xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 8cfe6b10058a04cafb17eed051f2ddf11bee8931)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 
26 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
27 
28 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
29 
30 #define DP_BLOCKMEM_SIZE 4096
31 #define WBM2_SW_PPE_REL_RING_ID 6
32 #define WBM2_SW_PPE_REL_MAP_ID 11
33 /* Alignment for consistent memory for DP rings*/
34 #define DP_RING_BASE_ALIGN 32
35 
36 #define DP_RSSI_INVAL 0x80
37 #define DP_RSSI_AVG_WEIGHT 2
38 /*
39  * Formula to derive avg_rssi is taken from wifi2.o firmware
40  */
41 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
42 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
43 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
44 
45 /* Macro For NYSM value received in VHT TLV */
46 #define VHT_SGI_NYSM 3
47 
48 #define INVALID_WBM_RING_NUM 0xF
49 
50 #ifdef FEATURE_DIRECT_LINK
51 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
52 #ifdef IPA_OFFLOAD
53 #ifdef IPA_WDI3_VLAN_SUPPORT
54 #define DIRECT_LINK_REFILL_RING_IDX     4
55 #else
56 #define DIRECT_LINK_REFILL_RING_IDX     3
57 #endif
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     2
60 #endif
61 #endif
62 
63 /* struct htt_dbgfs_cfg - structure to maintain required htt data
64  * @msg_word: htt msg sent to upper layer
65  * @m: qdf debugfs file pointer
66  */
67 struct htt_dbgfs_cfg {
68 	uint32_t *msg_word;
69 	qdf_debugfs_file_t m;
70 };
71 
72 /* Cookie MSB bits assigned for different use case.
73  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
74  * If in future number of pdev are more than 3.
75  */
76 /* Reserve for default case */
77 #define DBG_STATS_COOKIE_DEFAULT 0x0
78 
79 /* Reserve for DP Stats: 3rd bit */
80 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
81 
82 /* Reserve for HTT Stats debugfs support: 4th bit */
83 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
84 
85 /*Reserve for HTT Stats debugfs support: 5th bit */
86 #define DBG_SYSFS_STATS_COOKIE BIT(5)
87 
88 /* Reserve for HTT Stats OBSS PD support: 6th bit */
89 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
90 
91 /**
92  * Bitmap of HTT PPDU TLV types for Default mode
93  */
94 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
95 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
96 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
97 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
98 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
99 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
100 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
101 
102 /* PPDU STATS CFG */
103 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
104 
105 /* PPDU stats mask sent to FW to enable enhanced stats */
106 #define DP_PPDU_STATS_CFG_ENH_STATS \
107 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
108 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
109 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
110 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
111 
112 /* PPDU stats mask sent to FW to support debug sniffer feature */
113 #define DP_PPDU_STATS_CFG_SNIFFER \
114 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
115 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
116 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
117 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
119 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
120 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
121 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
122 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
123 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
124 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
125 
126 /* PPDU stats mask sent to FW to support BPR feature*/
127 #define DP_PPDU_STATS_CFG_BPR \
128 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
129 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
130 
131 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
132 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
133 				   DP_PPDU_STATS_CFG_ENH_STATS)
134 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
135 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
136 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
137 
138 /**
139  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
140  */
141 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
142 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
143 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
144 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
145 
146 /**
147  * Bitmap of HTT PPDU TLV types for Delayed BA
148  */
149 #define HTT_PPDU_STATUS_TLV_BITMAP \
150 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
151 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
152 
153 /**
154  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
155  */
156 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
157 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
158 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
159 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
160 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
161 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
162 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
163 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
164 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
165 
166 /**
167  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
168  */
169 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
170 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
171 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
173 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
174 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
175 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
176 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
177 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
178 
179 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
180 	[HAL_DOT11A] = DOT11_A,
181 	[HAL_DOT11B] = DOT11_B,
182 	[HAL_DOT11N_MM] = DOT11_N,
183 	[HAL_DOT11AC] = DOT11_AC,
184 	[HAL_DOT11AX] = DOT11_AX,
185 	[HAL_DOT11BA] = DOT11_MAX,
186 #ifdef WLAN_FEATURE_11BE
187 	[HAL_DOT11BE] = DOT11_BE,
188 #else
189 	[HAL_DOT11BE] = DOT11_MAX,
190 #endif
191 	[HAL_DOT11AZ] = DOT11_MAX,
192 	[HAL_DOT11N_GF] = DOT11_MAX,
193 };
194 
195 #ifdef WLAN_FEATURE_11BE
196 /**
197  * dp_get_mcs_array_index_by_pkt_type_mcs () - get the destination mcs index
198 					       in array
199  * @pkt_type: host SW pkt type
200  * @mcs: mcs value for TX/RX rate
201  *
202  * Return: succeeded - valid index in mcs array
203 	   fail - same value as MCS_MAX
204  */
205 static inline uint8_t
206 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
207 {
208 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
209 
210 	switch (pkt_type) {
211 	case DOT11_A:
212 		dst_mcs_idx =
213 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
214 		break;
215 	case DOT11_B:
216 		dst_mcs_idx =
217 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
218 		break;
219 	case DOT11_N:
220 		dst_mcs_idx =
221 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
222 		break;
223 	case DOT11_AC:
224 		dst_mcs_idx =
225 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
226 		break;
227 	case DOT11_AX:
228 		dst_mcs_idx =
229 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
230 		break;
231 	case DOT11_BE:
232 		dst_mcs_idx =
233 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	return dst_mcs_idx;
240 }
241 #else
242 static inline uint8_t
243 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
244 {
245 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
246 
247 	switch (pkt_type) {
248 	case DOT11_A:
249 		dst_mcs_idx =
250 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
251 		break;
252 	case DOT11_B:
253 		dst_mcs_idx =
254 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
255 		break;
256 	case DOT11_N:
257 		dst_mcs_idx =
258 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
259 		break;
260 	case DOT11_AC:
261 		dst_mcs_idx =
262 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
263 		break;
264 	case DOT11_AX:
265 		dst_mcs_idx =
266 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
267 		break;
268 	default:
269 		break;
270 	}
271 
272 	return dst_mcs_idx;
273 }
274 #endif
275 
276 #ifdef WIFI_MONITOR_SUPPORT
277 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
278 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
279 #else
280 static inline
281 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
282 {
283 	return QDF_STATUS_SUCCESS;
284 }
285 
286 static inline
287 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
288 {
289 	return QDF_STATUS_SUCCESS;
290 }
291 #endif
292 
293 /*
294  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
295  * @eh: Ethernet header of incoming packet
296  * @vdev: dp_vdev object of the VAP on which this data packet is received
297  *
298  * Return: 1 if the destination mac is correct,
299  *         0 if this frame is not correctly destined to this VAP/MLD
300  */
301 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
302 
303 #ifdef MONITOR_MODULARIZED_ENABLE
304 static inline bool dp_monitor_modularized_enable(void)
305 {
306 	return TRUE;
307 }
308 
309 static inline QDF_STATUS
310 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
311 
312 static inline QDF_STATUS
313 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
314 #else
315 static inline bool dp_monitor_modularized_enable(void)
316 {
317 	return FALSE;
318 }
319 
320 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
321 {
322 	return dp_mon_soc_attach(soc);
323 }
324 
325 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
326 {
327 	return dp_mon_soc_detach(soc);
328 }
329 #endif
330 
331 #ifndef WIFI_MONITOR_SUPPORT
332 #define MON_BUF_MIN_ENTRIES 64
333 
334 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
335 {
336 	return QDF_STATUS_SUCCESS;
337 }
338 
339 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
340 {
341 	return QDF_STATUS_SUCCESS;
342 }
343 
344 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
345 {
346 	return QDF_STATUS_E_FAILURE;
347 }
348 
349 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
350 {
351 	return QDF_STATUS_E_FAILURE;
352 }
353 
354 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
355 						struct dp_peer *peer)
356 {
357 	return QDF_STATUS_SUCCESS;
358 }
359 
360 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
361 						struct dp_peer *peer)
362 {
363 	return QDF_STATUS_E_FAILURE;
364 }
365 
366 static inline struct cdp_peer_rate_stats_ctx*
367 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
368 {
369 	return NULL;
370 }
371 
372 static inline
373 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
374 {
375 }
376 
377 static inline
378 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
379 			       void *arg, enum cdp_stat_update_type type)
380 {
381 }
382 
383 static inline
384 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
385 					       struct dp_pdev *pdev)
386 {
387 }
388 
389 static inline
390 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
391 					   struct dp_peer *peer,
392 					   enum cdp_peer_stats_type type,
393 					   cdp_peer_stats_param_t *buf)
394 {
395 	return QDF_STATUS_E_FAILURE;
396 }
397 
398 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
399 {
400 	return QDF_STATUS_SUCCESS;
401 }
402 
403 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
404 {
405 	return QDF_STATUS_SUCCESS;
406 }
407 
408 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
409 {
410 	return QDF_STATUS_SUCCESS;
411 }
412 
413 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
414 							 int val)
415 {
416 	return QDF_STATUS_E_FAILURE;
417 }
418 
419 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
420 {
421 }
422 
423 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
424 						   struct dp_pdev *pdev,
425 						   int mac_id,
426 						   int mac_for_pdev)
427 {
428 	return QDF_STATUS_SUCCESS;
429 }
430 
431 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
432 						uint32_t quota)
433 {
434 }
435 
436 static inline
437 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
