xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 9ae6559c966f1c3f771f044a151edd5972cdc32f)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 #include "dp_rx_tid.h"
26 
27 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
28 
29 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
30 
31 #define DP_BLOCKMEM_SIZE 4096
32 #define WBM2_SW_PPE_REL_RING_ID 6
33 #define WBM2_SW_PPE_REL_MAP_ID 11
34 #define DP_TX_PPEDS_POOL_ID 0xF
35 
36 /* Alignment for consistent memory for DP rings*/
37 #define DP_RING_BASE_ALIGN 32
38 
39 #define DP_RSSI_INVAL 0x80
40 #define DP_RSSI_AVG_WEIGHT 2
41 /*
42  * Formula to derive avg_rssi is taken from wifi2.o firmware
43  */
44 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
45 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
46 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
47 
48 /* Macro For NYSM value received in VHT TLV */
49 #define VHT_SGI_NYSM 3
50 
51 #define INVALID_WBM_RING_NUM 0xF
52 
53 #ifdef FEATURE_DIRECT_LINK
54 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
55 #ifdef IPA_OFFLOAD
56 #ifdef IPA_WDI3_VLAN_SUPPORT
57 #define DIRECT_LINK_REFILL_RING_IDX     4
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     3
60 #endif
61 #else
62 #define DIRECT_LINK_REFILL_RING_IDX     2
63 #endif
64 #endif
65 
66 #define DP_MAX_VLAN_IDS 4096
67 #define DP_VLAN_UNTAGGED 0
68 #define DP_VLAN_TAGGED_MULTICAST 1
69 #define DP_VLAN_TAGGED_UNICAST 2
70 
71 /**
72  * struct htt_dbgfs_cfg - structure to maintain required htt data
73  * @msg_word: htt msg sent to upper layer
74  * @m: qdf debugfs file pointer
75  */
76 struct htt_dbgfs_cfg {
77 	uint32_t *msg_word;
78 	qdf_debugfs_file_t m;
79 };
80 
81 /* Cookie MSB bits assigned for different use case.
82  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
83  * If in future number of pdev are more than 3.
84  */
85 /* Reserve for default case */
86 #define DBG_STATS_COOKIE_DEFAULT 0x0
87 
88 /* Reserve for DP Stats: 3rd bit */
89 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
90 
91 /* Reserve for HTT Stats debugfs support: 4th bit */
92 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
93 
94 /*Reserve for HTT Stats debugfs support: 5th bit */
95 #define DBG_SYSFS_STATS_COOKIE BIT(5)
96 
97 /* Reserve for HTT Stats OBSS PD support: 6th bit */
98 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
99 
100 /*
101  * Bitmap of HTT PPDU TLV types for Default mode
102  */
103 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
104 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
106 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
107 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
108 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
109 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
110 
111 /* PPDU STATS CFG */
112 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
113 
114 /* PPDU stats mask sent to FW to enable enhanced stats */
115 #define DP_PPDU_STATS_CFG_ENH_STATS \
116 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
117 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
119 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
120 
121 /* PPDU stats mask sent to FW to support debug sniffer feature */
122 #define DP_PPDU_STATS_CFG_SNIFFER \
123 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
124 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
125 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
126 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
127 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
128 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
129 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
130 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
131 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
132 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
133 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
134 
135 /* PPDU stats mask sent to FW to support BPR feature*/
136 #define DP_PPDU_STATS_CFG_BPR \
137 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
138 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
139 
140 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
141 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
142 				   DP_PPDU_STATS_CFG_ENH_STATS)
143 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
144 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
145 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
146 
147 /*
148  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
149  */
150 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
151 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
152 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
153 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
154 
155 /*
156  * Bitmap of HTT PPDU TLV types for Delayed BA
157  */
158 #define HTT_PPDU_STATUS_TLV_BITMAP \
159 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
161 
162 /*
163  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
164  */
165 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
166 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
167 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
168 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
169 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
170 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
171 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
173 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
174 
175 /*
176  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
177  */
178 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
179 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
180 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
181 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
182 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
183 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
184 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
185 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
186 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
187 
188 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
189 	[HAL_DOT11A] = DOT11_A,
190 	[HAL_DOT11B] = DOT11_B,
191 	[HAL_DOT11N_MM] = DOT11_N,
192 	[HAL_DOT11AC] = DOT11_AC,
193 	[HAL_DOT11AX] = DOT11_AX,
194 	[HAL_DOT11BA] = DOT11_MAX,
195 #ifdef WLAN_FEATURE_11BE
196 	[HAL_DOT11BE] = DOT11_BE,
197 #else
198 	[HAL_DOT11BE] = DOT11_MAX,
199 #endif
200 	[HAL_DOT11AZ] = DOT11_MAX,
201 	[HAL_DOT11N_GF] = DOT11_MAX,
202 };
203 
204 #ifdef GLOBAL_ASSERT_AVOIDANCE
205 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
206 	(qdf_unlikely(!(_expr)) ? ((_handle)->stats._field++, true) : false)
207 
208 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
209 				((_handle)->ppeds_stats._field++)
210 
211 static inline bool dp_assert_always_internal(bool expr)
212 {
213 	return !expr;
214 }
215 #else
216 static inline bool __dp_assert_always_internal(bool expr)
217 {
218 	qdf_assert_always(expr);
219 
220 	return false;
221 }
222 
223 #define dp_assert_always_internal(_expr) __dp_assert_always_internal(_expr)
224 
225 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
226 				dp_assert_always_internal(_expr)
227 
228 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
229 				dp_assert_always_internal(_expr)
230 #endif
231 
232 #ifdef WLAN_FEATURE_11BE
233 /**
234  * dp_get_mcs_array_index_by_pkt_type_mcs() - get the destination mcs index
235  *					      in array
236  * @pkt_type: host SW pkt type
237  * @mcs: mcs value for TX/RX rate
238  *
239  * Return: succeeded - valid index in mcs array
240  *	   fail - same value as MCS_MAX
241  */
242 static inline uint8_t
243 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
244 {
245 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
246 
247 	switch (pkt_type) {
248 	case DOT11_A:
249 		dst_mcs_idx =
250 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
251 		break;
252 	case DOT11_B:
253 		dst_mcs_idx =
254 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
255 		break;
256 	case DOT11_N:
257 		dst_mcs_idx =
258 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
259 		break;
260 	case DOT11_AC:
261 		dst_mcs_idx =
262 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
263 		break;
264 	case DOT11_AX:
265 		dst_mcs_idx =
266 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
267 		break;
268 	case DOT11_BE:
269 		dst_mcs_idx =
270 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
271 		break;
272 	default:
273 		break;
274 	}
275 
276 	return dst_mcs_idx;
277 }
278 #else
279 static inline uint8_t
280 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
281 {
282 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
283 
284 	switch (pkt_type) {
285 	case DOT11_A:
286 		dst_mcs_idx =
287 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
288 		break;
289 	case DOT11_B:
290 		dst_mcs_idx =
291 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
292 		break;
293 	case DOT11_N:
294 		dst_mcs_idx =
295 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
296 		break;
297 	case DOT11_AC:
298 		dst_mcs_idx =
299 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
300 		break;
301 	case DOT11_AX:
302 		dst_mcs_idx =
303 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
304 		break;
305 	default:
306 		break;
307 	}
308 
309 	return dst_mcs_idx;
310 }
311 #endif
312 
313 #ifdef WIFI_MONITOR_SUPPORT
314 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
315 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
316 #else
317 static inline
318 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
319 {
320 	return QDF_STATUS_SUCCESS;
321 }
322 
323 static inline
324 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
325 {
326 	return QDF_STATUS_SUCCESS;
327 }
328 #endif
329 
330 /**
331  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
332  * @eh: Ethernet header of incoming packet
333  * @vdev: dp_vdev object of the VAP on which this data packet is received
334  *
335  * Return: 1 if the destination mac is correct,
336  *         0 if this frame is not correctly destined to this VAP/MLD
337  */
338 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
339 
340 #ifdef MONITOR_MODULARIZED_ENABLE
341 static inline bool dp_monitor_modularized_enable(void)
342 {
343 	return TRUE;
344 }
345 
346 static inline QDF_STATUS
347 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
348 
349 static inline QDF_STATUS
350 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
351 #else
352 static inline bool dp_monitor_modularized_enable(void)
353 {
354 	return FALSE;
355 }
356 
357 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
358 {
359 	return dp_mon_soc_attach(soc);
360 }
361 
362 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
363 {
364 	return dp_mon_soc_detach(soc);
365 }
366 #endif
367 
368 #ifndef WIFI_MONITOR_SUPPORT
369 #define MON_BUF_MIN_ENTRIES 64
370 
371 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
372 {
373 	return QDF_STATUS_SUCCESS;
374 }
375 
376 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
377 {
378 	return QDF_STATUS_SUCCESS;
379 }
380 
381 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
382 {
383 	return QDF_STATUS_E_FAILURE;
384 }
385 
386 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
387 {
388 	return QDF_STATUS_E_FAILURE;
389 }
390 
391 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
392 						struct dp_peer *peer)
393 {
394 	return QDF_STATUS_SUCCESS;
395 }
396 
397 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
398 						struct dp_peer *peer)
399 {
400 	return QDF_STATUS_E_FAILURE;
401 }
402 
403 static inline struct cdp_peer_rate_stats_ctx*
404 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
405 {
406 	return NULL;
407 }
408 
409 static inline
410 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
411 {
412 }
413 
414 static inline
415 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
416 			       void *arg, enum cdp_stat_update_type type)
417 {
418 }
419 
420 static inline
421 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
422 					       struct dp_pdev *pdev)
423 {
424 }
425 
426 static inline
427 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
428 					   struct dp_peer *peer,
429 					   enum cdp_peer_stats_type type,
430 					   cdp_peer_stats_param_t *buf)
431 {
432 	return QDF_STATUS_E_FAILURE;
433 }
434 
435 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
436 {
437 	return QDF_STATUS_SUCCESS;
438 }
439 
440 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
441 {
442 	return QDF_STATUS_SUCCESS;
443 }
444 
445 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
446 {
447 	return QDF_STATUS_SUCCESS;
448 }
449 
450 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
451 							 int val)
452 {
453 	return QDF_STATUS_E_FAILURE;
454 }
455 
456 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
457 {
458 }
459 
460 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
461 						   struct dp_pdev *pdev,
462 						   int mac_id,
463 						   int mac_for_pdev)
464 {
465 	return QDF_STATUS_SUCCESS;
466 }
467 
468 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
469 						uint32_t quota)
470 {
471 }
472 
473 static inline
474 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
475 			    uint32_t mac_id, uint32_t quota)
476 {
477 	return 0;
478 }
479 
480 static inline
481 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
482 					 uint32_t mac_id, uint32_t quota)
483 {
484 	return 0;
485 }
486 
487 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
488 					   struct dp_peer *peer)
489 {
490 }
491 
492 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
493 					      struct dp_peer *peer)
494 {
495 }
496 
497 static inline
498 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
499 					struct dp_peer *peer,
500 					uint16_t peer_id)
501 {
502 }
503 
504 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
505 {
506 }
507 
508 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
509 {
510 }
511 
512 static inline
513 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
514 {
515 	return QDF_STATUS_SUCCESS;
516 }
517 
518 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
519 							   struct dp_peer *peer)
520 {
521 }
522 
523 static inline
524 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
525 					   struct dp_tx_desc_s *desc,
526 					   struct hal_tx_completion_status *ts,
527 					   uint16_t peer_id)
528 {
529 	return QDF_STATUS_E_FAILURE;
530 }
531 
532 static inline
533 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
534 				       struct dp_pdev *pdev,
535 				       struct dp_peer *peer,
536 				       struct hal_tx_completion_status *ts,
537 				       qdf_nbuf_t netbuf)
538 {
539 	return QDF_STATUS_E_FAILURE;
540 }
541 
542 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
543 						     uint32_t *msg_word,
544 						     qdf_nbuf_t htt_t2h_msg)
545 {
546 	return true;
547 }
548 
549 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
550 {
551 	return QDF_STATUS_SUCCESS;
552 }
553 
554 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
555 {
556 }
557 
558 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
559 {
560 }
561 
562 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
563 							  uint32_t val)
564 {
565 	return QDF_STATUS_E_INVAL;
566 }
567 
568 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
569 						   struct dp_peer *peer,
570 						   uint8_t is_tx_pkt_cap_enable,
571 						   uint8_t *peer_mac)
572 {
573 	return QDF_STATUS_E_INVAL;
574 }
575 
576 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
577 							  uint32_t val)
578 {
579 	return QDF_STATUS_E_INVAL;
580 }
581 
582 static inline
583 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
584 {
585 	return QDF_STATUS_E_FAILURE;
586 }
587 
588 static inline
589 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
590 {
591 	return 0;
592 }
593 
594 static inline
595 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
596 {
597 }
598 
599 static inline
600 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
601 {
602 }
603 
604 static inline
605 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
606 {
607 	return false;
608 }
609 
610 static inline
611 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
612 {
613 	return false;
614 }
615 
616 static inline
617 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
618 {
619 	return false;
620 }
621 
622 static inline
623 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
624 				bool enable)
625 {
626 	return 0;
627 }
628 
629 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
630 {
631 }
632 
633 static inline
634 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
635 {
636 	return QDF_STATUS_E_FAILURE;
637 }
638 
639 static inline
640 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
641 {
642 }
643 
644 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
645 							  uint8_t *rx_pkt_hdr)
646 {
647 	return QDF_STATUS_E_FAILURE;
648 }
649 
650 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
651 {
652 }
653 
654 static inline
655 void dp_monitor_reap_timer_init(struct dp_soc *soc)
656 {
657 }
658 
659 static inline
660 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
661 {
662 }
663 
664 static inline
665 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
666 				 enum cdp_mon_reap_source source)
667 {
668 	return false;
669 }
670 
671 static inline
672 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
673 				enum cdp_mon_reap_source source)
674 {
675 	return false;
676 }
677 
678 static inline void
679 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
680 {
681 }
682 
683 static inline
684 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
685 {
686 }
687 
688 static inline
689 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
690 {
691 }
692 
693 static inline
694 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
695 {
696 }
697 
698 static inline
699 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
700 {
701 	return false;
702 }
703 
704 static inline struct qdf_mem_multi_page_t*
705 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
706 {
707 	return NULL;
708 }
709 
710 static inline struct dp_srng*
711 dp_monitor_get_link_desc_ring(struct dp_soc *soc, uint32_t mac_id)
712 {
713 	return NULL;
714 }
715 
716 static inline uint32_t
717 dp_monitor_get_num_link_desc_ring_entries(struct dp_soc *soc)
718 {
719 	return 0;
720 }
721 
722 static inline uint32_t *
723 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
724 {
725 	return NULL;
726 }
727 
728 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
729 {
730 	return QDF_STATUS_E_FAILURE;
731 }
732 
733 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
734 {
735 	return false;
736 }
737 
738 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
739 						 struct ol_txrx_ops *txrx_ops)
740 {
741 }
742 
743 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
744 {
745 	return false;
746 }
747 
748 static inline
749 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
750 {
751 }
752 
753 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
754 					  struct dp_vdev *vdev)
755 {
756 }
757 
758 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
759 {
760 }
761 
762 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
763 						     struct dp_peer *ta_peer,
764 						     uint8_t *mac_addr,
765 						     qdf_nbuf_t nbuf,
766 						     uint32_t flags)
767 {
768 }
769 
770 static inline void
771 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
772 {
773 }
774 
775 static inline void
776 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
777 {
778 }
779 
780 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
781 {
782 }
783 
784 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
785 {
786 	return false;
787 }
788 
789 static inline
790 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
791 					   struct dp_vdev *vdev,
792 					   struct dp_neighbour_peer *peer)
793 {
794 }
795 
796 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
797 {
798 	return false;
799 }
800 
801 static inline enum reg_wifi_band
802 dp_monitor_get_chan_band(struct dp_pdev *pdev)
803 {
804 	return 0;
805 }
806 
807 static inline int
808 dp_monitor_get_chan_num(struct dp_pdev *pdev)
809 {
810 	return 0;
811 }
812 
813 static inline qdf_freq_t
814 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
815 {
816 	return 0;
817 }
818 
819 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
820 					      struct dp_soc *soc,
821 					      uint8_t *rx_tlv_hdr)
822 {
823 }
824 
825 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
826 {
827 }
828 
829 static inline
830 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
831 					  uint16_t peer_id, uint32_t ppdu_id,
832 					  uint8_t first_msdu)
833 {
834 	return QDF_STATUS_SUCCESS;
835 }
836 
837 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
838 {
839 	return false;
840 }
841 
842 static inline struct dp_vdev*
843 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
844 {
845 	return NULL;
846 }
847 
848 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
849 							   void *rx_desc)
850 {
851 	return QDF_STATUS_E_FAILURE;
852 }
853 
854 static inline struct mon_rx_status*
855 dp_monitor_get_rx_status(struct dp_pdev *pdev)
856 {
857 	return NULL;
858 }
859 
860 static inline
861 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
862 {
863 }
864 
865 static inline
866 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
867 						      bool val)
868 {
869 }
870 
871 static inline QDF_STATUS
872 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
873 				     struct cdp_peer_tx_capture_stats *stats)
874 {
875 	return QDF_STATUS_E_FAILURE;
876 }
877 
878 static inline QDF_STATUS
879 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
880 				     struct cdp_pdev_tx_capture_stats *stats)
881 {
882 	return QDF_STATUS_E_FAILURE;
883 }
884 
885 #ifdef DP_POWER_SAVE
886 static inline
887 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
888 {
889 }
890 
891 static inline
892 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
893 {
894 }
895 #endif
896 
897 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
898 {
899 	return false;
900 }
901 
902 static inline void
903 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
904 			 struct htt_rx_ring_tlv_filter *tlv_filter)
905 {
906 }
907 
908 static inline void dp_monitor_soc_init(struct dp_soc *soc)
909 {
910 }
911 
912 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
913 {
914 }
915 
916 static inline
917 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
918 							int val)
919 {
920 	return QDF_STATUS_SUCCESS;
921 }
922 
923 static inline QDF_STATUS
924 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
925 						      int mask1, int mask2)
926 {
927 	return QDF_STATUS_SUCCESS;
928 }
929 
930 static inline QDF_STATUS
931 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
932 						   int *mask, int *mask_cont)
933 {
934 	return QDF_STATUS_SUCCESS;
935 }
936 
937 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
938 {
939 	return QDF_STATUS_E_FAILURE;
940 }
941 
942 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
943 {
944 	return false;
945 }
946 
947 static inline
948 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
949 {
950 	return 0;
951 }
952 
953 static inline uint32_t
954 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
955 		  uint32_t mac_id, uint32_t quota)
956 {
957 	return 0;
958 }
959 
960 static inline uint32_t
961 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
962 {
963 	return 0;
964 }
965 
966 static inline
967 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
968 {
969 	return 0;
970 }
971 
972 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
973 {
974 	return 0;
975 }
976 
977 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
978 {
979 	return 0;
980 }
981 
982 static inline void
983 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
984 		 struct htt_rx_ring_tlv_filter *tlv_filter)
985 {
986 }
987 
988 static inline void
989 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
990 			    struct htt_rx_ring_tlv_filter *tlv_filter)
991 {
992 }
993 
994 static inline void
995 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
996 			      struct htt_rx_ring_tlv_filter *tlv_filter)
997 {
998 }
999 
1000 static inline void
1001 dp_mon_rx_wmask_subscribe(struct dp_soc *soc,
1002 			  uint32_t *msg_word, int pdev_id,
1003 			  struct htt_rx_ring_tlv_filter *tlv_filter)
1004 {
1005 }
1006 
1007 static inline void
1008 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
1009 			 struct htt_rx_ring_tlv_filter *tlv_filter)
1010 {
1011 }
1012 
1013 static inline void
1014 dp_mon_rx_enable_pkt_tlv_offset(struct dp_soc *soc, uint32_t *msg_word,
1015 				struct htt_rx_ring_tlv_filter *tlv_filter)
1016 {
1017 }
1018 
1019 static inline void
1020 dp_mon_rx_enable_fpmo(struct dp_soc *soc, uint32_t *msg_word,
1021 		      struct htt_rx_ring_tlv_filter *tlv_filter)
1022 {
1023 }
1024 
1025 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
1026 static inline
1027 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
1028 				     struct cdp_peer_telemetry_stats *stats)
1029 {
1030 }
1031 
1032 static inline
1033 void dp_monitor_peer_deter_stats(struct dp_peer *peer,
1034 				 struct cdp_peer_telemetry_stats *stats)
1035 {
1036 }
1037 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
1038 #endif /* !WIFI_MONITOR_SUPPORT */
1039 
1040 /**
1041  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
1042  * dp soc handle
1043  * @psoc: CDP psoc handle
1044  *
1045  * Return: struct dp_soc pointer
1046  */
1047 static inline
1048 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
1049 {
1050 	return (struct dp_soc *)psoc;
1051 }
1052 
1053 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
1054 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
1055 
1056 /**
1057  * enum timer_yield_status - yield status code used in monitor mode timer.
1058  * @DP_TIMER_NO_YIELD: do not yield
1059  * @DP_TIMER_WORK_DONE: yield because work is done
1060  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
1061  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
1062  */
1063 enum timer_yield_status {
1064 	DP_TIMER_NO_YIELD,
1065 	DP_TIMER_WORK_DONE,
1066 	DP_TIMER_WORK_EXHAUST,
1067 	DP_TIMER_TIME_EXHAUST,
1068 };
1069 
1070 #if DP_PRINT_ENABLE
1071 #include <qdf_types.h> /* qdf_vprint */
1072 #include <cdp_txrx_handle.h>
1073 
1074 enum {
1075 	/* FATAL_ERR - print only irrecoverable error messages */
1076 	DP_PRINT_LEVEL_FATAL_ERR,
1077 
1078 	/* ERR - include non-fatal err messages */
1079 	DP_PRINT_LEVEL_ERR,
1080 
1081 	/* WARN - include warnings */
1082 	DP_PRINT_LEVEL_WARN,
1083 
1084 	/* INFO1 - include fundamental, infrequent events */
1085 	DP_PRINT_LEVEL_INFO1,
1086 
1087 	/* INFO2 - include non-fundamental but infrequent events */
1088 	DP_PRINT_LEVEL_INFO2,
1089 };
1090 
1091 #define dp_print(level, fmt, ...) do { \
1092 	if (level <= g_txrx_print_level) \
1093 		qdf_print(fmt, ## __VA_ARGS__); \
1094 while (0)
1095 #define DP_PRINT(level, fmt, ...) do { \
1096 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1097 while (0)
1098 #else
1099 #define DP_PRINT(level, fmt, ...)
