xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision b4466310b5c0ded95ce954f146e3e4ce6f87f267)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 
26 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
27 
28 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
29 
30 #define DP_BLOCKMEM_SIZE 4096
31 #define WBM2_SW_PPE_REL_RING_ID 6
32 #define WBM2_SW_PPE_REL_MAP_ID 11
33 /* Alignment for consistent memory for DP rings*/
34 #define DP_RING_BASE_ALIGN 32
35 
36 #define DP_RSSI_INVAL 0x80
37 #define DP_RSSI_AVG_WEIGHT 2
38 /*
39  * Formula to derive avg_rssi is taken from wifi2.o firmware
40  */
41 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
42 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
43 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
44 
45 /* Macro For NYSM value received in VHT TLV */
46 #define VHT_SGI_NYSM 3
47 
48 #define INVALID_WBM_RING_NUM 0xF
49 
50 #ifdef FEATURE_DIRECT_LINK
51 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
52 #ifdef IPA_OFFLOAD
53 #ifdef IPA_WDI3_VLAN_SUPPORT
54 #define DIRECT_LINK_REFILL_RING_IDX     4
55 #else
56 #define DIRECT_LINK_REFILL_RING_IDX     3
57 #endif
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     2
60 #endif
61 #endif
62 
63 /* struct htt_dbgfs_cfg - structure to maintain required htt data
64  * @msg_word: htt msg sent to upper layer
65  * @m: qdf debugfs file pointer
66  */
67 struct htt_dbgfs_cfg {
68 	uint32_t *msg_word;
69 	qdf_debugfs_file_t m;
70 };
71 
72 /* Cookie MSB bits assigned for different use case.
73  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
74  * If in future number of pdev are more than 3.
75  */
76 /* Reserve for default case */
77 #define DBG_STATS_COOKIE_DEFAULT 0x0
78 
79 /* Reserve for DP Stats: 3rd bit */
80 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
81 
82 /* Reserve for HTT Stats debugfs support: 4th bit */
83 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
84 
85 /*Reserve for HTT Stats debugfs support: 5th bit */
86 #define DBG_SYSFS_STATS_COOKIE BIT(5)
87 
88 /* Reserve for HTT Stats OBSS PD support: 6th bit */
89 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
90 
91 /**
92  * Bitmap of HTT PPDU TLV types for Default mode
93  */
94 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
95 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
96 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
97 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
98 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
99 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
100 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
101 
102 /* PPDU STATS CFG */
103 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
104 
105 /* PPDU stats mask sent to FW to enable enhanced stats */
106 #define DP_PPDU_STATS_CFG_ENH_STATS \
107 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
108 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
109 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
110 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
111 
112 /* PPDU stats mask sent to FW to support debug sniffer feature */
113 #define DP_PPDU_STATS_CFG_SNIFFER \
114 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
115 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
116 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
117 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
119 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
120 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
121 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
122 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
123 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
124 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
125 
126 /* PPDU stats mask sent to FW to support BPR feature*/
127 #define DP_PPDU_STATS_CFG_BPR \
128 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
129 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
130 
131 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
132 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
133 				   DP_PPDU_STATS_CFG_ENH_STATS)
134 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
135 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
136 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
137 
138 /**
139  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
140  */
141 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
142 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
143 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
144 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
145 
146 /**
147  * Bitmap of HTT PPDU TLV types for Delayed BA
148  */
149 #define HTT_PPDU_STATUS_TLV_BITMAP \
150 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
151 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
152 
153 /**
154  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
155  */
156 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
157 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
158 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
159 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
160 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
161 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
162 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
163 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
164 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
165 
166 /**
167  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
168  */
169 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
170 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
171 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
173 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
174 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
175 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
176 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
177 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
178 
179 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
180 	[HAL_DOT11A] = DOT11_A,
181 	[HAL_DOT11B] = DOT11_B,
182 	[HAL_DOT11N_MM] = DOT11_N,
183 	[HAL_DOT11AC] = DOT11_AC,
184 	[HAL_DOT11AX] = DOT11_AX,
185 	[HAL_DOT11BA] = DOT11_MAX,
186 #ifdef WLAN_FEATURE_11BE
187 	[HAL_DOT11BE] = DOT11_BE,
188 #else
189 	[HAL_DOT11BE] = DOT11_MAX,
190 #endif
191 	[HAL_DOT11AZ] = DOT11_MAX,
192 	[HAL_DOT11N_GF] = DOT11_MAX,
193 };
194 
195 #ifdef WLAN_FEATURE_11BE
196 /**
197  * dp_get_mcs_array_index_by_pkt_type_mcs () - get the destination mcs index
198 					       in array
199  * @pkt_type: host SW pkt type
200  * @mcs: mcs value for TX/RX rate
201  *
202  * Return: succeeded - valid index in mcs array
203 	   fail - same value as MCS_MAX
204  */
205 static inline uint8_t
206 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
207 {
208 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
209 
210 	switch (pkt_type) {
211 	case DOT11_A:
212 		dst_mcs_idx =
213 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
214 		break;
215 	case DOT11_B:
216 		dst_mcs_idx =
217 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
218 		break;
219 	case DOT11_N:
220 		dst_mcs_idx =
221 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
222 		break;
223 	case DOT11_AC:
224 		dst_mcs_idx =
225 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
226 		break;
227 	case DOT11_AX:
228 		dst_mcs_idx =
229 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
230 		break;
231 	case DOT11_BE:
232 		dst_mcs_idx =
233 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	return dst_mcs_idx;
240 }
241 #else
242 static inline uint8_t
243 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
244 {
245 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
246 
247 	switch (pkt_type) {
248 	case DOT11_A:
249 		dst_mcs_idx =
250 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
251 		break;
252 	case DOT11_B:
253 		dst_mcs_idx =
254 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
255 		break;
256 	case DOT11_N:
257 		dst_mcs_idx =
258 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
259 		break;
260 	case DOT11_AC:
261 		dst_mcs_idx =
262 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
263 		break;
264 	case DOT11_AX:
265 		dst_mcs_idx =
266 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
267 		break;
268 	default:
269 		break;
270 	}
271 
272 	return dst_mcs_idx;
273 }
274 #endif
275 
276 #ifdef WIFI_MONITOR_SUPPORT
277 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
278 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
279 #else
280 static inline
281 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
282 {
283 	return QDF_STATUS_SUCCESS;
284 }
285 
286 static inline
287 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
288 {
289 	return QDF_STATUS_SUCCESS;
290 }
291 #endif
292 
293 /*
294  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
295  * @eh: Ethernet header of incoming packet
296  * @vdev: dp_vdev object of the VAP on which this data packet is received
297  *
298  * Return: 1 if the destination mac is correct,
299  *         0 if this frame is not correctly destined to this VAP/MLD
300  */
301 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
302 
303 #ifdef MONITOR_MODULARIZED_ENABLE
304 static inline bool dp_monitor_modularized_enable(void)
305 {
306 	return TRUE;
307 }
308 
309 static inline QDF_STATUS
310 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
311 
312 static inline QDF_STATUS
313 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
314 #else
315 static inline bool dp_monitor_modularized_enable(void)
316 {
317 	return FALSE;
318 }
319 
320 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
321 {
322 	return dp_mon_soc_attach(soc);
323 }
324 
325 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
326 {
327 	return dp_mon_soc_detach(soc);
328 }
329 #endif
330 
331 #ifndef WIFI_MONITOR_SUPPORT
332 #define MON_BUF_MIN_ENTRIES 64
333 
334 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
335 {
336 	return QDF_STATUS_SUCCESS;
337 }
338 
339 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
340 {
341 	return QDF_STATUS_SUCCESS;
342 }
343 
344 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
345 {
346 	return QDF_STATUS_E_FAILURE;
347 }
348 
349 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
350 {
351 	return QDF_STATUS_E_FAILURE;
352 }
353 
354 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
355 						struct dp_peer *peer)
356 {
357 	return QDF_STATUS_SUCCESS;
358 }
359 
360 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
361 						struct dp_peer *peer)
362 {
363 	return QDF_STATUS_E_FAILURE;
364 }
365 
366 static inline struct cdp_peer_rate_stats_ctx*
367 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
368 {
369 	return NULL;
370 }
371 
372 static inline
373 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
374 {
375 }
376 
377 static inline
378 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
379 			       void *arg, enum cdp_stat_update_type type)
380 {
381 }
382 
383 static inline
384 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
385 					       struct dp_pdev *pdev)
386 {
387 }
388 
389 static inline
390 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
391 					   struct dp_peer *peer,
392 					   enum cdp_peer_stats_type type,
393 					   cdp_peer_stats_param_t *buf)
394 {
395 	return QDF_STATUS_E_FAILURE;
396 }
397 
398 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
399 {
400 	return QDF_STATUS_SUCCESS;
401 }
402 
403 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
404 {
405 	return QDF_STATUS_SUCCESS;
406 }
407 
408 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
409 {
410 	return QDF_STATUS_SUCCESS;
411 }
412 
413 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
414 							 int val)
415 {
416 	return QDF_STATUS_E_FAILURE;
417 }
418 
419 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
420 {
421 }
422 
423 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
424 						   struct dp_pdev *pdev,
425 						   int mac_id,
426 						   int mac_for_pdev)
427 {
428 	return QDF_STATUS_SUCCESS;
429 }
430 
431 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
432 						uint32_t quota)
433 {
434 }
435 
436 static inline
437 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
438 			    uint32_t mac_id, uint32_t quota)
439 {
440 	return 0;
441 }
442 
443 static inline
444 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
445 					 uint32_t mac_id, uint32_t quota)
446 {
447 	return 0;
448 }
449 
450 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
451 					   struct dp_peer *peer)
452 {
453 }
454 
455 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
456 					      struct dp_peer *peer)
457 {
458 }
459 
460 static inline
461 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
462 					struct dp_peer *peer,
463 					uint16_t peer_id)
464 {
465 }
466 
467 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
468 {
469 }
470 
471 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
472 {
473 }
474 
475 static inline
476 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
477 {
478 	return QDF_STATUS_SUCCESS;
479 }
480 
481 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
482 							   struct dp_peer *peer)
483 {
484 }
485 
486 static inline
487 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
488 					   struct dp_tx_desc_s *desc,
489 					   struct hal_tx_completion_status *ts,
490 					   uint16_t peer_id)
491 {
492 	return QDF_STATUS_E_FAILURE;
493 }
494 
495 static inline
496 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
497 				       struct dp_pdev *pdev,
498 				       struct dp_peer *peer,
499 				       struct hal_tx_completion_status *ts,
500 				       qdf_nbuf_t netbuf)
501 {
502 	return QDF_STATUS_E_FAILURE;
503 }
504 
505 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
506 						     uint32_t *msg_word,
507 						     qdf_nbuf_t htt_t2h_msg)
508 {
509 	return true;
510 }
511 
512 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
513 {
514 	return QDF_STATUS_SUCCESS;
515 }
516 
517 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
518 {
519 }
520 
521 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
522 {
523 }
524 
525 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
526 							  uint32_t val)
527 {
528 	return QDF_STATUS_E_INVAL;
529 }
530 
531 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
532 						   struct dp_peer *peer,
533 						   uint8_t is_tx_pkt_cap_enable,
534 						   uint8_t *peer_mac)
535 {
536 	return QDF_STATUS_E_INVAL;
537 }
538 
539 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
540 							  uint32_t val)
541 {
542 	return QDF_STATUS_E_INVAL;
543 }
544 
545 static inline
546 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
547 {
548 	return QDF_STATUS_E_FAILURE;
549 }
550 
551 static inline
552 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
553 {
554 	return 0;
555 }
556 
557 static inline
558 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
559 {
560 }
561 
562 static inline
563 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
564 {
565 }
566 
567 static inline
568 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
569 {
570 	return false;
571 }
572 
573 static inline
574 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
575 {
576 	return false;
577 }
578 
579 static inline
580 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
581 {
582 	return false;
583 }
584 
585 static inline
586 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
587 				bool enable)
588 {
589 	return 0;
590 }
591 
592 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
593 {
594 }
595 
596 static inline
597 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
598 {
599 	return QDF_STATUS_E_FAILURE;
600 }
601 
602 static inline
603 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
604 {
605 }
606 
607 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
608 							  uint8_t *rx_pkt_hdr)
609 {
610 	return QDF_STATUS_E_FAILURE;
611 }
612 
613 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
614 {
615 }
616 
617 static inline
618 void dp_monitor_reap_timer_init(struct dp_soc *soc)
619 {
620 }
621 
622 static inline
623 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
624 {
625 }
626 
627 static inline
628 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
629 				 enum cdp_mon_reap_source source)
630 {
631 	return false;
632 }
633 
634 static inline
635 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
636 				enum cdp_mon_reap_source source)
637 {
638 	return false;
639 }
640 
641 static inline void
642 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
643 {
644 }
645 
646 static inline
647 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
648 {
649 }
650 
651 static inline
652 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
653 {
654 }
655 
656 static inline
657 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
658 {
659 }
660 
661 static inline
662 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
663 {
664 	return false;
665 }
666 
667 static inline struct qdf_mem_multi_page_t*
668 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
669 {
670 	return NULL;
671 }
672 
673 static inline uint32_t *
674 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
675 {
676 	return NULL;
677 }
678 
679 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
680 {
681 	return QDF_STATUS_E_FAILURE;
682 }
683 
684 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
685 {
686 	return false;
687 }
688 
689 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
690 						 struct ol_txrx_ops *txrx_ops)
691 {
692 }
693 
694 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
695 {
696 	return false;
697 }
698 
699 static inline
700 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
701 {
702 }
703 
704 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
705 					  struct dp_vdev *vdev)
706 {
707 }
708 
709 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
710 {
711 }
712 
713 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
714 						     struct dp_peer *ta_peer,
715 						     uint8_t *mac_addr,
716 						     qdf_nbuf_t nbuf,
717 						     uint32_t flags)
718 {
719 }
720 
721 static inline void
722 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
723 {
724 }
725 
726 static inline void
727 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
728 {
729 }
730 
731 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
732 {
733 }
734 
735 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
736 {
737 	return false;
738 }
739 
740 static inline
741 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
742 					   struct dp_vdev *vdev,
743 					   struct dp_neighbour_peer *peer)
744 {
745 }
746 
747 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
748 {
749 	return false;
750 }
751 
752 static inline enum reg_wifi_band
753 dp_monitor_get_chan_band(struct dp_pdev *pdev)
754 {
755 	return 0;
756 }
757 
758 static inline int
759 dp_monitor_get_chan_num(struct dp_pdev *pdev)
760 {
761 	return 0;
762 }
763 
764 static inline qdf_freq_t
765 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
766 {
767 	return 0;
768 }
769 
770 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
