xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 901120c066e139c7f8a2c8e4820561fdd83c67ef)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 
26 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
27 
28 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
29 
30 #define DP_BLOCKMEM_SIZE 4096
31 
32 /* Alignment for consistent memory for DP rings*/
33 #define DP_RING_BASE_ALIGN 32
34 
35 #define DP_RSSI_INVAL 0x80
36 #define DP_RSSI_AVG_WEIGHT 2
37 /*
38  * Formula to derive avg_rssi is taken from wifi2.o firmware
39  */
40 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
41 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
42 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
43 
44 /* Macro For NYSM value received in VHT TLV */
45 #define VHT_SGI_NYSM 3
46 
47 #define INVALID_WBM_RING_NUM 0xF
48 
49 /* struct htt_dbgfs_cfg - structure to maintain required htt data
50  * @msg_word: htt msg sent to upper layer
51  * @m: qdf debugfs file pointer
52  */
53 struct htt_dbgfs_cfg {
54 	uint32_t *msg_word;
55 	qdf_debugfs_file_t m;
56 };
57 
58 /* Cookie MSB bits assigned for different use case.
59  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
60  * If in future number of pdev are more than 3.
61  */
62 /* Reserve for default case */
63 #define DBG_STATS_COOKIE_DEFAULT 0x0
64 
65 /* Reserve for DP Stats: 3rd bit */
66 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
67 
68 /* Reserve for HTT Stats debugfs support: 4th bit */
69 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
70 
71 /*Reserve for HTT Stats debugfs support: 5th bit */
72 #define DBG_SYSFS_STATS_COOKIE BIT(5)
73 
74 /* Reserve for HTT Stats OBSS PD support: 6th bit */
75 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
76 
77 /**
78  * Bitmap of HTT PPDU TLV types for Default mode
79  */
80 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
81 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
82 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
83 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
84 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
85 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
86 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
87 
88 /* PPDU STATS CFG */
89 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
90 
91 /* PPDU stats mask sent to FW to enable enhanced stats */
92 #define DP_PPDU_STATS_CFG_ENH_STATS \
93 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
94 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
95 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
96 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
97 
98 /* PPDU stats mask sent to FW to support debug sniffer feature */
99 #define DP_PPDU_STATS_CFG_SNIFFER \
100 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
101 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
102 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
103 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
104 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
106 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
107 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
108 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
109 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
110 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
111 
112 /* PPDU stats mask sent to FW to support BPR feature*/
113 #define DP_PPDU_STATS_CFG_BPR \
114 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
115 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
116 
117 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
118 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
119 				   DP_PPDU_STATS_CFG_ENH_STATS)
120 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
121 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
122 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
123 
124 /**
125  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
126  */
127 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
128 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
129 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
130 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
131 
132 /**
133  * Bitmap of HTT PPDU TLV types for Delayed BA
134  */
135 #define HTT_PPDU_STATUS_TLV_BITMAP \
136 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
137 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
138 
139 /**
140  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
141  */
142 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
143 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
144 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
145 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
146 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
147 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
148 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
149 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
150 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
151 
152 /**
153  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
154  */
155 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
156 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
157 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
158 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
159 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
161 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
162 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
163 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
164 
165 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
166 	[HAL_DOT11A] = DOT11_A,
167 	[HAL_DOT11B] = DOT11_B,
168 	[HAL_DOT11N_MM] = DOT11_N,
169 	[HAL_DOT11AC] = DOT11_AC,
170 	[HAL_DOT11AX] = DOT11_AX,
171 	[HAL_DOT11BA] = DOT11_MAX,
172 #ifdef WLAN_FEATURE_11BE
173 	[HAL_DOT11BE] = DOT11_BE,
174 #else
175 	[HAL_DOT11BE] = DOT11_MAX,
176 #endif
177 	[HAL_DOT11AZ] = DOT11_MAX,
178 	[HAL_DOT11N_GF] = DOT11_MAX,
179 };
180 
181 #ifdef WLAN_FEATURE_11BE
182 /**
183  * dp_get_mcs_array_index_by_pkt_type_mcs () - get the destination mcs index
184 					       in array
185  * @pkt_type: host SW pkt type
186  * @mcs: mcs value for TX/RX rate
187  *
188  * Return: succeeded - valid index in mcs array
189 	   fail - same value as MCS_MAX
190  */
191 static inline uint8_t
192 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
193 {
194 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
195 
196 	switch (pkt_type) {
197 	case DOT11_A:
198 		dst_mcs_idx =
199 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
200 		break;
201 	case DOT11_B:
202 		dst_mcs_idx =
203 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
204 		break;
205 	case DOT11_N:
206 		dst_mcs_idx =
207 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
208 		break;
209 	case DOT11_AC:
210 		dst_mcs_idx =
211 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
212 		break;
213 	case DOT11_AX:
214 		dst_mcs_idx =
215 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
216 		break;
217 	case DOT11_BE:
218 		dst_mcs_idx =
219 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
220 		break;
221 	default:
222 		break;
223 	}
224 
225 	return dst_mcs_idx;
226 }
227 #else
228 static inline uint8_t
229 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
230 {
231 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
232 
233 	switch (pkt_type) {
234 	case DOT11_A:
235 		dst_mcs_idx =
236 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
237 		break;
238 	case DOT11_B:
239 		dst_mcs_idx =
240 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
241 		break;
242 	case DOT11_N:
243 		dst_mcs_idx =
244 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
245 		break;
246 	case DOT11_AC:
247 		dst_mcs_idx =
248 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
249 		break;
250 	case DOT11_AX:
251 		dst_mcs_idx =
252 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
253 		break;
254 	default:
255 		break;
256 	}
257 
258 	return dst_mcs_idx;
259 }
260 #endif
261 
262 #ifdef WIFI_MONITOR_SUPPORT
263 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
264 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
265 #else
266 static inline
267 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
268 {
269 	return QDF_STATUS_SUCCESS;
270 }
271 
272 static inline
273 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
274 {
275 	return QDF_STATUS_SUCCESS;
276 }
277 #endif
278 
279 /*
280  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
281  * @eh: Ethernet header of incoming packet
282  * @vdev: dp_vdev object of the VAP on which this data packet is received
283  *
284  * Return: 1 if the destination mac is correct,
285  *         0 if this frame is not correctly destined to this VAP/MLD
286  */
287 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
288 
289 #ifdef MONITOR_MODULARIZED_ENABLE
290 static inline bool dp_monitor_modularized_enable(void)
291 {
292 	return TRUE;
293 }
294 
295 static inline QDF_STATUS
296 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
297 
298 static inline QDF_STATUS
299 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
300 #else
301 static inline bool dp_monitor_modularized_enable(void)
302 {
303 	return FALSE;
304 }
305 
306 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
307 {
308 	return dp_mon_soc_attach(soc);
309 }
310 
311 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
312 {
313 	return dp_mon_soc_detach(soc);
314 }
315 #endif
316 
317 #ifndef WIFI_MONITOR_SUPPORT
318 #define MON_BUF_MIN_ENTRIES 64
319 
320 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
321 {
322 	return QDF_STATUS_SUCCESS;
323 }
324 
325 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
326 {
327 	return QDF_STATUS_SUCCESS;
328 }
329 
330 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
331 {
332 	return QDF_STATUS_E_FAILURE;
333 }
334 
335 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
336 {
337 	return QDF_STATUS_E_FAILURE;
338 }
339 
340 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
341 						struct dp_peer *peer)
342 {
343 	return QDF_STATUS_SUCCESS;
344 }
345 
346 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
347 						struct dp_peer *peer)
348 {
349 	return QDF_STATUS_E_FAILURE;
350 }
351 
352 static inline struct cdp_peer_rate_stats_ctx*
353 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
354 {
355 	return NULL;
356 }
357 
358 static inline
359 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
360 {
361 }
362 
363 static inline
364 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
365 			       void *arg, enum cdp_stat_update_type type)
366 {
367 }
368 
369 static inline
370 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
371 					       struct dp_pdev *pdev)
372 {
373 }
374 
375 static inline
376 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
377 					   struct dp_peer *peer,
378 					   enum cdp_peer_stats_type type,
379 					   cdp_peer_stats_param_t *buf)
380 {
381 	return QDF_STATUS_E_FAILURE;
382 }
383 
384 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
385 {
386 	return QDF_STATUS_SUCCESS;
387 }
388 
389 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
390 {
391 	return QDF_STATUS_SUCCESS;
392 }
393 
394 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
395 {
396 	return QDF_STATUS_SUCCESS;
397 }
398 
399 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
400 							 int val)
401 {
402 	return QDF_STATUS_E_FAILURE;
403 }
404 
405 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
406 {
407 }
408 
409 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
410 						   struct dp_pdev *pdev,
411 						   int mac_id,
412 						   int mac_for_pdev)
413 {
414 	return QDF_STATUS_SUCCESS;
415 }
416 
417 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
418 						uint32_t quota)
419 {
420 }
421 
422 static inline
423 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
424 			    uint32_t mac_id, uint32_t quota)
425 {
426 	return 0;
427 }
428 
429 static inline
430 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
431 					 uint32_t mac_id, uint32_t quota)
432 {
433 	return 0;
434 }
435 
436 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
437 					   struct dp_peer *peer)
438 {
439 }
440 
441 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
442 					      struct dp_peer *peer)
443 {
444 }
445 
446 static inline
447 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
448 					struct dp_peer *peer,
449 					uint16_t peer_id)
450 {
451 }
452 
453 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
454 {
455 }
456 
457 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
458 {
459 }
460 
461 static inline
462 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
463 {
464 	return QDF_STATUS_SUCCESS;
465 }
466 
467 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
468 							   struct dp_peer *peer)
469 {
470 }
471 
472 static inline
473 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
474 					   struct dp_tx_desc_s *desc,
475 					   struct hal_tx_completion_status *ts,
476 					   uint16_t peer_id)
477 {
478 	return QDF_STATUS_E_FAILURE;
479 }
480 
481 static inline
482 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
483 				       struct dp_pdev *pdev,
484 				       struct dp_peer *peer,
485 				       struct hal_tx_completion_status *ts,
486 				       qdf_nbuf_t netbuf)
487 {
488 	return QDF_STATUS_E_FAILURE;
489 }
490 
491 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
492 						     uint32_t *msg_word,
493 						     qdf_nbuf_t htt_t2h_msg)
494 {
495 	return true;
496 }
497 
498 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
499 {
500 	return QDF_STATUS_SUCCESS;
501 }
502 
503 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
504 {
505 }
506 
507 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
508 {
509 }
510 
511 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
512 							  uint32_t val)
513 {
514 	return QDF_STATUS_E_INVAL;
515 }
516 
517 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
518 						   struct dp_peer *peer,
519 						   uint8_t is_tx_pkt_cap_enable,
520 						   uint8_t *peer_mac)
521 {
522 	return QDF_STATUS_E_INVAL;
523 }
524 
525 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
526 							  uint32_t val)
527 {
528 	return QDF_STATUS_E_INVAL;
529 }
530 
531 static inline
532 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
533 {
534 	return QDF_STATUS_E_FAILURE;
535 }
536 
537 static inline
538 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
539 {
540 	return 0;
541 }
542 
543 static inline
544 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
545 {
546 }
547 
548 static inline
549 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
550 {
551 }
552 
553 static inline
554 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
555 {
556 	return false;
557 }
558 
559 static inline
560 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
561 {
562 	return false;
563 }
564 
565 static inline
566 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
567 {
568 	return false;
569 }
570 
571 static inline
572 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
573 				bool enable)
574 {
575 	return 0;
576 }
577 
578 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
579 {
580 }
581 
582 static inline
583 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
584 {
585 	return QDF_STATUS_E_FAILURE;
586 }
587 
588 static inline
589 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
590 {
591 }
592 
593 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
594 							  uint8_t *rx_pkt_hdr)
595 {
596 	return QDF_STATUS_E_FAILURE;
597 }
598 
599 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
600 {
601 }
602 
603 static inline
604 void dp_monitor_reap_timer_init(struct dp_soc *soc)
605 {
606 }
607 
608 static inline
609 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
610 {
611 }
612 
613 static inline
614 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
615 				 enum cdp_mon_reap_source source)
616 {
617 	return false;
618 }
619 
620 static inline
621 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
622 				enum cdp_mon_reap_source source)
623 {
624 	return false;
625 }
626 
627 static inline void
628 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
629 {
630 }
631 
632 static inline
633 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
634 {
635 }
636 
637 static inline
638 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
639 {
640 }
641 
642 static inline
643 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
644 {
645 }
646 
647 static inline
648 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
649 {
650 	return false;
651 }
652 
653 static inline struct qdf_mem_multi_page_t*
654 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
655 {
656 	return NULL;
657 }
658 
659 static inline uint32_t *
660 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
661 {
662 	return NULL;
663 }
664 
665 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
666 {
667 	return QDF_STATUS_E_FAILURE;
668 }
669 
670 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
671 {
672 	return false;
673 }
674 
675 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
676 						 struct ol_txrx_ops *txrx_ops)
677 {
678 }
679 
680 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
681 {
682 	return false;
683 }
684 
685 static inline
686 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
687 {
688 }
689 
690 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
691 					  struct dp_vdev *vdev)
692 {
693 }
694 
695 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
696 {
697 }
698 
699 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
700 						     struct dp_peer *ta_peer,
701 						     uint8_t *mac_addr,
702 						     qdf_nbuf_t nbuf,
703 						     uint32_t flags)
704 {
705 }
706 
707 static inline void
708 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
709 {
710 }
711 
712 static inline void
713 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
714 {
715 }
716 
717 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
718 {
719 }
720 
721 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
722 {
723 	return false;
724 }
725 
726 static inline
727 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
728 					   struct dp_vdev *vdev,
729 					   struct dp_neighbour_peer *peer)
730 {
731 }
732 
733 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
734 {
735 	return false;
736 }
737 
738 static inline enum reg_wifi_band
739 dp_monitor_get_chan_band(struct dp_pdev *pdev)
740 {
741 	return 0;
742 }
743 
744 static inline int
745 dp_monitor_get_chan_num(struct dp_pdev *pdev)
746 {
747 	return 0;
748 }
749 
750 static inline qdf_freq_t
751 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
752 {
753 	return 0;
754 }
755 
