766 
4767 /**
4768  * dp_pdev_get_tx_capture_stats() - to get pdev Tx Capture stats
4769  * @soc_hdl: soc handle
4770  * @pdev_id: id of pdev handle
4771  * @stats: pointer to pdev tx capture stats
4772  *
4773  * Return: QDF_STATUS_SUCCESS: Success
4774  *         QDF_STATUS_E_FAILURE: Error
4775  */
4776 QDF_STATUS
4777 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4778 			     struct cdp_pdev_tx_capture_stats *stats);
4779 
4780 #ifdef HW_TX_DELAY_STATS_ENABLE
4781 /**
4782  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
4783  *  is enabled for vdev
4784  * @vdev: dp vdev
4785  *
4786  * Return: true if tx delay stats is enabled for vdev else false
4787  */
4788 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4789 {
4790 	return vdev->hw_tx_delay_stats_enabled;
4791 }
4792 
4793 /**
4794  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4795  *  for pdev
4796  * @soc: dp soc
4797  *
4798  * Return: None
4799  */
4800 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4801 
4802 /**
4803  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4804  * @soc: soc handle
4805  *
4806  * Return: None
4807  */
4808 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4809 #else
4810 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4811 {
4812 	return 0;
4813 }
4814 
4815 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4816 {
4817 }
4818 
4819 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4820 {
4821 }
4822 #endif
4823 
4824 static inline void
4825 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4826 {
4827 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4828 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4829 			      LRO_IPV4_SEED_ARR_SZ));
4830 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4831 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4832 			      LRO_IPV6_SEED_ARR_SZ));
4833 }
4834 
4835 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
4836 /**
4837  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4838  * @soc_hdl: soc handle
4839  * @pdev_id: id of pdev handle
4840  * @stats: pointer to pdev telemetry stats
4841  *
4842  * Return: QDF_STATUS_SUCCESS: Success
4843  *         QDF_STATUS_E_FAILURE: Error
4844  */
4845 QDF_STATUS
4846 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4847 			    struct cdp_pdev_telemetry_stats *stats);
4848 
4849 /**
4850  * dp_get_peer_telemetry_stats() - API to get peer telemetry stats
4851  * @soc_hdl: soc handle
4852  * @addr: peer mac
4853  * @stats: pointer to peer telemetry stats
4854  *
4855  * Return: QDF_STATUS_SUCCESS: Success
4856  *         QDF_STATUS_E_FAILURE: Error
4857  */
4858 QDF_STATUS
4859 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4860 			    struct cdp_peer_telemetry_stats *stats);
4861 
4862 /**
4863  * dp_get_peer_deter_stats() - API to get peer deterministic stats
4864  * @soc_hdl: soc handle
4865  * @vdev_id: id of vdev handle
4866  * @addr: peer mac
4867  * @stats: pointer to peer deterministic stats
4868  *
4869  * Return: QDF_STATUS_SUCCESS: Success
4870  *         QDF_STATUS_E_FAILURE: Error
4871  */
4872 QDF_STATUS
4873 dp_get_peer_deter_stats(struct cdp_soc_t *soc_hdl,
4874 			uint8_t vdev_id,
4875 			uint8_t *addr,
4876 			struct cdp_peer_deter_stats *stats);
4877 
4878 /**
4879  * dp_get_pdev_deter_stats() - API to get pdev deterministic stats
4880  * @soc_hdl: soc handle
4881  * @pdev_id: id of pdev handle
4882  * @stats: pointer to pdev deterministic stats
4883  *
4884  * Return: QDF_STATUS_SUCCESS: Success
4885  *         QDF_STATUS_E_FAILURE: Error
4886  */
4887 QDF_STATUS
4888 dp_get_pdev_deter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4889 			struct cdp_pdev_deter_stats *stats);
4890 
4891 /**
