xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision d0c05845839e5f2ba5a8dcebe0cd3e4cd4e8dfcf)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 
25 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
26 
27 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
28 
29 #define DP_BLOCKMEM_SIZE 4096
30 
31 /* Alignment for consistent memory for DP rings*/
32 #define DP_RING_BASE_ALIGN 32
33 
34 #define DP_RSSI_INVAL 0x80
35 #define DP_RSSI_AVG_WEIGHT 2
36 /*
37  * Formula to derive avg_rssi is taken from wifi2.o firmware
38  */
39 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
40 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
41 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
42 
43 /* Macro For NYSM value received in VHT TLV */
44 #define VHT_SGI_NYSM 3
45 
46 #define INVALID_WBM_RING_NUM 0xF
47 
48 /* struct htt_dbgfs_cfg - structure to maintain required htt data
49  * @msg_word: htt msg sent to upper layer
50  * @m: qdf debugfs file pointer
51  */
52 struct htt_dbgfs_cfg {
53 	uint32_t *msg_word;
54 	qdf_debugfs_file_t m;
55 };
56 
57 /* Cookie MSB bits assigned for different use case.
58  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
59  * If in future number of pdev are more than 3.
60  */
61 /* Reserve for default case */
62 #define DBG_STATS_COOKIE_DEFAULT 0x0
63 
64 /* Reserve for DP Stats: 3rd bit */
65 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
66 
67 /* Reserve for HTT Stats debugfs support: 4th bit */
68 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
69 
70 /*Reserve for HTT Stats debugfs support: 5th bit */
71 #define DBG_SYSFS_STATS_COOKIE BIT(5)
72 
73 /**
74  * Bitmap of HTT PPDU TLV types for Default mode
75  */
76 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
77 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
78 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
79 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
80 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
81 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
82 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
83 
84 /* PPDU STATS CFG */
85 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
86 
87 /* PPDU stats mask sent to FW to enable enhanced stats */
88 #define DP_PPDU_STATS_CFG_ENH_STATS \
89 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
90 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
91 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
92 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
93 
94 /* PPDU stats mask sent to FW to support debug sniffer feature */
95 #define DP_PPDU_STATS_CFG_SNIFFER \
96 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
97 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
98 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
99 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
100 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
101 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
102 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
103 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
104 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
105 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
106 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
107 
108 /* PPDU stats mask sent to FW to support BPR feature*/
109 #define DP_PPDU_STATS_CFG_BPR \
110 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
111 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
112 
113 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
114 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
115 				   DP_PPDU_STATS_CFG_ENH_STATS)
116 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
117 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
118 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
119 
120 /**
121  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
122  */
123 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
124 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
125 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
126 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
127 
128 /**
129  * Bitmap of HTT PPDU TLV types for Delayed BA
130  */
131 #define HTT_PPDU_STATUS_TLV_BITMAP \
132 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
133 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
134 
135 /**
136  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
137  */
138 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
139 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
140 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
141 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
142 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
143 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
144 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
145 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
146 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
147 
148 /**
149  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
150  */
151 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
152 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
153 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
154 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
155 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
156 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
157 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
158 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
159 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
160 
161 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
162 	[HAL_DOT11A] = DOT11_A,
163 	[HAL_DOT11B] = DOT11_B,
164 	[HAL_DOT11N_MM] = DOT11_N,
165 	[HAL_DOT11AC] = DOT11_AC,
166 	[HAL_DOT11AX] = DOT11_AX,
167 	[HAL_DOT11BA] = DOT11_MAX,
168 #ifdef WLAN_FEATURE_11BE
169 	[HAL_DOT11BE] = DOT11_BE,
170 #else
171 	[HAL_DOT11BE] = DOT11_MAX,
172 #endif
173 	[HAL_DOT11AZ] = DOT11_MAX,
174 	[HAL_DOT11N_GF] = DOT11_MAX,
175 };
176 
177 #ifdef WLAN_FEATURE_11BE
178 /**
179  * dp_get_mcs_array_index_by_pkt_type_mcs () - get the destination mcs index
180 					       in array
181  * @pkt_type: host SW pkt type
182  * @mcs: mcs value for TX/RX rate
183  *
184  * Return: succeeded - valid index in mcs array
185 	   fail - same value as MCS_MAX
186  */
187 static inline uint8_t
188 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
189 {
190 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
191 
192 	switch (pkt_type) {
193 	case DOT11_A:
194 		dst_mcs_idx =
195 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
196 		break;
197 	case DOT11_B:
198 		dst_mcs_idx =
199 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
200 		break;
201 	case DOT11_N:
202 		dst_mcs_idx =
203 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
204 		break;
205 	case DOT11_AC:
206 		dst_mcs_idx =
207 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
208 		break;
209 	case DOT11_AX:
210 		dst_mcs_idx =
211 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
212 		break;
213 	case DOT11_BE:
214 		dst_mcs_idx =
215 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
216 		break;
217 	default:
218 		break;
219 	}
220 
221 	return dst_mcs_idx;
222 }
223 #else
224 static inline uint8_t
225 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
226 {
227 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
228 
229 	switch (pkt_type) {
230 	case DOT11_A:
231 		dst_mcs_idx =
232 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
233 		break;
234 	case DOT11_B:
235 		dst_mcs_idx =
236 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
237 		break;
238 	case DOT11_N:
239 		dst_mcs_idx =
240 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
241 		break;
242 	case DOT11_AC:
243 		dst_mcs_idx =
244 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
245 		break;
246 	case DOT11_AX:
247 		dst_mcs_idx =
248 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
249 		break;
250 	default:
251 		break;
252 	}
253 
254 	return dst_mcs_idx;
255 }
256 #endif
257 
258 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
259 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
260 
261 /*
262  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
263  * @eh: Ethernet header of incoming packet
264  * @vdev: dp_vdev object of the VAP on which this data packet is received
265  *
266  * Return: 1 if the destination mac is correct,
267  *         0 if this frame is not correctly destined to this VAP/MLD
268  */
269 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
270 
271 #ifdef MONITOR_MODULARIZED_ENABLE
272 static inline bool dp_monitor_modularized_enable(void)
273 {
274 	return TRUE;
275 }
276 
277 static inline QDF_STATUS
278 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
279 
280 static inline QDF_STATUS
281 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
282 #else
283 static inline bool dp_monitor_modularized_enable(void)
284 {
285 	return FALSE;
286 }
287 
288 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
289 {
290 	return dp_mon_soc_attach(soc);
291 }
292 
293 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
294 {
295 	return dp_mon_soc_detach(soc);
296 }
297 #endif
298 
299 #ifndef WIFI_MONITOR_SUPPORT
300 #define MON_BUF_MIN_ENTRIES 64
301 
302 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
303 {
304 	return QDF_STATUS_SUCCESS;
305 }
306 
307 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
308 {
309 	return QDF_STATUS_SUCCESS;
310 }
311 
312 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
313 {
314 	return QDF_STATUS_E_FAILURE;
315 }
316 
317 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
318 {
319 	return QDF_STATUS_E_FAILURE;
320 }
321 
322 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
323 						struct dp_peer *peer)
324 {
325 	return QDF_STATUS_SUCCESS;
326 }
327 
328 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
329 						struct dp_peer *peer)
330 {
331 	return QDF_STATUS_E_FAILURE;
332 }
333 
334 static inline struct cdp_peer_rate_stats_ctx*
335 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
336 {
337 	return NULL;
338 }
339 
340 static inline
341 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
342 {
343 }
344 
345 static inline
346 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
347 			       void *arg, enum cdp_stat_update_type type)
348 {
349 }
350 
351 static inline
352 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
353 					       struct dp_pdev *pdev)
354 {
355 }
356 
357 static inline
358 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
359 					   struct dp_peer *peer,
360 					   enum cdp_peer_stats_type type,
361 					   cdp_peer_stats_param_t *buf)
362 {
363 	return QDF_STATUS_E_FAILURE;
364 }
365 
366 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
367 {
368 	return QDF_STATUS_SUCCESS;
369 }
370 
371 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
372 {
373 	return QDF_STATUS_SUCCESS;
374 }
375 
376 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
377 {
378 	return QDF_STATUS_SUCCESS;
379 }
380 
381 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
382 							 int val)
383 {
384 	return QDF_STATUS_E_FAILURE;
385 }
386 
387 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
388 {
389 }
390 
391 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
392 						   struct dp_pdev *pdev,
393 						   int mac_id,
394 						   int mac_for_pdev)
395 {
396 	return QDF_STATUS_SUCCESS;
397 }
398 
399 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
400 						uint32_t quota)
401 {
402 }
403 
404 static inline
405 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
406 			    uint32_t mac_id, uint32_t quota)
407 {
408 	return 0;
409 }
410 
411 static inline
412 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
413 					 uint32_t mac_id, uint32_t quota)
414 {
415 	return 0;
416 }
417 
418 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
419 					   struct dp_peer *peer)
420 {
421 }
422 
423 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
424 					      struct dp_peer *peer)
425 {
426 }
427 
428 static inline
429 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
430 					struct dp_peer *peer,
431 					uint16_t peer_id)
432 {
433 }
434 
435 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
436 {
437 }
438 
439 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
440 {
441 }
442 
443 static inline
444 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
445 {
446 	return QDF_STATUS_SUCCESS;
447 }
448 
449 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
450 							   struct dp_peer *peer)
451 {
452 }
453 
454 static inline
455 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
456 					   struct dp_tx_desc_s *desc,
457 					   struct hal_tx_completion_status *ts,
458 					   uint16_t peer_id)
459 {
460 	return QDF_STATUS_E_FAILURE;
461 }
462 
463 static inline
464 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
465 				       struct dp_pdev *pdev,
466 				       struct dp_peer *peer,
467 				       struct hal_tx_completion_status *ts,
468 				       qdf_nbuf_t netbuf)
469 {
470 	return QDF_STATUS_E_FAILURE;
471 }
472 
473 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
474 						     uint32_t *msg_word,
475 						     qdf_nbuf_t htt_t2h_msg)
476 {
477 	return true;
478 }
479 
480 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
481 {
482 	return QDF_STATUS_SUCCESS;
483 }
484 
485 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
486 {
487 }
488 
489 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
490 {
491 }
492 
493 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
494 							  uint32_t val)
495 {
496 	return QDF_STATUS_E_INVAL;
497 }
498 
499 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
500 						   struct dp_peer *peer,
501 						   uint8_t is_tx_pkt_cap_enable,
502 						   uint8_t *peer_mac)
503 {
504 	return QDF_STATUS_E_INVAL;
505 }
506 
507 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
508 							  uint32_t val)
509 {
510 	return QDF_STATUS_E_INVAL;
511 }
512 
513 static inline
514 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
515 {
516 	return QDF_STATUS_E_FAILURE;
517 }
518 
519 static inline
520 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
521 {
522 	return 0;
523 }
524 
525 static inline
526 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
527 {
528 }
529 
530 static inline
531 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
532 {
533 }
534 
535 static inline
536 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
537 {
538 	return false;
539 }
540 
541 static inline
542 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
543 {
544 	return false;
545 }
546 
547 static inline
548 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
549 {
550 	return false;
551 }
552 
553 static inline
554 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
555 				bool enable)
556 {
557 	return 0;
558 }
559 
560 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
561 {
562 }
563 
564 static inline
565 void dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
566 {
567 }
568 
569 static inline
570 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
571 {
572 }
573 
574 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
575 							  uint8_t *rx_pkt_hdr)
576 {
577 	return QDF_STATUS_E_FAILURE;
578 }
579 
580 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
581 {
582 }
583 
584 static inline
585 void dp_monitor_reap_timer_init(struct dp_soc *soc)
586 {
587 }
588 
589 static inline
590 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
591 {
592 }
593 
594 static inline
595 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
596 				 enum cdp_mon_reap_source source)
597 {
598 	return false;
599 }
600 
601 static inline
602 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
603 				enum cdp_mon_reap_source source)
604 {
605 	return false;
606 }
607 
608 static inline
609 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
610 {
611 }
612 
613 static inline
614 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
615 {
616 }
617 
618 static inline
619 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
620 {
621 }
622 
623 static inline
624 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
625 {
626 	return false;
627 }
628 
629 static inline struct qdf_mem_multi_page_t*
630 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
631 {
632 	return NULL;
633 }
634 
635 static inline uint32_t *
636 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
637 {
638 	return NULL;
639 }
640 
641 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
642 {
643 	return QDF_STATUS_E_FAILURE;
644 }
645 
646 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
647 {
648 	return false;
649 }
650 
651 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
652 						 struct ol_txrx_ops *txrx_ops)
653 {
654 }
655 
656 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
657 {
658 	return false;
659 }
660 
661 static inline
662 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
663 {
664 }
665 
666 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
667 					  struct dp_vdev *vdev)
668 {
669 }
670 
671 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
672 {
673 }
674 
675 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
676 						     struct dp_peer *ta_peer,
677 						     uint8_t *mac_addr,
678 						     qdf_nbuf_t nbuf,
679 						     uint32_t flags)
680 {
681 }
682 
683 static inline void
684 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
685 {
686 }
687 
688 static inline void
689 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
690 {
691 }
692 
693 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
694 {
695 }
696 
697 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
698 {
699 	return false;
700 }
701 
702 static inline
703 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
704 					   struct dp_vdev *vdev,
705 					   struct dp_neighbour_peer *peer)
706 {
707 }
708 
709 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
710 {
711 	return false;
712 }
713 
714 static inline enum reg_wifi_band
715 dp_monitor_get_chan_band(struct dp_pdev *pdev)
716 {
717 	return 0;
718 }
719 
720 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
721 					      struct dp_soc *soc,
722 					      uint8_t *rx_tlv_hdr)
723 {
724 }
725 
726 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
727 {
728 }
729 
730 static inline
731 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
732 					  uint16_t peer_id, uint32_t ppdu_id,
733 					  uint8_t first_msdu)
734 {
735 	return QDF_STATUS_SUCCESS;
736 }
737 
738 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
739 {
740 	return false;
741 }
742 
743 static inline struct dp_vdev*
744 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
745 {
746 	return NULL;
747 }
748 
749 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
750 							   void *rx_desc)
751 {
752 	return QDF_STATUS_E_FAILURE;
753 }
754 
755 static inline struct mon_rx_status*
756 dp_monitor_get_rx_status(struct dp_pdev *pdev)
757 {
758 	return NULL;
759 }
760 
761 static inline
762 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
763 {
764 }
765 
766 static inline
767 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
768 						      bool val)
769 {
770 }
771 
772 static inline QDF_STATUS
773 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
774 				     struct cdp_peer_tx_capture_stats *stats)
775 {
776 	return QDF_STATUS_E_FAILURE;
777 }
778 
779 static inline QDF_STATUS
780 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
781 				     struct cdp_pdev_tx_capture_stats *stats)
782 {
783 	return QDF_STATUS_E_FAILURE;
784 }
785 
786 #ifdef DP_POWER_SAVE
787 static inline
788 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
789 {
790 }
791 
792 static inline
793 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
794 {
795 }
796 #endif
797 
798 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
799 {
800 	return false;
801 }
802 
803 static inline void
804 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
805 			 struct htt_rx_ring_tlv_filter *tlv_filter)
806 {
807 }
808 #endif
809 
810 /**
811  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
812  * dp soc handle
813  * @psoc: CDP psoc handle
814  *
815  * Return: struct dp_soc pointer
816  */
817 static inline
818 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
819 {
820 	return (struct dp_soc *)psoc;
821 }
822 
823 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
824 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
825 
826 /**
827  * enum timer_yield_status - yield status code used in monitor mode timer.