756 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
757 					      struct dp_soc *soc,
758 					      uint8_t *rx_tlv_hdr)
759 {
760 }
761 
762 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
763 {
764 }
765 
766 static inline
767 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
768 					  uint16_t peer_id, uint32_t ppdu_id,
769 					  uint8_t first_msdu)
770 {
771 	return QDF_STATUS_SUCCESS;
772 }
773 
774 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
775 {
776 	return false;
777 }
778 
779 static inline struct dp_vdev*
780 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
781 {
782 	return NULL;
783 }
784 
785 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
786 							   void *rx_desc)
787 {
788 	return QDF_STATUS_E_FAILURE;
789 }
790 
791 static inline struct mon_rx_status*
792 dp_monitor_get_rx_status(struct dp_pdev *pdev)
793 {
794 	return NULL;
795 }
796 
797 static inline
798 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
799 {
800 }
801 
802 static inline
803 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
804 						      bool val)
805 {
806 }
807 
808 static inline QDF_STATUS
809 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
810 				     struct cdp_peer_tx_capture_stats *stats)
811 {
812 	return QDF_STATUS_E_FAILURE;
813 }
814 
815 static inline QDF_STATUS
816 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
817 				     struct cdp_pdev_tx_capture_stats *stats)
818 {
819 	return QDF_STATUS_E_FAILURE;
820 }
821 
822 #ifdef DP_POWER_SAVE
823 static inline
824 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
825 {
826 }
827 
828 static inline
829 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
830 {
831 }
832 #endif
833 
834 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
835 {
836 	return false;
837 }
838 
839 static inline void
840 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
841 			 struct htt_rx_ring_tlv_filter *tlv_filter)
842 {
843 }
844 
845 static inline void dp_monitor_soc_init(struct dp_soc *soc)
846 {
847 }
848 
849 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
850 {
851 }
852 
853 static inline
854 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
855 							int val)
856 {
857 	return QDF_STATUS_SUCCESS;
858 }
859 
860 static inline QDF_STATUS
861 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
862 						      int mask1, int mask2)
863 {
864 	return QDF_STATUS_SUCCESS;
865 }
866 
867 static inline QDF_STATUS
868 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
869 						   int *mask, int *mask_cont)
870 {
871 	return QDF_STATUS_SUCCESS;
872 }
873 
874 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
875 {
876 	return QDF_STATUS_E_FAILURE;
877 }
878 
879 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
880 {
881 	return false;
882 }
883 
884 static inline
885 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
886 {
887 	return 0;
888 }
889 
890 static inline uint32_t
891 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
892 		  uint32_t mac_id, uint32_t quota)
893 {
894 	return 0;
895 }
896 
897 static inline
898 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
899 {
900 	return 0;
901 }
902 
903 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
904 {
905 	return 0;
906 }
907 
908 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
909 {
910 	return 0;
911 }
912 
913 static inline void
914 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
915 		 struct htt_rx_ring_tlv_filter *tlv_filter)
916 {
917 }
918 
919 static inline void
920 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
921 			    struct htt_rx_ring_tlv_filter *tlv_filter)
922 {
923 }
924 
925 static inline void
926 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
927 			      struct htt_rx_ring_tlv_filter *tlv_filter)
928 {
929 }
930 
931 static inline void
932 dp_mon_rx_wmask_subscribe(struct dp_soc *soc, uint32_t *msg_word,
933 			  struct htt_rx_ring_tlv_filter *tlv_filter)
934 {
935 }
936 
937 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
938 static inline
939 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
940 				     struct cdp_peer_telemetry_stats *stats)
941 {
942 }
943 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
944 #endif /* !WIFI_MONITOR_SUPPORT */
945 
946 /**
947  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
948  * dp soc handle
949  * @psoc: CDP psoc handle
950  *
951  * Return: struct dp_soc pointer
952  */
953 static inline
954 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
955 {
956 	return (struct dp_soc *)psoc;
957 }
958 
959 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
960 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
961 
962 /**
963  * enum timer_yield_status - yield status code used in monitor mode timer.
964  * @DP_TIMER_NO_YIELD: do not yield
965  * @DP_TIMER_WORK_DONE: yield because work is done
966  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
967  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
968  */
969 enum timer_yield_status {
970 	DP_TIMER_NO_YIELD,
971 	DP_TIMER_WORK_DONE,
972 	DP_TIMER_WORK_EXHAUST,
973 	DP_TIMER_TIME_EXHAUST,
974 };
975 
976 #if DP_PRINT_ENABLE
977 #include <qdf_types.h> /* qdf_vprint */
978 #include <cdp_txrx_handle.h>
979 
980 enum {
981 	/* FATAL_ERR - print only irrecoverable error messages */
982 	DP_PRINT_LEVEL_FATAL_ERR,
983 
984 	/* ERR - include non-fatal err messages */
985 	DP_PRINT_LEVEL_ERR,
986 
987 	/* WARN - include warnings */
988 	DP_PRINT_LEVEL_WARN,
989 
990 	/* INFO1 - include fundamental, infrequent events */
991 	DP_PRINT_LEVEL_INFO1,
992 
993 	/* INFO2 - include non-fundamental but infrequent events */
994 	DP_PRINT_LEVEL_INFO2,
995 };
996 
997 #define dp_print(level, fmt, ...) do { \
998 	if (level <= g_txrx_print_level) \
999 		qdf_print(fmt, ## __VA_ARGS__); \
1000 while (0)
1001 #define DP_PRINT(level, fmt, ...) do { \
1002 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1003 while (0)
1004 #else
1005 #define DP_PRINT(level, fmt, ...)
1006 #endif /* DP_PRINT_ENABLE */
1007 
1008 #define DP_TRACE(LVL, fmt, args ...)                             \
1009 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1010 		fmt, ## args)
1011 
1012 #ifdef WLAN_SYSFS_DP_STATS
1013 void DP_PRINT_STATS(const char *fmt, ...);
1014 #else /* WLAN_SYSFS_DP_STATS */
1015 #ifdef DP_PRINT_NO_CONSOLE
1016 /* Stat prints should not go to console or kernel logs.*/
1017 #define DP_PRINT_STATS(fmt, args ...)\
1018 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1019 		  fmt, ## args)
1020 #else
1021 #define DP_PRINT_STATS(fmt, args ...)\
1022 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1023 		  fmt, ## args)
1024 #endif
1025 #endif /* WLAN_SYSFS_DP_STATS */
1026 
1027 #define DP_STATS_INIT(_handle) \
1028 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1029 
1030 #define DP_STATS_CLR(_handle) \
1031 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1032 
1033 #ifndef DISABLE_DP_STATS
1034 #define DP_STATS_INC(_handle, _field, _delta) \
1035 { \
1036 	if (likely(_handle)) \
1037 		_handle->stats._field += _delta; \
1038 }
1039 
1040 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1041 { \
1042 	if (likely(_handle)) \
1043 		_handle->_field += _delta; \
1044 }
1045 
1046 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1047 { \
1048 	if (_cond && likely(_handle)) \
1049 		_handle->stats._field += _delta; \
1050 }
1051 
1052 #define DP_STATS_DEC(_handle, _field, _delta) \
1053 { \
1054 	if (likely(_handle)) \
1055 		_handle->stats._field -= _delta; \
1056 }
1057 
1058 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1059 { \
1060 	if (likely(_handle)) \
1061 		_handle->_field -= _delta; \
1062 }
1063 
1064 #define DP_STATS_UPD(_handle, _field, _delta) \
1065 { \
1066 	if (likely(_handle)) \
1067 		_handle->stats._field = _delta; \
1068 }
1069 
1070 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1071 { \
1072 	DP_STATS_INC(_handle, _field.num, _count); \
1073 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1074 }
1075 
1076 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1077 { \
1078 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1079 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1080 }
1081 
1082 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1083 { \
1084 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1085 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1086 }
1087 
1088 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1089 { \
1090 	_handle_a->stats._field += _handle_b->stats._field; \
1091 }
1092 
1093 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1094 { \
1095 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1096 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1097 }
1098 
1099 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1100 { \
1101 	_handle_a->stats._field = _handle_b->stats._field; \
1102 }
1103 
1104 #else
1105 #define DP_STATS_INC(_handle, _field, _delta)
1106 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1107 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1108 #define DP_STATS_DEC(_handle, _field, _delta)
1109 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1110 #define DP_STATS_UPD(_handle, _field, _delta)
1111 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1112 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1113 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1114 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1115 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1116 #endif
1117 
1118 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta) \
1119 { \
1120 	DP_STATS_INC(_handle, per_pkt_stats._field, _delta); \
1121 }
1122 
1123 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond) \
1124 { \
1125 	DP_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond); \
1126 }
1127 
1128 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1129 { \
1130 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count); \
1131 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes) \
1132 }
1133 
1134 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1135 { \
1136 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond); \
1137 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1138 }
1139 
1140 #ifndef QCA_ENHANCED_STATS_SUPPORT
1141 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta) \
1142 { \
1143 	DP_STATS_INC(_handle, extd_stats._field, _delta); \
1144 }
1145 
1146 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond) \
1147 { \
1148 	DP_STATS_INCC(_handle, extd_stats._field, _delta, _cond); \
1149 }
1150 
1151 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta) \
1152 { \
1153 	DP_STATS_UPD(_handle, extd_stats._field, _delta); \
1154 }
1155 #endif
1156 
1157 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1158 	defined(QCA_ENHANCED_STATS_SUPPORT)
1159 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1160 { \
1161 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1162 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1163 }
1164 
1165 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1166 { \
1167 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1168 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1169 }
1170 
1171 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1172 { \
1173 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1174 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1175 }
1176 
1177 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1178 { \
1179 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1180 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1181 }
1182 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1183 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1184 { \
1185 	if (!(_handle->hw_txrx_stats_en)) \
1186 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1187 }
1188 
1189 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1190 { \
1191 	if (!(_handle->hw_txrx_stats_en)) \
1192 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1193 }
1194 
1195 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1196 { \
1197 	if (!(_handle->hw_txrx_stats_en)) \
1198 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1199 }
1200 
1201 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1202 { \
1203 	if (!(_handle->hw_txrx_stats_en)) \
1204 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1205 }
1206 #else
1207 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1208 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1209 
1210 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1211 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1212 
1213 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1214 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes);
1215 
1216 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1217 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes);
1218 #endif
1219 
1220 #ifdef ENABLE_DP_HIST_STATS
1221 #define DP_HIST_INIT() \
1222 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1223 
1224 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1225 { \
1226 		++num_of_packets[_pdev_id]; \
1227 }
1228 
1229 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1230 	do {                                                              \
1231 		if (_p_cntrs == 1) {                                      \
1232 			DP_STATS_INC(_pdev,                               \
1233 				tx_comp_histogram.pkts_1, 1);             \
1234 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1235 			DP_STATS_INC(_pdev,                               \
1236 				tx_comp_histogram.pkts_2_20, 1);          \
1237 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1238 			DP_STATS_INC(_pdev,                               \
1239 				tx_comp_histogram.pkts_21_40, 1);         \
1240 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1241 			DP_STATS_INC(_pdev,                               \
1242 				tx_comp_histogram.pkts_41_60, 1);         \
1243 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1244 			DP_STATS_INC(_pdev,                               \
1245 				tx_comp_histogram.pkts_61_80, 1);         \
1246 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1247 			DP_STATS_INC(_pdev,                               \
1248 				tx_comp_histogram.pkts_81_100, 1);        \
1249 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1250 			DP_STATS_INC(_pdev,                               \
1251 				tx_comp_histogram.pkts_101_200, 1);       \
1252 		} else if (_p_cntrs > 200) {                              \
1253 			DP_STATS_INC(_pdev,                               \
1254 				tx_comp_histogram.pkts_201_plus, 1);      \
1255 		}                                                         \
1256 	} while (0)
1257 
1258 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1259 	do {                                                              \
1260 		if (_p_cntrs == 1) {                                      \
1261 			DP_STATS_INC(_pdev,                               \
1262 				rx_ind_histogram.pkts_1, 1);              \
1263 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1264 			DP_STATS_INC(_pdev,                               \
1265 				rx_ind_histogram.pkts_2_20, 1);           \
1266 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1267 			DP_STATS_INC(_pdev,                               \
1268 				rx_ind_histogram.pkts_21_40, 1);          \
1269 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1270 			DP_STATS_INC(_pdev,                               \
1271 				rx_ind_histogram.pkts_41_60, 1);          \
1272 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1273 			DP_STATS_INC(_pdev,                               \
1274 				rx_ind_histogram.pkts_61_80, 1);          \
1275 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1276 			DP_STATS_INC(_pdev,                               \
1277 				rx_ind_histogram.pkts_81_100, 1);         \
1278 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1279 			DP_STATS_INC(_pdev,                               \
1280 				rx_ind_histogram.pkts_101_200, 1);        \
1281 		} else if (_p_cntrs > 200) {                              \
1282 			DP_STATS_INC(_pdev,                               \
1283 				rx_ind_histogram.pkts_201_plus, 1);       \
1284 		}                                                         \
1285 	} while (0)
1286 
1287 #define DP_TX_HIST_STATS_PER_PDEV() \
1288 	do { \
1289 		uint8_t hist_stats = 0; \
1290 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1291 				hist_stats++) { \
1292 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1293 					num_of_packets[hist_stats]); \
1294 		} \
1295 	}  while (0)
1296 
1297 
1298 #define DP_RX_HIST_STATS_PER_PDEV() \
1299 	do { \
1300 		uint8_t hist_stats = 0; \
1301 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1302 				hist_stats++) { \
1303 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1304 					num_of_packets[hist_stats]); \
1305 		} \
1306 	}  while (0)
1307 
1308 #else
1309 #define DP_HIST_INIT()
1310 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1311 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1312 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1313 #define DP_RX_HIST_STATS_PER_PDEV()
1314 #define DP_TX_HIST_STATS_PER_PDEV()
1315 #endif /* DISABLE_DP_STATS */
1316 
1317 #define FRAME_MASK_IPV4_ARP   1
1318 #define FRAME_MASK_IPV4_DHCP  2
1319 #define FRAME_MASK_IPV4_EAPOL 4
1320 #define FRAME_MASK_IPV6_DHCP  8
1321 
1322 static inline int dp_log2_ceil(unsigned int value)
1323 {
1324 	unsigned int tmp = value;
1325 	int log2 = -1;
1326 
1327 	while (tmp) {
1328 		log2++;
1329 		tmp >>= 1;
1330 	}
1331 	if (1 << log2 != value)
1332 		log2++;
1333 	return log2;
1334 }
1335 
1336 #ifdef QCA_SUPPORT_PEER_ISOLATION
1337 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1338 
1339 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1340 					 bool val)
1341 {
1342 	txrx_peer->isolation = val;
1343 }
1344 
1345 #else
1346 #define dp_get_peer_isolation(_peer) (0)
1347 
1348 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1349 {
1350 }
1351 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1352 
1353 #ifdef QCA_SUPPORT_WDS_EXTENDED
1354 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1355 {
1356 	txrx_peer->wds_ext.init = 0;
1357 }
1358 #else
1359 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1360 {
1361 }
1362 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1363 
1364 #ifdef QCA_HOST2FW_RXBUF_RING
1365 static inline
1366 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1367 {
1368 	return &pdev->rx_mac_buf_ring[lmac_id];
1369 }
1370 #else
1371 static inline
1372 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1373 {
1374 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1375 }
1376 #endif
1377 
1378 /**
1379  * The lmac ID for a particular channel band is fixed.