4892  * dp_update_pdev_chan_util_stats() - API to update channel utilization stats
4893  * @soc_hdl: soc handle
4894  * @pdev_id: id of pdev handle
4895  * @ch_util: Pointer to channel util stats
4896  *
4897  * Return: QDF_STATUS_SUCCESS: Success
4898  *         QDF_STATUS_E_FAILURE: Error
4899  */
4900 QDF_STATUS
4901 dp_update_pdev_chan_util_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4902 			       struct cdp_pdev_chan_util_stats *ch_util);
4903 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
4904 
4905 #ifdef CONNECTIVITY_PKTLOG
4906 /**
4907  * dp_tx_send_pktlog() - send tx packet log
4908  * @soc: soc handle
4909  * @pdev: pdev handle
4910  * @tx_desc: TX software descriptor
4911  * @nbuf: nbuf
4912  * @status: status of tx packet
4913  *
4914  * This function is used to send tx packet for logging
4915  *
4916  * Return: None
4917  *
4918  */
4919 static inline
4920 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4921 		       struct dp_tx_desc_s *tx_desc,
4922 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4923 {
4924 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4925 
4926 	if (qdf_unlikely(packetdump_cb) &&
4927 	    dp_tx_frm_std == tx_desc->frm_type) {
4928 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4929 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
4930 	}
4931 }
4932 
4933 /**
4934  * dp_rx_send_pktlog() - send rx packet log
4935  * @soc: soc handle
4936  * @pdev: pdev handle
4937  * @nbuf: nbuf
4938  * @status: status of rx packet
4939  *
4940  * This function is used to send rx packet for logging
4941  *
4942  * Return: None
4943  *
4944  */
4945 static inline
4946 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4947 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4948 {
4949 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4950 
4951 	if (qdf_unlikely(packetdump_cb)) {
4952 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4953 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4954 			      nbuf, status, QDF_RX_DATA_PKT);
4955 	}
4956 }
4957 
4958 /**
4959  * dp_rx_err_send_pktlog() - send rx error packet log
4960  * @soc: soc handle
4961  * @pdev: pdev handle
4962  * @mpdu_desc_info: MPDU descriptor info
4963  * @nbuf: nbuf
4964  * @status: status of rx packet
4965  * @set_pktlen: weither to set packet length
4966  *
4967  * This API should only be called when we have not removed
4968  * Rx TLV from head, and head is pointing to rx_tlv
4969  *
4970  * This function is used to send rx packet from error path
4971  * for logging for which rx packet tlv is not removed.
4972  *
4973  * Return: None
4974  *
4975  */
4976 static inline
4977 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4978 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4979 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4980 			   bool set_pktlen)
4981 {
4982 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4983 	qdf_size_t skip_size;
4984 	uint16_t msdu_len, nbuf_len;
4985 	uint8_t *rx_tlv_hdr;
4986 	struct hal_rx_msdu_metadata msdu_metadata;
4987 
4988 	if (qdf_unlikely(packetdump_cb)) {
4989 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
4990 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
4991 							  rx_tlv_hdr);
4992 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
4993 					 &msdu_metadata);
4994 
4995 		if (mpdu_desc_info->bar_frame ||
4996 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
4997 			skip_size = soc->rx_pkt_tlv_size;
4998 		else
4999 			skip_size = soc->rx_pkt_tlv_size +
5000 					msdu_metadata.l3_hdr_pad;
5001 
5002 		if (set_pktlen) {
5003 			msdu_len = nbuf_len + skip_size;
5004 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
5005 					    (uint16_t)RX_DATA_BUFFER_SIZE));