771 					      struct dp_soc *soc,
772 					      uint8_t *rx_tlv_hdr)
773 {
774 }
775 
776 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
777 {
778 }
779 
780 static inline
781 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
782 					  uint16_t peer_id, uint32_t ppdu_id,
783 					  uint8_t first_msdu)
784 {
785 	return QDF_STATUS_SUCCESS;
786 }
787 
788 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
789 {
790 	return false;
791 }
792 
793 static inline struct dp_vdev*
794 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
795 {
796 	return NULL;
797 }
798 
799 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
800 							   void *rx_desc)
801 {
802 	return QDF_STATUS_E_FAILURE;
803 }
804 
805 static inline struct mon_rx_status*
806 dp_monitor_get_rx_status(struct dp_pdev *pdev)
807 {
808 	return NULL;
809 }
810 
811 static inline
812 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
813 {
814 }
815 
816 static inline
817 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
818 						      bool val)
819 {
820 }
821 
822 static inline QDF_STATUS
823 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
824 				     struct cdp_peer_tx_capture_stats *stats)
825 {
826 	return QDF_STATUS_E_FAILURE;
827 }
828 
829 static inline QDF_STATUS
830 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
831 				     struct cdp_pdev_tx_capture_stats *stats)
832 {
833 	return QDF_STATUS_E_FAILURE;
834 }
835 
836 #ifdef DP_POWER_SAVE
837 static inline
838 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
839 {
840 }
841 
842 static inline
843 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
844 {
845 }
846 #endif
847 
848 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
849 {
850 	return false;
851 }
852 
853 static inline void
854 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
855 			 struct htt_rx_ring_tlv_filter *tlv_filter)
856 {
857 }
858 
859 static inline void dp_monitor_soc_init(struct dp_soc *soc)
860 {
861 }
862 
863 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
864 {
865 }
866 
867 static inline
868 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
869 							int val)
870 {
871 	return QDF_STATUS_SUCCESS;
872 }
873 
874 static inline QDF_STATUS
875 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
876 						      int mask1, int mask2)
877 {
878 	return QDF_STATUS_SUCCESS;
879 }
880 
881 static inline QDF_STATUS
882 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
883 						   int *mask, int *mask_cont)
884 {
885 	return QDF_STATUS_SUCCESS;
886 }
887 
888 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
889 {
890 	return QDF_STATUS_E_FAILURE;
891 }
892 
893 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
894 {
895 	return false;
896 }
897 
898 static inline
899 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
900 {
901 	return 0;
902 }
903 
904 static inline uint32_t
905 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
906 		  uint32_t mac_id, uint32_t quota)
907 {
908 	return 0;
909 }
910 
911 static inline uint32_t
912 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
913 {
914 	return 0;
915 }
916 
917 static inline
918 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
919 {
920 	return 0;
921 }
922 
923 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
924 {
925 	return 0;
926 }
927 
928 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
929 {
930 	return 0;
931 }
932 
933 static inline void
934 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
935 		 struct htt_rx_ring_tlv_filter *tlv_filter)
936 {
937 }
938 
939 static inline void
940 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
941 			    struct htt_rx_ring_tlv_filter *tlv_filter)
942 {
943 }
944 
945 static inline void
946 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
947 			      struct htt_rx_ring_tlv_filter *tlv_filter)
948 {
949 }
950 
951 static inline void
952 dp_mon_rx_wmask_subscribe(struct dp_soc *soc, uint32_t *msg_word,
953 			  struct htt_rx_ring_tlv_filter *tlv_filter)
954 {
955 }
956 
957 static inline void
958 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
959 			 struct htt_rx_ring_tlv_filter *tlv_filter)
960 {
961 }
962 
963 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
964 static inline
965 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
966 				     struct cdp_peer_telemetry_stats *stats)
967 {
968 }
969 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
970 #endif /* !WIFI_MONITOR_SUPPORT */
971 
972 /**
973  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
974  * dp soc handle
975  * @psoc: CDP psoc handle
976  *
977  * Return: struct dp_soc pointer
978  */
979 static inline
980 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
981 {
982 	return (struct dp_soc *)psoc;
983 }
984 
985 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
986 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
987 
988 /**
989  * enum timer_yield_status - yield status code used in monitor mode timer.
990  * @DP_TIMER_NO_YIELD: do not yield
991  * @DP_TIMER_WORK_DONE: yield because work is done
992  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
993  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
994  */
995 enum timer_yield_status {
996 	DP_TIMER_NO_YIELD,
997 	DP_TIMER_WORK_DONE,
998 	DP_TIMER_WORK_EXHAUST,
999 	DP_TIMER_TIME_EXHAUST,
1000 };
1001 
1002 #if DP_PRINT_ENABLE
1003 #include <qdf_types.h> /* qdf_vprint */
1004 #include <cdp_txrx_handle.h>
1005 
1006 enum {
1007 	/* FATAL_ERR - print only irrecoverable error messages */
1008 	DP_PRINT_LEVEL_FATAL_ERR,
1009 
1010 	/* ERR - include non-fatal err messages */
1011 	DP_PRINT_LEVEL_ERR,
1012 
1013 	/* WARN - include warnings */
1014 	DP_PRINT_LEVEL_WARN,
1015 
1016 	/* INFO1 - include fundamental, infrequent events */
1017 	DP_PRINT_LEVEL_INFO1,
1018 
1019 	/* INFO2 - include non-fundamental but infrequent events */
1020 	DP_PRINT_LEVEL_INFO2,
1021 };
1022 
1023 #define dp_print(level, fmt, ...) do { \
1024 	if (level <= g_txrx_print_level) \
1025 		qdf_print(fmt, ## __VA_ARGS__); \
1026 while (0)
1027 #define DP_PRINT(level, fmt, ...) do { \
1028 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1029 while (0)
1030 #else
1031 #define DP_PRINT(level, fmt, ...)
1032 #endif /* DP_PRINT_ENABLE */
1033 
1034 #define DP_TRACE(LVL, fmt, args ...)                             \
1035 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1036 		fmt, ## args)
1037 
1038 #ifdef WLAN_SYSFS_DP_STATS
1039 void DP_PRINT_STATS(const char *fmt, ...);
1040 #else /* WLAN_SYSFS_DP_STATS */
1041 #ifdef DP_PRINT_NO_CONSOLE
1042 /* Stat prints should not go to console or kernel logs.*/
1043 #define DP_PRINT_STATS(fmt, args ...)\
1044 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1045 		  fmt, ## args)
1046 #else
1047 #define DP_PRINT_STATS(fmt, args ...)\
1048 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1049 		  fmt, ## args)
1050 #endif
1051 #endif /* WLAN_SYSFS_DP_STATS */
1052 
1053 #define DP_STATS_INIT(_handle) \
1054 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1055 
1056 #define DP_STATS_CLR(_handle) \
1057 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1058 
1059 #ifndef DISABLE_DP_STATS
1060 #define DP_STATS_INC(_handle, _field, _delta) \
1061 { \
1062 	if (likely(_handle)) \
1063 		_handle->stats._field += _delta; \
1064 }
1065 
1066 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1067 { \
1068 	if (likely(_handle)) \
1069 		_handle->_field += _delta; \
1070 }
1071 
1072 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1073 { \
1074 	if (_cond && likely(_handle)) \
1075 		_handle->stats._field += _delta; \
1076 }
1077 
1078 #define DP_STATS_DEC(_handle, _field, _delta) \
1079 { \
1080 	if (likely(_handle)) \
1081 		_handle->stats._field -= _delta; \
1082 }
1083 
1084 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1085 { \
1086 	if (likely(_handle)) \
1087 		_handle->_field -= _delta; \
1088 }
1089 
1090 #define DP_STATS_UPD(_handle, _field, _delta) \
1091 { \
1092 	if (likely(_handle)) \
1093 		_handle->stats._field = _delta; \
1094 }
1095 
1096 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1097 { \
1098 	DP_STATS_INC(_handle, _field.num, _count); \
1099 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1100 }
1101 
1102 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1103 { \
1104 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1105 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1106 }
1107 
1108 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1109 { \
1110 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1111 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1112 }
1113 
1114 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1115 { \
1116 	_handle_a->stats._field += _handle_b->stats._field; \
1117 }
1118 
1119 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1120 { \
1121 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1122 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1123 }
1124 
1125 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1126 { \
1127 	_handle_a->stats._field = _handle_b->stats._field; \
1128 }
1129 
1130 #else
1131 #define DP_STATS_INC(_handle, _field, _delta)
1132 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1133 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1134 #define DP_STATS_DEC(_handle, _field, _delta)
1135 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1136 #define DP_STATS_UPD(_handle, _field, _delta)
1137 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1138 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1139 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1140 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1141 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1142 #endif
1143 
1144 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta) \
1145 { \
1146 	DP_STATS_INC(_handle, per_pkt_stats._field, _delta); \
1147 }
1148 
1149 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond) \
1150 { \
1151 	DP_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond); \
1152 }
1153 
1154 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1155 { \
1156 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count); \
1157 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes) \
1158 }
1159 
1160 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1161 { \
1162 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond); \
1163 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1164 }
1165 
1166 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta) \
1167 { \
1168 	DP_STATS_UPD(_handle, per_pkt_stats._field, _delta); \
1169 }
1170 
1171 #ifndef QCA_ENHANCED_STATS_SUPPORT
1172 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta) \
1173 { \
1174 	DP_STATS_INC(_handle, extd_stats._field, _delta); \
1175 }
1176 
1177 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond) \
1178 { \
1179 	DP_STATS_INCC(_handle, extd_stats._field, _delta, _cond); \
1180 }
1181 
1182 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta) \
1183 { \
1184 	DP_STATS_UPD(_handle, extd_stats._field, _delta); \
1185 }
1186 #endif
1187 
1188 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1189 	defined(QCA_ENHANCED_STATS_SUPPORT)
1190 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1191 { \
1192 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1193 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1194 }
1195 
1196 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1197 { \
1198 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1199 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1200 }
1201 
1202 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1203 { \
1204 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1205 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1206 }
1207 
1208 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1209 { \
1210 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1211 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1212 }
1213 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1214 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1215 { \
1216 	if (!(_handle->hw_txrx_stats_en)) \
1217 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1218 }
1219 
1220 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1221 { \
1222 	if (!(_handle->hw_txrx_stats_en)) \
1223 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1224 }
1225 
1226 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1227 { \
1228 	if (!(_handle->hw_txrx_stats_en)) \
1229 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1230 }
1231 
1232 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1233 { \
1234 	if (!(_handle->hw_txrx_stats_en)) \
1235 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1236 }
1237 #else
1238 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1239 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1240 
1241 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1242 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1243 
1244 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1245 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes);
1246 
1247 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1248 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes);
1249 #endif
1250 
1251 #ifdef ENABLE_DP_HIST_STATS
1252 #define DP_HIST_INIT() \
1253 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1254 
1255 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1256 { \
1257 		++num_of_packets[_pdev_id]; \
1258 }
1259 
1260 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1261 	do {                                                              \
1262 		if (_p_cntrs == 1) {                                      \
1263 			DP_STATS_INC(_pdev,                               \
1264 				tx_comp_histogram.pkts_1, 1);             \
1265 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1266 			DP_STATS_INC(_pdev,                               \
1267 				tx_comp_histogram.pkts_2_20, 1);          \
1268 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1269 			DP_STATS_INC(_pdev,                               \
1270 				tx_comp_histogram.pkts_21_40, 1);         \
1271 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1272 			DP_STATS_INC(_pdev,                               \
1273 				tx_comp_histogram.pkts_41_60, 1);         \
1274 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1275 			DP_STATS_INC(_pdev,                               \
1276 				tx_comp_histogram.pkts_61_80, 1);         \
1277 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1278 			DP_STATS_INC(_pdev,                               \
1279 				tx_comp_histogram.pkts_81_100, 1);        \
1280 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1281 			DP_STATS_INC(_pdev,                               \
1282 				tx_comp_histogram.pkts_101_200, 1);       \
1283 		} else if (_p_cntrs > 200) {                              \
1284 			DP_STATS_INC(_pdev,                               \
1285 				tx_comp_histogram.pkts_201_plus, 1);      \
1286 		}                                                         \
1287 	} while (0)
1288 
1289 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1290 	do {                                                              \
1291 		if (_p_cntrs == 1) {                                      \
1292 			DP_STATS_INC(_pdev,                               \
1293 				rx_ind_histogram.pkts_1, 1);              \
1294 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1295 			DP_STATS_INC(_pdev,                               \
1296 				rx_ind_histogram.pkts_2_20, 1);           \
1297 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1298 			DP_STATS_INC(_pdev,                               \
1299 				rx_ind_histogram.pkts_21_40, 1);          \
1300 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1301 			DP_STATS_INC(_pdev,                               \
1302 				rx_ind_histogram.pkts_41_60, 1);          \
1303 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1304 			DP_STATS_INC(_pdev,                               \
1305 				rx_ind_histogram.pkts_61_80, 1);          \
1306 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1307 			DP_STATS_INC(_pdev,                               \
1308 				rx_ind_histogram.pkts_81_100, 1);         \
1309 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1310 			DP_STATS_INC(_pdev,                               \
1311 				rx_ind_histogram.pkts_101_200, 1);        \
1312 		} else if (_p_cntrs > 200) {                              \
1313 			DP_STATS_INC(_pdev,                               \
1314 				rx_ind_histogram.pkts_201_plus, 1);       \
1315 		}                                                         \
1316 	} while (0)
1317 
1318 #define DP_TX_HIST_STATS_PER_PDEV() \
1319 	do { \
1320 		uint8_t hist_stats = 0; \
1321 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1322 				hist_stats++) { \
1323 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1324 					num_of_packets[hist_stats]); \
1325 		} \
1326 	}  while (0)
1327 
1328 
1329 #define DP_RX_HIST_STATS_PER_PDEV() \
1330 	do { \
1331 		uint8_t hist_stats = 0; \
1332 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1333 				hist_stats++) { \
1334 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1335 					num_of_packets[hist_stats]); \
1336 		} \
1337 	}  while (0)
1338 
1339 #else
1340 #define DP_HIST_INIT()
1341 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1342 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1343 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1344 #define DP_RX_HIST_STATS_PER_PDEV()
1345 #define DP_TX_HIST_STATS_PER_PDEV()
1346 #endif /* DISABLE_DP_STATS */
1347 
1348 #define FRAME_MASK_IPV4_ARP   1
1349 #define FRAME_MASK_IPV4_DHCP  2
1350 #define FRAME_MASK_IPV4_EAPOL 4
1351 #define FRAME_MASK_IPV6_DHCP  8
1352 
1353 static inline int dp_log2_ceil(unsigned int value)
1354 {
1355 	unsigned int tmp = value;
1356 	int log2 = -1;
1357 
1358 	while (tmp) {
1359 		log2++;
1360 		tmp >>= 1;
1361 	}
1362 	if (1 << log2 != value)
1363 		log2++;
1364 	return log2;
1365 }
1366 
1367 #ifdef QCA_SUPPORT_PEER_ISOLATION
1368 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1369 
1370 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1371 					 bool val)
1372 {
1373 	txrx_peer->isolation = val;
1374 }
1375 
1376 #else
1377 #define dp_get_peer_isolation(_peer) (0)
1378 
1379 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1380 {
1381 }
1382 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1383 
1384 #ifdef QCA_SUPPORT_WDS_EXTENDED
1385 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1386 {
1387 	txrx_peer->wds_ext.init = 0;
1388 }
1389 #else
1390 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1391 {
1392 }
1393 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1394 
1395 #ifdef QCA_HOST2FW_RXBUF_RING
1396 static inline
1397 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1398 {
1399 	return &pdev->rx_mac_buf_ring[lmac_id];
1400 }
1401 #else
1402 static inline
1403 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1404 {
1405 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1406 }
1407 #endif
1408 
1409 /**
1410  * The lmac ID for a particular channel band is fixed.