438 			    uint32_t mac_id, uint32_t quota)
439 {
440 	return 0;
441 }
442 
443 static inline
444 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
445 					 uint32_t mac_id, uint32_t quota)
446 {
447 	return 0;
448 }
449 
450 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
451 					   struct dp_peer *peer)
452 {
453 }
454 
455 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
456 					      struct dp_peer *peer)
457 {
458 }
459 
460 static inline
461 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
462 					struct dp_peer *peer,
463 					uint16_t peer_id)
464 {
465 }
466 
467 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
468 {
469 }
470 
471 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
472 {
473 }
474 
475 static inline
476 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
477 {
478 	return QDF_STATUS_SUCCESS;
479 }
480 
481 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
482 							   struct dp_peer *peer)
483 {
484 }
485 
486 static inline
487 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
488 					   struct dp_tx_desc_s *desc,
489 					   struct hal_tx_completion_status *ts,
490 					   uint16_t peer_id)
491 {
492 	return QDF_STATUS_E_FAILURE;
493 }
494 
495 static inline
496 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
497 				       struct dp_pdev *pdev,
498 				       struct dp_peer *peer,
499 				       struct hal_tx_completion_status *ts,
500 				       qdf_nbuf_t netbuf)
501 {
502 	return QDF_STATUS_E_FAILURE;
503 }
504 
505 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
506 						     uint32_t *msg_word,
507 						     qdf_nbuf_t htt_t2h_msg)
508 {
509 	return true;
510 }
511 
512 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
513 {
514 	return QDF_STATUS_SUCCESS;
515 }
516 
517 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
518 {
519 }
520 
521 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
522 {
523 }
524 
525 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
526 							  uint32_t val)
527 {
528 	return QDF_STATUS_E_INVAL;
529 }
530 
531 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
532 						   struct dp_peer *peer,
533 						   uint8_t is_tx_pkt_cap_enable,
534 						   uint8_t *peer_mac)
535 {
536 	return QDF_STATUS_E_INVAL;
537 }
538 
539 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
540 							  uint32_t val)
541 {
542 	return QDF_STATUS_E_INVAL;
543 }
544 
545 static inline
546 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
547 {
548 	return QDF_STATUS_E_FAILURE;
549 }
550 
551 static inline
552 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
553 {
554 	return 0;
555 }
556 
557 static inline
558 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
559 {
560 }
561 
562 static inline
563 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
564 {
565 }
566 
567 static inline
568 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
569 {
570 	return false;
571 }
572 
573 static inline
574 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
575 {
576 	return false;
577 }
578 
579 static inline
580 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
581 {
582 	return false;
583 }
584 
585 static inline
586 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
587 				bool enable)
588 {
589 	return 0;
590 }
591 
592 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
593 {
594 }
595 
596 static inline
597 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
598 {
599 	return QDF_STATUS_E_FAILURE;
600 }
601 
602 static inline
603 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
604 {
605 }
606 
607 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
608 							  uint8_t *rx_pkt_hdr)
609 {
610 	return QDF_STATUS_E_FAILURE;
611 }
612 
613 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
614 {
615 }
616 
617 static inline
618 void dp_monitor_reap_timer_init(struct dp_soc *soc)
619 {
620 }
621 
622 static inline
623 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
624 {
625 }
626 
627 static inline
628 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
629 				 enum cdp_mon_reap_source source)
630 {
631 	return false;
632 }
633 
634 static inline
635 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
636 				enum cdp_mon_reap_source source)
637 {
638 	return false;
639 }
640 
641 static inline void
642 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
643 {
644 }
645 
646 static inline
647 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
648 {
649 }
650 
651 static inline
652 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
653 {
654 }
655 
656 static inline
657 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
658 {
659 }
660 
661 static inline
662 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
663 {
664 	return false;
665 }
666 
667 static inline struct qdf_mem_multi_page_t*
668 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
669 {
670 	return NULL;
671 }
672 
673 static inline uint32_t *
674 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
675 {
676 	return NULL;
677 }
678 
679 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
680 {
681 	return QDF_STATUS_E_FAILURE;
682 }
683 
684 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
685 {
686 	return false;
687 }
688 
689 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
690 						 struct ol_txrx_ops *txrx_ops)
691 {
692 }
693 
694 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
695 {
696 	return false;
697 }
698 
699 static inline
700 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
701 {
702 }
703 
704 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
705 					  struct dp_vdev *vdev)
706 {
707 }
708 
709 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
710 {
711 }
712 
713 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
714 						     struct dp_peer *ta_peer,
715 						     uint8_t *mac_addr,
716 						     qdf_nbuf_t nbuf,
717 						     uint32_t flags)
718 {
719 }
720 
721 static inline void
722 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
723 {
724 }
725 
726 static inline void
727 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
728 {
729 }
730 
731 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
732 {
733 }
734 
735 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
736 {
737 	return false;
738 }
739 
740 static inline
741 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
742 					   struct dp_vdev *vdev,
743 					   struct dp_neighbour_peer *peer)
744 {
745 }
746 
747 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
748 {
749 	return false;
750 }
751 
752 static inline enum reg_wifi_band
753 dp_monitor_get_chan_band(struct dp_pdev *pdev)
754 {
755 	return 0;
756 }
757 
758 static inline int
759 dp_monitor_get_chan_num(struct dp_pdev *pdev)
760 {
761 	return 0;
762 }
763 
764 static inline qdf_freq_t
765 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
766 {
767 	return 0;
768 }
769 
770 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
771 					      struct dp_soc *soc,
772 					      uint8_t *rx_tlv_hdr)
773 {
774 }
775 
776 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
777 {
778 }
779 
780 static inline
781 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
782 					  uint16_t peer_id, uint32_t ppdu_id,
783 					  uint8_t first_msdu)
784 {
785 	return QDF_STATUS_SUCCESS;
786 }
787 
788 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
789 {
790 	return false;
791 }
792 
793 static inline struct dp_vdev*
794 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
795 {
796 	return NULL;
797 }
798 
799 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
800 							   void *rx_desc)
801 {
802 	return QDF_STATUS_E_FAILURE;
803 }
804 
805 static inline struct mon_rx_status*
806 dp_monitor_get_rx_status(struct dp_pdev *pdev)
807 {
808 	return NULL;
809 }
810 
811 static inline
812 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
813 {
814 }
815 
816 static inline
817 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
818 						      bool val)
819 {
820 }
821 
822 static inline QDF_STATUS
823 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
824 				     struct cdp_peer_tx_capture_stats *stats)
825 {
826 	return QDF_STATUS_E_FAILURE;
827 }
828 
829 static inline QDF_STATUS
830 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
831 				     struct cdp_pdev_tx_capture_stats *stats)
832 {
833 	return QDF_STATUS_E_FAILURE;
834 }
835 
836 #ifdef DP_POWER_SAVE
837 static inline
838 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
839 {
840 }
841 
842 static inline
843 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
844 {
845 }
846 #endif
847 
848 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
849 {
850 	return false;
851 }
852 
853 static inline void
854 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
855 			 struct htt_rx_ring_tlv_filter *tlv_filter)
856 {
857 }
858 
859 static inline void dp_monitor_soc_init(struct dp_soc *soc)
860 {
861 }
862 
863 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
864 {
865 }
866 
867 static inline
868 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
869 							int val)
870 {
871 	return QDF_STATUS_SUCCESS;
872 }
873 
874 static inline QDF_STATUS
875 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
876 						      int mask1, int mask2)
877 {
878 	return QDF_STATUS_SUCCESS;
879 }
880 
881 static inline QDF_STATUS
882 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
883 						   int *mask, int *mask_cont)
884 {
885 	return QDF_STATUS_SUCCESS;
886 }
887 
888 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
889 {
890 	return QDF_STATUS_E_FAILURE;
891 }
892 
893 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
894 {
895 	return false;
896 }
897 
898 static inline
899 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
900 {
901 	return 0;
902 }
903 
904 static inline uint32_t
905 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
906 		  uint32_t mac_id, uint32_t quota)
907 {
908 	return 0;
909 }
910 
911 static inline uint32_t
912 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
913 {
914 	return 0;
915 }
916 
917 static inline
918 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
919 {
920 	return 0;
921 }
922 
923 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
924 {
925 	return 0;
926 }
927 
928 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
929 {
930 	return 0;
931 }
932 
933 static inline void
934 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
935 		 struct htt_rx_ring_tlv_filter *tlv_filter)
936 {
937 }
938 
939 static inline void
940 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
941 			    struct htt_rx_ring_tlv_filter *tlv_filter)
942 {
943 }
944 
945 static inline void
946 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
947 			      struct htt_rx_ring_tlv_filter *tlv_filter)
948 {
949 }
950 
951 static inline void
952 dp_mon_rx_wmask_subscribe(struct dp_soc *soc, uint32_t *msg_word,
953 			  struct htt_rx_ring_tlv_filter *tlv_filter)
954 {
955 }
956 
957 static inline void
958 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
959 			 struct htt_rx_ring_tlv_filter *tlv_filter)
960 {
961 }
962 
963 static inline void
964 dp_mon_rx_enable_pkt_tlv_offset(struct dp_soc *soc, uint32_t *msg_word,
965 				struct htt_rx_ring_tlv_filter *tlv_filter)
966 {
967 }
968 
969 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
970 static inline
971 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
972 				     struct cdp_peer_telemetry_stats *stats)
973 {
974 }
975 
976 static inline
977 void dp_monitor_peer_deter_stats(struct dp_peer *peer,
978 				 struct cdp_peer_telemetry_stats *stats)
979 {
980 }
981 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
982 #endif /* !WIFI_MONITOR_SUPPORT */
983 
984 /**
985  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
986  * dp soc handle
987  * @psoc: CDP psoc handle
988  *
989  * Return: struct dp_soc pointer
990  */
991 static inline
992 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
993 {
994 	return (struct dp_soc *)psoc;
995 }
996 
997 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
998 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
999 
1000 /**
1001  * enum timer_yield_status - yield status code used in monitor mode timer.