828  * @DP_TIMER_NO_YIELD: do not yield
829  * @DP_TIMER_WORK_DONE: yield because work is done
830  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
831  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
832  */
833 enum timer_yield_status {
834 	DP_TIMER_NO_YIELD,
835 	DP_TIMER_WORK_DONE,
836 	DP_TIMER_WORK_EXHAUST,
837 	DP_TIMER_TIME_EXHAUST,
838 };
839 
840 #if DP_PRINT_ENABLE
841 #include <stdarg.h>       /* va_list */
842 #include <qdf_types.h> /* qdf_vprint */
843 #include <cdp_txrx_handle.h>
844 
845 enum {
846 	/* FATAL_ERR - print only irrecoverable error messages */
847 	DP_PRINT_LEVEL_FATAL_ERR,
848 
849 	/* ERR - include non-fatal err messages */
850 	DP_PRINT_LEVEL_ERR,
851 
852 	/* WARN - include warnings */
853 	DP_PRINT_LEVEL_WARN,
854 
855 	/* INFO1 - include fundamental, infrequent events */
856 	DP_PRINT_LEVEL_INFO1,
857 
858 	/* INFO2 - include non-fundamental but infrequent events */
859 	DP_PRINT_LEVEL_INFO2,
860 };
861 
862 #define dp_print(level, fmt, ...) do { \
863 	if (level <= g_txrx_print_level) \
864 		qdf_print(fmt, ## __VA_ARGS__); \
865 while (0)
866 #define DP_PRINT(level, fmt, ...) do { \
867 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
868 while (0)
869 #else
870 #define DP_PRINT(level, fmt, ...)
871 #endif /* DP_PRINT_ENABLE */
872 
873 #define DP_TRACE(LVL, fmt, args ...)                             \
874 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
875 		fmt, ## args)
876 
877 #ifdef WLAN_SYSFS_DP_STATS
878 void DP_PRINT_STATS(const char *fmt, ...);
879 #else /* WLAN_SYSFS_DP_STATS */
880 #ifdef DP_PRINT_NO_CONSOLE
881 /* Stat prints should not go to console or kernel logs.*/
882 #define DP_PRINT_STATS(fmt, args ...)\
883 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
884 		  fmt, ## args)
885 #else
886 #define DP_PRINT_STATS(fmt, args ...)\
887 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
888 		  fmt, ## args)
889 #endif
890 #endif /* WLAN_SYSFS_DP_STATS */
891 
892 #define DP_STATS_INIT(_handle) \
893 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
894 
895 #define DP_STATS_CLR(_handle) \
896 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
897 
898 #ifndef DISABLE_DP_STATS
899 #define DP_STATS_INC(_handle, _field, _delta) \
900 { \
901 	if (likely(_handle)) \
902 		_handle->stats._field += _delta; \
903 }
904 
905 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
906 { \
907 	if (likely(_handle)) \
908 		_handle->_field += _delta; \
909 }
910 
911 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
912 { \
913 	if (_cond && likely(_handle)) \
914 		_handle->stats._field += _delta; \
915 }
916 
917 #define DP_STATS_DEC(_handle, _field, _delta) \
918 { \
919 	if (likely(_handle)) \
920 		_handle->stats._field -= _delta; \
921 }
922 
923 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
924 { \
925 	if (likely(_handle)) \
926 		_handle->_field -= _delta; \
927 }
928 
929 #define DP_STATS_UPD(_handle, _field, _delta) \
930 { \
931 	if (likely(_handle)) \
932 		_handle->stats._field = _delta; \
933 }
934 
935 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
936 { \
937 	DP_STATS_INC(_handle, _field.num, _count); \
938 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
939 }
940 
941 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
942 { \
943 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
944 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
945 }
946 
947 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
948 { \
949 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
950 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
951 }
952 
953 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
954 { \
955 	_handle_a->stats._field += _handle_b->stats._field; \
956 }
957 
958 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
959 { \
960 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
961 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
962 }
963 
964 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
965 { \
966 	_handle_a->stats._field = _handle_b->stats._field; \
967 }
968 
969 #else
970 #define DP_STATS_INC(_handle, _field, _delta)
971 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
972 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
973 #define DP_STATS_DEC(_handle, _field, _delta)
974 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
975 #define DP_STATS_UPD(_handle, _field, _delta)
976 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
977 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
978 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
979 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
980 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
981 #endif
982 
983 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta) \
984 { \
985 	DP_STATS_INC(_handle, per_pkt_stats._field, _delta); \
986 }
987 
988 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond) \
989 { \
990 	DP_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond); \
991 }
992 
993 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes) \
994 { \
995 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count); \
996 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes) \
997 }
998 
999 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1000 { \
1001 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond); \
1002 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1003 }
1004 
1005 #ifndef QCA_ENHANCED_STATS_SUPPORT
1006 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta) \
1007 { \
1008 	DP_STATS_INC(_handle, extd_stats._field, _delta); \
1009 }
1010 
1011 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond) \
1012 { \
1013 	DP_STATS_INCC(_handle, extd_stats._field, _delta, _cond); \
1014 }
1015 
1016 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta) \
1017 { \
1018 	DP_STATS_UPD(_handle, extd_stats._field, _delta); \
1019 }
1020 #endif
1021 
1022 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1023 	defined(QCA_ENHANCED_STATS_SUPPORT)
1024 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1025 { \
1026 	if (!(_handle->hw_txrx_stats_en) || _cond) \
1027 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1028 }
1029 
1030 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1031 { \
1032 	if (!(_handle->hw_txrx_stats_en) || _cond) \
1033 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1034 }
1035 
1036 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1037 { \
1038 	if (!(_handle->hw_txrx_stats_en) || _cond) \
1039 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1040 }
1041 
1042 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1043 { \
1044 	if (!(_handle->hw_txrx_stats_en) || _cond) \
1045 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1046 }
1047 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1048 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1049 { \
1050 	if (!(_handle->hw_txrx_stats_en)) \
1051 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1052 }
1053 
1054 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1055 { \
1056 	if (!(_handle->hw_txrx_stats_en)) \
1057 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1058 }
1059 
1060 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1061 { \
1062 	if (!(_handle->hw_txrx_stats_en)) \
1063 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1064 }
1065 
1066 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1067 { \
1068 	if (!(_handle->hw_txrx_stats_en)) \
1069 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1070 }
1071 #else
1072 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1073 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1074 
1075 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1076 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1077 
1078 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1079 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes);
1080 
1081 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1082 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes);
1083 #endif
1084 
1085 #ifdef ENABLE_DP_HIST_STATS
1086 #define DP_HIST_INIT() \
1087 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1088 
1089 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1090 { \
1091 		++num_of_packets[_pdev_id]; \
1092 }
1093 
1094 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1095 	do {                                                              \
1096 		if (_p_cntrs == 1) {                                      \
1097 			DP_STATS_INC(_pdev,                               \
1098 				tx_comp_histogram.pkts_1, 1);             \
1099 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1100 			DP_STATS_INC(_pdev,                               \
1101 				tx_comp_histogram.pkts_2_20, 1);          \
1102 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1103 			DP_STATS_INC(_pdev,                               \
1104 				tx_comp_histogram.pkts_21_40, 1);         \
1105 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1106 			DP_STATS_INC(_pdev,                               \
1107 				tx_comp_histogram.pkts_41_60, 1);         \
1108 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1109 			DP_STATS_INC(_pdev,                               \
1110 				tx_comp_histogram.pkts_61_80, 1);         \
1111 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1112 			DP_STATS_INC(_pdev,                               \
1113 				tx_comp_histogram.pkts_81_100, 1);        \
1114 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1115 			DP_STATS_INC(_pdev,                               \
1116 				tx_comp_histogram.pkts_101_200, 1);       \
1117 		} else if (_p_cntrs > 200) {                              \
1118 			DP_STATS_INC(_pdev,                               \
1119 				tx_comp_histogram.pkts_201_plus, 1);      \
1120 		}                                                         \
1121 	} while (0)
1122 
1123 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1124 	do {                                                              \
1125 		if (_p_cntrs == 1) {                                      \
1126 			DP_STATS_INC(_pdev,                               \
1127 				rx_ind_histogram.pkts_1, 1);              \
1128 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1129 			DP_STATS_INC(_pdev,                               \
1130 				rx_ind_histogram.pkts_2_20, 1);           \
1131 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1132 			DP_STATS_INC(_pdev,                               \
1133 				rx_ind_histogram.pkts_21_40, 1);          \
1134 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1135 			DP_STATS_INC(_pdev,                               \
1136 				rx_ind_histogram.pkts_41_60, 1);          \
1137 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1138 			DP_STATS_INC(_pdev,                               \
1139 				rx_ind_histogram.pkts_61_80, 1);          \
1140 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1141 			DP_STATS_INC(_pdev,                               \
1142 				rx_ind_histogram.pkts_81_100, 1);         \
1143 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1144 			DP_STATS_INC(_pdev,                               \
1145 				rx_ind_histogram.pkts_101_200, 1);        \
1146 		} else if (_p_cntrs > 200) {                              \
1147 			DP_STATS_INC(_pdev,                               \
1148 				rx_ind_histogram.pkts_201_plus, 1);       \
1149 		}                                                         \
1150 	} while (0)
1151 
1152 #define DP_TX_HIST_STATS_PER_PDEV() \
1153 	do { \
1154 		uint8_t hist_stats = 0; \
1155 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1156 				hist_stats++) { \
1157 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1158 					num_of_packets[hist_stats]); \
1159 		} \
1160 	}  while (0)
1161 
1162 
1163 #define DP_RX_HIST_STATS_PER_PDEV() \
1164 	do { \
1165 		uint8_t hist_stats = 0; \
1166 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1167 				hist_stats++) { \
1168 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1169 					num_of_packets[hist_stats]); \
1170 		} \
1171 	}  while (0)
1172 
1173 #else
1174 #define DP_HIST_INIT()
1175 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1176 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1177 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1178 #define DP_RX_HIST_STATS_PER_PDEV()
1179 #define DP_TX_HIST_STATS_PER_PDEV()
1180 #endif /* DISABLE_DP_STATS */
1181 
1182 #define FRAME_MASK_IPV4_ARP   1
1183 #define FRAME_MASK_IPV4_DHCP  2
1184 #define FRAME_MASK_IPV4_EAPOL 4
1185 #define FRAME_MASK_IPV6_DHCP  8
1186 
1187 static inline int dp_log2_ceil(unsigned int value)
1188 {
1189 	unsigned int tmp = value;
1190 	int log2 = -1;
1191 
1192 	while (tmp) {
1193 		log2++;
1194 		tmp >>= 1;
1195 	}
1196 	if (1 << log2 != value)
1197 		log2++;
1198 	return log2;
1199 }
1200 
1201 #ifdef QCA_SUPPORT_PEER_ISOLATION
1202 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1203 
1204 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1205 					 bool val)
1206 {
1207 	txrx_peer->isolation = val;
1208 }
1209 
1210 #else
1211 #define dp_get_peer_isolation(_peer) (0)
1212 
1213 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1214 {
1215 }
1216 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1217 
1218 #ifdef QCA_SUPPORT_WDS_EXTENDED
1219 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1220 {
1221 	txrx_peer->wds_ext.init = 0;
1222 }
1223 #else
1224 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1225 {
1226 }
1227 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1228 
1229 #ifdef QCA_HOST2FW_RXBUF_RING
1230 static inline
1231 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1232 {
1233 	return &pdev->rx_mac_buf_ring[lmac_id];
1234 }
1235 #else
1236 static inline
1237 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1238 {
1239 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1240 }
1241 #endif
1242 
1243 /**
1244  * The lmac ID for a particular channel band is fixed.
