xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision dbaed14ee75096c7649e5a6509dc4f60cef004df)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 #include "dp_rx_tid.h"
26 
27 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
28 
29 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
30 
31 #define DP_BLOCKMEM_SIZE 4096
32 #define WBM2_SW_PPE_REL_RING_ID 6
33 #define WBM2_SW_PPE_REL_MAP_ID 11
34 #define DP_TX_PPEDS_POOL_ID 0xF
35 
36 /* Alignment for consistent memory for DP rings*/
37 #define DP_RING_BASE_ALIGN 32
38 
39 #define DP_RSSI_INVAL 0x80
40 #define DP_RSSI_AVG_WEIGHT 2
41 /*
42  * Formula to derive avg_rssi is taken from wifi2.o firmware
43  */
44 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
45 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
46 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
47 
48 /* Macro For NYSM value received in VHT TLV */
49 #define VHT_SGI_NYSM 3
50 
51 #define INVALID_WBM_RING_NUM 0xF
52 
53 #ifdef FEATURE_DIRECT_LINK
54 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
55 #ifdef IPA_OFFLOAD
56 #ifdef IPA_WDI3_VLAN_SUPPORT
57 #define DIRECT_LINK_REFILL_RING_IDX     4
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     3
60 #endif
61 #else
62 #define DIRECT_LINK_REFILL_RING_IDX     2
63 #endif
64 #endif
65 
66 #define DP_MAX_VLAN_IDS 4096
67 #define DP_VLAN_UNTAGGED 0
68 #define DP_VLAN_TAGGED_MULTICAST 1
69 #define DP_VLAN_TAGGED_UNICAST 2
70 
71 /**
72  * struct htt_dbgfs_cfg - structure to maintain required htt data
73  * @msg_word: htt msg sent to upper layer
74  * @m: qdf debugfs file pointer
75  */
76 struct htt_dbgfs_cfg {
77 	uint32_t *msg_word;
78 	qdf_debugfs_file_t m;
79 };
80 
81 /* Cookie MSB bits assigned for different use case.
82  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
83  * If in future number of pdev are more than 3.
84  */
85 /* Reserve for default case */
86 #define DBG_STATS_COOKIE_DEFAULT 0x0
87 
88 /* Reserve for DP Stats: 3rd bit */
89 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
90 
91 /* Reserve for HTT Stats debugfs support: 4th bit */
92 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
93 
94 /*Reserve for HTT Stats debugfs support: 5th bit */
95 #define DBG_SYSFS_STATS_COOKIE BIT(5)
96 
97 /* Reserve for HTT Stats OBSS PD support: 6th bit */
98 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
99 
100 /*
101  * Bitmap of HTT PPDU TLV types for Default mode
102  */
103 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
104 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
106 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
107 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
108 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
109 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
110 
111 /* PPDU STATS CFG */
112 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
113 
114 /* PPDU stats mask sent to FW to enable enhanced stats */
115 #define DP_PPDU_STATS_CFG_ENH_STATS \
116 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
117 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
119 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
120 
121 /* PPDU stats mask sent to FW to support debug sniffer feature */
122 #define DP_PPDU_STATS_CFG_SNIFFER \
123 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
124 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
125 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
126 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
127 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
128 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
129 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
130 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
131 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
132 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
133 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
134 
135 /* PPDU stats mask sent to FW to support BPR feature*/
136 #define DP_PPDU_STATS_CFG_BPR \
137 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
138 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
139 
140 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
141 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
142 				   DP_PPDU_STATS_CFG_ENH_STATS)
143 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
144 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
145 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
146 
147 /*
148  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
149  */
150 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
151 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
152 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
153 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
154 
155 /*
156  * Bitmap of HTT PPDU TLV types for Delayed BA
157  */
158 #define HTT_PPDU_STATUS_TLV_BITMAP \
159 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
161 
162 /*
163  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
164  */
165 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
166 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
167 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
168 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
169 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
170 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
171 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
173 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
174 
175 /*
176  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
177  */
178 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
179 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
180 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
181 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
182 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
183 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
184 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
185 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
186 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
187 
188 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
189 	[HAL_DOT11A] = DOT11_A,
190 	[HAL_DOT11B] = DOT11_B,
191 	[HAL_DOT11N_MM] = DOT11_N,
192 	[HAL_DOT11AC] = DOT11_AC,
193 	[HAL_DOT11AX] = DOT11_AX,
194 	[HAL_DOT11BA] = DOT11_MAX,
195 #ifdef WLAN_FEATURE_11BE
196 	[HAL_DOT11BE] = DOT11_BE,
197 #else
198 	[HAL_DOT11BE] = DOT11_MAX,
199 #endif
200 	[HAL_DOT11AZ] = DOT11_MAX,
201 	[HAL_DOT11N_GF] = DOT11_MAX,
202 };
203 
204 #ifdef GLOBAL_ASSERT_AVOIDANCE
205 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
206 	(qdf_unlikely(!(_expr)) ? ((_handle)->stats._field++, true) : false)
207 
208 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
209 				((_handle)->ppeds_stats._field++)
210 
211 static inline bool dp_assert_always_internal(bool expr)
212 {
213 	return !expr;
214 }
215 #else
216 static inline bool __dp_assert_always_internal(bool expr)
217 {
218 	qdf_assert_always(expr);
219 
220 	return false;
221 }
222 
223 #define dp_assert_always_internal(_expr) __dp_assert_always_internal(_expr)
224 
225 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
226 				dp_assert_always_internal(_expr)
227 
228 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
229 				dp_assert_always_internal(_expr)
230 #endif
231 
232 #ifdef WLAN_FEATURE_11BE
233 /**
234  * dp_get_mcs_array_index_by_pkt_type_mcs() - get the destination mcs index
235  *					      in array
236  * @pkt_type: host SW pkt type
237  * @mcs: mcs value for TX/RX rate
238  *
239  * Return: succeeded - valid index in mcs array
240  *	   fail - same value as MCS_MAX
241  */
242 static inline uint8_t
243 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
244 {
245 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
246 
247 	switch (pkt_type) {
248 	case DOT11_A:
249 		dst_mcs_idx =
250 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
251 		break;
252 	case DOT11_B:
253 		dst_mcs_idx =
254 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
255 		break;
256 	case DOT11_N:
257 		dst_mcs_idx =
258 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
259 		break;
260 	case DOT11_AC:
261 		dst_mcs_idx =
262 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
263 		break;
264 	case DOT11_AX:
265 		dst_mcs_idx =
266 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
267 		break;
268 	case DOT11_BE:
269 		dst_mcs_idx =
270 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
271 		break;
272 	default:
273 		break;
274 	}
275 
276 	return dst_mcs_idx;
277 }
278 #else
279 static inline uint8_t
280 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
281 {
282 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
283 
284 	switch (pkt_type) {
285 	case DOT11_A:
286 		dst_mcs_idx =
287 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
288 		break;
289 	case DOT11_B:
290 		dst_mcs_idx =
291 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
292 		break;
293 	case DOT11_N:
294 		dst_mcs_idx =
295 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
296 		break;
297 	case DOT11_AC:
298 		dst_mcs_idx =
299 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
300 		break;
301 	case DOT11_AX:
302 		dst_mcs_idx =
303 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
304 		break;
305 	default:
306 		break;
307 	}
308 
309 	return dst_mcs_idx;
310 }
311 #endif
312 
313 #ifdef WIFI_MONITOR_SUPPORT
314 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
315 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
316 #else
317 static inline
318 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
319 {
320 	return QDF_STATUS_SUCCESS;
321 }
322 
323 static inline
324 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
325 {
326 	return QDF_STATUS_SUCCESS;
327 }
328 #endif
329 
330 /**
331  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
332  * @eh: Ethernet header of incoming packet
333  * @vdev: dp_vdev object of the VAP on which this data packet is received
334  *
335  * Return: 1 if the destination mac is correct,
336  *         0 if this frame is not correctly destined to this VAP/MLD
337  */
338 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
339 
340 #ifdef MONITOR_MODULARIZED_ENABLE
341 static inline bool dp_monitor_modularized_enable(void)
342 {
343 	return TRUE;
344 }
345 
346 static inline QDF_STATUS
347 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
348 
349 static inline QDF_STATUS
350 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
351 #else
352 static inline bool dp_monitor_modularized_enable(void)
353 {
354 	return FALSE;
355 }
356 
357 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
358 {
359 	return dp_mon_soc_attach(soc);
360 }
361 
362 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
363 {
364 	return dp_mon_soc_detach(soc);
365 }
366 #endif
367 
368 #ifndef WIFI_MONITOR_SUPPORT
369 #define MON_BUF_MIN_ENTRIES 64
370 
371 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
372 {
373 	return QDF_STATUS_SUCCESS;
374 }
375 
376 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
377 {
378 	return QDF_STATUS_SUCCESS;
379 }
380 
381 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
382 {
383 	return QDF_STATUS_E_FAILURE;
384 }
385 
386 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
387 {
388 	return QDF_STATUS_E_FAILURE;
389 }
390 
391 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
392 						struct dp_peer *peer)
393 {
394 	return QDF_STATUS_SUCCESS;
395 }
396 
397 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
398 						struct dp_peer *peer)
399 {
400 	return QDF_STATUS_E_FAILURE;
401 }
402 
403 static inline struct cdp_peer_rate_stats_ctx*
404 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
405 {
406 	return NULL;
407 }
408 
409 static inline
410 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
411 {
412 }
413 
414 static inline
415 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
416 			       void *arg, enum cdp_stat_update_type type)
417 {
418 }
419 
420 static inline
421 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
422 					       struct dp_pdev *pdev)
423 {
424 }
425 
426 static inline
427 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
428 					   struct dp_peer *peer,
429 					   enum cdp_peer_stats_type type,
430 					   cdp_peer_stats_param_t *buf)
431 {
432 	return QDF_STATUS_E_FAILURE;
433 }
434 
435 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
436 {
437 	return QDF_STATUS_SUCCESS;
438 }
439 
440 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
441 {
442 	return QDF_STATUS_SUCCESS;
443 }
444 
445 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
446 {
447 	return QDF_STATUS_SUCCESS;
448 }
449 
450 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
451 							 int val)
452 {
453 	return QDF_STATUS_E_FAILURE;
454 }
455 
456 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
457 {
458 }
459 
460 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
461 						   struct dp_pdev *pdev,
462 						   int mac_id,
463 						   int mac_for_pdev)
464 {
465 	return QDF_STATUS_SUCCESS;
466 }
467 
468 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
469 						uint32_t quota)
470 {
471 }
472 
473 static inline
474 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
475 			    uint32_t mac_id, uint32_t quota)
476 {
477 	return 0;
478 }
479 
480 static inline
481 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
482 					 uint32_t mac_id, uint32_t quota)
483 {
484 	return 0;
485 }
486 
487 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
488 					   struct dp_peer *peer)
489 {
490 }
491 
492 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
493 					      struct dp_peer *peer)
494 {
495 }
496 
497 static inline
498 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
499 					struct dp_peer *peer,
500 					uint16_t peer_id)
501 {
502 }
503 
504 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
505 {
506 }
507 
508 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
509 {
510 }
511 
512 static inline
513 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
514 {
515 	return QDF_STATUS_SUCCESS;
516 }
517 
518 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
519 							   struct dp_peer *peer)
520 {
521 }
522 
523 static inline
524 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
525 					   struct dp_tx_desc_s *desc,
526 					   struct hal_tx_completion_status *ts,
527 					   uint16_t peer_id)
528 {
529 	return QDF_STATUS_E_FAILURE;
530 }
531 
532 static inline
533 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
534 				       struct dp_pdev *pdev,
535 				       struct dp_peer *peer,
536 				       struct hal_tx_completion_status *ts,
537 				       qdf_nbuf_t netbuf)
538 {
539 	return QDF_STATUS_E_FAILURE;
540 }
541 
542 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
543 						     uint32_t *msg_word,
544 						     qdf_nbuf_t htt_t2h_msg)
545 {
546 	return true;
547 }
548 
549 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
550 {
551 	return QDF_STATUS_SUCCESS;
552 }
553 
554 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
555 {
556 }
557 
558 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
559 {
560 }
561 
562 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
563 							  uint32_t val)
564 {
565 	return QDF_STATUS_E_INVAL;
566 }
567 
568 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
569 						   struct dp_peer *peer,
570 						   uint8_t is_tx_pkt_cap_enable,
571 						   uint8_t *peer_mac)
572 {
573 	return QDF_STATUS_E_INVAL;
574 }
575 
576 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
577 							  uint32_t val)
578 {
579 	return QDF_STATUS_E_INVAL;
580 }
581 
582 static inline
583 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
584 {
585 	return QDF_STATUS_E_FAILURE;
586 }
587 
588 static inline
589 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
590 {
591 	return 0;
592 }
593 
594 static inline
595 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
596 {
597 }
598 
599 static inline
600 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
601 {
602 }
603 
604 static inline
605 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
606 {
607 	return false;
608 }
609 
610 static inline
611 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
612 {
613 	return false;
614 }
615 
616 static inline
617 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
618 {
619 	return false;
620 }
621 
622 static inline
623 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
624 				bool enable)
625 {
626 	return 0;
627 }
628 
629 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
630 {
631 }
632 
633 static inline
634 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
635 {
636 	return QDF_STATUS_E_FAILURE;
637 }
638 
639 static inline
640 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
641 {
642 }
643 
644 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
645 							  uint8_t *rx_pkt_hdr)
646 {
647 	return QDF_STATUS_E_FAILURE;
648 }
649 
650 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
651 {
652 }
653 
654 static inline
655 void dp_monitor_reap_timer_init(struct dp_soc *soc)
656 {
657 }
658 
659 static inline
660 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
661 {
662 }
663 
664 static inline
665 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
666 				 enum cdp_mon_reap_source source)
667 {
668 	return false;
669 }
670 
671 static inline
672 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
673 				enum cdp_mon_reap_source source)
674 {
675 	return false;
676 }
677 
678 static inline void
679 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
680 {
681 }
682 
683 static inline
684 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
685 {
686 }
687 
688 static inline
689 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
690 {
691 }
692 
693 static inline
694 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
695 {
696 }
697 
698 static inline
699 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
700 {
701 	return false;
702 }
703 
704 static inline struct qdf_mem_multi_page_t*
705 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
706 {
707 	return NULL;
708 }
709 
710 static inline struct dp_srng*
711 dp_monitor_get_link_desc_ring(struct dp_soc *soc, uint32_t mac_id)
712 {
713 	return NULL;
714 }
715 
716 static inline uint32_t
717 dp_monitor_get_num_link_desc_ring_entries(struct dp_soc *soc)
718 {
719 	return 0;
720 }
721 
722 static inline uint32_t *
723 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
724 {
725 	return NULL;
726 }
727 
728 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
729 {
730 	return QDF_STATUS_E_FAILURE;
731 }
732 
733 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
734 {
735 	return false;
736 }
737 
738 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
739 						 struct ol_txrx_ops *txrx_ops)
740 {
741 }
742 
743 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
744 {
745 	return false;
746 }
747 
748 static inline
749 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
750 {
751 }
752 
753 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
754 					  struct dp_vdev *vdev)
755 {
756 }
757 
758 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
759 {
760 }
761 
762 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
763 						     struct dp_peer *ta_peer,
764 						     uint8_t *mac_addr,
765 						     qdf_nbuf_t nbuf,
766 						     uint32_t flags)
767 {
768 }
769 
770 static inline void
771 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
772 {
773 }
774 
775 static inline void
776 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
777 {
778 }
779 
780 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
781 {
782 }
783 
784 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
785 {
786 	return false;
787 }
788 
789 static inline
790 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
791 					   struct dp_vdev *vdev,
792 					   struct dp_neighbour_peer *peer)
793 {
794 }
795 
796 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
797 {
798 	return false;
799 }
800 
801 static inline enum reg_wifi_band
802 dp_monitor_get_chan_band(struct dp_pdev *pdev)
803 {
804 	return 0;
805 }
806 
807 static inline int
808 dp_monitor_get_chan_num(struct dp_pdev *pdev)
809 {
810 	return 0;
811 }
812 
813 static inline qdf_freq_t
814 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
815 {
816 	return 0;
817 }
818 
819 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
820 					      struct dp_soc *soc,
821 					      uint8_t *rx_tlv_hdr)
822 {
823 }
824 
825 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
826 {
827 }
828 
829 static inline
830 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
831 					  uint16_t peer_id, uint32_t ppdu_id,
832 					  uint8_t first_msdu)
833 {
834 	return QDF_STATUS_SUCCESS;
835 }
836 
837 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
838 {
839 	return false;
840 }
841 
842 static inline struct dp_vdev*
843 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
844 {
845 	return NULL;
846 }
847 
848 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
849 							   void *rx_desc)
850 {
851 	return QDF_STATUS_E_FAILURE;
852 }
853 
854 static inline struct mon_rx_status*
855 dp_monitor_get_rx_status(struct dp_pdev *pdev)
856 {
857 	return NULL;
858 }
859 
860 static inline
861 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
862 {
863 }
864 
865 static inline
866 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
867 						      bool val)
868 {
869 }
870 
871 static inline QDF_STATUS
872 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
873 				     struct cdp_peer_tx_capture_stats *stats)
874 {
875 	return QDF_STATUS_E_FAILURE;
876 }
877 
878 static inline QDF_STATUS
879 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
880 				     struct cdp_pdev_tx_capture_stats *stats)
881 {
882 	return QDF_STATUS_E_FAILURE;
883 }
884 
885 #ifdef DP_POWER_SAVE
886 static inline
887 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
888 {
889 }
890 
891 static inline
892 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
893 {
894 }
895 #endif
896 
897 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
898 {
899 	return false;
900 }
901 
902 static inline void
903 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
904 			 struct htt_rx_ring_tlv_filter *tlv_filter)
905 {
906 }
907 
908 static inline void dp_monitor_soc_init(struct dp_soc *soc)
909 {
910 }
911 
912 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
913 {
914 }
915 
916 static inline
917 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
918 							int val)
919 {
920 	return QDF_STATUS_SUCCESS;
921 }
922 
923 static inline QDF_STATUS
924 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
925 						      int mask1, int mask2)
926 {
927 	return QDF_STATUS_SUCCESS;
928 }
929 
930 static inline QDF_STATUS
931 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
932 						   int *mask, int *mask_cont)
933 {
934 	return QDF_STATUS_SUCCESS;
935 }
936 
937 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
938 {
939 	return QDF_STATUS_E_FAILURE;
940 }
941 
942 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
943 {
944 	return false;
945 }
946 
947 static inline
948 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
949 {
950 	return 0;
951 }
952 
953 static inline uint32_t
954 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
955 		  uint32_t mac_id, uint32_t quota)
956 {
957 	return 0;
958 }
959 
960 static inline uint32_t
961 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
962 {
963 	return 0;
964 }
965 
966 static inline
967 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
968 {
969 	return 0;
970 }
971 
972 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
973 {
974 	return 0;
975 }
976 
977 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
978 {
979 	return 0;
980 }
981 
982 static inline void
983 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
984 		 struct htt_rx_ring_tlv_filter *tlv_filter)
985 {
986 }
987 
988 static inline void
989 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
990 			    struct htt_rx_ring_tlv_filter *tlv_filter)
991 {
992 }
993 
994 static inline void
995 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
996 			      struct htt_rx_ring_tlv_filter *tlv_filter)
997 {
998 }
999 
1000 static inline void
1001 dp_mon_rx_wmask_subscribe(struct dp_soc *soc,
1002 			  uint32_t *msg_word, int pdev_id,
1003 			  struct htt_rx_ring_tlv_filter *tlv_filter)
1004 {
1005 }
1006 
1007 static inline void
1008 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
1009 			 struct htt_rx_ring_tlv_filter *tlv_filter)
1010 {
1011 }
1012 
1013 static inline void
1014 dp_mon_rx_enable_pkt_tlv_offset(struct dp_soc *soc, uint32_t *msg_word,
1015 				struct htt_rx_ring_tlv_filter *tlv_filter)
1016 {
1017 }
1018 
1019 static inline void
1020 dp_mon_rx_enable_fpmo(struct dp_soc *soc, uint32_t *msg_word,
1021 		      struct htt_rx_ring_tlv_filter *tlv_filter)
1022 {
1023 }
1024 
1025 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
1026 static inline
1027 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
1028 				     struct cdp_peer_telemetry_stats *stats)
1029 {
1030 }
1031 
1032 static inline
1033 void dp_monitor_peer_deter_stats(struct dp_peer *peer,
1034 				 struct cdp_peer_telemetry_stats *stats)
1035 {
1036 }
1037 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
1038 #endif /* !WIFI_MONITOR_SUPPORT */
1039 
1040 /**
1041  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
1042  * dp soc handle
1043  * @psoc: CDP psoc handle
1044  *
1045  * Return: struct dp_soc pointer
1046  */
1047 static inline
1048 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
1049 {
1050 	return (struct dp_soc *)psoc;
1051 }
1052 
1053 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
1054 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
1055 
1056 /**
1057  * enum timer_yield_status - yield status code used in monitor mode timer.
1058  * @DP_TIMER_NO_YIELD: do not yield
1059  * @DP_TIMER_WORK_DONE: yield because work is done
1060  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
1061  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
1062  */
1063 enum timer_yield_status {
1064 	DP_TIMER_NO_YIELD,
1065 	DP_TIMER_WORK_DONE,
1066 	DP_TIMER_WORK_EXHAUST,
1067 	DP_TIMER_TIME_EXHAUST,
1068 };
1069 
1070 #if DP_PRINT_ENABLE
1071 #include <qdf_types.h> /* qdf_vprint */
1072 #include <cdp_txrx_handle.h>
1073 
1074 enum {
1075 	/* FATAL_ERR - print only irrecoverable error messages */
1076 	DP_PRINT_LEVEL_FATAL_ERR,
1077 
1078 	/* ERR - include non-fatal err messages */
1079 	DP_PRINT_LEVEL_ERR,
1080 
1081 	/* WARN - include warnings */
1082 	DP_PRINT_LEVEL_WARN,
1083 
1084 	/* INFO1 - include fundamental, infrequent events */
1085 	DP_PRINT_LEVEL_INFO1,
1086 
1087 	/* INFO2 - include non-fundamental but infrequent events */
1088 	DP_PRINT_LEVEL_INFO2,
1089 };
1090 
1091 #define dp_print(level, fmt, ...) do { \
1092 	if (level <= g_txrx_print_level) \
1093 		qdf_print(fmt, ## __VA_ARGS__); \
1094 while (0)
1095 #define DP_PRINT(level, fmt, ...) do { \
1096 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1097 while (0)
1098 #else
1099 #define DP_PRINT(level, fmt, ...)