5006 		}
5007 
5008 		qdf_nbuf_pull_head(nbuf, skip_size);
5009 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5010 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5011 			      nbuf, status, QDF_RX_DATA_PKT);
5012 		qdf_nbuf_push_head(nbuf, skip_size);
5013 	}
5014 }
5015 
5016 #else
5017 static inline
5018 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5019 		       struct dp_tx_desc_s *tx_desc,
5020 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5021 {
5022 }
5023 
5024 static inline
5025 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5026 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5027 {
5028 }
5029 
5030 static inline
5031 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5032 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5033 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5034 			   bool set_pktlen)
5035 {
5036 }
5037 #endif
5038 
5039 /**
5040  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
5041  * @soc  : Data path soc handle
5042  * @pdev : PDEV handle
5043  *
5044  * Return: None
5045  */
5046 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
5047 
5048 #ifdef FEATURE_DIRECT_LINK
5049 /**
5050  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
5051  * @soc_hdl: DP SOC handle
5052  * @pdev_id: pdev id
5053  *
5054  * Return: Handle to SRNG
5055  */
5056 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5057 						 uint8_t pdev_id);
5058 
5059 /**
5060  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
5061  *  pdev
5062  * @soc_hdl: DP SOC handle
5063  * @pdev_id: pdev id
5064  *
5065  * Return: None
5066  */
5067 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5068 					uint8_t pdev_id);
5069 #else
5070 static inline
5071 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5072 						 uint8_t pdev_id)
5073 {
5074 	return NULL;
5075 }
5076 
5077 static inline
5078 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5079 					uint8_t pdev_id)
5080 {
5081 }
5082 #endif
5083 
5084 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
5085 static inline
5086 void dp_cfg_event_record(struct dp_soc *soc,
5087 			 enum dp_cfg_event_type event,
5088 			 union dp_cfg_event_desc *cfg_event_desc)
5089 {
5090 	struct dp_cfg_event_history *cfg_event_history =
5091 						&soc->cfg_event_history;
5092 	struct dp_cfg_event *entry;
5093 	uint32_t idx;
5094 	uint16_t slot;
5095 
5096 	dp_get_frag_hist_next_atomic_idx(&cfg_event_history->index, &idx,
5097 					 &slot,
5098 					 DP_CFG_EVT_HIST_SLOT_SHIFT,
5099 					 DP_CFG_EVT_HIST_PER_SLOT_MAX,
5100 					 DP_CFG_EVT_HISTORY_SIZE);
5101 
5102 	entry = &cfg_event_history->entry[slot][idx];
5103 
5104 	entry->timestamp = qdf_get_log_timestamp();
5105 	entry->type = event;
5106 	qdf_mem_copy(&entry->event_desc, cfg_event_desc,
5107 		     sizeof(entry->event_desc));
5108 }
5109 
5110 static inline void
5111 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5112 			     struct dp_vdev *vdev)
5113 {
5114 	union dp_cfg_event_desc cfg_evt_desc = {0};
5115 	struct dp_vdev_attach_detach_desc *vdev_evt =
5116 						&cfg_evt_desc.vdev_evt;
5117 
5118 	if (qdf_unlikely(event != DP_CFG_EVENT_VDEV_ATTACH &&
5119 			 event != DP_CFG_EVENT_VDEV_UNREF_DEL &&
5120 			 event != DP_CFG_EVENT_VDEV_DETACH)) {
5121 		qdf_assert_always(0);
5122 		return;
5123 	}
5124 
5125 	vdev_evt->vdev = vdev;
5126 	vdev_evt->vdev_id = vdev->vdev_id;
5127 	vdev_evt->ref_count = qdf_atomic_read(&vdev->ref_cnt);
5128 	vdev_evt->mac_addr = vdev->mac_addr;
5129 
5130 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5131 }
5132 
5133 static inline void
5134 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5135 			     struct dp_peer *peer, struct dp_vdev *vdev,