1245  * 2.4GHz band uses lmac_id = 1
1246  * 5GHz/6GHz band uses lmac_id=0
1247  */
1248 #define DP_INVALID_LMAC_ID	(-1)
1249 #define DP_MON_INVALID_LMAC_ID	(-1)
1250 #define DP_MAC0_LMAC_ID	0
1251 #define DP_MAC1_LMAC_ID	1
1252 
1253 #ifdef FEATURE_TSO_STATS
1254 /**
1255  * dp_init_tso_stats() - Clear tso stats
1256  * @pdev: pdev handle
1257  *
1258  * Return: None
1259  */
1260 static inline
1261 void dp_init_tso_stats(struct dp_pdev *pdev)
1262 {
1263 	if (pdev) {
1264 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1265 			     sizeof((pdev)->stats.tso_stats));
1266 		qdf_atomic_init(&pdev->tso_idx);
1267 	}
1268 }
1269 
1270 /**
1271  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1272  * @pdev: pdev handle
1273  * @_p_cntrs: number of tso segments for a tso packet
1274  *
1275  * Return: None
1276  */
1277 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1278 					   uint8_t _p_cntrs);
1279 
1280 /**
1281  * dp_tso_segment_update() - Collect tso segment information
1282  * @pdev: pdev handle
1283  * @stats_idx: tso packet number
1284  * @idx: tso segment number
1285  * @seg: tso segment
1286  *
1287  * Return: None
1288  */
1289 void dp_tso_segment_update(struct dp_pdev *pdev,
1290 			   uint32_t stats_idx,
1291 			   uint8_t idx,
1292 			   struct qdf_tso_seg_t seg);
1293 
1294 /**
1295  * dp_tso_packet_update() - TSO Packet information
1296  * @pdev: pdev handle
1297  * @stats_idx: tso packet number
1298  * @msdu: nbuf handle
1299  * @num_segs: tso segments
1300  *
1301  * Return: None
1302  */
1303 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1304 			  qdf_nbuf_t msdu, uint16_t num_segs);
1305 
1306 /**
1307  * dp_tso_segment_stats_update() - TSO Segment stats
1308  * @pdev: pdev handle
1309  * @stats_seg: tso segment list
1310  * @stats_idx: tso packet number
1311  *
1312  * Return: None
1313  */
1314 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1315 				 struct qdf_tso_seg_elem_t *stats_seg,
1316 				 uint32_t stats_idx);
1317 
1318 /**
1319  * dp_print_tso_stats() - dump tso statistics
1320  * @soc:soc handle
1321  * @level: verbosity level
1322  *
1323  * Return: None
1324  */
1325 void dp_print_tso_stats(struct dp_soc *soc,
1326 			enum qdf_stats_verbosity_level level);
1327 
1328 /**
1329  * dp_txrx_clear_tso_stats() - clear tso stats
1330  * @soc: soc handle
1331  *
1332  * Return: None
1333  */
1334 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1335 #else
1336 static inline
1337 void dp_init_tso_stats(struct dp_pdev *pdev)
1338 {
1339 }
1340 
1341 static inline
1342 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1343 					   uint8_t _p_cntrs)
1344 {
1345 }
1346 
1347 static inline
1348 void dp_tso_segment_update(struct dp_pdev *pdev,
1349 			   uint32_t stats_idx,
1350 			   uint32_t idx,
1351 			   struct qdf_tso_seg_t seg)
1352 {
1353 }
1354 
1355 static inline
1356 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1357 			  qdf_nbuf_t msdu, uint16_t num_segs)
1358 {
1359 }
1360 
1361 static inline
1362 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1363 				 struct qdf_tso_seg_elem_t *stats_seg,
1364 				 uint32_t stats_idx)
1365 {
1366 }
1367 
1368 static inline
1369 void dp_print_tso_stats(struct dp_soc *soc,
1370 			enum qdf_stats_verbosity_level level)
1371 {
1372 }
1373 
1374 static inline
1375 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1376 {
1377 }
1378 #endif /* FEATURE_TSO_STATS */
1379 
1380 /* dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1381  * @peer: DP peer handle
1382  * @type: Requested stats type
1383  * @ buf: Buffer to hold the value
1384  *
1385  * Return: status success/failure
1386  */
1387 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1388 						enum cdp_peer_stats_type type,
1389 						cdp_peer_stats_param_t *buf);
1390 
1391 /* dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1392  * @peer: DP peer handle
1393  * @type: Requested stats type
1394  * @ buf: Buffer to hold the value
1395  *
1396  * Return: status success/failure
1397  */
1398 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1399 					     enum cdp_peer_stats_type type,
1400 					     cdp_peer_stats_param_t *buf);
1401 
1402 #define DP_HTT_T2H_HP_PIPE 5
1403 /**
1404  * dp_update_pdev_stats(): Update the pdev stats
1405  * @tgtobj: pdev handle
1406  * @srcobj: vdev stats structure
1407  *
1408  * Update the pdev stats from the specified vdev stats
1409  *
1410  * return: None
1411  */
1412 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1413 			  struct cdp_vdev_stats *srcobj);
1414 
1415 /**
1416  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1417  * @tgtobj: vdev handle
1418  *
1419  * Update the vdev ingress stats
1420  *
1421  * return: None
1422  */
1423 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1424 
1425 /**
1426  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1427  * @tgtobj: tgt buffer for vdev stats
1428  * @srcobj: srcobj vdev stats
1429  *
1430  * Return: None
1431  */
1432 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1433 			       struct cdp_vdev_stats *srcobj);
1434 
1435 /**
1436  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1437  * @tgtobj: pdev handle
1438  * @srcobj: vdev stats structure
1439  *
1440  * Update the pdev ingress stats from the specified vdev stats
1441  *
1442  * return: None
1443  */
1444 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1445 				  struct dp_vdev *srcobj);
1446 
1447 /**
1448  * dp_update_vdev_stats(): Update the vdev stats
1449  * @soc: soc handle
1450  * @srcobj: DP_PEER object
1451  * @arg: point to vdev stats structure
1452  *
1453  * Update the vdev stats from the specified peer stats
1454  *
1455  * return: None
1456  */
1457 void dp_update_vdev_stats(struct dp_soc *soc,
1458 			  struct dp_peer *srcobj,
1459 			  void *arg);
1460 
1461 /**
1462  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1463  * @vdev: DP_VDEV handle
1464  * @peer: DP_PEER handle
1465  *
1466  * Return: None
1467  */
1468 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1469 					struct dp_peer *peer);
1470 
1471 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1472 	do {				\
1473 		uint8_t i;		\
1474 		uint8_t pream_type;	\
1475 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1476 			for (i = 0; i < MAX_MCS; i++) { \
1477 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1478 					tx.pkt_type[pream_type].mcs_count[i]); \
1479 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1480 					rx.pkt_type[pream_type].mcs_count[i]); \
1481 			} \
1482 		} \
1483 		  \
1484 		for (i = 0; i < MAX_BW; i++) { \
1485 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1486 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1487 		} \
1488 		  \
1489 		for (i = 0; i < SS_COUNT; i++) { \
1490 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1491 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1492 		} \
1493 		for (i = 0; i < WME_AC_MAX; i++) { \
1494 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1495 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1496 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1497 		\
1498 		} \
1499 		\
1500 		for (i = 0; i < MAX_GI; i++) { \
1501 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1502 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1503 		} \
1504 		\
1505 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1506 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1507 		\
1508 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1509 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1510 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1511 		} \
1512 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1513 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1514 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1515 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1516 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1517 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1518 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1519 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1520 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1521 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1522 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1523 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1524 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1525 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1526 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1527 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1528 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1529 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1530 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1531 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1532 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1533 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1534 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1535 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1536 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1537 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1538 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1539 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1540 								\
1541 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1542 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1543 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1544 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1545 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1546 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1547 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1548 		if (_srcobj->stats.rx.snr != 0) \
1549 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1550 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1551 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1552 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1553 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1554 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1555 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1556 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1557 								\
1558 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1559 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1560 									\
1561 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1562 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1563 									\
1564 		_srcobj->stats.rx.unicast.num = \
1565 			_srcobj->stats.rx.to_stack.num - \
1566 					_srcobj->stats.rx.multicast.num; \
1567 		_srcobj->stats.rx.unicast.bytes = \
1568 			_srcobj->stats.rx.to_stack.bytes - \
1569 					_srcobj->stats.rx.multicast.bytes; \
1570 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1571 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1572 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1573 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1574 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1575 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1576 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1577 								  \
1578 		_tgtobj->stats.tx.last_ack_rssi =	\
1579 			_srcobj->stats.tx.last_ack_rssi; \
1580 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1581 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1582 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1583 	}  while (0)
1584 
1585 #ifdef VDEV_PEER_PROTOCOL_COUNT
1586 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1587 { \
1588 	uint8_t j; \
1589 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1590 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1591 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1592 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1593 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1594 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1595 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1596 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1597 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1598 	} \
1599 }
1600 #else
1601 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1602 #endif
1603 
1604 #ifdef WLAN_FEATURE_11BE
1605 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1606 	do { \
1607 		uint8_t i, mu_type; \
1608 		for (i = 0; i < MAX_MCS; i++) { \
1609 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1610 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1611 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1612 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1613 		} \
1614 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1615 			for (i = 0; i < MAX_MCS; i++) { \
1616 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1617 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1618 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1619 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1620 			} \
1621 		} \
1622 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1623 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1624 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1625 		} \
1626 	} while (0)
1627 #else
1628 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1629 #endif
1630 
1631 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1632 	do { \
1633 		uint8_t i; \
1634 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1635 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1636 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1637 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1638 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1639 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1640 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1641 		_tgtobj->tx.nawds_mcast.bytes += \
1642 					_srcobj->tx.nawds_mcast.bytes; \
1643 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1644 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1645 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1646 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1647 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1648 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1649 		_tgtobj->tx.dropped.fw_rem.num += \
1650 					_srcobj->tx.dropped.fw_rem.num; \
1651 		_tgtobj->tx.dropped.fw_rem.bytes += \
1652 					_srcobj->tx.dropped.fw_rem.bytes; \
1653 		_tgtobj->tx.dropped.fw_rem_notx += \
1654 					_srcobj->tx.dropped.fw_rem_notx; \
1655 		_tgtobj->tx.dropped.fw_rem_tx += \
1656 					_srcobj->tx.dropped.fw_rem_tx; \
1657 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1658 		_tgtobj->tx.dropped.fw_reason1 += \
1659 					_srcobj->tx.dropped.fw_reason1; \
1660 		_tgtobj->tx.dropped.fw_reason2 += \
1661 					_srcobj->tx.dropped.fw_reason2; \
1662 		_tgtobj->tx.dropped.fw_reason3 += \
1663 					_srcobj->tx.dropped.fw_reason3; \
1664 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1665 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1666 		_tgtobj->tx.dropped.fw_rem_no_match += \
1667 					_srcobj->tx.dropped.fw_rem_no_match; \
1668 		_tgtobj->tx.dropped.drop_threshold += \
1669 					_srcobj->tx.dropped.drop_threshold; \
1670 		_tgtobj->tx.dropped.drop_link_desc_na += \
1671 					_srcobj->tx.dropped.drop_link_desc_na; \
1672 		_tgtobj->tx.dropped.invalid_drop += \
1673 					_srcobj->tx.dropped.invalid_drop; \
1674 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1675 					_srcobj->tx.dropped.mcast_vdev_drop; \
1676 		_tgtobj->tx.dropped.invalid_rr += \
1677 					_srcobj->tx.dropped.invalid_rr; \
1678 		_tgtobj->tx.failed_retry_count += \
1679 					_srcobj->tx.failed_retry_count; \
1680 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1681 		_tgtobj->tx.multiple_retry_count += \
1682 					_srcobj->tx.multiple_retry_count; \
1683 		_tgtobj->tx.tx_success_twt.num += \
1684 					_srcobj->tx.tx_success_twt.num; \
1685 		_tgtobj->tx.tx_success_twt.bytes += \
1686 					_srcobj->tx.tx_success_twt.bytes; \
1687 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1688 		_tgtobj->tx.release_src_not_tqm += \
1689 					_srcobj->tx.release_src_not_tqm; \
1690 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1691 			_tgtobj->tx.no_ack_count[i] += \
1692 					_srcobj->tx.no_ack_count[i];\
1693 		} \
1694 		\
1695 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1696 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1697 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1698 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1699 		if (_tgtobj->rx.to_stack.num >= _tgtobj->rx.multicast.num) \
1700 			_tgtobj->rx.unicast.num = \
1701 				_tgtobj->rx.to_stack.num - _tgtobj->rx.multicast.num; \
1702 		if (_tgtobj->rx.to_stack.bytes >= _tgtobj->rx.multicast.bytes) \
1703 			_tgtobj->rx.unicast.bytes = \
1704 				_tgtobj->rx.to_stack.bytes - _tgtobj->rx.multicast.bytes; \
1705 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1706 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1707 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1708 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1709 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1710 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1711 		_tgtobj->rx.intra_bss.pkts.num += \