1100 #endif /* DP_PRINT_ENABLE */
1101 
1102 #define DP_TRACE(LVL, fmt, args ...)                             \
1103 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1104 		fmt, ## args)
1105 
1106 #ifdef WLAN_SYSFS_DP_STATS
1107 void DP_PRINT_STATS(const char *fmt, ...);
1108 #else /* WLAN_SYSFS_DP_STATS */
1109 #ifdef DP_PRINT_NO_CONSOLE
1110 /* Stat prints should not go to console or kernel logs.*/
1111 #define DP_PRINT_STATS(fmt, args ...)\
1112 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1113 		  fmt, ## args)
1114 #else
1115 #define DP_PRINT_STATS(fmt, args ...)\
1116 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1117 		  fmt, ## args)
1118 #endif
1119 #endif /* WLAN_SYSFS_DP_STATS */
1120 
1121 #define DP_STATS_INIT(_handle) \
1122 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1123 
1124 #define DP_TXRX_PEER_STATS_INIT(_handle, size) \
1125 	qdf_mem_zero(&((_handle)->stats[0]), size)
1126 
1127 #define DP_STATS_CLR(_handle) \
1128 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1129 
1130 #define DP_TXRX_PEER_STATS_CLR(_handle, size) \
1131 	qdf_mem_zero(&((_handle)->stats[0]), size)
1132 
1133 #ifndef DISABLE_DP_STATS
1134 #define DP_STATS_INC(_handle, _field, _delta) \
1135 { \
1136 	if (likely(_handle)) \
1137 		_handle->stats._field += _delta; \
1138 }
1139 
1140 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link) \
1141 { \
1142 	if (likely(_handle)) \
1143 		_handle->stats[_link]._field += _delta; \
1144 }
1145 
1146 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1147 { \
1148 	if (likely(_handle)) \
1149 		_handle->_field += _delta; \
1150 }
1151 
1152 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1153 { \
1154 	if (_cond && likely(_handle)) \
1155 		_handle->stats._field += _delta; \
1156 }
1157 
1158 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1159 { \
1160 	if (_cond && likely(_handle)) \
1161 		_handle->stats[_link]._field += _delta; \
1162 }
1163 
1164 #define DP_STATS_DEC(_handle, _field, _delta) \
1165 { \
1166 	if (likely(_handle)) \
1167 		_handle->stats._field -= _delta; \
1168 }
1169 
1170 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1171 { \
1172 	if (likely(_handle)) \
1173 		_handle->_field -= _delta; \
1174 }
1175 
1176 #define DP_STATS_UPD(_handle, _field, _delta) \
1177 { \
1178 	if (likely(_handle)) \
1179 		_handle->stats._field = _delta; \
1180 }
1181 
1182 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link) \
1183 { \
1184 	if (likely(_handle)) \
1185 		_handle->stats[_link]._field = _delta; \
1186 }
1187 
1188 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1189 { \
1190 	DP_STATS_INC(_handle, _field.num, _count); \
1191 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1192 }
1193 
1194 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1195 { \
1196 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1197 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1198 }
1199 
1200 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1201 { \
1202 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1203 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1204 }
1205 
1206 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1207 { \
1208 	_handle_a->stats._field += _handle_b->stats._field; \
1209 }
1210 
1211 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1212 { \
1213 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1214 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1215 }
1216 
1217 #define DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field, _idx) \
1218 { \
1219 	_handle_a->stats._arr._field += _handle_b->stats._arr[_idx]._field; \
1220 }
1221 
1222 #define DP_STATS_AGGR_PKT_IDX(_handle_a, _handle_b, _arr, _field, _idx)\
1223 { \
1224 	DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field.num, _idx); \
1225 	DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field.bytes, _idx);\
1226 }
1227 
1228 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1229 { \
1230 	_handle_a->stats._field = _handle_b->stats._field; \
1231 }
1232 
1233 #else
1234 #define DP_STATS_INC(_handle, _field, _delta)
1235 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link)
1236 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1237 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1238 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link)
1239 #define DP_STATS_DEC(_handle, _field, _delta)
1240 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1241 #define DP_STATS_UPD(_handle, _field, _delta)
1242 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link)
1243 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1244 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1245 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1246 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1247 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1248 #define DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field, _idx)
1249 #define DP_STATS_AGGR_PKT_IDX(_handle_a, _handle_b, _arr, _field, _idx)
1250 #endif
1251 
1252 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta, _link) \
1253 { \
1254 	DP_PEER_LINK_STATS_INC(_handle, per_pkt_stats._field, _delta, _link); \
1255 }
1256 
1257 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1258 { \
1259 	DP_PEER_LINK_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond, _link); \
1260 }
1261 
1262 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes, _link) \
1263 { \
1264 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count, _link); \
1265 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes, _link) \
1266 }
1267 
1268 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond, _link) \
1269 { \
1270 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond, _link); \
1271 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond, _link) \
1272 }
1273 
1274 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta, _link) \
1275 { \
1276 	DP_PEER_LINK_STATS_UPD(_handle, per_pkt_stats._field, _delta, _link); \
1277 }
1278 
1279 #ifndef QCA_ENHANCED_STATS_SUPPORT
1280 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta, _link) \
1281 { \
1282 	DP_PEER_LINK_STATS_INC(_handle, extd_stats._field, _delta, _link); \
1283 }
1284 
1285 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1286 { \
1287 	DP_PEER_LINK_STATS_INCC(_handle, extd_stats._field, _delta, _cond, _link); \
1288 }
1289 
1290 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta, _link) \
1291 { \
1292 	DP_PEER_LINK_STATS_UPD(_handle, extd_stats._field, _delta, _link); \
1293 }
1294 #endif
1295 
1296 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1297 	defined(QCA_ENHANCED_STATS_SUPPORT)
1298 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1299 { \
1300 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1301 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1302 }
1303 
1304 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1305 { \
1306 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1307 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1308 }
1309 
1310 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1311 { \
1312 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1313 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1314 }
1315 
1316 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1317 { \
1318 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1319 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1320 }
1321 
1322 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1323 { \
1324 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1325 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1326 }
1327 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1328 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1329 { \
1330 	if (!(_handle->hw_txrx_stats_en)) \
1331 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1332 }
1333 
1334 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1335 { \
1336 	if (!(_handle->hw_txrx_stats_en)) \
1337 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1338 }
1339 
1340 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1341 { \
1342 	if (!(_handle->hw_txrx_stats_en)) \
1343 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1344 }
1345 
1346 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1347 { \
1348 	if (!(_handle->hw_txrx_stats_en)) \
1349 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1350 }
1351 
1352 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1353 { \
1354 	if (!(_handle->hw_txrx_stats_en)) \
1355 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1356 }
1357 #else
1358 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1359 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1360 
1361 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1362 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1363 
1364 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1365 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link);
1366 
1367 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1368 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link);
1369 
1370 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1371 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link);
1372 #endif
1373 
1374 #ifdef ENABLE_DP_HIST_STATS
1375 #define DP_HIST_INIT() \
1376 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1377 
1378 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1379 { \
1380 		++num_of_packets[_pdev_id]; \
1381 }
1382 
1383 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1384 	do {                                                              \
1385 		if (_p_cntrs == 1) {                                      \
1386 			DP_STATS_INC(_pdev,                               \
1387 				tx_comp_histogram.pkts_1, 1);             \
1388 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1389 			DP_STATS_INC(_pdev,                               \
1390 				tx_comp_histogram.pkts_2_20, 1);          \
1391 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1392 			DP_STATS_INC(_pdev,                               \
1393 				tx_comp_histogram.pkts_21_40, 1);         \
1394 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1395 			DP_STATS_INC(_pdev,                               \
1396 				tx_comp_histogram.pkts_41_60, 1);         \
1397 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1398 			DP_STATS_INC(_pdev,                               \
1399 				tx_comp_histogram.pkts_61_80, 1);         \
1400 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1401 			DP_STATS_INC(_pdev,                               \
1402 				tx_comp_histogram.pkts_81_100, 1);        \
1403 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1404 			DP_STATS_INC(_pdev,                               \
1405 				tx_comp_histogram.pkts_101_200, 1);       \
1406 		} else if (_p_cntrs > 200) {                              \
1407 			DP_STATS_INC(_pdev,                               \
1408 				tx_comp_histogram.pkts_201_plus, 1);      \
1409 		}                                                         \
1410 	} while (0)
1411 
1412 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1413 	do {                                                              \
1414 		if (_p_cntrs == 1) {                                      \
1415 			DP_STATS_INC(_pdev,                               \
1416 				rx_ind_histogram.pkts_1, 1);              \
1417 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1418 			DP_STATS_INC(_pdev,                               \
1419 				rx_ind_histogram.pkts_2_20, 1);           \
1420 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1421 			DP_STATS_INC(_pdev,                               \
1422 				rx_ind_histogram.pkts_21_40, 1);          \
1423 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1424 			DP_STATS_INC(_pdev,                               \
1425 				rx_ind_histogram.pkts_41_60, 1);          \
1426 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1427 			DP_STATS_INC(_pdev,                               \
1428 				rx_ind_histogram.pkts_61_80, 1);          \
1429 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1430 			DP_STATS_INC(_pdev,                               \
1431 				rx_ind_histogram.pkts_81_100, 1);         \
1432 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1433 			DP_STATS_INC(_pdev,                               \
1434 				rx_ind_histogram.pkts_101_200, 1);        \
1435 		} else if (_p_cntrs > 200) {                              \
1436 			DP_STATS_INC(_pdev,                               \
1437 				rx_ind_histogram.pkts_201_plus, 1);       \
1438 		}                                                         \
1439 	} while (0)
1440 
1441 #define DP_TX_HIST_STATS_PER_PDEV() \
1442 	do { \
1443 		uint8_t hist_stats = 0; \
1444 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1445 				hist_stats++) { \
1446 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1447 					num_of_packets[hist_stats]); \
1448 		} \
1449 	}  while (0)
1450 
1451 
1452 #define DP_RX_HIST_STATS_PER_PDEV() \
1453 	do { \
1454 		uint8_t hist_stats = 0; \
1455 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1456 				hist_stats++) { \
1457 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1458 					num_of_packets[hist_stats]); \
1459 		} \
1460 	}  while (0)
1461 
1462 #else
1463 #define DP_HIST_INIT()
1464 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1465 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1466 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1467 #define DP_RX_HIST_STATS_PER_PDEV()
1468 #define DP_TX_HIST_STATS_PER_PDEV()
1469 #endif /* DISABLE_DP_STATS */
1470 
1471 #define FRAME_MASK_IPV4_ARP   1
1472 #define FRAME_MASK_IPV4_DHCP  2
1473 #define FRAME_MASK_IPV4_EAPOL 4
1474 #define FRAME_MASK_IPV6_DHCP  8
1475 
1476 static inline int dp_log2_ceil(unsigned int value)
1477 {
1478 	unsigned int tmp = value;
1479 	int log2 = -1;
1480 
1481 	if (qdf_unlikely(value == 0))
1482 		return 0;
1483 	while (tmp) {
1484 		log2++;
1485 		tmp >>= 1;
1486 	}
1487 	if (1 << log2 != value)
1488 		log2++;
1489 	return log2;
1490 }
1491 
1492 #ifdef QCA_SUPPORT_PEER_ISOLATION
1493 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1494 
1495 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1496 					 bool val)
1497 {
1498 	txrx_peer->isolation = val;
1499 }
1500 
1501 #else
1502 #define dp_get_peer_isolation(_peer) (0)
1503 
1504 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1505 {
1506 }
1507 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1508 
1509 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev);
1510 
1511 #ifdef QCA_SUPPORT_WDS_EXTENDED
1512 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1513 {
1514 	txrx_peer->wds_ext.osif_peer = NULL;
1515 	txrx_peer->wds_ext.init = 0;
1516 }
1517 #else
1518 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1519 {
1520 }
1521 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1522 
1523 #ifdef QCA_HOST2FW_RXBUF_RING
1524 static inline
1525 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1526 {
1527 	return &pdev->rx_mac_buf_ring[lmac_id];
1528 }
1529 #else
1530 static inline
1531 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1532 {
1533 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1534 }
1535 #endif
1536 
1537 /*
1538  * The lmac ID for a particular channel band is fixed.
1539  * 2.4GHz band uses lmac_id = 1
1540  * 5GHz/6GHz band uses lmac_id=0
1541  */
1542 #define DP_INVALID_LMAC_ID	(-1)
1543 #define DP_MON_INVALID_LMAC_ID	(-1)
1544 #define DP_MAC0_LMAC_ID	0
1545 #define DP_MAC1_LMAC_ID	1
1546 
1547 #ifdef FEATURE_TSO_STATS
1548 /**
1549  * dp_init_tso_stats() - Clear tso stats
1550  * @pdev: pdev handle
1551  *
1552  * Return: None
1553  */
1554 static inline
1555 void dp_init_tso_stats(struct dp_pdev *pdev)
1556 {
1557 	if (pdev) {
1558 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1559 			     sizeof((pdev)->stats.tso_stats));
1560 		qdf_atomic_init(&pdev->tso_idx);
1561 	}
1562 }
1563 
1564 /**
1565  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1566  * @pdev: pdev handle
1567  * @_p_cntrs: number of tso segments for a tso packet
1568  *
1569  * Return: None
1570  */
1571 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1572 					   uint8_t _p_cntrs);
1573 
1574 /**
1575  * dp_tso_segment_update() - Collect tso segment information
1576  * @pdev: pdev handle
1577  * @stats_idx: tso packet number
1578  * @idx: tso segment number
1579  * @seg: tso segment
1580  *
1581  * Return: None
1582  */
1583 void dp_tso_segment_update(struct dp_pdev *pdev,
1584 			   uint32_t stats_idx,
1585 			   uint8_t idx,
1586 			   struct qdf_tso_seg_t seg);
1587 
1588 /**
1589  * dp_tso_packet_update() - TSO Packet information
1590  * @pdev: pdev handle
1591  * @stats_idx: tso packet number
1592  * @msdu: nbuf handle
1593  * @num_segs: tso segments
1594  *
1595  * Return: None
1596  */
1597 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1598 			  qdf_nbuf_t msdu, uint16_t num_segs);
1599 
1600 /**
1601  * dp_tso_segment_stats_update() - TSO Segment stats
1602  * @pdev: pdev handle
1603  * @stats_seg: tso segment list
1604  * @stats_idx: tso packet number
1605  *
1606  * Return: None
1607  */
1608 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1609 				 struct qdf_tso_seg_elem_t *stats_seg,
1610 				 uint32_t stats_idx);
1611 
1612 /**
1613  * dp_print_tso_stats() - dump tso statistics
1614  * @soc:soc handle
1615  * @level: verbosity level
1616  *
1617  * Return: None
1618  */
1619 void dp_print_tso_stats(struct dp_soc *soc,
1620 			enum qdf_stats_verbosity_level level);
1621 
1622 /**
1623  * dp_txrx_clear_tso_stats() - clear tso stats
1624  * @soc: soc handle
1625  *
1626  * Return: None
1627  */
1628 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1629 #else
1630 static inline
1631 void dp_init_tso_stats(struct dp_pdev *pdev)
1632 {
1633 }
1634 
1635 static inline
1636 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1637 					   uint8_t _p_cntrs)
1638 {
1639 }
1640 
1641 static inline
1642 void dp_tso_segment_update(struct dp_pdev *pdev,
1643 			   uint32_t stats_idx,
1644 			   uint32_t idx,
1645 			   struct qdf_tso_seg_t seg)
1646 {
1647 }
1648 
1649 static inline
1650 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1651 			  qdf_nbuf_t msdu, uint16_t num_segs)
1652 {
1653 }
1654 
1655 static inline
1656 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1657 				 struct qdf_tso_seg_elem_t *stats_seg,
1658 				 uint32_t stats_idx)
1659 {
1660 }
1661 
1662 static inline
1663 void dp_print_tso_stats(struct dp_soc *soc,
1664 			enum qdf_stats_verbosity_level level)
1665 {
1666 }
1667 
1668 static inline
1669 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1670 {
1671 }
1672 #endif /* FEATURE_TSO_STATS */
1673 
1674 /**
1675  * dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1676  * @peer: DP peer handle
1677  * @type: Requested stats type
1678  * @buf: Buffer to hold the value
1679  *
1680  * Return: status success/failure
1681  */
1682 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1683 						enum cdp_peer_stats_type type,
1684 						cdp_peer_stats_param_t *buf);
1685 
1686 /**
1687  * dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1688  * @peer: DP peer handle
1689  * @type: Requested stats type
1690  * @buf: Buffer to hold the value
1691  *
1692  * Return: status success/failure
1693  */
1694 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1695 					     enum cdp_peer_stats_type type,
1696 					     cdp_peer_stats_param_t *buf);
1697 
1698 #define DP_HTT_T2H_HP_PIPE 5
1699 /**
1700  * dp_update_pdev_stats(): Update the pdev stats
1701  * @tgtobj: pdev handle
1702  * @srcobj: vdev stats structure
1703  *
1704  * Update the pdev stats from the specified vdev stats
1705  *
1706  * Return: None
1707  */
1708 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1709 			  struct cdp_vdev_stats *srcobj);
1710 
1711 /**
1712  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1713  * @tgtobj: vdev handle
1714  *
1715  * Update the vdev ingress stats
1716  *
1717  * Return: None
1718  */
1719 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1720 
1721 /**
1722  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1723  * @tgtobj: tgt buffer for cdp vdev stats
1724  * @srcobj: srcobj dp vdev stats
1725  *
1726  * Return: None
1727  */
1728 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1729 			       struct dp_vdev_stats *srcobj);
1730 
1731 /**
1732  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1733  * @tgtobj: pdev handle
1734  * @srcobj: vdev stats structure
1735  *
1736  * Update the pdev ingress stats from the specified vdev stats
1737  *
1738  * Return: None
1739  */
1740 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1741 				  struct dp_vdev *srcobj);
1742 
1743 /**
1744  * dp_copy_vdev_stats_to_tgt_buf(): Update the cdp vdev ingress stats from
1745  *                                        dp vdev ingress stats
1746  * @vdev_stats: cdp vdev stats structure
1747  * @stats: dp vdev stats structure
1748  * @xmit_type: xmit type of packet - MLD/Link
1749  *
1750  * Update the cdp vdev ingress stats from dp vdev ingress stats
1751  *
1752  * Return: None
1753  */
1754 
1755 void dp_copy_vdev_stats_to_tgt_buf(struct cdp_vdev_stats *vdev_stats,
1756 					 struct dp_vdev_stats *stats,
1757 					 enum dp_pkt_xmit_type xmit_type);
1758 
1759 /**
1760  * dp_update_vdev_stats(): Update the vdev stats
1761  * @soc: soc handle
1762  * @srcobj: DP_PEER object
1763  * @arg: point to vdev stats structure
1764  *
1765  * Update the vdev stats from the specified peer stats
1766  *
1767  * Return: None
1768  */
1769 void dp_update_vdev_stats(struct dp_soc *soc,
1770 			  struct dp_peer *srcobj,
1771 			  void *arg);
1772 
1773 /**
1774  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1775  * @vdev: DP_VDEV handle
1776  * @peer: DP_PEER handle
1777  *
1778  * Return: None
1779  */
1780 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1781 					struct dp_peer *peer);
1782 
1783 #ifdef IPA_OFFLOAD
1784 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1785 { \
1786 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1787 }
1788 
1789 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1790 { \
1791 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1792 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1793 }
1794 #else
1795 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1796 
1797 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1798 #endif
1799 
1800 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1801 	do {				\
1802 		uint8_t i;		\
1803 		uint8_t pream_type;	\
1804 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1805 			for (i = 0; i < MAX_MCS; i++) { \
1806 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1807 					tx.pkt_type[pream_type].mcs_count[i]); \
1808 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1809 					rx.pkt_type[pream_type].mcs_count[i]); \
1810 			} \
1811 		} \
1812 		  \
1813 		for (i = 0; i < MAX_BW; i++) { \
1814 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1815 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1816 		} \
1817 		  \
1818 		for (i = 0; i < SS_COUNT; i++) { \
1819 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1820 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1821 		} \
1822 		for (i = 0; i < WME_AC_MAX; i++) { \
1823 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1824 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1825 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1826 				      tx.wme_ac_type_bytes[i]); \
1827 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1828 				      rx.wme_ac_type_bytes[i]); \
1829 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1830 		\
1831 		} \