5136 			     uint8_t is_reuse)
5137 {
5138 	union dp_cfg_event_desc cfg_evt_desc = {0};
5139 	struct dp_peer_cmn_ops_desc *peer_evt = &cfg_evt_desc.peer_cmn_evt;
5140 
5141 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_CREATE &&
5142 			 event != DP_CFG_EVENT_PEER_DELETE &&
5143 			 event != DP_CFG_EVENT_PEER_UNREF_DEL)) {
5144 		qdf_assert_always(0);
5145 		return;
5146 	}
5147 
5148 	peer_evt->peer = peer;
5149 	peer_evt->vdev = vdev;
5150 	peer_evt->vdev_id = vdev->vdev_id;
5151 	peer_evt->is_reuse = is_reuse;
5152 	peer_evt->peer_ref_count = qdf_atomic_read(&peer->ref_cnt);
5153 	peer_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5154 	peer_evt->mac_addr = peer->mac_addr;
5155 	peer_evt->vdev_mac_addr = vdev->mac_addr;
5156 
5157 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5158 }
5159 
5160 static inline void
5161 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5162 					enum dp_cfg_event_type event,
5163 					struct dp_peer *mld_peer,
5164 					struct dp_peer *link_peer,
5165 					uint8_t idx, uint8_t result)
5166 {
5167 	union dp_cfg_event_desc cfg_evt_desc = {0};
5168 	struct dp_mlo_add_del_link_desc *mlo_link_delink_evt =
5169 					&cfg_evt_desc.mlo_link_delink_evt;
5170 
5171 	if (qdf_unlikely(event != DP_CFG_EVENT_MLO_ADD_LINK &&
5172 			 event != DP_CFG_EVENT_MLO_DEL_LINK)) {
5173 		qdf_assert_always(0);
5174 		return;
5175 	}
5176 
5177 	mlo_link_delink_evt->link_peer = link_peer;
5178 	mlo_link_delink_evt->mld_peer = mld_peer;
5179 	mlo_link_delink_evt->link_mac_addr = link_peer->mac_addr;
5180 	mlo_link_delink_evt->mld_mac_addr = mld_peer->mac_addr;
5181 	mlo_link_delink_evt->num_links = mld_peer->num_links;
5182 	mlo_link_delink_evt->action_result = result;
5183 	mlo_link_delink_evt->idx = idx;
5184 
5185 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5186 }
5187 
5188 static inline void
5189 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5190 					      struct dp_peer *mld_peer,
5191 					      struct dp_vdev *prev_vdev,
5192 					      struct dp_vdev *new_vdev)
5193 {
5194 	union dp_cfg_event_desc cfg_evt_desc = {0};
5195 	struct dp_mlo_setup_vdev_update_desc *vdev_update_evt =
5196 					&cfg_evt_desc.mlo_setup_vdev_update;
5197 
5198 	vdev_update_evt->mld_peer = mld_peer;
5199 	vdev_update_evt->prev_vdev = prev_vdev;
5200 	vdev_update_evt->new_vdev = new_vdev;
5201 
5202 	dp_cfg_event_record(soc, DP_CFG_EVENT_MLO_SETUP_VDEV_UPDATE,
5203 			    &cfg_evt_desc);
5204 }
5205 
5206 static inline void
5207 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5208 				       enum dp_cfg_event_type event,
5209 				       struct dp_peer *peer,
5210 				       uint8_t *mac_addr,
5211 				       uint8_t is_ml_peer,
5212 				       uint16_t peer_id, uint16_t ml_peer_id,
5213 				       uint16_t hw_peer_id, uint8_t vdev_id)
5214 {
5215 	union dp_cfg_event_desc cfg_evt_desc = {0};
5216 	struct dp_rx_peer_map_unmap_desc *peer_map_unmap_evt =
5217 					&cfg_evt_desc.peer_map_unmap_evt;
5218 
5219 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_MAP &&
5220 			 event != DP_CFG_EVENT_PEER_UNMAP &&
5221 			 event != DP_CFG_EVENT_MLO_PEER_MAP &&
5222 			 event != DP_CFG_EVENT_MLO_PEER_UNMAP)) {
5223 		qdf_assert_always(0);
5224 		return;
5225 	}
5226 
5227 	peer_map_unmap_evt->peer_id = peer_id;
5228 	peer_map_unmap_evt->ml_peer_id = ml_peer_id;
5229 	peer_map_unmap_evt->hw_peer_id = hw_peer_id;
5230 	peer_map_unmap_evt->vdev_id = vdev_id;
5231 	/* Peer may be NULL at times, but its not an issue. */
5232 	peer_map_unmap_evt->peer = peer;
5233 	peer_map_unmap_evt->is_ml_peer = is_ml_peer;
5234 	qdf_mem_copy(&peer_map_unmap_evt->mac_addr.raw, mac_addr,
5235 		     QDF_MAC_ADDR_SIZE);
5236 
5237 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5238 }