1712 					_srcobj->rx.intra_bss.pkts.num; \
1713 		_tgtobj->rx.intra_bss.pkts.bytes += \
1714 					_srcobj->rx.intra_bss.pkts.bytes; \
1715 		_tgtobj->rx.intra_bss.fail.num += \
1716 					_srcobj->rx.intra_bss.fail.num; \
1717 		_tgtobj->rx.intra_bss.fail.bytes += \
1718 					_srcobj->rx.intra_bss.fail.bytes; \
1719 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1720 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1721 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1722 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1723 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1724 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1725 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1726 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1727 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1728 					_srcobj->rx.err.rxdma_wifi_parse_err; \
1729 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
1730 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
1731 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
1732 		_tgtobj->rx.multipass_rx_pkt_drop += \
1733 					_srcobj->rx.multipass_rx_pkt_drop; \
1734 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
1735 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
1736 		_tgtobj->rx.policy_check_drop += \
1737 					_srcobj->rx.policy_check_drop; \
1738 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
1739 		_tgtobj->rx.to_stack_twt.bytes += \
1740 					_srcobj->rx.to_stack_twt.bytes; \
1741 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
1742 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
1743 			_tgtobj->rx.rcvd_reo[i].num += \
1744 					 _srcobj->rx.rcvd_reo[i].num; \
1745 			_tgtobj->rx.rcvd_reo[i].bytes += \
1746 					_srcobj->rx.rcvd_reo[i].bytes; \
1747 		} \
1748 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
1749 			_tgtobj->rx.rx_lmac[i].num += \
1750 					_srcobj->rx.rx_lmac[i].num; \
1751 			_tgtobj->rx.rx_lmac[i].bytes += \
1752 					_srcobj->rx.rx_lmac[i].bytes; \
1753 		} \
1754 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
1755 	} while (0)
1756 
1757 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
1758 	do { \
1759 		uint8_t i, pream_type, mu_type; \
1760 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
1761 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
1762 		_tgtobj->tx.retries += _srcobj->tx.retries; \
1763 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
1764 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
1765 		_tgtobj->tx.num_ppdu_cookie_valid += \
1766 					_srcobj->tx.num_ppdu_cookie_valid; \
1767 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
1768 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
1769 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
1770 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
1771 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
1772 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
1773 		_tgtobj->tx.mcast_last_tx_rate = \
1774 					_srcobj->tx.mcast_last_tx_rate; \
1775 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
1776 					_srcobj->tx.mcast_last_tx_rate_mcs; \
1777 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
1778 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
1779 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
1780 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
1781 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
1782 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
1783 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
1784 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
1785 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
1786 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
1787 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
1788 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
1789 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
1790 		_tgtobj->tx.mpdu_success_with_retries += \
1791 					_srcobj->tx.mpdu_success_with_retries; \
1792 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1793 			for (i = 0; i < MAX_MCS; i++) \
1794 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
1795 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
1796 		} \
1797 		for (i = 0; i < WME_AC_MAX; i++) { \
1798 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
1799 			_tgtobj->tx.excess_retries_per_ac[i] += \
1800 					_srcobj->tx.excess_retries_per_ac[i]; \
1801 		} \
1802 		for (i = 0; i < MAX_GI; i++) { \
1803 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
1804 		} \
1805 		for (i = 0; i < SS_COUNT; i++) { \
1806 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
1807 		} \
1808 		for (i = 0; i < MAX_BW; i++) { \
1809 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
1810 		} \
1811 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
1812 			_tgtobj->tx.ru_loc[i].num_msdu += \
1813 					_srcobj->tx.ru_loc[i].num_msdu; \
1814 			_tgtobj->tx.ru_loc[i].num_mpdu += \
1815 					_srcobj->tx.ru_loc[i].num_mpdu; \
1816 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
1817 					_srcobj->tx.ru_loc[i].mpdu_tried; \
1818 		} \
1819 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
1820 			_tgtobj->tx.transmit_type[i].num_msdu += \
1821 					_srcobj->tx.transmit_type[i].num_msdu; \
1822 			_tgtobj->tx.transmit_type[i].num_mpdu += \
1823 					_srcobj->tx.transmit_type[i].num_mpdu; \
1824 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
1825 					_srcobj->tx.transmit_type[i].mpdu_tried; \
1826 		} \
1827 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
1828 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
1829 		} \
1830 		\
1831 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
1832 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
1833 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
1834 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
1835 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
1836 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
1837 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
1838 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
1839 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
1840 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
1841 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
1842 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
1843 		_tgtobj->rx.rx_snr_measured_time = \
1844 					_srcobj->rx.rx_snr_measured_time; \
1845 		_tgtobj->rx.snr = _srcobj->rx.snr; \
1846 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
1847 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
1848 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
1849 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
1850 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
1851 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
1852 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
1853 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1854 			for (i = 0; i < MAX_MCS; i++) { \
1855 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
1856 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
1857 			} \
1858 		} \
1859 		for (i = 0; i < WME_AC_MAX; i++) { \
1860 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
1861 		} \
1862 		for (i = 0; i < MAX_MCS; i++) { \
1863 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
1864 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
1865 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
1866 		} \
1867 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1868 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
1869 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
1870 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
1871 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
1872 			for (i = 0; i < SS_COUNT; i++) \
1873 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
1874 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
1875 			for (i = 0; i < MAX_MCS; i++) \
1876 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
1877 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
1878 		} \
1879 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
1880 			_tgtobj->rx.reception_type[i] += \
1881 					_srcobj->rx.reception_type[i]; \
1882 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
1883 		} \
1884 		for (i = 0; i < MAX_GI; i++) { \
1885 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
1886 		} \
1887 		for (i = 0; i < SS_COUNT; i++) { \
1888 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
1889 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
1890 		} \
1891 		for (i = 0; i < MAX_BW; i++) { \
1892 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
1893 		} \
1894 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
1895 	} while (0)
1896 
1897 /**
1898  * dp_peer_find_attach() - Allocates memory for peer objects
1899  * @soc: SoC handle
1900  *
1901  * Return: QDF_STATUS
1902  */
1903 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
1904 extern void dp_peer_find_detach(struct dp_soc *soc);
1905 extern void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
1906 extern void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
1907 extern void dp_peer_find_hash_erase(struct dp_soc *soc);
1908 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
1909 			   struct dp_peer *peer);
1910 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
1911 			      struct dp_peer *peer);
1912 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
1913 				struct dp_peer *peer,
1914 				uint16_t peer_id);
1915 void dp_txrx_peer_attach_add(struct dp_soc *soc,
1916 			     struct dp_peer *peer,
1917 			     struct dp_txrx_peer *txrx_peer);
1918 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
1919 				   uint16_t peer_id);
1920 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
1921 			  enum dp_mod_id mod_id);
1922 
1923 /*
1924  * dp_peer_ppdu_delayed_ba_cleanup() free ppdu allocated in peer
1925  * @peer: Datapath peer
1926  *
1927  * return: void
1928  */
1929 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
1930 
1931 extern void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
1932 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
1933 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
1934 
1935 #ifdef DP_PEER_EXTENDED_API
1936 /**
1937  * dp_register_peer() - Register peer into physical device
1938  * @soc_hdl - data path soc handle
1939  * @pdev_id - device instance id
1940  * @sta_desc - peer description
1941  *
1942  * Register peer into physical device
1943  *
1944  * Return: QDF_STATUS_SUCCESS registration success
1945  *         QDF_STATUS_E_FAULT peer not found
1946  */
1947 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
1948 			    struct ol_txrx_desc_type *sta_desc);
1949 
1950 /**
1951  * dp_clear_peer() - remove peer from physical device
1952  * @soc_hdl - data path soc handle
1953  * @pdev_id - device instance id
1954  * @peer_addr - peer mac address
1955  *
1956  * remove peer from physical device
1957  *
1958  * Return: QDF_STATUS_SUCCESS registration success
1959  *         QDF_STATUS_E_FAULT peer not found
1960  */
1961 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
1962 			 struct qdf_mac_addr peer_addr);
1963 
1964 /*
1965  * dp_find_peer_exist - find peer if already exists
1966  * @soc: datapath soc handle
1967  * @pdev_id: physical device instance id
1968  * @peer_mac_addr: peer mac address
1969  *
1970  * Return: true or false
1971  */
1972 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
1973 			uint8_t *peer_addr);
1974 
1975 /*
1976  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
1977  * @soc: datapath soc handle
1978  * @vdev_id: vdev instance id
1979  * @peer_mac_addr: peer mac address
1980  *
1981  * Return: true or false
1982  */
1983 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
1984 				uint8_t *peer_addr);
1985 
1986 /*
1987  * dp_find_peer_exist_on_other_vdev - find if peer exists
1988  * on other than the given vdev
1989  * @soc: datapath soc handle
1990  * @vdev_id: vdev instance id
1991  * @peer_mac_addr: peer mac address
1992  * @max_bssid: max number of bssids
1993  *
1994  * Return: true or false
1995  */
1996 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
1997 				      uint8_t vdev_id, uint8_t *peer_addr,
1998 				      uint16_t max_bssid);
1999 
2000 /**
2001  * dp_peer_state_update() - update peer local state
2002  * @pdev - data path device instance
2003  * @peer_addr - peer mac address
2004  * @state - new peer local state
2005  *
2006  * update peer local state
2007  *
2008  * Return: QDF_STATUS_SUCCESS registration success
2009  */
2010 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2011 				enum ol_txrx_peer_state state);
2012 
2013 /**
2014  * dp_get_vdevid() - Get virtual interface id which peer registered
2015  * @soc - datapath soc handle
2016  * @peer_mac - peer mac address
2017  * @vdev_id - virtual interface id which peer registered
2018  *
2019  * Get virtual interface id which peer registered
2020  *
2021  * Return: QDF_STATUS_SUCCESS registration success
2022  */
2023 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2024 			 uint8_t *vdev_id);
2025 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2026 		struct qdf_mac_addr peer_addr);
2027 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2028 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2029 
2030 /**
2031  * dp_get_peer_state() - Get local peer state
2032  * @soc - datapath soc handle
2033  * @vdev_id - vdev id
2034  * @peer_mac - peer mac addr
2035  *
2036  * Get local peer state
2037  *
2038  * Return: peer status
2039  */
2040 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2041 		      uint8_t *peer_mac);
2042 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2043 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2044 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2045 /**
2046  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2047  * @soc_hdl: datapath soc handle
2048  * @vdev_id: vdev_id
2049  * @peer_mac: peer mac addr
2050  * @val: tdls peer flag
2051  *
2052  * Return: none
2053  */
2054 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2055 			      uint8_t *peer_mac, bool val);
2056 #else
2057 /**
2058  * dp_get_vdevid() - Get virtual interface id which peer registered
2059  * @soc - datapath soc handle
2060  * @peer_mac - peer mac address
2061  * @vdev_id - virtual interface id which peer registered
2062  *
2063  * Get virtual interface id which peer registered
2064  *
2065  * Return: QDF_STATUS_SUCCESS registration success
2066  */
2067 static inline
2068 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2069 			 uint8_t *vdev_id)
2070 {
2071 	return QDF_STATUS_E_NOSUPPORT;
2072 }
2073 
2074 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2075 {
2076 }
2077 
2078 static inline
2079 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2080 {
2081 }
2082 
2083 static inline
2084 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2085 {
2086 }
2087 
2088 static inline
2089 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2090 			      uint8_t *peer_mac, bool val)
2091 {
2092 }
2093 #endif
2094 
2095 int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
2096 				      uint8_t *peer_mac, uint16_t vdev_id,
2097 				      uint8_t tid,
2098 				      int status);
2099 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
2100 				  uint8_t *peer_mac, uint16_t vdev_id,
2101 				  uint8_t dialogtoken, uint16_t tid,
2102 				  uint16_t batimeout,
2103 				  uint16_t buffersize,
2104 				  uint16_t startseqnum);
2105 QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc,
2106 					uint8_t *peer_mac, uint16_t vdev_id,
2107 					uint8_t tid, uint8_t *dialogtoken,
2108 					uint16_t *statuscode,
2109 					uint16_t *buffersize,
2110 					uint16_t *batimeout);
2111 QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc,
2112 				 uint8_t *peer_mac,
2113 				 uint16_t vdev_id, uint8_t tid,
2114 				 uint16_t statuscode);
2115 int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2116 			   uint16_t vdev_id, int tid,
2117 			   uint16_t reasoncode);
2118 
2119 /**
2120  * dp_rx_tid_update_ba_win_size() - Update the DP tid BA window size
2121  * @soc: soc handle
2122  * @peer_mac: mac address of peer handle
2123  * @vdev_id: id of vdev handle
2124  * @tid: tid
2125  * @buffersize: BA window size
2126  *
2127  * Return: success/failure of tid update
2128  */
2129 QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc,
2130 					uint8_t *peer_mac, uint16_t vdev_id,
2131 					uint8_t tid, uint16_t buffersize);
2132 
2133 /*
2134  * dp_delba_tx_completion_wifi3() -  Handle delba tx completion
2135  *
2136  * @cdp_soc: soc handle
2137  * @vdev_id: id of the vdev handle
2138  * @peer_mac: peer mac address
2139  * @tid: Tid number
2140  * @status: Tx completion status
2141  * Indicate status of delba Tx to DP for stats update and retry
2142  * delba if tx failed.