1380  * 2.4GHz band uses lmac_id = 1
1381  * 5GHz/6GHz band uses lmac_id=0
1382  */
1383 #define DP_INVALID_LMAC_ID	(-1)
1384 #define DP_MON_INVALID_LMAC_ID	(-1)
1385 #define DP_MAC0_LMAC_ID	0
1386 #define DP_MAC1_LMAC_ID	1
1387 
1388 #ifdef FEATURE_TSO_STATS
1389 /**
1390  * dp_init_tso_stats() - Clear tso stats
1391  * @pdev: pdev handle
1392  *
1393  * Return: None
1394  */
1395 static inline
1396 void dp_init_tso_stats(struct dp_pdev *pdev)
1397 {
1398 	if (pdev) {
1399 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1400 			     sizeof((pdev)->stats.tso_stats));
1401 		qdf_atomic_init(&pdev->tso_idx);
1402 	}
1403 }
1404 
1405 /**
1406  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1407  * @pdev: pdev handle
1408  * @_p_cntrs: number of tso segments for a tso packet
1409  *
1410  * Return: None
1411  */
1412 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1413 					   uint8_t _p_cntrs);
1414 
1415 /**
1416  * dp_tso_segment_update() - Collect tso segment information
1417  * @pdev: pdev handle
1418  * @stats_idx: tso packet number
1419  * @idx: tso segment number
1420  * @seg: tso segment
1421  *
1422  * Return: None
1423  */
1424 void dp_tso_segment_update(struct dp_pdev *pdev,
1425 			   uint32_t stats_idx,
1426 			   uint8_t idx,
1427 			   struct qdf_tso_seg_t seg);
1428 
1429 /**
1430  * dp_tso_packet_update() - TSO Packet information
1431  * @pdev: pdev handle
1432  * @stats_idx: tso packet number
1433  * @msdu: nbuf handle
1434  * @num_segs: tso segments
1435  *
1436  * Return: None
1437  */
1438 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1439 			  qdf_nbuf_t msdu, uint16_t num_segs);
1440 
1441 /**
1442  * dp_tso_segment_stats_update() - TSO Segment stats
1443  * @pdev: pdev handle
1444  * @stats_seg: tso segment list
1445  * @stats_idx: tso packet number
1446  *
1447  * Return: None
1448  */
1449 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1450 				 struct qdf_tso_seg_elem_t *stats_seg,
1451 				 uint32_t stats_idx);
1452 
1453 /**
1454  * dp_print_tso_stats() - dump tso statistics
1455  * @soc:soc handle
1456  * @level: verbosity level
1457  *
1458  * Return: None
1459  */
1460 void dp_print_tso_stats(struct dp_soc *soc,
1461 			enum qdf_stats_verbosity_level level);
1462 
1463 /**
1464  * dp_txrx_clear_tso_stats() - clear tso stats
1465  * @soc: soc handle
1466  *
1467  * Return: None
1468  */
1469 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1470 #else
1471 static inline
1472 void dp_init_tso_stats(struct dp_pdev *pdev)
1473 {
1474 }
1475 
1476 static inline
1477 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1478 					   uint8_t _p_cntrs)
1479 {
1480 }
1481 
1482 static inline
1483 void dp_tso_segment_update(struct dp_pdev *pdev,
1484 			   uint32_t stats_idx,
1485 			   uint32_t idx,
1486 			   struct qdf_tso_seg_t seg)
1487 {
1488 }
1489 
1490 static inline
1491 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1492 			  qdf_nbuf_t msdu, uint16_t num_segs)
1493 {
1494 }
1495 
1496 static inline
1497 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1498 				 struct qdf_tso_seg_elem_t *stats_seg,
1499 				 uint32_t stats_idx)
1500 {
1501 }
1502 
1503 static inline
1504 void dp_print_tso_stats(struct dp_soc *soc,
1505 			enum qdf_stats_verbosity_level level)
1506 {
1507 }
1508 
1509 static inline
1510 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1511 {
1512 }
1513 #endif /* FEATURE_TSO_STATS */
1514 
1515 /* dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1516  * @peer: DP peer handle
1517  * @type: Requested stats type
1518  * @ buf: Buffer to hold the value
1519  *
1520  * Return: status success/failure
1521  */
1522 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1523 						enum cdp_peer_stats_type type,
1524 						cdp_peer_stats_param_t *buf);
1525 
1526 /* dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1527  * @peer: DP peer handle
1528  * @type: Requested stats type
1529  * @ buf: Buffer to hold the value
1530  *
1531  * Return: status success/failure
1532  */
1533 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1534 					     enum cdp_peer_stats_type type,
1535 					     cdp_peer_stats_param_t *buf);
1536 
1537 #define DP_HTT_T2H_HP_PIPE 5
1538 /**
1539  * dp_update_pdev_stats(): Update the pdev stats
1540  * @tgtobj: pdev handle
1541  * @srcobj: vdev stats structure
1542  *
1543  * Update the pdev stats from the specified vdev stats
1544  *
1545  * return: None
1546  */
1547 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1548 			  struct cdp_vdev_stats *srcobj);
1549 
1550 /**
1551  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1552  * @tgtobj: vdev handle
1553  *
1554  * Update the vdev ingress stats
1555  *
1556  * return: None
1557  */
1558 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1559 
1560 /**
1561  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1562  * @tgtobj: tgt buffer for vdev stats
1563  * @srcobj: srcobj vdev stats
1564  *
1565  * Return: None
1566  */
1567 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1568 			       struct cdp_vdev_stats *srcobj);
1569 
1570 /**
1571  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1572  * @tgtobj: pdev handle
1573  * @srcobj: vdev stats structure
1574  *
1575  * Update the pdev ingress stats from the specified vdev stats
1576  *
1577  * return: None
1578  */
1579 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1580 				  struct dp_vdev *srcobj);
1581 
1582 /**
1583  * dp_update_vdev_stats(): Update the vdev stats
1584  * @soc: soc handle
1585  * @srcobj: DP_PEER object
1586  * @arg: point to vdev stats structure
1587  *
1588  * Update the vdev stats from the specified peer stats
1589  *
1590  * return: None
1591  */
1592 void dp_update_vdev_stats(struct dp_soc *soc,
1593 			  struct dp_peer *srcobj,
1594 			  void *arg);
1595 
1596 /**
1597  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1598  * @vdev: DP_VDEV handle
1599  * @peer: DP_PEER handle
1600  *
1601  * Return: None
1602  */
1603 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1604 					struct dp_peer *peer);
1605 
1606 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1607 	do {				\
1608 		uint8_t i;		\
1609 		uint8_t pream_type;	\
1610 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1611 			for (i = 0; i < MAX_MCS; i++) { \
1612 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1613 					tx.pkt_type[pream_type].mcs_count[i]); \
1614 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1615 					rx.pkt_type[pream_type].mcs_count[i]); \
1616 			} \
1617 		} \
1618 		  \
1619 		for (i = 0; i < MAX_BW; i++) { \
1620 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1621 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1622 		} \
1623 		  \
1624 		for (i = 0; i < SS_COUNT; i++) { \
1625 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1626 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1627 		} \
1628 		for (i = 0; i < WME_AC_MAX; i++) { \
1629 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1630 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1631 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1632 		\
1633 		} \
1634 		\
1635 		for (i = 0; i < MAX_GI; i++) { \
1636 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1637 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1638 		} \
1639 		\
1640 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1641 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1642 		\
1643 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1644 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1645 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1646 		} \
1647 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1648 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1649 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1650 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1651 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1652 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1653 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1654 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1655 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1656 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1657 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1658 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1659 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1660 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1661 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1662 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1663 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1664 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1665 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1666 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1667 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1668 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1669 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1670 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1671 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1672 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1673 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1674 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1675 								\
1676 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1677 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1678 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1679 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1680 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1681 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1682 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1683 		if (_srcobj->stats.rx.snr != 0) \
1684 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1685 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1686 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1687 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1688 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1689 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1690 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1691 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1692 								\
1693 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1694 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1695 									\
1696 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1697 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1698 									\
1699 		_srcobj->stats.rx.unicast.num = \
1700 			_srcobj->stats.rx.to_stack.num - \
1701 					_srcobj->stats.rx.multicast.num; \
1702 		_srcobj->stats.rx.unicast.bytes = \
1703 			_srcobj->stats.rx.to_stack.bytes - \
1704 					_srcobj->stats.rx.multicast.bytes; \
1705 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1706 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1707 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1708 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1709 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1710 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1711 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1712 								  \
1713 		_tgtobj->stats.tx.last_ack_rssi =	\
1714 			_srcobj->stats.tx.last_ack_rssi; \
1715 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1716 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1717 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1718 	}  while (0)
1719 
1720 #ifdef VDEV_PEER_PROTOCOL_COUNT
1721 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1722 { \
1723 	uint8_t j; \
1724 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1725 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1726 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1727 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1728 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1729 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1730 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1731 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1732 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1733 	} \
1734 }
1735 #else
1736 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1737 #endif
1738 
1739 #ifdef WLAN_FEATURE_11BE
1740 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1741 	do { \
1742 		uint8_t i, mu_type; \
1743 		for (i = 0; i < MAX_MCS; i++) { \
1744 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1745 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1746 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1747 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1748 		} \
1749 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1750 			for (i = 0; i < MAX_MCS; i++) { \
1751 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1752 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1753 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1754 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1755 			} \
1756 		} \
1757 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1758 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1759 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1760 		} \
1761 	} while (0)
1762 #else
1763 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1764 #endif
1765 
1766 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1767 	do { \
1768 		uint8_t i; \
1769 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1770 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1771 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1772 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1773 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1774 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1775 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1776 		_tgtobj->tx.nawds_mcast.bytes += \
1777 					_srcobj->tx.nawds_mcast.bytes; \
1778 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1779 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1780 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1781 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1782 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1783 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1784 		_tgtobj->tx.dropped.fw_rem.num += \
1785 					_srcobj->tx.dropped.fw_rem.num; \
1786 		_tgtobj->tx.dropped.fw_rem.bytes += \
1787 					_srcobj->tx.dropped.fw_rem.bytes; \
1788 		_tgtobj->tx.dropped.fw_rem_notx += \
1789 					_srcobj->tx.dropped.fw_rem_notx; \
1790 		_tgtobj->tx.dropped.fw_rem_tx += \
1791 					_srcobj->tx.dropped.fw_rem_tx; \
1792 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1793 		_tgtobj->tx.dropped.fw_reason1 += \
1794 					_srcobj->tx.dropped.fw_reason1; \
1795 		_tgtobj->tx.dropped.fw_reason2 += \
1796 					_srcobj->tx.dropped.fw_reason2; \
1797 		_tgtobj->tx.dropped.fw_reason3 += \
1798 					_srcobj->tx.dropped.fw_reason3; \
1799 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1800 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1801 		_tgtobj->tx.dropped.fw_rem_no_match += \
1802 					_srcobj->tx.dropped.fw_rem_no_match; \
1803 		_tgtobj->tx.dropped.drop_threshold += \
1804 					_srcobj->tx.dropped.drop_threshold; \
1805 		_tgtobj->tx.dropped.drop_link_desc_na += \
1806 					_srcobj->tx.dropped.drop_link_desc_na; \
1807 		_tgtobj->tx.dropped.invalid_drop += \
1808 					_srcobj->tx.dropped.invalid_drop; \
1809 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1810 					_srcobj->tx.dropped.mcast_vdev_drop; \
1811 		_tgtobj->tx.dropped.invalid_rr += \
1812 					_srcobj->tx.dropped.invalid_rr; \
1813 		_tgtobj->tx.failed_retry_count += \
1814 					_srcobj->tx.failed_retry_count; \
1815 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1816 		_tgtobj->tx.multiple_retry_count += \
1817 					_srcobj->tx.multiple_retry_count; \
1818 		_tgtobj->tx.tx_success_twt.num += \
1819 					_srcobj->tx.tx_success_twt.num; \
1820 		_tgtobj->tx.tx_success_twt.bytes += \
1821 					_srcobj->tx.tx_success_twt.bytes; \
1822 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1823 		_tgtobj->tx.release_src_not_tqm += \
1824 					_srcobj->tx.release_src_not_tqm; \
1825 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1826 			_tgtobj->tx.no_ack_count[i] += \
1827 					_srcobj->tx.no_ack_count[i];\
1828 		} \
1829 		\
1830 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1831 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1832 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1833 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1834 		if (_tgtobj->rx.to_stack.num >= _tgtobj->rx.multicast.num) \
1835 			_tgtobj->rx.unicast.num = \
1836 				_tgtobj->rx.to_stack.num - _tgtobj->rx.multicast.num; \
1837 		if (_tgtobj->rx.to_stack.bytes >= _tgtobj->rx.multicast.bytes) \
1838 			_tgtobj->rx.unicast.bytes = \
1839 				_tgtobj->rx.to_stack.bytes - _tgtobj->rx.multicast.bytes; \
1840 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1841 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1842 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1843 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1844 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1845 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1846 		_tgtobj->rx.intra_bss.pkts.num += \
1847 					_srcobj->rx.intra_bss.pkts.num; \