1100 #endif /* DP_PRINT_ENABLE */
1101 
1102 #define DP_TRACE(LVL, fmt, args ...)                             \
1103 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1104 		fmt, ## args)
1105 
1106 #ifdef WLAN_SYSFS_DP_STATS
1107 void DP_PRINT_STATS(const char *fmt, ...);
1108 #else /* WLAN_SYSFS_DP_STATS */
1109 #ifdef DP_PRINT_NO_CONSOLE
1110 /* Stat prints should not go to console or kernel logs.*/
1111 #define DP_PRINT_STATS(fmt, args ...)\
1112 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1113 		  fmt, ## args)
1114 #else
1115 #define DP_PRINT_STATS(fmt, args ...)\
1116 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1117 		  fmt, ## args)
1118 #endif
1119 #endif /* WLAN_SYSFS_DP_STATS */
1120 
1121 #define DP_STATS_INIT(_handle) \
1122 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1123 
1124 #define DP_TXRX_PEER_STATS_INIT(_handle, size) \
1125 	qdf_mem_zero(&((_handle)->stats[0]), size)
1126 
1127 #define DP_STATS_CLR(_handle) \
1128 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1129 
1130 #define DP_TXRX_PEER_STATS_CLR(_handle, size) \
1131 	qdf_mem_zero(&((_handle)->stats[0]), size)
1132 
1133 #ifndef DISABLE_DP_STATS
1134 #define DP_STATS_INC(_handle, _field, _delta) \
1135 { \
1136 	if (likely(_handle)) \
1137 		_handle->stats._field += _delta; \
1138 }
1139 
1140 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link) \
1141 { \
1142 	if (likely(_handle)) \
1143 		_handle->stats[_link]._field += _delta; \
1144 }
1145 
1146 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1147 { \
1148 	if (likely(_handle)) \
1149 		_handle->_field += _delta; \
1150 }
1151 
1152 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1153 { \
1154 	if (_cond && likely(_handle)) \
1155 		_handle->stats._field += _delta; \
1156 }
1157 
1158 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1159 { \
1160 	if (_cond && likely(_handle)) \
1161 		_handle->stats[_link]._field += _delta; \
1162 }
1163 
1164 #define DP_STATS_DEC(_handle, _field, _delta) \
1165 { \
1166 	if (likely(_handle)) \
1167 		_handle->stats._field -= _delta; \
1168 }
1169 
1170 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1171 { \
1172 	if (likely(_handle)) \
1173 		_handle->_field -= _delta; \
1174 }
1175 
1176 #define DP_STATS_UPD(_handle, _field, _delta) \
1177 { \
1178 	if (likely(_handle)) \
1179 		_handle->stats._field = _delta; \
1180 }
1181 
1182 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link) \
1183 { \
1184 	if (likely(_handle)) \
1185 		_handle->stats[_link]._field = _delta; \
1186 }
1187 
1188 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1189 { \
1190 	DP_STATS_INC(_handle, _field.num, _count); \
1191 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1192 }
1193 
1194 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1195 { \
1196 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1197 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1198 }
1199 
1200 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1201 { \
1202 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1203 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1204 }
1205 
1206 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1207 { \
1208 	_handle_a->stats._field += _handle_b->stats._field; \
1209 }
1210 
1211 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1212 { \
1213 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1214 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1215 }
1216 
1217 #define DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field, _idx) \
1218 { \
1219 	_handle_a->stats._arr._field += _handle_b->stats._arr[_idx]._field; \
1220 }
1221 
1222 #define DP_STATS_AGGR_PKT_IDX(_handle_a, _handle_b, _arr, _field, _idx)\
1223 { \
1224 	DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field.num, _idx); \
1225 	DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field.bytes, _idx);\
1226 }
1227 
1228 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1229 { \
1230 	_handle_a->stats._field = _handle_b->stats._field; \
1231 }
1232 
1233 #else
1234 #define DP_STATS_INC(_handle, _field, _delta)
1235 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link)
1236 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1237 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1238 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link)
1239 #define DP_STATS_DEC(_handle, _field, _delta)
1240 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1241 #define DP_STATS_UPD(_handle, _field, _delta)
1242 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link)
1243 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1244 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1245 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1246 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1247 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1248 #define DP_STATS_AGGR_IDX(_handle_a, _handle_b, _arr, _field, _idx)
1249 #define DP_STATS_AGGR_PKT_IDX(_handle_a, _handle_b, _arr, _field, _idx)
1250 #endif
1251 
1252 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta, _link) \
1253 { \
1254 	DP_PEER_LINK_STATS_INC(_handle, per_pkt_stats._field, _delta, _link); \
1255 }
1256 
1257 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1258 { \
1259 	DP_PEER_LINK_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond, _link); \
1260 }
1261 
1262 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes, _link) \
1263 { \
1264 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count, _link); \
1265 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes, _link) \
1266 }
1267 
1268 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond, _link) \
1269 { \
1270 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond, _link); \
1271 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond, _link) \
1272 }
1273 
1274 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta, _link) \
1275 { \
1276 	DP_PEER_LINK_STATS_UPD(_handle, per_pkt_stats._field, _delta, _link); \
1277 }
1278 
1279 #ifndef QCA_ENHANCED_STATS_SUPPORT
1280 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta, _link) \
1281 { \
1282 	DP_PEER_LINK_STATS_INC(_handle, extd_stats._field, _delta, _link); \
1283 }
1284 
1285 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1286 { \
1287 	DP_PEER_LINK_STATS_INCC(_handle, extd_stats._field, _delta, _cond, _link); \
1288 }
1289 
1290 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta, _link) \
1291 { \
1292 	DP_PEER_LINK_STATS_UPD(_handle, extd_stats._field, _delta, _link); \
1293 }
1294 #endif
1295 
1296 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1297 	defined(QCA_ENHANCED_STATS_SUPPORT)
1298 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1299 { \
1300 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1301 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1302 }
1303 
1304 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1305 { \
1306 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1307 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1308 }
1309 
1310 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1311 { \
1312 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1313 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1314 }
1315 
1316 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1317 { \
1318 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1319 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1320 }
1321 
1322 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1323 { \
1324 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1325 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1326 }
1327 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1328 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1329 { \
1330 	if (!(_handle->hw_txrx_stats_en)) \
1331 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1332 }
1333 
1334 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1335 { \
1336 	if (!(_handle->hw_txrx_stats_en)) \
1337 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1338 }
1339 
1340 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1341 { \
1342 	if (!(_handle->hw_txrx_stats_en)) \
1343 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1344 }
1345 
1346 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1347 { \
1348 	if (!(_handle->hw_txrx_stats_en)) \
1349 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1350 }
1351 
1352 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1353 { \
1354 	if (!(_handle->hw_txrx_stats_en)) \
1355 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1356 }
1357 #else
1358 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1359 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1360 
1361 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1362 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1363 
1364 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1365 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link);
1366 
1367 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1368 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link);
1369 
1370 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1371 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link);
1372 #endif
1373 
1374 #ifdef ENABLE_DP_HIST_STATS
1375 #define DP_HIST_INIT() \
1376 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1377 
1378 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1379 { \
1380 		++num_of_packets[_pdev_id]; \
1381 }
1382 
1383 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1384 	do {                                                              \
1385 		if (_p_cntrs == 1) {                                      \
1386 			DP_STATS_INC(_pdev,                               \
1387 				tx_comp_histogram.pkts_1, 1);             \
1388 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1389 			DP_STATS_INC(_pdev,                               \
1390 				tx_comp_histogram.pkts_2_20, 1);          \
1391 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1392 			DP_STATS_INC(_pdev,                               \
1393 				tx_comp_histogram.pkts_21_40, 1);         \
1394 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1395 			DP_STATS_INC(_pdev,                               \
1396 				tx_comp_histogram.pkts_41_60, 1);         \
1397 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1398 			DP_STATS_INC(_pdev,                               \
1399 				tx_comp_histogram.pkts_61_80, 1);         \
1400 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1401 			DP_STATS_INC(_pdev,                               \
1402 				tx_comp_histogram.pkts_81_100, 1);        \
1403 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1404 			DP_STATS_INC(_pdev,                               \
1405 				tx_comp_histogram.pkts_101_200, 1);       \
1406 		} else if (_p_cntrs > 200) {                              \
1407 			DP_STATS_INC(_pdev,                               \
1408 				tx_comp_histogram.pkts_201_plus, 1);      \
1409 		}                                                         \
1410 	} while (0)
1411 
1412 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1413 	do {                                                              \
1414 		if (_p_cntrs == 1) {                                      \
1415 			DP_STATS_INC(_pdev,                               \
1416 				rx_ind_histogram.pkts_1, 1);              \
1417 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1418 			DP_STATS_INC(_pdev,                               \
1419 				rx_ind_histogram.pkts_2_20, 1);           \
1420 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1421 			DP_STATS_INC(_pdev,                               \
1422 				rx_ind_histogram.pkts_21_40, 1);          \
1423 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1424 			DP_STATS_INC(_pdev,                               \
1425 				rx_ind_histogram.pkts_41_60, 1);          \
1426 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1427 			DP_STATS_INC(_pdev,                               \
1428 				rx_ind_histogram.pkts_61_80, 1);          \
1429 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1430 			DP_STATS_INC(_pdev,                               \
1431 				rx_ind_histogram.pkts_81_100, 1);         \
1432 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1433 			DP_STATS_INC(_pdev,                               \
1434 				rx_ind_histogram.pkts_101_200, 1);        \
1435 		} else if (_p_cntrs > 200) {                              \
1436 			DP_STATS_INC(_pdev,                               \
1437 				rx_ind_histogram.pkts_201_plus, 1);       \
1438 		}                                                         \
1439 	} while (0)
1440 
1441 #define DP_TX_HIST_STATS_PER_PDEV() \
1442 	do { \
1443 		uint8_t hist_stats = 0; \
1444 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1445 				hist_stats++) { \
1446 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1447 					num_of_packets[hist_stats]); \
1448 		} \
1449 	}  while (0)
1450 
1451 
1452 #define DP_RX_HIST_STATS_PER_PDEV() \
1453 	do { \
1454 		uint8_t hist_stats = 0; \
1455 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1456 				hist_stats++) { \
1457 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1458 					num_of_packets[hist_stats]); \
1459 		} \
1460 	}  while (0)
1461 
1462 #else
1463 #define DP_HIST_INIT()
1464 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1465 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1466 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1467 #define DP_RX_HIST_STATS_PER_PDEV()
1468 #define DP_TX_HIST_STATS_PER_PDEV()
1469 #endif /* DISABLE_DP_STATS */
1470 
1471 #define FRAME_MASK_IPV4_ARP   1
1472 #define FRAME_MASK_IPV4_DHCP  2
1473 #define FRAME_MASK_IPV4_EAPOL 4
1474 #define FRAME_MASK_IPV6_DHCP  8
1475 
1476 static inline int dp_log2_ceil(unsigned int value)
1477 {
1478 	unsigned int tmp = value;
1479 	int log2 = -1;
1480 
1481 	if (qdf_unlikely(value == 0))
1482 		return 0;
1483 	while (tmp) {
1484 		log2++;
1485 		tmp >>= 1;
1486 	}
1487 	if (1 << log2 != value)
1488 		log2++;
1489 	return log2;
1490 }
1491 
1492 #ifdef QCA_SUPPORT_PEER_ISOLATION
1493 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1494 
1495 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1496 					 bool val)
1497 {
1498 	txrx_peer->isolation = val;
1499 }
1500 
1501 #else
1502 #define dp_get_peer_isolation(_peer) (0)
1503 
1504 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1505 {
1506 }
1507 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1508 
1509 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev);
1510 
1511 #ifdef QCA_SUPPORT_WDS_EXTENDED
1512 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1513 {
1514 	txrx_peer->wds_ext.osif_peer = NULL;
1515 	txrx_peer->wds_ext.init = 0;
1516 }
1517 #else
1518 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1519 {
1520 }
1521 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1522 
1523 #ifdef QCA_HOST2FW_RXBUF_RING
1524 static inline
1525 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1526 {
1527 	return &pdev->rx_mac_buf_ring[lmac_id];
1528 }
1529 #else
1530 static inline
1531 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1532 {
1533 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1534 }
1535 #endif
1536 
1537 /*
1538  * The lmac ID for a particular channel band is fixed.
1539  * 2.4GHz band uses lmac_id = 1
1540  * 5GHz/6GHz band uses lmac_id=0
1541  */
1542 #define DP_INVALID_LMAC_ID	(-1)
1543 #define DP_MON_INVALID_LMAC_ID	(-1)
1544 #define DP_MAC0_LMAC_ID	0
1545 #define DP_MAC1_LMAC_ID	1
1546 
1547 #ifdef FEATURE_TSO_STATS
1548 /**
1549  * dp_init_tso_stats() - Clear tso stats
1550  * @pdev: pdev handle
1551  *
1552  * Return: None
1553  */
1554 static inline
1555 void dp_init_tso_stats(struct dp_pdev *pdev)
1556 {
1557 	if (pdev) {
1558 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1559 			     sizeof((pdev)->stats.tso_stats));
1560 		qdf_atomic_init(&pdev->tso_idx);
1561 	}
1562 }
1563 
1564 /**
1565  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1566  * @pdev: pdev handle
1567  * @_p_cntrs: number of tso segments for a tso packet
1568  *
1569  * Return: None
1570  */
1571 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1572 					   uint8_t _p_cntrs);
1573 
1574 /**
1575  * dp_tso_segment_update() - Collect tso segment information
1576  * @pdev: pdev handle
1577  * @stats_idx: tso packet number
1578  * @idx: tso segment number
1579  * @seg: tso segment
1580  *
1581  * Return: None
1582  */
1583 void dp_tso_segment_update(struct dp_pdev *pdev,
1584 			   uint32_t stats_idx,
1585 			   uint8_t idx,
1586 			   struct qdf_tso_seg_t seg);
1587 
1588 /**
1589  * dp_tso_packet_update() - TSO Packet information
1590  * @pdev: pdev handle
1591  * @stats_idx: tso packet number
1592  * @msdu: nbuf handle
1593  * @num_segs: tso segments
1594  *
1595  * Return: None
1596  */
1597 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1598 			  qdf_nbuf_t msdu, uint16_t num_segs);
1599 
1600 /**
1601  * dp_tso_segment_stats_update() - TSO Segment stats
1602  * @pdev: pdev handle
1603  * @stats_seg: tso segment list
1604  * @stats_idx: tso packet number
1605  *
1606  * Return: None
1607  */
1608 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1609 				 struct qdf_tso_seg_elem_t *stats_seg,
1610 				 uint32_t stats_idx);
1611 
1612 /**
1613  * dp_print_tso_stats() - dump tso statistics
1614  * @soc:soc handle
1615  * @level: verbosity level
1616  *
1617  * Return: None
1618  */
1619 void dp_print_tso_stats(struct dp_soc *soc,
1620 			enum qdf_stats_verbosity_level level);
1621 
1622 /**
1623  * dp_txrx_clear_tso_stats() - clear tso stats
1624  * @soc: soc handle
1625  *
1626  * Return: None
1627  */
1628 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1629 #else
1630 static inline
1631 void dp_init_tso_stats(struct dp_pdev *pdev)
1632 {
1633 }
1634 
1635 static inline
1636 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1637 					   uint8_t _p_cntrs)
1638 {
1639 }
1640 
1641 static inline
1642 void dp_tso_segment_update(struct dp_pdev *pdev,
1643 			   uint32_t stats_idx,
1644 			   uint32_t idx,
1645 			   struct qdf_tso_seg_t seg)
1646 {
1647 }
1648 
1649 static inline
1650 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1651 			  qdf_nbuf_t msdu, uint16_t num_segs)
1652 {
1653 }
1654 
1655 static inline
1656 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1657 				 struct qdf_tso_seg_elem_t *stats_seg,
1658 				 uint32_t stats_idx)
1659 {
1660 }
1661 
1662 static inline
1663 void dp_print_tso_stats(struct dp_soc *soc,
1664 			enum qdf_stats_verbosity_level level)
1665 {
1666 }
1667 
1668 static inline
1669 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1670 {
1671 }
1672 #endif /* FEATURE_TSO_STATS */
1673 
1674 /**
1675  * dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1676  * @peer: DP peer handle
1677  * @type: Requested stats type
1678  * @buf: Buffer to hold the value
1679  *
1680  * Return: status success/failure
1681  */
1682 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1683 						enum cdp_peer_stats_type type,
1684 						cdp_peer_stats_param_t *buf);
1685 
1686 /**
1687  * dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1688  * @peer: DP peer handle
1689  * @type: Requested stats type
1690  * @buf: Buffer to hold the value
1691  *
1692  * Return: status success/failure
1693  */
1694 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1695 					     enum cdp_peer_stats_type type,
1696 					     cdp_peer_stats_param_t *buf);
1697 
1698 #define DP_HTT_T2H_HP_PIPE 5
1699 /**
1700  * dp_update_pdev_stats(): Update the pdev stats
1701  * @tgtobj: pdev handle
1702  * @srcobj: vdev stats structure
1703  *
1704  * Update the pdev stats from the specified vdev stats
1705  *
1706  * Return: None
1707  */
1708 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1709 			  struct cdp_vdev_stats *srcobj);
1710 
1711 /**
1712  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1713  * @tgtobj: vdev handle
1714  *
1715  * Update the vdev ingress stats
1716  *
1717  * Return: None
1718  */
1719 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1720 
1721 /**
1722  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1723  * @tgtobj: tgt buffer for cdp vdev stats
1724  * @srcobj: srcobj dp vdev stats
1725  *
1726  * Return: None
1727  */
1728 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1729 			       struct dp_vdev_stats *srcobj);
1730 
1731 /**
1732  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1733  * @tgtobj: pdev handle
1734  * @srcobj: vdev stats structure
1735  *
1736  * Update the pdev ingress stats from the specified vdev stats
1737  *
1738  * Return: None
1739  */
1740 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1741 				  struct dp_vdev *srcobj);
1742 
1743 /**
1744  * dp_copy_vdev_stats_to_tgt_buf(): Update the cdp vdev ingress stats from
1745  *                                        dp vdev ingress stats
1746  * @vdev_stats: cdp vdev stats structure
1747  * @stats: dp vdev stats structure
1748  * @xmit_type: xmit type of packet - MLD/Link
1749  *
1750  * Update the cdp vdev ingress stats from dp vdev ingress stats
1751  *
1752  * Return: None
1753  */
1754 
1755 void dp_copy_vdev_stats_to_tgt_buf(struct cdp_vdev_stats *vdev_stats,
1756 					 struct dp_vdev_stats *stats,
1757 					 enum dp_pkt_xmit_type xmit_type);
1758 
1759 /**
1760  * dp_update_vdev_stats(): Update the vdev stats
1761  * @soc: soc handle
1762  * @srcobj: DP_PEER object
1763  * @arg: point to vdev stats structure
1764  *
1765  * Update the vdev stats from the specified peer stats
1766  *
1767  * Return: None
1768  */
1769 void dp_update_vdev_stats(struct dp_soc *soc,
1770 			  struct dp_peer *srcobj,
1771 			  void *arg);
1772 
1773 /**
1774  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1775  * @vdev: DP_VDEV handle
1776  * @peer: DP_PEER handle
1777  *
1778  * Return: None
1779  */
1780 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1781 					struct dp_peer *peer);
1782 
1783 #ifdef IPA_OFFLOAD
1784 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1785 { \
1786 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1787 }
1788 
1789 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1790 { \
1791 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1792 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1793 }
1794 #else
1795 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1796 
1797 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1798 #endif
1799 
1800 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1801 	do {				\
1802 		uint8_t i;		\
1803 		uint8_t pream_type;	\
1804 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1805 			for (i = 0; i < MAX_MCS; i++) { \
1806 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1807 					tx.pkt_type[pream_type].mcs_count[i]); \
1808 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1809 					rx.pkt_type[pream_type].mcs_count[i]); \
1810 			} \
1811 		} \
1812 		  \
1813 		for (i = 0; i < MAX_BW; i++) { \
1814 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1815 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1816 		} \
1817 		  \
1818 		for (i = 0; i < SS_COUNT; i++) { \
1819 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1820 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1821 		} \
1822 		for (i = 0; i < WME_AC_MAX; i++) { \
1823 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1824 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1825 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1826 				      tx.wme_ac_type_bytes[i]); \
1827 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1828 				      rx.wme_ac_type_bytes[i]); \
1829 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1830 		\
1831 		} \
1832 		\