2143  *
2144  */
2145 int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2146 				 uint16_t vdev_id, uint8_t tid,
2147 				 int status);
2148 extern QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
2149 					uint32_t ba_window_size,
2150 					uint32_t start_seq);
2151 
2152 extern QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc,
2153 	enum hal_reo_cmd_type type, struct hal_reo_cmd_params *params,
2154 	void (*callback_fn), void *data);
2155 
2156 extern void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2157 
2158 /**
2159  * dp_reo_status_ring_handler - Handler for REO Status ring
2160  * @int_ctx: pointer to DP interrupt context
2161  * @soc: DP Soc handle
2162  *
2163  * Returns: Number of descriptors reaped
2164  */
2165 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2166 				    struct dp_soc *soc);
2167 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2168 			     struct cdp_vdev_stats *vdev_stats);
2169 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2170 	union hal_reo_status *reo_status);
2171 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2172 		union hal_reo_status *reo_status);
2173 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2174 				     qdf_nbuf_t nbuf,
2175 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2176 				     uint8_t new_mac_cnt, uint8_t tid,
2177 				     bool is_igmp, bool is_dms_pkt);
2178 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2179 
2180 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2181 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2182 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2183 		uint32_t config_param_1, uint32_t config_param_2,
2184 		uint32_t config_param_3, int cookie, int cookie_msb,
2185 		uint8_t mac_id);
2186 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2187 			    uint8_t tag_type, uint32_t *tag_buf);
2188 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2189 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2190 				     uint8_t mac_id);
2191 /**
2192  * dp_rxtid_stats_cmd_cb - function pointer for peer
2193  *			   rx tid stats cmd call_back
2194  */
2195 typedef void (*dp_rxtid_stats_cmd_cb)(struct dp_soc *soc, void *cb_ctxt,
2196 				      union hal_reo_status *reo_status);
2197 int dp_peer_rxtid_stats(struct dp_peer *peer,
2198 			dp_rxtid_stats_cmd_cb dp_stats_cmd_cb,
2199 			void *cb_ctxt);
2200 #ifdef IPA_OFFLOAD
2201 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2202 				       union hal_reo_status *reo_status);
2203 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2204 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2205 #endif
2206 QDF_STATUS
2207 dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2208 		      uint8_t *peer_mac, enum cdp_sec_type sec_type,
2209 		      uint32_t *rx_pn);
2210 
2211 QDF_STATUS
2212 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2213 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
2214 			  bool is_unicast);
2215 
2216 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
2217 
2218 QDF_STATUS
2219 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
2220 		   uint8_t *peer_mac,
2221 		   bool is_unicast, uint32_t *key);
2222 
2223 /**
2224  * dp_check_pdev_exists() - Validate pdev before use
2225  * @soc - dp soc handle
2226  * @data - pdev handle
2227  *
2228  * Return: 0 - success/invalid - failure
2229  */
2230 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
2231 
2232 /**
2233  * dp_update_delay_stats() - Update delay statistics in structure
2234  *				and fill min, max and avg delay
2235  * @tstats: tid tx stats
2236  * @rstats: tid rx stats
2237  * @delay: delay in ms
2238  * @tid: tid value
2239  * @mode: type of tx delay mode
2240  * @ring id: ring number
2241  * @delay_in_us: flag to indicate whether the delay is in ms or us
2242  *
2243  * Return: none
2244  */
2245 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
2246 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
2247 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
2248 			   bool delay_in_us);
2249 
2250 /**
2251  * dp_print_ring_stats(): Print tail and head pointer
2252  * @pdev: DP_PDEV handle
2253  *
2254  * Return:void
2255  */
2256 void dp_print_ring_stats(struct dp_pdev *pdev);
2257 
2258 /**
2259  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
2260  * @pdev_handle: DP pdev handle
2261  *
2262  * Return - void
2263  */
2264 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
2265 
2266 /**
2267  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
2268  * @soc_handle: Soc handle
2269  *
2270  * Return: void
2271  */
2272 void dp_print_soc_cfg_params(struct dp_soc *soc);
2273 
2274 /**
2275  * dp_srng_get_str_from_ring_type() - Return string name for a ring
2276  * @ring_type: Ring
2277  *
2278  * Return: char const pointer
2279  */
2280 const
2281 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
2282 
2283 /*
2284  * dp_txrx_path_stats() - Function to display dump stats
2285  * @soc - soc handle
2286  *
2287  * return: none
2288  */
2289 void dp_txrx_path_stats(struct dp_soc *soc);
2290 
2291 /*
2292  * dp_print_per_ring_stats(): Packet count per ring
2293  * @soc - soc handle
2294  *
2295  * Return - None
2296  */
2297 void dp_print_per_ring_stats(struct dp_soc *soc);
2298 
2299 /**
2300  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
2301  * @pdev: DP PDEV handle
2302  *
2303  * return: void
2304  */
2305 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
2306 
2307 /**
2308  * dp_print_rx_rates(): Print Rx rate stats
2309  * @vdev: DP_VDEV handle
2310  *
2311  * Return:void
2312  */
2313 void dp_print_rx_rates(struct dp_vdev *vdev);
2314 
2315 /**
2316  * dp_print_tx_rates(): Print tx rates
2317  * @vdev: DP_VDEV handle
2318  *
2319  * Return:void
2320  */
2321 void dp_print_tx_rates(struct dp_vdev *vdev);
2322 
2323 /**
2324  * dp_print_peer_stats():print peer stats
2325  * @peer: DP_PEER handle
2326  * @peer_stats: buffer holding peer stats
2327  *
2328  * return void
2329  */
2330 void dp_print_peer_stats(struct dp_peer *peer,
2331 			 struct cdp_peer_stats *peer_stats);
2332 
2333 /**
2334  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
2335  * @pdev: DP_PDEV Handle
2336  *
2337  * Return:void
2338  */
2339 void
2340 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
2341 
2342 /**
2343  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
2344  * @pdev: DP_PDEV Handle
2345  *
2346  * Return: void
2347  */
2348 void
2349 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
2350 
2351 /**
2352  * dp_print_soc_tx_stats(): Print SOC level  stats
2353  * @soc DP_SOC Handle
2354  *
2355  * Return: void
2356  */
2357 void dp_print_soc_tx_stats(struct dp_soc *soc);
2358 
2359 /**
2360  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
2361  * @soc: dp_soc handle
2362  *
2363  * Return: None
2364  */
2365 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
2366 
2367 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
2368 /**
2369  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2370  *				  for all SRNGs
2371  * @soc: DP soc handle
2372  * @srng_mask: SRNGs mask for dumping usage watermark stats
2373  *
2374  * Return: None
2375  */
2376 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
2377 #else
2378 /**
2379  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2380  *				  for all SRNGs
2381  * @soc: DP soc handle
2382  * @srng_mask: SRNGs mask for dumping usage watermark stats
2383  *
2384  * Return: None
2385  */
2386 static inline
2387 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
2388 {
2389 }
2390 #endif
2391 
2392 /**
2393  * dp_print_soc_rx_stats: Print SOC level Rx stats
2394  * @soc: DP_SOC Handle
2395  *
2396  * Return:void
2397  */
2398 void dp_print_soc_rx_stats(struct dp_soc *soc);
2399 
2400 /**
2401  * dp_get_mac_id_for_pdev() -  Return mac corresponding to pdev for mac
2402  *
2403  * @mac_id: MAC id
2404  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2405  *
2406  * Single pdev using both MACs will operate on both MAC rings,
2407  * which is the case for MCL.
2408  * For WIN each PDEV will operate one ring, so index is zero.
2409  *
2410  */
2411 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
2412 {
2413 	if (mac_id && pdev_id) {
2414 		qdf_print("Both mac_id and pdev_id cannot be non zero");
2415 		QDF_BUG(0);
2416 		return 0;
2417 	}
2418 	return (mac_id + pdev_id);
2419 }
2420 
2421 /**
2422  * dp_get_lmac_id_for_pdev_id() -  Return lmac id corresponding to host pdev id
2423  * @soc: soc pointer
2424  * @mac_id: MAC id
2425  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2426  *
2427  * For MCL, Single pdev using both MACs will operate on both MAC rings.
2428  *
2429  * For WIN, each PDEV will operate one ring.
2430  *
2431  */
2432 static inline int
2433 dp_get_lmac_id_for_pdev_id
2434 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
2435 {
2436 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2437 		if (mac_id && pdev_id) {
2438 			qdf_print("Both mac_id and pdev_id cannot be non zero");
2439 			QDF_BUG(0);
2440 			return 0;
2441 		}
2442 		return (mac_id + pdev_id);
2443 	}
2444 
2445 	return soc->pdev_list[pdev_id]->lmac_id;
2446 }
2447 
2448 /**
2449  * dp_get_pdev_for_lmac_id() -  Return pdev pointer corresponding to lmac id
2450  * @soc: soc pointer
2451  * @lmac_id: LMAC id
2452  *
2453  * For MCL, Single pdev exists
2454  *
2455  * For WIN, each PDEV will operate one ring.
2456  *
2457  */
2458 static inline struct dp_pdev *
2459 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
2460 {
2461 	uint8_t i = 0;
2462 
2463 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2464 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
2465 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
2466 	}
2467 
2468 	/* Typically for MCL as there only 1 PDEV*/
2469 	return soc->pdev_list[0];
2470 }
2471 
2472 /**
2473  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
2474  *                                          corresponding to host pdev id
2475  * @soc: soc pointer
2476  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2477  *
2478  * returns target pdev_id for host pdev id. For WIN, this is derived through
2479  * a two step process:
2480  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
2481  *    during mode switch)
2482  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
2483  *
2484  * For MCL, return the offset-1 translated mac_id
2485  */
2486 static inline int
2487 dp_calculate_target_pdev_id_from_host_pdev_id
2488 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2489 {
2490 	struct dp_pdev *pdev;
2491 
2492 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2493 		return DP_SW2HW_MACID(mac_for_pdev);
2494 
2495 	pdev = soc->pdev_list[mac_for_pdev];
2496 
2497 	/*non-MCL case, get original target_pdev mapping*/
2498 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
2499 }
2500 
2501 /**
2502  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
2503  *                                         to host pdev id
2504  * @soc: soc pointer
2505  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2506  *
2507  * returns target pdev_id for host pdev id.
2508  * For WIN, return the value stored in pdev object.