1411  * 2.4GHz band uses lmac_id = 1
1412  * 5GHz/6GHz band uses lmac_id=0
1413  */
1414 #define DP_INVALID_LMAC_ID	(-1)
1415 #define DP_MON_INVALID_LMAC_ID	(-1)
1416 #define DP_MAC0_LMAC_ID	0
1417 #define DP_MAC1_LMAC_ID	1
1418 
1419 #ifdef FEATURE_TSO_STATS
1420 /**
1421  * dp_init_tso_stats() - Clear tso stats
1422  * @pdev: pdev handle
1423  *
1424  * Return: None
1425  */
1426 static inline
1427 void dp_init_tso_stats(struct dp_pdev *pdev)
1428 {
1429 	if (pdev) {
1430 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1431 			     sizeof((pdev)->stats.tso_stats));
1432 		qdf_atomic_init(&pdev->tso_idx);
1433 	}
1434 }
1435 
1436 /**
1437  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1438  * @pdev: pdev handle
1439  * @_p_cntrs: number of tso segments for a tso packet
1440  *
1441  * Return: None
1442  */
1443 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1444 					   uint8_t _p_cntrs);
1445 
1446 /**
1447  * dp_tso_segment_update() - Collect tso segment information
1448  * @pdev: pdev handle
1449  * @stats_idx: tso packet number
1450  * @idx: tso segment number
1451  * @seg: tso segment
1452  *
1453  * Return: None
1454  */
1455 void dp_tso_segment_update(struct dp_pdev *pdev,
1456 			   uint32_t stats_idx,
1457 			   uint8_t idx,
1458 			   struct qdf_tso_seg_t seg);
1459 
1460 /**
1461  * dp_tso_packet_update() - TSO Packet information
1462  * @pdev: pdev handle
1463  * @stats_idx: tso packet number
1464  * @msdu: nbuf handle
1465  * @num_segs: tso segments
1466  *
1467  * Return: None
1468  */
1469 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1470 			  qdf_nbuf_t msdu, uint16_t num_segs);
1471 
1472 /**
1473  * dp_tso_segment_stats_update() - TSO Segment stats
1474  * @pdev: pdev handle
1475  * @stats_seg: tso segment list
1476  * @stats_idx: tso packet number
1477  *
1478  * Return: None
1479  */
1480 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1481 				 struct qdf_tso_seg_elem_t *stats_seg,
1482 				 uint32_t stats_idx);
1483 
1484 /**
1485  * dp_print_tso_stats() - dump tso statistics
1486  * @soc:soc handle
1487  * @level: verbosity level
1488  *
1489  * Return: None
1490  */
1491 void dp_print_tso_stats(struct dp_soc *soc,
1492 			enum qdf_stats_verbosity_level level);
1493 
1494 /**
1495  * dp_txrx_clear_tso_stats() - clear tso stats
1496  * @soc: soc handle
1497  *
1498  * Return: None
1499  */
1500 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1501 #else
1502 static inline
1503 void dp_init_tso_stats(struct dp_pdev *pdev)
1504 {
1505 }
1506 
1507 static inline
1508 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1509 					   uint8_t _p_cntrs)
1510 {
1511 }
1512 
1513 static inline
1514 void dp_tso_segment_update(struct dp_pdev *pdev,
1515 			   uint32_t stats_idx,
1516 			   uint32_t idx,
1517 			   struct qdf_tso_seg_t seg)
1518 {
1519 }
1520 
1521 static inline
1522 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1523 			  qdf_nbuf_t msdu, uint16_t num_segs)
1524 {
1525 }
1526 
1527 static inline
1528 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1529 				 struct qdf_tso_seg_elem_t *stats_seg,
1530 				 uint32_t stats_idx)
1531 {
1532 }
1533 
1534 static inline
1535 void dp_print_tso_stats(struct dp_soc *soc,
1536 			enum qdf_stats_verbosity_level level)
1537 {
1538 }
1539 
1540 static inline
1541 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1542 {
1543 }
1544 #endif /* FEATURE_TSO_STATS */
1545 
1546 /* dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1547  * @peer: DP peer handle
1548  * @type: Requested stats type
1549  * @ buf: Buffer to hold the value
1550  *
1551  * Return: status success/failure
1552  */
1553 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1554 						enum cdp_peer_stats_type type,
1555 						cdp_peer_stats_param_t *buf);
1556 
1557 /* dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1558  * @peer: DP peer handle
1559  * @type: Requested stats type
1560  * @ buf: Buffer to hold the value
1561  *
1562  * Return: status success/failure
1563  */
1564 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1565 					     enum cdp_peer_stats_type type,
1566 					     cdp_peer_stats_param_t *buf);
1567 
1568 #define DP_HTT_T2H_HP_PIPE 5
1569 /**
1570  * dp_update_pdev_stats(): Update the pdev stats
1571  * @tgtobj: pdev handle
1572  * @srcobj: vdev stats structure
1573  *
1574  * Update the pdev stats from the specified vdev stats
1575  *
1576  * return: None
1577  */
1578 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1579 			  struct cdp_vdev_stats *srcobj);
1580 
1581 /**
1582  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1583  * @tgtobj: vdev handle
1584  *
1585  * Update the vdev ingress stats
1586  *
1587  * return: None
1588  */
1589 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1590 
1591 /**
1592  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1593  * @tgtobj: tgt buffer for vdev stats
1594  * @srcobj: srcobj vdev stats
1595  *
1596  * Return: None
1597  */
1598 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1599 			       struct cdp_vdev_stats *srcobj);
1600 
1601 /**
1602  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1603  * @tgtobj: pdev handle
1604  * @srcobj: vdev stats structure
1605  *
1606  * Update the pdev ingress stats from the specified vdev stats
1607  *
1608  * return: None
1609  */
1610 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1611 				  struct dp_vdev *srcobj);
1612 
1613 /**
1614  * dp_update_vdev_stats(): Update the vdev stats
1615  * @soc: soc handle
1616  * @srcobj: DP_PEER object
1617  * @arg: point to vdev stats structure
1618  *
1619  * Update the vdev stats from the specified peer stats
1620  *
1621  * return: None
1622  */
1623 void dp_update_vdev_stats(struct dp_soc *soc,
1624 			  struct dp_peer *srcobj,
1625 			  void *arg);
1626 
1627 /**
1628  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1629  * @vdev: DP_VDEV handle
1630  * @peer: DP_PEER handle
1631  *
1632  * Return: None
1633  */
1634 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1635 					struct dp_peer *peer);
1636 
1637 #ifdef IPA_OFFLOAD
1638 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1639 { \
1640 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1641 }
1642 
1643 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1644 { \
1645 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1646 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1647 }
1648 #else
1649 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1650 
1651 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1652 #endif
1653 
1654 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1655 	do {				\
1656 		uint8_t i;		\
1657 		uint8_t pream_type;	\
1658 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1659 			for (i = 0; i < MAX_MCS; i++) { \
1660 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1661 					tx.pkt_type[pream_type].mcs_count[i]); \
1662 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1663 					rx.pkt_type[pream_type].mcs_count[i]); \
1664 			} \
1665 		} \
1666 		  \
1667 		for (i = 0; i < MAX_BW; i++) { \
1668 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1669 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1670 		} \
1671 		  \
1672 		for (i = 0; i < SS_COUNT; i++) { \
1673 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1674 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1675 		} \
1676 		for (i = 0; i < WME_AC_MAX; i++) { \
1677 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1678 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1679 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1680 				      tx.wme_ac_type_bytes[i]); \
1681 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1682 				      rx.wme_ac_type_bytes[i]); \
1683 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1684 					tx.wme_ac_type_bytes[i]); \
1685 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1686 					rx.wme_ac_type_bytes[i]); \
1687 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1688 		\
1689 		} \
1690 		\
1691 		for (i = 0; i < MAX_GI; i++) { \
1692 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1693 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1694 		} \
1695 		\
1696 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1697 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1698 		\
1699 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1700 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1701 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1702 		} \
1703 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1704 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1705 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1706 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1707 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1708 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1709 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1710 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1711 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1712 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1713 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1714 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1715 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1716 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1717 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1718 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1719 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1720 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1721 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1722 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1723 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1724 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1725 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1726 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1727 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1728 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1729 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1730 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1731 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1732 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1733 								\
1734 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1735 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1736 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1737 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1738 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1739 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1740 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1741 		if (_srcobj->stats.rx.snr != 0) \
1742 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1743 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1744 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1745 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1746 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1747 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1748 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1749 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1750 								\
1751 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1752 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1753 									\
1754 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1755 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1756 									\
1757 		_srcobj->stats.rx.unicast.num = \
1758 			_srcobj->stats.rx.to_stack.num - \
1759 					_srcobj->stats.rx.multicast.num; \
1760 		_srcobj->stats.rx.unicast.bytes = \
1761 			_srcobj->stats.rx.to_stack.bytes - \
1762 					_srcobj->stats.rx.multicast.bytes; \
1763 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1764 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1765 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1766 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1767 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1768 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1769 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1770 								  \
1771 		_tgtobj->stats.tx.last_ack_rssi =	\
1772 			_srcobj->stats.tx.last_ack_rssi; \
1773 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1774 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1775 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1776 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1777 	}  while (0)
1778 
1779 #ifdef VDEV_PEER_PROTOCOL_COUNT
1780 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1781 { \
1782 	uint8_t j; \
1783 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1784 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1785 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1786 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1787 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1788 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1789 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1790 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1791 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1792 	} \
1793 }
1794 #else
1795 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1796 #endif
1797 
1798 #ifdef WLAN_FEATURE_11BE
1799 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1800 	do { \
1801 		uint8_t i, mu_type; \
1802 		for (i = 0; i < MAX_MCS; i++) { \
1803 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1804 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1805 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1806 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1807 		} \
1808 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1809 			for (i = 0; i < MAX_MCS; i++) { \
1810 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1811 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1812 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1813 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1814 			} \
1815 		} \
1816 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1817 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1818 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1819 		} \
1820 	} while (0)
1821 #else
1822 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1823 #endif
1824 
1825 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1826 	do { \
1827 		uint8_t i; \
1828 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1829 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1830 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1831 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1832 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1833 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1834 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1835 		_tgtobj->tx.nawds_mcast.bytes += \
1836 					_srcobj->tx.nawds_mcast.bytes; \
1837 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1838 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1839 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1840 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1841 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1842 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1843 		_tgtobj->tx.dropped.fw_rem.num += \
1844 					_srcobj->tx.dropped.fw_rem.num; \
1845 		_tgtobj->tx.dropped.fw_rem.bytes += \
1846 					_srcobj->tx.dropped.fw_rem.bytes; \
1847 		_tgtobj->tx.dropped.fw_rem_notx += \
1848 					_srcobj->tx.dropped.fw_rem_notx; \
1849 		_tgtobj->tx.dropped.fw_rem_tx += \
1850 					_srcobj->tx.dropped.fw_rem_tx; \
1851 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1852 		_tgtobj->tx.dropped.fw_reason1 += \
1853 					_srcobj->tx.dropped.fw_reason1; \
1854 		_tgtobj->tx.dropped.fw_reason2 += \
1855 					_srcobj->tx.dropped.fw_reason2; \
1856 		_tgtobj->tx.dropped.fw_reason3 += \
1857 					_srcobj->tx.dropped.fw_reason3; \
1858 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1859 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1860 		_tgtobj->tx.dropped.fw_rem_no_match += \
1861 					_srcobj->tx.dropped.fw_rem_no_match; \
1862 		_tgtobj->tx.dropped.drop_threshold += \
1863 					_srcobj->tx.dropped.drop_threshold; \
1864 		_tgtobj->tx.dropped.drop_link_desc_na += \
1865 					_srcobj->tx.dropped.drop_link_desc_na; \
1866 		_tgtobj->tx.dropped.invalid_drop += \
1867 					_srcobj->tx.dropped.invalid_drop; \
1868 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1869 					_srcobj->tx.dropped.mcast_vdev_drop; \
1870 		_tgtobj->tx.dropped.invalid_rr += \
1871 					_srcobj->tx.dropped.invalid_rr; \
1872 		_tgtobj->tx.failed_retry_count += \
1873 					_srcobj->tx.failed_retry_count; \
1874 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1875 		_tgtobj->tx.multiple_retry_count += \
1876 					_srcobj->tx.multiple_retry_count; \
1877 		_tgtobj->tx.tx_success_twt.num += \
1878 					_srcobj->tx.tx_success_twt.num; \
1879 		_tgtobj->tx.tx_success_twt.bytes += \
1880 					_srcobj->tx.tx_success_twt.bytes; \
1881 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1882 		_tgtobj->tx.release_src_not_tqm += \
1883 					_srcobj->tx.release_src_not_tqm; \
1884 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1885 			_tgtobj->tx.no_ack_count[i] += \
1886 					_srcobj->tx.no_ack_count[i];\
1887 		} \
1888 		\
1889 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1890 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1891 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1892 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1893 		if (_tgtobj->rx.to_stack.num >= _tgtobj->rx.multicast.num) \
1894 			_tgtobj->rx.unicast.num = \
1895 				_tgtobj->rx.to_stack.num - _tgtobj->rx.multicast.num; \
1896 		if (_tgtobj->rx.to_stack.bytes >= _tgtobj->rx.multicast.bytes) \
1897 			_tgtobj->rx.unicast.bytes = \
1898 				_tgtobj->rx.to_stack.bytes - _tgtobj->rx.multicast.bytes; \
1899 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1900 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1901 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1902 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1903 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1904 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1905 		_tgtobj->rx.intra_bss.pkts.num += \