1002  * @DP_TIMER_NO_YIELD: do not yield
1003  * @DP_TIMER_WORK_DONE: yield because work is done
1004  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
1005  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
1006  */
1007 enum timer_yield_status {
1008 	DP_TIMER_NO_YIELD,
1009 	DP_TIMER_WORK_DONE,
1010 	DP_TIMER_WORK_EXHAUST,
1011 	DP_TIMER_TIME_EXHAUST,
1012 };
1013 
1014 #if DP_PRINT_ENABLE
1015 #include <qdf_types.h> /* qdf_vprint */
1016 #include <cdp_txrx_handle.h>
1017 
1018 enum {
1019 	/* FATAL_ERR - print only irrecoverable error messages */
1020 	DP_PRINT_LEVEL_FATAL_ERR,
1021 
1022 	/* ERR - include non-fatal err messages */
1023 	DP_PRINT_LEVEL_ERR,
1024 
1025 	/* WARN - include warnings */
1026 	DP_PRINT_LEVEL_WARN,
1027 
1028 	/* INFO1 - include fundamental, infrequent events */
1029 	DP_PRINT_LEVEL_INFO1,
1030 
1031 	/* INFO2 - include non-fundamental but infrequent events */
1032 	DP_PRINT_LEVEL_INFO2,
1033 };
1034 
1035 #define dp_print(level, fmt, ...) do { \
1036 	if (level <= g_txrx_print_level) \
1037 		qdf_print(fmt, ## __VA_ARGS__); \
1038 while (0)
1039 #define DP_PRINT(level, fmt, ...) do { \
1040 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1041 while (0)
1042 #else
1043 #define DP_PRINT(level, fmt, ...)
1044 #endif /* DP_PRINT_ENABLE */
1045 
1046 #define DP_TRACE(LVL, fmt, args ...)                             \
1047 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1048 		fmt, ## args)
1049 
1050 #ifdef WLAN_SYSFS_DP_STATS
1051 void DP_PRINT_STATS(const char *fmt, ...);
1052 #else /* WLAN_SYSFS_DP_STATS */
1053 #ifdef DP_PRINT_NO_CONSOLE
1054 /* Stat prints should not go to console or kernel logs.*/
1055 #define DP_PRINT_STATS(fmt, args ...)\
1056 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1057 		  fmt, ## args)
1058 #else
1059 #define DP_PRINT_STATS(fmt, args ...)\
1060 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1061 		  fmt, ## args)
1062 #endif
1063 #endif /* WLAN_SYSFS_DP_STATS */
1064 
1065 #define DP_STATS_INIT(_handle) \
1066 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1067 
1068 #define DP_STATS_CLR(_handle) \
1069 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1070 
1071 #ifndef DISABLE_DP_STATS
1072 #define DP_STATS_INC(_handle, _field, _delta) \
1073 { \
1074 	if (likely(_handle)) \
1075 		_handle->stats._field += _delta; \
1076 }
1077 
1078 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1079 { \
1080 	if (likely(_handle)) \
1081 		_handle->_field += _delta; \
1082 }
1083 
1084 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1085 { \
1086 	if (_cond && likely(_handle)) \
1087 		_handle->stats._field += _delta; \
1088 }
1089 
1090 #define DP_STATS_DEC(_handle, _field, _delta) \
1091 { \
1092 	if (likely(_handle)) \
1093 		_handle->stats._field -= _delta; \
1094 }
1095 
1096 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1097 { \
1098 	if (likely(_handle)) \
1099 		_handle->_field -= _delta; \
1100 }
1101 
1102 #define DP_STATS_UPD(_handle, _field, _delta) \
1103 { \
1104 	if (likely(_handle)) \
1105 		_handle->stats._field = _delta; \
1106 }
1107 
1108 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1109 { \
1110 	DP_STATS_INC(_handle, _field.num, _count); \
1111 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1112 }
1113 
1114 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1115 { \
1116 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1117 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1118 }
1119 
1120 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1121 { \
1122 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1123 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1124 }
1125 
1126 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1127 { \
1128 	_handle_a->stats._field += _handle_b->stats._field; \
1129 }
1130 
1131 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1132 { \
1133 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1134 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1135 }
1136 
1137 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1138 { \
1139 	_handle_a->stats._field = _handle_b->stats._field; \
1140 }
1141 
1142 #else
1143 #define DP_STATS_INC(_handle, _field, _delta)
1144 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1145 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1146 #define DP_STATS_DEC(_handle, _field, _delta)
1147 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1148 #define DP_STATS_UPD(_handle, _field, _delta)
1149 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1150 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1151 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1152 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1153 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1154 #endif
1155 
1156 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta) \
1157 { \
1158 	DP_STATS_INC(_handle, per_pkt_stats._field, _delta); \
1159 }
1160 
1161 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond) \
1162 { \
1163 	DP_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond); \
1164 }
1165 
1166 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1167 { \
1168 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count); \
1169 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes) \
1170 }
1171 
1172 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1173 { \
1174 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond); \
1175 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1176 }
1177 
1178 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta) \
1179 { \
1180 	DP_STATS_UPD(_handle, per_pkt_stats._field, _delta); \
1181 }
1182 
1183 #ifndef QCA_ENHANCED_STATS_SUPPORT
1184 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta) \
1185 { \
1186 	DP_STATS_INC(_handle, extd_stats._field, _delta); \
1187 }
1188 
1189 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond) \
1190 { \
1191 	DP_STATS_INCC(_handle, extd_stats._field, _delta, _cond); \
1192 }
1193 
1194 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta) \
1195 { \
1196 	DP_STATS_UPD(_handle, extd_stats._field, _delta); \
1197 }
1198 #endif
1199 
1200 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1201 	defined(QCA_ENHANCED_STATS_SUPPORT)
1202 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1203 { \
1204 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1205 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1206 }
1207 
1208 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1209 { \
1210 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1211 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1212 }
1213 
1214 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1215 { \
1216 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1217 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1218 }
1219 
1220 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1221 { \
1222 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1223 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1224 }
1225 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1226 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1227 { \
1228 	if (!(_handle->hw_txrx_stats_en)) \
1229 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1230 }
1231 
1232 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1233 { \
1234 	if (!(_handle->hw_txrx_stats_en)) \
1235 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1236 }
1237 
1238 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1239 { \
1240 	if (!(_handle->hw_txrx_stats_en)) \
1241 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1242 }
1243 
1244 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1245 { \
1246 	if (!(_handle->hw_txrx_stats_en)) \
1247 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1248 }
1249 #else
1250 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1251 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1252 
1253 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1254 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1255 
1256 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1257 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes);
1258 
1259 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1260 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes);
1261 #endif
1262 
1263 #ifdef ENABLE_DP_HIST_STATS
1264 #define DP_HIST_INIT() \
1265 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1266 
1267 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1268 { \
1269 		++num_of_packets[_pdev_id]; \
1270 }
1271 
1272 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1273 	do {                                                              \
1274 		if (_p_cntrs == 1) {                                      \
1275 			DP_STATS_INC(_pdev,                               \
1276 				tx_comp_histogram.pkts_1, 1);             \
1277 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1278 			DP_STATS_INC(_pdev,                               \
1279 				tx_comp_histogram.pkts_2_20, 1);          \
1280 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1281 			DP_STATS_INC(_pdev,                               \
1282 				tx_comp_histogram.pkts_21_40, 1);         \
1283 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1284 			DP_STATS_INC(_pdev,                               \
1285 				tx_comp_histogram.pkts_41_60, 1);         \
1286 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1287 			DP_STATS_INC(_pdev,                               \
1288 				tx_comp_histogram.pkts_61_80, 1);         \
1289 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1290 			DP_STATS_INC(_pdev,                               \
1291 				tx_comp_histogram.pkts_81_100, 1);        \
1292 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1293 			DP_STATS_INC(_pdev,                               \
1294 				tx_comp_histogram.pkts_101_200, 1);       \
1295 		} else if (_p_cntrs > 200) {                              \
1296 			DP_STATS_INC(_pdev,                               \
1297 				tx_comp_histogram.pkts_201_plus, 1);      \
1298 		}                                                         \
1299 	} while (0)
1300 
1301 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1302 	do {                                                              \
1303 		if (_p_cntrs == 1) {                                      \
1304 			DP_STATS_INC(_pdev,                               \
1305 				rx_ind_histogram.pkts_1, 1);              \
1306 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1307 			DP_STATS_INC(_pdev,                               \
1308 				rx_ind_histogram.pkts_2_20, 1);           \
1309 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1310 			DP_STATS_INC(_pdev,                               \
1311 				rx_ind_histogram.pkts_21_40, 1);          \
1312 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1313 			DP_STATS_INC(_pdev,                               \
1314 				rx_ind_histogram.pkts_41_60, 1);          \
1315 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1316 			DP_STATS_INC(_pdev,                               \