1833 		for (i = 0; i < MAX_GI; i++) { \
1834 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1835 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1836 		} \
1837 		\
1838 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1839 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1840 		\
1841 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1842 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1843 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1844 		} \
1845 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1846 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1847 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1848 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1849 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1850 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1851 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1852 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1853 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1854 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1855 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1856 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1857 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1858 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1859 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1860 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1861 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1862 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1863 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1864 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1865 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1866 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1867 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1868 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1869 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1870 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1871 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1872 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1873 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1874 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1875 								\
1876 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1877 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1878 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1879 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1880 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1881 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1882 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1883 		if (_srcobj->stats.rx.snr != 0) \
1884 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1885 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1886 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1887 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1888 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1889 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1890 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1891 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1892 								\
1893 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1894 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1895 									\
1896 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1897 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1898 									\
1899 		_srcobj->stats.rx.unicast.num = \
1900 			_srcobj->stats.rx.to_stack.num - \
1901 					_srcobj->stats.rx.multicast.num; \
1902 		_srcobj->stats.rx.unicast.bytes = \
1903 			_srcobj->stats.rx.to_stack.bytes - \
1904 					_srcobj->stats.rx.multicast.bytes; \
1905 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1906 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1907 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1908 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1909 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1910 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1911 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1912 								  \
1913 		_tgtobj->stats.tx.last_ack_rssi =	\
1914 			_srcobj->stats.tx.last_ack_rssi; \
1915 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1916 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1917 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1918 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1919 	}  while (0)
1920 
1921 #ifdef VDEV_PEER_PROTOCOL_COUNT
1922 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1923 { \
1924 	uint8_t j; \
1925 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1926 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1927 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1928 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1929 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1930 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1931 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1932 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1933 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1934 	} \
1935 }
1936 #else
1937 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1938 #endif
1939 
1940 #ifdef WLAN_FEATURE_11BE
1941 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1942 	do { \
1943 		uint8_t i, mu_type; \
1944 		for (i = 0; i < MAX_MCS; i++) { \
1945 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1946 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1947 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1948 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1949 		} \
1950 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1951 			for (i = 0; i < MAX_MCS; i++) { \
1952 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1953 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1954 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1955 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1956 			} \
1957 		} \
1958 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1959 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1960 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1961 		} \
1962 	} while (0)
1963 #else
1964 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1965 #endif
1966 
1967 #define DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj) \
1968 	do { \
1969 		_tgtobj->tx.comp_pkt.num += _srcobj->tx.comp_pkt.num; \
1970 		_tgtobj->tx.comp_pkt.bytes += _srcobj->tx.comp_pkt.bytes; \
1971 		_tgtobj->tx.tx_failed += _srcobj->tx.tx_failed; \
1972 		_tgtobj->rx.to_stack.num += _srcobj->rx.to_stack.num; \
1973 		_tgtobj->rx.to_stack.bytes += _srcobj->rx.to_stack.bytes; \
1974 	} while (0)
1975 
1976 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1977 	do { \
1978 		uint8_t i; \
1979 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1980 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1981 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1982 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1983 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1984 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1985 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1986 		_tgtobj->tx.nawds_mcast.bytes += \
1987 					_srcobj->tx.nawds_mcast.bytes; \
1988 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1989 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1990 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1991 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1992 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1993 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1994 		_tgtobj->tx.dropped.fw_rem.num += \
1995 					_srcobj->tx.dropped.fw_rem.num; \
1996 		_tgtobj->tx.dropped.fw_rem.bytes += \
1997 					_srcobj->tx.dropped.fw_rem.bytes; \
1998 		_tgtobj->tx.dropped.fw_rem_notx += \
1999 					_srcobj->tx.dropped.fw_rem_notx; \
2000 		_tgtobj->tx.dropped.fw_rem_tx += \
2001 					_srcobj->tx.dropped.fw_rem_tx; \
2002 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
2003 		_tgtobj->tx.dropped.fw_reason1 += \
2004 					_srcobj->tx.dropped.fw_reason1; \
2005 		_tgtobj->tx.dropped.fw_reason2 += \
2006 					_srcobj->tx.dropped.fw_reason2; \
2007 		_tgtobj->tx.dropped.fw_reason3 += \
2008 					_srcobj->tx.dropped.fw_reason3; \
2009 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
2010 					_srcobj->tx.dropped.fw_rem_queue_disable; \
2011 		_tgtobj->tx.dropped.fw_rem_no_match += \
2012 					_srcobj->tx.dropped.fw_rem_no_match; \
2013 		_tgtobj->tx.dropped.drop_threshold += \
2014 					_srcobj->tx.dropped.drop_threshold; \
2015 		_tgtobj->tx.dropped.drop_link_desc_na += \
2016 					_srcobj->tx.dropped.drop_link_desc_na; \
2017 		_tgtobj->tx.dropped.invalid_drop += \
2018 					_srcobj->tx.dropped.invalid_drop; \
2019 		_tgtobj->tx.dropped.mcast_vdev_drop += \
2020 					_srcobj->tx.dropped.mcast_vdev_drop; \
2021 		_tgtobj->tx.dropped.invalid_rr += \
2022 					_srcobj->tx.dropped.invalid_rr; \
2023 		_tgtobj->tx.failed_retry_count += \
2024 					_srcobj->tx.failed_retry_count; \
2025 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
2026 		_tgtobj->tx.multiple_retry_count += \
2027 					_srcobj->tx.multiple_retry_count; \
2028 		_tgtobj->tx.tx_success_twt.num += \
2029 					_srcobj->tx.tx_success_twt.num; \
2030 		_tgtobj->tx.tx_success_twt.bytes += \
2031 					_srcobj->tx.tx_success_twt.bytes; \
2032 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
2033 		_tgtobj->tx.release_src_not_tqm += \
2034 					_srcobj->tx.release_src_not_tqm; \
2035 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
2036 			_tgtobj->tx.no_ack_count[i] += \
2037 					_srcobj->tx.no_ack_count[i];\
2038 		} \
2039 		\
2040 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
2041 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
2042 		_tgtobj->rx.rx_success.num += _srcobj->rx.rx_success.num;\
2043 		_tgtobj->rx.rx_success.bytes += _srcobj->rx.rx_success.bytes;\
2044 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
2045 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
2046 		_tgtobj->rx.unicast.num += _srcobj->rx.unicast.num; \
2047 		_tgtobj->rx.unicast.bytes += _srcobj->rx.unicast.bytes; \
2048 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
2049 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
2050 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
2051 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
2052 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
2053 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
2054 		_tgtobj->rx.ppeds_drop.num += _srcobj->rx.ppeds_drop.num; \
2055 		_tgtobj->rx.ppeds_drop.bytes += _srcobj->rx.ppeds_drop.bytes; \
2056 		_tgtobj->rx.intra_bss.pkts.num += \
2057 					_srcobj->rx.intra_bss.pkts.num; \
2058 		_tgtobj->rx.intra_bss.pkts.bytes += \
2059 					_srcobj->rx.intra_bss.pkts.bytes; \
2060 		_tgtobj->rx.intra_bss.fail.num += \
2061 					_srcobj->rx.intra_bss.fail.num; \
2062 		_tgtobj->rx.intra_bss.fail.bytes += \
2063 					_srcobj->rx.intra_bss.fail.bytes; \
2064 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
2065 					_srcobj->rx.intra_bss.mdns_no_fwd; \
2066 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
2067 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
2068 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
2069 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
2070 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
2071 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
2072 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
2073 					_srcobj->rx.err.rxdma_wifi_parse_err; \
2074 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
2075 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
2076 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
2077 		_tgtobj->rx.multipass_rx_pkt_drop += \
2078 					_srcobj->rx.multipass_rx_pkt_drop; \
2079 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
2080 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
2081 		_tgtobj->rx.policy_check_drop += \
2082 					_srcobj->rx.policy_check_drop; \
2083 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
2084 		_tgtobj->rx.to_stack_twt.bytes += \
2085 					_srcobj->rx.to_stack_twt.bytes; \
2086 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
2087 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
2088 			_tgtobj->rx.rcvd_reo[i].num += \
2089 					 _srcobj->rx.rcvd_reo[i].num; \
2090 			_tgtobj->rx.rcvd_reo[i].bytes += \
2091 					_srcobj->rx.rcvd_reo[i].bytes; \
2092 			_tgtobj->rx.rcvd.num += \
2093 					 _srcobj->rx.rcvd_reo[i].num; \
2094 			_tgtobj->rx.rcvd.bytes += \
2095 					_srcobj->rx.rcvd_reo[i].bytes; \
2096 		} \
2097 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
2098 			_tgtobj->rx.rx_lmac[i].num += \
2099 					_srcobj->rx.rx_lmac[i].num; \
2100 			_tgtobj->rx.rx_lmac[i].bytes += \
2101 					_srcobj->rx.rx_lmac[i].bytes; \
2102 		} \
2103 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
2104 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
2105 	} while (0)
2106 
2107 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
2108 	do { \
2109 		uint8_t i, pream_type, mu_type; \
2110 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
2111 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
2112 		_tgtobj->tx.retries += _srcobj->tx.retries; \
2113 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
2114 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
2115 		_tgtobj->tx.num_ppdu_cookie_valid += \
2116 					_srcobj->tx.num_ppdu_cookie_valid; \
2117 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
2118 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
2119 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
2120 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
2121 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
2122 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
2123 		_tgtobj->tx.mcast_last_tx_rate = \
2124 					_srcobj->tx.mcast_last_tx_rate; \
2125 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
2126 					_srcobj->tx.mcast_last_tx_rate_mcs; \
2127 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
2128 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
2129 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
2130 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
2131 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
2132 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
2133 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
2134 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
2135 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
2136 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
2137 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
2138 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
2139 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
2140 		_tgtobj->tx.mpdu_success_with_retries += \
2141 					_srcobj->tx.mpdu_success_with_retries; \
2142 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
2143 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
2144 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
2145 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
2146 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2147 			for (i = 0; i < MAX_MCS; i++) \
2148 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
2149 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
2150 		} \
2151 		for (i = 0; i < WME_AC_MAX; i++) { \
2152 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
2153 			_tgtobj->tx.wme_ac_type_bytes[i] += \
2154 					_srcobj->tx.wme_ac_type_bytes[i]; \
2155 			_tgtobj->tx.excess_retries_per_ac[i] += \
2156 					_srcobj->tx.excess_retries_per_ac[i]; \
2157 		} \
2158 		for (i = 0; i < MAX_GI; i++) { \
2159 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2160 		} \
2161 		for (i = 0; i < SS_COUNT; i++) { \
2162 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2163 		} \
2164 		for (i = 0; i < MAX_BW; i++) { \
2165 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2166 		} \
2167 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2168 			_tgtobj->tx.ru_loc[i].num_msdu += \
2169 					_srcobj->tx.ru_loc[i].num_msdu; \
2170 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2171 					_srcobj->tx.ru_loc[i].num_mpdu; \
2172 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2173 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2174 		} \
2175 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2176 			_tgtobj->tx.transmit_type[i].num_msdu += \
2177 					_srcobj->tx.transmit_type[i].num_msdu; \
2178 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2179 					_srcobj->tx.transmit_type[i].num_mpdu; \
2180 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2181 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2182 		} \
2183 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2184 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2185 		} \
2186 		_tgtobj->tx.tx_ucast_total.num += \
2187 				_srcobj->tx.tx_ucast_total.num;\
2188 		_tgtobj->tx.tx_ucast_total.bytes += \
2189 				 _srcobj->tx.tx_ucast_total.bytes;\
2190 		_tgtobj->tx.tx_ucast_success.num += \
2191 				_srcobj->tx.tx_ucast_success.num; \
2192 		_tgtobj->tx.tx_ucast_success.bytes += \
2193 				_srcobj->tx.tx_ucast_success.bytes; \
2194 		\
2195 		for (i = 0; i < CDP_RSSI_CHAIN_LEN; i++) \
2196 			_tgtobj->tx.rssi_chain[i] = _srcobj->tx.rssi_chain[i]; \
2197 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2198 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2199 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2200 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2201 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2202 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2203 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2204 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2205 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2206 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2207 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2208 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2209 		_tgtobj->rx.rx_snr_measured_time = \
2210 					_srcobj->rx.rx_snr_measured_time; \
2211 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2212 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2213 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2214 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2215 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2216 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2217 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2218 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2219 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2220 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2221 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2222 			for (i = 0; i < MAX_MCS; i++) { \
2223 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2224 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2225 			} \
2226 		} \
2227 		for (i = 0; i < WME_AC_MAX; i++) { \
2228 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2229 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2230 					_srcobj->rx.wme_ac_type_bytes[i]; \
2231 		} \
2232 		for (i = 0; i < MAX_MCS; i++) { \
2233 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2234 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2235 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2236 		} \
2237 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2238 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2239 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2240 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2241 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2242 			for (i = 0; i < SS_COUNT; i++) \
2243 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2244 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2245 			for (i = 0; i < MAX_MCS; i++) \
2246 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2247 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2248 		} \
2249 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2250 			_tgtobj->rx.reception_type[i] += \
2251 					_srcobj->rx.reception_type[i]; \
2252 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2253 		} \
2254 		for (i = 0; i < MAX_GI; i++) { \
2255 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2256 		} \
2257 		for (i = 0; i < SS_COUNT; i++) { \
2258 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2259 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2260 		} \
2261 		for (i = 0; i < MAX_BW; i++) { \
2262 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2263 		} \
2264 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2265 	} while (0)
2266 
2267 #define DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj) \
2268 	do { \
2269 		DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj); \
2270 		DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj); \
2271 		DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj); \
2272 	} while (0)
2273 
2274 #define DP_UPDATE_RX_INGRESS_STATS(_tgtobj, _srcobj) \
2275 	do { \
2276 		_tgtobj->rx_i.reo_rcvd_pkt.num += \
2277 					_srcobj->rx_i.reo_rcvd_pkt.num; \
2278 		_tgtobj->rx_i.reo_rcvd_pkt.bytes += \
2279 					_srcobj->rx_i.reo_rcvd_pkt.bytes; \
2280 		_tgtobj->rx_i.null_q_desc_pkt.num += \
2281 					_srcobj->rx_i.null_q_desc_pkt.num; \
2282 		_tgtobj->rx_i.null_q_desc_pkt.bytes += \
2283 					_srcobj->rx_i.null_q_desc_pkt.bytes; \
2284 		_tgtobj->rx_i.routed_eapol_pkt.num += \
2285 					_srcobj->rx_i.routed_eapol_pkt.num; \
2286 		_tgtobj->rx_i.routed_eapol_pkt.bytes += \
2287 					_srcobj->rx_i.routed_eapol_pkt.bytes; \
2288 	} while (0)
2289 
2290 #define DP_UPDATE_LINK_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type) \
2291 	do { \
2292 		uint8_t i = 0; \
2293 		uint8_t idx = 0; \
2294 		enum dp_pkt_xmit_type temp_xmit_type = _xmit_type; \
2295 		if (temp_xmit_type == DP_XMIT_MLD) { \
2296 			idx = DP_VDEV_XMIT_TYPE; \
2297 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2298 		} else if (temp_xmit_type == DP_XMIT_TOTAL) { \
2299 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2300 		} \
2301 		for (; idx <= temp_xmit_type; idx++) { \
2302 			_tgtobj->tx_i.rcvd.num += _srcobj->tx_i[idx].rcvd.num; \
2303 			_tgtobj->tx_i.rcvd.bytes += \
2304 				_srcobj->tx_i[idx].rcvd.bytes; \
2305 			_tgtobj->tx_i.rcvd_in_fast_xmit_flow += \
2306 				_srcobj->tx_i[idx].rcvd_in_fast_xmit_flow; \
2307 			for (i = 0; i < CDP_MAX_TX_DATA_RINGS; i++) { \
2308 				_tgtobj->tx_i.rcvd_per_core[i] += \
2309 				_srcobj->tx_i[idx].rcvd_per_core[i]; \
2310 			} \
2311 			_tgtobj->tx_i.processed.num += \
2312 				_srcobj->tx_i[idx].processed.num; \
2313 			_tgtobj->tx_i.processed.bytes += \
2314 				_srcobj->tx_i[idx].processed.bytes; \
2315 			_tgtobj->tx_i.reinject_pkts.num += \
2316 				_srcobj->tx_i[idx].reinject_pkts.num; \
2317 			_tgtobj->tx_i.reinject_pkts.bytes += \
2318 				_srcobj->tx_i[idx].reinject_pkts.bytes; \
2319 			_tgtobj->tx_i.inspect_pkts.num += \
2320 				_srcobj->tx_i[idx].inspect_pkts.num; \
2321 			_tgtobj->tx_i.inspect_pkts.bytes += \
2322 				_srcobj->tx_i[idx].inspect_pkts.bytes; \
2323 			_tgtobj->tx_i.nawds_mcast.num += \
2324 				_srcobj->tx_i[idx].nawds_mcast.num; \
2325 			_tgtobj->tx_i.nawds_mcast.bytes += \
2326 				_srcobj->tx_i[idx].nawds_mcast.bytes; \
2327 			_tgtobj->tx_i.bcast.num += \
2328 				_srcobj->tx_i[idx].bcast.num; \
2329 			_tgtobj->tx_i.bcast.bytes += \
2330 				_srcobj->tx_i[idx].bcast.bytes; \
2331 			_tgtobj->tx_i.raw.raw_pkt.num += \
2332 				_srcobj->tx_i[idx].raw.raw_pkt.num; \
2333 			_tgtobj->tx_i.raw.raw_pkt.bytes += \
2334 				_srcobj->tx_i[idx].raw.raw_pkt.bytes; \
2335 			_tgtobj->tx_i.raw.dma_map_error += \
2336 				_srcobj->tx_i[idx].raw.dma_map_error; \