1906 					_srcobj->rx.intra_bss.pkts.num; \
1907 		_tgtobj->rx.intra_bss.pkts.bytes += \
1908 					_srcobj->rx.intra_bss.pkts.bytes; \
1909 		_tgtobj->rx.intra_bss.fail.num += \
1910 					_srcobj->rx.intra_bss.fail.num; \
1911 		_tgtobj->rx.intra_bss.fail.bytes += \
1912 					_srcobj->rx.intra_bss.fail.bytes; \
1913 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1914 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1915 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1916 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1917 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1918 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1919 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1920 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1921 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1922 					_srcobj->rx.err.rxdma_wifi_parse_err; \
1923 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
1924 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
1925 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
1926 		_tgtobj->rx.multipass_rx_pkt_drop += \
1927 					_srcobj->rx.multipass_rx_pkt_drop; \
1928 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
1929 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
1930 		_tgtobj->rx.policy_check_drop += \
1931 					_srcobj->rx.policy_check_drop; \
1932 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
1933 		_tgtobj->rx.to_stack_twt.bytes += \
1934 					_srcobj->rx.to_stack_twt.bytes; \
1935 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
1936 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
1937 			_tgtobj->rx.rcvd_reo[i].num += \
1938 					 _srcobj->rx.rcvd_reo[i].num; \
1939 			_tgtobj->rx.rcvd_reo[i].bytes += \
1940 					_srcobj->rx.rcvd_reo[i].bytes; \
1941 		} \
1942 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
1943 			_tgtobj->rx.rx_lmac[i].num += \
1944 					_srcobj->rx.rx_lmac[i].num; \
1945 			_tgtobj->rx.rx_lmac[i].bytes += \
1946 					_srcobj->rx.rx_lmac[i].bytes; \
1947 		} \
1948 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
1949 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
1950 	} while (0)
1951 
1952 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
1953 	do { \
1954 		uint8_t i, pream_type, mu_type; \
1955 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
1956 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
1957 		_tgtobj->tx.retries += _srcobj->tx.retries; \
1958 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
1959 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
1960 		_tgtobj->tx.num_ppdu_cookie_valid += \
1961 					_srcobj->tx.num_ppdu_cookie_valid; \
1962 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
1963 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
1964 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
1965 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
1966 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
1967 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
1968 		_tgtobj->tx.mcast_last_tx_rate = \
1969 					_srcobj->tx.mcast_last_tx_rate; \
1970 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
1971 					_srcobj->tx.mcast_last_tx_rate_mcs; \
1972 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
1973 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
1974 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
1975 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
1976 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
1977 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
1978 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
1979 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
1980 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
1981 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
1982 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
1983 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
1984 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
1985 		_tgtobj->tx.mpdu_success_with_retries += \
1986 					_srcobj->tx.mpdu_success_with_retries; \
1987 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
1988 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
1989 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
1990 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
1991 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1992 			for (i = 0; i < MAX_MCS; i++) \
1993 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
1994 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
1995 		} \
1996 		for (i = 0; i < WME_AC_MAX; i++) { \
1997 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
1998 			_tgtobj->tx.wme_ac_type_bytes[i] += \
1999 					_srcobj->tx.wme_ac_type_bytes[i]; \
2000 			_tgtobj->tx.excess_retries_per_ac[i] += \
2001 					_srcobj->tx.excess_retries_per_ac[i]; \
2002 		} \
2003 		for (i = 0; i < MAX_GI; i++) { \
2004 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2005 		} \
2006 		for (i = 0; i < SS_COUNT; i++) { \
2007 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2008 		} \
2009 		for (i = 0; i < MAX_BW; i++) { \
2010 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2011 		} \
2012 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2013 			_tgtobj->tx.ru_loc[i].num_msdu += \
2014 					_srcobj->tx.ru_loc[i].num_msdu; \
2015 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2016 					_srcobj->tx.ru_loc[i].num_mpdu; \
2017 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2018 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2019 		} \
2020 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2021 			_tgtobj->tx.transmit_type[i].num_msdu += \
2022 					_srcobj->tx.transmit_type[i].num_msdu; \
2023 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2024 					_srcobj->tx.transmit_type[i].num_mpdu; \
2025 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2026 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2027 		} \
2028 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2029 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2030 		} \
2031 		_tgtobj->tx.tx_ucast_total.num += \
2032 				_srcobj->tx.tx_ucast_total.num;\
2033 		_tgtobj->tx.tx_ucast_total.bytes += \
2034 				 _srcobj->tx.tx_ucast_total.bytes;\
2035 		_tgtobj->tx.tx_ucast_success.num += \
2036 				_srcobj->tx.tx_ucast_success.num; \
2037 		_tgtobj->tx.tx_ucast_success.bytes += \
2038 				_srcobj->tx.tx_ucast_success.bytes; \
2039 		\
2040 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2041 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2042 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2043 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2044 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2045 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2046 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2047 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2048 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2049 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2050 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2051 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2052 		_tgtobj->rx.rx_snr_measured_time = \
2053 					_srcobj->rx.rx_snr_measured_time; \
2054 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2055 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2056 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2057 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2058 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2059 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2060 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2061 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2062 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2063 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2064 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2065 			for (i = 0; i < MAX_MCS; i++) { \
2066 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2067 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2068 			} \
2069 		} \
2070 		for (i = 0; i < WME_AC_MAX; i++) { \
2071 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2072 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2073 					_srcobj->rx.wme_ac_type_bytes[i]; \
2074 		} \
2075 		for (i = 0; i < MAX_MCS; i++) { \
2076 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2077 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2078 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2079 		} \
2080 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2081 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2082 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2083 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2084 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2085 			for (i = 0; i < SS_COUNT; i++) \
2086 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2087 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2088 			for (i = 0; i < MAX_MCS; i++) \
2089 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2090 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2091 		} \
2092 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2093 			_tgtobj->rx.reception_type[i] += \
2094 					_srcobj->rx.reception_type[i]; \
2095 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2096 		} \
2097 		for (i = 0; i < MAX_GI; i++) { \
2098 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2099 		} \
2100 		for (i = 0; i < SS_COUNT; i++) { \
2101 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2102 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2103 		} \
2104 		for (i = 0; i < MAX_BW; i++) { \
2105 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2106 		} \
2107 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2108 	} while (0)
2109 
2110 /**
2111  * dp_peer_find_attach() - Allocates memory for peer objects
2112  * @soc: SoC handle
2113  *
2114  * Return: QDF_STATUS
2115  */
2116 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2117 extern void dp_peer_find_detach(struct dp_soc *soc);
2118 extern void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2119 extern void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2120 extern void dp_peer_find_hash_erase(struct dp_soc *soc);
2121 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2122 			   struct dp_peer *peer);
2123 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2124 			      struct dp_peer *peer);
2125 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2126 				struct dp_peer *peer,
2127 				uint16_t peer_id);
2128 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2129 			     struct dp_peer *peer,
2130 			     struct dp_txrx_peer *txrx_peer);
2131 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2132 				   uint16_t peer_id);
2133 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2134 			  enum dp_mod_id mod_id);
2135 
2136 /*
2137  * dp_peer_ppdu_delayed_ba_cleanup() free ppdu allocated in peer
2138  * @peer: Datapath peer
2139  *
2140  * return: void
2141  */
2142 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2143 
2144 extern void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2145 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2146 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2147 
2148 #ifdef DP_PEER_EXTENDED_API
2149 /**
2150  * dp_register_peer() - Register peer into physical device
2151  * @soc_hdl - data path soc handle
2152  * @pdev_id - device instance id
2153  * @sta_desc - peer description
2154  *
2155  * Register peer into physical device
2156  *
2157  * Return: QDF_STATUS_SUCCESS registration success
2158  *         QDF_STATUS_E_FAULT peer not found
2159  */
2160 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2161 			    struct ol_txrx_desc_type *sta_desc);
2162 
2163 /**
2164  * dp_clear_peer() - remove peer from physical device
2165  * @soc_hdl - data path soc handle
2166  * @pdev_id - device instance id
2167  * @peer_addr - peer mac address
2168  *
2169  * remove peer from physical device
2170  *
2171  * Return: QDF_STATUS_SUCCESS registration success
2172  *         QDF_STATUS_E_FAULT peer not found
2173  */
2174 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2175 			 struct qdf_mac_addr peer_addr);
2176 
2177 /*
2178  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2179  * @soc: datapath soc handle
2180  * @vdev_id: vdev instance id
2181  * @peer_mac_addr: peer mac address
2182  *
2183  * Return: true or false
2184  */
2185 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2186 				uint8_t *peer_addr);
2187 
2188 /*
2189  * dp_find_peer_exist_on_other_vdev - find if peer exists
2190  * on other than the given vdev
2191  * @soc: datapath soc handle
2192  * @vdev_id: vdev instance id
2193  * @peer_mac_addr: peer mac address
2194  * @max_bssid: max number of bssids
2195  *
2196  * Return: true or false
2197  */
2198 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2199 				      uint8_t vdev_id, uint8_t *peer_addr,
2200 				      uint16_t max_bssid);
2201 
2202 /**
2203  * dp_peer_state_update() - update peer local state
2204  * @pdev - data path device instance
2205  * @peer_addr - peer mac address
2206  * @state - new peer local state
2207  *
2208  * update peer local state
2209  *
2210  * Return: QDF_STATUS_SUCCESS registration success
2211  */
2212 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2213 				enum ol_txrx_peer_state state);
2214 
2215 /**
2216  * dp_get_vdevid() - Get virtual interface id which peer registered
2217  * @soc - datapath soc handle
2218  * @peer_mac - peer mac address
2219  * @vdev_id - virtual interface id which peer registered
2220  *
2221  * Get virtual interface id which peer registered
2222  *
2223  * Return: QDF_STATUS_SUCCESS registration success
2224  */
2225 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2226 			 uint8_t *vdev_id);
2227 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2228 		struct qdf_mac_addr peer_addr);
2229 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2230 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2231 
2232 /**
2233  * dp_get_peer_state() - Get local peer state
2234  * @soc - datapath soc handle
2235  * @vdev_id - vdev id
2236  * @peer_mac - peer mac addr
2237  *
2238  * Get local peer state
2239  *
2240  * Return: peer status
2241  */
2242 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2243 		      uint8_t *peer_mac);
2244 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2245 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2246 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2247 /**
2248  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2249  * @soc_hdl: datapath soc handle
2250  * @vdev_id: vdev_id
2251  * @peer_mac: peer mac addr
2252  * @val: tdls peer flag
2253  *
2254  * Return: none
2255  */
2256 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2257 			      uint8_t *peer_mac, bool val);
2258 #else
2259 /**
2260  * dp_get_vdevid() - Get virtual interface id which peer registered
2261  * @soc - datapath soc handle
2262  * @peer_mac - peer mac address
2263  * @vdev_id - virtual interface id which peer registered
2264  *
2265  * Get virtual interface id which peer registered
2266  *
2267  * Return: QDF_STATUS_SUCCESS registration success
2268  */
2269 static inline
2270 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2271 			 uint8_t *vdev_id)
2272 {
2273 	return QDF_STATUS_E_NOSUPPORT;
2274 }
2275 
2276 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2277 {
2278 }
2279 
2280 static inline
2281 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2282 {
2283 }
2284 
2285 static inline
2286 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2287 {
2288 }
2289 
2290 static inline
2291 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2292 			      uint8_t *peer_mac, bool val)
2293 {
2294 }
2295 #endif
2296 
2297 /*
2298  * dp_find_peer_exist - find peer if already exists
2299  * @soc: datapath soc handle
2300  * @pdev_id: physical device instance id
2301  * @peer_mac_addr: peer mac address
2302  *
2303  * Return: true or false
2304  */
2305 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2306 			uint8_t *peer_addr);
2307 
2308 int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
2309 				      uint8_t *peer_mac, uint16_t vdev_id,
2310 				      uint8_t tid,
2311 				      int status);
2312 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
2313 				  uint8_t *peer_mac, uint16_t vdev_id,
2314 				  uint8_t dialogtoken, uint16_t tid,
2315 				  uint16_t batimeout,
2316 				  uint16_t buffersize,
2317 				  uint16_t startseqnum);
2318 QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc,
2319 					uint8_t *peer_mac, uint16_t vdev_id,
2320 					uint8_t tid, uint8_t *dialogtoken,
2321 					uint16_t *statuscode,
2322 					uint16_t *buffersize,
2323 					uint16_t *batimeout);
2324 QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc,
2325 				 uint8_t *peer_mac,
2326 				 uint16_t vdev_id, uint8_t tid,
2327 				 uint16_t statuscode);
2328 int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2329 			   uint16_t vdev_id, int tid,
2330 			   uint16_t reasoncode);
2331 
2332 /**
2333  * dp_rx_tid_update_ba_win_size() - Update the DP tid BA window size
2334  * @soc: soc handle
2335  * @peer_mac: mac address of peer handle
2336  * @vdev_id: id of vdev handle
2337  * @tid: tid
2338  * @buffersize: BA window size
2339  *
2340  * Return: success/failure of tid update
2341  */
2342 QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc,
2343 					uint8_t *peer_mac, uint16_t vdev_id,
2344 					uint8_t tid, uint16_t buffersize);
2345 
2346 /*
2347  * dp_delba_tx_completion_wifi3() -  Handle delba tx completion
2348  *
2349  * @cdp_soc: soc handle
2350  * @vdev_id: id of the vdev handle
2351  * @peer_mac: peer mac address
2352  * @tid: Tid number
2353  * @status: Tx completion status
2354  * Indicate status of delba Tx to DP for stats update and retry
2355  * delba if tx failed.