1317 				rx_ind_histogram.pkts_61_80, 1);          \
1318 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1319 			DP_STATS_INC(_pdev,                               \
1320 				rx_ind_histogram.pkts_81_100, 1);         \
1321 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1322 			DP_STATS_INC(_pdev,                               \
1323 				rx_ind_histogram.pkts_101_200, 1);        \
1324 		} else if (_p_cntrs > 200) {                              \
1325 			DP_STATS_INC(_pdev,                               \
1326 				rx_ind_histogram.pkts_201_plus, 1);       \
1327 		}                                                         \
1328 	} while (0)
1329 
1330 #define DP_TX_HIST_STATS_PER_PDEV() \
1331 	do { \
1332 		uint8_t hist_stats = 0; \
1333 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1334 				hist_stats++) { \
1335 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1336 					num_of_packets[hist_stats]); \
1337 		} \
1338 	}  while (0)
1339 
1340 
1341 #define DP_RX_HIST_STATS_PER_PDEV() \
1342 	do { \
1343 		uint8_t hist_stats = 0; \
1344 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1345 				hist_stats++) { \
1346 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1347 					num_of_packets[hist_stats]); \
1348 		} \
1349 	}  while (0)
1350 
1351 #else
1352 #define DP_HIST_INIT()
1353 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1354 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1355 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1356 #define DP_RX_HIST_STATS_PER_PDEV()
1357 #define DP_TX_HIST_STATS_PER_PDEV()
1358 #endif /* DISABLE_DP_STATS */
1359 
1360 #define FRAME_MASK_IPV4_ARP   1
1361 #define FRAME_MASK_IPV4_DHCP  2
1362 #define FRAME_MASK_IPV4_EAPOL 4
1363 #define FRAME_MASK_IPV6_DHCP  8
1364 
1365 static inline int dp_log2_ceil(unsigned int value)
1366 {
1367 	unsigned int tmp = value;
1368 	int log2 = -1;
1369 
1370 	while (tmp) {
1371 		log2++;
1372 		tmp >>= 1;
1373 	}
1374 	if (1 << log2 != value)
1375 		log2++;
1376 	return log2;
1377 }
1378 
1379 #ifdef QCA_SUPPORT_PEER_ISOLATION
1380 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1381 
1382 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1383 					 bool val)
1384 {
1385 	txrx_peer->isolation = val;
1386 }
1387 
1388 #else
1389 #define dp_get_peer_isolation(_peer) (0)
1390 
1391 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1392 {
1393 }
1394 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1395 
1396 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev);
1397 
1398 #ifdef QCA_SUPPORT_WDS_EXTENDED
1399 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1400 {
1401 	txrx_peer->wds_ext.init = 0;
1402 }
1403 #else
1404 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1405 {
1406 }
1407 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1408 
1409 #ifdef QCA_HOST2FW_RXBUF_RING
1410 static inline
1411 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1412 {
1413 	return &pdev->rx_mac_buf_ring[lmac_id];
1414 }
1415 #else
1416 static inline
1417 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1418 {
1419 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1420 }
1421 #endif
1422 
1423 /**
1424  * The lmac ID for a particular channel band is fixed.
1425  * 2.4GHz band uses lmac_id = 1
1426  * 5GHz/6GHz band uses lmac_id=0
1427  */
1428 #define DP_INVALID_LMAC_ID	(-1)
1429 #define DP_MON_INVALID_LMAC_ID	(-1)
1430 #define DP_MAC0_LMAC_ID	0
1431 #define DP_MAC1_LMAC_ID	1
1432 
1433 #ifdef FEATURE_TSO_STATS
1434 /**
1435  * dp_init_tso_stats() - Clear tso stats
1436  * @pdev: pdev handle
1437  *
1438  * Return: None
1439  */
1440 static inline
1441 void dp_init_tso_stats(struct dp_pdev *pdev)
1442 {
1443 	if (pdev) {
1444 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1445 			     sizeof((pdev)->stats.tso_stats));
1446 		qdf_atomic_init(&pdev->tso_idx);
1447 	}
1448 }
1449 
1450 /**
1451  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1452  * @pdev: pdev handle
1453  * @_p_cntrs: number of tso segments for a tso packet
1454  *
1455  * Return: None
1456  */
1457 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1458 					   uint8_t _p_cntrs);
1459 
1460 /**
1461  * dp_tso_segment_update() - Collect tso segment information
1462  * @pdev: pdev handle
1463  * @stats_idx: tso packet number
1464  * @idx: tso segment number
1465  * @seg: tso segment
1466  *
1467  * Return: None
1468  */
1469 void dp_tso_segment_update(struct dp_pdev *pdev,
1470 			   uint32_t stats_idx,
1471 			   uint8_t idx,
1472 			   struct qdf_tso_seg_t seg);
1473 
1474 /**
1475  * dp_tso_packet_update() - TSO Packet information
1476  * @pdev: pdev handle
1477  * @stats_idx: tso packet number
1478  * @msdu: nbuf handle
1479  * @num_segs: tso segments
1480  *
1481  * Return: None
1482  */
1483 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1484 			  qdf_nbuf_t msdu, uint16_t num_segs);
1485 
1486 /**
1487  * dp_tso_segment_stats_update() - TSO Segment stats
1488  * @pdev: pdev handle
1489  * @stats_seg: tso segment list
1490  * @stats_idx: tso packet number
1491  *
1492  * Return: None
1493  */
1494 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1495 				 struct qdf_tso_seg_elem_t *stats_seg,
1496 				 uint32_t stats_idx);
1497 
1498 /**
1499  * dp_print_tso_stats() - dump tso statistics
1500  * @soc:soc handle
1501  * @level: verbosity level
1502  *
1503  * Return: None
1504  */
1505 void dp_print_tso_stats(struct dp_soc *soc,
1506 			enum qdf_stats_verbosity_level level);
1507 
1508 /**
1509  * dp_txrx_clear_tso_stats() - clear tso stats
1510  * @soc: soc handle
1511  *
1512  * Return: None
1513  */
1514 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1515 #else
1516 static inline
1517 void dp_init_tso_stats(struct dp_pdev *pdev)
1518 {
1519 }
1520 
1521 static inline
1522 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1523 					   uint8_t _p_cntrs)
1524 {
1525 }
1526 
1527 static inline
1528 void dp_tso_segment_update(struct dp_pdev *pdev,
1529 			   uint32_t stats_idx,
1530 			   uint32_t idx,
1531 			   struct qdf_tso_seg_t seg)
1532 {
1533 }
1534 
1535 static inline
1536 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1537 			  qdf_nbuf_t msdu, uint16_t num_segs)
1538 {
1539 }
1540 
1541 static inline
1542 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1543 				 struct qdf_tso_seg_elem_t *stats_seg,
1544 				 uint32_t stats_idx)
1545 {
1546 }
1547 
1548 static inline
1549 void dp_print_tso_stats(struct dp_soc *soc,
1550 			enum qdf_stats_verbosity_level level)
1551 {
1552 }
1553 
1554 static inline
1555 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1556 {
1557 }
1558 #endif /* FEATURE_TSO_STATS */
1559 
1560 /* dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1561  * @peer: DP peer handle
1562  * @type: Requested stats type
1563  * @ buf: Buffer to hold the value
1564  *
1565  * Return: status success/failure
1566  */
1567 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1568 						enum cdp_peer_stats_type type,
1569 						cdp_peer_stats_param_t *buf);
1570 
1571 /* dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1572  * @peer: DP peer handle
1573  * @type: Requested stats type
1574  * @ buf: Buffer to hold the value
1575  *
1576  * Return: status success/failure
1577  */
1578 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1579 					     enum cdp_peer_stats_type type,
1580 					     cdp_peer_stats_param_t *buf);
1581 
1582 #define DP_HTT_T2H_HP_PIPE 5
1583 /**
1584  * dp_update_pdev_stats(): Update the pdev stats
1585  * @tgtobj: pdev handle
1586  * @srcobj: vdev stats structure
1587  *
1588  * Update the pdev stats from the specified vdev stats
1589  *
1590  * return: None
1591  */
1592 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1593 			  struct cdp_vdev_stats *srcobj);
1594 
1595 /**
1596  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1597  * @tgtobj: vdev handle
1598  *
1599  * Update the vdev ingress stats
1600  *
1601  * return: None
1602  */
1603 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1604 
1605 /**
1606  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1607  * @tgtobj: tgt buffer for vdev stats
1608  * @srcobj: srcobj vdev stats
1609  *
1610  * Return: None
1611  */
1612 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1613 			       struct cdp_vdev_stats *srcobj);
1614 
1615 /**
1616  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1617  * @tgtobj: pdev handle
1618  * @srcobj: vdev stats structure
1619  *
1620  * Update the pdev ingress stats from the specified vdev stats
1621  *
1622  * return: None
1623  */
1624 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1625 				  struct dp_vdev *srcobj);
1626 
1627 /**
1628  * dp_update_vdev_stats(): Update the vdev stats
1629  * @soc: soc handle
1630  * @srcobj: DP_PEER object
1631  * @arg: point to vdev stats structure
1632  *
1633  * Update the vdev stats from the specified peer stats
1634  *
1635  * return: None
1636  */
1637 void dp_update_vdev_stats(struct dp_soc *soc,
1638 			  struct dp_peer *srcobj,
1639 			  void *arg);
1640 
1641 /**
1642  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1643  * @vdev: DP_VDEV handle
1644  * @peer: DP_PEER handle
1645  *
1646  * Return: None
1647  */
1648 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1649 					struct dp_peer *peer);
1650 
1651 #ifdef IPA_OFFLOAD
1652 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1653 { \
1654 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1655 }
1656 
1657 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1658 { \
1659 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1660 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1661 }
1662 #else
1663 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1664 
1665 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1666 #endif
1667 
1668 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1669 	do {				\
1670 		uint8_t i;		\
1671 		uint8_t pream_type;	\
1672 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1673 			for (i = 0; i < MAX_MCS; i++) { \
1674 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1675 					tx.pkt_type[pream_type].mcs_count[i]); \
1676 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1677 					rx.pkt_type[pream_type].mcs_count[i]); \
1678 			} \
1679 		} \
1680 		  \
1681 		for (i = 0; i < MAX_BW; i++) { \
1682 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1683 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1684 		} \
1685 		  \
1686 		for (i = 0; i < SS_COUNT; i++) { \
1687 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1688 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1689 		} \
1690 		for (i = 0; i < WME_AC_MAX; i++) { \
1691 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1692 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1693 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1694 				      tx.wme_ac_type_bytes[i]); \
1695 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1696 				      rx.wme_ac_type_bytes[i]); \
1697 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1698 					tx.wme_ac_type_bytes[i]); \