1832 		\
1833 		for (i = 0; i < MAX_GI; i++) { \
1834 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1835 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1836 		} \
1837 		\
1838 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1839 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1840 		\
1841 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1842 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1843 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1844 		} \
1845 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1846 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1847 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1848 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1849 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1850 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1851 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1852 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1853 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1854 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1855 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1856 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1857 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1858 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1859 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1860 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1861 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1862 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1863 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1864 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1865 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1866 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1867 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1868 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1869 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1870 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1871 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1872 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1873 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1874 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1875 								\
1876 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1877 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1878 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1879 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1880 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1881 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1882 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1883 		if (_srcobj->stats.rx.snr != 0) \
1884 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1885 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1886 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1887 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1888 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1889 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1890 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1891 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1892 								\
1893 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1894 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1895 									\
1896 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1897 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1898 									\
1899 		_srcobj->stats.rx.unicast.num = \
1900 			_srcobj->stats.rx.to_stack.num - \
1901 					_srcobj->stats.rx.multicast.num; \
1902 		_srcobj->stats.rx.unicast.bytes = \
1903 			_srcobj->stats.rx.to_stack.bytes - \
1904 					_srcobj->stats.rx.multicast.bytes; \
1905 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1906 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1907 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1908 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1909 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1910 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1911 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1912 								  \
1913 		_tgtobj->stats.tx.last_ack_rssi =	\
1914 			_srcobj->stats.tx.last_ack_rssi; \
1915 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1916 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1917 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1918 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1919 	}  while (0)
1920 
1921 #ifdef VDEV_PEER_PROTOCOL_COUNT
1922 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1923 { \
1924 	uint8_t j; \
1925 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1926 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1927 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1928 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1929 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1930 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1931 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1932 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1933 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1934 	} \
1935 }
1936 #else
1937 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1938 #endif
1939 
1940 #ifdef WLAN_FEATURE_11BE
1941 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1942 	do { \
1943 		uint8_t i, mu_type; \
1944 		for (i = 0; i < MAX_MCS; i++) { \
1945 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1946 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1947 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1948 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1949 		} \
1950 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1951 			for (i = 0; i < MAX_MCS; i++) { \
1952 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1953 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1954 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1955 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1956 			} \
1957 		} \
1958 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1959 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1960 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1961 		} \
1962 	} while (0)
1963 #else
1964 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1965 #endif
1966 
1967 #define DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj) \
1968 	do { \
1969 		_tgtobj->tx.comp_pkt.num += _srcobj->tx.comp_pkt.num; \
1970 		_tgtobj->tx.comp_pkt.bytes += _srcobj->tx.comp_pkt.bytes; \
1971 		_tgtobj->tx.tx_failed += _srcobj->tx.tx_failed; \
1972 		_tgtobj->rx.to_stack.num += _srcobj->rx.to_stack.num; \
1973 		_tgtobj->rx.to_stack.bytes += _srcobj->rx.to_stack.bytes; \
1974 	} while (0)
1975 
1976 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1977 	do { \
1978 		uint8_t i; \
1979 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1980 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1981 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1982 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1983 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1984 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1985 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1986 		_tgtobj->tx.nawds_mcast.bytes += \
1987 					_srcobj->tx.nawds_mcast.bytes; \
1988 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1989 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1990 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1991 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1992 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1993 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1994 		_tgtobj->tx.dropped.fw_rem.num += \
1995 					_srcobj->tx.dropped.fw_rem.num; \
1996 		_tgtobj->tx.dropped.fw_rem.bytes += \
1997 					_srcobj->tx.dropped.fw_rem.bytes; \
1998 		_tgtobj->tx.dropped.fw_rem_notx += \
1999 					_srcobj->tx.dropped.fw_rem_notx; \
2000 		_tgtobj->tx.dropped.fw_rem_tx += \
2001 					_srcobj->tx.dropped.fw_rem_tx; \
2002 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
2003 		_tgtobj->tx.dropped.fw_reason1 += \
2004 					_srcobj->tx.dropped.fw_reason1; \
2005 		_tgtobj->tx.dropped.fw_reason2 += \
2006 					_srcobj->tx.dropped.fw_reason2; \
2007 		_tgtobj->tx.dropped.fw_reason3 += \
2008 					_srcobj->tx.dropped.fw_reason3; \
2009 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
2010 					_srcobj->tx.dropped.fw_rem_queue_disable; \
2011 		_tgtobj->tx.dropped.fw_rem_no_match += \
2012 					_srcobj->tx.dropped.fw_rem_no_match; \
2013 		_tgtobj->tx.dropped.drop_threshold += \
2014 					_srcobj->tx.dropped.drop_threshold; \
2015 		_tgtobj->tx.dropped.drop_link_desc_na += \
2016 					_srcobj->tx.dropped.drop_link_desc_na; \
2017 		_tgtobj->tx.dropped.invalid_drop += \
2018 					_srcobj->tx.dropped.invalid_drop; \
2019 		_tgtobj->tx.dropped.mcast_vdev_drop += \
2020 					_srcobj->tx.dropped.mcast_vdev_drop; \
2021 		_tgtobj->tx.dropped.invalid_rr += \
2022 					_srcobj->tx.dropped.invalid_rr; \
2023 		_tgtobj->tx.failed_retry_count += \
2024 					_srcobj->tx.failed_retry_count; \
2025 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
2026 		_tgtobj->tx.multiple_retry_count += \
2027 					_srcobj->tx.multiple_retry_count; \
2028 		_tgtobj->tx.tx_success_twt.num += \
2029 					_srcobj->tx.tx_success_twt.num; \
2030 		_tgtobj->tx.tx_success_twt.bytes += \
2031 					_srcobj->tx.tx_success_twt.bytes; \
2032 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
2033 		_tgtobj->tx.release_src_not_tqm += \
2034 					_srcobj->tx.release_src_not_tqm; \
2035 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
2036 			_tgtobj->tx.no_ack_count[i] += \
2037 					_srcobj->tx.no_ack_count[i];\
2038 		} \
2039 		\
2040 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
2041 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
2042 		_tgtobj->rx.rx_success.num += _srcobj->rx.rx_success.num;\
2043 		_tgtobj->rx.rx_success.bytes += _srcobj->rx.rx_success.bytes;\
2044 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
2045 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
2046 		_tgtobj->rx.unicast.num += _srcobj->rx.unicast.num; \
2047 		_tgtobj->rx.unicast.bytes += _srcobj->rx.unicast.bytes; \
2048 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
2049 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
2050 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
2051 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
2052 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
2053 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
2054 		_tgtobj->rx.ppeds_drop.num += _srcobj->rx.ppeds_drop.num; \
2055 		_tgtobj->rx.ppeds_drop.bytes += _srcobj->rx.ppeds_drop.bytes; \
2056 		_tgtobj->rx.intra_bss.pkts.num += \
2057 					_srcobj->rx.intra_bss.pkts.num; \
2058 		_tgtobj->rx.intra_bss.pkts.bytes += \
2059 					_srcobj->rx.intra_bss.pkts.bytes; \
2060 		_tgtobj->rx.intra_bss.fail.num += \
2061 					_srcobj->rx.intra_bss.fail.num; \
2062 		_tgtobj->rx.intra_bss.fail.bytes += \
2063 					_srcobj->rx.intra_bss.fail.bytes; \
2064 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
2065 					_srcobj->rx.intra_bss.mdns_no_fwd; \
2066 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
2067 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
2068 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
2069 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
2070 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
2071 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
2072 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
2073 					_srcobj->rx.err.rxdma_wifi_parse_err; \
2074 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
2075 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
2076 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
2077 		_tgtobj->rx.multipass_rx_pkt_drop += \
2078 					_srcobj->rx.multipass_rx_pkt_drop; \
2079 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
2080 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
2081 		_tgtobj->rx.policy_check_drop += \
2082 					_srcobj->rx.policy_check_drop; \
2083 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
2084 		_tgtobj->rx.to_stack_twt.bytes += \
2085 					_srcobj->rx.to_stack_twt.bytes; \
2086 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
2087 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
2088 			_tgtobj->rx.rcvd_reo[i].num += \
2089 					 _srcobj->rx.rcvd_reo[i].num; \
2090 			_tgtobj->rx.rcvd_reo[i].bytes += \
2091 					_srcobj->rx.rcvd_reo[i].bytes; \
2092 			_tgtobj->rx.rcvd.num += \
2093 					 _srcobj->rx.rcvd_reo[i].num; \
2094 			_tgtobj->rx.rcvd.bytes += \
2095 					_srcobj->rx.rcvd_reo[i].bytes; \
2096 		} \
2097 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
2098 			_tgtobj->rx.rx_lmac[i].num += \
2099 					_srcobj->rx.rx_lmac[i].num; \
2100 			_tgtobj->rx.rx_lmac[i].bytes += \
2101 					_srcobj->rx.rx_lmac[i].bytes; \
2102 		} \
2103 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
2104 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
2105 	} while (0)
2106 
2107 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
2108 	do { \
2109 		uint8_t i, pream_type, mu_type; \
2110 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
2111 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
2112 		_tgtobj->tx.retries += _srcobj->tx.retries; \
2113 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
2114 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
2115 		_tgtobj->tx.num_ppdu_cookie_valid += \
2116 					_srcobj->tx.num_ppdu_cookie_valid; \
2117 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
2118 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
2119 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
2120 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
2121 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
2122 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
2123 		_tgtobj->tx.mcast_last_tx_rate = \
2124 					_srcobj->tx.mcast_last_tx_rate; \
2125 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
2126 					_srcobj->tx.mcast_last_tx_rate_mcs; \
2127 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
2128 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
2129 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
2130 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
2131 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
2132 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
2133 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
2134 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
2135 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
2136 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
2137 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
2138 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
2139 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
2140 		_tgtobj->tx.mpdu_success_with_retries += \
2141 					_srcobj->tx.mpdu_success_with_retries; \
2142 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
2143 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
2144 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
2145 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
2146 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2147 			for (i = 0; i < MAX_MCS; i++) \
2148 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
2149 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
2150 		} \
2151 		for (i = 0; i < WME_AC_MAX; i++) { \
2152 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
2153 			_tgtobj->tx.wme_ac_type_bytes[i] += \
2154 					_srcobj->tx.wme_ac_type_bytes[i]; \
2155 			_tgtobj->tx.excess_retries_per_ac[i] += \
2156 					_srcobj->tx.excess_retries_per_ac[i]; \
2157 		} \
2158 		for (i = 0; i < MAX_GI; i++) { \
2159 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2160 		} \
2161 		for (i = 0; i < SS_COUNT; i++) { \
2162 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2163 		} \
2164 		for (i = 0; i < MAX_BW; i++) { \
2165 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2166 		} \
2167 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2168 			_tgtobj->tx.ru_loc[i].num_msdu += \
2169 					_srcobj->tx.ru_loc[i].num_msdu; \
2170 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2171 					_srcobj->tx.ru_loc[i].num_mpdu; \
2172 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2173 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2174 		} \
2175 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2176 			_tgtobj->tx.transmit_type[i].num_msdu += \
2177 					_srcobj->tx.transmit_type[i].num_msdu; \
2178 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2179 					_srcobj->tx.transmit_type[i].num_mpdu; \
2180 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2181 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2182 		} \
2183 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2184 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2185 		} \
2186 		_tgtobj->tx.tx_ucast_total.num += \
2187 				_srcobj->tx.tx_ucast_total.num;\
2188 		_tgtobj->tx.tx_ucast_total.bytes += \
2189 				 _srcobj->tx.tx_ucast_total.bytes;\
2190 		_tgtobj->tx.tx_ucast_success.num += \
2191 				_srcobj->tx.tx_ucast_success.num; \
2192 		_tgtobj->tx.tx_ucast_success.bytes += \
2193 				_srcobj->tx.tx_ucast_success.bytes; \
2194 		\
2195 		for (i = 0; i < CDP_RSSI_CHAIN_LEN; i++) \
2196 			_tgtobj->tx.rssi_chain[i] = _srcobj->tx.rssi_chain[i]; \
2197 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2198 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2199 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2200 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2201 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2202 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2203 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2204 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2205 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2206 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2207 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2208 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2209 		_tgtobj->rx.rx_snr_measured_time = \
2210 					_srcobj->rx.rx_snr_measured_time; \
2211 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2212 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2213 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2214 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2215 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2216 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2217 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2218 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2219 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2220 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2221 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2222 			for (i = 0; i < MAX_MCS; i++) { \
2223 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2224 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2225 			} \
2226 		} \
2227 		for (i = 0; i < WME_AC_MAX; i++) { \
2228 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2229 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2230 					_srcobj->rx.wme_ac_type_bytes[i]; \
2231 		} \
2232 		for (i = 0; i < MAX_MCS; i++) { \
2233 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2234 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2235 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2236 		} \
2237 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2238 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2239 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2240 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2241 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2242 			for (i = 0; i < SS_COUNT; i++) \
2243 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2244 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2245 			for (i = 0; i < MAX_MCS; i++) \
2246 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2247 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2248 		} \
2249 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2250 			_tgtobj->rx.reception_type[i] += \
2251 					_srcobj->rx.reception_type[i]; \
2252 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2253 		} \
2254 		for (i = 0; i < MAX_GI; i++) { \
2255 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2256 		} \
2257 		for (i = 0; i < SS_COUNT; i++) { \
2258 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2259 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2260 		} \
2261 		for (i = 0; i < MAX_BW; i++) { \
2262 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2263 		} \
2264 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2265 	} while (0)
2266 
2267 #define DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj) \
2268 	do { \
2269 		DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj); \
2270 		DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj); \
2271 		DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj); \
2272 	} while (0)
2273 
2274 #define DP_UPDATE_RX_INGRESS_STATS(_tgtobj, _srcobj) \
2275 	do { \
2276 		_tgtobj->rx_i.reo_rcvd_pkt.num += \
2277 					_srcobj->rx_i.reo_rcvd_pkt.num; \
2278 		_tgtobj->rx_i.reo_rcvd_pkt.bytes += \
2279 					_srcobj->rx_i.reo_rcvd_pkt.bytes; \
2280 		_tgtobj->rx_i.null_q_desc_pkt.num += \
2281 					_srcobj->rx_i.null_q_desc_pkt.num; \
2282 		_tgtobj->rx_i.null_q_desc_pkt.bytes += \
2283 					_srcobj->rx_i.null_q_desc_pkt.bytes; \
2284 		_tgtobj->rx_i.routed_eapol_pkt.num += \
2285 					_srcobj->rx_i.routed_eapol_pkt.num; \
2286 		_tgtobj->rx_i.routed_eapol_pkt.bytes += \
2287 					_srcobj->rx_i.routed_eapol_pkt.bytes; \
2288 	} while (0)
2289 
2290 #define DP_UPDATE_LINK_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type) \
2291 	do { \
2292 		uint8_t i = 0; \
2293 		uint8_t idx = 0; \
2294 		enum dp_pkt_xmit_type temp_xmit_type = _xmit_type; \
2295 		if (temp_xmit_type == DP_XMIT_MLD) { \
2296 			idx = DP_VDEV_XMIT_TYPE; \
2297 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2298 		} else if (temp_xmit_type == DP_XMIT_TOTAL) { \
2299 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2300 		} \
2301 		for (; idx <= temp_xmit_type; idx++) { \
2302 			_tgtobj->tx_i.rcvd.num += _srcobj->tx_i[idx].rcvd.num; \
2303 			_tgtobj->tx_i.rcvd.bytes += \
2304 				_srcobj->tx_i[idx].rcvd.bytes; \
2305 			_tgtobj->tx_i.rcvd_in_fast_xmit_flow += \
2306 				_srcobj->tx_i[idx].rcvd_in_fast_xmit_flow; \
2307 			for (i = 0; i < CDP_MAX_TX_DATA_RINGS; i++) { \
2308 				_tgtobj->tx_i.rcvd_per_core[i] += \
2309 				_srcobj->tx_i[idx].rcvd_per_core[i]; \
2310 			} \
2311 			_tgtobj->tx_i.processed.num += \
2312 				_srcobj->tx_i[idx].processed.num; \
2313 			_tgtobj->tx_i.processed.bytes += \
2314 				_srcobj->tx_i[idx].processed.bytes; \
2315 			_tgtobj->tx_i.reinject_pkts.num += \
2316 				_srcobj->tx_i[idx].reinject_pkts.num; \
2317 			_tgtobj->tx_i.reinject_pkts.bytes += \
2318 				_srcobj->tx_i[idx].reinject_pkts.bytes; \
2319 			_tgtobj->tx_i.inspect_pkts.num += \
2320 				_srcobj->tx_i[idx].inspect_pkts.num; \
2321 			_tgtobj->tx_i.inspect_pkts.bytes += \
2322 				_srcobj->tx_i[idx].inspect_pkts.bytes; \
2323 			_tgtobj->tx_i.nawds_mcast.num += \
2324 				_srcobj->tx_i[idx].nawds_mcast.num; \
2325 			_tgtobj->tx_i.nawds_mcast.bytes += \
2326 				_srcobj->tx_i[idx].nawds_mcast.bytes; \
2327 			_tgtobj->tx_i.bcast.num += \
2328 				_srcobj->tx_i[idx].bcast.num; \
2329 			_tgtobj->tx_i.bcast.bytes += \
2330 				_srcobj->tx_i[idx].bcast.bytes; \
2331 			_tgtobj->tx_i.raw.raw_pkt.num += \
2332 				_srcobj->tx_i[idx].raw.raw_pkt.num; \
2333 			_tgtobj->tx_i.raw.raw_pkt.bytes += \
2334 				_srcobj->tx_i[idx].raw.raw_pkt.bytes; \
2335 			_tgtobj->tx_i.raw.dma_map_error += \
2336 				_srcobj->tx_i[idx].raw.dma_map_error; \