1848 		_tgtobj->rx.intra_bss.pkts.bytes += \
1849 					_srcobj->rx.intra_bss.pkts.bytes; \
1850 		_tgtobj->rx.intra_bss.fail.num += \
1851 					_srcobj->rx.intra_bss.fail.num; \
1852 		_tgtobj->rx.intra_bss.fail.bytes += \
1853 					_srcobj->rx.intra_bss.fail.bytes; \
1854 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1855 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1856 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1857 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1858 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1859 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1860 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1861 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1862 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1863 					_srcobj->rx.err.rxdma_wifi_parse_err; \
1864 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
1865 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
1866 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
1867 		_tgtobj->rx.multipass_rx_pkt_drop += \
1868 					_srcobj->rx.multipass_rx_pkt_drop; \
1869 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
1870 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
1871 		_tgtobj->rx.policy_check_drop += \
1872 					_srcobj->rx.policy_check_drop; \
1873 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
1874 		_tgtobj->rx.to_stack_twt.bytes += \
1875 					_srcobj->rx.to_stack_twt.bytes; \
1876 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
1877 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
1878 			_tgtobj->rx.rcvd_reo[i].num += \
1879 					 _srcobj->rx.rcvd_reo[i].num; \
1880 			_tgtobj->rx.rcvd_reo[i].bytes += \
1881 					_srcobj->rx.rcvd_reo[i].bytes; \
1882 		} \
1883 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
1884 			_tgtobj->rx.rx_lmac[i].num += \
1885 					_srcobj->rx.rx_lmac[i].num; \
1886 			_tgtobj->rx.rx_lmac[i].bytes += \
1887 					_srcobj->rx.rx_lmac[i].bytes; \
1888 		} \
1889 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
1890 	} while (0)
1891 
1892 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
1893 	do { \
1894 		uint8_t i, pream_type, mu_type; \
1895 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
1896 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
1897 		_tgtobj->tx.retries += _srcobj->tx.retries; \
1898 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
1899 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
1900 		_tgtobj->tx.num_ppdu_cookie_valid += \
1901 					_srcobj->tx.num_ppdu_cookie_valid; \
1902 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
1903 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
1904 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
1905 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
1906 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
1907 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
1908 		_tgtobj->tx.mcast_last_tx_rate = \
1909 					_srcobj->tx.mcast_last_tx_rate; \
1910 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
1911 					_srcobj->tx.mcast_last_tx_rate_mcs; \
1912 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
1913 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
1914 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
1915 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
1916 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
1917 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
1918 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
1919 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
1920 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
1921 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
1922 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
1923 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
1924 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
1925 		_tgtobj->tx.mpdu_success_with_retries += \
1926 					_srcobj->tx.mpdu_success_with_retries; \
1927 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
1928 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
1929 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
1930 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
1931 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1932 			for (i = 0; i < MAX_MCS; i++) \
1933 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
1934 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
1935 		} \
1936 		for (i = 0; i < WME_AC_MAX; i++) { \
1937 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
1938 			_tgtobj->tx.excess_retries_per_ac[i] += \
1939 					_srcobj->tx.excess_retries_per_ac[i]; \
1940 		} \
1941 		for (i = 0; i < MAX_GI; i++) { \
1942 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
1943 		} \
1944 		for (i = 0; i < SS_COUNT; i++) { \
1945 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
1946 		} \
1947 		for (i = 0; i < MAX_BW; i++) { \
1948 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
1949 		} \
1950 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
1951 			_tgtobj->tx.ru_loc[i].num_msdu += \
1952 					_srcobj->tx.ru_loc[i].num_msdu; \
1953 			_tgtobj->tx.ru_loc[i].num_mpdu += \
1954 					_srcobj->tx.ru_loc[i].num_mpdu; \
1955 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
1956 					_srcobj->tx.ru_loc[i].mpdu_tried; \
1957 		} \
1958 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
1959 			_tgtobj->tx.transmit_type[i].num_msdu += \
1960 					_srcobj->tx.transmit_type[i].num_msdu; \
1961 			_tgtobj->tx.transmit_type[i].num_mpdu += \
1962 					_srcobj->tx.transmit_type[i].num_mpdu; \
1963 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
1964 					_srcobj->tx.transmit_type[i].mpdu_tried; \
1965 		} \
1966 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
1967 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
1968 		} \
1969 		\
1970 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
1971 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
1972 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
1973 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
1974 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
1975 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
1976 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
1977 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
1978 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
1979 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
1980 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
1981 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
1982 		_tgtobj->rx.rx_snr_measured_time = \
1983 					_srcobj->rx.rx_snr_measured_time; \
1984 		_tgtobj->rx.snr = _srcobj->rx.snr; \
1985 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
1986 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
1987 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
1988 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
1989 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
1990 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
1991 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
1992 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
1993 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
1994 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1995 			for (i = 0; i < MAX_MCS; i++) { \
1996 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
1997 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
1998 			} \
1999 		} \
2000 		for (i = 0; i < WME_AC_MAX; i++) { \
2001 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2002 		} \
2003 		for (i = 0; i < MAX_MCS; i++) { \
2004 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2005 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2006 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2007 		} \
2008 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2009 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2010 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2011 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2012 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2013 			for (i = 0; i < SS_COUNT; i++) \
2014 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2015 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2016 			for (i = 0; i < MAX_MCS; i++) \
2017 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2018 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2019 		} \
2020 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2021 			_tgtobj->rx.reception_type[i] += \
2022 					_srcobj->rx.reception_type[i]; \
2023 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2024 		} \
2025 		for (i = 0; i < MAX_GI; i++) { \
2026 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2027 		} \
2028 		for (i = 0; i < SS_COUNT; i++) { \
2029 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2030 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2031 		} \
2032 		for (i = 0; i < MAX_BW; i++) { \
2033 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2034 		} \
2035 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2036 	} while (0)
2037 
2038 /**
2039  * dp_peer_find_attach() - Allocates memory for peer objects
2040  * @soc: SoC handle
2041  *
2042  * Return: QDF_STATUS
2043  */
2044 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2045 extern void dp_peer_find_detach(struct dp_soc *soc);
2046 extern void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2047 extern void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2048 extern void dp_peer_find_hash_erase(struct dp_soc *soc);
2049 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2050 			   struct dp_peer *peer);
2051 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2052 			      struct dp_peer *peer);
2053 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2054 				struct dp_peer *peer,
2055 				uint16_t peer_id);
2056 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2057 			     struct dp_peer *peer,
2058 			     struct dp_txrx_peer *txrx_peer);
2059 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2060 				   uint16_t peer_id);
2061 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2062 			  enum dp_mod_id mod_id);
2063 
2064 /*
2065  * dp_peer_ppdu_delayed_ba_cleanup() free ppdu allocated in peer
2066  * @peer: Datapath peer
2067  *
2068  * return: void
2069  */
2070 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2071 
2072 extern void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2073 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2074 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2075 
2076 #ifdef DP_PEER_EXTENDED_API
2077 /**
2078  * dp_register_peer() - Register peer into physical device
2079  * @soc_hdl - data path soc handle
2080  * @pdev_id - device instance id
2081  * @sta_desc - peer description
2082  *
2083  * Register peer into physical device
2084  *
2085  * Return: QDF_STATUS_SUCCESS registration success
2086  *         QDF_STATUS_E_FAULT peer not found
2087  */
2088 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2089 			    struct ol_txrx_desc_type *sta_desc);
2090 
2091 /**
2092  * dp_clear_peer() - remove peer from physical device
2093  * @soc_hdl - data path soc handle
2094  * @pdev_id - device instance id
2095  * @peer_addr - peer mac address
2096  *
2097  * remove peer from physical device
2098  *
2099  * Return: QDF_STATUS_SUCCESS registration success
2100  *         QDF_STATUS_E_FAULT peer not found
2101  */
2102 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2103 			 struct qdf_mac_addr peer_addr);
2104 
2105 /*
2106  * dp_find_peer_exist - find peer if already exists
2107  * @soc: datapath soc handle
2108  * @pdev_id: physical device instance id
2109  * @peer_mac_addr: peer mac address
2110  *
2111  * Return: true or false
2112  */
2113 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2114 			uint8_t *peer_addr);
2115 
2116 /*
2117  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2118  * @soc: datapath soc handle
2119  * @vdev_id: vdev instance id
2120  * @peer_mac_addr: peer mac address
2121  *
2122  * Return: true or false
2123  */
2124 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2125 				uint8_t *peer_addr);
2126 
2127 /*
2128  * dp_find_peer_exist_on_other_vdev - find if peer exists
2129  * on other than the given vdev
2130  * @soc: datapath soc handle
2131  * @vdev_id: vdev instance id
2132  * @peer_mac_addr: peer mac address
2133  * @max_bssid: max number of bssids
2134  *
2135  * Return: true or false
2136  */
2137 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2138 				      uint8_t vdev_id, uint8_t *peer_addr,
2139 				      uint16_t max_bssid);
2140 
2141 /**
2142  * dp_peer_state_update() - update peer local state
2143  * @pdev - data path device instance
2144  * @peer_addr - peer mac address
2145  * @state - new peer local state
2146  *
2147  * update peer local state
2148  *
2149  * Return: QDF_STATUS_SUCCESS registration success
2150  */
2151 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2152 				enum ol_txrx_peer_state state);
2153 
2154 /**
2155  * dp_get_vdevid() - Get virtual interface id which peer registered
2156  * @soc - datapath soc handle
2157  * @peer_mac - peer mac address
2158  * @vdev_id - virtual interface id which peer registered
2159  *
2160  * Get virtual interface id which peer registered
2161  *
2162  * Return: QDF_STATUS_SUCCESS registration success
2163  */
2164 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2165 			 uint8_t *vdev_id);
2166 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2167 		struct qdf_mac_addr peer_addr);
2168 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2169 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2170 
2171 /**
2172  * dp_get_peer_state() - Get local peer state
2173  * @soc - datapath soc handle
2174  * @vdev_id - vdev id
2175  * @peer_mac - peer mac addr
2176  *
2177  * Get local peer state
2178  *
2179  * Return: peer status
2180  */
2181 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2182 		      uint8_t *peer_mac);
2183 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2184 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2185 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2186 /**
2187  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2188  * @soc_hdl: datapath soc handle
2189  * @vdev_id: vdev_id
2190  * @peer_mac: peer mac addr
2191  * @val: tdls peer flag
2192  *
2193  * Return: none
2194  */
2195 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2196 			      uint8_t *peer_mac, bool val);
2197 #else
2198 /**
2199  * dp_get_vdevid() - Get virtual interface id which peer registered
2200  * @soc - datapath soc handle
2201  * @peer_mac - peer mac address
2202  * @vdev_id - virtual interface id which peer registered
2203  *
2204  * Get virtual interface id which peer registered
2205  *
2206  * Return: QDF_STATUS_SUCCESS registration success
2207  */
2208 static inline
2209 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2210 			 uint8_t *vdev_id)
2211 {
2212 	return QDF_STATUS_E_NOSUPPORT;
2213 }
2214 
2215 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2216 {
2217 }
2218 
2219 static inline
2220 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2221 {
2222 }
2223 
2224 static inline
2225 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2226 {
2227 }
2228 
2229 static inline
2230 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2231 			      uint8_t *peer_mac, bool val)
2232 {
2233 }
2234 #endif
2235 
2236 int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
2237 				      uint8_t *peer_mac, uint16_t vdev_id,
2238 				      uint8_t tid,
2239 				      int status);
2240 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
2241 				  uint8_t *peer_mac, uint16_t vdev_id,
2242 				  uint8_t dialogtoken, uint16_t tid,
2243 				  uint16_t batimeout,
2244 				  uint16_t buffersize,
2245 				  uint16_t startseqnum);
2246 QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc,
2247 					uint8_t *peer_mac, uint16_t vdev_id,
2248 					uint8_t tid, uint8_t *dialogtoken,
2249 					uint16_t *statuscode,
2250 					uint16_t *buffersize,
2251 					uint16_t *batimeout);
2252 QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc,
2253 				 uint8_t *peer_mac,
2254 				 uint16_t vdev_id, uint8_t tid,
2255 				 uint16_t statuscode);
2256 int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2257 			   uint16_t vdev_id, int tid,
2258 			   uint16_t reasoncode);
2259 
2260 /**
2261  * dp_rx_tid_update_ba_win_size() - Update the DP tid BA window size
2262  * @soc: soc handle
2263  * @peer_mac: mac address of peer handle
2264  * @vdev_id: id of vdev handle
2265  * @tid: tid
2266  * @buffersize: BA window size
2267  *
2268  * Return: success/failure of tid update
2269  */
2270 QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc,
2271 					uint8_t *peer_mac, uint16_t vdev_id,
2272 					uint8_t tid, uint16_t buffersize);
2273 
2274 /*
2275  * dp_delba_tx_completion_wifi3() -  Handle delba tx completion
2276  *
2277  * @cdp_soc: soc handle
2278  * @vdev_id: id of the vdev handle
2279  * @peer_mac: peer mac address
2280  * @tid: Tid number
2281  * @status: Tx completion status
2282  * Indicate status of delba Tx to DP for stats update and retry
2283  * delba if tx failed.