2337 			_tgtobj->tx_i.raw.invalid_raw_pkt_datatype += \
2338 			     _srcobj->tx_i[idx].raw.invalid_raw_pkt_datatype; \
2339 			_tgtobj->tx_i.raw.num_frags_overflow_err += \
2340 				_srcobj->tx_i[idx].raw.num_frags_overflow_err; \
2341 			_tgtobj->tx_i.sg.sg_pkt.num += \
2342 				_srcobj->tx_i[idx].sg.sg_pkt.num; \
2343 			_tgtobj->tx_i.sg.sg_pkt.bytes += \
2344 				_srcobj->tx_i[idx].sg.sg_pkt.bytes; \
2345 			_tgtobj->tx_i.sg.non_sg_pkts.num += \
2346 				_srcobj->tx_i[idx].sg.non_sg_pkts.num; \
2347 			_tgtobj->tx_i.sg.non_sg_pkts.bytes += \
2348 				_srcobj->tx_i[idx].sg.non_sg_pkts.bytes; \
2349 			_tgtobj->tx_i.sg.dropped_host.num += \
2350 				_srcobj->tx_i[idx].sg.dropped_host.num; \
2351 			_tgtobj->tx_i.sg.dropped_host.bytes += \
2352 				_srcobj->tx_i[idx].sg.dropped_host.bytes; \
2353 			_tgtobj->tx_i.sg.dropped_target += \
2354 				_srcobj->tx_i[idx].sg.dropped_target; \
2355 			_tgtobj->tx_i.sg.dma_map_error += \
2356 				_srcobj->tx_i[idx].sg.dma_map_error; \
2357 			_tgtobj->tx_i.mcast_en.mcast_pkt.num += \
2358 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.num; \
2359 			_tgtobj->tx_i.mcast_en.mcast_pkt.bytes += \
2360 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.bytes; \
2361 			_tgtobj->tx_i.mcast_en.dropped_map_error += \
2362 				_srcobj->tx_i[idx].mcast_en.dropped_map_error; \
2363 			_tgtobj->tx_i.mcast_en.dropped_self_mac += \
2364 				_srcobj->tx_i[idx].mcast_en.dropped_self_mac; \
2365 			_tgtobj->tx_i.mcast_en.dropped_send_fail += \
2366 				_srcobj->tx_i[idx].mcast_en.dropped_send_fail; \
2367 			_tgtobj->tx_i.mcast_en.ucast += \
2368 				_srcobj->tx_i[idx].mcast_en.ucast; \
2369 			_tgtobj->tx_i.mcast_en.fail_seg_alloc += \
2370 				_srcobj->tx_i[idx].mcast_en.fail_seg_alloc; \
2371 			_tgtobj->tx_i.mcast_en.clone_fail += \
2372 				_srcobj->tx_i[idx].mcast_en.clone_fail; \
2373 			_tgtobj->tx_i.igmp_mcast_en.igmp_rcvd += \
2374 				_srcobj->tx_i[idx].igmp_mcast_en.igmp_rcvd; \
2375 			_tgtobj->tx_i.igmp_mcast_en.igmp_ucast_converted += \
2376 			    _srcobj->tx_i[idx].igmp_mcast_en.igmp_ucast_converted; \
2377 			_tgtobj->tx_i.dropped.desc_na.num += \
2378 				_srcobj->tx_i[idx].dropped.desc_na.num; \
2379 			_tgtobj->tx_i.dropped.desc_na.bytes += \
2380 				_srcobj->tx_i[idx].dropped.desc_na.bytes; \
2381 			_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.num += \
2382 			_srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.num; \
2383 			_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes += \
2384 			    _srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.bytes; \
2385 			_tgtobj->tx_i.dropped.desc_na_exc_outstand.num += \
2386 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.num; \
2387 			_tgtobj->tx_i.dropped.desc_na_exc_outstand.bytes += \
2388 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.bytes; \
2389 			_tgtobj->tx_i.dropped.exc_desc_na.num += \
2390 				_srcobj->tx_i[idx].dropped.exc_desc_na.num; \
2391 			_tgtobj->tx_i.dropped.exc_desc_na.bytes += \
2392 				_srcobj->tx_i[idx].dropped.exc_desc_na.bytes; \
2393 			_tgtobj->tx_i.dropped.ring_full += \
2394 				_srcobj->tx_i[idx].dropped.ring_full; \
2395 			_tgtobj->tx_i.dropped.enqueue_fail += \
2396 				_srcobj->tx_i[idx].dropped.enqueue_fail; \
2397 			_tgtobj->tx_i.dropped.dma_error += \
2398 				_srcobj->tx_i[idx].dropped.dma_error; \
2399 			_tgtobj->tx_i.dropped.res_full += \
2400 				_srcobj->tx_i[idx].dropped.res_full; \
2401 			_tgtobj->tx_i.dropped.headroom_insufficient += \
2402 			    _srcobj->tx_i[idx].dropped.headroom_insufficient; \
2403 			_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check += \
2404 			    _srcobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check; \
2405 			_tgtobj->tx_i.dropped.drop_ingress += \
2406 				_srcobj->tx_i[idx].dropped.drop_ingress; \
2407 			_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path += \
2408 				_srcobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path; \
2409 			_tgtobj->tx_i.dropped.tx_mcast_drop += \
2410 				_srcobj->tx_i[idx].dropped.tx_mcast_drop; \
2411 			_tgtobj->tx_i.dropped.fw2wbm_tx_drop += \
2412 				_srcobj->tx_i[idx].dropped.fw2wbm_tx_drop; \
2413 			_tgtobj->tx_i.dropped.dropped_pkt.bytes += \
2414 				_srcobj->tx_i[idx].dropped.dropped_pkt.bytes; \
2415 			_tgtobj->tx_i.mesh.exception_fw += \
2416 					_srcobj->tx_i[idx].mesh.exception_fw; \
2417 			_tgtobj->tx_i.mesh.completion_fw += \
2418 				_srcobj->tx_i[idx].mesh.completion_fw; \
2419 			_tgtobj->tx_i.cce_classified += \
2420 				_srcobj->tx_i[idx].cce_classified; \
2421 			_tgtobj->tx_i.cce_classified_raw += \
2422 				_srcobj->tx_i[idx].cce_classified_raw; \
2423 			_tgtobj->tx_i.sniffer_rcvd.num += \
2424 				_srcobj->tx_i[idx].sniffer_rcvd.num; \
2425 			_tgtobj->tx_i.sniffer_rcvd.bytes += \
2426 				_srcobj->tx_i[idx].sniffer_rcvd.bytes; \
2427 		} \
2428 		_tgtobj->tx_i.dropped.dropped_pkt.num = \
2429 			_tgtobj->tx_i.dropped.dma_error + \
2430 			_tgtobj->tx_i.dropped.ring_full + \
2431 			_tgtobj->tx_i.dropped.enqueue_fail + \
2432 			_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check + \
2433 			_tgtobj->tx_i.dropped.desc_na.num + \
2434 			_tgtobj->tx_i.dropped.res_full + \
2435 			_tgtobj->tx_i.dropped.drop_ingress + \
2436 			_tgtobj->tx_i.dropped.headroom_insufficient + \
2437 			_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path + \
2438 			_tgtobj->tx_i.dropped.tx_mcast_drop + \
2439 			_tgtobj->tx_i.dropped.fw2wbm_tx_drop; \
2440 		DP_UPDATE_RX_INGRESS_STATS(_tgtobj, _srcobj); \
2441 	} while (0)
2442 
2443 #define DP_UPDATE_MLD_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type) \
2444 	do { \
2445 		uint8_t i = 0; \
2446 		uint8_t idx = 0; \
2447 		enum dp_pkt_xmit_type temp_xmit_type = _xmit_type; \
2448 		if (temp_xmit_type == DP_XMIT_MLD) { \
2449 			idx = DP_VDEV_XMIT_TYPE; \
2450 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2451 		} else if (temp_xmit_type == DP_XMIT_TOTAL) { \
2452 			temp_xmit_type = DP_VDEV_XMIT_TYPE; \
2453 		} \
2454 		for (; idx <= temp_xmit_type; idx++) { \
2455 			_tgtobj->tx_i[idx].rcvd.num += _srcobj->tx_i[idx].rcvd.num; \
2456 			_tgtobj->tx_i[idx].rcvd.bytes += \
2457 				_srcobj->tx_i[idx].rcvd.bytes; \
2458 			_tgtobj->tx_i[idx].rcvd_in_fast_xmit_flow += \
2459 				_srcobj->tx_i[idx].rcvd_in_fast_xmit_flow; \
2460 			for (i = 0; i < CDP_MAX_TX_DATA_RINGS; i++) { \
2461 				_tgtobj->tx_i[idx].rcvd_per_core[i] += \
2462 				_srcobj->tx_i[idx].rcvd_per_core[i]; \
2463 			} \
2464 			_tgtobj->tx_i[idx].processed.num += \
2465 				_srcobj->tx_i[idx].processed.num; \
2466 			_tgtobj->tx_i[idx].processed.bytes += \
2467 				_srcobj->tx_i[idx].processed.bytes; \
2468 			_tgtobj->tx_i[idx].reinject_pkts.num += \
2469 				_srcobj->tx_i[idx].reinject_pkts.num; \
2470 			_tgtobj->tx_i[idx].reinject_pkts.bytes += \
2471 				_srcobj->tx_i[idx].reinject_pkts.bytes; \
2472 			_tgtobj->tx_i[idx].inspect_pkts.num += \
2473 				_srcobj->tx_i[idx].inspect_pkts.num; \
2474 			_tgtobj->tx_i[idx].inspect_pkts.bytes += \
2475 				_srcobj->tx_i[idx].inspect_pkts.bytes; \
2476 			_tgtobj->tx_i[idx].nawds_mcast.num += \
2477 				_srcobj->tx_i[idx].nawds_mcast.num; \
2478 			_tgtobj->tx_i[idx].nawds_mcast.bytes += \
2479 				_srcobj->tx_i[idx].nawds_mcast.bytes; \
2480 			_tgtobj->tx_i[idx].bcast.num += \
2481 				_srcobj->tx_i[idx].bcast.num; \
2482 			_tgtobj->tx_i[idx].bcast.bytes += \
2483 				_srcobj->tx_i[idx].bcast.bytes; \
2484 			_tgtobj->tx_i[idx].raw.raw_pkt.num += \
2485 				_srcobj->tx_i[idx].raw.raw_pkt.num; \
2486 			_tgtobj->tx_i[idx].raw.raw_pkt.bytes += \
2487 				_srcobj->tx_i[idx].raw.raw_pkt.bytes; \
2488 			_tgtobj->tx_i[idx].raw.dma_map_error += \
2489 				_srcobj->tx_i[idx].raw.dma_map_error; \
2490 			_tgtobj->tx_i[idx].raw.invalid_raw_pkt_datatype += \
2491 			     _srcobj->tx_i[idx].raw.invalid_raw_pkt_datatype; \
2492 			_tgtobj->tx_i[idx].raw.num_frags_overflow_err += \
2493 				_srcobj->tx_i[idx].raw.num_frags_overflow_err; \
2494 			_tgtobj->tx_i[idx].sg.sg_pkt.num += \
2495 				_srcobj->tx_i[idx].sg.sg_pkt.num; \
2496 			_tgtobj->tx_i[idx].sg.sg_pkt.bytes += \
2497 				_srcobj->tx_i[idx].sg.sg_pkt.bytes; \
2498 			_tgtobj->tx_i[idx].sg.non_sg_pkts.num += \
2499 				_srcobj->tx_i[idx].sg.non_sg_pkts.num; \
2500 			_tgtobj->tx_i[idx].sg.non_sg_pkts.bytes += \
2501 				_srcobj->tx_i[idx].sg.non_sg_pkts.bytes; \
2502 			_tgtobj->tx_i[idx].sg.dropped_host.num += \
2503 				_srcobj->tx_i[idx].sg.dropped_host.num; \
2504 			_tgtobj->tx_i[idx].sg.dropped_host.bytes += \
2505 				_srcobj->tx_i[idx].sg.dropped_host.bytes; \
2506 			_tgtobj->tx_i[idx].sg.dropped_target += \
2507 				_srcobj->tx_i[idx].sg.dropped_target; \
2508 			_tgtobj->tx_i[idx].sg.dma_map_error += \
2509 				_srcobj->tx_i[idx].sg.dma_map_error; \
2510 			_tgtobj->tx_i[idx].mcast_en.mcast_pkt.num += \
2511 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.num; \
2512 			_tgtobj->tx_i[idx].mcast_en.mcast_pkt.bytes += \
2513 				_srcobj->tx_i[idx].mcast_en.mcast_pkt.bytes; \
2514 			_tgtobj->tx_i[idx].mcast_en.dropped_map_error += \
2515 				_srcobj->tx_i[idx].mcast_en.dropped_map_error; \
2516 			_tgtobj->tx_i[idx].mcast_en.dropped_self_mac += \
2517 				_srcobj->tx_i[idx].mcast_en.dropped_self_mac; \
2518 			_tgtobj->tx_i[idx].mcast_en.dropped_send_fail += \
2519 				_srcobj->tx_i[idx].mcast_en.dropped_send_fail; \
2520 			_tgtobj->tx_i[idx].mcast_en.ucast += \
2521 				_srcobj->tx_i[idx].mcast_en.ucast; \
2522 			_tgtobj->tx_i[idx].mcast_en.fail_seg_alloc += \
2523 				_srcobj->tx_i[idx].mcast_en.fail_seg_alloc; \
2524 			_tgtobj->tx_i[idx].mcast_en.clone_fail += \
2525 				_srcobj->tx_i[idx].mcast_en.clone_fail; \
2526 			_tgtobj->tx_i[idx].igmp_mcast_en.igmp_rcvd += \
2527 				_srcobj->tx_i[idx].igmp_mcast_en.igmp_rcvd; \
2528 			_tgtobj->tx_i[idx].igmp_mcast_en.igmp_ucast_converted += \
2529 			    _srcobj->tx_i[idx].igmp_mcast_en.igmp_ucast_converted; \
2530 			_tgtobj->tx_i[idx].dropped.desc_na.num += \
2531 				_srcobj->tx_i[idx].dropped.desc_na.num; \
2532 			_tgtobj->tx_i[idx].dropped.desc_na.bytes += \
2533 				_srcobj->tx_i[idx].dropped.desc_na.bytes; \
2534 			_tgtobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.num += \
2535 			_srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.num; \
2536 			_tgtobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.bytes += \
2537 			    _srcobj->tx_i[idx].dropped.desc_na_exc_alloc_fail.bytes; \
2538 			_tgtobj->tx_i[idx].dropped.desc_na_exc_outstand.num += \
2539 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.num; \
2540 			_tgtobj->tx_i[idx].dropped.desc_na_exc_outstand.bytes += \
2541 				_srcobj->tx_i[idx].dropped.desc_na_exc_outstand.bytes; \
2542 			_tgtobj->tx_i[idx].dropped.exc_desc_na.num += \
2543 				_srcobj->tx_i[idx].dropped.exc_desc_na.num; \
2544 			_tgtobj->tx_i[idx].dropped.exc_desc_na.bytes += \
2545 				_srcobj->tx_i[idx].dropped.exc_desc_na.bytes; \
2546 			_tgtobj->tx_i[idx].dropped.ring_full += \
2547 				_srcobj->tx_i[idx].dropped.ring_full; \
2548 			_tgtobj->tx_i[idx].dropped.enqueue_fail += \
2549 				_srcobj->tx_i[idx].dropped.enqueue_fail; \
2550 			_tgtobj->tx_i[idx].dropped.dma_error += \
2551 				_srcobj->tx_i[idx].dropped.dma_error; \
2552 			_tgtobj->tx_i[idx].dropped.res_full += \
2553 				_srcobj->tx_i[idx].dropped.res_full; \
2554 			_tgtobj->tx_i[idx].dropped.headroom_insufficient += \
2555 			    _srcobj->tx_i[idx].dropped.headroom_insufficient; \
2556 			_tgtobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check += \
2557 			    _srcobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check; \
2558 			_tgtobj->tx_i[idx].dropped.drop_ingress += \
2559 				_srcobj->tx_i[idx].dropped.drop_ingress; \
2560 			_tgtobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path += \
2561 				_srcobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path; \
2562 			_tgtobj->tx_i[idx].dropped.tx_mcast_drop += \
2563 				_srcobj->tx_i[idx].dropped.tx_mcast_drop; \
2564 			_tgtobj->tx_i[idx].dropped.fw2wbm_tx_drop += \
2565 				_srcobj->tx_i[idx].dropped.fw2wbm_tx_drop; \
2566 			_tgtobj->tx_i[idx].dropped.dropped_pkt.bytes += \
2567 				_srcobj->tx_i[idx].dropped.dropped_pkt.bytes; \
2568 			_tgtobj->tx_i[idx].mesh.exception_fw += \
2569 					_srcobj->tx_i[idx].mesh.exception_fw; \
2570 			_tgtobj->tx_i[idx].mesh.completion_fw += \
2571 				_srcobj->tx_i[idx].mesh.completion_fw; \
2572 			_tgtobj->tx_i[idx].cce_classified += \
2573 				_srcobj->tx_i[idx].cce_classified; \
2574 			_tgtobj->tx_i[idx].cce_classified_raw += \
2575 				_srcobj->tx_i[idx].cce_classified_raw; \
2576 			_tgtobj->tx_i[idx].sniffer_rcvd.num += \
2577 				_srcobj->tx_i[idx].sniffer_rcvd.num; \
2578 			_tgtobj->tx_i[idx].sniffer_rcvd.bytes += \
2579 				_srcobj->tx_i[idx].sniffer_rcvd.bytes; \
2580 			_tgtobj->tx_i[idx].dropped.dropped_pkt.num = \
2581 				_tgtobj->tx_i[idx].dropped.dma_error + \
2582 				_tgtobj->tx_i[idx].dropped.ring_full + \
2583 				_tgtobj->tx_i[idx].dropped.enqueue_fail + \
2584 				_tgtobj->tx_i[idx].dropped.fail_per_pkt_vdev_id_check + \
2585 				_tgtobj->tx_i[idx].dropped.desc_na.num + \
2586 				_tgtobj->tx_i[idx].dropped.res_full + \
2587 				_tgtobj->tx_i[idx].dropped.drop_ingress + \
2588 				_tgtobj->tx_i[idx].dropped.headroom_insufficient + \
2589 				_tgtobj->tx_i[idx].dropped.invalid_peer_id_in_exc_path + \
2590 				_tgtobj->tx_i[idx].dropped.tx_mcast_drop + \
2591 				_tgtobj->tx_i[idx].dropped.fw2wbm_tx_drop; \
2592 		} \
2593 		DP_UPDATE_RX_INGRESS_STATS(_tgtobj, _srcobj); \
2594 	} while (0)
2595 
2596 #define DP_UPDATE_TO_MLD_VDEV_STATS(_tgtobj, _srcobj, _xmit_type) \
2597 	do { \
2598 		DP_UPDATE_MLD_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type); \
2599 		DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj); \
2600 	} while (0)
2601 
2602 #define DP_UPDATE_TO_LINK_VDEV_STATS(_tgtobj, _srcobj, _xmit_type) \
2603 	do { \
2604 		DP_UPDATE_LINK_VDEV_INGRESS_STATS(_tgtobj, _srcobj, _xmit_type); \
2605 		DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj); \
2606 	} while (0)
2607 /**
2608  * dp_peer_find_attach() - Allocates memory for peer objects
2609  * @soc: SoC handle
2610  *
2611  * Return: QDF_STATUS
2612  */
2613 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2614 
2615 /**
2616  * dp_peer_find_detach() - Frees memory for peer objects
2617  * @soc: SoC handle
2618  *
2619  * Return: none
2620  */
2621 void dp_peer_find_detach(struct dp_soc *soc);
2622 
2623 /**
2624  * dp_peer_find_hash_add() - add peer to peer_hash_table
2625  * @soc: soc handle
2626  * @peer: peer handle
2627  *
2628  * Return: none
2629  */
2630 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2631 
2632 /**
2633  * dp_peer_find_hash_remove() - remove peer from peer_hash_table
2634  * @soc: soc handle
2635  * @peer: peer handle
2636  *
2637  * Return: none
2638  */
2639 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2640 
2641 /* unused?? */
2642 void dp_peer_find_hash_erase(struct dp_soc *soc);
2643 
2644 /**
2645  * dp_peer_vdev_list_add() - add peer into vdev's peer list
2646  * @soc: soc handle
2647  * @vdev: vdev handle
2648  * @peer: peer handle
2649  *
2650  * Return: none
2651  */
2652 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2653 			   struct dp_peer *peer);
2654 
2655 /**
2656  * dp_peer_vdev_list_remove() - remove peer from vdev's peer list
2657  * @soc: SoC handle
2658  * @vdev: VDEV handle
2659  * @peer: peer handle
2660  *
2661  * Return: none
2662  */
2663 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2664 			      struct dp_peer *peer);
2665 
2666 /**
2667  * dp_peer_find_id_to_obj_add() - Add peer into peer_id table
2668  * @soc: SoC handle
2669  * @peer: peer handle
2670  * @peer_id: peer_id
2671  *
2672  * Return: None
2673  */
2674 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2675 				struct dp_peer *peer,
2676 				uint16_t peer_id);
2677 
2678 /**
2679  * dp_txrx_peer_attach_add() - Attach txrx_peer and add it to peer_id table
2680  * @soc: SoC handle
2681  * @peer: peer handle
2682  * @txrx_peer: txrx peer handle
2683  *
2684  * Return: None
2685  */
2686 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2687 			     struct dp_peer *peer,
2688 			     struct dp_txrx_peer *txrx_peer);
2689 
2690 /**
2691  * dp_peer_find_id_to_obj_remove() - remove peer from peer_id table
2692  * @soc: SoC handle
2693  * @peer_id: peer_id
2694  *
2695  * Return: None
2696  */
2697 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2698 				   uint16_t peer_id);
2699 
2700 /**
2701  * dp_vdev_unref_delete() - check and process vdev delete
2702  * @soc: DP specific soc pointer
2703  * @vdev: DP specific vdev pointer
2704  * @mod_id: module id
2705  *
2706  */
2707 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2708 			  enum dp_mod_id mod_id);
2709 
2710 /**
2711  * dp_peer_ppdu_delayed_ba_cleanup() - free ppdu allocated in peer
2712  * @peer: Datapath peer
2713  *
2714  * Return: void
2715  */
2716 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2717 
2718 /**
2719  * dp_peer_rx_init() - Initialize receive TID state
2720  * @pdev: Datapath pdev
2721  * @peer: Datapath peer
2722  *
2723  */
2724 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2725 
2726 /**
2727  * dp_peer_rx_init_wrapper() - Initialize receive TID state, based on peer type
2728  * @pdev: Datapath pdev
2729  * @peer: Datapath peer
2730  * @setup_info: setup info received for setting up the peer
2731  *
2732  * Return: None
2733  */
2734 void dp_peer_rx_init_wrapper(struct dp_pdev *pdev, struct dp_peer *peer,
2735 			     struct cdp_peer_setup_info *setup_info);
2736 
2737 /**
2738  * dp_peer_cleanup() - Cleanup peer information
2739  * @vdev: Datapath vdev
2740  * @peer: Datapath peer
2741  *
2742  */
2743 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2744 
2745 #ifdef DP_PEER_EXTENDED_API
2746 /**
2747  * dp_register_peer() - Register peer into physical device
2748  * @soc_hdl: data path soc handle
2749  * @pdev_id: device instance id
2750  * @sta_desc: peer description
2751  *
2752  * Register peer into physical device
2753  *
2754  * Return: QDF_STATUS_SUCCESS registration success
2755  *         QDF_STATUS_E_FAULT peer not found
2756  */
2757 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2758 			    struct ol_txrx_desc_type *sta_desc);
2759 
2760 /**
2761  * dp_clear_peer() - remove peer from physical device
2762  * @soc_hdl: data path soc handle
2763  * @pdev_id: device instance id
2764  * @peer_addr: peer mac address
2765  *
2766  * remove peer from physical device
2767  *
2768  * Return: QDF_STATUS_SUCCESS registration success
2769  *         QDF_STATUS_E_FAULT peer not found
2770  */
2771 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2772 			 struct qdf_mac_addr peer_addr);
2773 
2774 /**
2775  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2776  * @soc_hdl: datapath soc handle
2777  * @vdev_id: vdev instance id
2778  * @peer_addr: peer mac address
2779  *
2780  * Return: true or false
2781  */
2782 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2783 				uint8_t *peer_addr);
2784 
2785 /**
2786  * dp_find_peer_exist_on_other_vdev - find if peer exists
2787  * on other than the given vdev
2788  * @soc_hdl: datapath soc handle
2789  * @vdev_id: vdev instance id
2790  * @peer_addr: peer mac address
2791  * @max_bssid: max number of bssids
2792  *
2793  * Return: true or false
2794  */
2795 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2796 				      uint8_t vdev_id, uint8_t *peer_addr,
2797 				      uint16_t max_bssid);
2798 
2799 /**
2800  * dp_peer_state_update() - update peer local state
2801  * @soc: datapath soc handle
2802  * @peer_mac: peer mac address
2803  * @state: new peer local state
2804  *
2805  * update peer local state
2806  *
2807  * Return: QDF_STATUS_SUCCESS registration success
2808  */
2809 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2810 				enum ol_txrx_peer_state state);
2811 
2812 /**
2813  * dp_get_vdevid() - Get virtual interface id which peer registered
2814  * @soc_hdl: datapath soc handle
2815  * @peer_mac: peer mac address
2816  * @vdev_id: virtual interface id which peer registered
2817  *
2818  * Get virtual interface id which peer registered
2819  *
2820  * Return: QDF_STATUS_SUCCESS registration success
2821  */
2822 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2823 			 uint8_t *vdev_id);
2824 
2825 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2826 		struct qdf_mac_addr peer_addr);
2827 
2828 /**
2829  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2830  * @peer: peer instance
2831  *
2832  * Get virtual interface instance which peer belongs
2833  *
2834  * Return: virtual interface instance pointer
2835  *         NULL in case cannot find
2836  */
2837 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2838 
2839 /**
2840  * dp_peer_get_peer_mac_addr() - Get peer mac address
2841  * @peer: peer instance
2842  *
2843  * Get peer mac address
2844  *
2845  * Return: peer mac address pointer
2846  *         NULL in case cannot find
2847  */
2848 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2849 
2850 /**
2851  * dp_get_peer_state() - Get local peer state
2852  * @soc: datapath soc handle
2853  * @vdev_id: vdev id
2854  * @peer_mac: peer mac addr
2855  * @slowpath: call from slowpath or not
2856  *
2857  * Get local peer state
2858  *
2859  * Return: peer status
2860  */
2861 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2862 		      uint8_t *peer_mac, bool slowpath);
2863 
2864 /**
2865  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2866  * @pdev: data path device instance
2867  *
2868  * local peer id pool alloc for physical device
2869  *
2870  * Return: none
2871  */
2872 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2873 
2874 /**
2875  * dp_local_peer_id_alloc() - allocate local peer id
2876  * @pdev: data path device instance
2877  * @peer: new peer instance
2878  *
2879  * allocate local peer id
2880  *
2881  * Return: none
2882  */
2883 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2884 
2885 /**
2886  * dp_local_peer_id_free() - remove local peer id
2887  * @pdev: data path device instance
2888  * @peer: peer instance should be removed
2889  *
2890  * remove local peer id
2891  *
2892  * Return: none
2893  */
2894 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2895 
2896 /**
2897  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2898  * @soc_hdl: datapath soc handle
2899  * @vdev_id: vdev_id
2900  * @peer_mac: peer mac addr
2901  * @val: tdls peer flag
2902  *
2903  * Return: none
2904  */
2905 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2906 			      uint8_t *peer_mac, bool val);
2907 #else
2908 static inline
2909 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2910 			 uint8_t *vdev_id)
2911 {
2912 	return QDF_STATUS_E_NOSUPPORT;
2913 }
2914 
2915 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2916 {
2917 }
2918 
2919 static inline
2920 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2921 {
2922 }
2923 
2924 static inline
2925 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2926 {
2927 }
2928 
2929 static inline
2930 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2931 			      uint8_t *peer_mac, bool val)
2932 {
2933 }
2934 #endif
2935 
2936 /**
2937  * dp_find_peer_exist - find peer if already exists
2938  * @soc_hdl: datapath soc handle
2939  * @pdev_id: physical device instance id
2940  * @peer_addr: peer mac address
2941  *
2942  * Return: true or false
2943  */
2944 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2945 			uint8_t *peer_addr);
2946 
2947 #ifdef DP_UMAC_HW_RESET_SUPPORT
2948 /**
2949  * dp_pause_reo_send_cmd() - Pause Reo send commands.
2950  * @soc: dp soc
2951  *
2952  * Return: none
2953  */
2954 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2955 
2956 /**
2957  * dp_resume_reo_send_cmd() - Resume Reo send commands.