2337 			_tgtobj->tx_i.raw.invalid_raw_pkt_datatype += \
2338 			     _srcobj->tx_i[idx].raw.invalid_raw_pkt_datatype; \
2339 			_tgtobj->tx_i.raw.num_frags_overflow_err += \
2340 				_srcobj->tx_i[idx].raw.num_frags_overflow_err; \
2341 			_tgtobj->tx_i.sg.sg_pkt.num += \
2342 				_srcobj->tx_i[idx].sg.sg_pkt.num; \
2343 			_tgtobj->tx_i.sg.sg_pkt.bytes += \
2344 				_srcobj->tx_i[idx].sg.sg_pkt.bytes; \
2345 			_tgtobj->tx_i.sg.non_sg_pkts.num += \
2346 				_srcobj->tx_i[idx].sg.non_sg_pkts.num; \
2347 			_tgtobj->tx_i.sg.non_sg_pkts.bytes += \
2348 				_srcobj->tx_i[idx].sg.non_sg_pkts.bytes; \
2349 			_tgtobj->tx_i.sg.dropped_host.num += \
2350 				_srcobj->tx_i[idx].sg.dropped_host.num; \
2351 			_tgtobj->tx_i.sg.dropped_host.bytes += \
2352 				_srcobj->tx_i[idx].sg.dropped_host.bytes; \
2353 			_tgtobj->tx_i.sg.dropped_target += \
2354 				_srcobj->tx_i[idx].sg.dropped_target; \
2355 			_tgtobj->tx_i.sg.dma_map_error += \
2356 				_srcobj->tx_i[idx].sg.dma_map_error; \
2357 			_tgtobj->tx_i.mcast_en.mcast_pkt.num += \
2358 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.num; \
2359 			_tgtobj->tx_i.mcast_en.mcast_pkt.bytes += \
2360 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.bytes; \
2361 			_tgtobj->tx_i.mcast_en.dropped_map_error += \
2362 				_srcobj->tx_i[idx].mcast_en.dropped_map_error; \
2363 			_tgtobj->tx_i.mcast_en.dropped_self_mac += \
2364 				_srcobj->tx_i[idx].mcast_en.dropped_self_mac; \
2365 			_tgtobj->tx_i.mcast_en.dropped_send_fail += \
2366 				_srcobj->tx_i[idx].mcast_en.dropped_send_fail; \
2367 			_tgtobj->tx_i.mcast_en.ucast += \
2368 				_srcobj->tx_i[idx].mcast_en.ucast; \
2369 			_tgtobj->tx_i.mcast_en.fail_seg_alloc += \
2370 				_srcobj->tx_i[idx].mcast_en.fail_seg_alloc; \
2371 			_tgtobj->tx_i.mcast_en.clone_fail += \
2372 				_srcobj->tx_i[idx].mcast_en.clone_fail; \
2373 			_tgtobj->tx_i.igmp_mcast_en.igmp_rcvd += \
2374 				_srcobj->tx_i[idx].igmp_mcast_en.igmp_rcvd; \
2375 			_tgtobj->tx_i.igmp_mcast_en.igmp_ucast_converted += \
2376 			    _srcobj->tx_i[idx].igmp_mcast_en.igmp_ucast_converted; \
2377 			_tgtobj->tx_i.dropped.desc_na.num += \
2378 				_srcobj->tx_i[idx].dropped.desc_na.num; \
2379 			_tgtobj->tx_i.dropped.desc_na.bytes += \
2380 				_srcobj->tx_i[idx].dropped.desc_na.bytes; \
2381 			_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.num += \
2382 			_srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.num; \
2383 			_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes += \
2384 			    _srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.bytes; \
2385 			_tgtobj->tx_i.dropped.desc_na_exc_outstand.num += \
2386 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.num; \
2387 			_tgtobj->tx_i.dropped.desc_na_exc_outstand.bytes += \
2388 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.bytes; \
2389 			_tgtobj->tx_i.dropped.exc_desc_na.num += \
2390 				_srcobj->tx_i[idx].dropped.exc_desc_na.num; \
2391 			_tgtobj->tx_i.dropped.exc_desc_na.bytes += \
2392 				_srcobj->tx_i[idx].dropped.exc_desc_na.bytes; \
2393 			_tgtobj->tx_i.dropped.ring_full += \
2394 				_srcobj->tx_i[idx].dropped.ring_full; \
2395 			_tgtobj->tx_i.dropped.enqueue_fail += \
2396 				_srcobj->tx_i[idx].dropped.enqueue_fail; \
2397 			_tgtobj->tx_i.dropped.dma_error += \
2398 				_srcobj->tx_i[idx].dropped.dma_error; \
2399 			_tgtobj->tx_i.dropped.res_full += \
2400 				_srcobj->tx_i[idx].dropped.res_full; \
2401 			_tgtobj->tx_i.dropped.headroom_insufficient += \
2402 			    _srcobj->tx_i[idx].dropped.headroom_insufficient; \
2403 			_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check += \
2404 			    _srcobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check; \
2405 			_tgtobj->tx_i.dropped.drop_ingress += \
2406 				_srcobj->tx_i[idx].dropped.drop_ingress; \
2407 			_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path += \
2408 				_srcobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path; \
2409 			_tgtobj->tx_i.dropped.tx_mcast_drop += \
2410 				_srcobj->tx_i[idx].dropped.tx_mcast_drop; \
2411 			_tgtobj->tx_i.dropped.fw2wbm_tx_drop += \
2412 				_srcobj->tx_i[idx].dropped.fw2wbm_tx_drop; \
2413 			_tgtobj->tx_i.dropped.dropped_pkt.bytes += \
2414 				_srcobj->tx_i[idx].dropped.dropped_pkt.bytes; \
2415 			_tgtobj->tx_i.mesh.exception_fw += \
2416 					_srcobj->tx_i[idx].mesh.exception_fw; \
2417 			_tgtobj->tx_i.mesh.completion_fw += \
2418 				_srcobj->tx_i[idx].mesh.completion_fw; \
2419 			_tgtobj->tx_i.cce_classified += \
2420 				_srcobj->tx_i[idx].cce_classified; \
2421 			_tgtobj->tx_i.cce_classified_raw += \
2422 				_srcobj->tx_i[idx].cce_classified_raw; \
2423 			_tgtobj->tx_i.sniffer_rcvd.num += \
2424 				_srcobj->tx_i[idx].sniffer_rcvd.num; \
2425 			_tgtobj->tx_i.sniffer_rcvd.bytes += \
2426 				_srcobj->tx_i[idx].sniffer_rcvd.bytes; \
2427 		} \
2428 		_tgtobj->tx_i.dropped.dropped_pkt.num = \
2429 			_tgtobj->tx_i.dropped.dma_error + \
2430 			_tgtobj->tx_i.dropped.ring_full + \
2431 			_tgtobj->tx_i.dropped.enqueue_fail + \
2432 			_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check + \
2433 			_tgtobj->tx_i.dropped.desc_na.num + \
2434 			_tgtobj->tx_i.dropped.res_full + \
2435 			_tgtobj->tx_i.dropped.drop_ingress + \
2436 			_tgtobj->tx_i.dropped.headroom_insufficient + \
2437 			_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path + \
2438 			_tgtobj->tx_i.dropped.tx_mcast_drop + \
2439 			_tgtobj->tx_i.dropped.fw2wbm_tx_drop; \
2440 		DP_UPDATE_RX_INGRESS_STATS(_tgtobj, _srcobj); \
2441 	} while (0)
2442 
2443 #define DP_UPDATE_MLD_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type) \
2444 	do { \
2445 		uint8_t i = 0; \
2446 		uint8_t idx = 0; \
2447 		enum dp_pkt_xmit_type temp_xmit_type = _xmit_type; \
2448 		if (temp_xmit_type == DP_XMIT_MLD) { \
2449 			idx = DP_VDEV_XMIT_TYPE; \
2450 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2451 		} else if (temp_xmit_type == DP_XMIT_TOTAL) { \
2452 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2453 		} \
2454 		for (; idx <= temp_xmit_type; idx++) { \
2455 			_tgtobj->tx_i[idx].rcvd.num += _srcobj->tx_i[idx].rcvd.num; \
2456 			_tgtobj->tx_i[idx].rcvd.bytes += \
2457 				_srcobj->tx_i[idx].rcvd.bytes; \
2458 			_tgtobj->tx_i[idx].rcvd_in_fast_xmit_flow += \
2459 				_srcobj->tx_i[idx].rcvd_in_fast_xmit_flow; \
2460 			for (i = 0; i < CDP_MAX_TX_DATA_RINGS; i++) { \
2461 				_tgtobj->tx_i[idx].rcvd_per_core[i] += \
2462 				_srcobj->tx_i[idx].rcvd_per_core[i]; \
2463 			} \
2464 			_tgtobj->tx_i[idx].processed.num += \
2465 				_srcobj->tx_i[idx].processed.num; \
2466 			_tgtobj->tx_i[idx].processed.bytes += \
2467 				_srcobj->tx_i[idx].processed.bytes; \
2468 			_tgtobj->tx_i[idx].reinject_pkts.num += \
2469 				_srcobj->tx_i[idx].reinject_pkts.num; \
2470 			_tgtobj->tx_i[idx].reinject_pkts.bytes += \
2471 				_srcobj->tx_i[idx].reinject_pkts.bytes; \
2472 			_tgtobj->tx_i[idx].inspect_pkts.num += \
2473 				_srcobj->tx_i[idx].inspect_pkts.num; \
2474 			_tgtobj->tx_i[idx].inspect_pkts.bytes += \
2475 				_srcobj->tx_i[idx].inspect_pkts.bytes; \
2476 			_tgtobj->tx_i[idx].nawds_mcast.num += \
2477 				_srcobj->tx_i[idx].nawds_mcast.num; \
2478 			_tgtobj->tx_i[idx].nawds_mcast.bytes += \
2479 				_srcobj->tx_i[idx].nawds_mcast.bytes; \
2480 			_tgtobj->tx_i[idx].bcast.num += \
2481 				_srcobj->tx_i[idx].bcast.num; \
2482 			_tgtobj->tx_i[idx].bcast.bytes += \
2483 				_srcobj->tx_i[idx].bcast.bytes; \
2484 			_tgtobj->tx_i[idx].raw.raw_pkt.num += \
2485 				_srcobj->tx_i[idx].raw.raw_pkt.num; \
2486 			_tgtobj->tx_i[idx].raw.raw_pkt.bytes += \
2487 				_srcobj->tx_i[idx].raw.raw_pkt.bytes; \
2488 			_tgtobj->tx_i[idx].raw.dma_map_error += \
2489 				_srcobj->tx_i[idx].raw.dma_map_error; \
2490 			_tgtobj->tx_i[idx].raw.invalid_raw_pkt_datatype += \
2491 			     _srcobj->tx_i[idx].raw.invalid_raw_pkt_datatype; \
2492 			_tgtobj->tx_i[idx].raw.num_frags_overflow_err += \
2493 				_srcobj->tx_i[idx].raw.num_frags_overflow_err; \
2494 			_tgtobj->tx_i[idx].sg.sg_pkt.num += \
2495 				_srcobj->tx_i[idx].sg.sg_pkt.num; \
2496 			_tgtobj->tx_i[idx].sg.sg_pkt.bytes += \
2497 				_srcobj->tx_i[idx].sg.sg_pkt.bytes; \
2498 			_tgtobj->tx_i[idx].sg.non_sg_pkts.num += \
2499 				_srcobj->tx_i[idx].sg.non_sg_pkts.num; \
2500 			_tgtobj->tx_i[idx].sg.non_sg_pkts.bytes += \
2501 				_srcobj->tx_i[idx].sg.non_sg_pkts.bytes; \
2502 			_tgtobj->tx_i[idx].sg.dropped_host.num += \
2503 				_srcobj->tx_i[idx].sg.dropped_host.num; \
2504 			_tgtobj->tx_i[idx].sg.dropped_host.bytes += \
2505 				_srcobj->tx_i[idx].sg.dropped_host.bytes; \
2506 			_tgtobj->tx_i[idx].sg.dropped_target += \
2507 				_srcobj->tx_i[idx].sg.dropped_target; \
2508 			_tgtobj->tx_i[idx].sg.dma_map_error += \
2509 				_srcobj->tx_i[idx].sg.dma_map_error; \
2510 			_tgtobj->tx_i[idx].mcast_en.mcast_pkt.num += \
2511 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.num; \
2512 			_tgtobj->tx_i[idx].mcast_en.mcast_pkt.bytes += \
2513 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.bytes; \
2514 			_tgtobj->tx_i[idx].mcast_en.dropped_map_error += \
2515 				_srcobj->tx_i[idx].mcast_en.dropped_map_error; \
2516 			_tgtobj->tx_i[idx].mcast_en.dropped_self_mac += \
2517 				_srcobj->tx_i[idx].mcast_en.dropped_self_mac; \
2518 			_tgtobj->tx_i[idx].mcast_en.dropped_send_fail += \
2519 				_srcobj->tx_i[idx].mcast_en.dropped_send_fail; \
2520 			_tgtobj->tx_i[idx].mcast_en.ucast += \
2521 				_srcobj->tx_i[idx].mcast_en.ucast; \
2522 			_tgtobj->tx_i[idx].mcast_en.fail_seg_alloc += \
2523 				_srcobj->tx_i[idx].mcast_en.fail_seg_alloc; \
2524 			_tgtobj->tx_i[idx].mcast_en.clone_fail += \
2525 				_srcobj->tx_i[idx].mcast_en.clone_fail; \
2526 			_tgtobj->tx_i[idx].igmp_mcast_en.igmp_rcvd += \
2527 				_srcobj->tx_i[idx].igmp_mcast_en.igmp_rcvd; \
2528 			_tgtobj->tx_i[idx].igmp_mcast_en.igmp_ucast_converted += \
2529 			    _srcobj->tx_i[idx].igmp_mcast_en.igmp_ucast_converted; \
2530 			_tgtobj->tx_i[idx].dropped.desc_na.num += \
2531 				_srcobj->tx_i[idx].dropped.desc_na.num; \
2532 			_tgtobj->tx_i[idx].dropped.desc_na.bytes += \
2533 				_srcobj->tx_i[idx].dropped.desc_na.bytes; \
2534 			_tgtobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.num += \
2535 			_srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.num; \
2536 			_tgtobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.bytes += \
2537 			    _srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.bytes; \
2538 			_tgtobj->tx_i[idx].dropped.desc_na_exc_outstand.num += \
2539 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.num; \
2540 			_tgtobj->tx_i[idx].dropped.desc_na_exc_outstand.bytes += \
2541 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.bytes; \
2542 			_tgtobj->tx_i[idx].dropped.exc_desc_na.num += \
2543 				_srcobj->tx_i[idx].dropped.exc_desc_na.num; \
2544 			_tgtobj->tx_i[idx].dropped.exc_desc_na.bytes += \
2545 				_srcobj->tx_i[idx].dropped.exc_desc_na.bytes; \
2546 			_tgtobj->tx_i[idx].dropped.ring_full += \
2547 				_srcobj->tx_i[idx].dropped.ring_full; \
2548 			_tgtobj->tx_i[idx].dropped.enqueue_fail += \
2549 				_srcobj->tx_i[idx].dropped.enqueue_fail; \
2550 			_tgtobj->tx_i[idx].dropped.dma_error += \
2551 				_srcobj->tx_i[idx].dropped.dma_error; \
2552 			_tgtobj->tx_i[idx].dropped.res_full += \
2553 				_srcobj->tx_i[idx].dropped.res_full; \
2554 			_tgtobj->tx_i[idx].dropped.headroom_insufficient += \
2555 			    _srcobj->tx_i[idx].dropped.headroom_insufficient; \
2556 			_tgtobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check += \
2557 			    _srcobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check; \
2558 			_tgtobj->tx_i[idx].dropped.drop_ingress += \
2559 				_srcobj->tx_i[idx].dropped.drop_ingress; \
2560 			_tgtobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path += \
2561 				_srcobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path; \
2562 			_tgtobj->tx_i[idx].dropped.tx_mcast_drop += \
2563 				_srcobj->tx_i[idx].dropped.tx_mcast_drop; \
2564 			_tgtobj->tx_i[idx].dropped.fw2wbm_tx_drop += \
2565 				_srcobj->tx_i[idx].dropped.fw2wbm_tx_drop; \
2566 			_tgtobj->tx_i[idx].dropped.dropped_pkt.bytes += \
2567 				_srcobj->tx_i[idx].dropped.dropped_pkt.bytes; \
2568 			_tgtobj->tx_i[idx].mesh.exception_fw += \
2569 					_srcobj->tx_i[idx].mesh.exception_fw; \
2570 			_tgtobj->tx_i[idx].mesh.completion_fw += \
2571 				_srcobj->tx_i[idx].mesh.completion_fw; \
2572 			_tgtobj->tx_i[idx].cce_classified += \
2573 				_srcobj->tx_i[idx].cce_classified; \
2574 			_tgtobj->tx_i[idx].cce_classified_raw += \
2575 				_srcobj->tx_i[idx].cce_classified_raw; \
2576 			_tgtobj->tx_i[idx].sniffer_rcvd.num += \
2577 				_srcobj->tx_i[idx].sniffer_rcvd.num; \
2578 			_tgtobj->tx_i[idx].sniffer_rcvd.bytes += \
2579 				_srcobj->tx_i[idx].sniffer_rcvd.bytes; \
2580 			_tgtobj->tx_i[idx].dropped.dropped_pkt.num = \
2581 				_tgtobj->tx_i[idx].dropped.dma_error + \
2582 				_tgtobj->tx_i[idx].dropped.ring_full + \
2583 				_tgtobj->tx_i[idx].dropped.enqueue_fail + \
2584 				_tgtobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check + \
2585 				_tgtobj->tx_i[idx].dropped.desc_na.num + \
2586 				_tgtobj->tx_i[idx].dropped.res_full + \
2587 				_tgtobj->tx_i[idx].dropped.drop_ingress + \
2588 				_tgtobj->tx_i[idx].dropped.headroom_insufficient + \
2589 				_tgtobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path + \
2590 				_tgtobj->tx_i[idx].dropped.tx_mcast_drop + \
2591 				_tgtobj->tx_i[idx].dropped.fw2wbm_tx_drop; \
2592 		} \
2593 		DP_UPDATE_RX_INGRESS_STATS(_tgtobj, _srcobj); \
2594 	} while (0)
2595 
2596 #define DP_UPDATE_TO_MLD_VDEV_STATS(_tgtobj, _srcobj, _xmit_type) \
2597 	do { \
2598 		DP_UPDATE_MLD_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type); \
2599 		DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj); \
2600 	} while (0)
2601 
2602 #define DP_UPDATE_TO_LINK_VDEV_STATS(_tgtobj, _srcobj, _xmit_type) \
2603 	do { \
2604 		DP_UPDATE_LINK_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type); \
2605 		DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj); \
2606 	} while (0)
2607 /**
2608  * dp_peer_find_attach() - Allocates memory for peer objects
2609  * @soc: SoC handle
2610  *
2611  * Return: QDF_STATUS
2612  */
2613 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2614 
2615 /**
2616  * dp_peer_find_detach() - Frees memory for peer objects
2617  * @soc: SoC handle
2618  *
2619  * Return: none
2620  */
2621 void dp_peer_find_detach(struct dp_soc *soc);
2622 
2623 /**
2624  * dp_peer_find_hash_add() - add peer to peer_hash_table
2625  * @soc: soc handle
2626  * @peer: peer handle
2627  *
2628  * Return: none
2629  */
2630 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2631 
2632 /**
2633  * dp_peer_find_hash_remove() - remove peer from peer_hash_table
2634  * @soc: soc handle
2635  * @peer: peer handle
2636  *
2637  * Return: none
2638  */
2639 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2640 
2641 /* unused?? */
2642 void dp_peer_find_hash_erase(struct dp_soc *soc);
2643 
2644 /**
2645  * dp_peer_vdev_list_add() - add peer into vdev's peer list
2646  * @soc: soc handle
2647  * @vdev: vdev handle
2648  * @peer: peer handle
2649  *
2650  * Return: none
2651  */
2652 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2653 			   struct dp_peer *peer);
2654 
2655 /**
2656  * dp_peer_vdev_list_remove() - remove peer from vdev's peer list
2657  * @soc: SoC handle
2658  * @vdev: VDEV handle
2659  * @peer: peer handle
2660  *
2661  * Return: none
2662  */
2663 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2664 			      struct dp_peer *peer);
2665 
2666 /**
2667  * dp_peer_find_id_to_obj_add() - Add peer into peer_id table
2668  * @soc: SoC handle
2669  * @peer: peer handle
2670  * @peer_id: peer_id
2671  *
2672  * Return: None
2673  */
2674 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2675 				struct dp_peer *peer,
2676 				uint16_t peer_id);
2677 
2678 /**
2679  * dp_txrx_peer_attach_add() - Attach txrx_peer and add it to peer_id table
2680  * @soc: SoC handle
2681  * @peer: peer handle
2682  * @txrx_peer: txrx peer handle
2683  *
2684  * Return: None
2685  */
2686 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2687 			     struct dp_peer *peer,
2688 			     struct dp_txrx_peer *txrx_peer);
2689 
2690 /**
2691  * dp_peer_find_id_to_obj_remove() - remove peer from peer_id table
2692  * @soc: SoC handle
2693  * @peer_id: peer_id
2694  *
2695  * Return: None
2696  */
2697 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2698 				   uint16_t peer_id);
2699 
2700 /**
2701  * dp_vdev_unref_delete() - check and process vdev delete
2702  * @soc: DP specific soc pointer
2703  * @vdev: DP specific vdev pointer
2704  * @mod_id: module id
2705  *
2706  */
2707 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2708 			  enum dp_mod_id mod_id);
2709 
2710 /**
2711  * dp_peer_ppdu_delayed_ba_cleanup() - free ppdu allocated in peer
2712  * @peer: Datapath peer
2713  *
2714  * Return: void
2715  */
2716 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2717 
2718 /**
2719  * dp_peer_rx_init() - Initialize receive TID state
2720  * @pdev: Datapath pdev
2721  * @peer: Datapath peer
2722  *
2723  */
2724 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2725 
2726 /**
2727  * dp_peer_rx_init_wrapper() - Initialize receive TID state, based on peer type
2728  * @pdev: Datapath pdev
2729  * @peer: Datapath peer
2730  * @setup_info: setup info received for setting up the peer
2731  *
2732  * Return: None
2733  */
2734 void dp_peer_rx_init_wrapper(struct dp_pdev *pdev, struct dp_peer *peer,
2735 			     struct cdp_peer_setup_info *setup_info);
2736 
2737 /**
2738  * dp_peer_cleanup() - Cleanup peer information
2739  * @vdev: Datapath vdev
2740  * @peer: Datapath peer
2741  *
2742  */
2743 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2744 
2745 #ifdef DP_PEER_EXTENDED_API
2746 /**
2747  * dp_register_peer() - Register peer into physical device
2748  * @soc_hdl: data path soc handle
2749  * @pdev_id: device instance id
2750  * @sta_desc: peer description
2751  *
2752  * Register peer into physical device
2753  *
2754  * Return: QDF_STATUS_SUCCESS registration success
2755  *         QDF_STATUS_E_FAULT peer not found
2756  */
2757 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2758 			    struct ol_txrx_desc_type *sta_desc);
2759 
2760 /**
2761  * dp_clear_peer() - remove peer from physical device
2762  * @soc_hdl: data path soc handle
2763  * @pdev_id: device instance id
2764  * @peer_addr: peer mac address
2765  *
2766  * remove peer from physical device
2767  *
2768  * Return: QDF_STATUS_SUCCESS registration success
2769  *         QDF_STATUS_E_FAULT peer not found
2770  */
2771 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2772 			 struct qdf_mac_addr peer_addr);
2773 
2774 /**
2775  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2776  * @soc_hdl: datapath soc handle
2777  * @vdev_id: vdev instance id
2778  * @peer_addr: peer mac address
2779  *
2780  * Return: true or false
2781  */
2782 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2783 				uint8_t *peer_addr);
2784 
2785 /**
2786  * dp_find_peer_exist_on_other_vdev - find if peer exists
2787  * on other than the given vdev
2788  * @soc_hdl: datapath soc handle
2789  * @vdev_id: vdev instance id
2790  * @peer_addr: peer mac address
2791  * @max_bssid: max number of bssids
2792  *
2793  * Return: true or false
2794  */
2795 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2796 				      uint8_t vdev_id, uint8_t *peer_addr,
2797 				      uint16_t max_bssid);
2798 
2799 /**
2800  * dp_peer_state_update() - update peer local state
2801  * @soc: datapath soc handle
2802  * @peer_mac: peer mac address
2803  * @state: new peer local state
2804  *
2805  * update peer local state
2806  *
2807  * Return: QDF_STATUS_SUCCESS registration success
2808  */
2809 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2810 				enum ol_txrx_peer_state state);
2811 
2812 /**
2813  * dp_get_vdevid() - Get virtual interface id which peer registered
2814  * @soc_hdl: datapath soc handle
2815  * @peer_mac: peer mac address
2816  * @vdev_id: virtual interface id which peer registered
2817  *
2818  * Get virtual interface id which peer registered
2819  *
2820  * Return: QDF_STATUS_SUCCESS registration success
2821  */
2822 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2823 			 uint8_t *vdev_id);
2824 
2825 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2826 		struct qdf_mac_addr peer_addr);
2827 
2828 /**
2829  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2830  * @peer: peer instance
2831  *
2832  * Get virtual interface instance which peer belongs
2833  *
2834  * Return: virtual interface instance pointer
2835  *         NULL in case cannot find
2836  */
2837 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2838 
2839 /**
2840  * dp_peer_get_peer_mac_addr() - Get peer mac address
2841  * @peer: peer instance
2842  *
2843  * Get peer mac address
2844  *
2845  * Return: peer mac address pointer
2846  *         NULL in case cannot find
2847  */
2848 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2849 
2850 /**
2851  * dp_get_peer_state() - Get local peer state
2852  * @soc: datapath soc handle
2853  * @vdev_id: vdev id
2854  * @peer_mac: peer mac addr
2855  *
2856  * Get local peer state
2857  *
2858  * Return: peer status
2859  */
2860 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2861 		      uint8_t *peer_mac);
2862 
2863 /**
2864  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2865  * @pdev: data path device instance
2866  *
2867  * local peer id pool alloc for physical device
2868  *
2869  * Return: none
2870  */
2871 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2872 
2873 /**
2874  * dp_local_peer_id_alloc() - allocate local peer id
2875  * @pdev: data path device instance
2876  * @peer: new peer instance
2877  *
2878  * allocate local peer id
2879  *
2880  * Return: none
2881  */
2882 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2883 
2884 /**
2885  * dp_local_peer_id_free() - remove local peer id
2886  * @pdev: data path device instance
2887  * @peer: peer instance should be removed
2888  *
2889  * remove local peer id
2890  *
2891  * Return: none
2892  */
2893 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2894 
2895 /**
2896  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2897  * @soc_hdl: datapath soc handle
2898  * @vdev_id: vdev_id
2899  * @peer_mac: peer mac addr
2900  * @val: tdls peer flag
2901  *
2902  * Return: none
2903  */
2904 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2905 			      uint8_t *peer_mac, bool val);
2906 #else
2907 static inline
2908 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2909 			 uint8_t *vdev_id)
2910 {
2911 	return QDF_STATUS_E_NOSUPPORT;
2912 }
2913 
2914 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2915 {
2916 }
2917 
2918 static inline
2919 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2920 {
2921 }
2922 
2923 static inline
2924 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2925 {
2926 }
2927 
2928 static inline
2929 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2930 			      uint8_t *peer_mac, bool val)
2931 {
2932 }
2933 #endif
2934 
2935 /**
2936  * dp_find_peer_exist - find peer if already exists
2937  * @soc_hdl: datapath soc handle
2938  * @pdev_id: physical device instance id
2939  * @peer_addr: peer mac address
2940  *
2941  * Return: true or false
2942  */
2943 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2944 			uint8_t *peer_addr);
2945 
2946 #ifdef DP_UMAC_HW_RESET_SUPPORT
2947 /**
2948  * dp_pause_reo_send_cmd() - Pause Reo send commands.
2949  * @soc: dp soc
2950  *
2951  * Return: none
2952  */
2953 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2954 
2955 /**
2956  * dp_resume_reo_send_cmd() - Resume Reo send commands.