2356  *
2357  */
2358 int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2359 				 uint16_t vdev_id, uint8_t tid,
2360 				 int status);
2361 extern QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
2362 					uint32_t ba_window_size,
2363 					uint32_t start_seq);
2364 
2365 #ifdef DP_UMAC_HW_RESET_SUPPORT
2366 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2367 
2368 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2369 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2370 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2371 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2372 			       uint32_t size);
2373 #endif
2374 
2375 extern QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc,
2376 	enum hal_reo_cmd_type type, struct hal_reo_cmd_params *params,
2377 	void (*callback_fn), void *data);
2378 
2379 extern void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2380 
2381 /**
2382  * dp_reo_status_ring_handler - Handler for REO Status ring
2383  * @int_ctx: pointer to DP interrupt context
2384  * @soc: DP Soc handle
2385  *
2386  * Returns: Number of descriptors reaped
2387  */
2388 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2389 				    struct dp_soc *soc);
2390 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2391 			     struct cdp_vdev_stats *vdev_stats);
2392 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2393 	union hal_reo_status *reo_status);
2394 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2395 		union hal_reo_status *reo_status);
2396 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2397 				     qdf_nbuf_t nbuf,
2398 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2399 				     uint8_t new_mac_cnt, uint8_t tid,
2400 				     bool is_igmp, bool is_dms_pkt);
2401 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2402 
2403 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2404 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2405 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2406 		uint32_t config_param_1, uint32_t config_param_2,
2407 		uint32_t config_param_3, int cookie, int cookie_msb,
2408 		uint8_t mac_id);
2409 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2410 			    uint8_t tag_type, uint32_t *tag_buf);
2411 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2412 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2413 				     uint8_t mac_id);
2414 /**
2415  * dp_rxtid_stats_cmd_cb - function pointer for peer
2416  *			   rx tid stats cmd call_back
2417  */
2418 typedef void (*dp_rxtid_stats_cmd_cb)(struct dp_soc *soc, void *cb_ctxt,
2419 				      union hal_reo_status *reo_status);
2420 int dp_peer_rxtid_stats(struct dp_peer *peer,
2421 			dp_rxtid_stats_cmd_cb dp_stats_cmd_cb,
2422 			void *cb_ctxt);
2423 #ifdef IPA_OFFLOAD
2424 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2425 				       union hal_reo_status *reo_status);
2426 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2427 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2428 #ifdef QCA_ENHANCED_STATS_SUPPORT
2429 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
2430 #endif
2431 #else
2432 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
2433 {
2434 }
2435 #endif
2436 QDF_STATUS
2437 dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2438 		      uint8_t *peer_mac, enum cdp_sec_type sec_type,
2439 		      uint32_t *rx_pn);
2440 
2441 QDF_STATUS
2442 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2443 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
2444 			  bool is_unicast);
2445 
2446 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
2447 
2448 QDF_STATUS
2449 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
2450 		   uint8_t *peer_mac,
2451 		   bool is_unicast, uint32_t *key);
2452 
2453 /**
2454  * dp_check_pdev_exists() - Validate pdev before use
2455  * @soc - dp soc handle
2456  * @data - pdev handle
2457  *
2458  * Return: 0 - success/invalid - failure
2459  */
2460 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
2461 
2462 /**
2463  * dp_update_delay_stats() - Update delay statistics in structure
2464  *				and fill min, max and avg delay
2465  * @tstats: tid tx stats
2466  * @rstats: tid rx stats
2467  * @delay: delay in ms
2468  * @tid: tid value
2469  * @mode: type of tx delay mode
2470  * @ring id: ring number
2471  * @delay_in_us: flag to indicate whether the delay is in ms or us
2472  *
2473  * Return: none
2474  */
2475 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
2476 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
2477 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
2478 			   bool delay_in_us);
2479 
2480 /**
2481  * dp_print_ring_stats(): Print tail and head pointer
2482  * @pdev: DP_PDEV handle
2483  *
2484  * Return:void
2485  */
2486 void dp_print_ring_stats(struct dp_pdev *pdev);
2487 
2488 /**
2489  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
2490  * @soc: soc handle
2491  * @srng: srng handle
2492  * @ring_type: ring type
2493  *
2494  * Return:void
2495  */
2496 void
2497 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
2498 			    enum hal_ring_type ring_type);
2499 /**
2500  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
2501  * @pdev_handle: DP pdev handle
2502  *
2503  * Return - void
2504  */
2505 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
2506 
2507 /**
2508  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
2509  * @soc_handle: Soc handle
2510  *
2511  * Return: void
2512  */
2513 void dp_print_soc_cfg_params(struct dp_soc *soc);
2514 
2515 /**
2516  * dp_srng_get_str_from_ring_type() - Return string name for a ring
2517  * @ring_type: Ring
2518  *
2519  * Return: char const pointer
2520  */
2521 const
2522 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
2523 
2524 /*
2525  * dp_txrx_path_stats() - Function to display dump stats
2526  * @soc - soc handle
2527  *
2528  * return: none
2529  */
2530 void dp_txrx_path_stats(struct dp_soc *soc);
2531 
2532 /*
2533  * dp_print_per_ring_stats(): Packet count per ring
2534  * @soc - soc handle
2535  *
2536  * Return - None
2537  */
2538 void dp_print_per_ring_stats(struct dp_soc *soc);
2539 
2540 /**
2541  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
2542  * @pdev: DP PDEV handle
2543  *
2544  * return: void
2545  */
2546 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
2547 
2548 /**
2549  * dp_print_rx_rates(): Print Rx rate stats
2550  * @vdev: DP_VDEV handle
2551  *
2552  * Return:void
2553  */
2554 void dp_print_rx_rates(struct dp_vdev *vdev);
2555 
2556 /**
2557  * dp_print_tx_rates(): Print tx rates
2558  * @vdev: DP_VDEV handle
2559  *
2560  * Return:void
2561  */
2562 void dp_print_tx_rates(struct dp_vdev *vdev);
2563 
2564 /**
2565  * dp_print_peer_stats():print peer stats
2566  * @peer: DP_PEER handle
2567  * @peer_stats: buffer holding peer stats
2568  *
2569  * return void
2570  */
2571 void dp_print_peer_stats(struct dp_peer *peer,
2572 			 struct cdp_peer_stats *peer_stats);
2573 
2574 /**
2575  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
2576  * @pdev: DP_PDEV Handle
2577  *
2578  * Return:void
2579  */
2580 void
2581 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
2582 
2583 /**
2584  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
2585  * @pdev: DP_PDEV Handle
2586  *
2587  * Return: void
2588  */
2589 void
2590 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
2591 
2592 /**
2593  * dp_print_soc_tx_stats(): Print SOC level  stats
2594  * @soc DP_SOC Handle
2595  *
2596  * Return: void
2597  */
2598 void dp_print_soc_tx_stats(struct dp_soc *soc);
2599 
2600 /**
2601  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
2602  * @soc: dp_soc handle
2603  *
2604  * Return: None
2605  */
2606 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
2607 
2608 /**
2609  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
2610  * @soc: dp_soc handle
2611  *
2612  * Return: None
2613  */
2614 
2615 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
2616 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
2617 /**
2618  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2619  *				  for all SRNGs
2620  * @soc: DP soc handle
2621  * @srng_mask: SRNGs mask for dumping usage watermark stats
2622  *
2623  * Return: None
2624  */
2625 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
2626 #else
2627 /**
2628  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2629  *				  for all SRNGs
2630  * @soc: DP soc handle
2631  * @srng_mask: SRNGs mask for dumping usage watermark stats
2632  *
2633  * Return: None
2634  */
2635 static inline
2636 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
2637 {
2638 }
2639 #endif
2640 
2641 /**
2642  * dp_print_soc_rx_stats: Print SOC level Rx stats
2643  * @soc: DP_SOC Handle
2644  *
2645  * Return:void
2646  */
2647 void dp_print_soc_rx_stats(struct dp_soc *soc);
2648 
2649 /**
2650  * dp_get_mac_id_for_pdev() -  Return mac corresponding to pdev for mac
2651  *
2652  * @mac_id: MAC id
2653  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2654  *
2655  * Single pdev using both MACs will operate on both MAC rings,
2656  * which is the case for MCL.
2657  * For WIN each PDEV will operate one ring, so index is zero.
2658  *
2659  */
2660 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
2661 {
2662 	if (mac_id && pdev_id) {
2663 		qdf_print("Both mac_id and pdev_id cannot be non zero");
2664 		QDF_BUG(0);
2665 		return 0;
2666 	}
2667 	return (mac_id + pdev_id);
2668 }
2669 
2670 /**
2671  * dp_get_lmac_id_for_pdev_id() -  Return lmac id corresponding to host pdev id
2672  * @soc: soc pointer
2673  * @mac_id: MAC id
2674  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2675  *
2676  * For MCL, Single pdev using both MACs will operate on both MAC rings.
2677  *
2678  * For WIN, each PDEV will operate one ring.
2679  *
2680  */
2681 static inline int
2682 dp_get_lmac_id_for_pdev_id
2683 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
2684 {
2685 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2686 		if (mac_id && pdev_id) {
2687 			qdf_print("Both mac_id and pdev_id cannot be non zero");
2688 			QDF_BUG(0);
2689 			return 0;
2690 		}
2691 		return (mac_id + pdev_id);
2692 	}
2693 
2694 	return soc->pdev_list[pdev_id]->lmac_id;
2695 }
2696 
2697 /**
2698  * dp_get_pdev_for_lmac_id() -  Return pdev pointer corresponding to lmac id
2699  * @soc: soc pointer
2700  * @lmac_id: LMAC id
2701  *
2702  * For MCL, Single pdev exists
2703  *
2704  * For WIN, each PDEV will operate one ring.
2705  *
2706  */
2707 static inline struct dp_pdev *
2708 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
2709 {
2710 	uint8_t i = 0;
2711 
2712 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2713 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
2714 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
2715 	}
2716 
2717 	/* Typically for MCL as there only 1 PDEV*/
2718 	return soc->pdev_list[0];
2719 }
2720 
2721 /**
2722  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
2723  *                                          corresponding to host pdev id
2724  * @soc: soc pointer
2725  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2726  *
2727  * returns target pdev_id for host pdev id. For WIN, this is derived through
2728  * a two step process:
2729  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
2730  *    during mode switch)
2731  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
2732  *
2733  * For MCL, return the offset-1 translated mac_id
2734  */
2735 static inline int
2736 dp_calculate_target_pdev_id_from_host_pdev_id
2737 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2738 {
2739 	struct dp_pdev *pdev;
2740 
2741 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2742 		return DP_SW2HW_MACID(mac_for_pdev);
2743 
2744 	pdev = soc->pdev_list[mac_for_pdev];
2745 
2746 	/*non-MCL case, get original target_pdev mapping*/
2747 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
2748 }
2749 
2750 /**
2751  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
2752  *                                         to host pdev id
2753  * @soc: soc pointer
2754  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2755  *
2756  * returns target pdev_id for host pdev id.
2757  * For WIN, return the value stored in pdev object.
2758  * For MCL, return the offset-1 translated mac_id.
2759  */
2760 static inline int
2761 dp_get_target_pdev_id_for_host_pdev_id
2762 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2763 {
2764 	struct dp_pdev *pdev;
2765 
2766 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2767 		return DP_SW2HW_MACID(mac_for_pdev);
2768 
2769 	pdev = soc->pdev_list[mac_for_pdev];
2770 
2771 	return pdev->target_pdev_id;
2772 }
2773 
2774 /**
2775  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
2776  *                                         to target pdev id
2777  * @soc: soc pointer
2778  * @pdev_id: pdev_id corresponding to target pdev
2779  *
2780  * returns host pdev_id for target pdev id. For WIN, this is derived through
2781  * a two step process:
2782  * 1. Get lmac_id corresponding to target pdev_id
2783  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
2784  *
2785  * For MCL, return the 0-offset pdev_id
2786  */
2787 static inline int
2788 dp_get_host_pdev_id_for_target_pdev_id
2789 	(struct dp_soc *soc, uint32_t pdev_id)
2790 {
2791 	struct dp_pdev *pdev;
2792 	int lmac_id;
2793 
2794 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2795 		return DP_HW2SW_MACID(pdev_id);
2796 
2797 	/*non-MCL case, get original target_lmac mapping from target pdev*/
2798 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
2799 					  DP_HW2SW_MACID(pdev_id));
2800 
2801 	/*Get host pdev from lmac*/
2802 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
2803 
2804 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
2805 }
2806 
2807 /*
2808  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
2809  *
2810  * @soc: handle to DP soc
2811  * @mac_id: MAC id
2812  *
2813  * Single pdev using both MACs will operate on both MAC rings,
2814  * which is the case for MCL.