5239 
5240 static inline void
5241 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5242 				   enum dp_cfg_event_type event,
5243 				   struct dp_peer *peer,
5244 				   struct dp_vdev *vdev,
5245 				   uint8_t vdev_id,
5246 				   struct cdp_peer_setup_info *peer_setup_info)
5247 {
5248 	union dp_cfg_event_desc cfg_evt_desc = {0};
5249 	struct dp_peer_setup_desc *peer_setup_evt =
5250 					&cfg_evt_desc.peer_setup_evt;
5251 
5252 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_SETUP &&
5253 			 event != DP_CFG_EVENT_MLO_SETUP)) {
5254 		qdf_assert_always(0);
5255 		return;
5256 	}
5257 
5258 	peer_setup_evt->peer = peer;
5259 	peer_setup_evt->vdev = vdev;
5260 	if (vdev)
5261 		peer_setup_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5262 	peer_setup_evt->mac_addr = peer->mac_addr;
5263 	peer_setup_evt->vdev_id = vdev_id;
5264 	if (peer_setup_info) {
5265 		peer_setup_evt->is_first_link = peer_setup_info->is_first_link;
5266 		peer_setup_evt->is_primary_link = peer_setup_info->is_primary_link;
5267 		qdf_mem_copy(peer_setup_evt->mld_mac_addr.raw,
5268 			     peer_setup_info->mld_peer_mac,
5269 			     QDF_MAC_ADDR_SIZE);
5270 	}
5271 
5272 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5273 }
5274 #else
5275 
5276 static inline void
5277 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5278 			     struct dp_vdev *vdev)
5279 {
5280 }
5281 
5282 static inline void
5283 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5284 			     struct dp_peer *peer, struct dp_vdev *vdev,
5285 			     uint8_t is_reuse)
5286 {
5287 }
5288 
5289 static inline void
5290 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5291 					enum dp_cfg_event_type event,
5292 					struct dp_peer *mld_peer,
5293 					struct dp_peer *link_peer,
5294 					uint8_t idx, uint8_t result)
5295 {
5296 }
5297 
5298 static inline void
5299 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5300 					      struct dp_peer *mld_peer,
5301 					      struct dp_vdev *prev_vdev,
5302 					      struct dp_vdev *new_vdev)
5303 {
5304 }
5305 
5306 static inline void
5307 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5308 				       enum dp_cfg_event_type event,
5309 				       struct dp_peer *peer,
5310 				       uint8_t *mac_addr,
5311 				       uint8_t is_ml_peer,
5312 				       uint16_t peer_id, uint16_t ml_peer_id,
5313 				       uint16_t hw_peer_id, uint8_t vdev_id)
5314 {
5315 }
5316 
5317 static inline void
5318 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5319 				   enum dp_cfg_event_type event,
5320 				   struct dp_peer *peer,
5321 				   struct dp_vdev *vdev,
5322 				   uint8_t vdev_id,
5323 				   struct cdp_peer_setup_info *peer_setup_info)
5324 {
5325 }
5326 #endif
5327 
5328 #ifndef WLAN_SOFTUMAC_SUPPORT
5329 /**
5330  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
5331  * @txrx_soc: DP SOC handle
5332  *
5333  * Return: none
5334  */
5335 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
5336 #endif
5337 
5338 /**
5339  * dp_get_peer_stats()- Get peer stats
5340  * @peer: Datapath peer
5341  * @peer_stats: buffer for peer stats
5342  *
5343  * Return: none
5344  */
5345 void dp_get_peer_stats(struct dp_peer *peer,
5346 		       struct cdp_peer_stats *peer_stats);
5347 
5348 /**
5349  * dp_get_peer_hw_link_id() - get peer hardware link id
5350  * @soc: soc handle
5351  * @pdev: data path pdev
5352  *
5353  * Return: link_id
5354  */
5355 static inline int
5356 dp_get_peer_hw_link_id(struct dp_soc *soc,
5357 		       struct dp_pdev *pdev)
5358 {
5359 	if (wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx))
5360 		return soc->arch_ops.get_hw_link_id(pdev);
5361 
5362 	return 0;
5363 }
5364 #endif /* #ifndef _DP_INTERNAL_H_ */
5365