2509  * For MCL, return the offset-1 translated mac_id.
2510  */
2511 static inline int
2512 dp_get_target_pdev_id_for_host_pdev_id
2513 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2514 {
2515 	struct dp_pdev *pdev;
2516 
2517 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2518 		return DP_SW2HW_MACID(mac_for_pdev);
2519 
2520 	pdev = soc->pdev_list[mac_for_pdev];
2521 
2522 	return pdev->target_pdev_id;
2523 }
2524 
2525 /**
2526  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
2527  *                                         to target pdev id
2528  * @soc: soc pointer
2529  * @pdev_id: pdev_id corresponding to target pdev
2530  *
2531  * returns host pdev_id for target pdev id. For WIN, this is derived through
2532  * a two step process:
2533  * 1. Get lmac_id corresponding to target pdev_id
2534  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
2535  *
2536  * For MCL, return the 0-offset pdev_id
2537  */
2538 static inline int
2539 dp_get_host_pdev_id_for_target_pdev_id
2540 	(struct dp_soc *soc, uint32_t pdev_id)
2541 {
2542 	struct dp_pdev *pdev;
2543 	int lmac_id;
2544 
2545 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2546 		return DP_HW2SW_MACID(pdev_id);
2547 
2548 	/*non-MCL case, get original target_lmac mapping from target pdev*/
2549 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
2550 					  DP_HW2SW_MACID(pdev_id));
2551 
2552 	/*Get host pdev from lmac*/
2553 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
2554 
2555 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
2556 }
2557 
2558 /*
2559  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
2560  *
2561  * @soc: handle to DP soc
2562  * @mac_id: MAC id
2563  *
2564  * Single pdev using both MACs will operate on both MAC rings,
2565  * which is the case for MCL.
2566  * For WIN each PDEV will operate one ring, so index is zero.
2567  *
2568  */
2569 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
2570 {
2571 	/*
2572 	 * Single pdev using both MACs will operate on both MAC rings,
2573 	 * which is the case for MCL.
2574 	 */
2575 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2576 		return mac_id;
2577 
2578 	/* For WIN each PDEV will operate one ring, so index is zero. */
2579 	return 0;
2580 }
2581 
2582 /*
2583  * dp_is_subtype_data() - check if the frame subtype is data
2584  *
2585  * @frame_ctrl: Frame control field
2586  *
2587  * check the frame control field and verify if the packet
2588  * is a data packet.
2589  *
2590  * Return: true or false
2591  */
2592 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
2593 {
2594 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
2595 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
2596 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2597 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
2598 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2599 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
2600 		return true;
2601 	}
2602 
2603 	return false;
2604 }
2605 
2606 #ifdef WDI_EVENT_ENABLE
2607 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2608 				uint32_t stats_type_upload_mask,
2609 				uint8_t mac_id);
2610 
2611 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2612 		       wdi_event_subscribe *event_cb_sub_handle,
2613 		       uint32_t event);
2614 
2615 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2616 		     wdi_event_subscribe *event_cb_sub_handle,
2617 		     uint32_t event);
2618 
2619 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
2620 			  void *data, u_int16_t peer_id,
2621 			  int status, u_int8_t pdev_id);
2622 
2623 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
2624 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
2625 
2626 static inline void
2627 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
2628 			    void *cb_context,
2629 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2630 			    uint8_t pipe_id)
2631 {
2632 	struct hif_msg_callbacks hif_pipe_callbacks;
2633 
2634 	/* TODO: Temporary change to bypass HTC connection for this new
2635 	 * HIF pipe, which will be used for packet log and other high-
2636 	 * priority HTT messages. Proper HTC connection to be added
2637 	 * later once required FW changes are available
2638 	 */
2639 	hif_pipe_callbacks.rxCompletionHandler = callback;
2640 	hif_pipe_callbacks.Context = cb_context;
2641 	hif_update_pipe_callback(dp_soc->hif_handle,
2642 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
2643 }
2644 #else
2645 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2646 				     wdi_event_subscribe *event_cb_sub_handle,
2647 				     uint32_t event)
2648 {
2649 	return 0;
2650 }
2651 
2652 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2653 				   wdi_event_subscribe *event_cb_sub_handle,
2654 				   uint32_t event)
2655 {
2656 	return 0;
2657 }
2658 
2659 static inline
2660 void dp_wdi_event_handler(enum WDI_EVENT event,
2661 			  struct dp_soc *soc,
2662 			  void *data, u_int16_t peer_id,
2663 			  int status, u_int8_t pdev_id)
2664 {
2665 }
2666 
2667 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
2668 {
2669 	return 0;
2670 }
2671 
2672 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
2673 {
2674 	return 0;
2675 }
2676 
2677 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2678 		uint32_t stats_type_upload_mask, uint8_t mac_id)
2679 {
2680 	return 0;
2681 }
2682 
2683 static inline void
2684 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
2685 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2686 			    uint8_t pipe_id)
2687 {
2688 }
2689 #endif /* CONFIG_WIN */
2690 
2691 #ifdef VDEV_PEER_PROTOCOL_COUNT
2692 /**
2693  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2694  * @vdev: VDEV DP object
2695  * @nbuf: data packet
2696  * @peer: DP TXRX Peer object
2697  * @is_egress: whether egress or ingress
2698  * @is_rx: whether rx or tx
2699  *
2700  * This function updates the per-peer protocol counters
2701  * Return: void
2702  */
2703 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
2704 					    qdf_nbuf_t nbuf,
2705 					    struct dp_txrx_peer *txrx_peer,
2706 					    bool is_egress,
2707 					    bool is_rx);
2708 
2709 /**
2710  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2711  * @soc: SOC DP object
2712  * @vdev_id: vdev_id
2713  * @nbuf: data packet
2714  * @is_egress: whether egress or ingress
2715  * @is_rx: whether rx or tx
2716  *
2717  * This function updates the per-peer protocol counters
2718  * Return: void
2719  */
2720 
2721 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
2722 				       int8_t vdev_id,
2723 				       qdf_nbuf_t nbuf,
2724 				       bool is_egress,
2725 				       bool is_rx);
2726 
2727 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2728 					       qdf_nbuf_t nbuf);
2729 
2730 #else
2731 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
2732 					       is_egress, is_rx)
2733 
2734 static inline
2735 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2736 					       qdf_nbuf_t nbuf)
2737 {
2738 }
2739 
2740 #endif
2741 
2742 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
2743 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
2744 
2745 /**
2746  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
2747  * @soc: DP soc context
2748  *
2749  * Return: none
2750  */
2751 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
2752 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
2753 	bool force);
2754 #else
2755 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
2756 {
2757 }
2758 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
2759 
2760 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
2761 static inline int
2762 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2763 {
2764 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
2765 }
2766 
2767 static inline void
2768 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2769 {
2770 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
2771 }
2772 
2773 #else
2774 static inline int
2775 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2776 {
2777 	return hal_srng_access_start(soc, hal_ring_hdl);
2778 }
2779 
2780 static inline void
2781 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2782 {
2783 	hal_srng_access_end(soc, hal_ring_hdl);
2784 }
2785 #endif
2786 
2787 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2788 /**
2789  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
2790  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2791  * @soc: DP Soc handle
2792  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2793  *
2794  * Return: 0 on success; error on failure
2795  */
2796 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2797 			 hal_ring_handle_t hal_ring_hdl);
2798 
2799 /**
2800  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
2801  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2802  * @soc: DP Soc handle
2803  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2804  *
2805  * Return: void
2806  */
2807 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2808 			hal_ring_handle_t hal_ring_hdl);
2809 
2810 #else
2811 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
2812 				       struct dp_soc *dp_soc,
2813 				       hal_ring_handle_t hal_ring_hdl)
2814 {
2815 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2816 
2817 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2818 }
2819 
2820 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
2821 				      struct dp_soc *dp_soc,
2822 				      hal_ring_handle_t hal_ring_hdl)
2823 {
2824 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2825 
2826 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2827 }
2828 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2829 
2830 #ifdef QCA_CACHED_RING_DESC
2831 /**
2832  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
2833  * @dp_socsoc: DP Soc handle
2834  * @hal_ring: opaque pointer to the HAL Destination Ring
2835  *
2836  * Return: HAL ring descriptor
2837  */
2838 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
2839 					 hal_ring_handle_t hal_ring_hdl)
2840 {
2841 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2842 
2843 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
2844 }
2845 
2846 /**
2847  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
2848  * descriptors
2849  * @dp_socsoc: DP Soc handle
2850  * @hal_ring: opaque pointer to the HAL Rx Destination ring
2851  * @num_entries: Entry count
2852  *
2853  * Return: None
2854  */
2855 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
2856 						hal_ring_handle_t hal_ring_hdl,
2857 						uint32_t num_entries)
2858 {
2859 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2860 
2861 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
2862 }
2863 #else
2864 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
2865 					 hal_ring_handle_t hal_ring_hdl)
2866 {
2867 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2868 
2869 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
2870 }
2871 
2872 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
2873 						hal_ring_handle_t hal_ring_hdl,
2874 						uint32_t num_entries)
2875 {
2876 }
2877 #endif /* QCA_CACHED_RING_DESC */
2878 
2879 #if defined(QCA_CACHED_RING_DESC) && \
2880 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
2881 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
2882 /**
2883  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
2884  * @hal_soc_hdl: HAL SOC handle
2885  * @hal_ring: opaque pointer to the HAL Rx Destination ring
2886  * @num_entries: Entry count
2887  *
2888  * Return: None
2889  */
2890 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
2891 					 hal_ring_handle_t hal_ring_hdl,
2892 					 uint32_t num_entries)
2893 {
2894 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
2895 }
2896 #else
2897 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
2898 					 hal_ring_handle_t hal_ring_hdl,
2899 					 uint32_t num_entries)
2900 {
2901 	return NULL;
2902 }
2903 #endif
2904 
2905 #ifdef QCA_ENH_V3_STATS_SUPPORT
2906 /**
2907  * dp_pdev_print_delay_stats(): Print pdev level delay stats
2908  * @pdev: DP_PDEV handle
2909  *
2910  * Return:void
2911  */
2912 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
2913 
2914 /**
2915  * dp_pdev_print_tid_stats(): Print pdev level tid stats
2916  * @pdev: DP_PDEV handle
2917  *
2918  * Return:void
2919  */
2920 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
2921 
2922 /**
2923  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
2924  * @pdev: DP_PDEV handle
2925  *
2926  * Return:void
2927  */
2928 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
2929 #endif /* QCA_ENH_V3_STATS_SUPPORT */
2930 
2931 /**
2932  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
2933  * @soc_hdl: soc handle
2934  * @pdev_id: id of dp_pdev handle
2935  * @tid_stats: Pointer for cdp_tid_stats_intf
2936  *
2937  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
2938  */
2939 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2940 				 struct cdp_tid_stats_intf *tid_stats);
2941 
2942 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
2943 
2944 /**
2945  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
2946  * @vdev: DP vdev handle
2947  *
2948  * Return: struct cdp_vdev pointer
2949  */
2950 static inline
2951 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
2952 {
2953 	return (struct cdp_vdev *)vdev;
2954 }
2955 
2956 /**
2957  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
2958  * @pdev: DP pdev handle
2959  *
2960  * Return: struct cdp_pdev pointer
2961  */
2962 static inline
2963 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
2964 {
2965 	return (struct cdp_pdev *)pdev;
2966 }
2967 
2968 /**
2969  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
2970  * @psoc: DP psoc handle
2971  *
2972  * Return: struct cdp_soc pointer
2973  */
2974 static inline
2975 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
2976 {
2977 	return (struct cdp_soc *)psoc;
2978 }
2979 
2980 /**
2981  * dp_soc_to_cdp_soc_t() - typecast dp psoc to
2982  * ol txrx soc handle