2815  * For WIN each PDEV will operate one ring, so index is zero.
2816  *
2817  */
2818 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
2819 {
2820 	/*
2821 	 * Single pdev using both MACs will operate on both MAC rings,
2822 	 * which is the case for MCL.
2823 	 */
2824 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2825 		return mac_id;
2826 
2827 	/* For WIN each PDEV will operate one ring, so index is zero. */
2828 	return 0;
2829 }
2830 
2831 /*
2832  * dp_is_subtype_data() - check if the frame subtype is data
2833  *
2834  * @frame_ctrl: Frame control field
2835  *
2836  * check the frame control field and verify if the packet
2837  * is a data packet.
2838  *
2839  * Return: true or false
2840  */
2841 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
2842 {
2843 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
2844 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
2845 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2846 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
2847 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2848 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
2849 		return true;
2850 	}
2851 
2852 	return false;
2853 }
2854 
2855 #ifdef WDI_EVENT_ENABLE
2856 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2857 				uint32_t stats_type_upload_mask,
2858 				uint8_t mac_id);
2859 
2860 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2861 		       wdi_event_subscribe *event_cb_sub_handle,
2862 		       uint32_t event);
2863 
2864 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2865 		     wdi_event_subscribe *event_cb_sub_handle,
2866 		     uint32_t event);
2867 
2868 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
2869 			  void *data, u_int16_t peer_id,
2870 			  int status, u_int8_t pdev_id);
2871 
2872 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
2873 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
2874 
2875 static inline void
2876 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
2877 			    void *cb_context,
2878 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2879 			    uint8_t pipe_id)
2880 {
2881 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
2882 
2883 	/* TODO: Temporary change to bypass HTC connection for this new
2884 	 * HIF pipe, which will be used for packet log and other high-
2885 	 * priority HTT messages. Proper HTC connection to be added
2886 	 * later once required FW changes are available
2887 	 */
2888 	hif_pipe_callbacks.rxCompletionHandler = callback;
2889 	hif_pipe_callbacks.Context = cb_context;
2890 	hif_update_pipe_callback(dp_soc->hif_handle,
2891 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
2892 }
2893 #else
2894 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2895 				     wdi_event_subscribe *event_cb_sub_handle,
2896 				     uint32_t event)
2897 {
2898 	return 0;
2899 }
2900 
2901 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2902 				   wdi_event_subscribe *event_cb_sub_handle,
2903 				   uint32_t event)
2904 {
2905 	return 0;
2906 }
2907 
2908 static inline
2909 void dp_wdi_event_handler(enum WDI_EVENT event,
2910 			  struct dp_soc *soc,
2911 			  void *data, u_int16_t peer_id,
2912 			  int status, u_int8_t pdev_id)
2913 {
2914 }
2915 
2916 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
2917 {
2918 	return 0;
2919 }
2920 
2921 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
2922 {
2923 	return 0;
2924 }
2925 
2926 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2927 		uint32_t stats_type_upload_mask, uint8_t mac_id)
2928 {
2929 	return 0;
2930 }
2931 
2932 static inline void
2933 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
2934 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2935 			    uint8_t pipe_id)
2936 {
2937 }
2938 #endif /* CONFIG_WIN */
2939 
2940 #ifdef VDEV_PEER_PROTOCOL_COUNT
2941 /**
2942  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2943  * @vdev: VDEV DP object
2944  * @nbuf: data packet
2945  * @peer: DP TXRX Peer object
2946  * @is_egress: whether egress or ingress
2947  * @is_rx: whether rx or tx
2948  *
2949  * This function updates the per-peer protocol counters
2950  * Return: void
2951  */
2952 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
2953 					    qdf_nbuf_t nbuf,
2954 					    struct dp_txrx_peer *txrx_peer,
2955 					    bool is_egress,
2956 					    bool is_rx);
2957 
2958 /**
2959  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2960  * @soc: SOC DP object
2961  * @vdev_id: vdev_id
2962  * @nbuf: data packet
2963  * @is_egress: whether egress or ingress
2964  * @is_rx: whether rx or tx
2965  *
2966  * This function updates the per-peer protocol counters
2967  * Return: void
2968  */
2969 
2970 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
2971 				       int8_t vdev_id,
2972 				       qdf_nbuf_t nbuf,
2973 				       bool is_egress,
2974 				       bool is_rx);
2975 
2976 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2977 					       qdf_nbuf_t nbuf);
2978 
2979 #else
2980 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
2981 					       is_egress, is_rx)
2982 
2983 static inline
2984 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2985 					       qdf_nbuf_t nbuf)
2986 {
2987 }
2988 
2989 #endif
2990 
2991 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
2992 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
2993 
2994 /**
2995  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
2996  * @soc: DP soc context
2997  *
2998  * Return: none
2999  */
3000 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3001 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3002 	bool force);
3003 #else
3004 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3005 {
3006 }
3007 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3008 
3009 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3010 static inline int
3011 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3012 {
3013 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3014 }
3015 
3016 static inline void
3017 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3018 {
3019 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3020 }
3021 
3022 #else
3023 static inline int
3024 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3025 {
3026 	return hal_srng_access_start(soc, hal_ring_hdl);
3027 }
3028 
3029 static inline void
3030 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3031 {
3032 	hal_srng_access_end(soc, hal_ring_hdl);
3033 }
3034 #endif
3035 
3036 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
3037 /**
3038  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
3039  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3040  * @soc: DP Soc handle
3041  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
3042  *
3043  * Return: 0 on success; error on failure
3044  */
3045 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3046 			 hal_ring_handle_t hal_ring_hdl);
3047 
3048 /**
3049  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
3050  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3051  * @soc: DP Soc handle
3052  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
3053  *
3054  * Return: void
3055  */
3056 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3057 			hal_ring_handle_t hal_ring_hdl);
3058 
3059 #else
3060 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
3061 				       struct dp_soc *dp_soc,
3062 				       hal_ring_handle_t hal_ring_hdl)
3063 {
3064 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3065 
3066 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
3067 }
3068 
3069 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
3070 				      struct dp_soc *dp_soc,
3071 				      hal_ring_handle_t hal_ring_hdl)
3072 {
3073 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3074 
3075 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
3076 }
3077 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
3078 
3079 #ifdef QCA_CACHED_RING_DESC
3080 /**
3081  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
3082  * @dp_socsoc: DP Soc handle
3083  * @hal_ring: opaque pointer to the HAL Destination Ring
3084  *
3085  * Return: HAL ring descriptor
3086  */
3087 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3088 					 hal_ring_handle_t hal_ring_hdl)
3089 {
3090 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3091 
3092 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
3093 }
3094 
3095 /**
3096  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
3097  * descriptors
3098  * @dp_socsoc: DP Soc handle
3099  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3100  * @num_entries: Entry count
3101  *
3102  * Return: None
3103  */
3104 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3105 						hal_ring_handle_t hal_ring_hdl,
3106 						uint32_t num_entries)
3107 {
3108 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3109 
3110 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
3111 }
3112 #else
3113 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3114 					 hal_ring_handle_t hal_ring_hdl)
3115 {
3116 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3117 
3118 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3119 }
3120 
3121 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3122 						hal_ring_handle_t hal_ring_hdl,
3123 						uint32_t num_entries)
3124 {
3125 }
3126 #endif /* QCA_CACHED_RING_DESC */
3127 
3128 #if defined(QCA_CACHED_RING_DESC) && \
3129 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3130 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3131 /**
3132  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3133  * @hal_soc_hdl: HAL SOC handle
3134  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3135  * @num_entries: Entry count
3136  *
3137  * Return: None
3138  */
3139 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3140 					 hal_ring_handle_t hal_ring_hdl,
3141 					 uint32_t num_entries)
3142 {
3143 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3144 }
3145 
3146 /**
3147  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3148  *					 32 byte descriptor starting at
3149  *					 64 byte offset
3150  * @hal_soc_hdl: HAL SOC handle
3151  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3152  * @num_entries: Entry count
3153  *
3154  * Return: None
3155  */
3156 static inline
3157 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3158 					hal_ring_handle_t hal_ring_hdl,
3159 					uint32_t num_entries)
3160 {
3161 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3162 						  num_entries);
3163 }
3164 #else
3165 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3166 					 hal_ring_handle_t hal_ring_hdl,
3167 					 uint32_t num_entries)
3168 {
3169 	return NULL;
3170 }
3171 
3172 static inline
3173 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3174 					hal_ring_handle_t hal_ring_hdl,
3175 					uint32_t num_entries)
3176 {
3177 	return NULL;
3178 }
3179 #endif
3180 
3181 #ifdef QCA_ENH_V3_STATS_SUPPORT
3182 /**
3183  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3184  * @pdev: DP_PDEV handle
3185  *
3186  * Return:void
3187  */
3188 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3189 
3190 /**
3191  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3192  * @pdev: DP_PDEV handle
3193  *
3194  * Return:void
3195  */
3196 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3197 
3198 /**
3199  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3200  * @pdev: DP_PDEV handle
3201  *
3202  * Return:void
3203  */
3204 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3205 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3206 
3207 /**
3208  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3209  * @soc_hdl: soc handle
3210  * @pdev_id: id of dp_pdev handle
3211  * @tid_stats: Pointer for cdp_tid_stats_intf
3212  *
3213  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3214  */
3215 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3216 				 struct cdp_tid_stats_intf *tid_stats);
3217 
3218 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3219 
3220 /**
3221  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3222  * @vdev: DP vdev handle
3223  *
3224  * Return: struct cdp_vdev pointer
3225  */
3226 static inline
3227 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3228 {
3229 	return (struct cdp_vdev *)vdev;
3230 }
3231 
3232 /**
3233  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3234  * @pdev: DP pdev handle
3235  *
3236  * Return: struct cdp_pdev pointer
3237  */
3238 static inline
3239 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3240 {
3241 	return (struct cdp_pdev *)pdev;
3242 }
3243 
3244 /**
3245  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3246  * @psoc: DP psoc handle
3247  *
3248  * Return: struct cdp_soc pointer
3249  */
3250 static inline
3251 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3252 {
3253 	return (struct cdp_soc *)psoc;
3254 }
3255 
3256 /**
3257  * dp_soc_to_cdp_soc_t() - typecast dp psoc to
3258  * ol txrx soc handle
3259  * @psoc: DP psoc handle
3260  *
3261  * Return: struct cdp_soc_t pointer
3262  */
3263 static inline
3264 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
3265 {
3266 	return (struct cdp_soc_t *)psoc;
3267 }
3268 
3269 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
3270 /**
3271  * dp_rx_flow_update_fse_stats() - Update a flow's statistics
3272  * @pdev: pdev handle
3273  * @flow_id: flow index (truncated hash) in the Rx FST
3274  *
3275  * Return: Success when flow statistcs is updated, error on failure
3276  */
3277 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3278 				    struct cdp_rx_flow_info *rx_flow_info,
3279 				    struct cdp_flow_stats *stats);
3280 
3281 /**
3282  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3283  * @pdev: pdev handle
3284  * @rx_flow_info: DP flow parameters
3285  *
3286  * Return: Success when flow is deleted, error on failure
3287  */
3288 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3289 				   struct cdp_rx_flow_info *rx_flow_info);
3290 
3291 /**
3292  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3293  * @pdev: DP pdev instance
3294  * @rx_flow_info: DP flow parameters
3295  *
3296  * Return: Success when flow is added, no-memory or already exists on error
3297  */
3298 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3299 				struct cdp_rx_flow_info *rx_flow_info);
3300 
3301 /**
3302  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3303  * @soc: SoC handle
3304  * @pdev: Pdev handle
3305  *
3306  * Return: Handle to flow search table entry
3307  */
3308 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3309 
3310 /**
3311  * dp_rx_fst_detach() - De-initialize Rx FST
3312  * @soc: SoC handle
3313  * @pdev: Pdev handle
3314  *
3315  * Return: None
3316  */
3317 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3318 
3319 /**
3320  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3321  * @soc: SoC handle
3322  * @pdev: Pdev handle
3323  *
3324  * Return: Success when fst parameters are programmed in FW, error otherwise
3325  */
3326 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3327 					struct dp_pdev *pdev);
3328 
3329 /** dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3330  * @pdev: pdev handle
3331  * @flow_id: flow index (truncated hash) in the Rx FST
3332  *
3333  * Return: Success when flow statistcs is updated, error on failure
3334  */
3335 QDF_STATUS
3336 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3337 
3338 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3339 
3340 /**
3341  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3342  * @soc: SoC handle
3343  * @pdev: Pdev handle
3344  *
3345  * Return: Handle to flow search table entry
3346  */
3347 static inline
3348 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3349 {
3350 	return QDF_STATUS_SUCCESS;
3351 }
3352 
3353 /**
3354  * dp_rx_fst_detach() - De-initialize Rx FST
3355  * @soc: SoC handle
3356  * @pdev: Pdev handle
3357  *
3358  * Return: None
3359  */
3360 static inline
3361 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
3362 {
3363 }
3364 #endif
3365 
3366 /**
3367  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
3368  * @soc: SoC handle
3369  * @pdev: Pdev handle
3370  *
3371  * Return: Handle to flow search table entry
3372  */
3373 extern QDF_STATUS
3374 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
3375 
3376 /**
3377  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
3378  * @soc: SoC handle
3379  * @pdev: Pdev handle
3380  *
3381  * Return: None
3382  */
3383 extern void
3384 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
3385 
3386 /**
3387  * dp_vdev_get_ref() - API to take a reference for VDEV object
3388  *
3389  * @soc		: core DP soc context
3390  * @vdev	: DP vdev
3391  * @mod_id	: module id
3392  *
3393  * Return:	QDF_STATUS_SUCCESS if reference held successfully
3394  *		else QDF_STATUS_E_INVAL
3395  */
3396 static inline
3397 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
3398 			   enum dp_mod_id mod_id)
3399 {
3400 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
3401 		return QDF_STATUS_E_INVAL;
3402 
3403 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
3404 
3405 	return QDF_STATUS_SUCCESS;
3406 }
3407 
3408 /**
3409  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
3410  * @soc: core DP soc context
3411  * @vdev_id: vdev id from vdev object can be retrieved
3412  * @mod_id: module id which is requesting the reference
3413  *
3414  * Return: struct dp_vdev*: Pointer to DP vdev object
3415  */
3416 static inline struct dp_vdev *
3417 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
3418 		      enum dp_mod_id mod_id)
3419 {
3420 	struct dp_vdev *vdev = NULL;
3421 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3422 		return NULL;
3423 
3424 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3425 	vdev = soc->vdev_id_map[vdev_id];
3426 
3427 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
3428 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3429 		return NULL;
3430 	}
3431 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3432 
3433 	return vdev;
3434 }
3435 
3436 /**
3437  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
3438  * @soc: core DP soc context
3439  * @pdev_id: pdev id from pdev object can be retrieved
3440  *
3441  * Return: struct dp_pdev*: Pointer to DP pdev object
3442  */
3443 static inline struct dp_pdev *
3444 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
3445 				   uint8_t pdev_id)
3446 {
3447 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
3448 		return NULL;
3449 
3450 	return soc->pdev_list[pdev_id];
3451 }
3452 
3453 /*
3454  * dp_rx_tid_update_wifi3() – Update receive TID state
3455  * @peer: Datapath peer handle
3456  * @tid: TID
3457  * @ba_window_size: BlockAck window size
3458  * @start_seq: Starting sequence number
3459  * @bar_update: BAR update triggered
3460  *
3461  * Return: QDF_STATUS code
3462  */
3463 QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
3464 					 ba_window_size, uint32_t start_seq,
3465 					 bool bar_update);
3466 
3467 /**
3468  * dp_get_peer_mac_list(): function to get peer mac list of vdev
3469  * @soc: Datapath soc handle
3470  * @vdev_id: vdev id
3471  * @newmac: Table of the clients mac
3472  * @mac_cnt: No. of MACs required
3473  * @limit: Limit the number of clients
3474  *
3475  * return: no of clients
3476  */
3477 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
3478 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
3479 			      u_int16_t mac_cnt, bool limit);
3480 
3481 /*
3482  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
3483  *				       DBS check
3484  * @soc: DP SoC context
3485  * @max_mac_rings: Pointer to variable for No of MAC rings
3486  *
3487  * Return: None
3488  */
3489 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
3490 				     int *max_mac_rings);
3491 
3492 
3493 #if defined(WLAN_SUPPORT_RX_FISA)
3494 void dp_rx_dump_fisa_table(struct dp_soc *soc);
3495 
3496 /**
3497  * dp_print_fisa_stats() - Print FISA stats
3498  * @soc: DP soc handle
3499  *
3500  * Return: None
3501  */
3502 void dp_print_fisa_stats(struct dp_soc *soc);
3503 
3504 /*
3505  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
3506  * @soc:		DP SoC context
3507  * @num_entries:	Number of flow search entries
3508  * @cmem_ba_lo:		CMEM base address low
3509  * @cmem_ba_hi:		CMEM base address high
3510  *
3511  * Return: None
3512  */
3513 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3514 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
3515 
3516 void
3517 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
3518 
3519 /*
3520  * dp_rx_fst_requeue_wq() - Re-queue pending work queue tasks
3521  * @soc:		DP SoC context
3522  *
3523  * Return: None
3524  */
3525 void dp_rx_fst_requeue_wq(struct dp_soc *soc);
3526 #else
3527 static inline void
3528 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3529 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
3530 {
3531 }
3532 
3533 static inline void
3534 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
3535 {
3536 }
3537 
3538 static inline void
3539 dp_rx_fst_requeue_wq(struct dp_soc *soc)
3540 {
3541 }
3542 
3543 static inline void dp_print_fisa_stats(struct dp_soc *soc)
3544 {
3545 }
3546 #endif /* WLAN_SUPPORT_RX_FISA */
3547 
3548 #ifdef MAX_ALLOC_PAGE_SIZE
3549 /**
3550  * dp_set_page_size() - Set the max page size for hw link desc.