2958  * @soc: dp soc
2959  *
2960  * Return: none
2961  */
2962 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2963 
2964 /**
2965  * dp_cleanup_reo_cmd_module - Clean up the reo cmd module
2966  * @soc: DP SoC handle
2967  *
2968  * Return: none
2969  */
2970 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2971 
2972 /**
2973  * dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
2974  * @soc: DP SOC handle
2975  *
2976  * Return: none
2977  */
2978 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2979 
2980 /**
2981  * dp_reset_rx_reo_tid_queue() - Reset the reo tid queues
2982  * @soc: dp soc
2983  * @hw_qdesc_vaddr: starting address of the tid queues
2984  * @size: size of the memory pointed to by hw_qdesc_vaddr
2985  *
2986  * Return: none
2987  */
2988 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2989 			       uint32_t size);
2990 
2991 
2992 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
2993 {
2994 	notify_pre_reset_fw_callback callback = soc->notify_fw_callback;
2995 
2996 	if (callback)
2997 		callback(soc);
2998 }
2999 
3000 /**
3001  * dp_reset_global_tx_desc_cleanup_flag() - Reset cleanup needed flag
3002  * @soc: dp soc handle
3003  *
3004  * Return: None
3005  */
3006 void dp_reset_global_tx_desc_cleanup_flag(struct dp_soc *soc);
3007 
3008 /**
3009  * dp_get_global_tx_desc_cleanup_flag() - Get cleanup needed flag
3010  * @soc: dp soc handle
3011  *
3012  * Return: cleanup needed/ not needed
3013  */
3014 bool dp_get_global_tx_desc_cleanup_flag(struct dp_soc *soc);
3015 
3016 
3017 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
3018 /**
3019  * dp_umac_reset_complete_umac_recovery() - Complete Umac reset session
3020  * @soc: dp soc handle
3021  *
3022  * Return: void
3023  */
3024 void dp_umac_reset_complete_umac_recovery(struct dp_soc *soc);
3025 
3026 /**
3027  * dp_umac_reset_initiate_umac_recovery() - Initiate Umac reset session
3028  * @soc: dp soc handle
3029  * @umac_reset_ctx: Umac reset context
3030  * @rx_event: Rx event received
3031  * @is_target_recovery: Flag to indicate if it is triggered for target recovery
3032  *
3033  * Return: status
3034  */
3035 QDF_STATUS dp_umac_reset_initiate_umac_recovery(struct dp_soc *soc,
3036 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
3037 				enum umac_reset_rx_event rx_event,
3038 				bool is_target_recovery);
3039 
3040 /**
3041  * dp_umac_reset_handle_action_cb() - Function to call action callback
3042  * @soc: dp soc handle
3043  * @umac_reset_ctx: Umac reset context
3044  * @action: Action to call the callback for
3045  *
3046  * Return: QDF_STATUS status
3047  */
3048 QDF_STATUS dp_umac_reset_handle_action_cb(struct dp_soc *soc,
3049 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
3050 				enum umac_reset_action action);
3051 
3052 /**
3053  * dp_umac_reset_post_tx_cmd() - Iterate partner socs and post Tx command
3054  * @umac_reset_ctx: UMAC reset context
3055  * @tx_cmd: Tx command to be posted
3056  *
3057  * Return: QDF status of operation
3058  */
3059 QDF_STATUS
3060 dp_umac_reset_post_tx_cmd(struct dp_soc_umac_reset_ctx *umac_reset_ctx,
3061 			  enum umac_reset_tx_cmd tx_cmd);
3062 
3063 /**
3064  * dp_umac_reset_initiator_check() - Check if soc is the Umac reset initiator
3065  * @soc: dp soc handle
3066  *
3067  * Return: true if the soc is initiator or false otherwise
3068  */
3069 bool dp_umac_reset_initiator_check(struct dp_soc *soc);
3070 
3071 /**
3072  * dp_umac_reset_target_recovery_check() - Check if this is for target recovery
3073  * @soc: dp soc handle
3074  *
3075  * Return: true if the session is for target recovery or false otherwise
3076  */
3077 bool dp_umac_reset_target_recovery_check(struct dp_soc *soc);
3078 
3079 /**
3080  * dp_umac_reset_is_soc_ignored() - Check if this soc is to be ignored
3081  * @soc: dp soc handle
3082  *
3083  * Return: true if the soc is ignored or false otherwise
3084  */
3085 bool dp_umac_reset_is_soc_ignored(struct dp_soc *soc);
3086 
3087 /**
3088  * dp_mlo_umac_reset_stats_print() - API to print MLO umac reset stats
3089  * @soc: dp soc handle
3090  *
3091  * Return: QDF_STATUS
3092  */
3093 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc);
3094 #else
3095 static inline
3096 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc)
3097 {
3098 	return QDF_STATUS_SUCCESS;
3099 }
3100 #endif
3101 #else
3102 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
3103 {
3104 }
3105 #endif
3106 
3107 #if defined(DP_UMAC_HW_RESET_SUPPORT) && defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
3108 /**
3109  * dp_umac_reset_notify_asserted_soc() - API to notify the asserted SOC
3110  * @soc: dp soc
3111  *
3112  * Return: QDF_STATUS
3113  */
3114 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc);
3115 
3116 /**
3117  * dp_get_umac_reset_in_progress_state() - API to check umac reset in progress
3118  * state
3119  * @psoc: dp soc handle
3120  *
3121  * Return: umac reset state
3122  */
3123 enum cdp_umac_reset_state
3124 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc);
3125 #else
3126 static inline
3127 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc)
3128 {
3129 	return QDF_STATUS_SUCCESS;
3130 }
3131 
3132 static inline enum cdp_umac_reset_state
3133 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc)
3134 {
3135 	return CDP_UMAC_RESET_NOT_IN_PROGRESS;
3136 }
3137 #endif
3138 
3139 #ifndef WLAN_SOFTUMAC_SUPPORT
3140 QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc, enum hal_reo_cmd_type type,
3141 			   struct hal_reo_cmd_params *params,
3142 			   void (*callback_fn), void *data);
3143 
3144 /**
3145  * dp_reo_cmdlist_destroy() - Free REO commands in the queue
3146  * @soc: DP SoC handle
3147  *
3148  * Return: none
3149  */
3150 void dp_reo_cmdlist_destroy(struct dp_soc *soc);
3151 
3152 /**
3153  * dp_reo_status_ring_handler() - Handler for REO Status ring
3154  * @int_ctx: pointer to DP interrupt context
3155  * @soc: DP Soc handle
3156  *
3157  * Return: Number of descriptors reaped
3158  */
3159 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
3160 				    struct dp_soc *soc);
3161 #endif
3162 
3163 /**
3164  * dp_aggregate_vdev_stats() - Consolidate stats at VDEV level
3165  * @vdev: DP VDEV handle
3166  * @vdev_stats: aggregate statistics
3167  * @xmit_type: xmit type of packet - MLD/Link
3168  * return: void
3169  */
3170 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
3171 			     struct cdp_vdev_stats *vdev_stats,
3172 			     enum dp_pkt_xmit_type xmit_type);
3173 
3174 /**
3175  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
3176  * @soc_hdl: CDP SoC handle
3177  * @vdev_id: vdev Id
3178  * @buf: buffer for vdev stats
3179  * @is_aggregate: are aggregate stats being collected
3180  *
3181  * Return: QDF_STATUS
3182  */
3183 QDF_STATUS
3184 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3185 		       void *buf, bool is_aggregate);
3186 
3187 /**
3188  * dp_rx_bar_stats_cb() - BAR received stats callback
3189  * @soc: SOC handle
3190  * @cb_ctxt: Call back context
3191  * @reo_status: Reo status
3192  *
3193  * Return: void
3194  */
3195 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
3196 			union hal_reo_status *reo_status);
3197 
3198 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
3199 				     qdf_nbuf_t nbuf,
3200 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
3201 				     uint8_t new_mac_cnt, uint8_t tid,
3202 				     bool is_igmp, bool is_dms_pkt);
3203 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
3204 
3205 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
3206 
3207 /**
3208  * dp_h2t_ext_stats_msg_send(): function to construct HTT message to pass to FW
3209  * @pdev: DP PDEV handle
3210  * @stats_type_upload_mask: stats type requested by user
3211  * @config_param_0: extra configuration parameters
3212  * @config_param_1: extra configuration parameters
3213  * @config_param_2: extra configuration parameters
3214  * @config_param_3: extra configuration parameters
3215  * @cookie:
3216  * @cookie_msb:
3217  * @mac_id: mac number
3218  *
3219  * Return: QDF STATUS
3220  */
3221 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
3222 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
3223 		uint32_t config_param_1, uint32_t config_param_2,
3224 		uint32_t config_param_3, int cookie, int cookie_msb,
3225 		uint8_t mac_id);
3226 
3227 /**
3228  * dp_htt_stats_print_tag() - function to select the tag type and
3229  * print the corresponding tag structure
3230  * @pdev: pdev pointer
3231  * @tag_type: tag type that is to be printed
3232  * @tag_buf: pointer to the tag structure
3233  *
3234  * Return: void
3235  */
3236 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
3237 			    uint8_t tag_type, uint32_t *tag_buf);
3238 
3239 /**
3240  * dp_htt_stats_copy_tag() - function to select the tag type and
3241  * copy the corresponding tag structure
3242  * @pdev: DP_PDEV handle
3243  * @tag_type: tag type that is to be printed
3244  * @tag_buf: pointer to the tag structure
3245  *
3246  * Return: void
3247  */
3248 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
3249 
3250 /**
3251  * dp_h2t_3tuple_config_send(): function to construct 3 tuple configuration
3252  * HTT message to pass to FW
3253  * @pdev: DP PDEV handle
3254  * @tuple_mask: tuple configuration to report 3 tuple hash value in either
3255  * toeplitz_2_or_4 or flow_id_toeplitz in MSDU START TLV.
3256  *
3257  * tuple_mask[1:0]:
3258  *   00 - Do not report 3 tuple hash value
3259  *   10 - Report 3 tuple hash value in toeplitz_2_or_4
3260  *   01 - Report 3 tuple hash value in flow_id_toeplitz
3261  *   11 - Report 3 tuple hash value in both toeplitz_2_or_4 & flow_id_toeplitz
3262  * @mac_id: MAC ID
3263  *
3264  * Return: QDF STATUS
3265  */
3266 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
3267 				     uint8_t mac_id);
3268 
3269 #ifdef IPA_OFFLOAD
3270 /**
3271  * dp_peer_update_tid_stats_from_reo() - update rx pkt and byte count from reo
3272  * @soc: soc handle
3273  * @cb_ctxt: combination of peer_id and tid
3274  * @reo_status: reo status
3275  *
3276  * Return: void
3277  */
3278 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
3279 				       union hal_reo_status *reo_status);
3280 
3281 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
3282 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
3283 #ifdef IPA_OPT_WIFI_DP
3284 void dp_ipa_wdi_opt_dpath_notify_flt_rlsd(int flt0_rslt,
3285 					  int flt1_rslt);
3286 void dp_ipa_wdi_opt_dpath_notify_flt_add_rem_cb(int flt0_rslt, int flt1_rslt);
3287 void dp_ipa_wdi_opt_dpath_notify_flt_rsvd(bool is_success);
3288 #endif
3289 #ifdef QCA_ENHANCED_STATS_SUPPORT
3290 /**
3291  * dp_peer_aggregate_tid_stats - aggregate rx tid stats
3292  * @peer: Data Path peer
3293  *
3294  * Return: void
3295  */
3296 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
3297 #endif
3298 #else
3299 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
3300 {
3301 }
3302 #endif
3303 
3304 /**
3305  * dp_set_key_sec_type_wifi3() - set security mode of key
3306  * @soc: Datapath soc handle
3307  * @vdev_id: id of atapath vdev
3308  * @peer_mac: Datapath peer mac address
3309  * @sec_type: security type
3310  * @is_unicast: key type
3311  *
3312  */
3313 QDF_STATUS
3314 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
3315 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
3316 			  bool is_unicast);
3317 
3318 /**
3319  * dp_get_pdev_for_mac_id() -  Return pdev for mac_id
3320  * @soc: handle to DP soc
3321  * @mac_id: MAC id
3322  *
3323  * Return: Return pdev corresponding to MAC
3324  */
3325 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
3326 
3327 QDF_STATUS
3328 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
3329 		   uint8_t *peer_mac,
3330 		   bool is_unicast, uint32_t *key);
3331 
3332 /**
3333  * dp_check_pdev_exists() - Validate pdev before use
3334  * @soc: dp soc handle
3335  * @data: pdev handle
3336  *
3337  * Return: 0 - success/invalid - failure
3338  */
3339 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
3340 
3341 /**
3342  * dp_update_delay_stats() - Update delay statistics in structure
3343  *				and fill min, max and avg delay
3344  * @tstats: tid tx stats
3345  * @rstats: tid rx stats
3346  * @delay: delay in ms
3347  * @tid: tid value
3348  * @mode: type of tx delay mode
3349  * @ring_id: ring number
3350  * @delay_in_us: flag to indicate whether the delay is in ms or us
3351  *
3352  * Return: none
3353  */
3354 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
3355 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
3356 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
3357 			   bool delay_in_us);
3358 
3359 /**
3360  * dp_print_ring_stats(): Print tail and head pointer
3361  * @pdev: DP_PDEV handle
3362  *
3363  * Return: void
3364  */
3365 void dp_print_ring_stats(struct dp_pdev *pdev);
3366 
3367 /**
3368  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
3369  * @soc: soc handle
3370  * @srng: srng handle
3371  * @ring_type: ring type
3372  *
3373  * Return: void
3374  */
3375 void
3376 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
3377 			    enum hal_ring_type ring_type);
3378 
3379 /**
3380  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
3381  * @pdev: DP pdev handle
3382  *
3383  * Return: void
3384  */
3385 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
3386 
3387 /**
3388  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
3389  * @soc: Soc handle
3390  *
3391  * Return: void
3392  */
3393 void dp_print_soc_cfg_params(struct dp_soc *soc);
3394 
3395 /**
3396  * dp_srng_get_str_from_hal_ring_type() - Return string name for a ring
3397  * @ring_type: Ring
3398  *
3399  * Return: char const pointer
3400  */
3401 const
3402 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
3403 
3404 /**
3405  * dp_txrx_path_stats() - Function to display dump stats
3406  * @soc: soc handle
3407  *
3408  * Return: none
3409  */
3410 void dp_txrx_path_stats(struct dp_soc *soc);
3411 
3412 /**
3413  * dp_print_per_ring_stats(): Packet count per ring
3414  * @soc: soc handle
3415  *
3416  * Return: None
3417  */
3418 void dp_print_per_ring_stats(struct dp_soc *soc);
3419 
3420 /**
3421  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
3422  * @pdev: DP PDEV handle
3423  *
3424  * Return: void
3425  */
3426 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
3427 
3428 /**
3429  * dp_print_rx_rates(): Print Rx rate stats
3430  * @vdev: DP_VDEV handle
3431  *
3432  * Return:void
3433  */
3434 void dp_print_rx_rates(struct dp_vdev *vdev);
3435 
3436 /**
3437  * dp_print_tx_rates(): Print tx rates
3438  * @vdev: DP_VDEV handle
3439  *
3440  * Return:void
3441  */
3442 void dp_print_tx_rates(struct dp_vdev *vdev);
3443 
3444 /**
3445  * dp_print_peer_stats():print peer stats
3446  * @peer: DP_PEER handle
3447  * @peer_stats: buffer holding peer stats
3448  *
3449  * return void
3450  */
3451 void dp_print_peer_stats(struct dp_peer *peer,
3452 			 struct cdp_peer_stats *peer_stats);
3453 
3454 /**
3455  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
3456  * @pdev: DP_PDEV Handle
3457  *
3458  * Return:void
3459  */
3460 void
3461 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
3462 
3463 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MCAST_MLO)
3464 /**
3465  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3466  * @vdev: DP_VDEV Handle
3467  *
3468  * Return:void
3469  */
3470 void
3471 dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev);
3472 #else
3473 /**
3474  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3475  * @vdev: DP_VDEV Handle
3476  *
3477  * Return:void
3478  */
3479 static inline
3480 void dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev)
3481 {
3482 }
3483 #endif
3484 
3485 /**
3486  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
3487  * @pdev: DP_PDEV Handle
3488  *
3489  * Return: void
3490  */
3491 void
3492 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
3493 
3494 /**
3495  * dp_print_soc_tx_stats(): Print SOC level  stats
3496  * @soc: DP_SOC Handle
3497  *
3498  * Return: void
3499  */
3500 void dp_print_soc_tx_stats(struct dp_soc *soc);
3501 
3502 #ifdef QCA_SUPPORT_DP_GLOBAL_CTX
3503 /**
3504  * dp_print_global_desc_count(): Print global desc in use
3505  *
3506  * Return: void
3507  */
3508 void dp_print_global_desc_count(void);
3509 #else
3510 /**
3511  * dp_print_global_desc_count(): Print global desc in use
3512  *
3513  * Return: void
3514  */
3515 static inline
3516 void dp_print_global_desc_count(void)
3517 {
3518 }
3519 #endif
3520 
3521 /**
3522  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
3523  * @soc: dp_soc handle
3524  *
3525  * Return: None
3526  */
3527 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
3528 
3529 /**
3530  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
3531  * @soc: dp_soc handle
3532  *
3533  * Return: None
3534  */
3535 
3536 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
3537 
3538 /* REO destination ring's watermark mask */
3539 #define DP_SRNG_WM_MASK_REO_DST  BIT(REO_DST)
3540 /* TX completion ring's watermark mask */
3541 #define DP_SRNG_WM_MASK_TX_COMP  BIT(WBM2SW_RELEASE)
3542 /* All srng's watermark mask */
3543 #define DP_SRNG_WM_MASK_ALL  0xFFFFFFFF
3544 
3545 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
3546 /**
3547  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
3548  *				  for all SRNGs
3549  * @soc: DP soc handle
3550  * @srng_mask: SRNGs mask for dumping usage watermark stats
3551  *
3552  * Return: None
3553  */
3554 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
3555 #else
3556 static inline
3557 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
3558 {
3559 }
3560 #endif
3561 
3562 /**
3563  * dp_print_soc_rx_stats() - Print SOC level Rx stats
3564  * @soc: DP_SOC Handle
3565  *
3566  * Return: void
3567  */
3568 void dp_print_soc_rx_stats(struct dp_soc *soc);
3569 
3570 /**
3571  * dp_get_mac_id_for_pdev() - Return mac corresponding to pdev for mac
3572  *
3573  * @mac_id: MAC id
3574  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3575  *
3576  * Single pdev using both MACs will operate on both MAC rings,
3577  * which is the case for MCL.
3578  * For WIN each PDEV will operate one ring, so index is zero.
3579  *
3580  */
3581 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
3582 {
3583 	if (mac_id && pdev_id) {
3584 		qdf_print("Both mac_id and pdev_id cannot be non zero");
3585 		QDF_BUG(0);
3586 		return 0;
3587 	}
3588 	return (mac_id + pdev_id);
3589 }
3590 
3591 /**
3592  * dp_get_lmac_id_for_pdev_id() - Return lmac id corresponding to host pdev id
3593  * @soc: soc pointer
3594  * @mac_id: MAC id
3595  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3596  *
3597  * For MCL, Single pdev using both MACs will operate on both MAC rings.
3598  *
3599  * For WIN, each PDEV will operate one ring.
3600  *
3601  */
3602 static inline int
3603 dp_get_lmac_id_for_pdev_id
3604 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
3605 {
3606 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3607 		if (mac_id && pdev_id) {
3608 			qdf_print("Both mac_id and pdev_id cannot be non zero");
3609 			QDF_BUG(0);
3610 			return 0;
3611 		}
3612 		return (mac_id + pdev_id);
3613 	}
3614 
3615 	return soc->pdev_list[pdev_id]->lmac_id;
3616 }
3617 
3618 /**
3619  * dp_get_pdev_for_lmac_id() - Return pdev pointer corresponding to lmac id
3620  * @soc: soc pointer
3621  * @lmac_id: LMAC id
3622  *
3623  * For MCL, Single pdev exists
3624  *
3625  * For WIN, each PDEV will operate one ring.
3626  *
3627  */
3628 static inline struct dp_pdev *
3629 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
3630 {
3631 	uint8_t i = 0;
3632 
3633 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3634 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
3635 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
3636 	}
3637 
3638 	/* Typically for MCL as there only 1 PDEV*/
3639 	return soc->pdev_list[0];
3640 }
3641 
3642 /**
3643  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
3644  *                                          corresponding to host pdev id
3645  * @soc: soc pointer
3646  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3647  *
3648  * Return: target pdev_id for host pdev id. For WIN, this is derived through
3649  * a two step process:
3650  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
3651  *    during mode switch)
3652  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
3653  *
3654  * For MCL, return the offset-1 translated mac_id
3655  */
3656 static inline int
3657 dp_calculate_target_pdev_id_from_host_pdev_id
3658 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3659 {
3660 	struct dp_pdev *pdev;
3661 
3662 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3663 		return DP_SW2HW_MACID(mac_for_pdev);
3664 
3665 	pdev = soc->pdev_list[mac_for_pdev];
3666 
3667 	/*non-MCL case, get original target_pdev mapping*/
3668 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
3669 }
3670 
3671 /**
3672  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
3673  *                                         to host pdev id
3674  * @soc: soc pointer
3675  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3676  *
3677  * Return: target pdev_id for host pdev id.
3678  * For WIN, return the value stored in pdev object.
3679  * For MCL, return the offset-1 translated mac_id.