2284  *
2285  */
2286 int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2287 				 uint16_t vdev_id, uint8_t tid,
2288 				 int status);
2289 extern QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
2290 					uint32_t ba_window_size,
2291 					uint32_t start_seq);
2292 
2293 #ifdef DP_UMAC_HW_RESET_SUPPORT
2294 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2295 
2296 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2297 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2298 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2299 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2300 			       uint32_t size);
2301 #endif
2302 
2303 extern QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc,
2304 	enum hal_reo_cmd_type type, struct hal_reo_cmd_params *params,
2305 	void (*callback_fn), void *data);
2306 
2307 extern void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2308 
2309 /**
2310  * dp_reo_status_ring_handler - Handler for REO Status ring
2311  * @int_ctx: pointer to DP interrupt context
2312  * @soc: DP Soc handle
2313  *
2314  * Returns: Number of descriptors reaped
2315  */
2316 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2317 				    struct dp_soc *soc);
2318 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2319 			     struct cdp_vdev_stats *vdev_stats);
2320 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2321 	union hal_reo_status *reo_status);
2322 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2323 		union hal_reo_status *reo_status);
2324 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2325 				     qdf_nbuf_t nbuf,
2326 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2327 				     uint8_t new_mac_cnt, uint8_t tid,
2328 				     bool is_igmp, bool is_dms_pkt);
2329 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2330 
2331 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2332 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2333 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2334 		uint32_t config_param_1, uint32_t config_param_2,
2335 		uint32_t config_param_3, int cookie, int cookie_msb,
2336 		uint8_t mac_id);
2337 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2338 			    uint8_t tag_type, uint32_t *tag_buf);
2339 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2340 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2341 				     uint8_t mac_id);
2342 /**
2343  * dp_rxtid_stats_cmd_cb - function pointer for peer
2344  *			   rx tid stats cmd call_back
2345  */
2346 typedef void (*dp_rxtid_stats_cmd_cb)(struct dp_soc *soc, void *cb_ctxt,
2347 				      union hal_reo_status *reo_status);
2348 int dp_peer_rxtid_stats(struct dp_peer *peer,
2349 			dp_rxtid_stats_cmd_cb dp_stats_cmd_cb,
2350 			void *cb_ctxt);
2351 #ifdef IPA_OFFLOAD
2352 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2353 				       union hal_reo_status *reo_status);
2354 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2355 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2356 #endif
2357 QDF_STATUS
2358 dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2359 		      uint8_t *peer_mac, enum cdp_sec_type sec_type,
2360 		      uint32_t *rx_pn);
2361 
2362 QDF_STATUS
2363 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2364 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
2365 			  bool is_unicast);
2366 
2367 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
2368 
2369 QDF_STATUS
2370 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
2371 		   uint8_t *peer_mac,
2372 		   bool is_unicast, uint32_t *key);
2373 
2374 /**
2375  * dp_check_pdev_exists() - Validate pdev before use
2376  * @soc - dp soc handle
2377  * @data - pdev handle
2378  *
2379  * Return: 0 - success/invalid - failure
2380  */
2381 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
2382 
2383 /**
2384  * dp_update_delay_stats() - Update delay statistics in structure
2385  *				and fill min, max and avg delay
2386  * @tstats: tid tx stats
2387  * @rstats: tid rx stats
2388  * @delay: delay in ms
2389  * @tid: tid value
2390  * @mode: type of tx delay mode
2391  * @ring id: ring number
2392  * @delay_in_us: flag to indicate whether the delay is in ms or us
2393  *
2394  * Return: none
2395  */
2396 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
2397 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
2398 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
2399 			   bool delay_in_us);
2400 
2401 /**
2402  * dp_print_ring_stats(): Print tail and head pointer
2403  * @pdev: DP_PDEV handle
2404  *
2405  * Return:void
2406  */
2407 void dp_print_ring_stats(struct dp_pdev *pdev);
2408 
2409 /**
2410  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
2411  * @soc: soc handle
2412  * @srng: srng handle
2413  * @ring_type: ring type
2414  *
2415  * Return:void
2416  */
2417 void
2418 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
2419 			    enum hal_ring_type ring_type);
2420 /**
2421  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
2422  * @pdev_handle: DP pdev handle
2423  *
2424  * Return - void
2425  */
2426 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
2427 
2428 /**
2429  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
2430  * @soc_handle: Soc handle
2431  *
2432  * Return: void
2433  */
2434 void dp_print_soc_cfg_params(struct dp_soc *soc);
2435 
2436 /**
2437  * dp_srng_get_str_from_ring_type() - Return string name for a ring
2438  * @ring_type: Ring
2439  *
2440  * Return: char const pointer
2441  */
2442 const
2443 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
2444 
2445 /*
2446  * dp_txrx_path_stats() - Function to display dump stats
2447  * @soc - soc handle
2448  *
2449  * return: none
2450  */
2451 void dp_txrx_path_stats(struct dp_soc *soc);
2452 
2453 /*
2454  * dp_print_per_ring_stats(): Packet count per ring
2455  * @soc - soc handle
2456  *
2457  * Return - None
2458  */
2459 void dp_print_per_ring_stats(struct dp_soc *soc);
2460 
2461 /**
2462  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
2463  * @pdev: DP PDEV handle
2464  *
2465  * return: void
2466  */
2467 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
2468 
2469 /**
2470  * dp_print_rx_rates(): Print Rx rate stats
2471  * @vdev: DP_VDEV handle
2472  *
2473  * Return:void
2474  */
2475 void dp_print_rx_rates(struct dp_vdev *vdev);
2476 
2477 /**
2478  * dp_print_tx_rates(): Print tx rates
2479  * @vdev: DP_VDEV handle
2480  *
2481  * Return:void
2482  */
2483 void dp_print_tx_rates(struct dp_vdev *vdev);
2484 
2485 /**
2486  * dp_print_peer_stats():print peer stats
2487  * @peer: DP_PEER handle
2488  * @peer_stats: buffer holding peer stats
2489  *
2490  * return void
2491  */
2492 void dp_print_peer_stats(struct dp_peer *peer,
2493 			 struct cdp_peer_stats *peer_stats);
2494 
2495 /**
2496  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
2497  * @pdev: DP_PDEV Handle
2498  *
2499  * Return:void
2500  */
2501 void
2502 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
2503 
2504 /**
2505  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
2506  * @pdev: DP_PDEV Handle
2507  *
2508  * Return: void
2509  */
2510 void
2511 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
2512 
2513 /**
2514  * dp_print_soc_tx_stats(): Print SOC level  stats
2515  * @soc DP_SOC Handle
2516  *
2517  * Return: void
2518  */
2519 void dp_print_soc_tx_stats(struct dp_soc *soc);
2520 
2521 /**
2522  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
2523  * @soc: dp_soc handle
2524  *
2525  * Return: None
2526  */
2527 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
2528 
2529 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
2530 /**
2531  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2532  *				  for all SRNGs
2533  * @soc: DP soc handle
2534  * @srng_mask: SRNGs mask for dumping usage watermark stats
2535  *
2536  * Return: None
2537  */
2538 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
2539 #else
2540 /**
2541  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2542  *				  for all SRNGs
2543  * @soc: DP soc handle
2544  * @srng_mask: SRNGs mask for dumping usage watermark stats
2545  *
2546  * Return: None
2547  */
2548 static inline
2549 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
2550 {
2551 }
2552 #endif
2553 
2554 /**
2555  * dp_print_soc_rx_stats: Print SOC level Rx stats
2556  * @soc: DP_SOC Handle
2557  *
2558  * Return:void
2559  */
2560 void dp_print_soc_rx_stats(struct dp_soc *soc);
2561 
2562 /**
2563  * dp_get_mac_id_for_pdev() -  Return mac corresponding to pdev for mac
2564  *
2565  * @mac_id: MAC id
2566  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2567  *
2568  * Single pdev using both MACs will operate on both MAC rings,
2569  * which is the case for MCL.
2570  * For WIN each PDEV will operate one ring, so index is zero.
2571  *
2572  */
2573 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
2574 {
2575 	if (mac_id && pdev_id) {
2576 		qdf_print("Both mac_id and pdev_id cannot be non zero");
2577 		QDF_BUG(0);
2578 		return 0;
2579 	}
2580 	return (mac_id + pdev_id);
2581 }
2582 
2583 /**
2584  * dp_get_lmac_id_for_pdev_id() -  Return lmac id corresponding to host pdev id
2585  * @soc: soc pointer
2586  * @mac_id: MAC id
2587  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2588  *
2589  * For MCL, Single pdev using both MACs will operate on both MAC rings.
2590  *
2591  * For WIN, each PDEV will operate one ring.
2592  *
2593  */
2594 static inline int
2595 dp_get_lmac_id_for_pdev_id
2596 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
2597 {
2598 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2599 		if (mac_id && pdev_id) {
2600 			qdf_print("Both mac_id and pdev_id cannot be non zero");
2601 			QDF_BUG(0);
2602 			return 0;
2603 		}
2604 		return (mac_id + pdev_id);
2605 	}
2606 
2607 	return soc->pdev_list[pdev_id]->lmac_id;
2608 }
2609 
2610 /**
2611  * dp_get_pdev_for_lmac_id() -  Return pdev pointer corresponding to lmac id
2612  * @soc: soc pointer
2613  * @lmac_id: LMAC id
2614  *
2615  * For MCL, Single pdev exists
2616  *
2617  * For WIN, each PDEV will operate one ring.
2618  *
2619  */
2620 static inline struct dp_pdev *
2621 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
2622 {
2623 	uint8_t i = 0;
2624 
2625 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2626 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
2627 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
2628 	}
2629 
2630 	/* Typically for MCL as there only 1 PDEV*/
2631 	return soc->pdev_list[0];
2632 }
2633 
2634 /**
2635  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
2636  *                                          corresponding to host pdev id
2637  * @soc: soc pointer
2638  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2639  *
2640  * returns target pdev_id for host pdev id. For WIN, this is derived through
2641  * a two step process:
2642  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
2643  *    during mode switch)
2644  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
2645  *
2646  * For MCL, return the offset-1 translated mac_id
2647  */
2648 static inline int
2649 dp_calculate_target_pdev_id_from_host_pdev_id
2650 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2651 {
2652 	struct dp_pdev *pdev;
2653 
2654 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2655 		return DP_SW2HW_MACID(mac_for_pdev);
2656 
2657 	pdev = soc->pdev_list[mac_for_pdev];
2658 
2659 	/*non-MCL case, get original target_pdev mapping*/
2660 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
2661 }
2662 
2663 /**
2664  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
2665  *                                         to host pdev id
2666  * @soc: soc pointer
2667  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2668  *
2669  * returns target pdev_id for host pdev id.
2670  * For WIN, return the value stored in pdev object.
2671  * For MCL, return the offset-1 translated mac_id.
2672  */
2673 static inline int
2674 dp_get_target_pdev_id_for_host_pdev_id
2675 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2676 {
2677 	struct dp_pdev *pdev;
2678 
2679 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2680 		return DP_SW2HW_MACID(mac_for_pdev);
2681 
2682 	pdev = soc->pdev_list[mac_for_pdev];
2683 
2684 	return pdev->target_pdev_id;
2685 }
2686 
2687 /**
2688  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
2689  *                                         to target pdev id
2690  * @soc: soc pointer
2691  * @pdev_id: pdev_id corresponding to target pdev
2692  *
2693  * returns host pdev_id for target pdev id. For WIN, this is derived through
2694  * a two step process:
2695  * 1. Get lmac_id corresponding to target pdev_id
2696  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
2697  *
2698  * For MCL, return the 0-offset pdev_id
2699  */
2700 static inline int
2701 dp_get_host_pdev_id_for_target_pdev_id
2702 	(struct dp_soc *soc, uint32_t pdev_id)
2703 {
2704 	struct dp_pdev *pdev;
2705 	int lmac_id;
2706 
2707 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2708 		return DP_HW2SW_MACID(pdev_id);
2709 
2710 	/*non-MCL case, get original target_lmac mapping from target pdev*/
2711 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
2712 					  DP_HW2SW_MACID(pdev_id));
2713 
2714 	/*Get host pdev from lmac*/
2715 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
2716 
2717 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
2718 }
2719 
2720 /*
2721  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
2722  *
2723  * @soc: handle to DP soc
2724  * @mac_id: MAC id
2725  *
2726  * Single pdev using both MACs will operate on both MAC rings,
2727  * which is the case for MCL.