2957  * @soc: dp soc
2958  *
2959  * Return: none
2960  */
2961 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2962 
2963 /**
2964  * dp_cleanup_reo_cmd_module - Clean up the reo cmd module
2965  * @soc: DP SoC handle
2966  *
2967  * Return: none
2968  */
2969 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2970 
2971 /**
2972  * dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
2973  * @soc: DP SOC handle
2974  *
2975  * Return: none
2976  */
2977 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2978 
2979 /**
2980  * dp_reset_rx_reo_tid_queue() - Reset the reo tid queues
2981  * @soc: dp soc
2982  * @hw_qdesc_vaddr: starting address of the tid queues
2983  * @size: size of the memory pointed to by hw_qdesc_vaddr
2984  *
2985  * Return: none
2986  */
2987 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2988 			       uint32_t size);
2989 
2990 
2991 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
2992 {
2993 	notify_pre_reset_fw_callback callback = soc->notify_fw_callback;
2994 
2995 	if (callback)
2996 		callback(soc);
2997 }
2998 
2999 /**
3000  * dp_reset_global_tx_desc_cleanup_flag() - Reset cleanup needed flag
3001  * @soc: dp soc handle
3002  *
3003  * Return: None
3004  */
3005 void dp_reset_global_tx_desc_cleanup_flag(struct dp_soc *soc);
3006 
3007 /**
3008  * dp_get_global_tx_desc_cleanup_flag() - Get cleanup needed flag
3009  * @soc: dp soc handle
3010  *
3011  * Return: cleanup needed/ not needed
3012  */
3013 bool dp_get_global_tx_desc_cleanup_flag(struct dp_soc *soc);
3014 
3015 
3016 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
3017 /**
3018  * dp_umac_reset_complete_umac_recovery() - Complete Umac reset session
3019  * @soc: dp soc handle
3020  *
3021  * Return: void
3022  */
3023 void dp_umac_reset_complete_umac_recovery(struct dp_soc *soc);
3024 
3025 /**
3026  * dp_umac_reset_initiate_umac_recovery() - Initiate Umac reset session
3027  * @soc: dp soc handle
3028  * @umac_reset_ctx: Umac reset context
3029  * @rx_event: Rx event received
3030  * @is_target_recovery: Flag to indicate if it is triggered for target recovery
3031  *
3032  * Return: status
3033  */
3034 QDF_STATUS dp_umac_reset_initiate_umac_recovery(struct dp_soc *soc,
3035 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
3036 				enum umac_reset_rx_event rx_event,
3037 				bool is_target_recovery);
3038 
3039 /**
3040  * dp_umac_reset_handle_action_cb() - Function to call action callback
3041  * @soc: dp soc handle
3042  * @umac_reset_ctx: Umac reset context
3043  * @action: Action to call the callback for
3044  *
3045  * Return: QDF_STATUS status
3046  */
3047 QDF_STATUS dp_umac_reset_handle_action_cb(struct dp_soc *soc,
3048 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
3049 				enum umac_reset_action action);
3050 
3051 /**
3052  * dp_umac_reset_post_tx_cmd() - Iterate partner socs and post Tx command
3053  * @umac_reset_ctx: UMAC reset context
3054  * @tx_cmd: Tx command to be posted
3055  *
3056  * Return: QDF status of operation
3057  */
3058 QDF_STATUS
3059 dp_umac_reset_post_tx_cmd(struct dp_soc_umac_reset_ctx *umac_reset_ctx,
3060 			  enum umac_reset_tx_cmd tx_cmd);
3061 
3062 /**
3063  * dp_umac_reset_initiator_check() - Check if soc is the Umac reset initiator
3064  * @soc: dp soc handle
3065  *
3066  * Return: true if the soc is initiator or false otherwise
3067  */
3068 bool dp_umac_reset_initiator_check(struct dp_soc *soc);
3069 
3070 /**
3071  * dp_umac_reset_target_recovery_check() - Check if this is for target recovery
3072  * @soc: dp soc handle
3073  *
3074  * Return: true if the session is for target recovery or false otherwise
3075  */
3076 bool dp_umac_reset_target_recovery_check(struct dp_soc *soc);
3077 
3078 /**
3079  * dp_umac_reset_is_soc_ignored() - Check if this soc is to be ignored
3080  * @soc: dp soc handle
3081  *
3082  * Return: true if the soc is ignored or false otherwise
3083  */
3084 bool dp_umac_reset_is_soc_ignored(struct dp_soc *soc);
3085 
3086 /**
3087  * dp_mlo_umac_reset_stats_print() - API to print MLO umac reset stats
3088  * @soc: dp soc handle
3089  *
3090  * Return: QDF_STATUS
3091  */
3092 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc);
3093 #else
3094 static inline
3095 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc)
3096 {
3097 	return QDF_STATUS_SUCCESS;
3098 }
3099 #endif
3100 #else
3101 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
3102 {
3103 }
3104 #endif
3105 
3106 #if defined(DP_UMAC_HW_RESET_SUPPORT) && defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
3107 /**
3108  * dp_umac_reset_notify_asserted_soc() - API to notify the asserted SOC
3109  * @soc: dp soc
3110  *
3111  * Return: QDF_STATUS
3112  */
3113 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc);
3114 
3115 /**
3116  * dp_get_umac_reset_in_progress_state() - API to check umac reset in progress
3117  * state
3118  * @psoc: dp soc handle
3119  *
3120  * Return: umac reset state
3121  */
3122 enum cdp_umac_reset_state
3123 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc);
3124 #else
3125 static inline
3126 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc)
3127 {
3128 	return QDF_STATUS_SUCCESS;
3129 }
3130 
3131 static inline enum cdp_umac_reset_state
3132 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc)
3133 {
3134 	return CDP_UMAC_RESET_NOT_IN_PROGRESS;
3135 }
3136 #endif
3137 
3138 #ifndef WLAN_SOFTUMAC_SUPPORT
3139 QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc, enum hal_reo_cmd_type type,
3140 			   struct hal_reo_cmd_params *params,
3141 			   void (*callback_fn), void *data);
3142 
3143 /**
3144  * dp_reo_cmdlist_destroy() - Free REO commands in the queue
3145  * @soc: DP SoC handle
3146  *
3147  * Return: none
3148  */
3149 void dp_reo_cmdlist_destroy(struct dp_soc *soc);
3150 
3151 /**
3152  * dp_reo_status_ring_handler() - Handler for REO Status ring
3153  * @int_ctx: pointer to DP interrupt context
3154  * @soc: DP Soc handle
3155  *
3156  * Return: Number of descriptors reaped
3157  */
3158 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
3159 				    struct dp_soc *soc);
3160 #endif
3161 
3162 /**
3163  * dp_aggregate_vdev_stats() - Consolidate stats at VDEV level
3164  * @vdev: DP VDEV handle
3165  * @vdev_stats: aggregate statistics
3166  * @xmit_type: xmit type of packet - MLD/Link
3167  * return: void
3168  */
3169 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
3170 			     struct cdp_vdev_stats *vdev_stats,
3171 			     enum dp_pkt_xmit_type xmit_type);
3172 
3173 /**
3174  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
3175  * @soc_hdl: CDP SoC handle
3176  * @vdev_id: vdev Id
3177  * @buf: buffer for vdev stats
3178  * @is_aggregate: are aggregate stats being collected
3179  *
3180  * Return: QDF_STATUS
3181  */
3182 QDF_STATUS
3183 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3184 		       void *buf, bool is_aggregate);
3185 
3186 /**
3187  * dp_rx_bar_stats_cb() - BAR received stats callback
3188  * @soc: SOC handle
3189  * @cb_ctxt: Call back context
3190  * @reo_status: Reo status
3191  *
3192  * Return: void
3193  */
3194 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
3195 			union hal_reo_status *reo_status);
3196 
3197 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
3198 				     qdf_nbuf_t nbuf,
3199 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
3200 				     uint8_t new_mac_cnt, uint8_t tid,
3201 				     bool is_igmp, bool is_dms_pkt);
3202 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
3203 
3204 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
3205 
3206 /**
3207  * dp_h2t_ext_stats_msg_send(): function to construct HTT message to pass to FW
3208  * @pdev: DP PDEV handle
3209  * @stats_type_upload_mask: stats type requested by user
3210  * @config_param_0: extra configuration parameters
3211  * @config_param_1: extra configuration parameters
3212  * @config_param_2: extra configuration parameters
3213  * @config_param_3: extra configuration parameters
3214  * @cookie:
3215  * @cookie_msb:
3216  * @mac_id: mac number
3217  *
3218  * Return: QDF STATUS
3219  */
3220 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
3221 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
3222 		uint32_t config_param_1, uint32_t config_param_2,
3223 		uint32_t config_param_3, int cookie, int cookie_msb,
3224 		uint8_t mac_id);
3225 
3226 /**
3227  * dp_htt_stats_print_tag() - function to select the tag type and
3228  * print the corresponding tag structure
3229  * @pdev: pdev pointer
3230  * @tag_type: tag type that is to be printed
3231  * @tag_buf: pointer to the tag structure
3232  *
3233  * Return: void
3234  */
3235 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
3236 			    uint8_t tag_type, uint32_t *tag_buf);
3237 
3238 /**
3239  * dp_htt_stats_copy_tag() - function to select the tag type and
3240  * copy the corresponding tag structure
3241  * @pdev: DP_PDEV handle
3242  * @tag_type: tag type that is to be printed
3243  * @tag_buf: pointer to the tag structure
3244  *
3245  * Return: void
3246  */
3247 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
3248 
3249 /**
3250  * dp_h2t_3tuple_config_send(): function to construct 3 tuple configuration
3251  * HTT message to pass to FW
3252  * @pdev: DP PDEV handle
3253  * @tuple_mask: tuple configuration to report 3 tuple hash value in either
3254  * toeplitz_2_or_4 or flow_id_toeplitz in MSDU START TLV.
3255  *
3256  * tuple_mask[1:0]:
3257  *   00 - Do not report 3 tuple hash value
3258  *   10 - Report 3 tuple hash value in toeplitz_2_or_4
3259  *   01 - Report 3 tuple hash value in flow_id_toeplitz
3260  *   11 - Report 3 tuple hash value in both toeplitz_2_or_4 & flow_id_toeplitz
3261  * @mac_id: MAC ID
3262  *
3263  * Return: QDF STATUS
3264  */
3265 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
3266 				     uint8_t mac_id);
3267 
3268 #ifdef IPA_OFFLOAD
3269 /**
3270  * dp_peer_update_tid_stats_from_reo() - update rx pkt and byte count from reo
3271  * @soc: soc handle
3272  * @cb_ctxt: combination of peer_id and tid
3273  * @reo_status: reo status
3274  *
3275  * Return: void
3276  */
3277 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
3278 				       union hal_reo_status *reo_status);
3279 
3280 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
3281 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
3282 #ifdef IPA_OPT_WIFI_DP
3283 void dp_ipa_wdi_opt_dpath_notify_flt_rlsd(int flt0_rslt,
3284 					  int flt1_rslt);
3285 void dp_ipa_wdi_opt_dpath_notify_flt_add_rem_cb(int flt0_rslt, int flt1_rslt);
3286 void dp_ipa_wdi_opt_dpath_notify_flt_rsvd(bool is_success);
3287 #endif
3288 #ifdef QCA_ENHANCED_STATS_SUPPORT
3289 /**
3290  * dp_peer_aggregate_tid_stats - aggregate rx tid stats
3291  * @peer: Data Path peer
3292  *
3293  * Return: void
3294  */
3295 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
3296 #endif
3297 #else
3298 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
3299 {
3300 }
3301 #endif
3302 
3303 /**
3304  * dp_set_key_sec_type_wifi3() - set security mode of key
3305  * @soc: Datapath soc handle
3306  * @vdev_id: id of atapath vdev
3307  * @peer_mac: Datapath peer mac address
3308  * @sec_type: security type
3309  * @is_unicast: key type
3310  *
3311  */
3312 QDF_STATUS
3313 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
3314 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
3315 			  bool is_unicast);
3316 
3317 /**
3318  * dp_get_pdev_for_mac_id() -  Return pdev for mac_id
3319  * @soc: handle to DP soc
3320  * @mac_id: MAC id
3321  *
3322  * Return: Return pdev corresponding to MAC
3323  */
3324 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
3325 
3326 QDF_STATUS
3327 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
3328 		   uint8_t *peer_mac,
3329 		   bool is_unicast, uint32_t *key);
3330 
3331 /**
3332  * dp_check_pdev_exists() - Validate pdev before use
3333  * @soc: dp soc handle
3334  * @data: pdev handle
3335  *
3336  * Return: 0 - success/invalid - failure
3337  */
3338 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
3339 
3340 /**
3341  * dp_update_delay_stats() - Update delay statistics in structure
3342  *				and fill min, max and avg delay
3343  * @tstats: tid tx stats
3344  * @rstats: tid rx stats
3345  * @delay: delay in ms
3346  * @tid: tid value
3347  * @mode: type of tx delay mode
3348  * @ring_id: ring number
3349  * @delay_in_us: flag to indicate whether the delay is in ms or us
3350  *
3351  * Return: none
3352  */
3353 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
3354 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
3355 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
3356 			   bool delay_in_us);
3357 
3358 /**
3359  * dp_print_ring_stats(): Print tail and head pointer
3360  * @pdev: DP_PDEV handle
3361  *
3362  * Return: void
3363  */
3364 void dp_print_ring_stats(struct dp_pdev *pdev);
3365 
3366 /**
3367  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
3368  * @soc: soc handle
3369  * @srng: srng handle
3370  * @ring_type: ring type
3371  *
3372  * Return: void
3373  */
3374 void
3375 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
3376 			    enum hal_ring_type ring_type);
3377 
3378 /**
3379  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
3380  * @pdev: DP pdev handle
3381  *
3382  * Return: void
3383  */
3384 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
3385 
3386 /**
3387  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
3388  * @soc: Soc handle
3389  *
3390  * Return: void
3391  */
3392 void dp_print_soc_cfg_params(struct dp_soc *soc);
3393 
3394 /**
3395  * dp_srng_get_str_from_hal_ring_type() - Return string name for a ring
3396  * @ring_type: Ring
3397  *
3398  * Return: char const pointer
3399  */
3400 const
3401 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
3402 
3403 /**
3404  * dp_txrx_path_stats() - Function to display dump stats
3405  * @soc: soc handle
3406  *
3407  * Return: none
3408  */
3409 void dp_txrx_path_stats(struct dp_soc *soc);
3410 
3411 /**
3412  * dp_print_per_ring_stats(): Packet count per ring
3413  * @soc: soc handle
3414  *
3415  * Return: None
3416  */
3417 void dp_print_per_ring_stats(struct dp_soc *soc);
3418 
3419 /**
3420  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
3421  * @pdev: DP PDEV handle
3422  *
3423  * Return: void
3424  */
3425 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
3426 
3427 /**
3428  * dp_print_rx_rates(): Print Rx rate stats
3429  * @vdev: DP_VDEV handle
3430  *
3431  * Return:void
3432  */
3433 void dp_print_rx_rates(struct dp_vdev *vdev);
3434 
3435 /**
3436  * dp_print_tx_rates(): Print tx rates
3437  * @vdev: DP_VDEV handle
3438  *
3439  * Return:void
3440  */
3441 void dp_print_tx_rates(struct dp_vdev *vdev);
3442 
3443 /**
3444  * dp_print_peer_stats():print peer stats
3445  * @peer: DP_PEER handle
3446  * @peer_stats: buffer holding peer stats
3447  *
3448  * return void
3449  */
3450 void dp_print_peer_stats(struct dp_peer *peer,
3451 			 struct cdp_peer_stats *peer_stats);
3452 
3453 /**
3454  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
3455  * @pdev: DP_PDEV Handle
3456  *
3457  * Return:void
3458  */
3459 void
3460 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
3461 
3462 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MCAST_MLO)
3463 /**
3464  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3465  * @vdev: DP_VDEV Handle
3466  *
3467  * Return:void
3468  */
3469 void
3470 dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev);
3471 #else
3472 /**
3473  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3474  * @vdev: DP_VDEV Handle
3475  *
3476  * Return:void
3477  */
3478 static inline
3479 void dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev)
3480 {
3481 }
3482 #endif
3483 
3484 /**
3485  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
3486  * @pdev: DP_PDEV Handle
3487  *
3488  * Return: void
3489  */
3490 void
3491 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
3492 
3493 /**
3494  * dp_print_soc_tx_stats(): Print SOC level  stats
3495  * @soc: DP_SOC Handle
3496  *
3497  * Return: void
3498  */
3499 void dp_print_soc_tx_stats(struct dp_soc *soc);
3500 
3501 #ifdef QCA_SUPPORT_DP_GLOBAL_CTX
3502 /**
3503  * dp_print_global_desc_count(): Print global desc in use
3504  *
3505  * Return: void
3506  */
3507 void dp_print_global_desc_count(void);
3508 #else
3509 /**
3510  * dp_print_global_desc_count(): Print global desc in use
3511  *
3512  * Return: void
3513  */
3514 static inline
3515 void dp_print_global_desc_count(void)
3516 {
3517 }
3518 #endif
3519 
3520 /**
3521  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
3522  * @soc: dp_soc handle
3523  *
3524  * Return: None
3525  */
3526 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
3527 
3528 /**
3529  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
3530  * @soc: dp_soc handle
3531  *
3532  * Return: None
3533  */
3534 
3535 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
3536 
3537 /* REO destination ring's watermark mask */
3538 #define DP_SRNG_WM_MASK_REO_DST  BIT(REO_DST)
3539 /* TX completion ring's watermark mask */
3540 #define DP_SRNG_WM_MASK_TX_COMP  BIT(WBM2SW_RELEASE)
3541 /* All srng's watermark mask */
3542 #define DP_SRNG_WM_MASK_ALL  0xFFFFFFFF
3543 
3544 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
3545 /**
3546  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
3547  *				  for all SRNGs
3548  * @soc: DP soc handle
3549  * @srng_mask: SRNGs mask for dumping usage watermark stats
3550  *
3551  * Return: None
3552  */
3553 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
3554 #else
3555 static inline
3556 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
3557 {
3558 }
3559 #endif
3560 
3561 /**
3562  * dp_print_soc_rx_stats() - Print SOC level Rx stats
3563  * @soc: DP_SOC Handle
3564  *
3565  * Return: void
3566  */
3567 void dp_print_soc_rx_stats(struct dp_soc *soc);
3568 
3569 /**
3570  * dp_get_mac_id_for_pdev() - Return mac corresponding to pdev for mac
3571  *
3572  * @mac_id: MAC id
3573  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3574  *
3575  * Single pdev using both MACs will operate on both MAC rings,
3576  * which is the case for MCL.
3577  * For WIN each PDEV will operate one ring, so index is zero.
3578  *
3579  */
3580 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
3581 {
3582 	if (mac_id && pdev_id) {
3583 		qdf_print("Both mac_id and pdev_id cannot be non zero");
3584 		QDF_BUG(0);
3585 		return 0;
3586 	}
3587 	return (mac_id + pdev_id);
3588 }
3589 
3590 /**
3591  * dp_get_lmac_id_for_pdev_id() - Return lmac id corresponding to host pdev id
3592  * @soc: soc pointer
3593  * @mac_id: MAC id
3594  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3595  *
3596  * For MCL, Single pdev using both MACs will operate on both MAC rings.
3597  *
3598  * For WIN, each PDEV will operate one ring.
3599  *
3600  */
3601 static inline int
3602 dp_get_lmac_id_for_pdev_id
3603 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
3604 {
3605 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3606 		if (mac_id && pdev_id) {
3607 			qdf_print("Both mac_id and pdev_id cannot be non zero");
3608 			QDF_BUG(0);
3609 			return 0;
3610 		}
3611 		return (mac_id + pdev_id);
3612 	}
3613 
3614 	return soc->pdev_list[pdev_id]->lmac_id;
3615 }
3616 
3617 /**
3618  * dp_get_pdev_for_lmac_id() - Return pdev pointer corresponding to lmac id
3619  * @soc: soc pointer
3620  * @lmac_id: LMAC id
3621  *
3622  * For MCL, Single pdev exists
3623  *
3624  * For WIN, each PDEV will operate one ring.
3625  *
3626  */
3627 static inline struct dp_pdev *
3628 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
3629 {
3630 	uint8_t i = 0;
3631 
3632 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3633 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
3634 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
3635 	}
3636 
3637 	/* Typically for MCL as there only 1 PDEV*/
3638 	return soc->pdev_list[0];
3639 }
3640 
3641 /**
3642  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
3643  *                                          corresponding to host pdev id
3644  * @soc: soc pointer
3645  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3646  *
3647  * Return: target pdev_id for host pdev id. For WIN, this is derived through
3648  * a two step process:
3649  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
3650  *    during mode switch)
3651  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
3652  *
3653  * For MCL, return the offset-1 translated mac_id
3654  */
3655 static inline int
3656 dp_calculate_target_pdev_id_from_host_pdev_id
3657 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3658 {
3659 	struct dp_pdev *pdev;
3660 
3661 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3662 		return DP_SW2HW_MACID(mac_for_pdev);
3663 
3664 	pdev = soc->pdev_list[mac_for_pdev];
3665 
3666 	/*non-MCL case, get original target_pdev mapping*/
3667 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
3668 }
3669 
3670 /**
3671  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
3672  *                                         to host pdev id
3673  * @soc: soc pointer
3674  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3675  *
3676  * Return: target pdev_id for host pdev id.
3677  * For WIN, return the value stored in pdev object.
3678  * For MCL, return the offset-1 translated mac_id.
3679  */
3680 static inline int
3681 dp_get_target_pdev_id_for_host_pdev_id
3682 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3683 {
3684 	struct dp_pdev *pdev;
3685 
3686 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3687 		return DP_SW2HW_MACID(mac_for_pdev);
3688 
3689 	pdev = soc->pdev_list[mac_for_pdev];
3690 
3691 	return pdev->target_pdev_id;
3692 }
3693 
3694 /**
3695  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
3696  *                                         to target pdev id
3697  * @soc: soc pointer
3698  * @pdev_id: pdev_id corresponding to target pdev
3699  *
3700  * Return: host pdev_id for target pdev id. For WIN, this is derived through
3701  * a two step process:
3702  * 1. Get lmac_id corresponding to target pdev_id
3703  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
3704  *
3705  * For MCL, return the 0-offset pdev_id
3706  */
3707 static inline int
3708 dp_get_host_pdev_id_for_target_pdev_id
3709 	(struct dp_soc *soc, uint32_t pdev_id)
3710 {
3711 	struct dp_pdev *pdev;
3712 	int lmac_id;
3713 
3714 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3715 		return DP_HW2SW_MACID(pdev_id);
3716 
3717 	/*non-MCL case, get original target_lmac mapping from target pdev*/
3718 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
3719 					  DP_HW2SW_MACID(pdev_id));
3720 
3721 	/*Get host pdev from lmac*/
3722 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
3723 
3724 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
3725 }
3726 
3727 /**
3728  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
3729  *
3730  * @soc: handle to DP soc
3731  * @mac_id: MAC id
3732  *
3733  * Single pdev using both MACs will operate on both MAC rings,
3734  * which is the case for MCL.