3680  */
3681 static inline int
3682 dp_get_target_pdev_id_for_host_pdev_id
3683 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3684 {
3685 	struct dp_pdev *pdev;
3686 
3687 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3688 		return DP_SW2HW_MACID(mac_for_pdev);
3689 
3690 	pdev = soc->pdev_list[mac_for_pdev];
3691 
3692 	return pdev->target_pdev_id;
3693 }
3694 
3695 /**
3696  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
3697  *                                         to target pdev id
3698  * @soc: soc pointer
3699  * @pdev_id: pdev_id corresponding to target pdev
3700  *
3701  * Return: host pdev_id for target pdev id. For WIN, this is derived through
3702  * a two step process:
3703  * 1. Get lmac_id corresponding to target pdev_id
3704  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
3705  *
3706  * For MCL, return the 0-offset pdev_id
3707  */
3708 static inline int
3709 dp_get_host_pdev_id_for_target_pdev_id
3710 	(struct dp_soc *soc, uint32_t pdev_id)
3711 {
3712 	struct dp_pdev *pdev;
3713 	int lmac_id;
3714 
3715 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3716 		return DP_HW2SW_MACID(pdev_id);
3717 
3718 	/*non-MCL case, get original target_lmac mapping from target pdev*/
3719 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
3720 					  DP_HW2SW_MACID(pdev_id));
3721 
3722 	/*Get host pdev from lmac*/
3723 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
3724 
3725 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
3726 }
3727 
3728 /**
3729  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
3730  *
3731  * @soc: handle to DP soc
3732  * @mac_id: MAC id
3733  *
3734  * Single pdev using both MACs will operate on both MAC rings,
3735  * which is the case for MCL.
3736  * For WIN each PDEV will operate one ring, so index is zero.
3737  *
3738  */
3739 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
3740 {
3741 	/*
3742 	 * Single pdev using both MACs will operate on both MAC rings,
3743 	 * which is the case for MCL.
3744 	 */
3745 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3746 		return mac_id;
3747 
3748 	/* For WIN each PDEV will operate one ring, so index is zero. */
3749 	return 0;
3750 }
3751 
3752 /**
3753  * dp_is_subtype_data() - check if the frame subtype is data
3754  *
3755  * @frame_ctrl: Frame control field
3756  *
3757  * check the frame control field and verify if the packet
3758  * is a data packet.
3759  *
3760  * Return: true or false
3761  */
3762 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
3763 {
3764 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
3765 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
3766 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3767 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
3768 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3769 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
3770 		return true;
3771 	}
3772 
3773 	return false;
3774 }
3775 
3776 #ifdef WDI_EVENT_ENABLE
3777 /**
3778  * dp_h2t_cfg_stats_msg_send(): function to construct HTT message to pass to FW
3779  * @pdev: DP PDEV handle
3780  * @stats_type_upload_mask: stats type requested by user
3781  * @mac_id: Mac id number
3782  *
3783  * return: QDF STATUS
3784  */
3785 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3786 				uint32_t stats_type_upload_mask,
3787 				uint8_t mac_id);
3788 
3789 /**
3790  * dp_wdi_event_unsub() - WDI event unsubscribe
3791  * @soc: soc handle
3792  * @pdev_id: id of pdev
3793  * @event_cb_sub_handle: subscribed event handle
3794  * @event: Event to be unsubscribe
3795  *
3796  * Return: 0 for success. nonzero for failure.
3797  */
3798 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3799 		       wdi_event_subscribe *event_cb_sub_handle,
3800 		       uint32_t event);
3801 
3802 /**
3803  * dp_wdi_event_sub() - Subscribe WDI event
3804  * @soc: soc handle
3805  * @pdev_id: id of pdev
3806  * @event_cb_sub_handle: subscribe event handle
3807  * @event: Event to be subscribe
3808  *
3809  * Return: 0 for success. nonzero for failure.
3810  */
3811 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3812 		     wdi_event_subscribe *event_cb_sub_handle,
3813 		     uint32_t event);
3814 
3815 /**
3816  * dp_wdi_event_handler() - Event handler for WDI event
3817  * @event: wdi event number
3818  * @soc: soc handle
3819  * @data: pointer to data
3820  * @peer_id: peer id number
3821  * @status: HTT rx status
3822  * @pdev_id: id of pdev
3823  *
3824  * It will be called to register WDI event
3825  *
3826  * Return: None
3827  */
3828 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
3829 			  void *data, u_int16_t peer_id,
3830 			  int status, u_int8_t pdev_id);
3831 
3832 /**
3833  * dp_wdi_event_attach() - Attach wdi event
3834  * @txrx_pdev: DP pdev handle
3835  *
3836  * Return: 0 for success. nonzero for failure.
3837  */
3838 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
3839 
3840 /**
3841  * dp_wdi_event_detach() - Detach WDI event
3842  * @txrx_pdev: DP pdev handle
3843  *
3844  * Return: 0 for success. nonzero for failure.
3845  */
3846 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
3847 
3848 static inline void
3849 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
3850 			    void *cb_context,
3851 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3852 			    uint8_t pipe_id)
3853 {
3854 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
3855 
3856 	/* TODO: Temporary change to bypass HTC connection for this new
3857 	 * HIF pipe, which will be used for packet log and other high-
3858 	 * priority HTT messages. Proper HTC connection to be added
3859 	 * later once required FW changes are available
3860 	 */
3861 	hif_pipe_callbacks.rxCompletionHandler = callback;
3862 	hif_pipe_callbacks.Context = cb_context;
3863 	hif_update_pipe_callback(dp_soc->hif_handle,
3864 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
3865 }
3866 #else
3867 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3868 				     wdi_event_subscribe *event_cb_sub_handle,
3869 				     uint32_t event)
3870 {
3871 	return 0;
3872 }
3873 
3874 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3875 				   wdi_event_subscribe *event_cb_sub_handle,
3876 				   uint32_t event)
3877 {
3878 	return 0;
3879 }
3880 
3881 static inline
3882 void dp_wdi_event_handler(enum WDI_EVENT event,
3883 			  struct dp_soc *soc,
3884 			  void *data, u_int16_t peer_id,
3885 			  int status, u_int8_t pdev_id)
3886 {
3887 }
3888 
3889 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
3890 {
3891 	return 0;
3892 }
3893 
3894 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
3895 {
3896 	return 0;
3897 }
3898 
3899 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3900 		uint32_t stats_type_upload_mask, uint8_t mac_id)
3901 {
3902 	return 0;
3903 }
3904 
3905 static inline void
3906 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
3907 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3908 			    uint8_t pipe_id)
3909 {
3910 }
3911 #endif
3912 
3913 #ifdef VDEV_PEER_PROTOCOL_COUNT
3914 /**
3915  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3916  * @vdev: VDEV DP object
3917  * @nbuf: data packet
3918  * @txrx_peer: DP TXRX Peer object
3919  * @is_egress: whether egress or ingress
3920  * @is_rx: whether rx or tx
3921  *
3922  * This function updates the per-peer protocol counters
3923  * Return: void
3924  */
3925 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
3926 					    qdf_nbuf_t nbuf,
3927 					    struct dp_txrx_peer *txrx_peer,
3928 					    bool is_egress,
3929 					    bool is_rx);
3930 
3931 /**
3932  * dp_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3933  * @soc: SOC DP object
3934  * @vdev_id: vdev_id
3935  * @nbuf: data packet
3936  * @is_egress: whether egress or ingress
3937  * @is_rx: whether rx or tx
3938  *
3939  * This function updates the per-peer protocol counters
3940  *
3941  * Return: void
3942  */
3943 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
3944 				       int8_t vdev_id,
3945 				       qdf_nbuf_t nbuf,
3946 				       bool is_egress,
3947 				       bool is_rx);
3948 
3949 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3950 					       qdf_nbuf_t nbuf);
3951 
3952 #else
3953 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
3954 					       is_egress, is_rx)
3955 
3956 static inline
3957 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3958 					       qdf_nbuf_t nbuf)
3959 {
3960 }
3961 
3962 #endif
3963 
3964 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3965 /**
3966  * dp_tx_dump_flow_pool_info() - dump global_pool and flow_pool info
3967  * @soc_hdl: Handle to struct cdp_soc
3968  *
3969  * Return: none
3970  */
3971 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
3972 
3973 /**
3974  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
3975  * @soc: DP soc context
3976  *
3977  * Return: none
3978  */
3979 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3980 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3981 	bool force);
3982 #else
3983 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3984 {
3985 }
3986 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3987 
3988 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3989 static inline int
3990 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3991 {
3992 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3993 }
3994 
3995 static inline void
3996 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3997 {
3998 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3999 }
4000 
4001 #else
4002 static inline int
4003 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
4004 {
4005 	return hal_srng_access_start(soc, hal_ring_hdl);
4006 }
4007 
4008 static inline void
4009 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
4010 {
4011 	hal_srng_access_end(soc, hal_ring_hdl);
4012 }
4013 #endif
4014 
4015 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
4016 /**
4017  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
4018  * @int_ctx: pointer to DP interrupt context. This should not be NULL
4019  * @dp_soc: DP Soc handle
4020  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
4021  *                serviced
4022  *
4023  * Return: 0 on success; error on failure
4024  */
4025 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
4026 			 hal_ring_handle_t hal_ring_hdl);
4027 
4028 /**
4029  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
4030  * @int_ctx: pointer to DP interrupt context. This should not be NULL
4031  * @dp_soc: DP Soc handle
4032  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
4033  *                serviced
4034  *
4035  * Return: void
4036  */
4037 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
4038 			hal_ring_handle_t hal_ring_hdl);
4039 
4040 #else
4041 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
4042 				       struct dp_soc *dp_soc,
4043 				       hal_ring_handle_t hal_ring_hdl)
4044 {
4045 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4046 
4047 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
4048 }
4049 
4050 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
4051 				      struct dp_soc *dp_soc,
4052 				      hal_ring_handle_t hal_ring_hdl)
4053 {
4054 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4055 
4056 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
4057 }
4058 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
4059 
4060 #ifdef QCA_CACHED_RING_DESC
4061 /**
4062  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
4063  * @dp_soc: DP Soc handle
4064  * @hal_ring_hdl: opaque pointer to the HAL Destination Ring
4065  *
4066  * Return: HAL ring descriptor
4067  */
4068 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
4069 					 hal_ring_handle_t hal_ring_hdl)
4070 {
4071 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4072 
4073 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
4074 }
4075 
4076 /**
4077  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
4078  * descriptors
4079  * @dp_soc: DP Soc handle
4080  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
4081  * @num_entries: Entry count
4082  *
4083  * Return: None
4084  */
4085 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
4086 						hal_ring_handle_t hal_ring_hdl,
4087 						uint32_t num_entries)
4088 {
4089 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4090 
4091 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
4092 }
4093 #else
4094 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
4095 					 hal_ring_handle_t hal_ring_hdl)
4096 {
4097 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
4098 
4099 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
4100 }
4101 
4102 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
4103 						hal_ring_handle_t hal_ring_hdl,
4104 						uint32_t num_entries)
4105 {
4106 }
4107 #endif /* QCA_CACHED_RING_DESC */
4108 
4109 #if defined(QCA_CACHED_RING_DESC) && \
4110 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
4111 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
4112 /**
4113  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
4114  * @hal_soc: HAL SOC handle
4115  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
4116  * @num_entries: Entry count
4117  *
4118  * Return: None
4119  */
4120 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
4121 					 hal_ring_handle_t hal_ring_hdl,
4122 					 uint32_t num_entries)
4123 {
4124 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
4125 }
4126 
4127 /**
4128  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
4129  *					 32 byte descriptor starting at
4130  *					 64 byte offset
4131  * @hal_soc: HAL SOC handle
4132  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
4133  * @num_entries: Entry count
4134  *
4135  * Return: None
4136  */
4137 static inline
4138 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
4139 					hal_ring_handle_t hal_ring_hdl,
4140 					uint32_t num_entries)
4141 {
4142 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
4143 						  num_entries);
4144 }
4145 #else
4146 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
4147 					 hal_ring_handle_t hal_ring_hdl,
4148 					 uint32_t num_entries)
4149 {
4150 	return NULL;
4151 }
4152 
4153 static inline
4154 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
4155 					hal_ring_handle_t hal_ring_hdl,
4156 					uint32_t num_entries)
4157 {
4158 	return NULL;
4159 }
4160 #endif
4161 
4162 #ifdef QCA_ENH_V3_STATS_SUPPORT
4163 /**
4164  * dp_pdev_print_delay_stats(): Print pdev level delay stats
4165  * @pdev: DP_PDEV handle
4166  *
4167  * Return:void
4168  */
4169 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
4170 
4171 /**
4172  * dp_pdev_print_tid_stats(): Print pdev level tid stats
4173  * @pdev: DP_PDEV handle
4174  *
4175  * Return:void
4176  */
4177 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
4178 
4179 /**
4180  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
4181  * @pdev: DP_PDEV handle
4182  *
4183  * Return:void
4184  */
4185 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
4186 #endif /* QCA_ENH_V3_STATS_SUPPORT */
4187 
4188 /**
4189  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
4190  * @soc_hdl: soc handle
4191  * @pdev_id: id of dp_pdev handle
4192  * @tid_stats: Pointer for cdp_tid_stats_intf
4193  *
4194  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
4195  */
4196 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4197 				 struct cdp_tid_stats_intf *tid_stats);
4198 
4199 /**
4200  * dp_soc_set_txrx_ring_map()
4201  * @soc: DP handler for soc
4202  *
4203  * Return: Void
4204  */
4205 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
4206 
4207 /**
4208  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
4209  * @vdev: DP vdev handle
4210  *
4211  * Return: struct cdp_vdev pointer
4212  */
4213 static inline
4214 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
4215 {
4216 	return (struct cdp_vdev *)vdev;
4217 }
4218 
4219 /**
4220  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
4221  * @pdev: DP pdev handle
4222  *
4223  * Return: struct cdp_pdev pointer
4224  */
4225 static inline
4226 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
4227 {
4228 	return (struct cdp_pdev *)pdev;
4229 }
4230 
4231 /**
4232  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
4233  * @psoc: DP psoc handle
4234  *
4235  * Return: struct cdp_soc pointer
4236  */
4237 static inline
4238 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
4239 {
4240 	return (struct cdp_soc *)psoc;
4241 }
4242 
4243 /**
4244  * dp_soc_to_cdp_soc_t() - typecast dp psoc to ol txrx soc handle
4245  * @psoc: DP psoc handle
4246  *
4247  * Return: struct cdp_soc_t pointer
4248  */
4249 static inline
4250 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
4251 {
4252 	return (struct cdp_soc_t *)psoc;
4253 }
4254 
4255 #if defined(WLAN_SUPPORT_RX_FLOW_TAG)
4256 /**
4257  * dp_rx_flow_get_fse_stats() - Retrieve a flow's statistics
4258  * @pdev: pdev handle
4259  * @rx_flow_info: flow information in the Rx FST
4260  * @stats: stats to update
4261  *
4262  * Return: Success when flow statistcs is updated, error on failure
4263  */
4264 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
4265 				    struct cdp_rx_flow_info *rx_flow_info,
4266 				    struct cdp_flow_stats *stats);
4267 
4268 /**
4269  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
4270  * @pdev: pdev handle
4271  * @rx_flow_info: DP flow parameters
4272  *
4273  * Return: Success when flow is deleted, error on failure
4274  */
4275 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
4276 				   struct cdp_rx_flow_info *rx_flow_info);
4277 
4278 /**
4279  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
4280  * @pdev: DP pdev instance
4281  * @rx_flow_info: DP flow parameters
4282  *
4283  * Return: Success when flow is added, no-memory or already exists on error
4284  */
4285 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
4286 				struct cdp_rx_flow_info *rx_flow_info);
4287 
4288 /**
4289  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
4290  * @soc: SoC handle
4291  * @pdev: Pdev handle
4292  *
4293  * Return: Handle to flow search table entry
4294  */
4295 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
4296 
4297 /**
4298  * dp_rx_fst_detach() - De-initialize Rx FST
4299  * @soc: SoC handle
4300  * @pdev: Pdev handle
4301  *
4302  * Return: None
4303  */
4304 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
4305 
4306 /**
4307  * dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
4308  * @pdev: pdev handle
4309  * @flow_id: flow index (truncated hash) in the Rx FST
4310  *
4311  * Return: Success when flow statistcs is updated, error on failure
4312  */
4313 QDF_STATUS
4314 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
4315 #endif
4316 
4317 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4318 /**
4319  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
4320  * @soc: SoC handle
4321  * @pdev: Pdev handle
4322  *
4323  * Return: Success when fst parameters are programmed in FW, error otherwise
4324  */
4325 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
4326 					struct dp_pdev *pdev);
4327 #endif
4328 
4329 /**
4330  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
4331  * @soc: SoC handle
4332  * @pdev: Pdev handle
4333  *
4334  * Return: Handle to flow search table entry
4335  */
4336 extern QDF_STATUS
4337 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4338 
4339 /**
4340  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
4341  * @soc: SoC handle
4342  * @pdev: Pdev handle
4343  *
4344  * Return: None
4345  */
4346 extern void
4347 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4348 
4349 /**
4350  * dp_vdev_get_ref() - API to take a reference for VDEV object
4351  *
4352  * @soc		: core DP soc context
4353  * @vdev	: DP vdev
4354  * @mod_id	: module id
4355  *
4356  * Return:	QDF_STATUS_SUCCESS if reference held successfully
4357  *		else QDF_STATUS_E_INVAL
4358  */
4359 static inline
4360 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
4361 			   enum dp_mod_id mod_id)
4362 {
4363 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
4364 		return QDF_STATUS_E_INVAL;
4365 
4366 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
4367 
4368 	return QDF_STATUS_SUCCESS;
4369 }
4370 
4371 /**
4372  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
4373  * @soc: core DP soc context
4374  * @vdev_id: vdev id from vdev object can be retrieved
4375  * @mod_id: module id which is requesting the reference
4376  *
4377  * Return: struct dp_vdev*: Pointer to DP vdev object
4378  */
4379 static inline struct dp_vdev *
4380 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
4381 		      enum dp_mod_id mod_id)
4382 {
4383 	struct dp_vdev *vdev = NULL;
4384 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
4385 		return NULL;
4386 
4387 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4388 	vdev = soc->vdev_id_map[vdev_id];
4389 
4390 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
4391 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4392 		return NULL;
4393 	}
4394 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4395 
4396 	return vdev;
4397 }
4398 
4399 /**
4400  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
4401  * @soc: core DP soc context
4402  * @pdev_id: pdev id from pdev object can be retrieved
4403  *
4404  * Return: struct dp_pdev*: Pointer to DP pdev object
4405  */
4406 static inline struct dp_pdev *
4407 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
4408 				   uint8_t pdev_id)
4409 {
4410 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
4411 		return NULL;
4412 
4413 	return soc->pdev_list[pdev_id];
4414 }
4415 
4416 /**
4417  * dp_get_peer_mac_list(): function to get peer mac list of vdev
4418  * @soc: Datapath soc handle
4419  * @vdev_id: vdev id
4420  * @newmac: Table of the clients mac
4421  * @mac_cnt: No. of MACs required
4422  * @limit: Limit the number of clients
4423  *
4424  * Return: no of clients
4425  */
4426 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
4427 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
4428 			      u_int16_t mac_cnt, bool limit);
4429 
4430 /**
4431  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
4432  *				       DBS check
4433  * @soc: DP SoC context
4434  * @max_mac_rings: Pointer to variable for No of MAC rings
4435  *
4436  * Return: None
4437  */
4438 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
4439 				     int *max_mac_rings);
4440 
4441 
4442 #if defined(WLAN_SUPPORT_RX_FISA)
4443 /**
4444  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
4445  * @soc:		DP SoC context
4446  * @num_entries:	Number of flow search entries
4447  * @cmem_ba_lo:		CMEM base address low
4448  * @cmem_ba_hi:		CMEM base address high
4449  *
4450  * Return: None
4451  */
4452 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4453 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
4454 
4455 /**
4456  * dp_fisa_config() - FISA config handler
4457  * @cdp_soc: CDP SoC handle
4458  * @pdev_id: PDEV ID
4459  * @config_id: FISA config ID
4460  * @cfg: FISA config msg data
4461  */
4462 QDF_STATUS dp_fisa_config(ol_txrx_soc_handle cdp_soc, uint8_t pdev_id,
4463 			  enum cdp_fisa_config_id config_id,
4464 			  union cdp_fisa_config *cfg);
4465 #else
4466 static inline void
4467 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4468 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
4469 {
4470 }
4471 #endif /* WLAN_SUPPORT_RX_FISA */
4472 
4473 #ifdef MAX_ALLOC_PAGE_SIZE
4474 /**
4475  * dp_set_max_page_size() - Set the max page size for hw link desc.
4476  * @pages: link desc page handle
4477  * @max_alloc_size: max_alloc_size
4478  *
4479  * For MCL the page size is set to OS defined value and for WIN
4480  * the page size is set to the max_alloc_size cfg ini
4481  * param.
4482  * This is to ensure that WIN gets contiguous memory allocations
4483  * as per requirement.
4484  *
4485  * Return: None
4486  */
4487 static inline
4488 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4489 			  uint32_t max_alloc_size)
4490 {
4491 	pages->page_size = qdf_page_size;
4492 }
4493 
4494 #else
4495 static inline
4496 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4497 			  uint32_t max_alloc_size)
4498 {
4499 	pages->page_size = max_alloc_size;
4500 }
4501 #endif /* MAX_ALLOC_PAGE_SIZE */
4502 
4503 /**
4504  * dp_get_next_index() - get the next entry to record an entry
4505  *			 in the history.
4506  * @curr_idx: Current index where the last entry is written.
4507  * @max_entries: Max number of entries in the history
4508  *
4509  * This function assumes that the max number os entries is a power of 2.
4510  *
4511  * Return: The index where the next entry is to be written.
4512  */
4513 
4514 static inline uint32_t dp_get_next_index(qdf_atomic_t *curr_idx,
4515 					 uint32_t max_entries)
4516 {
4517 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
4518 
4519 	return idx & (max_entries - 1);
4520 }
4521 
4522 /**
4523  * dp_history_get_next_index() - get the next entry to record an entry
4524  *				 in the history.
4525  * @curr_idx: Current index where the last entry is written.
4526  * @max_entries: Max number of entries in the history
4527  *
4528  * This function assumes that the max number os entries is a power of 2.
4529  *
4530  * Return: The index where the next entry is to be written.