1699 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1700 					rx.wme_ac_type_bytes[i]); \
1701 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1702 		\
1703 		} \
1704 		\
1705 		for (i = 0; i < MAX_GI; i++) { \
1706 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1707 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1708 		} \
1709 		\
1710 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1711 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1712 		\
1713 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1714 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1715 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1716 		} \
1717 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1718 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1719 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1720 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1721 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1722 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1723 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1724 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1725 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1726 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1727 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1728 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1729 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1730 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1731 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1732 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1733 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1734 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1735 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1736 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1737 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1738 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1739 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1740 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1741 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1742 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1743 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1744 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1745 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1746 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1747 								\
1748 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1749 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1750 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1751 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1752 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1753 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1754 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1755 		if (_srcobj->stats.rx.snr != 0) \
1756 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1757 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1758 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1759 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1760 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1761 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1762 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1763 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1764 								\
1765 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1766 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1767 									\
1768 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1769 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1770 									\
1771 		_srcobj->stats.rx.unicast.num = \
1772 			_srcobj->stats.rx.to_stack.num - \
1773 					_srcobj->stats.rx.multicast.num; \
1774 		_srcobj->stats.rx.unicast.bytes = \
1775 			_srcobj->stats.rx.to_stack.bytes - \
1776 					_srcobj->stats.rx.multicast.bytes; \
1777 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1778 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1779 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1780 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1781 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1782 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1783 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1784 								  \
1785 		_tgtobj->stats.tx.last_ack_rssi =	\
1786 			_srcobj->stats.tx.last_ack_rssi; \
1787 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1788 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1789 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1790 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1791 	}  while (0)
1792 
1793 #ifdef VDEV_PEER_PROTOCOL_COUNT
1794 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1795 { \
1796 	uint8_t j; \
1797 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1798 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1799 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1800 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1801 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1802 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1803 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1804 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1805 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1806 	} \
1807 }
1808 #else
1809 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1810 #endif
1811 
1812 #ifdef WLAN_FEATURE_11BE
1813 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1814 	do { \
1815 		uint8_t i, mu_type; \
1816 		for (i = 0; i < MAX_MCS; i++) { \
1817 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1818 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1819 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1820 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1821 		} \
1822 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1823 			for (i = 0; i < MAX_MCS; i++) { \
1824 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1825 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1826 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1827 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1828 			} \
1829 		} \
1830 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1831 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1832 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1833 		} \
1834 	} while (0)
1835 #else
1836 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1837 #endif
1838 
1839 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1840 	do { \
1841 		uint8_t i; \
1842 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1843 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1844 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1845 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1846 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1847 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1848 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1849 		_tgtobj->tx.nawds_mcast.bytes += \
1850 					_srcobj->tx.nawds_mcast.bytes; \
1851 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1852 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1853 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1854 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1855 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1856 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1857 		_tgtobj->tx.dropped.fw_rem.num += \
1858 					_srcobj->tx.dropped.fw_rem.num; \
1859 		_tgtobj->tx.dropped.fw_rem.bytes += \
1860 					_srcobj->tx.dropped.fw_rem.bytes; \
1861 		_tgtobj->tx.dropped.fw_rem_notx += \
1862 					_srcobj->tx.dropped.fw_rem_notx; \
1863 		_tgtobj->tx.dropped.fw_rem_tx += \
1864 					_srcobj->tx.dropped.fw_rem_tx; \
1865 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1866 		_tgtobj->tx.dropped.fw_reason1 += \
1867 					_srcobj->tx.dropped.fw_reason1; \
1868 		_tgtobj->tx.dropped.fw_reason2 += \
1869 					_srcobj->tx.dropped.fw_reason2; \
1870 		_tgtobj->tx.dropped.fw_reason3 += \
1871 					_srcobj->tx.dropped.fw_reason3; \
1872 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1873 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1874 		_tgtobj->tx.dropped.fw_rem_no_match += \
1875 					_srcobj->tx.dropped.fw_rem_no_match; \
1876 		_tgtobj->tx.dropped.drop_threshold += \
1877 					_srcobj->tx.dropped.drop_threshold; \
1878 		_tgtobj->tx.dropped.drop_link_desc_na += \
1879 					_srcobj->tx.dropped.drop_link_desc_na; \
1880 		_tgtobj->tx.dropped.invalid_drop += \
1881 					_srcobj->tx.dropped.invalid_drop; \
1882 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1883 					_srcobj->tx.dropped.mcast_vdev_drop; \
1884 		_tgtobj->tx.dropped.invalid_rr += \
1885 					_srcobj->tx.dropped.invalid_rr; \
1886 		_tgtobj->tx.failed_retry_count += \
1887 					_srcobj->tx.failed_retry_count; \
1888 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1889 		_tgtobj->tx.multiple_retry_count += \
1890 					_srcobj->tx.multiple_retry_count; \
1891 		_tgtobj->tx.tx_success_twt.num += \
1892 					_srcobj->tx.tx_success_twt.num; \
1893 		_tgtobj->tx.tx_success_twt.bytes += \
1894 					_srcobj->tx.tx_success_twt.bytes; \
1895 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1896 		_tgtobj->tx.release_src_not_tqm += \
1897 					_srcobj->tx.release_src_not_tqm; \
1898 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1899 			_tgtobj->tx.no_ack_count[i] += \
1900 					_srcobj->tx.no_ack_count[i];\
1901 		} \
1902 		\
1903 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1904 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1905 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1906 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1907 		if (_tgtobj->rx.to_stack.num >= _tgtobj->rx.multicast.num) \
1908 			_tgtobj->rx.unicast.num = \
1909 				_tgtobj->rx.to_stack.num - _tgtobj->rx.multicast.num; \
1910 		if (_tgtobj->rx.to_stack.bytes >= _tgtobj->rx.multicast.bytes) \
1911 			_tgtobj->rx.unicast.bytes = \
1912 				_tgtobj->rx.to_stack.bytes - _tgtobj->rx.multicast.bytes; \
1913 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1914 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1915 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1916 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1917 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1918 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1919 		_tgtobj->rx.intra_bss.pkts.num += \
1920 					_srcobj->rx.intra_bss.pkts.num; \
1921 		_tgtobj->rx.intra_bss.pkts.bytes += \
1922 					_srcobj->rx.intra_bss.pkts.bytes; \
1923 		_tgtobj->rx.intra_bss.fail.num += \
1924 					_srcobj->rx.intra_bss.fail.num; \
1925 		_tgtobj->rx.intra_bss.fail.bytes += \
1926 					_srcobj->rx.intra_bss.fail.bytes; \
1927 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1928 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1929 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1930 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1931 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1932 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1933 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1934 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1935 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1936 					_srcobj->rx.err.rxdma_wifi_parse_err; \