3551  * For MCL the page size is set to OS defined value and for WIN
3552  * the page size is set to the max_alloc_size cfg ini
3553  * param.
3554  * This is to ensure that WIN gets contiguous memory allocations
3555  * as per requirement.
3556  * @pages: link desc page handle
3557  * @max_alloc_size: max_alloc_size
3558  *
3559  * Return: None
3560  */
3561 static inline
3562 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3563 			  uint32_t max_alloc_size)
3564 {
3565 	pages->page_size = qdf_page_size;
3566 }
3567 
3568 #else
3569 static inline
3570 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3571 			  uint32_t max_alloc_size)
3572 {
3573 	pages->page_size = max_alloc_size;
3574 }
3575 #endif /* MAX_ALLOC_PAGE_SIZE */
3576 
3577 /**
3578  * dp_history_get_next_index() - get the next entry to record an entry
3579  *				 in the history.
3580  * @curr_idx: Current index where the last entry is written.
3581  * @max_entries: Max number of entries in the history
3582  *
3583  * This function assumes that the max number os entries is a power of 2.
3584  *
3585  * Returns: The index where the next entry is to be written.
3586  */
3587 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
3588 						 uint32_t max_entries)
3589 {
3590 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
3591 
3592 	return idx & (max_entries - 1);
3593 }
3594 
3595 /**
3596  * dp_rx_skip_tlvs() - Skip TLVs len + L2 hdr_offset, save in nbuf->cb
3597  * @nbuf: nbuf cb to be updated
3598  * @l2_hdr_offset: l2_hdr_offset
3599  *
3600  * Return: None
3601  */
3602 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
3603 
3604 #ifndef FEATURE_WDS
3605 static inline void
3606 dp_hmwds_ast_add_notify(struct dp_peer *peer,
3607 			uint8_t *mac_addr,
3608 			enum cdp_txrx_ast_entry_type type,
3609 			QDF_STATUS err,
3610 			bool is_peer_map)
3611 {
3612 }
3613 #endif
3614 
3615 #ifdef HTT_STATS_DEBUGFS_SUPPORT
3616 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3617  * debugfs for HTT stats
3618  * @pdev: dp pdev handle
3619  *
3620  * Return: QDF_STATUS
3621  */
3622 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
3623 
3624 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3625  * HTT stats
3626  * @pdev: dp pdev handle
3627  *
3628  * Return: none
3629  */
3630 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
3631 #else
3632 
3633 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3634  * debugfs for HTT stats
3635  * @pdev: dp pdev handle
3636  *
3637  * Return: QDF_STATUS
3638  */
3639 static inline QDF_STATUS
3640 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
3641 {
3642 	return QDF_STATUS_SUCCESS;
3643 }
3644 
3645 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3646  * HTT stats
3647  * @pdev: dp pdev handle
3648  *
3649  * Return: none
3650  */
3651 static inline void
3652 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
3653 {
3654 }
3655 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
3656 
3657 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3658 /**
3659  * dp_soc_swlm_attach() - attach the software latency manager resources
3660  * @soc: Datapath global soc handle
3661  *
3662  * Returns: QDF_STATUS
3663  */
3664 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
3665 {
3666 	return QDF_STATUS_SUCCESS;
3667 }
3668 
3669 /**
3670  * dp_soc_swlm_detach() - detach the software latency manager resources
3671  * @soc: Datapath global soc handle
3672  *
3673  * Returns: QDF_STATUS
3674  */
3675 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
3676 {
3677 	return QDF_STATUS_SUCCESS;
3678 }
3679 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3680 
3681 /**
3682  * dp_get_peer_id(): function to get peer id by mac
3683  * @soc: Datapath soc handle
3684  * @vdev_id: vdev id
3685  * @mac: Peer mac address
3686  *
3687  * return: valid peer id on success
3688  *         HTT_INVALID_PEER on failure
3689  */
3690 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
3691 
3692 #ifdef QCA_SUPPORT_WDS_EXTENDED
3693 /**
3694  * dp_wds_ext_set_peer_state(): function to set peer state
3695  * @soc: Datapath soc handle
3696  * @vdev_id: vdev id
3697  * @mac: Peer mac address
3698  * @rx: rx function pointer
3699  *
3700  * return: QDF_STATUS_SUCCESS on success
3701  *         QDF_STATUS_E_INVAL if peer is not found
3702  *         QDF_STATUS_E_ALREADY if rx is already set/unset
3703  */
3704 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
3705 				  uint8_t vdev_id,
3706 				  uint8_t *mac,
3707 				  ol_txrx_rx_fp rx,
3708 				  ol_osif_peer_handle osif_peer);
3709 #endif /* QCA_SUPPORT_WDS_EXTENDED */
3710 
3711 #ifdef DP_MEM_PRE_ALLOC
3712 
3713 /**
3714  * dp_context_alloc_mem() - allocate memory for DP context
3715  * @soc: datapath soc handle
3716  * @ctxt_type: DP context type
3717  * @ctxt_size: DP context size
3718  *
3719  * Return: DP context address
3720  */
3721 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3722 			   size_t ctxt_size);
3723 
3724 /**
3725  * dp_context_free_mem() - Free memory of DP context
3726  * @soc: datapath soc handle
3727  * @ctxt_type: DP context type
3728  * @vaddr: Address of context memory
3729  *
3730  * Return: None
3731  */
3732 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3733 			 void *vaddr);
3734 
3735 /**
3736  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
3737  * @soc: datapath soc handle
3738  * @desc_type: memory request source type
3739  * @pages: multi page information storage
3740  * @element_size: each element size
3741  * @element_num: total number of elements should be allocated
3742  * @memctxt: memory context
3743  * @cacheable: coherent memory or cacheable memory
3744  *
3745  * This function is a wrapper for memory allocation over multiple
3746  * pages, if dp prealloc method is registered, then will try prealloc
3747  * firstly. if prealloc failed, fall back to regular way over
3748  * qdf_mem_multi_pages_alloc().
3749  *
3750  * Return: None
3751  */
3752 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3753 				   enum dp_desc_type desc_type,
3754 				   struct qdf_mem_multi_page_t *pages,
3755 				   size_t element_size,
3756 				   uint32_t element_num,
3757 				   qdf_dma_context_t memctxt,
3758 				   bool cacheable);
3759 
3760 /**
3761  * dp_desc_multi_pages_mem_free() - free multiple pages memory
3762  * @soc: datapath soc handle
3763  * @desc_type: memory request source type
3764  * @pages: multi page information storage
3765  * @memctxt: memory context
3766  * @cacheable: coherent memory or cacheable memory
3767  *
3768  * This function is a wrapper for multiple pages memory free,
3769  * if memory is got from prealloc pool, put it back to pool.
3770  * otherwise free by qdf_mem_multi_pages_free().
3771  *
3772  * Return: None
3773  */
3774 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3775 				  enum dp_desc_type desc_type,
3776 				  struct qdf_mem_multi_page_t *pages,
3777 				  qdf_dma_context_t memctxt,
3778 				  bool cacheable);
3779 
3780 #else
3781 static inline
3782 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3783 			   size_t ctxt_size)
3784 {
3785 	return qdf_mem_malloc(ctxt_size);
3786 }
3787 
3788 static inline
3789 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3790 			 void *vaddr)
3791 {
3792 	qdf_mem_free(vaddr);
3793 }
3794 
3795 static inline
3796 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3797 				   enum dp_desc_type desc_type,
3798 				   struct qdf_mem_multi_page_t *pages,
3799 				   size_t element_size,
3800 				   uint32_t element_num,
3801 				   qdf_dma_context_t memctxt,
3802 				   bool cacheable)
3803 {
3804 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
3805 				  element_num, memctxt, cacheable);
3806 }
3807 
3808 static inline
3809 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3810 				  enum dp_desc_type desc_type,
3811 				  struct qdf_mem_multi_page_t *pages,
3812 				  qdf_dma_context_t memctxt,
3813 				  bool cacheable)
3814 {
3815 	qdf_mem_multi_pages_free(soc->osdev, pages,
3816 				 memctxt, cacheable);
3817 }
3818 #endif
3819 
3820 /**
3821  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
3822  *					  history.
3823  * @index: atomic index
3824  * @num_entries_per_slot: Number of entries per slot
3825  * @allocated: is allocated or not
3826  * @entry: pointers to array of records
3827  */
3828 struct dp_frag_history_opaque_atomic {
3829 	qdf_atomic_t index;
3830 	uint16_t num_entries_per_slot;
3831 	uint16_t allocated;
3832 	void *entry[0];
3833 };
3834 
3835 static inline QDF_STATUS
3836 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
3837 			   uint32_t max_slots, uint32_t max_entries_per_slot,
3838 			   uint32_t entry_size,
3839 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
3840 {
3841 	struct dp_frag_history_opaque_atomic *history =
3842 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3843 	size_t alloc_size = max_entries_per_slot * entry_size;
3844 	int i;
3845 
3846 	for (i = 0; i < max_slots; i++) {
3847 		if (attempt_prealloc)
3848 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
3849 								 alloc_size);
3850 		else
3851 			history->entry[i] = qdf_mem_malloc(alloc_size);
3852 
3853 		if (!history->entry[i])
3854 			goto exit;
3855 	}
3856 
3857 	qdf_atomic_init(&history->index);
3858 	history->allocated = 1;
3859 	history->num_entries_per_slot = max_entries_per_slot;
3860 
3861 	return QDF_STATUS_SUCCESS;
3862 exit:
3863 	for (i = i - 1; i >= 0; i--) {
3864 		if (attempt_prealloc)
3865 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3866 		else
3867 			qdf_mem_free(history->entry[i]);
3868 	}
3869 
3870 	return QDF_STATUS_E_NOMEM;
3871 }
3872 
3873 static inline
3874 void dp_soc_frag_history_detach(struct dp_soc *soc,
3875 				void *history_hdl, uint32_t max_slots,
3876 				bool attempt_prealloc,
3877 				enum dp_ctxt_type ctxt_type)
3878 {
3879 	struct dp_frag_history_opaque_atomic *history =
3880 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3881 	int i;
3882 
3883 	for (i = 0; i < max_slots; i++) {
3884 		if (attempt_prealloc)
3885 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3886 		else
3887 			qdf_mem_free(history->entry[i]);
3888 	}
3889 
3890 	history->allocated = 0;
3891 }
3892 
3893 /**
3894  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
3895  *					entry in a fragmented history with
3896  *					index being atomic.