2728  * For WIN each PDEV will operate one ring, so index is zero.
2729  *
2730  */
2731 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
2732 {
2733 	/*
2734 	 * Single pdev using both MACs will operate on both MAC rings,
2735 	 * which is the case for MCL.
2736 	 */
2737 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2738 		return mac_id;
2739 
2740 	/* For WIN each PDEV will operate one ring, so index is zero. */
2741 	return 0;
2742 }
2743 
2744 /*
2745  * dp_is_subtype_data() - check if the frame subtype is data
2746  *
2747  * @frame_ctrl: Frame control field
2748  *
2749  * check the frame control field and verify if the packet
2750  * is a data packet.
2751  *
2752  * Return: true or false
2753  */
2754 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
2755 {
2756 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
2757 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
2758 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2759 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
2760 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2761 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
2762 		return true;
2763 	}
2764 
2765 	return false;
2766 }
2767 
2768 #ifdef WDI_EVENT_ENABLE
2769 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2770 				uint32_t stats_type_upload_mask,
2771 				uint8_t mac_id);
2772 
2773 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2774 		       wdi_event_subscribe *event_cb_sub_handle,
2775 		       uint32_t event);
2776 
2777 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2778 		     wdi_event_subscribe *event_cb_sub_handle,
2779 		     uint32_t event);
2780 
2781 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
2782 			  void *data, u_int16_t peer_id,
2783 			  int status, u_int8_t pdev_id);
2784 
2785 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
2786 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
2787 
2788 static inline void
2789 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
2790 			    void *cb_context,
2791 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2792 			    uint8_t pipe_id)
2793 {
2794 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
2795 
2796 	/* TODO: Temporary change to bypass HTC connection for this new
2797 	 * HIF pipe, which will be used for packet log and other high-
2798 	 * priority HTT messages. Proper HTC connection to be added
2799 	 * later once required FW changes are available
2800 	 */
2801 	hif_pipe_callbacks.rxCompletionHandler = callback;
2802 	hif_pipe_callbacks.Context = cb_context;
2803 	hif_update_pipe_callback(dp_soc->hif_handle,
2804 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
2805 }
2806 #else
2807 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2808 				     wdi_event_subscribe *event_cb_sub_handle,
2809 				     uint32_t event)
2810 {
2811 	return 0;
2812 }
2813 
2814 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2815 				   wdi_event_subscribe *event_cb_sub_handle,
2816 				   uint32_t event)
2817 {
2818 	return 0;
2819 }
2820 
2821 static inline
2822 void dp_wdi_event_handler(enum WDI_EVENT event,
2823 			  struct dp_soc *soc,
2824 			  void *data, u_int16_t peer_id,
2825 			  int status, u_int8_t pdev_id)
2826 {
2827 }
2828 
2829 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
2830 {
2831 	return 0;
2832 }
2833 
2834 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
2835 {
2836 	return 0;
2837 }
2838 
2839 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2840 		uint32_t stats_type_upload_mask, uint8_t mac_id)
2841 {
2842 	return 0;
2843 }
2844 
2845 static inline void
2846 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
2847 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2848 			    uint8_t pipe_id)
2849 {
2850 }
2851 #endif /* CONFIG_WIN */
2852 
2853 #ifdef VDEV_PEER_PROTOCOL_COUNT
2854 /**
2855  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2856  * @vdev: VDEV DP object
2857  * @nbuf: data packet
2858  * @peer: DP TXRX Peer object
2859  * @is_egress: whether egress or ingress
2860  * @is_rx: whether rx or tx
2861  *
2862  * This function updates the per-peer protocol counters
2863  * Return: void
2864  */
2865 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
2866 					    qdf_nbuf_t nbuf,
2867 					    struct dp_txrx_peer *txrx_peer,
2868 					    bool is_egress,
2869 					    bool is_rx);
2870 
2871 /**
2872  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2873  * @soc: SOC DP object
2874  * @vdev_id: vdev_id
2875  * @nbuf: data packet
2876  * @is_egress: whether egress or ingress
2877  * @is_rx: whether rx or tx
2878  *
2879  * This function updates the per-peer protocol counters
2880  * Return: void
2881  */
2882 
2883 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
2884 				       int8_t vdev_id,
2885 				       qdf_nbuf_t nbuf,
2886 				       bool is_egress,
2887 				       bool is_rx);
2888 
2889 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2890 					       qdf_nbuf_t nbuf);
2891 
2892 #else
2893 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
2894 					       is_egress, is_rx)
2895 
2896 static inline
2897 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2898 					       qdf_nbuf_t nbuf)
2899 {
2900 }
2901 
2902 #endif
2903 
2904 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
2905 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
2906 
2907 /**
2908  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
2909  * @soc: DP soc context
2910  *
2911  * Return: none
2912  */
2913 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
2914 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
2915 	bool force);
2916 #else
2917 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
2918 {
2919 }
2920 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
2921 
2922 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
2923 static inline int
2924 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2925 {
2926 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
2927 }
2928 
2929 static inline void
2930 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2931 {
2932 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
2933 }
2934 
2935 #else
2936 static inline int
2937 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2938 {
2939 	return hal_srng_access_start(soc, hal_ring_hdl);
2940 }
2941 
2942 static inline void
2943 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2944 {
2945 	hal_srng_access_end(soc, hal_ring_hdl);
2946 }
2947 #endif
2948 
2949 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2950 /**
2951  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
2952  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2953  * @soc: DP Soc handle
2954  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2955  *
2956  * Return: 0 on success; error on failure
2957  */
2958 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2959 			 hal_ring_handle_t hal_ring_hdl);
2960 
2961 /**
2962  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
2963  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2964  * @soc: DP Soc handle
2965  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2966  *
2967  * Return: void
2968  */
2969 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2970 			hal_ring_handle_t hal_ring_hdl);
2971 
2972 #else
2973 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
2974 				       struct dp_soc *dp_soc,
2975 				       hal_ring_handle_t hal_ring_hdl)
2976 {
2977 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2978 
2979 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2980 }
2981 
2982 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
2983 				      struct dp_soc *dp_soc,
2984 				      hal_ring_handle_t hal_ring_hdl)
2985 {
2986 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2987 
2988 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2989 }
2990 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2991 
2992 #ifdef QCA_CACHED_RING_DESC
2993 /**
2994  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
2995  * @dp_socsoc: DP Soc handle
2996  * @hal_ring: opaque pointer to the HAL Destination Ring
2997  *
2998  * Return: HAL ring descriptor
2999  */
3000 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3001 					 hal_ring_handle_t hal_ring_hdl)
3002 {
3003 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3004 
3005 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
3006 }
3007 
3008 /**
3009  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
3010  * descriptors
3011  * @dp_socsoc: DP Soc handle
3012  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3013  * @num_entries: Entry count
3014  *
3015  * Return: None
3016  */
3017 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3018 						hal_ring_handle_t hal_ring_hdl,
3019 						uint32_t num_entries)
3020 {
3021 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3022 
3023 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
3024 }
3025 #else
3026 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3027 					 hal_ring_handle_t hal_ring_hdl)
3028 {
3029 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3030 
3031 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3032 }
3033 
3034 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3035 						hal_ring_handle_t hal_ring_hdl,
3036 						uint32_t num_entries)
3037 {
3038 }
3039 #endif /* QCA_CACHED_RING_DESC */
3040 
3041 #if defined(QCA_CACHED_RING_DESC) && \
3042 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3043 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3044 /**
3045  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3046  * @hal_soc_hdl: HAL SOC handle
3047  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3048  * @num_entries: Entry count
3049  *
3050  * Return: None
3051  */
3052 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3053 					 hal_ring_handle_t hal_ring_hdl,
3054 					 uint32_t num_entries)
3055 {
3056 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3057 }
3058 
3059 /**
3060  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3061  *					 32 byte descriptor starting at
3062  *					 64 byte offset
3063  * @hal_soc_hdl: HAL SOC handle
3064  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3065  * @num_entries: Entry count
3066  *
3067  * Return: None
3068  */
3069 static inline
3070 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3071 					hal_ring_handle_t hal_ring_hdl,
3072 					uint32_t num_entries)
3073 {
3074 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3075 						  num_entries);
3076 }
3077 #else
3078 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3079 					 hal_ring_handle_t hal_ring_hdl,
3080 					 uint32_t num_entries)
3081 {
3082 	return NULL;
3083 }
3084 
3085 static inline
3086 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3087 					hal_ring_handle_t hal_ring_hdl,
3088 					uint32_t num_entries)
3089 {
3090 	return NULL;
3091 }
3092 #endif
3093 
3094 #ifdef QCA_ENH_V3_STATS_SUPPORT
3095 /**
3096  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3097  * @pdev: DP_PDEV handle
3098  *
3099  * Return:void
3100  */
3101 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3102 
3103 /**
3104  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3105  * @pdev: DP_PDEV handle
3106  *
3107  * Return:void
3108  */
3109 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3110 
3111 /**
3112  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3113  * @pdev: DP_PDEV handle
3114  *
3115  * Return:void
3116  */
3117 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3118 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3119 
3120 /**
3121  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3122  * @soc_hdl: soc handle
3123  * @pdev_id: id of dp_pdev handle
3124  * @tid_stats: Pointer for cdp_tid_stats_intf
3125  *
3126  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3127  */
3128 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3129 				 struct cdp_tid_stats_intf *tid_stats);
3130 
3131 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3132 
3133 /**
3134  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3135  * @vdev: DP vdev handle
3136  *
3137  * Return: struct cdp_vdev pointer
3138  */
3139 static inline
3140 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3141 {
3142 	return (struct cdp_vdev *)vdev;
3143 }
3144 
3145 /**
3146  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3147  * @pdev: DP pdev handle
3148  *
3149  * Return: struct cdp_pdev pointer
3150  */
3151 static inline
3152 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3153 {
3154 	return (struct cdp_pdev *)pdev;
3155 }
3156 
3157 /**
3158  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3159  * @psoc: DP psoc handle
3160  *
3161  * Return: struct cdp_soc pointer
3162  */
3163 static inline
3164 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3165 {
3166 	return (struct cdp_soc *)psoc;
3167 }
3168 
3169 /**
3170  * dp_soc_to_cdp_soc_t() - typecast dp psoc to
3171  * ol txrx soc handle
3172  * @psoc: DP psoc handle
3173  *
3174  * Return: struct cdp_soc_t pointer
3175  */
3176 static inline
3177 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
3178 {
3179 	return (struct cdp_soc_t *)psoc;
3180 }
3181 
3182 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
3183 /**
3184  * dp_rx_flow_update_fse_stats() - Update a flow's statistics
3185  * @pdev: pdev handle
3186  * @flow_id: flow index (truncated hash) in the Rx FST
3187  *
3188  * Return: Success when flow statistcs is updated, error on failure
3189  */
3190 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3191 				    struct cdp_rx_flow_info *rx_flow_info,
3192 				    struct cdp_flow_stats *stats);
3193 
3194 /**
3195  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3196  * @pdev: pdev handle
3197  * @rx_flow_info: DP flow parameters
3198  *
3199  * Return: Success when flow is deleted, error on failure
3200  */
3201 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3202 				   struct cdp_rx_flow_info *rx_flow_info);
3203 
3204 /**
3205  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3206  * @pdev: DP pdev instance
3207  * @rx_flow_info: DP flow parameters
3208  *
3209  * Return: Success when flow is added, no-memory or already exists on error
3210  */
3211 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3212 				struct cdp_rx_flow_info *rx_flow_info);
3213 
3214 /**
3215  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3216  * @soc: SoC handle
3217  * @pdev: Pdev handle
3218  *
3219  * Return: Handle to flow search table entry
3220  */
3221 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3222 
3223 /**
3224  * dp_rx_fst_detach() - De-initialize Rx FST
3225  * @soc: SoC handle
3226  * @pdev: Pdev handle
3227  *
3228  * Return: None
3229  */
3230 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3231 
3232 /**
3233  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3234  * @soc: SoC handle
3235  * @pdev: Pdev handle
3236  *
3237  * Return: Success when fst parameters are programmed in FW, error otherwise
3238  */
3239 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3240 					struct dp_pdev *pdev);
3241 
3242 /** dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3243  * @pdev: pdev handle
3244  * @flow_id: flow index (truncated hash) in the Rx FST
3245  *
3246  * Return: Success when flow statistcs is updated, error on failure
3247  */
3248 QDF_STATUS
3249 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3250 
3251 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3252 
3253 /**
3254  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3255  * @soc: SoC handle
3256  * @pdev: Pdev handle
3257  *
3258  * Return: Handle to flow search table entry
3259  */
3260 static inline
3261 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3262 {
3263 	return QDF_STATUS_SUCCESS;
3264 }
3265 
3266 /**
3267  * dp_rx_fst_detach() - De-initialize Rx FST
3268  * @soc: SoC handle
3269  * @pdev: Pdev handle
3270  *
3271  * Return: None
3272  */
3273 static inline
3274 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
3275 {
3276 }
3277 #endif
3278 
3279 /**
3280  * dp_vdev_get_ref() - API to take a reference for VDEV object
3281  *
3282  * @soc		: core DP soc context
3283  * @vdev	: DP vdev
3284  * @mod_id	: module id
3285  *
3286  * Return:	QDF_STATUS_SUCCESS if reference held successfully
3287  *		else QDF_STATUS_E_INVAL
3288  */
3289 static inline
3290 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
3291 			   enum dp_mod_id mod_id)
3292 {
3293 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
3294 		return QDF_STATUS_E_INVAL;
3295 
3296 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
3297 
3298 	return QDF_STATUS_SUCCESS;
3299 }
3300 
3301 /**
3302  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
3303  * @soc: core DP soc context
3304  * @vdev_id: vdev id from vdev object can be retrieved
3305  * @mod_id: module id which is requesting the reference
3306  *
3307  * Return: struct dp_vdev*: Pointer to DP vdev object
3308  */
3309 static inline struct dp_vdev *
3310 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
3311 		      enum dp_mod_id mod_id)
3312 {
3313 	struct dp_vdev *vdev = NULL;
3314 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3315 		return NULL;
3316 
3317 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3318 	vdev = soc->vdev_id_map[vdev_id];
3319 
3320 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
3321 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3322 		return NULL;
3323 	}
3324 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3325 
3326 	return vdev;
3327 }
3328 
3329 /**
3330  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
3331  * @soc: core DP soc context
3332  * @pdev_id: pdev id from pdev object can be retrieved
3333  *
3334  * Return: struct dp_pdev*: Pointer to DP pdev object
3335  */
3336 static inline struct dp_pdev *
3337 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
3338 				   uint8_t pdev_id)
3339 {
3340 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
3341 		return NULL;
3342 
3343 	return soc->pdev_list[pdev_id];
3344 }
3345 
3346 /*
3347  * dp_rx_tid_update_wifi3() – Update receive TID state
3348  * @peer: Datapath peer handle
3349  * @tid: TID
3350  * @ba_window_size: BlockAck window size
3351  * @start_seq: Starting sequence number
3352  * @bar_update: BAR update triggered
3353  *
3354  * Return: QDF_STATUS code
3355  */
3356 QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
3357 					 ba_window_size, uint32_t start_seq,
3358 					 bool bar_update);
3359 
3360 /**
3361  * dp_get_peer_mac_list(): function to get peer mac list of vdev
3362  * @soc: Datapath soc handle
3363  * @vdev_id: vdev id
3364  * @newmac: Table of the clients mac
3365  * @mac_cnt: No. of MACs required
3366  * @limit: Limit the number of clients
3367  *
3368  * return: no of clients
3369  */
3370 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
3371 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
3372 			      u_int16_t mac_cnt, bool limit);
3373 
3374 /*
3375  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
3376  *				       DBS check
3377  * @soc: DP SoC context
3378  * @max_mac_rings: Pointer to variable for No of MAC rings
3379  *
3380  * Return: None
3381  */
3382 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
3383 				     int *max_mac_rings);
3384 
3385 
3386 #if defined(WLAN_SUPPORT_RX_FISA)
3387 void dp_rx_dump_fisa_table(struct dp_soc *soc);
3388 
3389 /**
3390  * dp_print_fisa_stats() - Print FISA stats
3391  * @soc: DP soc handle
3392  *
3393  * Return: None
3394  */
3395 void dp_print_fisa_stats(struct dp_soc *soc);
3396 
3397 /*
3398  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
3399  * @soc:		DP SoC context
3400  * @num_entries:	Number of flow search entries
3401  * @cmem_ba_lo:		CMEM base address low
3402  * @cmem_ba_hi:		CMEM base address high
3403  *
3404  * Return: None
3405  */
3406 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3407 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
3408 
3409 void
3410 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
3411 #else
3412 static inline void
3413 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3414 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
3415 {
3416 }
3417 
3418 static inline void
3419 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
3420 {
3421 }
3422 
3423 static inline void dp_print_fisa_stats(struct dp_soc *soc)
3424 {
3425 }
3426 #endif /* WLAN_SUPPORT_RX_FISA */
3427 
3428 #ifdef MAX_ALLOC_PAGE_SIZE
3429 /**
3430  * dp_set_page_size() - Set the max page size for hw link desc.