1937 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
1938 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
1939 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
1940 		_tgtobj->rx.multipass_rx_pkt_drop += \
1941 					_srcobj->rx.multipass_rx_pkt_drop; \
1942 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
1943 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
1944 		_tgtobj->rx.policy_check_drop += \
1945 					_srcobj->rx.policy_check_drop; \
1946 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
1947 		_tgtobj->rx.to_stack_twt.bytes += \
1948 					_srcobj->rx.to_stack_twt.bytes; \
1949 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
1950 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
1951 			_tgtobj->rx.rcvd_reo[i].num += \
1952 					 _srcobj->rx.rcvd_reo[i].num; \
1953 			_tgtobj->rx.rcvd_reo[i].bytes += \
1954 					_srcobj->rx.rcvd_reo[i].bytes; \
1955 		} \
1956 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
1957 			_tgtobj->rx.rx_lmac[i].num += \
1958 					_srcobj->rx.rx_lmac[i].num; \
1959 			_tgtobj->rx.rx_lmac[i].bytes += \
1960 					_srcobj->rx.rx_lmac[i].bytes; \
1961 		} \
1962 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
1963 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
1964 	} while (0)
1965 
1966 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
1967 	do { \
1968 		uint8_t i, pream_type, mu_type; \
1969 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
1970 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
1971 		_tgtobj->tx.retries += _srcobj->tx.retries; \
1972 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
1973 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
1974 		_tgtobj->tx.num_ppdu_cookie_valid += \
1975 					_srcobj->tx.num_ppdu_cookie_valid; \
1976 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
1977 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
1978 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
1979 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
1980 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
1981 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
1982 		_tgtobj->tx.mcast_last_tx_rate = \
1983 					_srcobj->tx.mcast_last_tx_rate; \
1984 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
1985 					_srcobj->tx.mcast_last_tx_rate_mcs; \
1986 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
1987 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
1988 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
1989 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
1990 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
1991 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
1992 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
1993 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
1994 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
1995 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
1996 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
1997 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
1998 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
1999 		_tgtobj->tx.mpdu_success_with_retries += \
2000 					_srcobj->tx.mpdu_success_with_retries; \
2001 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
2002 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
2003 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
2004 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
2005 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2006 			for (i = 0; i < MAX_MCS; i++) \
2007 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
2008 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
2009 		} \
2010 		for (i = 0; i < WME_AC_MAX; i++) { \
2011 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
2012 			_tgtobj->tx.wme_ac_type_bytes[i] += \
2013 					_srcobj->tx.wme_ac_type_bytes[i]; \
2014 			_tgtobj->tx.excess_retries_per_ac[i] += \
2015 					_srcobj->tx.excess_retries_per_ac[i]; \
2016 		} \
2017 		for (i = 0; i < MAX_GI; i++) { \
2018 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2019 		} \
2020 		for (i = 0; i < SS_COUNT; i++) { \
2021 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2022 		} \
2023 		for (i = 0; i < MAX_BW; i++) { \
2024 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2025 		} \
2026 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2027 			_tgtobj->tx.ru_loc[i].num_msdu += \
2028 					_srcobj->tx.ru_loc[i].num_msdu; \
2029 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2030 					_srcobj->tx.ru_loc[i].num_mpdu; \
2031 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2032 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2033 		} \
2034 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2035 			_tgtobj->tx.transmit_type[i].num_msdu += \
2036 					_srcobj->tx.transmit_type[i].num_msdu; \
2037 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2038 					_srcobj->tx.transmit_type[i].num_mpdu; \
2039 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2040 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2041 		} \
2042 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2043 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2044 		} \
2045 		_tgtobj->tx.tx_ucast_total.num += \
2046 				_srcobj->tx.tx_ucast_total.num;\
2047 		_tgtobj->tx.tx_ucast_total.bytes += \
2048 				 _srcobj->tx.tx_ucast_total.bytes;\
2049 		_tgtobj->tx.tx_ucast_success.num += \
2050 				_srcobj->tx.tx_ucast_success.num; \
2051 		_tgtobj->tx.tx_ucast_success.bytes += \
2052 				_srcobj->tx.tx_ucast_success.bytes; \
2053 		\
2054 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2055 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2056 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2057 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2058 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2059 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2060 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2061 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2062 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2063 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2064 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2065 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2066 		_tgtobj->rx.rx_snr_measured_time = \
2067 					_srcobj->rx.rx_snr_measured_time; \
2068 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2069 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2070 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2071 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2072 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2073 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2074 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2075 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2076 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2077 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2078 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2079 			for (i = 0; i < MAX_MCS; i++) { \
2080 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2081 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2082 			} \
2083 		} \
2084 		for (i = 0; i < WME_AC_MAX; i++) { \
2085 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2086 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2087 					_srcobj->rx.wme_ac_type_bytes[i]; \
2088 		} \
2089 		for (i = 0; i < MAX_MCS; i++) { \
2090 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2091 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2092 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2093 		} \
2094 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2095 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2096 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2097 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2098 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2099 			for (i = 0; i < SS_COUNT; i++) \
2100 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2101 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2102 			for (i = 0; i < MAX_MCS; i++) \
2103 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2104 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2105 		} \
2106 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2107 			_tgtobj->rx.reception_type[i] += \
2108 					_srcobj->rx.reception_type[i]; \
2109 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2110 		} \
2111 		for (i = 0; i < MAX_GI; i++) { \
2112 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2113 		} \
2114 		for (i = 0; i < SS_COUNT; i++) { \
2115 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2116 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2117 		} \
2118 		for (i = 0; i < MAX_BW; i++) { \
2119 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2120 		} \
2121 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2122 	} while (0)
2123 
2124 /**
2125  * dp_peer_find_attach() - Allocates memory for peer objects
2126  * @soc: SoC handle
2127  *
2128  * Return: QDF_STATUS
2129  */
2130 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2131 extern void dp_peer_find_detach(struct dp_soc *soc);
2132 extern void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2133 extern void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2134 extern void dp_peer_find_hash_erase(struct dp_soc *soc);
2135 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2136 			   struct dp_peer *peer);
2137 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2138 			      struct dp_peer *peer);
2139 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2140 				struct dp_peer *peer,
2141 				uint16_t peer_id);
2142 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2143 			     struct dp_peer *peer,
2144 			     struct dp_txrx_peer *txrx_peer);
2145 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2146 				   uint16_t peer_id);
2147 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2148 			  enum dp_mod_id mod_id);
2149 
2150 /*
2151  * dp_peer_ppdu_delayed_ba_cleanup() free ppdu allocated in peer
2152  * @peer: Datapath peer
2153  *
2154  * return: void
2155  */
2156 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2157 
2158 extern void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2159 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2160 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2161 
2162 #ifdef DP_PEER_EXTENDED_API
2163 /**
2164  * dp_register_peer() - Register peer into physical device
2165  * @soc_hdl - data path soc handle
2166  * @pdev_id - device instance id
2167  * @sta_desc - peer description
2168  *
2169  * Register peer into physical device
2170  *
2171  * Return: QDF_STATUS_SUCCESS registration success
2172  *         QDF_STATUS_E_FAULT peer not found
2173  */
2174 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2175 			    struct ol_txrx_desc_type *sta_desc);
2176 
2177 /**