3735  * For WIN each PDEV will operate one ring, so index is zero.
3736  *
3737  */
3738 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
3739 {
3740 	/*
3741 	 * Single pdev using both MACs will operate on both MAC rings,
3742 	 * which is the case for MCL.
3743 	 */
3744 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3745 		return mac_id;
3746 
3747 	/* For WIN each PDEV will operate one ring, so index is zero. */
3748 	return 0;
3749 }
3750 
3751 /**
3752  * dp_is_subtype_data() - check if the frame subtype is data
3753  *
3754  * @frame_ctrl: Frame control field
3755  *
3756  * check the frame control field and verify if the packet
3757  * is a data packet.
3758  *
3759  * Return: true or false
3760  */
3761 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
3762 {
3763 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
3764 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
3765 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3766 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
3767 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3768 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
3769 		return true;
3770 	}
3771 
3772 	return false;
3773 }
3774 
3775 #ifdef WDI_EVENT_ENABLE
3776 /**
3777  * dp_h2t_cfg_stats_msg_send(): function to construct HTT message to pass to FW
3778  * @pdev: DP PDEV handle
3779  * @stats_type_upload_mask: stats type requested by user
3780  * @mac_id: Mac id number
3781  *
3782  * return: QDF STATUS
3783  */
3784 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3785 				uint32_t stats_type_upload_mask,
3786 				uint8_t mac_id);
3787 
3788 /**
3789  * dp_wdi_event_unsub() - WDI event unsubscribe
3790  * @soc: soc handle
3791  * @pdev_id: id of pdev
3792  * @event_cb_sub_handle: subscribed event handle
3793  * @event: Event to be unsubscribe
3794  *
3795  * Return: 0 for success. nonzero for failure.
3796  */
3797 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3798 		       wdi_event_subscribe *event_cb_sub_handle,
3799 		       uint32_t event);
3800 
3801 /**
3802  * dp_wdi_event_sub() - Subscribe WDI event
3803  * @soc: soc handle
3804  * @pdev_id: id of pdev
3805  * @event_cb_sub_handle: subscribe event handle
3806  * @event: Event to be subscribe
3807  *
3808  * Return: 0 for success. nonzero for failure.
3809  */
3810 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3811 		     wdi_event_subscribe *event_cb_sub_handle,
3812 		     uint32_t event);
3813 
3814 /**
3815  * dp_wdi_event_handler() - Event handler for WDI event
3816  * @event: wdi event number
3817  * @soc: soc handle
3818  * @data: pointer to data
3819  * @peer_id: peer id number
3820  * @status: HTT rx status
3821  * @pdev_id: id of pdev
3822  *
3823  * It will be called to register WDI event
3824  *
3825  * Return: None
3826  */
3827 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
3828 			  void *data, u_int16_t peer_id,
3829 			  int status, u_int8_t pdev_id);
3830 
3831 /**
3832  * dp_wdi_event_attach() - Attach wdi event
3833  * @txrx_pdev: DP pdev handle
3834  *
3835  * Return: 0 for success. nonzero for failure.
3836  */
3837 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
3838 
3839 /**
3840  * dp_wdi_event_detach() - Detach WDI event
3841  * @txrx_pdev: DP pdev handle
3842  *
3843  * Return: 0 for success. nonzero for failure.
3844  */
3845 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
3846 
3847 static inline void
3848 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
3849 			    void *cb_context,
3850 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3851 			    uint8_t pipe_id)
3852 {
3853 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
3854 
3855 	/* TODO: Temporary change to bypass HTC connection for this new
3856 	 * HIF pipe, which will be used for packet log and other high-
3857 	 * priority HTT messages. Proper HTC connection to be added
3858 	 * later once required FW changes are available
3859 	 */
3860 	hif_pipe_callbacks.rxCompletionHandler = callback;
3861 	hif_pipe_callbacks.Context = cb_context;
3862 	hif_update_pipe_callback(dp_soc->hif_handle,
3863 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
3864 }
3865 #else
3866 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3867 				     wdi_event_subscribe *event_cb_sub_handle,
3868 				     uint32_t event)
3869 {
3870 	return 0;
3871 }
3872 
3873 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3874 				   wdi_event_subscribe *event_cb_sub_handle,
3875 				   uint32_t event)
3876 {
3877 	return 0;
3878 }
3879 
3880 static inline
3881 void dp_wdi_event_handler(enum WDI_EVENT event,
3882 			  struct dp_soc *soc,
3883 			  void *data, u_int16_t peer_id,
3884 			  int status, u_int8_t pdev_id)
3885 {
3886 }
3887 
3888 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
3889 {
3890 	return 0;
3891 }
3892 
3893 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
3894 {
3895 	return 0;
3896 }
3897 
3898 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3899 		uint32_t stats_type_upload_mask, uint8_t mac_id)
3900 {
3901 	return 0;
3902 }
3903 
3904 static inline void
3905 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
3906 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3907 			    uint8_t pipe_id)
3908 {
3909 }
3910 #endif
3911 
3912 #ifdef VDEV_PEER_PROTOCOL_COUNT
3913 /**
3914  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3915  * @vdev: VDEV DP object
3916  * @nbuf: data packet
3917  * @txrx_peer: DP TXRX Peer object
3918  * @is_egress: whether egress or ingress
3919  * @is_rx: whether rx or tx
3920  *
3921  * This function updates the per-peer protocol counters
3922  * Return: void
3923  */
3924 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
3925 					    qdf_nbuf_t nbuf,
3926 					    struct dp_txrx_peer *txrx_peer,
3927 					    bool is_egress,
3928 					    bool is_rx);
3929 
3930 /**
3931  * dp_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3932  * @soc: SOC DP object
3933  * @vdev_id: vdev_id
3934  * @nbuf: data packet
3935  * @is_egress: whether egress or ingress
3936  * @is_rx: whether rx or tx
3937  *
3938  * This function updates the per-peer protocol counters
3939  *
3940  * Return: void
3941  */
3942 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
3943 				       int8_t vdev_id,
3944 				       qdf_nbuf_t nbuf,
3945 				       bool is_egress,
3946 				       bool is_rx);
3947 
3948 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3949 					       qdf_nbuf_t nbuf);
3950 
3951 #else
3952 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
3953 					       is_egress, is_rx)
3954 
3955 static inline
3956 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3957 					       qdf_nbuf_t nbuf)
3958 {
3959 }
3960 
3961 #endif
3962 
3963 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3964 /**
3965  * dp_tx_dump_flow_pool_info() - dump global_pool and flow_pool info
3966  * @soc_hdl: Handle to struct cdp_soc
3967  *
3968  * Return: none
3969  */
3970 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
3971 
3972 /**
3973  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
3974  * @soc: DP soc context
3975  *
3976  * Return: none
3977  */
3978 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3979 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3980 	bool force);
3981 #else
3982 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3983 {
3984 }
3985 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3986 
3987 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3988 static inline int
3989 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3990 {
3991 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3992 }
3993 
3994 static inline void
3995 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3996 {
3997 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3998 }
3999 
4000 #else
4001 static inline int
4002 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
4003 {
4004 	return hal_srng_access_start(soc, hal_ring_hdl);
4005 }
4006 
4007 static inline void
4008 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
4009 {
4010 	hal_srng_access_end(soc, hal_ring_hdl);
4011 }
4012 #endif
4013 
4014 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
4015 /**
4016  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
4017  * @int_ctx: pointer to DP interrupt context. This should not be NULL
4018  * @dp_soc: DP Soc handle
4019  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
4020  *                serviced
4021  *
4022  * Return: 0 on success; error on failure
4023  */
4024 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
4025 			 hal_ring_handle_t hal_ring_hdl);
4026 
4027 /**
4028  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
4029  * @int_ctx: pointer to DP interrupt context. This should not be NULL
4030  * @dp_soc: DP Soc handle
4031  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
4032  *                serviced
4033  *
4034  * Return: void
4035  */
4036 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
4037 			hal_ring_handle_t hal_ring_hdl);
4038 
4039 #else
4040 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
4041 				       struct dp_soc *dp_soc,
4042 				       hal_ring_handle_t hal_ring_hdl)
4043 {
4044 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4045 
4046 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
4047 }
4048 
4049 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
4050 				      struct dp_soc *dp_soc,
4051 				      hal_ring_handle_t hal_ring_hdl)
4052 {
4053 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4054 
4055 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
4056 }
4057 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
4058 
4059 #ifdef QCA_CACHED_RING_DESC
4060 /**
4061  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
4062  * @dp_soc: DP Soc handle
4063  * @hal_ring_hdl: opaque pointer to the HAL Destination Ring
4064  *
4065  * Return: HAL ring descriptor
4066  */
4067 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
4068 					 hal_ring_handle_t hal_ring_hdl)
4069 {
4070 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4071 
4072 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
4073 }
4074 
4075 /**
4076  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
4077  * descriptors
4078  * @dp_soc: DP Soc handle
4079  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
4080  * @num_entries: Entry count
4081  *
4082  * Return: None
4083  */
4084 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
4085 						hal_ring_handle_t hal_ring_hdl,
4086 						uint32_t num_entries)
4087 {
4088 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4089 
4090 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
4091 }
4092 #else
4093 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
4094 					 hal_ring_handle_t hal_ring_hdl)
4095 {
4096 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4097 
4098 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
4099 }
4100 
4101 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
4102 						hal_ring_handle_t hal_ring_hdl,
4103 						uint32_t num_entries)
4104 {
4105 }
4106 #endif /* QCA_CACHED_RING_DESC */
4107 
4108 #if defined(QCA_CACHED_RING_DESC) && \
4109 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
4110 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
4111 /**
4112  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
4113  * @hal_soc: HAL SOC handle
4114  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
4115  * @num_entries: Entry count
4116  *
4117  * Return: None
4118  */
4119 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
4120 					 hal_ring_handle_t hal_ring_hdl,
4121 					 uint32_t num_entries)
4122 {
4123 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
4124 }
4125 
4126 /**
4127  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
4128  *					 32 byte descriptor starting at
4129  *					 64 byte offset
4130  * @hal_soc: HAL SOC handle
4131  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
4132  * @num_entries: Entry count
4133  *
4134  * Return: None
4135  */
4136 static inline
4137 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
4138 					hal_ring_handle_t hal_ring_hdl,
4139 					uint32_t num_entries)
4140 {
4141 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
4142 						  num_entries);
4143 }
4144 #else
4145 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
4146 					 hal_ring_handle_t hal_ring_hdl,
4147 					 uint32_t num_entries)
4148 {
4149 	return NULL;
4150 }
4151 
4152 static inline
4153 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
4154 					hal_ring_handle_t hal_ring_hdl,
4155 					uint32_t num_entries)
4156 {
4157 	return NULL;
4158 }
4159 #endif
4160 
4161 #ifdef QCA_ENH_V3_STATS_SUPPORT
4162 /**
4163  * dp_pdev_print_delay_stats(): Print pdev level delay stats
4164  * @pdev: DP_PDEV handle
4165  *
4166  * Return:void
4167  */
4168 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
4169 
4170 /**
4171  * dp_pdev_print_tid_stats(): Print pdev level tid stats
4172  * @pdev: DP_PDEV handle
4173  *
4174  * Return:void
4175  */
4176 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
4177 
4178 /**
4179  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
4180  * @pdev: DP_PDEV handle
4181  *
4182  * Return:void
4183  */
4184 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
4185 #endif /* QCA_ENH_V3_STATS_SUPPORT */
4186 
4187 /**
4188  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
4189  * @soc_hdl: soc handle
4190  * @pdev_id: id of dp_pdev handle
4191  * @tid_stats: Pointer for cdp_tid_stats_intf
4192  *
4193  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
4194  */
4195 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4196 				 struct cdp_tid_stats_intf *tid_stats);
4197 
4198 /**
4199  * dp_soc_set_txrx_ring_map()
4200  * @soc: DP handler for soc
4201  *
4202  * Return: Void
4203  */
4204 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
4205 
4206 /**
4207  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
4208  * @vdev: DP vdev handle
4209  *
4210  * Return: struct cdp_vdev pointer
4211  */
4212 static inline
4213 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
4214 {
4215 	return (struct cdp_vdev *)vdev;
4216 }
4217 
4218 /**
4219  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
4220  * @pdev: DP pdev handle
4221  *
4222  * Return: struct cdp_pdev pointer
4223  */
4224 static inline
4225 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
4226 {
4227 	return (struct cdp_pdev *)pdev;
4228 }
4229 
4230 /**
4231  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
4232  * @psoc: DP psoc handle
4233  *
4234  * Return: struct cdp_soc pointer
4235  */
4236 static inline
4237 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
4238 {
4239 	return (struct cdp_soc *)psoc;
4240 }
4241 
4242 /**
4243  * dp_soc_to_cdp_soc_t() - typecast dp psoc to ol txrx soc handle
4244  * @psoc: DP psoc handle
4245  *
4246  * Return: struct cdp_soc_t pointer
4247  */
4248 static inline
4249 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
4250 {
4251 	return (struct cdp_soc_t *)psoc;
4252 }
4253 
4254 #if defined(WLAN_SUPPORT_RX_FLOW_TAG)
4255 /**
4256  * dp_rx_flow_get_fse_stats() - Retrieve a flow's statistics
4257  * @pdev: pdev handle
4258  * @rx_flow_info: flow information in the Rx FST
4259  * @stats: stats to update
4260  *
4261  * Return: Success when flow statistcs is updated, error on failure
4262  */
4263 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
4264 				    struct cdp_rx_flow_info *rx_flow_info,
4265 				    struct cdp_flow_stats *stats);
4266 
4267 /**
4268  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
4269  * @pdev: pdev handle
4270  * @rx_flow_info: DP flow parameters
4271  *
4272  * Return: Success when flow is deleted, error on failure
4273  */
4274 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
4275 				   struct cdp_rx_flow_info *rx_flow_info);
4276 
4277 /**
4278  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
4279  * @pdev: DP pdev instance
4280  * @rx_flow_info: DP flow parameters
4281  *
4282  * Return: Success when flow is added, no-memory or already exists on error
4283  */
4284 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
4285 				struct cdp_rx_flow_info *rx_flow_info);
4286 
4287 /**
4288  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
4289  * @soc: SoC handle
4290  * @pdev: Pdev handle
4291  *
4292  * Return: Handle to flow search table entry
4293  */
4294 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
4295 
4296 /**
4297  * dp_rx_fst_detach() - De-initialize Rx FST
4298  * @soc: SoC handle
4299  * @pdev: Pdev handle
4300  *
4301  * Return: None
4302  */
4303 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
4304 
4305 /**
4306  * dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
4307  * @pdev: pdev handle
4308  * @flow_id: flow index (truncated hash) in the Rx FST
4309  *
4310  * Return: Success when flow statistcs is updated, error on failure
4311  */
4312 QDF_STATUS
4313 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
4314 #endif
4315 
4316 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4317 /**
4318  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
4319  * @soc: SoC handle
4320  * @pdev: Pdev handle
4321  *
4322  * Return: Success when fst parameters are programmed in FW, error otherwise
4323  */
4324 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
4325 					struct dp_pdev *pdev);
4326 #endif
4327 
4328 /**
4329  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
4330  * @soc: SoC handle
4331  * @pdev: Pdev handle
4332  *
4333  * Return: Handle to flow search table entry
4334  */
4335 extern QDF_STATUS
4336 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4337 
4338 /**
4339  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
4340  * @soc: SoC handle
4341  * @pdev: Pdev handle
4342  *
4343  * Return: None
4344  */
4345 extern void
4346 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4347 
4348 /**
4349  * dp_vdev_get_ref() - API to take a reference for VDEV object
4350  *
4351  * @soc		: core DP soc context
4352  * @vdev	: DP vdev
4353  * @mod_id	: module id
4354  *
4355  * Return:	QDF_STATUS_SUCCESS if reference held successfully
4356  *		else QDF_STATUS_E_INVAL
4357  */
4358 static inline
4359 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
4360 			   enum dp_mod_id mod_id)
4361 {
4362 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
4363 		return QDF_STATUS_E_INVAL;
4364 
4365 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
4366 
4367 	return QDF_STATUS_SUCCESS;
4368 }
4369 
4370 /**
4371  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
4372  * @soc: core DP soc context
4373  * @vdev_id: vdev id from vdev object can be retrieved
4374  * @mod_id: module id which is requesting the reference
4375  *
4376  * Return: struct dp_vdev*: Pointer to DP vdev object
4377  */
4378 static inline struct dp_vdev *
4379 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
4380 		      enum dp_mod_id mod_id)
4381 {
4382 	struct dp_vdev *vdev = NULL;
4383 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
4384 		return NULL;
4385 
4386 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4387 	vdev = soc->vdev_id_map[vdev_id];
4388 
4389 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
4390 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4391 		return NULL;
4392 	}
4393 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4394 
4395 	return vdev;
4396 }
4397 
4398 /**
4399  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
4400  * @soc: core DP soc context
4401  * @pdev_id: pdev id from pdev object can be retrieved
4402  *
4403  * Return: struct dp_pdev*: Pointer to DP pdev object
4404  */
4405 static inline struct dp_pdev *
4406 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
4407 				   uint8_t pdev_id)
4408 {
4409 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
4410 		return NULL;
4411 
4412 	return soc->pdev_list[pdev_id];
4413 }
4414 
4415 /**
4416  * dp_get_peer_mac_list(): function to get peer mac list of vdev
4417  * @soc: Datapath soc handle
4418  * @vdev_id: vdev id
4419  * @newmac: Table of the clients mac
4420  * @mac_cnt: No. of MACs required
4421  * @limit: Limit the number of clients
4422  *
4423  * Return: no of clients
4424  */
4425 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
4426 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
4427 			      u_int16_t mac_cnt, bool limit);
4428 
4429 /**
4430  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
4431  *				       DBS check
4432  * @soc: DP SoC context
4433  * @max_mac_rings: Pointer to variable for No of MAC rings
4434  *
4435  * Return: None
4436  */
4437 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
4438 				     int *max_mac_rings);
4439 
4440 
4441 #if defined(WLAN_SUPPORT_RX_FISA)
4442 /**
4443  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
4444  * @soc:		DP SoC context
4445  * @num_entries:	Number of flow search entries
4446  * @cmem_ba_lo:		CMEM base address low
4447  * @cmem_ba_hi:		CMEM base address high
4448  *
4449  * Return: None
4450  */
4451 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4452 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
4453 
4454 /**
4455  * dp_fisa_config() - FISA config handler
4456  * @cdp_soc: CDP SoC handle
4457  * @pdev_id: PDEV ID
4458  * @config_id: FISA config ID
4459  * @cfg: FISA config msg data
4460  */
4461 QDF_STATUS dp_fisa_config(ol_txrx_soc_handle cdp_soc, uint8_t pdev_id,
4462 			  enum cdp_fisa_config_id config_id,
4463 			  union cdp_fisa_config *cfg);
4464 #else
4465 static inline void
4466 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4467 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
4468 {
4469 }
4470 #endif /* WLAN_SUPPORT_RX_FISA */
4471 
4472 #ifdef MAX_ALLOC_PAGE_SIZE
4473 /**
4474  * dp_set_max_page_size() - Set the max page size for hw link desc.
4475  * @pages: link desc page handle
4476  * @max_alloc_size: max_alloc_size
4477  *
4478  * For MCL the page size is set to OS defined value and for WIN
4479  * the page size is set to the max_alloc_size cfg ini
4480  * param.
4481  * This is to ensure that WIN gets contiguous memory allocations
4482  * as per requirement.
4483  *
4484  * Return: None
4485  */
4486 static inline
4487 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4488 			  uint32_t max_alloc_size)
4489 {
4490 	pages->page_size = qdf_page_size;
4491 }
4492 
4493 #else
4494 static inline
4495 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4496 			  uint32_t max_alloc_size)
4497 {
4498 	pages->page_size = max_alloc_size;
4499 }
4500 #endif /* MAX_ALLOC_PAGE_SIZE */
4501 
4502 /**
4503  * dp_get_next_index() - get the next entry to record an entry
4504  *			 in the history.
4505  * @curr_idx: Current index where the last entry is written.
4506  * @max_entries: Max number of entries in the history
4507  *
4508  * This function assumes that the max number os entries is a power of 2.
4509  *
4510  * Return: The index where the next entry is to be written.
4511  */
4512 
4513 static inline uint32_t dp_get_next_index(qdf_atomic_t *curr_idx,
4514 					 uint32_t max_entries)
4515 {
4516 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
4517 
4518 	return idx & (max_entries - 1);
4519 }
4520 
4521 /**
4522  * dp_history_get_next_index() - get the next entry to record an entry
4523  *				 in the history.
4524  * @curr_idx: Current index where the last entry is written.
4525  * @max_entries: Max number of entries in the history
4526  *
4527  * This function assumes that the max number os entries is a power of 2.
4528  *
4529  * Return: The index where the next entry is to be written.