3431  * For MCL the page size is set to OS defined value and for WIN
3432  * the page size is set to the max_alloc_size cfg ini
3433  * param.
3434  * This is to ensure that WIN gets contiguous memory allocations
3435  * as per requirement.
3436  * @pages: link desc page handle
3437  * @max_alloc_size: max_alloc_size
3438  *
3439  * Return: None
3440  */
3441 static inline
3442 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3443 			  uint32_t max_alloc_size)
3444 {
3445 	pages->page_size = qdf_page_size;
3446 }
3447 
3448 #else
3449 static inline
3450 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3451 			  uint32_t max_alloc_size)
3452 {
3453 	pages->page_size = max_alloc_size;
3454 }
3455 #endif /* MAX_ALLOC_PAGE_SIZE */
3456 
3457 /**
3458  * dp_history_get_next_index() - get the next entry to record an entry
3459  *				 in the history.
3460  * @curr_idx: Current index where the last entry is written.
3461  * @max_entries: Max number of entries in the history
3462  *
3463  * This function assumes that the max number os entries is a power of 2.
3464  *
3465  * Returns: The index where the next entry is to be written.
3466  */
3467 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
3468 						 uint32_t max_entries)
3469 {
3470 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
3471 
3472 	return idx & (max_entries - 1);
3473 }
3474 
3475 /**
3476  * dp_rx_skip_tlvs() - Skip TLVs len + L2 hdr_offset, save in nbuf->cb
3477  * @nbuf: nbuf cb to be updated
3478  * @l2_hdr_offset: l2_hdr_offset
3479  *
3480  * Return: None
3481  */
3482 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
3483 
3484 #ifndef FEATURE_WDS
3485 static inline void
3486 dp_hmwds_ast_add_notify(struct dp_peer *peer,
3487 			uint8_t *mac_addr,
3488 			enum cdp_txrx_ast_entry_type type,
3489 			QDF_STATUS err,
3490 			bool is_peer_map)
3491 {
3492 }
3493 #endif
3494 
3495 #ifdef HTT_STATS_DEBUGFS_SUPPORT
3496 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3497  * debugfs for HTT stats
3498  * @pdev: dp pdev handle
3499  *
3500  * Return: QDF_STATUS
3501  */
3502 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
3503 
3504 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3505  * HTT stats
3506  * @pdev: dp pdev handle
3507  *
3508  * Return: none
3509  */
3510 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
3511 #else
3512 
3513 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3514  * debugfs for HTT stats
3515  * @pdev: dp pdev handle
3516  *
3517  * Return: QDF_STATUS
3518  */
3519 static inline QDF_STATUS
3520 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
3521 {
3522 	return QDF_STATUS_SUCCESS;
3523 }
3524 
3525 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3526  * HTT stats
3527  * @pdev: dp pdev handle
3528  *
3529  * Return: none
3530  */
3531 static inline void
3532 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
3533 {
3534 }
3535 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
3536 
3537 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3538 /**
3539  * dp_soc_swlm_attach() - attach the software latency manager resources
3540  * @soc: Datapath global soc handle
3541  *
3542  * Returns: QDF_STATUS
3543  */
3544 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
3545 {
3546 	return QDF_STATUS_SUCCESS;
3547 }
3548 
3549 /**
3550  * dp_soc_swlm_detach() - detach the software latency manager resources
3551  * @soc: Datapath global soc handle
3552  *
3553  * Returns: QDF_STATUS
3554  */
3555 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
3556 {
3557 	return QDF_STATUS_SUCCESS;
3558 }
3559 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3560 
3561 /**
3562  * dp_get_peer_id(): function to get peer id by mac
3563  * @soc: Datapath soc handle
3564  * @vdev_id: vdev id
3565  * @mac: Peer mac address
3566  *
3567  * return: valid peer id on success
3568  *         HTT_INVALID_PEER on failure
3569  */
3570 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
3571 
3572 #ifdef QCA_SUPPORT_WDS_EXTENDED
3573 /**
3574  * dp_wds_ext_set_peer_state(): function to set peer state
3575  * @soc: Datapath soc handle
3576  * @vdev_id: vdev id
3577  * @mac: Peer mac address
3578  * @rx: rx function pointer
3579  *
3580  * return: QDF_STATUS_SUCCESS on success
3581  *         QDF_STATUS_E_INVAL if peer is not found
3582  *         QDF_STATUS_E_ALREADY if rx is already set/unset
3583  */
3584 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
3585 				  uint8_t vdev_id,
3586 				  uint8_t *mac,
3587 				  ol_txrx_rx_fp rx,
3588 				  ol_osif_peer_handle osif_peer);
3589 #endif /* QCA_SUPPORT_WDS_EXTENDED */
3590 
3591 #ifdef DP_MEM_PRE_ALLOC
3592 
3593 /**
3594  * dp_context_alloc_mem() - allocate memory for DP context
3595  * @soc: datapath soc handle
3596  * @ctxt_type: DP context type
3597  * @ctxt_size: DP context size
3598  *
3599  * Return: DP context address
3600  */
3601 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3602 			   size_t ctxt_size);
3603 
3604 /**
3605  * dp_context_free_mem() - Free memory of DP context
3606  * @soc: datapath soc handle
3607  * @ctxt_type: DP context type
3608  * @vaddr: Address of context memory
3609  *
3610  * Return: None
3611  */
3612 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3613 			 void *vaddr);
3614 
3615 /**
3616  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
3617  * @soc: datapath soc handle
3618  * @desc_type: memory request source type
3619  * @pages: multi page information storage
3620  * @element_size: each element size
3621  * @element_num: total number of elements should be allocated
3622  * @memctxt: memory context
3623  * @cacheable: coherent memory or cacheable memory
3624  *
3625  * This function is a wrapper for memory allocation over multiple
3626  * pages, if dp prealloc method is registered, then will try prealloc
3627  * firstly. if prealloc failed, fall back to regular way over
3628  * qdf_mem_multi_pages_alloc().
3629  *
3630  * Return: None
3631  */
3632 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3633 				   enum dp_desc_type desc_type,
3634 				   struct qdf_mem_multi_page_t *pages,
3635 				   size_t element_size,
3636 				   uint32_t element_num,
3637 				   qdf_dma_context_t memctxt,
3638 				   bool cacheable);
3639 
3640 /**
3641  * dp_desc_multi_pages_mem_free() - free multiple pages memory
3642  * @soc: datapath soc handle
3643  * @desc_type: memory request source type
3644  * @pages: multi page information storage
3645  * @memctxt: memory context
3646  * @cacheable: coherent memory or cacheable memory
3647  *
3648  * This function is a wrapper for multiple pages memory free,
3649  * if memory is got from prealloc pool, put it back to pool.
3650  * otherwise free by qdf_mem_multi_pages_free().
3651  *
3652  * Return: None
3653  */
3654 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3655 				  enum dp_desc_type desc_type,
3656 				  struct qdf_mem_multi_page_t *pages,
3657 				  qdf_dma_context_t memctxt,
3658 				  bool cacheable);
3659 
3660 #else
3661 static inline
3662 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3663 			   size_t ctxt_size)
3664 {
3665 	return qdf_mem_malloc(ctxt_size);
3666 }
3667 
3668 static inline
3669 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3670 			 void *vaddr)
3671 {
3672 	qdf_mem_free(vaddr);
3673 }
3674 
3675 static inline
3676 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3677 				   enum dp_desc_type desc_type,
3678 				   struct qdf_mem_multi_page_t *pages,
3679 				   size_t element_size,
3680 				   uint32_t element_num,
3681 				   qdf_dma_context_t memctxt,
3682 				   bool cacheable)
3683 {
3684 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
3685 				  element_num, memctxt, cacheable);
3686 }
3687 
3688 static inline
3689 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3690 				  enum dp_desc_type desc_type,
3691 				  struct qdf_mem_multi_page_t *pages,
3692 				  qdf_dma_context_t memctxt,
3693 				  bool cacheable)
3694 {
3695 	qdf_mem_multi_pages_free(soc->osdev, pages,
3696 				 memctxt, cacheable);
3697 }
3698 #endif
3699 
3700 /**
3701  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
3702  *					  history.
3703  * @index: atomic index
3704  * @num_entries_per_slot: Number of entries per slot
3705  * @allocated: is allocated or not
3706  * @entry: pointers to array of records
3707  */
3708 struct dp_frag_history_opaque_atomic {
3709 	qdf_atomic_t index;
3710 	uint16_t num_entries_per_slot;
3711 	uint16_t allocated;
3712 	void *entry[0];
3713 };
3714 
3715 static inline QDF_STATUS
3716 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
3717 			   uint32_t max_slots, uint32_t max_entries_per_slot,
3718 			   uint32_t entry_size,
3719 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
3720 {
3721 	struct dp_frag_history_opaque_atomic *history =
3722 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3723 	size_t alloc_size = max_entries_per_slot * entry_size;
3724 	int i;
3725 
3726 	for (i = 0; i < max_slots; i++) {
3727 		if (attempt_prealloc)
3728 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
3729 								 alloc_size);
3730 		else
3731 			history->entry[i] = qdf_mem_malloc(alloc_size);
3732 
3733 		if (!history->entry[i])
3734 			goto exit;
3735 	}
3736 
3737 	qdf_atomic_init(&history->index);
3738 	history->allocated = 1;
3739 	history->num_entries_per_slot = max_entries_per_slot;
3740 
3741 	return QDF_STATUS_SUCCESS;
3742 exit:
3743 	for (i = i - 1; i >= 0; i--) {
3744 		if (attempt_prealloc)
3745 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3746 		else
3747 			qdf_mem_free(history->entry[i]);
3748 	}
3749 
3750 	return QDF_STATUS_E_NOMEM;
3751 }
3752 
3753 static inline
3754 void dp_soc_frag_history_detach(struct dp_soc *soc,
3755 				void *history_hdl, uint32_t max_slots,
3756 				bool attempt_prealloc,
3757 				enum dp_ctxt_type ctxt_type)
3758 {
3759 	struct dp_frag_history_opaque_atomic *history =
3760 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3761 	int i;
3762 
3763 	for (i = 0; i < max_slots; i++) {
3764 		if (attempt_prealloc)
3765 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3766 		else
3767 			qdf_mem_free(history->entry[i]);
3768 	}
3769 
3770 	history->allocated = 0;
3771 }
3772 
3773 /**
3774  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
3775  *					entry in a fragmented history with
3776  *					index being atomic.