2178  * dp_clear_peer() - remove peer from physical device
2179  * @soc_hdl - data path soc handle
2180  * @pdev_id - device instance id
2181  * @peer_addr - peer mac address
2182  *
2183  * remove peer from physical device
2184  *
2185  * Return: QDF_STATUS_SUCCESS registration success
2186  *         QDF_STATUS_E_FAULT peer not found
2187  */
2188 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2189 			 struct qdf_mac_addr peer_addr);
2190 
2191 /*
2192  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2193  * @soc: datapath soc handle
2194  * @vdev_id: vdev instance id
2195  * @peer_mac_addr: peer mac address
2196  *
2197  * Return: true or false
2198  */
2199 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2200 				uint8_t *peer_addr);
2201 
2202 /*
2203  * dp_find_peer_exist_on_other_vdev - find if peer exists
2204  * on other than the given vdev
2205  * @soc: datapath soc handle
2206  * @vdev_id: vdev instance id
2207  * @peer_mac_addr: peer mac address
2208  * @max_bssid: max number of bssids
2209  *
2210  * Return: true or false
2211  */
2212 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2213 				      uint8_t vdev_id, uint8_t *peer_addr,
2214 				      uint16_t max_bssid);
2215 
2216 /**
2217  * dp_peer_state_update() - update peer local state
2218  * @pdev - data path device instance
2219  * @peer_addr - peer mac address
2220  * @state - new peer local state
2221  *
2222  * update peer local state
2223  *
2224  * Return: QDF_STATUS_SUCCESS registration success
2225  */
2226 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2227 				enum ol_txrx_peer_state state);
2228 
2229 /**
2230  * dp_get_vdevid() - Get virtual interface id which peer registered
2231  * @soc - datapath soc handle
2232  * @peer_mac - peer mac address
2233  * @vdev_id - virtual interface id which peer registered
2234  *
2235  * Get virtual interface id which peer registered
2236  *
2237  * Return: QDF_STATUS_SUCCESS registration success
2238  */
2239 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2240 			 uint8_t *vdev_id);
2241 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2242 		struct qdf_mac_addr peer_addr);
2243 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2244 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2245 
2246 /**
2247  * dp_get_peer_state() - Get local peer state
2248  * @soc - datapath soc handle
2249  * @vdev_id - vdev id
2250  * @peer_mac - peer mac addr
2251  *
2252  * Get local peer state
2253  *
2254  * Return: peer status
2255  */
2256 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2257 		      uint8_t *peer_mac);
2258 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2259 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2260 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2261 /**
2262  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2263  * @soc_hdl: datapath soc handle
2264  * @vdev_id: vdev_id
2265  * @peer_mac: peer mac addr
2266  * @val: tdls peer flag
2267  *
2268  * Return: none
2269  */
2270 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2271 			      uint8_t *peer_mac, bool val);
2272 #else
2273 /**
2274  * dp_get_vdevid() - Get virtual interface id which peer registered
2275  * @soc - datapath soc handle
2276  * @peer_mac - peer mac address
2277  * @vdev_id - virtual interface id which peer registered
2278  *
2279  * Get virtual interface id which peer registered
2280  *
2281  * Return: QDF_STATUS_SUCCESS registration success
2282  */
2283 static inline
2284 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2285 			 uint8_t *vdev_id)
2286 {
2287 	return QDF_STATUS_E_NOSUPPORT;
2288 }
2289 
2290 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2291 {
2292 }
2293 
2294 static inline
2295 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2296 {
2297 }
2298 
2299 static inline
2300 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2301 {
2302 }
2303 
2304 static inline
2305 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2306 			      uint8_t *peer_mac, bool val)
2307 {
2308 }
2309 #endif
2310 
2311 /*
2312  * dp_find_peer_exist - find peer if already exists
2313  * @soc: datapath soc handle
2314  * @pdev_id: physical device instance id
2315  * @peer_mac_addr: peer mac address
2316  *
2317  * Return: true or false
2318  */
2319 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2320 			uint8_t *peer_addr);
2321 
2322 int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
2323 				      uint8_t *peer_mac, uint16_t vdev_id,
2324 				      uint8_t tid,
2325 				      int status);
2326 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
2327 				  uint8_t *peer_mac, uint16_t vdev_id,
2328 				  uint8_t dialogtoken, uint16_t tid,
2329 				  uint16_t batimeout,
2330 				  uint16_t buffersize,
2331 				  uint16_t startseqnum);
2332 QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc,
2333 					uint8_t *peer_mac, uint16_t vdev_id,
2334 					uint8_t tid, uint8_t *dialogtoken,
2335 					uint16_t *statuscode,
2336 					uint16_t *buffersize,
2337 					uint16_t *batimeout);
2338 QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc,
2339 				 uint8_t *peer_mac,
2340 				 uint16_t vdev_id, uint8_t tid,
2341 				 uint16_t statuscode);
2342 int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2343 			   uint16_t vdev_id, int tid,
2344 			   uint16_t reasoncode);
2345 
2346 /**
2347  * dp_rx_tid_update_ba_win_size() - Update the DP tid BA window size
2348  * @soc: soc handle
2349  * @peer_mac: mac address of peer handle
2350  * @vdev_id: id of vdev handle
2351  * @tid: tid
2352  * @buffersize: BA window size
2353  *
2354  * Return: success/failure of tid update
2355  */
2356 QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc,
2357 					uint8_t *peer_mac, uint16_t vdev_id,
2358 					uint8_t tid, uint16_t buffersize);
2359 
2360 /*
2361  * dp_delba_tx_completion_wifi3() -  Handle delba tx completion
2362  *
2363  * @cdp_soc: soc handle
2364  * @vdev_id: id of the vdev handle
2365  * @peer_mac: peer mac address
2366  * @tid: Tid number
2367  * @status: Tx completion status
2368  * Indicate status of delba Tx to DP for stats update and retry
2369  * delba if tx failed.
2370  *
2371  */
2372 int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2373 				 uint16_t vdev_id, uint8_t tid,
2374 				 int status);
2375 extern QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
2376 					uint32_t ba_window_size,
2377 					uint32_t start_seq);
2378 
2379 #ifdef DP_UMAC_HW_RESET_SUPPORT
2380 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2381 
2382 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2383 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2384 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2385 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2386 			       uint32_t size);
2387 #endif
2388 
2389 extern QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc,
2390 	enum hal_reo_cmd_type type, struct hal_reo_cmd_params *params,
2391 	void (*callback_fn), void *data);
2392 
2393 extern void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2394 
2395 /**
2396  * dp_reo_status_ring_handler - Handler for REO Status ring
2397  * @int_ctx: pointer to DP interrupt context
2398  * @soc: DP Soc handle
2399  *
2400  * Returns: Number of descriptors reaped
2401  */
2402 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2403 				    struct dp_soc *soc);
2404 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2405 			     struct cdp_vdev_stats *vdev_stats);
2406 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2407 	union hal_reo_status *reo_status);
2408 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2409 		union hal_reo_status *reo_status);
2410 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2411 				     qdf_nbuf_t nbuf,
2412 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2413 				     uint8_t new_mac_cnt, uint8_t tid,
2414 				     bool is_igmp, bool is_dms_pkt);
2415 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2416 
2417 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2418 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2419 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2420 		uint32_t config_param_1, uint32_t config_param_2,
2421 		uint32_t config_param_3, int cookie, int cookie_msb,
2422 		uint8_t mac_id);
2423 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2424 			    uint8_t tag_type, uint32_t *tag_buf);
2425 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2426 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2427 				     uint8_t mac_id);
2428 /**
2429  * dp_rxtid_stats_cmd_cb - function pointer for peer
2430  *			   rx tid stats cmd call_back
2431  */
2432 typedef void (*dp_rxtid_stats_cmd_cb)(struct dp_soc *soc, void *cb_ctxt,
2433 				      union hal_reo_status *reo_status);
2434 int dp_peer_rxtid_stats(struct dp_peer *peer,
2435 			dp_rxtid_stats_cmd_cb dp_stats_cmd_cb,
2436 			void *cb_ctxt);
2437 #ifdef IPA_OFFLOAD
2438 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2439 				       union hal_reo_status *reo_status);
2440 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2441 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2442 #ifdef QCA_ENHANCED_STATS_SUPPORT
2443 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
2444 #endif
2445 #else
2446 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
2447 {
2448 }
2449 #endif
2450 QDF_STATUS
2451 dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2452 		      uint8_t *peer_mac, enum cdp_sec_type sec_type,
2453 		      uint32_t *rx_pn);
2454 
2455 QDF_STATUS
2456 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2457 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
2458 			  bool is_unicast);
2459 
2460 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
2461 
2462 QDF_STATUS
2463 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
2464 		   uint8_t *peer_mac,
2465 		   bool is_unicast, uint32_t *key);
2466 
2467 /**
2468  * dp_check_pdev_exists() - Validate pdev before use
2469  * @soc - dp soc handle
2470  * @data - pdev handle
2471  *
2472  * Return: 0 - success/invalid - failure
2473  */
2474 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
2475 
2476 /**
2477  * dp_update_delay_stats() - Update delay statistics in structure
2478  *				and fill min, max and avg delay
2479  * @tstats: tid tx stats
2480  * @rstats: tid rx stats
2481  * @delay: delay in ms
2482  * @tid: tid value
2483  * @mode: type of tx delay mode
2484  * @ring id: ring number
2485  * @delay_in_us: flag to indicate whether the delay is in ms or us
2486  *
2487  * Return: none
2488  */
2489 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
2490 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
2491 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
2492 			   bool delay_in_us);
2493 
2494 /**
2495  * dp_print_ring_stats(): Print tail and head pointer
2496  * @pdev: DP_PDEV handle
2497  *
2498  * Return:void
2499  */
2500 void dp_print_ring_stats(struct dp_pdev *pdev);
2501 
2502 /**
2503  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
2504  * @soc: soc handle