4530  */
4531 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
4532 						 uint32_t max_entries)
4533 {
4534 	return dp_get_next_index(curr_idx, max_entries);
4535 }
4536 
4537 /**
4538  * dp_rx_skip_tlvs() - Skip TLVs len + L3 padding, save in nbuf->cb
4539  * @soc: Datapath soc handle
4540  * @nbuf: nbuf cb to be updated
4541  * @l3_padding: L3 padding
4542  *
4543  * Return: None
4544  */
4545 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
4546 
4547 #ifndef FEATURE_WDS
4548 static inline void
4549 dp_hmwds_ast_add_notify(struct dp_peer *peer,
4550 			uint8_t *mac_addr,
4551 			enum cdp_txrx_ast_entry_type type,
4552 			QDF_STATUS err,
4553 			bool is_peer_map)
4554 {
4555 }
4556 #endif
4557 
4558 #ifdef HTT_STATS_DEBUGFS_SUPPORT
4559 /**
4560  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4561  * debugfs for HTT stats
4562  * @pdev: dp pdev handle
4563  *
4564  * Return: QDF_STATUS
4565  */
4566 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
4567 
4568 /**
4569  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4570  * HTT stats
4571  * @pdev: dp pdev handle
4572  *
4573  * Return: none
4574  */
4575 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
4576 #else
4577 
4578 /**
4579  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4580  * debugfs for HTT stats
4581  * @pdev: dp pdev handle
4582  *
4583  * Return: QDF_STATUS
4584  */
4585 static inline QDF_STATUS
4586 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
4587 {
4588 	return QDF_STATUS_SUCCESS;
4589 }
4590 
4591 /**
4592  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4593  * HTT stats
4594  * @pdev: dp pdev handle
4595  *
4596  * Return: none
4597  */
4598 static inline void
4599 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
4600 {
4601 }
4602 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
4603 
4604 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4605 /**
4606  * dp_soc_swlm_attach() - attach the software latency manager resources
4607  * @soc: Datapath global soc handle
4608  *
4609  * Return: QDF_STATUS
4610  */
4611 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
4612 {
4613 	return QDF_STATUS_SUCCESS;
4614 }
4615 
4616 /**
4617  * dp_soc_swlm_detach() - detach the software latency manager resources
4618  * @soc: Datapath global soc handle
4619  *
4620  * Return: QDF_STATUS
4621  */
4622 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
4623 {
4624 	return QDF_STATUS_SUCCESS;
4625 }
4626 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4627 
4628 #ifndef WLAN_DP_PROFILE_SUPPORT
4629 static inline void wlan_dp_soc_cfg_sync_profile(struct cdp_soc_t *cdp_soc) {}
4630 
4631 static inline void wlan_dp_pdev_cfg_sync_profile(struct cdp_soc_t *cdp_soc,
4632 						 uint8_t pdev_id) {}
4633 #endif
4634 
4635 /**
4636  * dp_get_peer_id(): function to get peer id by mac
4637  * @soc: Datapath soc handle
4638  * @vdev_id: vdev id
4639  * @mac: Peer mac address
4640  *
4641  * Return: valid peer id on success
4642  *         HTT_INVALID_PEER on failure
4643  */
4644 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
4645 
4646 #ifdef QCA_SUPPORT_WDS_EXTENDED
4647 /**
4648  * dp_wds_ext_set_peer_rx(): function to set peer rx handler
4649  * @soc: Datapath soc handle
4650  * @vdev_id: vdev id
4651  * @mac: Peer mac address
4652  * @rx: rx function pointer
4653  * @osif_peer: OSIF peer handle
4654  *
4655  * Return: QDF_STATUS_SUCCESS on success
4656  *         QDF_STATUS_E_INVAL if peer is not found
4657  *         QDF_STATUS_E_ALREADY if rx is already set/unset
4658  */
4659 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
4660 				  uint8_t vdev_id,
4661 				  uint8_t *mac,
4662 				  ol_txrx_rx_fp rx,
4663 				  ol_osif_peer_handle osif_peer);
4664 
4665 /**
4666  * dp_wds_ext_get_peer_osif_handle(): function to get peer osif handle
4667  * @soc: Datapath soc handle
4668  * @vdev_id: vdev id
4669  * @mac: Peer mac address
4670  * @osif_peer: OSIF peer handle
4671  *
4672  * Return: QDF_STATUS_SUCCESS on success
4673  *         QDF_STATUS_E_INVAL if peer is not found
4674  */
4675 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
4676 				ol_txrx_soc_handle soc,
4677 				uint8_t vdev_id,
4678 				uint8_t *mac,
4679 				ol_osif_peer_handle *osif_peer);
4680 
4681 /**
4682  * dp_wds_ext_set_peer_bit(): function to set wds-ext peer bit
4683  * @soc: Datapath soc handle
4684  * @mac: Peer mac address
4685  *
4686  * Return: QDF_STATUS_SUCCESS on success
4687  *         QDF_STATUS_E_INVAL if peer is not found
4688  */
4689 QDF_STATUS dp_wds_ext_set_peer_bit(ol_txrx_soc_handle soc, uint8_t *mac);
4690 
4691 #endif /* QCA_SUPPORT_WDS_EXTENDED */
4692 
4693 #ifdef DP_MEM_PRE_ALLOC
4694 
4695 /**
4696  * dp_context_alloc_mem() - allocate memory for DP context
4697  * @soc: datapath soc handle
4698  * @ctxt_type: DP context type
4699  * @ctxt_size: DP context size
4700  *
4701  * Return: DP context address
4702  */
4703 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4704 			   size_t ctxt_size);
4705 
4706 /**
4707  * dp_context_free_mem() - Free memory of DP context
4708  * @soc: datapath soc handle
4709  * @ctxt_type: DP context type
4710  * @vaddr: Address of context memory
4711  *
4712  * Return: None
4713  */
4714 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4715 			 void *vaddr);
4716 
4717 /**
4718  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
4719  * @soc: datapath soc handle
4720  * @desc_type: memory request source type
4721  * @pages: multi page information storage
4722  * @element_size: each element size
4723  * @element_num: total number of elements should be allocated
4724  * @memctxt: memory context
4725  * @cacheable: coherent memory or cacheable memory
4726  *
4727  * This function is a wrapper for memory allocation over multiple
4728  * pages, if dp prealloc method is registered, then will try prealloc
4729  * firstly. if prealloc failed, fall back to regular way over
4730  * qdf_mem_multi_pages_alloc().
4731  *
4732  * Return: None
4733  */
4734 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4735 				   enum qdf_dp_desc_type desc_type,
4736 				   struct qdf_mem_multi_page_t *pages,
4737 				   size_t element_size,
4738 				   uint32_t element_num,
4739 				   qdf_dma_context_t memctxt,
4740 				   bool cacheable);
4741 
4742 /**
4743  * dp_desc_multi_pages_mem_free() - free multiple pages memory
4744  * @soc: datapath soc handle
4745  * @desc_type: memory request source type
4746  * @pages: multi page information storage
4747  * @memctxt: memory context
4748  * @cacheable: coherent memory or cacheable memory
4749  *
4750  * This function is a wrapper for multiple pages memory free,
4751  * if memory is got from prealloc pool, put it back to pool.
4752  * otherwise free by qdf_mem_multi_pages_free().
4753  *
4754  * Return: None
4755  */
4756 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4757 				  enum qdf_dp_desc_type desc_type,
4758 				  struct qdf_mem_multi_page_t *pages,
4759 				  qdf_dma_context_t memctxt,
4760 				  bool cacheable);
4761 
4762 #else
4763 static inline
4764 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4765 			   size_t ctxt_size)
4766 {
4767 	return qdf_mem_malloc(ctxt_size);
4768 }
4769 
4770 static inline
4771 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4772 			 void *vaddr)
4773 {
4774 	qdf_mem_free(vaddr);
4775 }
4776 
4777 static inline
4778 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4779 				   enum qdf_dp_desc_type desc_type,
4780 				   struct qdf_mem_multi_page_t *pages,
4781 				   size_t element_size,
4782 				   uint32_t element_num,
4783 				   qdf_dma_context_t memctxt,
4784 				   bool cacheable)
4785 {
4786 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
4787 				  element_num, memctxt, cacheable);
4788 }
4789 
4790 static inline
4791 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4792 				  enum qdf_dp_desc_type desc_type,
4793 				  struct qdf_mem_multi_page_t *pages,
4794 				  qdf_dma_context_t memctxt,
4795 				  bool cacheable)
4796 {
4797 	qdf_mem_multi_pages_free(soc->osdev, pages,
4798 				 memctxt, cacheable);
4799 }
4800 #endif
4801 
4802 /**
4803  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
4804  *					  history.
4805  * @index: atomic index
4806  * @num_entries_per_slot: Number of entries per slot
4807  * @allocated: is allocated or not
4808  * @entry: pointers to array of records
4809  */
4810 struct dp_frag_history_opaque_atomic {
4811 	qdf_atomic_t index;
4812 	uint16_t num_entries_per_slot;
4813 	uint16_t allocated;
4814 	void *entry[0];
4815 };
4816 
4817 static inline QDF_STATUS
4818 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
4819 			   uint32_t max_slots, uint32_t max_entries_per_slot,
4820 			   uint32_t entry_size,
4821 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
4822 {
4823 	struct dp_frag_history_opaque_atomic *history =
4824 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4825 	size_t alloc_size = max_entries_per_slot * entry_size;
4826 	int i;
4827 
4828 	for (i = 0; i < max_slots; i++) {
4829 		if (attempt_prealloc)
4830 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
4831 								 alloc_size);
4832 		else
4833 			history->entry[i] = qdf_mem_malloc(alloc_size);
4834 
4835 		if (!history->entry[i])
4836 			goto exit;
4837 	}
4838 
4839 	qdf_atomic_init(&history->index);
4840 	history->allocated = 1;
4841 	history->num_entries_per_slot = max_entries_per_slot;
4842 
4843 	return QDF_STATUS_SUCCESS;
4844 exit:
4845 	for (i = i - 1; i >= 0; i--) {
4846 		if (attempt_prealloc)
4847 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4848 		else
4849 			qdf_mem_free(history->entry[i]);
4850 	}
4851 
4852 	return QDF_STATUS_E_NOMEM;
4853 }
4854 
4855 static inline
4856 void dp_soc_frag_history_detach(struct dp_soc *soc,
4857 				void *history_hdl, uint32_t max_slots,
4858 				bool attempt_prealloc,
4859 				enum dp_ctxt_type ctxt_type)
4860 {
4861 	struct dp_frag_history_opaque_atomic *history =
4862 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4863 	int i;
4864 
4865 	for (i = 0; i < max_slots; i++) {
4866 		if (attempt_prealloc)
4867 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4868 		else
4869 			qdf_mem_free(history->entry[i]);
4870 	}
4871 
4872 	history->allocated = 0;
4873 }
4874 
4875 /**
4876  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
4877  *					entry in a fragmented history with
4878  *					index being atomic.
4879  * @curr_idx: address of the current index where the last entry was written
4880  * @next_idx: pointer to update the next index
4881  * @slot: pointer to update the history slot to be selected
4882  * @slot_shift: BITwise shift mask for slot (in index)
4883  * @max_entries_per_slot: Max number of entries in a slot of history
4884  * @max_entries: Total number of entries in the history (sum of all slots)
4885  *
4886  * This function assumes that the "max_entries_per_slot" and "max_entries"
4887  * are a power-of-2.
4888  *
4889  * Return: None
4890  */
4891 static inline void
4892 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
4893 				 uint16_t *slot, uint32_t slot_shift,
4894 				 uint32_t max_entries_per_slot,
4895 				 uint32_t max_entries)
4896 {
4897 	uint32_t idx;
4898 
4899 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
4900 
4901 	*slot = idx >> slot_shift;
4902 	*next_idx = idx & (max_entries_per_slot - 1);
4903 }
4904 
4905 #ifdef FEATURE_RUNTIME_PM
4906 /**
4907  * dp_runtime_get() - Get dp runtime refcount
4908  * @soc: Datapath soc handle
4909  *
4910  * Get dp runtime refcount by increment of an atomic variable, which can block
4911  * dp runtime resume to wait to flush pending tx by runtime suspend.
4912  *
4913  * Return: Current refcount
4914  */
4915 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4916 {
4917 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
4918 }
4919 
4920 /**
4921  * dp_runtime_put() - Return dp runtime refcount
4922  * @soc: Datapath soc handle
4923  *
4924  * Return dp runtime refcount by decrement of an atomic variable, allow dp
4925  * runtime resume finish.
4926  *
4927  * Return: Current refcount
4928  */
4929 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4930 {
4931 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
4932 }
4933 
4934 /**
4935  * dp_runtime_get_refcount() - Get dp runtime refcount
4936  * @soc: Datapath soc handle
4937  *
4938  * Get dp runtime refcount by returning an atomic variable
4939  *
4940  * Return: Current refcount
4941  */
4942 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
4943 {
4944 	return qdf_atomic_read(&soc->dp_runtime_refcount);
4945 }
4946 
4947 /**
4948  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
4949  * @soc: Datapath soc handle
4950  *
4951  * Return: QDF_STATUS
4952  */
4953 static inline void dp_runtime_init(struct dp_soc *soc)
4954 {
4955 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
4956 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
4957 	qdf_atomic_init(&soc->dp_runtime_refcount);
4958 }
4959 
4960 /**
4961  * dp_runtime_deinit() - Deinit DP related runtime PM clients
4962  *
4963  * Return: None
4964  */
4965 static inline void dp_runtime_deinit(void)
4966 {
4967 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
4968 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
4969 }
4970 
4971 /**
4972  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
4973  * @soc: Datapath soc handle
4974  *
4975  * Return: None
4976  */
4977 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4978 {
4979 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
4980 
4981 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4982 }
4983 #else
4984 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4985 {
4986 	return 0;
4987 }
4988 
4989 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4990 {
4991 	return 0;
4992 }
4993 
4994 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4995 {
4996 	return QDF_STATUS_SUCCESS;
4997 }
4998 
4999 static inline void dp_runtime_deinit(void)
5000 {
5001 }
5002 
5003 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
5004 {
5005 }
5006 #endif
5007 
5008 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
5009 {
5010 	if (soc->cdp_soc.ol_ops->get_con_mode)
5011 		return soc->cdp_soc.ol_ops->get_con_mode();
5012 
5013 	return QDF_GLOBAL_MAX_MODE;
5014 }
5015 
5016 /**
5017  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
5018  *				processing
5019  * @pdev: Datapath PDEV handle
5020  *
5021  */
5022 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
5023 
5024 /**
5025  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
5026  *				processing
5027  * @pdev: Datapath PDEV handle
5028  *
5029  * Return: QDF_STATUS_SUCCESS: Success
5030  *         QDF_STATUS_E_NOMEM: Error
5031  */
5032 
5033 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
5034 
5035 /**
5036  * dp_peer_flush_frags() - Flush all fragments for a particular
5037  *  peer
5038  * @soc_hdl: data path soc handle
5039  * @vdev_id: vdev id
5040  * @peer_mac: peer mac address
5041  *
5042  * Return: None
5043  */
5044 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5045 			 uint8_t *peer_mac);
5046 
5047 /**
5048  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
5049  * @soc: pointer to dp_soc handle
5050  *
5051  * Return:
5052  */
5053 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
5054 
5055 /**
5056  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
5057  * @soc_hdl: soc handle
5058  * @soc_stats: buffer to hold the values
5059  *
5060  * Return: QDF_STATUS_SUCCESS: Success
5061  *         QDF_STATUS_E_FAILURE: Error
5062  */
5063 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
5064 				 struct cdp_soc_stats *soc_stats);
5065 
5066 /**
5067  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
5068  * @soc_hdl: soc handle
5069  * @vdev_id: id of vdev handle
5070  * @peer_mac: mac of DP_PEER handle
5071  * @delay_stats: pointer to delay stats array
5072  *
5073  * Return: QDF_STATUS_SUCCESS: Success
5074  *         QDF_STATUS_E_FAILURE: Error
5075  */
5076 QDF_STATUS
5077 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5078 			     uint8_t *peer_mac,
5079 			     struct cdp_delay_tid_stats *delay_stats);
5080 
5081 /**
5082  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
5083  * @soc_hdl: soc handle
5084  * @pdev_id: id of pdev handle
5085  * @vdev_id: id of vdev handle
5086  * @peer_mac: mac of DP_PEER handle
5087  * @tid_stats: pointer to jitter stats array
5088  *
5089  * Return: QDF_STATUS_SUCCESS: Success
5090  *         QDF_STATUS_E_FAILURE: Error
5091  */
5092 QDF_STATUS
5093 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5094 			      uint8_t vdev_id, uint8_t *peer_mac,
5095 			      struct cdp_peer_tid_stats *tid_stats);
5096 
5097 /**
5098  * dp_peer_get_tx_capture_stats() - to get peer Tx Capture stats
5099  * @soc_hdl: soc handle
5100  * @vdev_id: id of vdev handle
5101  * @peer_mac: mac of DP_PEER handle
5102  * @stats: pointer to peer tx capture stats
5103  *
5104  * Return: QDF_STATUS_SUCCESS: Success
5105  *         QDF_STATUS_E_FAILURE: Error
5106  */
5107 QDF_STATUS
5108 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
5109 			     uint8_t vdev_id, uint8_t *peer_mac,
5110 			     struct cdp_peer_tx_capture_stats *stats);
5111 
5112 /**
5113  * dp_pdev_get_tx_capture_stats() - to get pdev Tx Capture stats
5114  * @soc_hdl: soc handle
5115  * @pdev_id: id of pdev handle
5116  * @stats: pointer to pdev tx capture stats
5117  *
5118  * Return: QDF_STATUS_SUCCESS: Success
5119  *         QDF_STATUS_E_FAILURE: Error
5120  */
5121 QDF_STATUS
5122 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5123 			     struct cdp_pdev_tx_capture_stats *stats);
5124 
5125 #ifdef HW_TX_DELAY_STATS_ENABLE
5126 /**
5127  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
5128  *  is enabled for vdev
5129  * @vdev: dp vdev
5130  *
5131  * Return: true if tx delay stats is enabled for vdev else false
5132  */
5133 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
5134 {
5135 	return vdev->hw_tx_delay_stats_enabled;
5136 }
5137 
5138 /**
5139  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
5140  *  for pdev
5141  * @soc: dp soc
5142  *
5143  * Return: None
5144  */
5145 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
5146 
5147 /**
5148  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
5149  * @soc: soc handle
5150  *
5151  * Return: None
5152  */
5153 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
5154 #else
5155 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
5156 {
5157 	return 0;
5158 }
5159 
5160 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
5161 {
5162 }
5163 
5164 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
5165 {
5166 }
5167 #endif
5168 
5169 static inline void
5170 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
5171 {
5172 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
5173 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
5174 			      LRO_IPV4_SEED_ARR_SZ));
5175 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
5176 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
5177 			      LRO_IPV6_SEED_ARR_SZ));
5178 }
5179 
5180 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
5181 /**
5182  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
5183  * @soc_hdl: soc handle
5184  * @pdev_id: id of pdev handle
5185  * @stats: pointer to pdev telemetry stats
5186  *
5187  * Return: QDF_STATUS_SUCCESS: Success
5188  *         QDF_STATUS_E_FAILURE: Error
5189  */
5190 QDF_STATUS
5191 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5192 			    struct cdp_pdev_telemetry_stats *stats);
5193 
5194 /**
5195  * dp_get_peer_telemetry_stats() - API to get peer telemetry stats
5196  * @soc_hdl: soc handle
5197  * @addr: peer mac
5198  * @stats: pointer to peer telemetry stats
5199  *
5200  * Return: QDF_STATUS_SUCCESS: Success
5201  *         QDF_STATUS_E_FAILURE: Error
5202  */
5203 QDF_STATUS
5204 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
5205 			    struct cdp_peer_telemetry_stats *stats);
5206 
5207 /**
5208  * dp_get_peer_deter_stats() - API to get peer deterministic stats
5209  * @soc_hdl: soc handle
5210  * @vdev_id: id of vdev handle
5211  * @addr: peer mac
5212  * @stats: pointer to peer deterministic stats
5213  *
5214  * Return: QDF_STATUS_SUCCESS: Success
5215  *         QDF_STATUS_E_FAILURE: Error
5216  */
5217 QDF_STATUS
5218 dp_get_peer_deter_stats(struct cdp_soc_t *soc_hdl,
5219 			uint8_t vdev_id,
5220 			uint8_t *addr,
5221 			struct cdp_peer_deter_stats *stats);
5222 
5223 /**
5224  * dp_get_pdev_deter_stats() - API to get pdev deterministic stats
5225  * @soc_hdl: soc handle
5226  * @pdev_id: id of pdev handle
5227  * @stats: pointer to pdev deterministic stats
5228  *
5229  * Return: QDF_STATUS_SUCCESS: Success
5230  *         QDF_STATUS_E_FAILURE: Error
5231  */
5232 QDF_STATUS
5233 dp_get_pdev_deter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5234 			struct cdp_pdev_deter_stats *stats);
5235 
5236 /**
5237  * dp_update_pdev_chan_util_stats() - API to update channel utilization stats
5238  * @soc_hdl: soc handle
5239  * @pdev_id: id of pdev handle
5240  * @ch_util: Pointer to channel util stats
5241  *
5242  * Return: QDF_STATUS_SUCCESS: Success
5243  *         QDF_STATUS_E_FAILURE: Error
5244  */
5245 QDF_STATUS
5246 dp_update_pdev_chan_util_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5247 			       struct cdp_pdev_chan_util_stats *ch_util);
5248 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
5249 
5250 #ifdef CONNECTIVITY_PKTLOG
5251 /**
5252  * dp_tx_send_pktlog() - send tx packet log
5253  * @soc: soc handle
5254  * @pdev: pdev handle
5255  * @tx_desc: TX software descriptor
5256  * @nbuf: nbuf
5257  * @status: status of tx packet
5258  *
5259  * This function is used to send tx packet for logging
5260  *
5261  * Return: None
5262  *
5263  */
5264 static inline
5265 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5266 		       struct dp_tx_desc_s *tx_desc,
5267 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5268 {
5269 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
5270 
5271 	if (qdf_unlikely(packetdump_cb) &&
5272 	    dp_tx_frm_std == tx_desc->frm_type) {
5273 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5274 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
5275 	}
5276 }
5277 
5278 /**
5279  * dp_rx_send_pktlog() - send rx packet log
5280  * @soc: soc handle
5281  * @pdev: pdev handle
5282  * @nbuf: nbuf
5283  * @status: status of rx packet
5284  *
5285  * This function is used to send rx packet for logging
5286  *
5287  * Return: None
5288  *
5289  */
5290 static inline
5291 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5292 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5293 {
5294 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5295 
5296 	if (qdf_unlikely(packetdump_cb)) {
5297 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5298 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5299 			      nbuf, status, QDF_RX_DATA_PKT);
5300 	}
5301 }
5302 
5303 /**
5304  * dp_rx_err_send_pktlog() - send rx error packet log
5305  * @soc: soc handle
5306  * @pdev: pdev handle
5307  * @mpdu_desc_info: MPDU descriptor info
5308  * @nbuf: nbuf
5309  * @status: status of rx packet
5310  * @set_pktlen: weither to set packet length
5311  *
5312  * This API should only be called when we have not removed
5313  * Rx TLV from head, and head is pointing to rx_tlv
5314  *
5315  * This function is used to send rx packet from error path
5316  * for logging for which rx packet tlv is not removed.