2983  * @psoc: DP psoc handle
2984  *
2985  * Return: struct cdp_soc_t pointer
2986  */
2987 static inline
2988 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
2989 {
2990 	return (struct cdp_soc_t *)psoc;
2991 }
2992 
2993 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
2994 /**
2995  * dp_rx_flow_update_fse_stats() - Update a flow's statistics
2996  * @pdev: pdev handle
2997  * @flow_id: flow index (truncated hash) in the Rx FST
2998  *
2999  * Return: Success when flow statistcs is updated, error on failure
3000  */
3001 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3002 				    struct cdp_rx_flow_info *rx_flow_info,
3003 				    struct cdp_flow_stats *stats);
3004 
3005 /**
3006  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3007  * @pdev: pdev handle
3008  * @rx_flow_info: DP flow parameters
3009  *
3010  * Return: Success when flow is deleted, error on failure
3011  */
3012 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3013 				   struct cdp_rx_flow_info *rx_flow_info);
3014 
3015 /**
3016  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3017  * @pdev: DP pdev instance
3018  * @rx_flow_info: DP flow paramaters
3019  *
3020  * Return: Success when flow is added, no-memory or already exists on error
3021  */
3022 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3023 				struct cdp_rx_flow_info *rx_flow_info);
3024 
3025 /**
3026  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3027  * @soc: SoC handle
3028  * @pdev: Pdev handle
3029  *
3030  * Return: Handle to flow search table entry
3031  */
3032 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3033 
3034 /**
3035  * dp_rx_fst_detach() - De-initialize Rx FST
3036  * @soc: SoC handle
3037  * @pdev: Pdev handle
3038  *
3039  * Return: None
3040  */
3041 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3042 
3043 /**
3044  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3045  * @soc: SoC handle
3046  * @pdev: Pdev handle
3047  *
3048  * Return: Success when fst parameters are programmed in FW, error otherwise
3049  */
3050 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3051 					struct dp_pdev *pdev);
3052 
3053 /** dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3054  * @pdev: pdev handle
3055  * @flow_id: flow index (truncated hash) in the Rx FST
3056  *
3057  * Return: Success when flow statistcs is updated, error on failure
3058  */
3059 QDF_STATUS
3060 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3061 
3062 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3063 
3064 /**
3065  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3066  * @soc: SoC handle
3067  * @pdev: Pdev handle
3068  *
3069  * Return: Handle to flow search table entry
3070  */
3071 static inline
3072 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3073 {
3074 	return QDF_STATUS_SUCCESS;
3075 }
3076 
3077 /**
3078  * dp_rx_fst_detach() - De-initialize Rx FST
3079  * @soc: SoC handle
3080  * @pdev: Pdev handle
3081  *
3082  * Return: None
3083  */
3084 static inline
3085 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
3086 {
3087 }
3088 #endif
3089 
3090 /**
3091  * dp_vdev_get_ref() - API to take a reference for VDEV object
3092  *
3093  * @soc		: core DP soc context
3094  * @vdev	: DP vdev
3095  * @mod_id	: module id
3096  *
3097  * Return:	QDF_STATUS_SUCCESS if reference held successfully
3098  *		else QDF_STATUS_E_INVAL
3099  */
3100 static inline
3101 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
3102 			   enum dp_mod_id mod_id)
3103 {
3104 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
3105 		return QDF_STATUS_E_INVAL;
3106 
3107 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
3108 
3109 	return QDF_STATUS_SUCCESS;
3110 }
3111 
3112 /**
3113  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
3114  * @soc: core DP soc context
3115  * @vdev_id: vdev id from vdev object can be retrieved
3116  * @mod_id: module id which is requesting the reference
3117  *
3118  * Return: struct dp_vdev*: Pointer to DP vdev object
3119  */
3120 static inline struct dp_vdev *
3121 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
3122 		      enum dp_mod_id mod_id)
3123 {
3124 	struct dp_vdev *vdev = NULL;
3125 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3126 		return NULL;
3127 
3128 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3129 	vdev = soc->vdev_id_map[vdev_id];
3130 
3131 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
3132 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3133 		return NULL;
3134 	}
3135 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3136 
3137 	return vdev;
3138 }
3139 
3140 /**
3141  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
3142  * @soc: core DP soc context
3143  * @pdev_id: pdev id from pdev object can be retrieved
3144  *
3145  * Return: struct dp_pdev*: Pointer to DP pdev object
3146  */
3147 static inline struct dp_pdev *
3148 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
3149 				   uint8_t pdev_id)
3150 {
3151 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
3152 		return NULL;
3153 
3154 	return soc->pdev_list[pdev_id];
3155 }
3156 
3157 /*
3158  * dp_rx_tid_update_wifi3() – Update receive TID state
3159  * @peer: Datapath peer handle
3160  * @tid: TID
3161  * @ba_window_size: BlockAck window size
3162  * @start_seq: Starting sequence number
3163  * @bar_update: BAR update triggered
3164  *
3165  * Return: QDF_STATUS code
3166  */
3167 QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
3168 					 ba_window_size, uint32_t start_seq,
3169 					 bool bar_update);
3170 
3171 /**
3172  * dp_get_peer_mac_list(): function to get peer mac list of vdev
3173  * @soc: Datapath soc handle
3174  * @vdev_id: vdev id
3175  * @newmac: Table of the clients mac
3176  * @mac_cnt: No. of MACs required
3177  * @limit: Limit the number of clients
3178  *
3179  * return: no of clients
3180  */
3181 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
3182 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
3183 			      u_int16_t mac_cnt, bool limit);
3184 
3185 /*
3186  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
3187  *				       DBS check
3188  * @soc: DP SoC context
3189  * @max_mac_rings: Pointer to variable for No of MAC rings
3190  *
3191  * Return: None
3192  */
3193 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
3194 				     int *max_mac_rings);
3195 
3196 
3197 #if defined(WLAN_SUPPORT_RX_FISA)
3198 void dp_rx_dump_fisa_table(struct dp_soc *soc);
3199 
3200 /*
3201  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
3202  * @soc:		DP SoC context
3203  * @num_entries:	Number of flow search entries
3204  * @cmem_ba_lo:		CMEM base address low
3205  * @cmem_ba_hi:		CMEM base address high
3206  *
3207  * Return: None
3208  */
3209 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3210 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
3211 
3212 void
3213 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
3214 #else
3215 static inline void
3216 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3217 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
3218 {
3219 }
3220 
3221 static inline void
3222 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
3223 {
3224 }
3225 #endif /* WLAN_SUPPORT_RX_FISA */
3226 
3227 #ifdef MAX_ALLOC_PAGE_SIZE
3228 /**
3229  * dp_set_page_size() - Set the max page size for hw link desc.
3230  * For MCL the page size is set to OS defined value and for WIN
3231  * the page size is set to the max_alloc_size cfg ini
3232  * param.
3233  * This is to ensure that WIN gets contiguous memory allocations
3234  * as per requirement.
3235  * @pages: link desc page handle
3236  * @max_alloc_size: max_alloc_size
3237  *
3238  * Return: None
3239  */
3240 static inline
3241 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3242 			  uint32_t max_alloc_size)
3243 {
3244 	pages->page_size = qdf_page_size;
3245 }
3246 
3247 #else
3248 static inline
3249 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3250 			  uint32_t max_alloc_size)
3251 {
3252 	pages->page_size = max_alloc_size;
3253 }
3254 #endif /* MAX_ALLOC_PAGE_SIZE */
3255 
3256 /**
3257  * dp_history_get_next_index() - get the next entry to record an entry
3258  *				 in the history.
3259  * @curr_idx: Current index where the last entry is written.
3260  * @max_entries: Max number of entries in the history
3261  *
3262  * This function assumes that the max number os entries is a power of 2.
3263  *
3264  * Returns: The index where the next entry is to be written.
3265  */
3266 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
3267 						 uint32_t max_entries)
3268 {
3269 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
3270 
3271 	return idx & (max_entries - 1);
3272 }
3273 
3274 /**
3275  * dp_rx_skip_tlvs() - Skip TLVs len + L2 hdr_offset, save in nbuf->cb
3276  * @nbuf: nbuf cb to be updated
3277  * @l2_hdr_offset: l2_hdr_offset
3278  *
3279  * Return: None
3280  */
3281 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
3282 
3283 #ifndef FEATURE_WDS
3284 static inline void
3285 dp_hmwds_ast_add_notify(struct dp_peer *peer,
3286 			uint8_t *mac_addr,
3287 			enum cdp_txrx_ast_entry_type type,
3288 			QDF_STATUS err,
3289 			bool is_peer_map)
3290 {
3291 }
3292 #endif
3293 
3294 #ifdef HTT_STATS_DEBUGFS_SUPPORT
3295 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3296  * debugfs for HTT stats
3297  * @pdev: dp pdev handle
3298  *
3299  * Return: QDF_STATUS
3300  */
3301 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
3302 
3303 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3304  * HTT stats
3305  * @pdev: dp pdev handle
3306  *
3307  * Return: none
3308  */
3309 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
3310 #else
3311 
3312 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3313  * debugfs for HTT stats
3314  * @pdev: dp pdev handle
3315  *
3316  * Return: QDF_STATUS
3317  */
3318 static inline QDF_STATUS
3319 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
3320 {
3321 	return QDF_STATUS_SUCCESS;
3322 }
3323 
3324 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3325  * HTT stats
3326  * @pdev: dp pdev handle
3327  *
3328  * Return: none
3329  */
3330 static inline void
3331 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
3332 {
3333 }
3334 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
3335 
3336 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3337 /**
3338  * dp_soc_swlm_attach() - attach the software latency manager resources
3339  * @soc: Datapath global soc handle
3340  *
3341  * Returns: QDF_STATUS
3342  */
3343 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
3344 {
3345 	return QDF_STATUS_SUCCESS;
3346 }
3347 
3348 /**
3349  * dp_soc_swlm_detach() - detach the software latency manager resources
3350  * @soc: Datapath global soc handle
3351  *
3352  * Returns: QDF_STATUS
3353  */
3354 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
3355 {
3356 	return QDF_STATUS_SUCCESS;
3357 }
3358 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3359 
3360 /**
3361  * dp_get_peer_id(): function to get peer id by mac
3362  * @soc: Datapath soc handle
3363  * @vdev_id: vdev id
3364  * @mac: Peer mac address
3365  *
3366  * return: valid peer id on success
3367  *         HTT_INVALID_PEER on failure
3368  */
3369 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
3370 
3371 #ifdef QCA_SUPPORT_WDS_EXTENDED
3372 /**
3373  * dp_wds_ext_set_peer_state(): function to set peer state
3374  * @soc: Datapath soc handle
3375  * @vdev_id: vdev id
3376  * @mac: Peer mac address
3377  * @rx: rx function pointer
3378  *
3379  * return: QDF_STATUS_SUCCESS on success
3380  *         QDF_STATUS_E_INVAL if peer is not found
3381  *         QDF_STATUS_E_ALREADY if rx is already set/unset
3382  */
3383 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
3384 				  uint8_t vdev_id,
3385 				  uint8_t *mac,
3386 				  ol_txrx_rx_fp rx,
3387 				  ol_osif_peer_handle osif_peer);
3388 #endif /* QCA_SUPPORT_WDS_EXTENDED */
3389 
3390 #ifdef DP_MEM_PRE_ALLOC
3391 
3392 /**
3393  * dp_context_alloc_mem() - allocate memory for DP context
3394  * @soc: datapath soc handle
3395  * @ctxt_type: DP context type
3396  * @ctxt_size: DP context size
3397  *
3398  * Return: DP context address
3399  */
3400 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3401 			   size_t ctxt_size);
3402 
3403 /**
3404  * dp_context_free_mem() - Free memory of DP context
3405  * @soc: datapath soc handle
3406  * @ctxt_type: DP context type
3407  * @vaddr: Address of context memory
3408  *
3409  * Return: None
3410  */
3411 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3412 			 void *vaddr);
3413 
3414 /**
3415  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
3416  * @soc: datapath soc handle
3417  * @desc_type: memory request source type
3418  * @pages: multi page information storage
3419  * @element_size: each element size
3420  * @element_num: total number of elements should be allocated
3421  * @memctxt: memory context
3422  * @cacheable: coherent memory or cacheable memory
3423  *
3424  * This function is a wrapper for memory allocation over multiple
3425  * pages, if dp prealloc method is registered, then will try prealloc
3426  * firstly. if prealloc failed, fall back to regular way over
3427  * qdf_mem_multi_pages_alloc().
3428  *
3429  * Return: None
3430  */
3431 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3432 				   enum dp_desc_type desc_type,
3433 				   struct qdf_mem_multi_page_t *pages,
3434 				   size_t element_size,
3435 				   uint32_t element_num,
3436 				   qdf_dma_context_t memctxt,
3437 				   bool cacheable);
3438 
3439 /**
3440  * dp_desc_multi_pages_mem_free() - free multiple pages memory
3441  * @soc: datapath soc handle
3442  * @desc_type: memory request source type
3443  * @pages: multi page information storage
3444  * @memctxt: memory context
3445  * @cacheable: coherent memory or cacheable memory
3446  *
3447  * This function is a wrapper for multiple pages memory free,
3448  * if memory is got from prealloc pool, put it back to pool.
3449  * otherwise free by qdf_mem_multi_pages_free().