4531  */
4532 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
4533 						 uint32_t max_entries)
4534 {
4535 	return dp_get_next_index(curr_idx, max_entries);
4536 }
4537 
4538 /**
4539  * dp_rx_skip_tlvs() - Skip TLVs len + L3 padding, save in nbuf->cb
4540  * @soc: Datapath soc handle
4541  * @nbuf: nbuf cb to be updated
4542  * @l3_padding: L3 padding
4543  *
4544  * Return: None
4545  */
4546 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
4547 
4548 #ifndef FEATURE_WDS
4549 static inline void
4550 dp_hmwds_ast_add_notify(struct dp_peer *peer,
4551 			uint8_t *mac_addr,
4552 			enum cdp_txrx_ast_entry_type type,
4553 			QDF_STATUS err,
4554 			bool is_peer_map)
4555 {
4556 }
4557 #endif
4558 
4559 #ifdef HTT_STATS_DEBUGFS_SUPPORT
4560 /**
4561  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4562  * debugfs for HTT stats
4563  * @pdev: dp pdev handle
4564  *
4565  * Return: QDF_STATUS
4566  */
4567 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
4568 
4569 /**
4570  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4571  * HTT stats
4572  * @pdev: dp pdev handle
4573  *
4574  * Return: none
4575  */
4576 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
4577 #else
4578 
4579 /**
4580  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4581  * debugfs for HTT stats
4582  * @pdev: dp pdev handle
4583  *
4584  * Return: QDF_STATUS
4585  */
4586 static inline QDF_STATUS
4587 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
4588 {
4589 	return QDF_STATUS_SUCCESS;
4590 }
4591 
4592 /**
4593  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4594  * HTT stats
4595  * @pdev: dp pdev handle
4596  *
4597  * Return: none
4598  */
4599 static inline void
4600 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
4601 {
4602 }
4603 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
4604 
4605 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4606 /**
4607  * dp_soc_swlm_attach() - attach the software latency manager resources
4608  * @soc: Datapath global soc handle
4609  *
4610  * Return: QDF_STATUS
4611  */
4612 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
4613 {
4614 	return QDF_STATUS_SUCCESS;
4615 }
4616 
4617 /**
4618  * dp_soc_swlm_detach() - detach the software latency manager resources
4619  * @soc: Datapath global soc handle
4620  *
4621  * Return: QDF_STATUS
4622  */
4623 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
4624 {
4625 	return QDF_STATUS_SUCCESS;
4626 }
4627 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4628 
4629 #ifndef WLAN_DP_PROFILE_SUPPORT
4630 static inline void wlan_dp_soc_cfg_sync_profile(struct cdp_soc_t *cdp_soc) {}
4631 
4632 static inline void wlan_dp_pdev_cfg_sync_profile(struct cdp_soc_t *cdp_soc,
4633 						 uint8_t pdev_id) {}
4634 #endif
4635 
4636 /**
4637  * dp_get_peer_id(): function to get peer id by mac
4638  * @soc: Datapath soc handle
4639  * @vdev_id: vdev id
4640  * @mac: Peer mac address
4641  *
4642  * Return: valid peer id on success
4643  *         HTT_INVALID_PEER on failure
4644  */
4645 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
4646 
4647 #ifdef QCA_SUPPORT_WDS_EXTENDED
4648 /**
4649  * dp_wds_ext_set_peer_rx(): function to set peer rx handler
4650  * @soc: Datapath soc handle
4651  * @vdev_id: vdev id
4652  * @mac: Peer mac address
4653  * @rx: rx function pointer
4654  * @osif_peer: OSIF peer handle
4655  *
4656  * Return: QDF_STATUS_SUCCESS on success
4657  *         QDF_STATUS_E_INVAL if peer is not found
4658  *         QDF_STATUS_E_ALREADY if rx is already set/unset
4659  */
4660 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
4661 				  uint8_t vdev_id,
4662 				  uint8_t *mac,
4663 				  ol_txrx_rx_fp rx,
4664 				  ol_osif_peer_handle osif_peer);
4665 
4666 /**
4667  * dp_wds_ext_get_peer_osif_handle(): function to get peer osif handle
4668  * @soc: Datapath soc handle
4669  * @vdev_id: vdev id
4670  * @mac: Peer mac address
4671  * @osif_peer: OSIF peer handle
4672  *
4673  * Return: QDF_STATUS_SUCCESS on success
4674  *         QDF_STATUS_E_INVAL if peer is not found
4675  */
4676 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
4677 				ol_txrx_soc_handle soc,
4678 				uint8_t vdev_id,
4679 				uint8_t *mac,
4680 				ol_osif_peer_handle *osif_peer);
4681 
4682 /**
4683  * dp_wds_ext_set_peer_bit(): function to set wds-ext peer bit
4684  * @soc: Datapath soc handle
4685  * @mac: Peer mac address
4686  *
4687  * Return: QDF_STATUS_SUCCESS on success
4688  *         QDF_STATUS_E_INVAL if peer is not found
4689  */
4690 QDF_STATUS dp_wds_ext_set_peer_bit(ol_txrx_soc_handle soc, uint8_t *mac);
4691 
4692 #endif /* QCA_SUPPORT_WDS_EXTENDED */
4693 
4694 #ifdef DP_MEM_PRE_ALLOC
4695 
4696 /**
4697  * dp_context_alloc_mem() - allocate memory for DP context
4698  * @soc: datapath soc handle
4699  * @ctxt_type: DP context type
4700  * @ctxt_size: DP context size
4701  *
4702  * Return: DP context address
4703  */
4704 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4705 			   size_t ctxt_size);
4706 
4707 /**
4708  * dp_context_free_mem() - Free memory of DP context
4709  * @soc: datapath soc handle
4710  * @ctxt_type: DP context type
4711  * @vaddr: Address of context memory
4712  *
4713  * Return: None
4714  */
4715 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4716 			 void *vaddr);
4717 
4718 /**
4719  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
4720  * @soc: datapath soc handle
4721  * @desc_type: memory request source type
4722  * @pages: multi page information storage
4723  * @element_size: each element size
4724  * @element_num: total number of elements should be allocated
4725  * @memctxt: memory context
4726  * @cacheable: coherent memory or cacheable memory
4727  *
4728  * This function is a wrapper for memory allocation over multiple
4729  * pages, if dp prealloc method is registered, then will try prealloc
4730  * firstly. if prealloc failed, fall back to regular way over
4731  * qdf_mem_multi_pages_alloc().
4732  *
4733  * Return: None
4734  */
4735 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4736 				   enum qdf_dp_desc_type desc_type,
4737 				   struct qdf_mem_multi_page_t *pages,
4738 				   size_t element_size,
4739 				   uint32_t element_num,
4740 				   qdf_dma_context_t memctxt,
4741 				   bool cacheable);
4742 
4743 /**
4744  * dp_desc_multi_pages_mem_free() - free multiple pages memory
4745  * @soc: datapath soc handle
4746  * @desc_type: memory request source type
4747  * @pages: multi page information storage
4748  * @memctxt: memory context
4749  * @cacheable: coherent memory or cacheable memory
4750  *
4751  * This function is a wrapper for multiple pages memory free,
4752  * if memory is got from prealloc pool, put it back to pool.
4753  * otherwise free by qdf_mem_multi_pages_free().
4754  *
4755  * Return: None
4756  */
4757 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4758 				  enum qdf_dp_desc_type desc_type,
4759 				  struct qdf_mem_multi_page_t *pages,
4760 				  qdf_dma_context_t memctxt,
4761 				  bool cacheable);
4762 
4763 #else
4764 static inline
4765 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4766 			   size_t ctxt_size)
4767 {
4768 	return qdf_mem_malloc(ctxt_size);
4769 }
4770 
4771 static inline
4772 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4773 			 void *vaddr)
4774 {
4775 	qdf_mem_free(vaddr);
4776 }
4777 
4778 static inline
4779 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4780 				   enum qdf_dp_desc_type desc_type,
4781 				   struct qdf_mem_multi_page_t *pages,
4782 				   size_t element_size,
4783 				   uint32_t element_num,
4784 				   qdf_dma_context_t memctxt,
4785 				   bool cacheable)
4786 {
4787 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
4788 				  element_num, memctxt, cacheable);
4789 }
4790 
4791 static inline
4792 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4793 				  enum qdf_dp_desc_type desc_type,
4794 				  struct qdf_mem_multi_page_t *pages,
4795 				  qdf_dma_context_t memctxt,
4796 				  bool cacheable)
4797 {
4798 	qdf_mem_multi_pages_free(soc->osdev, pages,
4799 				 memctxt, cacheable);
4800 }
4801 #endif
4802 
4803 /**
4804  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
4805  *					  history.
4806  * @index: atomic index
4807  * @num_entries_per_slot: Number of entries per slot
4808  * @allocated: is allocated or not
4809  * @entry: pointers to array of records
4810  */
4811 struct dp_frag_history_opaque_atomic {
4812 	qdf_atomic_t index;
4813 	uint16_t num_entries_per_slot;
4814 	uint16_t allocated;
4815 	void *entry[0];
4816 };
4817 
4818 static inline QDF_STATUS
4819 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
4820 			   uint32_t max_slots, uint32_t max_entries_per_slot,
4821 			   uint32_t entry_size,
4822 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
4823 {
4824 	struct dp_frag_history_opaque_atomic *history =
4825 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4826 	size_t alloc_size = max_entries_per_slot * entry_size;
4827 	int i;
4828 
4829 	for (i = 0; i < max_slots; i++) {
4830 		if (attempt_prealloc)
4831 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
4832 								 alloc_size);
4833 		else
4834 			history->entry[i] = qdf_mem_malloc(alloc_size);
4835 
4836 		if (!history->entry[i])
4837 			goto exit;
4838 	}
4839 
4840 	qdf_atomic_init(&history->index);
4841 	history->allocated = 1;
4842 	history->num_entries_per_slot = max_entries_per_slot;
4843 
4844 	return QDF_STATUS_SUCCESS;
4845 exit:
4846 	for (i = i - 1; i >= 0; i--) {
4847 		if (attempt_prealloc)
4848 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4849 		else
4850 			qdf_mem_free(history->entry[i]);
4851 	}
4852 
4853 	return QDF_STATUS_E_NOMEM;
4854 }
4855 
4856 static inline
4857 void dp_soc_frag_history_detach(struct dp_soc *soc,
4858 				void *history_hdl, uint32_t max_slots,
4859 				bool attempt_prealloc,
4860 				enum dp_ctxt_type ctxt_type)
4861 {
4862 	struct dp_frag_history_opaque_atomic *history =
4863 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4864 	int i;
4865 
4866 	for (i = 0; i < max_slots; i++) {
4867 		if (attempt_prealloc)
4868 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4869 		else
4870 			qdf_mem_free(history->entry[i]);
4871 	}
4872 
4873 	history->allocated = 0;
4874 }
4875 
4876 /**
4877  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
4878  *					entry in a fragmented history with
4879  *					index being atomic.
4880  * @curr_idx: address of the current index where the last entry was written
4881  * @next_idx: pointer to update the next index
4882  * @slot: pointer to update the history slot to be selected
4883  * @slot_shift: BITwise shift mask for slot (in index)
4884  * @max_entries_per_slot: Max number of entries in a slot of history
4885  * @max_entries: Total number of entries in the history (sum of all slots)
4886  *
4887  * This function assumes that the "max_entries_per_slot" and "max_entries"
4888  * are a power-of-2.
4889  *
4890  * Return: None
4891  */
4892 static inline void
4893 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
4894 				 uint16_t *slot, uint32_t slot_shift,
4895 				 uint32_t max_entries_per_slot,
4896 				 uint32_t max_entries)
4897 {
4898 	uint32_t idx;
4899 
4900 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
4901 
4902 	*slot = idx >> slot_shift;
4903 	*next_idx = idx & (max_entries_per_slot - 1);
4904 }
4905 
4906 #ifdef FEATURE_RUNTIME_PM
4907 /**
4908  * dp_runtime_get() - Get dp runtime refcount
4909  * @soc: Datapath soc handle
4910  *
4911  * Get dp runtime refcount by increment of an atomic variable, which can block
4912  * dp runtime resume to wait to flush pending tx by runtime suspend.
4913  *
4914  * Return: Current refcount
4915  */
4916 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4917 {
4918 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
4919 }
4920 
4921 /**
4922  * dp_runtime_put() - Return dp runtime refcount
4923  * @soc: Datapath soc handle
4924  *
4925  * Return dp runtime refcount by decrement of an atomic variable, allow dp
4926  * runtime resume finish.
4927  *
4928  * Return: Current refcount
4929  */
4930 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4931 {
4932 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
4933 }
4934 
4935 /**
4936  * dp_runtime_get_refcount() - Get dp runtime refcount
4937  * @soc: Datapath soc handle
4938  *
4939  * Get dp runtime refcount by returning an atomic variable
4940  *
4941  * Return: Current refcount
4942  */
4943 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
4944 {
4945 	return qdf_atomic_read(&soc->dp_runtime_refcount);
4946 }
4947 
4948 /**
4949  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
4950  * @soc: Datapath soc handle
4951  *
4952  * Return: QDF_STATUS
4953  */
4954 static inline void dp_runtime_init(struct dp_soc *soc)
4955 {
4956 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
4957 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
4958 	qdf_atomic_init(&soc->dp_runtime_refcount);
4959 }
4960 
4961 /**
4962  * dp_runtime_deinit() - Deinit DP related runtime PM clients
4963  *
4964  * Return: None
4965  */
4966 static inline void dp_runtime_deinit(void)
4967 {
4968 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
4969 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
4970 }
4971 
4972 /**
4973  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
4974  * @soc: Datapath soc handle
4975  *
4976  * Return: None
4977  */
4978 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4979 {
4980 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
4981 
4982 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4983 }
4984 #else
4985 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4986 {
4987 	return 0;
4988 }
4989 
4990 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4991 {
4992 	return 0;
4993 }
4994 
4995 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4996 {
4997 	return QDF_STATUS_SUCCESS;
4998 }
4999 
5000 static inline void dp_runtime_deinit(void)
5001 {
5002 }
5003 
5004 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
5005 {
5006 }
5007 #endif
5008 
5009 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
5010 {
5011 	if (soc->cdp_soc.ol_ops->get_con_mode)
5012 		return soc->cdp_soc.ol_ops->get_con_mode();
5013 
5014 	return QDF_GLOBAL_MAX_MODE;
5015 }
5016 
5017 /**
5018  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
5019  *				processing
5020  * @pdev: Datapath PDEV handle
5021  *
5022  */
5023 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
5024 
5025 /**
5026  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
5027  *				processing
5028  * @pdev: Datapath PDEV handle
5029  *
5030  * Return: QDF_STATUS_SUCCESS: Success
5031  *         QDF_STATUS_E_NOMEM: Error
5032  */
5033 
5034 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
5035 
5036 /**
5037  * dp_peer_flush_frags() - Flush all fragments for a particular
5038  *  peer
5039  * @soc_hdl: data path soc handle
5040  * @vdev_id: vdev id
5041  * @peer_mac: peer mac address
5042  *
5043  * Return: None
5044  */
5045 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5046 			 uint8_t *peer_mac);
5047 
5048 /**
5049  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
5050  * @soc: pointer to dp_soc handle
5051  *
5052  * Return:
5053  */
5054 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
5055 
5056 /**
5057  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
5058  * @soc_hdl: soc handle
5059  * @soc_stats: buffer to hold the values
5060  *
5061  * Return: QDF_STATUS_SUCCESS: Success
5062  *         QDF_STATUS_E_FAILURE: Error
5063  */
5064 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
5065 				 struct cdp_soc_stats *soc_stats);
5066 
5067 /**
5068  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
5069  * @soc_hdl: soc handle
5070  * @vdev_id: id of vdev handle
5071  * @peer_mac: mac of DP_PEER handle
5072  * @delay_stats: pointer to delay stats array
5073  *
5074  * Return: QDF_STATUS_SUCCESS: Success
5075  *         QDF_STATUS_E_FAILURE: Error
5076  */
5077 QDF_STATUS
5078 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
5079 			     uint8_t *peer_mac,
5080 			     struct cdp_delay_tid_stats *delay_stats);
5081 
5082 /**
5083  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
5084  * @soc_hdl: soc handle
5085  * @pdev_id: id of pdev handle
5086  * @vdev_id: id of vdev handle
5087  * @peer_mac: mac of DP_PEER handle
5088  * @tid_stats: pointer to jitter stats array
5089  *
5090  * Return: QDF_STATUS_SUCCESS: Success
5091  *         QDF_STATUS_E_FAILURE: Error
5092  */
5093 QDF_STATUS
5094 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5095 			      uint8_t vdev_id, uint8_t *peer_mac,
5096 			      struct cdp_peer_tid_stats *tid_stats);
5097 
5098 /**
5099  * dp_peer_get_tx_capture_stats() - to get peer Tx Capture stats
5100  * @soc_hdl: soc handle
5101  * @vdev_id: id of vdev handle
5102  * @peer_mac: mac of DP_PEER handle
5103  * @stats: pointer to peer tx capture stats
5104  *
5105  * Return: QDF_STATUS_SUCCESS: Success
5106  *         QDF_STATUS_E_FAILURE: Error
5107  */
5108 QDF_STATUS
5109 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
5110 			     uint8_t vdev_id, uint8_t *peer_mac,
5111 			     struct cdp_peer_tx_capture_stats *stats);
5112 
5113 /**
5114  * dp_pdev_get_tx_capture_stats() - to get pdev Tx Capture stats
5115  * @soc_hdl: soc handle
5116  * @pdev_id: id of pdev handle
5117  * @stats: pointer to pdev tx capture stats
5118  *
5119  * Return: QDF_STATUS_SUCCESS: Success
5120  *         QDF_STATUS_E_FAILURE: Error
5121  */
5122 QDF_STATUS
5123 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5124 			     struct cdp_pdev_tx_capture_stats *stats);
5125 
5126 #ifdef HW_TX_DELAY_STATS_ENABLE
5127 /**
5128  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
5129  *  is enabled for vdev
5130  * @vdev: dp vdev
5131  *
5132  * Return: true if tx delay stats is enabled for vdev else false
5133  */
5134 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
5135 {
5136 	return vdev->hw_tx_delay_stats_enabled;
5137 }
5138 
5139 /**
5140  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
5141  *  for pdev
5142  * @soc: dp soc
5143  *
5144  * Return: None
5145  */
5146 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
5147 
5148 /**
5149  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
5150  * @soc: soc handle
5151  *
5152  * Return: None
5153  */
5154 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
5155 #else
5156 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
5157 {
5158 	return 0;
5159 }
5160 
5161 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
5162 {
5163 }
5164 
5165 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
5166 {
5167 }
5168 #endif
5169 
5170 static inline void
5171 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
5172 {
5173 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
5174 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
5175 			      LRO_IPV4_SEED_ARR_SZ));
5176 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
5177 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
5178 			      LRO_IPV6_SEED_ARR_SZ));
5179 }
5180 
5181 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
5182 /**
5183  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
5184  * @soc_hdl: soc handle
5185  * @pdev_id: id of pdev handle
5186  * @stats: pointer to pdev telemetry stats
5187  *
5188  * Return: QDF_STATUS_SUCCESS: Success
5189  *         QDF_STATUS_E_FAILURE: Error
5190  */
5191 QDF_STATUS
5192 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5193 			    struct cdp_pdev_telemetry_stats *stats);
5194 
5195 /**
5196  * dp_get_peer_telemetry_stats() - API to get peer telemetry stats
5197  * @soc_hdl: soc handle
5198  * @addr: peer mac
5199  * @stats: pointer to peer telemetry stats
5200  *
5201  * Return: QDF_STATUS_SUCCESS: Success
5202  *         QDF_STATUS_E_FAILURE: Error
5203  */
5204 QDF_STATUS
5205 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
5206 			    struct cdp_peer_telemetry_stats *stats);
5207 
5208 /**
5209  * dp_get_peer_deter_stats() - API to get peer deterministic stats
5210  * @soc_hdl: soc handle
5211  * @vdev_id: id of vdev handle
5212  * @addr: peer mac
5213  * @stats: pointer to peer deterministic stats
5214  *
5215  * Return: QDF_STATUS_SUCCESS: Success
5216  *         QDF_STATUS_E_FAILURE: Error
5217  */
5218 QDF_STATUS
5219 dp_get_peer_deter_stats(struct cdp_soc_t *soc_hdl,
5220 			uint8_t vdev_id,
5221 			uint8_t *addr,
5222 			struct cdp_peer_deter_stats *stats);
5223 
5224 /**
5225  * dp_get_pdev_deter_stats() - API to get pdev deterministic stats
5226  * @soc_hdl: soc handle
5227  * @pdev_id: id of pdev handle
5228  * @stats: pointer to pdev deterministic stats
5229  *
5230  * Return: QDF_STATUS_SUCCESS: Success
5231  *         QDF_STATUS_E_FAILURE: Error
5232  */
5233 QDF_STATUS
5234 dp_get_pdev_deter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5235 			struct cdp_pdev_deter_stats *stats);
5236 
5237 /**
5238  * dp_update_pdev_chan_util_stats() - API to update channel utilization stats
5239  * @soc_hdl: soc handle
5240  * @pdev_id: id of pdev handle
5241  * @ch_util: Pointer to channel util stats
5242  *
5243  * Return: QDF_STATUS_SUCCESS: Success
5244  *         QDF_STATUS_E_FAILURE: Error
5245  */
5246 QDF_STATUS
5247 dp_update_pdev_chan_util_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
5248 			       struct cdp_pdev_chan_util_stats *ch_util);
5249 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
5250 
5251 #ifdef CONNECTIVITY_PKTLOG
5252 /**
5253  * dp_tx_send_pktlog() - send tx packet log
5254  * @soc: soc handle
5255  * @pdev: pdev handle
5256  * @tx_desc: TX software descriptor
5257  * @nbuf: nbuf
5258  * @status: status of tx packet
5259  *
5260  * This function is used to send tx packet for logging
5261  *
5262  * Return: None
5263  *
5264  */
5265 static inline
5266 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5267 		       struct dp_tx_desc_s *tx_desc,
5268 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5269 {
5270 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
5271 
5272 	if (qdf_unlikely(packetdump_cb) &&
5273 	    dp_tx_frm_std == tx_desc->frm_type) {
5274 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5275 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
5276 	}
5277 }
5278 
5279 /**
5280  * dp_rx_send_pktlog() - send rx packet log
5281  * @soc: soc handle
5282  * @pdev: pdev handle
5283  * @nbuf: nbuf
5284  * @status: status of rx packet
5285  *
5286  * This function is used to send rx packet for logging
5287  *
5288  * Return: None
5289  *
5290  */
5291 static inline
5292 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5293 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5294 {
5295 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5296 
5297 	if (qdf_unlikely(packetdump_cb)) {
5298 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5299 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5300 			      nbuf, status, QDF_RX_DATA_PKT);
5301 	}
5302 }
5303 
5304 /**
5305  * dp_rx_err_send_pktlog() - send rx error packet log
5306  * @soc: soc handle
5307  * @pdev: pdev handle
5308  * @mpdu_desc_info: MPDU descriptor info
5309  * @nbuf: nbuf
5310  * @status: status of rx packet
5311  * @set_pktlen: weither to set packet length
5312  *
5313  * This API should only be called when we have not removed
5314  * Rx TLV from head, and head is pointing to rx_tlv
5315  *
5316  * This function is used to send rx packet from error path
5317  * for logging for which rx packet tlv is not removed.