5317  *
5318  * Return: None
5319  *
5320  */
5321 static inline
5322 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5323 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5324 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5325 			   bool set_pktlen)
5326 {
5327 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5328 	qdf_size_t skip_size;
5329 	uint16_t msdu_len, nbuf_len;
5330 	uint8_t *rx_tlv_hdr;
5331 	struct hal_rx_msdu_metadata msdu_metadata;
5332 	uint16_t buf_size;
5333 
5334 	buf_size = wlan_cfg_rx_buffer_size(soc->wlan_cfg_ctx);
5335 
5336 	if (qdf_unlikely(packetdump_cb)) {
5337 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
5338 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
5339 							  rx_tlv_hdr);
5340 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
5341 					 &msdu_metadata);
5342 
5343 		if (mpdu_desc_info->bar_frame ||
5344 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
5345 			skip_size = soc->rx_pkt_tlv_size;
5346 		else
5347 			skip_size = soc->rx_pkt_tlv_size +
5348 					msdu_metadata.l3_hdr_pad;
5349 
5350 		if (set_pktlen) {
5351 			msdu_len = nbuf_len + skip_size;
5352 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len, buf_size));
5353 		}
5354 
5355 		qdf_nbuf_pull_head(nbuf, skip_size);
5356 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5357 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5358 			      nbuf, status, QDF_RX_DATA_PKT);
5359 		qdf_nbuf_push_head(nbuf, skip_size);
5360 	}
5361 }
5362 
5363 #else
5364 static inline
5365 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5366 		       struct dp_tx_desc_s *tx_desc,
5367 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5368 {
5369 }
5370 
5371 static inline
5372 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5373 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5374 {
5375 }
5376 
5377 static inline
5378 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5379 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5380 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5381 			   bool set_pktlen)
5382 {
5383 }
5384 #endif
5385 
5386 /**
5387  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
5388  * @soc  : Data path soc handle
5389  * @pdev : PDEV handle
5390  *
5391  * Return: None
5392  */
5393 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
5394 
5395 #ifdef FEATURE_DIRECT_LINK
5396 /**
5397  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
5398  * @soc_hdl: DP SOC handle
5399  * @pdev_id: pdev id
5400  *
5401  * Return: Handle to SRNG
5402  */
5403 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5404 						 uint8_t pdev_id);
5405 
5406 /**
5407  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
5408  *  pdev
5409  * @soc_hdl: DP SOC handle
5410  * @pdev_id: pdev id
5411  *
5412  * Return: None
5413  */
5414 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5415 					uint8_t pdev_id);
5416 #else
5417 static inline
5418 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5419 						 uint8_t pdev_id)
5420 {
5421 	return NULL;
5422 }
5423 
5424 static inline
5425 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5426 					uint8_t pdev_id)
5427 {
5428 }
5429 #endif
5430 
5431 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
5432 static inline
5433 void dp_cfg_event_record(struct dp_soc *soc,
5434 			 enum dp_cfg_event_type event,
5435 			 union dp_cfg_event_desc *cfg_event_desc)
5436 {
5437 	struct dp_cfg_event_history *cfg_event_history =
5438 						&soc->cfg_event_history;
5439 	struct dp_cfg_event *entry;
5440 	uint32_t idx;
5441 	uint16_t slot;
5442 
5443 	dp_get_frag_hist_next_atomic_idx(&cfg_event_history->index, &idx,
5444 					 &slot,
5445 					 DP_CFG_EVT_HIST_SLOT_SHIFT,
5446 					 DP_CFG_EVT_HIST_PER_SLOT_MAX,
5447 					 DP_CFG_EVT_HISTORY_SIZE);
5448 
5449 	entry = &cfg_event_history->entry[slot][idx];
5450 
5451 	entry->timestamp = qdf_get_log_timestamp();
5452 	entry->type = event;
5453 	qdf_mem_copy(&entry->event_desc, cfg_event_desc,
5454 		     sizeof(entry->event_desc));
5455 }
5456 
5457 static inline void
5458 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5459 			     struct dp_vdev *vdev)
5460 {
5461 	union dp_cfg_event_desc cfg_evt_desc = {0};
5462 	struct dp_vdev_attach_detach_desc *vdev_evt =
5463 						&cfg_evt_desc.vdev_evt;
5464 
5465 	if (qdf_unlikely(event != DP_CFG_EVENT_VDEV_ATTACH &&
5466 			 event != DP_CFG_EVENT_VDEV_UNREF_DEL &&
5467 			 event != DP_CFG_EVENT_VDEV_DETACH)) {
5468 		qdf_assert_always(0);
5469 		return;
5470 	}
5471 
5472 	vdev_evt->vdev = vdev;
5473 	vdev_evt->vdev_id = vdev->vdev_id;
5474 	vdev_evt->ref_count = qdf_atomic_read(&vdev->ref_cnt);
5475 	vdev_evt->mac_addr = vdev->mac_addr;
5476 
5477 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5478 }
5479 
5480 static inline void
5481 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5482 			     struct dp_peer *peer, struct dp_vdev *vdev,
5483 			     uint8_t is_reuse)
5484 {
5485 	union dp_cfg_event_desc cfg_evt_desc = {0};
5486 	struct dp_peer_cmn_ops_desc *peer_evt = &cfg_evt_desc.peer_cmn_evt;
5487 
5488 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_CREATE &&
5489 			 event != DP_CFG_EVENT_PEER_DELETE &&
5490 			 event != DP_CFG_EVENT_PEER_UNREF_DEL)) {
5491 		qdf_assert_always(0);
5492 		return;
5493 	}
5494 
5495 	peer_evt->peer = peer;
5496 	peer_evt->vdev = vdev;
5497 	peer_evt->vdev_id = vdev->vdev_id;
5498 	peer_evt->is_reuse = is_reuse;
5499 	peer_evt->peer_ref_count = qdf_atomic_read(&peer->ref_cnt);
5500 	peer_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5501 	peer_evt->mac_addr = peer->mac_addr;
5502 	peer_evt->vdev_mac_addr = vdev->mac_addr;
5503 
5504 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5505 }
5506 
5507 static inline void
5508 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5509 					enum dp_cfg_event_type event,
5510 					struct dp_peer *mld_peer,
5511 					struct dp_peer *link_peer,
5512 					uint8_t idx, uint8_t result)
5513 {
5514 	union dp_cfg_event_desc cfg_evt_desc = {0};
5515 	struct dp_mlo_add_del_link_desc *mlo_link_delink_evt =
5516 					&cfg_evt_desc.mlo_link_delink_evt;
5517 
5518 	if (qdf_unlikely(event != DP_CFG_EVENT_MLO_ADD_LINK &&
5519 			 event != DP_CFG_EVENT_MLO_DEL_LINK)) {
5520 		qdf_assert_always(0);
5521 		return;
5522 	}
5523 
5524 	mlo_link_delink_evt->link_peer = link_peer;
5525 	mlo_link_delink_evt->mld_peer = mld_peer;
5526 	mlo_link_delink_evt->link_mac_addr = link_peer->mac_addr;
5527 	mlo_link_delink_evt->mld_mac_addr = mld_peer->mac_addr;
5528 	mlo_link_delink_evt->num_links = mld_peer->num_links;
5529 	mlo_link_delink_evt->action_result = result;
5530 	mlo_link_delink_evt->idx = idx;
5531 
5532 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5533 }
5534 
5535 static inline void
5536 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5537 					      struct dp_peer *mld_peer,
5538 					      struct dp_vdev *prev_vdev,
5539 					      struct dp_vdev *new_vdev)
5540 {
5541 	union dp_cfg_event_desc cfg_evt_desc = {0};
5542 	struct dp_mlo_setup_vdev_update_desc *vdev_update_evt =
5543 					&cfg_evt_desc.mlo_setup_vdev_update;
5544 
5545 	vdev_update_evt->mld_peer = mld_peer;
5546 	vdev_update_evt->prev_vdev = prev_vdev;
5547 	vdev_update_evt->new_vdev = new_vdev;
5548 
5549 	dp_cfg_event_record(soc, DP_CFG_EVENT_MLO_SETUP_VDEV_UPDATE,
5550 			    &cfg_evt_desc);
5551 }
5552 
5553 static inline void
5554 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5555 				       enum dp_cfg_event_type event,
5556 				       struct dp_peer *peer,
5557 				       uint8_t *mac_addr,
5558 				       uint8_t is_ml_peer,
5559 				       uint16_t peer_id, uint16_t ml_peer_id,
5560 				       uint16_t hw_peer_id, uint8_t vdev_id)
5561 {
5562 	union dp_cfg_event_desc cfg_evt_desc = {0};
5563 	struct dp_rx_peer_map_unmap_desc *peer_map_unmap_evt =
5564 					&cfg_evt_desc.peer_map_unmap_evt;
5565 
5566 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_MAP &&
5567 			 event != DP_CFG_EVENT_PEER_UNMAP &&
5568 			 event != DP_CFG_EVENT_MLO_PEER_MAP &&
5569 			 event != DP_CFG_EVENT_MLO_PEER_UNMAP)) {
5570 		qdf_assert_always(0);
5571 		return;
5572 	}
5573 
5574 	peer_map_unmap_evt->peer_id = peer_id;
5575 	peer_map_unmap_evt->ml_peer_id = ml_peer_id;
5576 	peer_map_unmap_evt->hw_peer_id = hw_peer_id;
5577 	peer_map_unmap_evt->vdev_id = vdev_id;
5578 	/* Peer may be NULL at times, but its not an issue. */
5579 	peer_map_unmap_evt->peer = peer;
5580 	peer_map_unmap_evt->is_ml_peer = is_ml_peer;
5581 	qdf_mem_copy(&peer_map_unmap_evt->mac_addr.raw, mac_addr,
5582 		     QDF_MAC_ADDR_SIZE);
5583 
5584 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5585 }
5586 
5587 static inline void
5588 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5589 				   enum dp_cfg_event_type event,
5590 				   struct dp_peer *peer,
5591 				   struct dp_vdev *vdev,
5592 				   uint8_t vdev_id,
5593 				   struct cdp_peer_setup_info *peer_setup_info)
5594 {
5595 	union dp_cfg_event_desc cfg_evt_desc = {0};
5596 	struct dp_peer_setup_desc *peer_setup_evt =
5597 					&cfg_evt_desc.peer_setup_evt;
5598 
5599 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_SETUP &&
5600 			 event != DP_CFG_EVENT_MLO_SETUP)) {
5601 		qdf_assert_always(0);
5602 		return;
5603 	}
5604 
5605 	peer_setup_evt->peer = peer;
5606 	peer_setup_evt->vdev = vdev;
5607 	if (vdev)
5608 		peer_setup_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5609 	peer_setup_evt->mac_addr = peer->mac_addr;
5610 	peer_setup_evt->vdev_id = vdev_id;
5611 	if (peer_setup_info) {
5612 		peer_setup_evt->is_first_link = peer_setup_info->is_first_link;
5613 		peer_setup_evt->is_primary_link = peer_setup_info->is_primary_link;
5614 		qdf_mem_copy(peer_setup_evt->mld_mac_addr.raw,
5615 			     peer_setup_info->mld_peer_mac,
5616 			     QDF_MAC_ADDR_SIZE);
5617 	}
5618 
5619 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5620 }
5621 #else
5622 
5623 static inline void
5624 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5625 			     struct dp_vdev *vdev)
5626 {
5627 }
5628 
5629 static inline void
5630 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5631 			     struct dp_peer *peer, struct dp_vdev *vdev,
5632 			     uint8_t is_reuse)
5633 {
5634 }
5635 
5636 static inline void
5637 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5638 					enum dp_cfg_event_type event,
5639 					struct dp_peer *mld_peer,
5640 					struct dp_peer *link_peer,
5641 					uint8_t idx, uint8_t result)
5642 {
5643 }
5644 
5645 static inline void
5646 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5647 					      struct dp_peer *mld_peer,
5648 					      struct dp_vdev *prev_vdev,
5649 					      struct dp_vdev *new_vdev)
5650 {
5651 }
5652 
5653 static inline void
5654 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5655 				       enum dp_cfg_event_type event,
5656 				       struct dp_peer *peer,
5657 				       uint8_t *mac_addr,
5658 				       uint8_t is_ml_peer,
5659 				       uint16_t peer_id, uint16_t ml_peer_id,
5660 				       uint16_t hw_peer_id, uint8_t vdev_id)
5661 {
5662 }
5663 
5664 static inline void
5665 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5666 				   enum dp_cfg_event_type event,
5667 				   struct dp_peer *peer,
5668 				   struct dp_vdev *vdev,
5669 				   uint8_t vdev_id,
5670 				   struct cdp_peer_setup_info *peer_setup_info)
5671 {
5672 }
5673 #endif
5674 
5675 #ifndef WLAN_SOFTUMAC_SUPPORT
5676 /**
5677  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
5678  * @txrx_soc: DP SOC handle
5679  *
5680  * Return: none
5681  */
5682 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
5683 #endif
5684 
5685 /**
5686  * dp_get_peer_stats()- Get peer stats
5687  * @peer: Datapath peer
5688  * @peer_stats: buffer for peer stats
5689  *
5690  * Return: none
5691  */
5692 void dp_get_peer_stats(struct dp_peer *peer,
5693 		       struct cdp_peer_stats *peer_stats);
5694 
5695 /**
5696  * dp_get_per_link_peer_stats()- Get per link peer stats
5697  * @peer: Datapath peer
5698  * @peer_stats: buffer for peer stats
5699  * @peer_type: Peer type
5700  * @num_link: Number of ML links
5701  *
5702  * Return: status success/failure
5703  */
5704 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
5705 				      struct cdp_peer_stats *peer_stats,
5706 				      enum cdp_peer_type peer_type,
5707 				      uint8_t num_link);
5708 /**
5709  * dp_get_peer_hw_link_id() - get peer hardware link id
5710  * @soc: soc handle
5711  * @pdev: data path pdev
5712  *
5713  * Return: link_id
5714  */
5715 static inline int
5716 dp_get_peer_hw_link_id(struct dp_soc *soc,
5717 		       struct dp_pdev *pdev)
5718 {
5719 	if (wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx))
5720 		return ((soc->arch_ops.get_hw_link_id(pdev)) + 1);
5721 
5722 	return 0;
5723 }
5724 
5725 #ifdef QCA_MULTIPASS_SUPPORT
5726 /**
5727  * dp_tx_remove_vlan_tag() - Remove 4 bytes of vlan tag
5728  * @vdev: DP vdev handle
5729  * @nbuf: network buffer
5730  *
5731  * Return: void
5732  */
5733 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf);
5734 #endif
5735 
5736 /**
5737  * dp_print_per_link_stats() - Print per link peer stats.
5738  * @soc_hdl: soc handle.
5739  * @vdev_id: vdev_id.
5740  *
5741  * Return: None.
5742  */
5743 void dp_print_per_link_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id);
5744 
5745 /**
5746  * dp_get_ring_stats_from_hal(): get hal level ring pointer values
5747  * @soc: DP_SOC handle
5748  * @srng: DP_SRNG handle
5749  * @ring_type: srng src/dst ring
5750  * @_tailp: pointer to tail of ring
5751  * @_headp: pointer to head of ring
5752  * @_hw_headp: pointer to head of ring in HW
5753  * @_hw_tailp: pointer to tail of ring in HW
5754  *
5755  * Return: void
5756  */
5757 static inline void
5758 dp_get_ring_stats_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
5759 			   enum hal_ring_type ring_type,
5760 			   uint32_t *_tailp, uint32_t *_headp,
5761 			   int32_t *_hw_headp, int32_t *_hw_tailp)
5762 {
5763 	uint32_t tailp;
5764 	uint32_t headp;
5765 	int32_t hw_headp = -1;
5766 	int32_t hw_tailp = -1;
5767 	struct hal_soc *hal_soc;
5768 
5769 	if (soc && srng && srng->hal_srng) {
5770 		hal_soc = (struct hal_soc *)soc->hal_soc;
5771 		hal_get_sw_hptp(soc->hal_soc, srng->hal_srng, &tailp, &headp);
5772 		*_headp = headp;
5773 		*_tailp = tailp;
5774 
5775 		hal_get_hw_hptp(soc->hal_soc, srng->hal_srng, &hw_headp,
5776 				&hw_tailp, ring_type);
5777 		*_hw_headp = hw_headp;
5778 		*_hw_tailp = hw_tailp;
5779 	}
5780 }
5781 
5782 /**
5783  * dp_update_vdev_be_basic_stats() - Update vdev basic stats
5784  * @txrx_peer: DP txrx_peer handle
5785  * @tgtobj: Pointer to buffer for be vdev stats
5786  *
5787  * Return: None
5788  */
5789 void dp_update_vdev_be_basic_stats(struct dp_txrx_peer *txrx_peer,
5790 				   struct dp_vdev_stats *tgtobj);
5791 
5792 /**
5793  * dp_update_vdev_basic_stats() - Update vdev basic stats
5794  * @txrx_peer: DP txrx_peer handle
5795  * @tgtobj: Pointer to buffer for vdev stats
5796  *
5797  * Return: None
5798  */
5799 void dp_update_vdev_basic_stats(struct dp_txrx_peer *txrx_peer,
5800 				struct cdp_vdev_stats *tgtobj);
5801 
5802 /**
5803  * dp_get_vdev_stats_for_unmap_peer_legacy() - Update vdev basic stats
5804  * @vdev: vdev associated with the peer
5805  * @peer: unmapped peer
5806  *
5807  * Return: None
5808  */
5809 void dp_get_vdev_stats_for_unmap_peer_legacy(struct dp_vdev *vdev,
5810 					     struct dp_peer *peer);
5811 
5812 #ifdef WLAN_FEATURE_TX_LATENCY_STATS
5813 /**
5814  * dp_h2t_tx_latency_stats_cfg_msg_send(): send HTT message for tx latency
5815  * stats config to FW
5816  * @dp_soc: DP SOC handle
5817  * @vdev_id: vdev id
5818  * @enable: indicates enablement of the feature
5819  * @period: statistical period for transmit latency in terms of ms
5820  * @granularity: granularity for tx latency distribution
5821  *
5822  * return: QDF STATUS
5823  */
5824 QDF_STATUS
5825 dp_h2t_tx_latency_stats_cfg_msg_send(struct dp_soc *dp_soc, uint16_t vdev_id,
5826 				     bool enable, uint32_t period,
5827 				     uint32_t granularity);
5828 
5829 /**
5830  * dp_tx_latency_stats_update_cca() - update transmit latency statistics for
5831  * CCA
5832  * @soc: dp soc handle
5833  * @peer_id: peer id
5834  * @granularity: granularity of distribution
5835  * @distribution: distribution of transmit latency statistics
5836  * @avg: average of CCA latency(in microseconds) within a cycle
5837  *
5838  * Return: None
5839  */
5840 void
5841 dp_tx_latency_stats_update_cca(struct dp_soc *soc, uint16_t peer_id,
5842 			       uint32_t granularity, uint32_t *distribution,
5843 			       uint32_t avg);
5844 
5845 /**
5846  * dp_tx_latency_stats_report() - report transmit latency statistics for each
5847  * vdev of specified pdev
5848  * @soc: dp soc handle
5849  * @pdev: dp pdev Handle
5850  *
5851  * Return: None
5852  */
5853 void dp_tx_latency_stats_report(struct dp_soc *soc, struct dp_pdev *pdev);
5854 #endif
5855 #ifdef WLAN_FEATURE_SSR_DRIVER_DUMP
5856 /**
5857  * dp_ssr_dump_srng_register() - Register DP ring with SSR dump.
5858  * @region_name: ring name to register.
5859  * @srng: dp srng handler.
5860  * @num: Ring number
5861  *
5862  * num = -1. If there is only single ring
5863  * num = ring number. If there are multiple rings pass ring number.
5864  *	e.g. in case of REO pass reo number (0..n).
5865  *
5866  * Return: None.
5867  */
5868 void
5869 dp_ssr_dump_srng_register(char *region_name, struct dp_srng *srng, int num);
5870 
5871 /**
5872  * dp_ssr_dump_srng_unregister() - Unegister DP ring with SSR dump.
5873  * @region_name: ring name to unregister.
5874  * @num: Ring number
5875  *
5876  * num = -1. If there is only single ring
5877  * num = ring number. If there are multiple rings pass ring number.
5878  *      e.g. in case of REO pass reo number (0..n).
5879  *
5880  * Return: None.
5881  */
5882 void dp_ssr_dump_srng_unregister(char *region_name, int num);
5883 
5884 /**
5885  * dp_ssr_dump_pdev_register() - Register DP Pdev with SSR dump.
5886  * @pdev: Pdev handle to register.
5887  * @pdev_id: Pdev ID.
5888  *
5889  * Return: None.
5890  */
5891 void dp_ssr_dump_pdev_register(struct dp_pdev *pdev, uint8_t pdev_id);
5892 
5893 /**
5894  * dp_ssr_dump_pdev_unregister() - Unregister DP Pdev with SSR dump.
5895  * @pdev_id: Pdev ID.
5896  *
5897  * Return: None.
5898  */
5899 void dp_ssr_dump_pdev_unregister(uint8_t pdev_id);
5900 #else
5901 static inline
5902 void dp_ssr_dump_srng_register(char *region_name, struct dp_srng *srng, int num)
5903 {
5904 }
5905 
5906 static inline
5907 void dp_ssr_dump_srng_unregister(char *region_name, int num)
5908 {
5909 }
5910 
5911 static inline
5912 void dp_ssr_dump_pdev_register(struct dp_pdev *pdev, uint8_t pdev_id)
5913 {
5914 }
5915 
5916 static inline
5917 void dp_ssr_dump_pdev_unregister(uint8_t pdev_id)
5918 {
5919 }
5920 #endif
5921 
5922 /**
5923  * dp_get_peer_vdev_roaming_in_progress() - Check if peer's vdev is in roaming
5924  *					    state.
5925  * @peer: DP peer handle
5926  *
5927  * Return: true if the peer's vdev is in roaming state
5928  *	   else false.
5929  */
5930 bool dp_get_peer_vdev_roaming_in_progress(struct dp_peer *peer);
5931 
5932 #endif /* #ifndef _DP_INTERNAL_H_ */
5933