3450  *
3451  * Return: None
3452  */
3453 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3454 				  enum dp_desc_type desc_type,
3455 				  struct qdf_mem_multi_page_t *pages,
3456 				  qdf_dma_context_t memctxt,
3457 				  bool cacheable);
3458 
3459 #else
3460 static inline
3461 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3462 			   size_t ctxt_size)
3463 {
3464 	return qdf_mem_malloc(ctxt_size);
3465 }
3466 
3467 static inline
3468 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3469 			 void *vaddr)
3470 {
3471 	qdf_mem_free(vaddr);
3472 }
3473 
3474 static inline
3475 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3476 				   enum dp_desc_type desc_type,
3477 				   struct qdf_mem_multi_page_t *pages,
3478 				   size_t element_size,
3479 				   uint32_t element_num,
3480 				   qdf_dma_context_t memctxt,
3481 				   bool cacheable)
3482 {
3483 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
3484 				  element_num, memctxt, cacheable);
3485 }
3486 
3487 static inline
3488 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3489 				  enum dp_desc_type desc_type,
3490 				  struct qdf_mem_multi_page_t *pages,
3491 				  qdf_dma_context_t memctxt,
3492 				  bool cacheable)
3493 {
3494 	qdf_mem_multi_pages_free(soc->osdev, pages,
3495 				 memctxt, cacheable);
3496 }
3497 #endif
3498 
3499 #ifdef FEATURE_RUNTIME_PM
3500 /**
3501  * dp_runtime_get() - Get dp runtime refcount
3502  * @soc: Datapath soc handle
3503  *
3504  * Get dp runtime refcount by increment of an atomic variable, which can block
3505  * dp runtime resume to wait to flush pending tx by runtime suspend.
3506  *
3507  * Return: Current refcount
3508  */
3509 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3510 {
3511 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
3512 }
3513 
3514 /**
3515  * dp_runtime_put() - Return dp runtime refcount
3516  * @soc: Datapath soc handle
3517  *
3518  * Return dp runtime refcount by decrement of an atomic variable, allow dp
3519  * runtime resume finish.
3520  *
3521  * Return: Current refcount
3522  */
3523 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3524 {
3525 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
3526 }
3527 
3528 /**
3529  * dp_runtime_get_refcount() - Get dp runtime refcount
3530  * @soc: Datapath soc handle
3531  *
3532  * Get dp runtime refcount by returning an atomic variable
3533  *
3534  * Return: Current refcount
3535  */
3536 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
3537 {
3538 	return qdf_atomic_read(&soc->dp_runtime_refcount);
3539 }
3540 
3541 /**
3542  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
3543  * @soc: Datapath soc handle
3544  *
3545  * Return: QDF_STATUS
3546  */
3547 static inline void dp_runtime_init(struct dp_soc *soc)
3548 {
3549 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
3550 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
3551 	qdf_atomic_init(&soc->dp_runtime_refcount);
3552 }
3553 
3554 /**
3555  * dp_runtime_deinit() - Deinit DP related runtime PM clients
3556  *
3557  * Return: None
3558  */
3559 static inline void dp_runtime_deinit(void)
3560 {
3561 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
3562 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
3563 }
3564 
3565 /**
3566  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
3567  * @soc: Datapath soc handle
3568  *
3569  * Return: None
3570  */
3571 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3572 {
3573 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
3574 
3575 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
3576 }
3577 #else
3578 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3579 {
3580 	return 0;
3581 }
3582 
3583 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3584 {
3585 	return 0;
3586 }
3587 
3588 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
3589 {
3590 	return QDF_STATUS_SUCCESS;
3591 }
3592 
3593 static inline void dp_runtime_deinit(void)
3594 {
3595 }
3596 
3597 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3598 {
3599 }
3600 #endif
3601 
3602 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
3603 {
3604 	if (soc->cdp_soc.ol_ops->get_con_mode)
3605 		return soc->cdp_soc.ol_ops->get_con_mode();
3606 
3607 	return QDF_GLOBAL_MAX_MODE;
3608 }
3609 
3610 /*
3611  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
3612  *				processing
3613  * @pdev: Datapath PDEV handle
3614  *
3615  */
3616 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
3617 
3618 /*
3619  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
3620  *				processing
3621  * @pdev: Datapath PDEV handle
3622  *
3623  * Return: QDF_STATUS_SUCCESS: Success
3624  *         QDF_STATUS_E_NOMEM: Error
3625  */
3626 
3627 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
3628 
3629 /**
3630  * dp_peer_flush_frags() - Flush all fragments for a particular
3631  *  peer
3632  * @soc_hdl - data path soc handle
3633  * @vdev_id - vdev id
3634  * @peer_addr - peer mac address
3635  *
3636  * Return: None
3637  */
3638 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3639 			 uint8_t *peer_mac);
3640 
3641 /**
3642  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
3643  * @soc: pointer to dp_soc handle
3644  *
3645  * Return:
3646  */
3647 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
3648 
3649 /**
3650  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
3651  * @soc_hdl: soc handle
3652  * @soc_stats: buffer to hold the values
3653  *
3654  * Return: QDF_STATUS_SUCCESS: Success
3655  *         QDF_STATUS_E_FAILURE: Error
3656  */
3657 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
3658 				 struct cdp_soc_stats *soc_stats);
3659 
3660 /**
3661  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
3662  * @soc: soc handle
3663  * @vdev_id: id of vdev handle
3664  * @peer_mac: mac of DP_PEER handle
3665  * @delay_stats: pointer to delay stats array
3666  *
3667  * Return: QDF_STATUS_SUCCESS: Success
3668  *         QDF_STATUS_E_FAILURE: Error
3669  */
3670 QDF_STATUS
3671 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3672 			     uint8_t *peer_mac,
3673 			     struct cdp_delay_tid_stats *delay_stats);
3674 
3675 /**
3676  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
3677  * @soc: soc handle
3678  * @pdev_id: id of pdev handle
3679  * @vdev_id: id of vdev handle
3680  * @peer_mac: mac of DP_PEER handle
3681  * @tid_stats: pointer to jitter stats array
3682  *
3683  * Return: QDF_STATUS_SUCCESS: Success
3684  *         QDF_STATUS_E_FAILURE: Error
3685  */
3686 QDF_STATUS
3687 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3688 			      uint8_t vdev_id, uint8_t *peer_mac,
3689 			      struct cdp_peer_tid_stats *tid_stats);
3690 
3691 /* dp_peer_get_tx_capture_stats - to get peer Tx Capture stats
3692  * @soc_hdl: soc handle
3693  * @vdev_id: id of vdev handle
3694  * @peer_mac: mac of DP_PEER handle
3695  * @stats: pointer to peer tx capture stats
3696  *
3697  * Return: QDF_STATUS_SUCCESS: Success
3698  *         QDF_STATUS_E_FAILURE: Error
3699  */
3700 QDF_STATUS
3701 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
3702 			     uint8_t vdev_id, uint8_t *peer_mac,
3703 			     struct cdp_peer_tx_capture_stats *stats);
3704 
3705 /* dp_pdev_get_tx_capture_stats - to get pdev Tx Capture stats
3706  * @soc_hdl: soc handle
3707  * @pdev_id: id of pdev handle
3708  * @stats: pointer to pdev tx capture stats
3709  *
3710  * Return: QDF_STATUS_SUCCESS: Success
3711  *         QDF_STATUS_E_FAILURE: Error
3712  */
3713 QDF_STATUS
3714 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3715 			     struct cdp_pdev_tx_capture_stats *stats);
3716 
3717 #ifdef HW_TX_DELAY_STATS_ENABLE
3718 /*
3719  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
3720  *  is enabled for vdev
3721  * @vdev: dp vdev
3722  *
3723  * Return: true if tx delay stats is enabled for vdev else false
3724  */
3725 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
3726 {
3727 	return vdev->hw_tx_delay_stats_enabled;
3728 }
3729 
3730 /*
3731  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
3732  *  for pdev
3733  * @soc: dp soc
3734  *
3735  * Return: None
3736  */
3737 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
3738 
3739 /**
3740  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
3741  * @soc: soc handle
3742  *
3743  * Return: None
3744  */
3745 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
3746 #else
3747 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
3748 {
3749 	return 0;
3750 }
3751 
3752 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
3753 {
3754 }
3755 
3756 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
3757 {
3758 }
3759 #endif
3760 
3761 static inline void
3762 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
3763 {
3764 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
3765 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
3766 			      LRO_IPV4_SEED_ARR_SZ));
3767 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
3768 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
3769 			      LRO_IPV6_SEED_ARR_SZ));
3770 }
3771 
3772 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
3773 /*
3774  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
3775  * @soc_hdl: soc handle
3776  * @pdev_id: id of pdev handle
3777  * @stats: pointer to pdev telemetry stats
3778  *
3779  * Return: QDF_STATUS_SUCCESS: Success
3780  *         QDF_STATUS_E_FAILURE: Error
3781  */
3782 QDF_STATUS
3783 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3784 			    struct cdp_pdev_telemetry_stats *stats);
3785 
3786 /*
3787  * dp_get_peer_telemetry_stats- API to get peer telemetry stats
3788  * @soc_hdl: soc handle
3789  * @addr: peer mac
3790  * @stats: pointer to peer telemetry stats
3791  *
3792  * Return: QDF_STATUS_SUCCESS: Success
3793  *         QDF_STATUS_E_FAILURE: Error
3794  */
3795 QDF_STATUS
3796 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
3797 			    struct cdp_peer_telemetry_stats *stats);
3798 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
3799 
3800 #ifdef CONNECTIVITY_PKTLOG
3801 /*
3802  * dp_tx_send_pktlog() - send tx packet log
3803  * @soc: soc handle
3804  * @pdev: pdev handle
3805  * @tx_desc: TX software descriptor
3806  * @nbuf: nbuf
3807  * @status: status of tx packet
3808  *
3809  * This function is used to send tx packet for logging
3810  *
3811  * Return: None
3812  *
3813  */
3814 static inline
3815 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
3816 		       struct dp_tx_desc_s *tx_desc,
3817 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
3818 {
3819 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
3820 
3821 	if (qdf_unlikely(packetdump_cb) &&
3822 	    dp_tx_frm_std == tx_desc->frm_type) {
3823 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
3824 			      QDF_NBUF_CB_TX_VDEV_CTX(nbuf),
3825 			      nbuf, status, QDF_TX_DATA_PKT);
3826 	}
3827 }
3828 
3829 /*
3830  * dp_rx_send_pktlog() - send rx packet log
3831  * @soc: soc handle
3832  * @pdev: pdev handle
3833  * @nbuf: nbuf
3834  * @status: status of rx packet
3835  *
3836  * This function is used to send rx packet for logging
3837  *
3838  * Return: None
3839  *
3840  */
3841 static inline
3842 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
3843 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
3844 {
3845 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
3846 
3847 	if (qdf_unlikely(packetdump_cb)) {
3848 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
3849 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
3850 			      nbuf, status, QDF_RX_DATA_PKT);
3851 	}
3852 }
3853 
3854 /*
3855  * dp_rx_err_send_pktlog() - send rx error packet log
3856  * @soc: soc handle
3857  * @pdev: pdev handle
3858  * @mpdu_desc_info: MPDU descriptor info
3859  * @nbuf: nbuf
3860  * @status: status of rx packet
3861  * @set_pktlen: weither to set packet length
3862  *
3863  * This API should only be called when we have not removed
3864  * Rx TLV from head, and head is pointing to rx_tlv
3865  *
3866  * This function is used to send rx packet from erro path
3867  * for logging for which rx packet tlv is not removed.
3868  *
3869  * Return: None
3870  *
3871  */
3872 static inline
3873 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
3874 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
3875 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
3876 			   bool set_pktlen)
3877 {
3878 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
3879 	qdf_size_t skip_size;
3880 	uint16_t msdu_len, nbuf_len;
3881 	uint8_t *rx_tlv_hdr;
3882 	struct hal_rx_msdu_metadata msdu_metadata;
3883 
3884 	if (qdf_unlikely(packetdump_cb)) {
3885 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
3886 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
3887 							  rx_tlv_hdr);
3888 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
3889 					 &msdu_metadata);
3890 
3891 		if (mpdu_desc_info->bar_frame ||
3892 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
3893 			skip_size = soc->rx_pkt_tlv_size;
3894 		else
3895 			skip_size = soc->rx_pkt_tlv_size +
3896 					msdu_metadata.l3_hdr_pad;
3897 
3898 		if (set_pktlen) {
3899 			msdu_len = nbuf_len + skip_size;
3900 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
3901 					    (uint16_t)RX_DATA_BUFFER_SIZE));
3902 		}
3903 
3904 		qdf_nbuf_pull_head(nbuf, skip_size);
3905 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
3906 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
3907 			      nbuf, status, QDF_RX_DATA_PKT);
3908 		qdf_nbuf_push_head(nbuf, skip_size);
3909 	}
3910 }
3911 
3912 #else
3913 static inline
3914 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
3915 		       struct dp_tx_desc_s *tx_desc,
3916 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
3917 {
3918 }
3919 
3920 static inline
3921 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
3922 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
3923 {
3924 }
3925 
3926 static inline
3927 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
3928 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
3929 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
3930 			   bool set_pktlen)
3931 {
3932 }
3933 #endif
3934 #endif /* #ifndef _DP_INTERNAL_H_ */
3935