5318  *
5319  * Return: None
5320  *
5321  */
5322 static inline
5323 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5324 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5325 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5326 			   bool set_pktlen)
5327 {
5328 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5329 	qdf_size_t skip_size;
5330 	uint16_t msdu_len, nbuf_len;
5331 	uint8_t *rx_tlv_hdr;
5332 	struct hal_rx_msdu_metadata msdu_metadata;
5333 	uint16_t buf_size;
5334 
5335 	buf_size = wlan_cfg_rx_buffer_size(soc->wlan_cfg_ctx);
5336 
5337 	if (qdf_unlikely(packetdump_cb)) {
5338 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
5339 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
5340 							  rx_tlv_hdr);
5341 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
5342 					 &msdu_metadata);
5343 
5344 		if (mpdu_desc_info->bar_frame ||
5345 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
5346 			skip_size = soc->rx_pkt_tlv_size;
5347 		else
5348 			skip_size = soc->rx_pkt_tlv_size +
5349 					msdu_metadata.l3_hdr_pad;
5350 
5351 		if (set_pktlen) {
5352 			msdu_len = nbuf_len + skip_size;
5353 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len, buf_size));
5354 		}
5355 
5356 		qdf_nbuf_pull_head(nbuf, skip_size);
5357 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5358 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5359 			      nbuf, status, QDF_RX_DATA_PKT);
5360 		qdf_nbuf_push_head(nbuf, skip_size);
5361 	}
5362 }
5363 
5364 #else
5365 static inline
5366 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5367 		       struct dp_tx_desc_s *tx_desc,
5368 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5369 {
5370 }
5371 
5372 static inline
5373 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5374 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5375 {
5376 }
5377 
5378 static inline
5379 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5380 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5381 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5382 			   bool set_pktlen)
5383 {
5384 }
5385 #endif
5386 
5387 /**
5388  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
5389  * @soc  : Data path soc handle
5390  * @pdev : PDEV handle
5391  *
5392  * Return: None
5393  */
5394 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
5395 
5396 #ifdef FEATURE_DIRECT_LINK
5397 /**
5398  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
5399  * @soc_hdl: DP SOC handle
5400  * @pdev_id: pdev id
5401  *
5402  * Return: Handle to SRNG
5403  */
5404 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5405 						 uint8_t pdev_id);
5406 
5407 /**
5408  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
5409  *  pdev
5410  * @soc_hdl: DP SOC handle
5411  * @pdev_id: pdev id
5412  *
5413  * Return: None
5414  */
5415 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5416 					uint8_t pdev_id);
5417 #else
5418 static inline
5419 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5420 						 uint8_t pdev_id)
5421 {
5422 	return NULL;
5423 }
5424 
5425 static inline
5426 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5427 					uint8_t pdev_id)
5428 {
5429 }
5430 #endif
5431 
5432 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
5433 static inline
5434 void dp_cfg_event_record(struct dp_soc *soc,
5435 			 enum dp_cfg_event_type event,
5436 			 union dp_cfg_event_desc *cfg_event_desc)
5437 {
5438 	struct dp_cfg_event_history *cfg_event_history =
5439 						&soc->cfg_event_history;
5440 	struct dp_cfg_event *entry;
5441 	uint32_t idx;
5442 	uint16_t slot;
5443 
5444 	dp_get_frag_hist_next_atomic_idx(&cfg_event_history->index, &idx,
5445 					 &slot,
5446 					 DP_CFG_EVT_HIST_SLOT_SHIFT,
5447 					 DP_CFG_EVT_HIST_PER_SLOT_MAX,
5448 					 DP_CFG_EVT_HISTORY_SIZE);
5449 
5450 	entry = &cfg_event_history->entry[slot][idx];
5451 
5452 	entry->timestamp = qdf_get_log_timestamp();
5453 	entry->type = event;
5454 	qdf_mem_copy(&entry->event_desc, cfg_event_desc,
5455 		     sizeof(entry->event_desc));
5456 }
5457 
5458 static inline void
5459 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5460 			     struct dp_vdev *vdev)
5461 {
5462 	union dp_cfg_event_desc cfg_evt_desc = {0};
5463 	struct dp_vdev_attach_detach_desc *vdev_evt =
5464 						&cfg_evt_desc.vdev_evt;
5465 
5466 	if (qdf_unlikely(event != DP_CFG_EVENT_VDEV_ATTACH &&
5467 			 event != DP_CFG_EVENT_VDEV_UNREF_DEL &&
5468 			 event != DP_CFG_EVENT_VDEV_DETACH)) {
5469 		qdf_assert_always(0);
5470 		return;
5471 	}
5472 
5473 	vdev_evt->vdev = vdev;
5474 	vdev_evt->vdev_id = vdev->vdev_id;
5475 	vdev_evt->ref_count = qdf_atomic_read(&vdev->ref_cnt);
5476 	vdev_evt->mac_addr = vdev->mac_addr;
5477 
5478 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5479 }
5480 
5481 static inline void
5482 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5483 			     struct dp_peer *peer, struct dp_vdev *vdev,
5484 			     uint8_t is_reuse)
5485 {
5486 	union dp_cfg_event_desc cfg_evt_desc = {0};
5487 	struct dp_peer_cmn_ops_desc *peer_evt = &cfg_evt_desc.peer_cmn_evt;
5488 
5489 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_CREATE &&
5490 			 event != DP_CFG_EVENT_PEER_DELETE &&
5491 			 event != DP_CFG_EVENT_PEER_UNREF_DEL)) {
5492 		qdf_assert_always(0);
5493 		return;
5494 	}
5495 
5496 	peer_evt->peer = peer;
5497 	peer_evt->vdev = vdev;
5498 	peer_evt->vdev_id = vdev->vdev_id;
5499 	peer_evt->is_reuse = is_reuse;
5500 	peer_evt->peer_ref_count = qdf_atomic_read(&peer->ref_cnt);
5501 	peer_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5502 	peer_evt->mac_addr = peer->mac_addr;
5503 	peer_evt->vdev_mac_addr = vdev->mac_addr;
5504 
5505 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5506 }
5507 
5508 static inline void
5509 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5510 					enum dp_cfg_event_type event,
5511 					struct dp_peer *mld_peer,
5512 					struct dp_peer *link_peer,
5513 					uint8_t idx, uint8_t result)
5514 {
5515 	union dp_cfg_event_desc cfg_evt_desc = {0};
5516 	struct dp_mlo_add_del_link_desc *mlo_link_delink_evt =
5517 					&cfg_evt_desc.mlo_link_delink_evt;
5518 
5519 	if (qdf_unlikely(event != DP_CFG_EVENT_MLO_ADD_LINK &&
5520 			 event != DP_CFG_EVENT_MLO_DEL_LINK)) {
5521 		qdf_assert_always(0);
5522 		return;
5523 	}
5524 
5525 	mlo_link_delink_evt->link_peer = link_peer;
5526 	mlo_link_delink_evt->mld_peer = mld_peer;
5527 	mlo_link_delink_evt->link_mac_addr = link_peer->mac_addr;
5528 	mlo_link_delink_evt->mld_mac_addr = mld_peer->mac_addr;
5529 	mlo_link_delink_evt->num_links = mld_peer->num_links;
5530 	mlo_link_delink_evt->action_result = result;
5531 	mlo_link_delink_evt->idx = idx;
5532 
5533 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5534 }
5535 
5536 static inline void
5537 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5538 					      struct dp_peer *mld_peer,
5539 					      struct dp_vdev *prev_vdev,
5540 					      struct dp_vdev *new_vdev)
5541 {
5542 	union dp_cfg_event_desc cfg_evt_desc = {0};
5543 	struct dp_mlo_setup_vdev_update_desc *vdev_update_evt =
5544 					&cfg_evt_desc.mlo_setup_vdev_update;
5545 
5546 	vdev_update_evt->mld_peer = mld_peer;
5547 	vdev_update_evt->prev_vdev = prev_vdev;
5548 	vdev_update_evt->new_vdev = new_vdev;
5549 
5550 	dp_cfg_event_record(soc, DP_CFG_EVENT_MLO_SETUP_VDEV_UPDATE,
5551 			    &cfg_evt_desc);
5552 }
5553 
5554 static inline void
5555 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5556 				       enum dp_cfg_event_type event,
5557 				       struct dp_peer *peer,
5558 				       uint8_t *mac_addr,
5559 				       uint8_t is_ml_peer,
5560 				       uint16_t peer_id, uint16_t ml_peer_id,
5561 				       uint16_t hw_peer_id, uint8_t vdev_id)
5562 {
5563 	union dp_cfg_event_desc cfg_evt_desc = {0};
5564 	struct dp_rx_peer_map_unmap_desc *peer_map_unmap_evt =
5565 					&cfg_evt_desc.peer_map_unmap_evt;
5566 
5567 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_MAP &&
5568 			 event != DP_CFG_EVENT_PEER_UNMAP &&
5569 			 event != DP_CFG_EVENT_MLO_PEER_MAP &&
5570 			 event != DP_CFG_EVENT_MLO_PEER_UNMAP)) {
5571 		qdf_assert_always(0);
5572 		return;
5573 	}
5574 
5575 	peer_map_unmap_evt->peer_id = peer_id;
5576 	peer_map_unmap_evt->ml_peer_id = ml_peer_id;
5577 	peer_map_unmap_evt->hw_peer_id = hw_peer_id;
5578 	peer_map_unmap_evt->vdev_id = vdev_id;
5579 	/* Peer may be NULL at times, but its not an issue. */
5580 	peer_map_unmap_evt->peer = peer;
5581 	peer_map_unmap_evt->is_ml_peer = is_ml_peer;
5582 	qdf_mem_copy(&peer_map_unmap_evt->mac_addr.raw, mac_addr,
5583 		     QDF_MAC_ADDR_SIZE);
5584 
5585 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5586 }
5587 
5588 static inline void
5589 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5590 				   enum dp_cfg_event_type event,
5591 				   struct dp_peer *peer,
5592 				   struct dp_vdev *vdev,
5593 				   uint8_t vdev_id,
5594 				   struct cdp_peer_setup_info *peer_setup_info)
5595 {
5596 	union dp_cfg_event_desc cfg_evt_desc = {0};
5597 	struct dp_peer_setup_desc *peer_setup_evt =
5598 					&cfg_evt_desc.peer_setup_evt;
5599 
5600 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_SETUP &&
5601 			 event != DP_CFG_EVENT_MLO_SETUP)) {
5602 		qdf_assert_always(0);
5603 		return;
5604 	}
5605 
5606 	peer_setup_evt->peer = peer;
5607 	peer_setup_evt->vdev = vdev;
5608 	if (vdev)
5609 		peer_setup_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5610 	peer_setup_evt->mac_addr = peer->mac_addr;
5611 	peer_setup_evt->vdev_id = vdev_id;
5612 	if (peer_setup_info) {
5613 		peer_setup_evt->is_first_link = peer_setup_info->is_first_link;
5614 		peer_setup_evt->is_primary_link = peer_setup_info->is_primary_link;
5615 		qdf_mem_copy(peer_setup_evt->mld_mac_addr.raw,
5616 			     peer_setup_info->mld_peer_mac,
5617 			     QDF_MAC_ADDR_SIZE);
5618 	}
5619 
5620 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5621 }
5622 #else
5623 
5624 static inline void
5625 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5626 			     struct dp_vdev *vdev)
5627 {
5628 }
5629 
5630 static inline void
5631 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5632 			     struct dp_peer *peer, struct dp_vdev *vdev,
5633 			     uint8_t is_reuse)
5634 {
5635 }
5636 
5637 static inline void
5638 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5639 					enum dp_cfg_event_type event,
5640 					struct dp_peer *mld_peer,
5641 					struct dp_peer *link_peer,
5642 					uint8_t idx, uint8_t result)
5643 {
5644 }
5645 
5646 static inline void
5647 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5648 					      struct dp_peer *mld_peer,
5649 					      struct dp_vdev *prev_vdev,
5650 					      struct dp_vdev *new_vdev)
5651 {
5652 }
5653 
5654 static inline void
5655 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5656 				       enum dp_cfg_event_type event,
5657 				       struct dp_peer *peer,
5658 				       uint8_t *mac_addr,
5659 				       uint8_t is_ml_peer,
5660 				       uint16_t peer_id, uint16_t ml_peer_id,
5661 				       uint16_t hw_peer_id, uint8_t vdev_id)
5662 {
5663 }
5664 
5665 static inline void
5666 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5667 				   enum dp_cfg_event_type event,
5668 				   struct dp_peer *peer,
5669 				   struct dp_vdev *vdev,
5670 				   uint8_t vdev_id,
5671 				   struct cdp_peer_setup_info *peer_setup_info)
5672 {
5673 }
5674 #endif
5675 
5676 #ifndef WLAN_SOFTUMAC_SUPPORT
5677 /**
5678  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
5679  * @txrx_soc: DP SOC handle
5680  *
5681  * Return: none
5682  */
5683 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
5684 #endif
5685 
5686 /**
5687  * dp_get_peer_stats()- Get peer stats
5688  * @peer: Datapath peer
5689  * @peer_stats: buffer for peer stats
5690  *
5691  * Return: none
5692  */
5693 void dp_get_peer_stats(struct dp_peer *peer,
5694 		       struct cdp_peer_stats *peer_stats);
5695 
5696 /**
5697  * dp_get_per_link_peer_stats()- Get per link peer stats
5698  * @peer: Datapath peer
5699  * @peer_stats: buffer for peer stats
5700  * @peer_type: Peer type
5701  * @num_link: Number of ML links
5702  *
5703  * Return: status success/failure
5704  */
5705 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
5706 				      struct cdp_peer_stats *peer_stats,
5707 				      enum cdp_peer_type peer_type,
5708 				      uint8_t num_link);
5709 /**
5710  * dp_get_peer_hw_link_id() - get peer hardware link id
5711  * @soc: soc handle
5712  * @pdev: data path pdev
5713  *
5714  * Return: link_id
5715  */
5716 static inline int
5717 dp_get_peer_hw_link_id(struct dp_soc *soc,
5718 		       struct dp_pdev *pdev)
5719 {
5720 	if (wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx))
5721 		return ((soc->arch_ops.get_hw_link_id(pdev)) + 1);
5722 
5723 	return 0;
5724 }
5725 
5726 #ifdef QCA_MULTIPASS_SUPPORT
5727 /**
5728  * dp_tx_remove_vlan_tag() - Remove 4 bytes of vlan tag
5729  * @vdev: DP vdev handle
5730  * @nbuf: network buffer
5731  *
5732  * Return: void
5733  */
5734 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf);
5735 #endif
5736 
5737 /**
5738  * dp_print_per_link_stats() - Print per link peer stats.
5739  * @soc_hdl: soc handle.
5740  * @vdev_id: vdev_id.
5741  *
5742  * Return: None.
5743  */
5744 void dp_print_per_link_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id);
5745 
5746 /**
5747  * dp_get_ring_stats_from_hal(): get hal level ring pointer values
5748  * @soc: DP_SOC handle
5749  * @srng: DP_SRNG handle
5750  * @ring_type: srng src/dst ring
5751  * @_tailp: pointer to tail of ring
5752  * @_headp: pointer to head of ring
5753  * @_hw_headp: pointer to head of ring in HW
5754  * @_hw_tailp: pointer to tail of ring in HW
5755  *
5756  * Return: void
5757  */
5758 static inline void
5759 dp_get_ring_stats_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
5760 			   enum hal_ring_type ring_type,
5761 			   uint32_t *_tailp, uint32_t *_headp,
5762 			   int32_t *_hw_headp, int32_t *_hw_tailp)
5763 {
5764 	uint32_t tailp;
5765 	uint32_t headp;
5766 	int32_t hw_headp = -1;
5767 	int32_t hw_tailp = -1;
5768 	struct hal_soc *hal_soc;
5769 
5770 	if (soc && srng && srng->hal_srng) {
5771 		hal_soc = (struct hal_soc *)soc->hal_soc;
5772 		hal_get_sw_hptp(soc->hal_soc, srng->hal_srng, &tailp, &headp);
5773 		*_headp = headp;
5774 		*_tailp = tailp;
5775 
5776 		hal_get_hw_hptp(soc->hal_soc, srng->hal_srng, &hw_headp,
5777 				&hw_tailp, ring_type);
5778 		*_hw_headp = hw_headp;
5779 		*_hw_tailp = hw_tailp;
5780 	}
5781 }
5782 
5783 /**
5784  * dp_update_vdev_be_basic_stats() - Update vdev basic stats
5785  * @txrx_peer: DP txrx_peer handle
5786  * @tgtobj: Pointer to buffer for be vdev stats
5787  *
5788  * Return: None
5789  */
5790 void dp_update_vdev_be_basic_stats(struct dp_txrx_peer *txrx_peer,
5791 				   struct dp_vdev_stats *tgtobj);
5792 
5793 /**
5794  * dp_update_vdev_basic_stats() - Update vdev basic stats
5795  * @txrx_peer: DP txrx_peer handle
5796  * @tgtobj: Pointer to buffer for vdev stats
5797  *
5798  * Return: None
5799  */
5800 void dp_update_vdev_basic_stats(struct dp_txrx_peer *txrx_peer,
5801 				struct cdp_vdev_stats *tgtobj);
5802 
5803 /**
5804  * dp_get_vdev_stats_for_unmap_peer_legacy() - Update vdev basic stats
5805  * @vdev: vdev associated with the peer
5806  * @peer: unmapped peer
5807  *
5808  * Return: None
5809  */
5810 void dp_get_vdev_stats_for_unmap_peer_legacy(struct dp_vdev *vdev,
5811 					     struct dp_peer *peer);
5812 
5813 #ifdef WLAN_FEATURE_TX_LATENCY_STATS
5814 /**
5815  * dp_h2t_tx_latency_stats_cfg_msg_send(): send HTT message for tx latency
5816  * stats config to FW
5817  * @dp_soc: DP SOC handle
5818  * @vdev_id: vdev id
5819  * @enable: indicates enablement of the feature
5820  * @period: statistical period for transmit latency in terms of ms
5821  * @granularity: granularity for tx latency distribution
5822  *
5823  * return: QDF STATUS
5824  */
5825 QDF_STATUS
5826 dp_h2t_tx_latency_stats_cfg_msg_send(struct dp_soc *dp_soc, uint16_t vdev_id,
5827 				     bool enable, uint32_t period,
5828 				     uint32_t granularity);
5829 
5830 /**
5831  * dp_tx_latency_stats_update_cca() - update transmit latency statistics for
5832  * CCA
5833  * @soc: dp soc handle
5834  * @peer_id: peer id
5835  * @granularity: granularity of distribution
5836  * @distribution: distribution of transmit latency statistics
5837  * @avg: average of CCA latency(in microseconds) within a cycle
5838  *
5839  * Return: None
5840  */
5841 void
5842 dp_tx_latency_stats_update_cca(struct dp_soc *soc, uint16_t peer_id,
5843 			       uint32_t granularity, uint32_t *distribution,
5844 			       uint32_t avg);
5845 
5846 /**
5847  * dp_tx_latency_stats_report() - report transmit latency statistics for each
5848  * vdev of specified pdev
5849  * @soc: dp soc handle
5850  * @pdev: dp pdev Handle
5851  *
5852  * Return: None
5853  */
5854 void dp_tx_latency_stats_report(struct dp_soc *soc, struct dp_pdev *pdev);
5855 #endif
5856 #ifdef WLAN_FEATURE_SSR_DRIVER_DUMP
5857 /**
5858  * dp_ssr_dump_srng_register() - Register DP ring with SSR dump.
5859  * @region_name: ring name to register.
5860  * @srng: dp srng handler.
5861  * @num: Ring number
5862  *
5863  * num = -1. If there is only single ring
5864  * num = ring number. If there are multiple rings pass ring number.
5865  *	e.g. in case of REO pass reo number (0..n).
5866  *
5867  * Return: None.
5868  */
5869 void
5870 dp_ssr_dump_srng_register(char *region_name, struct dp_srng *srng, int num);
5871 
5872 /**
5873  * dp_ssr_dump_srng_unregister() - Unegister DP ring with SSR dump.
5874  * @region_name: ring name to unregister.
5875  * @num: Ring number
5876  *
5877  * num = -1. If there is only single ring
5878  * num = ring number. If there are multiple rings pass ring number.
5879  *      e.g. in case of REO pass reo number (0..n).
5880  *
5881  * Return: None.
5882  */
5883 void dp_ssr_dump_srng_unregister(char *region_name, int num);
5884 
5885 /**
5886  * dp_ssr_dump_pdev_register() - Register DP Pdev with SSR dump.
5887  * @pdev: Pdev handle to register.
5888  * @pdev_id: Pdev ID.
5889  *
5890  * Return: None.
5891  */
5892 void dp_ssr_dump_pdev_register(struct dp_pdev *pdev, uint8_t pdev_id);
5893 
5894 /**
5895  * dp_ssr_dump_pdev_unregister() - Unregister DP Pdev with SSR dump.
5896  * @pdev_id: Pdev ID.
5897  *
5898  * Return: None.
5899  */
5900 void dp_ssr_dump_pdev_unregister(uint8_t pdev_id);
5901 #else
5902 static inline
5903 void dp_ssr_dump_srng_register(char *region_name, struct dp_srng *srng, int num)
5904 {
5905 }
5906 
5907 static inline
5908 void dp_ssr_dump_srng_unregister(char *region_name, int num)
5909 {
5910 }
5911 
5912 static inline
5913 void dp_ssr_dump_pdev_register(struct dp_pdev *pdev, uint8_t pdev_id)
5914 {
5915 }
5916 
5917 static inline
5918 void dp_ssr_dump_pdev_unregister(uint8_t pdev_id)
5919 {
5920 }
5921 #endif
5922 
5923 /**
5924  * dp_get_peer_vdev_roaming_in_progress() - Check if peer's vdev is in roaming
5925  *					    state.
5926  * @peer: DP peer handle
5927  *
5928  * Return: true if the peer's vdev is in roaming state
5929  *	   else false.
5930  */
5931 bool dp_get_peer_vdev_roaming_in_progress(struct dp_peer *peer);
5932 
5933 #endif /* #ifndef _DP_INTERNAL_H_ */
5934