3897  * @curr_idx: address of the current index where the last entry was written
3898  * @next_idx: pointer to update the next index
3899  * @slot: pointer to update the history slot to be selected
3900  * @slot_shift: BITwise shift mask for slot (in index)
3901  * @max_entries_per_slot: Max number of entries in a slot of history
3902  * @max_entries: Total number of entries in the history (sum of all slots)
3903  *
3904  * This function assumes that the "max_entries_per_slot" and "max_entries"
3905  * are a power-of-2.
3906  *
3907  * Return: None
3908  */
3909 static inline void
3910 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
3911 				 uint16_t *slot, uint32_t slot_shift,
3912 				 uint32_t max_entries_per_slot,
3913 				 uint32_t max_entries)
3914 {
3915 	uint32_t idx;
3916 
3917 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
3918 
3919 	*slot = idx >> slot_shift;
3920 	*next_idx = idx & (max_entries_per_slot - 1);
3921 }
3922 
3923 #ifdef FEATURE_RUNTIME_PM
3924 /**
3925  * dp_runtime_get() - Get dp runtime refcount
3926  * @soc: Datapath soc handle
3927  *
3928  * Get dp runtime refcount by increment of an atomic variable, which can block
3929  * dp runtime resume to wait to flush pending tx by runtime suspend.
3930  *
3931  * Return: Current refcount
3932  */
3933 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3934 {
3935 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
3936 }
3937 
3938 /**
3939  * dp_runtime_put() - Return dp runtime refcount
3940  * @soc: Datapath soc handle
3941  *
3942  * Return dp runtime refcount by decrement of an atomic variable, allow dp
3943  * runtime resume finish.
3944  *
3945  * Return: Current refcount
3946  */
3947 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3948 {
3949 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
3950 }
3951 
3952 /**
3953  * dp_runtime_get_refcount() - Get dp runtime refcount
3954  * @soc: Datapath soc handle
3955  *
3956  * Get dp runtime refcount by returning an atomic variable
3957  *
3958  * Return: Current refcount
3959  */
3960 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
3961 {
3962 	return qdf_atomic_read(&soc->dp_runtime_refcount);
3963 }
3964 
3965 /**
3966  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
3967  * @soc: Datapath soc handle
3968  *
3969  * Return: QDF_STATUS
3970  */
3971 static inline void dp_runtime_init(struct dp_soc *soc)
3972 {
3973 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
3974 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
3975 	qdf_atomic_init(&soc->dp_runtime_refcount);
3976 }
3977 
3978 /**
3979  * dp_runtime_deinit() - Deinit DP related runtime PM clients
3980  *
3981  * Return: None
3982  */
3983 static inline void dp_runtime_deinit(void)
3984 {
3985 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
3986 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
3987 }
3988 
3989 /**
3990  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
3991  * @soc: Datapath soc handle
3992  *
3993  * Return: None
3994  */
3995 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3996 {
3997 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
3998 
3999 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4000 }
4001 #else
4002 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4003 {
4004 	return 0;
4005 }
4006 
4007 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4008 {
4009 	return 0;
4010 }
4011 
4012 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4013 {
4014 	return QDF_STATUS_SUCCESS;
4015 }
4016 
4017 static inline void dp_runtime_deinit(void)
4018 {
4019 }
4020 
4021 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4022 {
4023 }
4024 #endif
4025 
4026 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
4027 {
4028 	if (soc->cdp_soc.ol_ops->get_con_mode)
4029 		return soc->cdp_soc.ol_ops->get_con_mode();
4030 
4031 	return QDF_GLOBAL_MAX_MODE;
4032 }
4033 
4034 /*
4035  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
4036  *				processing
4037  * @pdev: Datapath PDEV handle
4038  *
4039  */
4040 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
4041 
4042 /*
4043  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
4044  *				processing
4045  * @pdev: Datapath PDEV handle
4046  *
4047  * Return: QDF_STATUS_SUCCESS: Success
4048  *         QDF_STATUS_E_NOMEM: Error
4049  */
4050 
4051 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
4052 
4053 /**
4054  * dp_peer_flush_frags() - Flush all fragments for a particular
4055  *  peer
4056  * @soc_hdl - data path soc handle
4057  * @vdev_id - vdev id
4058  * @peer_addr - peer mac address
4059  *
4060  * Return: None
4061  */
4062 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4063 			 uint8_t *peer_mac);
4064 
4065 /**
4066  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
4067  * @soc: pointer to dp_soc handle
4068  *
4069  * Return:
4070  */
4071 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
4072 
4073 /**
4074  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
4075  * @soc_hdl: soc handle
4076  * @soc_stats: buffer to hold the values
4077  *
4078  * Return: QDF_STATUS_SUCCESS: Success
4079  *         QDF_STATUS_E_FAILURE: Error
4080  */
4081 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
4082 				 struct cdp_soc_stats *soc_stats);
4083 
4084 /**
4085  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
4086  * @soc: soc handle
4087  * @vdev_id: id of vdev handle
4088  * @peer_mac: mac of DP_PEER handle
4089  * @delay_stats: pointer to delay stats array
4090  *
4091  * Return: QDF_STATUS_SUCCESS: Success
4092  *         QDF_STATUS_E_FAILURE: Error
4093  */
4094 QDF_STATUS
4095 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4096 			     uint8_t *peer_mac,
4097 			     struct cdp_delay_tid_stats *delay_stats);
4098 
4099 /**
4100  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
4101  * @soc: soc handle
4102  * @pdev_id: id of pdev handle
4103  * @vdev_id: id of vdev handle
4104  * @peer_mac: mac of DP_PEER handle
4105  * @tid_stats: pointer to jitter stats array
4106  *
4107  * Return: QDF_STATUS_SUCCESS: Success
4108  *         QDF_STATUS_E_FAILURE: Error
4109  */
4110 QDF_STATUS
4111 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4112 			      uint8_t vdev_id, uint8_t *peer_mac,
4113 			      struct cdp_peer_tid_stats *tid_stats);
4114 
4115 /* dp_peer_get_tx_capture_stats - to get peer Tx Capture stats
4116  * @soc_hdl: soc handle
4117  * @vdev_id: id of vdev handle
4118  * @peer_mac: mac of DP_PEER handle
4119  * @stats: pointer to peer tx capture stats
4120  *
4121  * Return: QDF_STATUS_SUCCESS: Success
4122  *         QDF_STATUS_E_FAILURE: Error
4123  */
4124 QDF_STATUS
4125 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
4126 			     uint8_t vdev_id, uint8_t *peer_mac,
4127 			     struct cdp_peer_tx_capture_stats *stats);
4128 
4129 /* dp_pdev_get_tx_capture_stats - to get pdev Tx Capture stats
4130  * @soc_hdl: soc handle
4131  * @pdev_id: id of pdev handle
4132  * @stats: pointer to pdev tx capture stats
4133  *
4134  * Return: QDF_STATUS_SUCCESS: Success
4135  *         QDF_STATUS_E_FAILURE: Error
4136  */
4137 QDF_STATUS
4138 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4139 			     struct cdp_pdev_tx_capture_stats *stats);
4140 
4141 #ifdef HW_TX_DELAY_STATS_ENABLE
4142 /*
4143  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
4144  *  is enabled for vdev
4145  * @vdev: dp vdev
4146  *
4147  * Return: true if tx delay stats is enabled for vdev else false
4148  */
4149 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4150 {
4151 	return vdev->hw_tx_delay_stats_enabled;
4152 }
4153 
4154 /*
4155  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4156  *  for pdev
4157  * @soc: dp soc
4158  *
4159  * Return: None
4160  */
4161 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4162 
4163 /**
4164  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4165  * @soc: soc handle
4166  *
4167  * Return: None
4168  */
4169 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4170 #else
4171 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4172 {
4173 	return 0;
4174 }
4175 
4176 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4177 {
4178 }
4179 
4180 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4181 {
4182 }
4183 #endif
4184 
4185 static inline void
4186 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4187 {
4188 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4189 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4190 			      LRO_IPV4_SEED_ARR_SZ));
4191 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4192 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4193 			      LRO_IPV6_SEED_ARR_SZ));
4194 }
4195 
4196 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
4197 /*
4198  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4199  * @soc_hdl: soc handle
4200  * @pdev_id: id of pdev handle
4201  * @stats: pointer to pdev telemetry stats
4202  *
4203  * Return: QDF_STATUS_SUCCESS: Success
4204  *         QDF_STATUS_E_FAILURE: Error
4205  */
4206 QDF_STATUS
4207 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4208 			    struct cdp_pdev_telemetry_stats *stats);
4209 
4210 /*
4211  * dp_get_peer_telemetry_stats- API to get peer telemetry stats
4212  * @soc_hdl: soc handle
4213  * @addr: peer mac
4214  * @stats: pointer to peer telemetry stats
4215  *
4216  * Return: QDF_STATUS_SUCCESS: Success
4217  *         QDF_STATUS_E_FAILURE: Error
4218  */
4219 QDF_STATUS
4220 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4221 			    struct cdp_peer_telemetry_stats *stats);
4222 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
4223 
4224 #ifdef CONNECTIVITY_PKTLOG
4225 /*
4226  * dp_tx_send_pktlog() - send tx packet log
4227  * @soc: soc handle
4228  * @pdev: pdev handle
4229  * @tx_desc: TX software descriptor
4230  * @nbuf: nbuf
4231  * @status: status of tx packet
4232  *
4233  * This function is used to send tx packet for logging
4234  *
4235  * Return: None
4236  *
4237  */
4238 static inline
4239 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4240 		       struct dp_tx_desc_s *tx_desc,
4241 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4242 {
4243 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4244 
4245 	if (qdf_unlikely(packetdump_cb) &&
4246 	    dp_tx_frm_std == tx_desc->frm_type) {
4247 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4248 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
4249 	}
4250 }
4251 
4252 /*
4253  * dp_rx_send_pktlog() - send rx packet log
4254  * @soc: soc handle
4255  * @pdev: pdev handle
4256  * @nbuf: nbuf
4257  * @status: status of rx packet
4258  *
4259  * This function is used to send rx packet for logging
4260  *
4261  * Return: None
4262  *
4263  */
4264 static inline
4265 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4266 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4267 {
4268 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4269 
4270 	if (qdf_unlikely(packetdump_cb)) {
4271 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4272 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4273 			      nbuf, status, QDF_RX_DATA_PKT);
4274 	}
4275 }
4276 
4277 /*
4278  * dp_rx_err_send_pktlog() - send rx error packet log
4279  * @soc: soc handle
4280  * @pdev: pdev handle
4281  * @mpdu_desc_info: MPDU descriptor info
4282  * @nbuf: nbuf
4283  * @status: status of rx packet
4284  * @set_pktlen: weither to set packet length
4285  *
4286  * This API should only be called when we have not removed
4287  * Rx TLV from head, and head is pointing to rx_tlv
4288  *
4289  * This function is used to send rx packet from error path
4290  * for logging for which rx packet tlv is not removed.
4291  *
4292  * Return: None
4293  *
4294  */
4295 static inline
4296 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4297 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4298 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4299 			   bool set_pktlen)
4300 {
4301 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4302 	qdf_size_t skip_size;
4303 	uint16_t msdu_len, nbuf_len;
4304 	uint8_t *rx_tlv_hdr;
4305 	struct hal_rx_msdu_metadata msdu_metadata;
4306 
4307 	if (qdf_unlikely(packetdump_cb)) {
4308 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
4309 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
4310 							  rx_tlv_hdr);
4311 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
4312 					 &msdu_metadata);
4313 
4314 		if (mpdu_desc_info->bar_frame ||
4315 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
4316 			skip_size = soc->rx_pkt_tlv_size;
4317 		else
4318 			skip_size = soc->rx_pkt_tlv_size +
4319 					msdu_metadata.l3_hdr_pad;
4320 
4321 		if (set_pktlen) {
4322 			msdu_len = nbuf_len + skip_size;
4323 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
4324 					    (uint16_t)RX_DATA_BUFFER_SIZE));
4325 		}
4326 
4327 		qdf_nbuf_pull_head(nbuf, skip_size);
4328 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4329 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4330 			      nbuf, status, QDF_RX_DATA_PKT);
4331 		qdf_nbuf_push_head(nbuf, skip_size);
4332 	}
4333 }
4334 
4335 #else
4336 static inline
4337 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4338 		       struct dp_tx_desc_s *tx_desc,
4339 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4340 {
4341 }
4342 
4343 static inline
4344 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4345 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4346 {
4347 }
4348 
4349 static inline
4350 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4351 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4352 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4353 			   bool set_pktlen)
4354 {
4355 }
4356 #endif
4357 
4358 /*
4359  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
4360  * @soc  : Data path soc handle
4361  * @pdev : PDEV handle
4362  *
4363  * return: None
4364  */
4365 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
4366 
4367 #ifdef FEATURE_DIRECT_LINK
4368 /*
4369  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
4370  * @soc_hdl: DP SOC handle
4371  * @pdev_id: pdev id
4372  *
4373  * Return: Handle to SRNG
4374  */
4375 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4376 						 uint8_t pdev_id);
4377 
4378 /*
4379  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
4380  *  pdev
4381  * @soc_hdl: DP SOC handle
4382  * @pdev_id: pdev id
4383  *
4384  * Return: None
4385  */
4386 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4387 					uint8_t pdev_id);
4388 #else
4389 static inline
4390 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4391 						 uint8_t pdev_id)
4392 {
4393 	return NULL;
4394 }
4395 
4396 static inline
4397 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4398 					uint8_t pdev_id)
4399 {
4400 }
4401 #endif
4402 
4403 /*
4404  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
4405  * @txrx_soc: DP SOC handle
4406  *
4407  * Return: none
4408  */
4409 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
4410 
4411 void dp_get_peer_stats(struct dp_peer *peer,
4412 		       struct cdp_peer_stats *peer_stats);
4413 
4414 #endif /* #ifndef _DP_INTERNAL_H_ */
4415