3777  * @curr_idx: address of the current index where the last entry was written
3778  * @next_idx: pointer to update the next index
3779  * @slot: pointer to update the history slot to be selected
3780  * @slot_shift: BITwise shift mask for slot (in index)
3781  * @max_entries_per_slot: Max number of entries in a slot of history
3782  * @max_entries: Total number of entries in the history (sum of all slots)
3783  *
3784  * This function assumes that the "max_entries_per_slot" and "max_entries"
3785  * are a power-of-2.
3786  *
3787  * Return: None
3788  */
3789 static inline void
3790 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
3791 				 uint16_t *slot, uint32_t slot_shift,
3792 				 uint32_t max_entries_per_slot,
3793 				 uint32_t max_entries)
3794 {
3795 	uint32_t idx;
3796 
3797 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
3798 
3799 	*slot = idx >> slot_shift;
3800 	*next_idx = idx & (max_entries_per_slot - 1);
3801 }
3802 
3803 #ifdef FEATURE_RUNTIME_PM
3804 /**
3805  * dp_runtime_get() - Get dp runtime refcount
3806  * @soc: Datapath soc handle
3807  *
3808  * Get dp runtime refcount by increment of an atomic variable, which can block
3809  * dp runtime resume to wait to flush pending tx by runtime suspend.
3810  *
3811  * Return: Current refcount
3812  */
3813 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3814 {
3815 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
3816 }
3817 
3818 /**
3819  * dp_runtime_put() - Return dp runtime refcount
3820  * @soc: Datapath soc handle
3821  *
3822  * Return dp runtime refcount by decrement of an atomic variable, allow dp
3823  * runtime resume finish.
3824  *
3825  * Return: Current refcount
3826  */
3827 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3828 {
3829 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
3830 }
3831 
3832 /**
3833  * dp_runtime_get_refcount() - Get dp runtime refcount
3834  * @soc: Datapath soc handle
3835  *
3836  * Get dp runtime refcount by returning an atomic variable
3837  *
3838  * Return: Current refcount
3839  */
3840 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
3841 {
3842 	return qdf_atomic_read(&soc->dp_runtime_refcount);
3843 }
3844 
3845 /**
3846  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
3847  * @soc: Datapath soc handle
3848  *
3849  * Return: QDF_STATUS
3850  */
3851 static inline void dp_runtime_init(struct dp_soc *soc)
3852 {
3853 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
3854 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
3855 	qdf_atomic_init(&soc->dp_runtime_refcount);
3856 }
3857 
3858 /**
3859  * dp_runtime_deinit() - Deinit DP related runtime PM clients
3860  *
3861  * Return: None
3862  */
3863 static inline void dp_runtime_deinit(void)
3864 {
3865 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
3866 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
3867 }
3868 
3869 /**
3870  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
3871  * @soc: Datapath soc handle
3872  *
3873  * Return: None
3874  */
3875 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3876 {
3877 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
3878 
3879 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
3880 }
3881 #else
3882 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3883 {
3884 	return 0;
3885 }
3886 
3887 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3888 {
3889 	return 0;
3890 }
3891 
3892 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
3893 {
3894 	return QDF_STATUS_SUCCESS;
3895 }
3896 
3897 static inline void dp_runtime_deinit(void)
3898 {
3899 }
3900 
3901 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3902 {
3903 }
3904 #endif
3905 
3906 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
3907 {
3908 	if (soc->cdp_soc.ol_ops->get_con_mode)
3909 		return soc->cdp_soc.ol_ops->get_con_mode();
3910 
3911 	return QDF_GLOBAL_MAX_MODE;
3912 }
3913 
3914 /*
3915  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
3916  *				processing
3917  * @pdev: Datapath PDEV handle
3918  *
3919  */
3920 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
3921 
3922 /*
3923  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
3924  *				processing
3925  * @pdev: Datapath PDEV handle
3926  *
3927  * Return: QDF_STATUS_SUCCESS: Success
3928  *         QDF_STATUS_E_NOMEM: Error
3929  */
3930 
3931 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
3932 
3933 /**
3934  * dp_peer_flush_frags() - Flush all fragments for a particular
3935  *  peer
3936  * @soc_hdl - data path soc handle
3937  * @vdev_id - vdev id
3938  * @peer_addr - peer mac address
3939  *
3940  * Return: None
3941  */
3942 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3943 			 uint8_t *peer_mac);
3944 
3945 /**
3946  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
3947  * @soc: pointer to dp_soc handle
3948  *
3949  * Return:
3950  */
3951 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
3952 
3953 /**
3954  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
3955  * @soc_hdl: soc handle
3956  * @soc_stats: buffer to hold the values
3957  *
3958  * Return: QDF_STATUS_SUCCESS: Success
3959  *         QDF_STATUS_E_FAILURE: Error
3960  */
3961 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
3962 				 struct cdp_soc_stats *soc_stats);
3963 
3964 /**
3965  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
3966  * @soc: soc handle
3967  * @vdev_id: id of vdev handle
3968  * @peer_mac: mac of DP_PEER handle
3969  * @delay_stats: pointer to delay stats array
3970  *
3971  * Return: QDF_STATUS_SUCCESS: Success
3972  *         QDF_STATUS_E_FAILURE: Error
3973  */
3974 QDF_STATUS
3975 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3976 			     uint8_t *peer_mac,
3977 			     struct cdp_delay_tid_stats *delay_stats);
3978 
3979 /**
3980  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
3981  * @soc: soc handle
3982  * @pdev_id: id of pdev handle
3983  * @vdev_id: id of vdev handle
3984  * @peer_mac: mac of DP_PEER handle
3985  * @tid_stats: pointer to jitter stats array
3986  *
3987  * Return: QDF_STATUS_SUCCESS: Success
3988  *         QDF_STATUS_E_FAILURE: Error
3989  */
3990 QDF_STATUS
3991 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3992 			      uint8_t vdev_id, uint8_t *peer_mac,
3993 			      struct cdp_peer_tid_stats *tid_stats);
3994 
3995 /* dp_peer_get_tx_capture_stats - to get peer Tx Capture stats
3996  * @soc_hdl: soc handle
3997  * @vdev_id: id of vdev handle
3998  * @peer_mac: mac of DP_PEER handle
3999  * @stats: pointer to peer tx capture stats
4000  *
4001  * Return: QDF_STATUS_SUCCESS: Success
4002  *         QDF_STATUS_E_FAILURE: Error
4003  */
4004 QDF_STATUS
4005 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
4006 			     uint8_t vdev_id, uint8_t *peer_mac,
4007 			     struct cdp_peer_tx_capture_stats *stats);
4008 
4009 /* dp_pdev_get_tx_capture_stats - to get pdev Tx Capture stats
4010  * @soc_hdl: soc handle
4011  * @pdev_id: id of pdev handle
4012  * @stats: pointer to pdev tx capture stats
4013  *
4014  * Return: QDF_STATUS_SUCCESS: Success
4015  *         QDF_STATUS_E_FAILURE: Error
4016  */
4017 QDF_STATUS
4018 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4019 			     struct cdp_pdev_tx_capture_stats *stats);
4020 
4021 #ifdef HW_TX_DELAY_STATS_ENABLE
4022 /*
4023  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
4024  *  is enabled for vdev
4025  * @vdev: dp vdev
4026  *
4027  * Return: true if tx delay stats is enabled for vdev else false
4028  */
4029 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4030 {
4031 	return vdev->hw_tx_delay_stats_enabled;
4032 }
4033 
4034 /*
4035  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4036  *  for pdev
4037  * @soc: dp soc
4038  *
4039  * Return: None
4040  */
4041 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4042 
4043 /**
4044  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4045  * @soc: soc handle
4046  *
4047  * Return: None
4048  */
4049 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4050 #else
4051 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4052 {
4053 	return 0;
4054 }
4055 
4056 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4057 {
4058 }
4059 
4060 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4061 {
4062 }
4063 #endif
4064 
4065 static inline void
4066 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4067 {
4068 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4069 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4070 			      LRO_IPV4_SEED_ARR_SZ));
4071 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4072 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4073 			      LRO_IPV6_SEED_ARR_SZ));
4074 }
4075 
4076 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
4077 /*
4078  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4079  * @soc_hdl: soc handle
4080  * @pdev_id: id of pdev handle
4081  * @stats: pointer to pdev telemetry stats
4082  *
4083  * Return: QDF_STATUS_SUCCESS: Success
4084  *         QDF_STATUS_E_FAILURE: Error
4085  */
4086 QDF_STATUS
4087 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4088 			    struct cdp_pdev_telemetry_stats *stats);
4089 
4090 /*
4091  * dp_get_peer_telemetry_stats- API to get peer telemetry stats
4092  * @soc_hdl: soc handle
4093  * @addr: peer mac
4094  * @stats: pointer to peer telemetry stats
4095  *
4096  * Return: QDF_STATUS_SUCCESS: Success
4097  *         QDF_STATUS_E_FAILURE: Error
4098  */
4099 QDF_STATUS
4100 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4101 			    struct cdp_peer_telemetry_stats *stats);
4102 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
4103 
4104 #ifdef CONNECTIVITY_PKTLOG
4105 /*
4106  * dp_tx_send_pktlog() - send tx packet log
4107  * @soc: soc handle
4108  * @pdev: pdev handle
4109  * @tx_desc: TX software descriptor
4110  * @nbuf: nbuf
4111  * @status: status of tx packet
4112  *
4113  * This function is used to send tx packet for logging
4114  *
4115  * Return: None
4116  *
4117  */
4118 static inline
4119 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4120 		       struct dp_tx_desc_s *tx_desc,
4121 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4122 {
4123 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4124 
4125 	if (qdf_unlikely(packetdump_cb) &&
4126 	    dp_tx_frm_std == tx_desc->frm_type) {
4127 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4128 			      QDF_NBUF_CB_TX_VDEV_CTX(nbuf),
4129 			      nbuf, status, QDF_TX_DATA_PKT);
4130 	}
4131 }
4132 
4133 /*
4134  * dp_rx_send_pktlog() - send rx packet log
4135  * @soc: soc handle
4136  * @pdev: pdev handle
4137  * @nbuf: nbuf
4138  * @status: status of rx packet
4139  *
4140  * This function is used to send rx packet for logging
4141  *
4142  * Return: None
4143  *
4144  */
4145 static inline
4146 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4147 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4148 {
4149 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4150 
4151 	if (qdf_unlikely(packetdump_cb)) {
4152 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4153 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4154 			      nbuf, status, QDF_RX_DATA_PKT);
4155 	}
4156 }
4157 
4158 /*
4159  * dp_rx_err_send_pktlog() - send rx error packet log
4160  * @soc: soc handle
4161  * @pdev: pdev handle
4162  * @mpdu_desc_info: MPDU descriptor info
4163  * @nbuf: nbuf
4164  * @status: status of rx packet
4165  * @set_pktlen: weither to set packet length
4166  *
4167  * This API should only be called when we have not removed
4168  * Rx TLV from head, and head is pointing to rx_tlv
4169  *
4170  * This function is used to send rx packet from error path
4171  * for logging for which rx packet tlv is not removed.
4172  *
4173  * Return: None
4174  *
4175  */
4176 static inline
4177 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4178 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4179 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4180 			   bool set_pktlen)
4181 {
4182 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4183 	qdf_size_t skip_size;
4184 	uint16_t msdu_len, nbuf_len;
4185 	uint8_t *rx_tlv_hdr;
4186 	struct hal_rx_msdu_metadata msdu_metadata;
4187 
4188 	if (qdf_unlikely(packetdump_cb)) {
4189 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
4190 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
4191 							  rx_tlv_hdr);
4192 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
4193 					 &msdu_metadata);
4194 
4195 		if (mpdu_desc_info->bar_frame ||
4196 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
4197 			skip_size = soc->rx_pkt_tlv_size;
4198 		else
4199 			skip_size = soc->rx_pkt_tlv_size +
4200 					msdu_metadata.l3_hdr_pad;
4201 
4202 		if (set_pktlen) {
4203 			msdu_len = nbuf_len + skip_size;
4204 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
4205 					    (uint16_t)RX_DATA_BUFFER_SIZE));
4206 		}
4207 
4208 		qdf_nbuf_pull_head(nbuf, skip_size);
4209 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4210 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4211 			      nbuf, status, QDF_RX_DATA_PKT);
4212 		qdf_nbuf_push_head(nbuf, skip_size);
4213 	}
4214 }
4215 
4216 #else
4217 static inline
4218 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4219 		       struct dp_tx_desc_s *tx_desc,
4220 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4221 {
4222 }
4223 
4224 static inline
4225 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4226 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4227 {
4228 }
4229 
4230 static inline
4231 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4232 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4233 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4234 			   bool set_pktlen)
4235 {
4236 }
4237 #endif
4238 
4239 /*
4240  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
4241  * @soc  : Data path soc handle
4242  * @pdev : PDEV handle
4243  *
4244  * return: None
4245  */
4246 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
4247 #endif /* #ifndef _DP_INTERNAL_H_ */
4248