2505  * @srng: srng handle
2506  * @ring_type: ring type
2507  *
2508  * Return:void
2509  */
2510 void
2511 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
2512 			    enum hal_ring_type ring_type);
2513 /**
2514  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
2515  * @pdev_handle: DP pdev handle
2516  *
2517  * Return - void
2518  */
2519 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
2520 
2521 /**
2522  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
2523  * @soc_handle: Soc handle
2524  *
2525  * Return: void
2526  */
2527 void dp_print_soc_cfg_params(struct dp_soc *soc);
2528 
2529 /**
2530  * dp_srng_get_str_from_ring_type() - Return string name for a ring
2531  * @ring_type: Ring
2532  *
2533  * Return: char const pointer
2534  */
2535 const
2536 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
2537 
2538 /*
2539  * dp_txrx_path_stats() - Function to display dump stats
2540  * @soc - soc handle
2541  *
2542  * return: none
2543  */
2544 void dp_txrx_path_stats(struct dp_soc *soc);
2545 
2546 /*
2547  * dp_print_per_ring_stats(): Packet count per ring
2548  * @soc - soc handle
2549  *
2550  * Return - None
2551  */
2552 void dp_print_per_ring_stats(struct dp_soc *soc);
2553 
2554 /**
2555  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
2556  * @pdev: DP PDEV handle
2557  *
2558  * return: void
2559  */
2560 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
2561 
2562 /**
2563  * dp_print_rx_rates(): Print Rx rate stats
2564  * @vdev: DP_VDEV handle
2565  *
2566  * Return:void
2567  */
2568 void dp_print_rx_rates(struct dp_vdev *vdev);
2569 
2570 /**
2571  * dp_print_tx_rates(): Print tx rates
2572  * @vdev: DP_VDEV handle
2573  *
2574  * Return:void
2575  */
2576 void dp_print_tx_rates(struct dp_vdev *vdev);
2577 
2578 /**
2579  * dp_print_peer_stats():print peer stats
2580  * @peer: DP_PEER handle
2581  * @peer_stats: buffer holding peer stats
2582  *
2583  * return void
2584  */
2585 void dp_print_peer_stats(struct dp_peer *peer,
2586 			 struct cdp_peer_stats *peer_stats);
2587 
2588 /**
2589  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
2590  * @pdev: DP_PDEV Handle
2591  *
2592  * Return:void
2593  */
2594 void
2595 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
2596 
2597 /**
2598  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
2599  * @pdev: DP_PDEV Handle
2600  *
2601  * Return: void
2602  */
2603 void
2604 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
2605 
2606 /**
2607  * dp_print_soc_tx_stats(): Print SOC level  stats
2608  * @soc DP_SOC Handle
2609  *
2610  * Return: void
2611  */
2612 void dp_print_soc_tx_stats(struct dp_soc *soc);
2613 
2614 #ifdef QCA_SUPPORT_GLOBAL_DESC
2615 /**
2616  * dp_print_global_desc_count(): Print global desc in use
2617  *
2618  * Return: void
2619  */
2620 void dp_print_global_desc_count(void);
2621 #else
2622 /**
2623  * dp_print_global_desc_count(): Print global desc in use
2624  *
2625  * Return: void
2626  */
2627 static inline
2628 void dp_print_global_desc_count(void)
2629 {
2630 }
2631 #endif
2632 
2633 /**
2634  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
2635  * @soc: dp_soc handle
2636  *
2637  * Return: None
2638  */
2639 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
2640 
2641 /**
2642  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
2643  * @soc: dp_soc handle
2644  *
2645  * Return: None
2646  */
2647 
2648 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
2649 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
2650 /**
2651  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2652  *				  for all SRNGs
2653  * @soc: DP soc handle
2654  * @srng_mask: SRNGs mask for dumping usage watermark stats
2655  *
2656  * Return: None
2657  */
2658 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
2659 #else
2660 /**
2661  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2662  *				  for all SRNGs
2663  * @soc: DP soc handle
2664  * @srng_mask: SRNGs mask for dumping usage watermark stats
2665  *
2666  * Return: None
2667  */
2668 static inline
2669 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
2670 {
2671 }
2672 #endif
2673 
2674 /**
2675  * dp_print_soc_rx_stats: Print SOC level Rx stats
2676  * @soc: DP_SOC Handle
2677  *
2678  * Return:void
2679  */
2680 void dp_print_soc_rx_stats(struct dp_soc *soc);
2681 
2682 /**
2683  * dp_get_mac_id_for_pdev() -  Return mac corresponding to pdev for mac
2684  *
2685  * @mac_id: MAC id
2686  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2687  *
2688  * Single pdev using both MACs will operate on both MAC rings,
2689  * which is the case for MCL.
2690  * For WIN each PDEV will operate one ring, so index is zero.
2691  *
2692  */
2693 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
2694 {
2695 	if (mac_id && pdev_id) {
2696 		qdf_print("Both mac_id and pdev_id cannot be non zero");
2697 		QDF_BUG(0);
2698 		return 0;
2699 	}
2700 	return (mac_id + pdev_id);
2701 }
2702 
2703 /**
2704  * dp_get_lmac_id_for_pdev_id() -  Return lmac id corresponding to host pdev id
2705  * @soc: soc pointer
2706  * @mac_id: MAC id
2707  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2708  *
2709  * For MCL, Single pdev using both MACs will operate on both MAC rings.
2710  *
2711  * For WIN, each PDEV will operate one ring.
2712  *
2713  */
2714 static inline int
2715 dp_get_lmac_id_for_pdev_id
2716 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
2717 {
2718 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2719 		if (mac_id && pdev_id) {
2720 			qdf_print("Both mac_id and pdev_id cannot be non zero");
2721 			QDF_BUG(0);
2722 			return 0;
2723 		}
2724 		return (mac_id + pdev_id);
2725 	}
2726 
2727 	return soc->pdev_list[pdev_id]->lmac_id;
2728 }
2729 
2730 /**
2731  * dp_get_pdev_for_lmac_id() -  Return pdev pointer corresponding to lmac id
2732  * @soc: soc pointer
2733  * @lmac_id: LMAC id
2734  *
2735  * For MCL, Single pdev exists
2736  *
2737  * For WIN, each PDEV will operate one ring.
2738  *
2739  */
2740 static inline struct dp_pdev *
2741 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
2742 {
2743 	uint8_t i = 0;
2744 
2745 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2746 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
2747 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
2748 	}
2749 
2750 	/* Typically for MCL as there only 1 PDEV*/
2751 	return soc->pdev_list[0];
2752 }
2753 
2754 /**
2755  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
2756  *                                          corresponding to host pdev id
2757  * @soc: soc pointer
2758  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2759  *
2760  * returns target pdev_id for host pdev id. For WIN, this is derived through
2761  * a two step process:
2762  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
2763  *    during mode switch)
2764  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
2765  *
2766  * For MCL, return the offset-1 translated mac_id
2767  */
2768 static inline int
2769 dp_calculate_target_pdev_id_from_host_pdev_id
2770 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2771 {
2772 	struct dp_pdev *pdev;
2773 
2774 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2775 		return DP_SW2HW_MACID(mac_for_pdev);
2776 
2777 	pdev = soc->pdev_list[mac_for_pdev];
2778 
2779 	/*non-MCL case, get original target_pdev mapping*/
2780 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
2781 }
2782 
2783 /**
2784  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
2785  *                                         to host pdev id
2786  * @soc: soc pointer
2787  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2788  *
2789  * returns target pdev_id for host pdev id.
2790  * For WIN, return the value stored in pdev object.
2791  * For MCL, return the offset-1 translated mac_id.
2792  */
2793 static inline int
2794 dp_get_target_pdev_id_for_host_pdev_id
2795 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2796 {
2797 	struct dp_pdev *pdev;
2798 
2799 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2800 		return DP_SW2HW_MACID(mac_for_pdev);
2801 
2802 	pdev = soc->pdev_list[mac_for_pdev];
2803 
2804 	return pdev->target_pdev_id;
2805 }
2806 
2807 /**
2808  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
2809  *                                         to target pdev id
2810  * @soc: soc pointer
2811  * @pdev_id: pdev_id corresponding to target pdev
2812  *
2813  * returns host pdev_id for target pdev id. For WIN, this is derived through
2814  * a two step process:
2815  * 1. Get lmac_id corresponding to target pdev_id
2816  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
2817  *
2818  * For MCL, return the 0-offset pdev_id
2819  */
2820 static inline int
2821 dp_get_host_pdev_id_for_target_pdev_id
2822 	(struct dp_soc *soc, uint32_t pdev_id)
2823 {
2824 	struct dp_pdev *pdev;
2825 	int lmac_id;
2826 
2827 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2828 		return DP_HW2SW_MACID(pdev_id);
2829 
2830 	/*non-MCL case, get original target_lmac mapping from target pdev*/
2831 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
2832 					  DP_HW2SW_MACID(pdev_id));
2833 
2834 	/*Get host pdev from lmac*/
2835 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
2836 
2837 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
2838 }
2839 
2840 /*
2841  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
2842  *
2843  * @soc: handle to DP soc
2844  * @mac_id: MAC id
2845  *
2846  * Single pdev using both MACs will operate on both MAC rings,
2847  * which is the case for MCL.
2848  * For WIN each PDEV will operate one ring, so index is zero.
2849  *
2850  */
2851 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
2852 {
2853 	/*
2854 	 * Single pdev using both MACs will operate on both MAC rings,
2855 	 * which is the case for MCL.
2856 	 */
2857 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2858 		return mac_id;
2859 
2860 	/* For WIN each PDEV will operate one ring, so index is zero. */
2861 	return 0;
2862 }
2863 
2864 /*
2865  * dp_is_subtype_data() - check if the frame subtype is data
2866  *
2867  * @frame_ctrl: Frame control field
2868  *
2869  * check the frame control field and verify if the packet
2870  * is a data packet.
2871  *
2872  * Return: true or false
2873  */
2874 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
2875 {
2876 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
2877 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
2878 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2879 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
2880 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2881 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
2882 		return true;
2883 	}
2884 
2885 	return false;
2886 }
2887 
2888 #ifdef WDI_EVENT_ENABLE
2889 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2890 				uint32_t stats_type_upload_mask,
2891 				uint8_t mac_id);
2892 
2893 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2894 		       wdi_event_subscribe *event_cb_sub_handle,
2895 		       uint32_t event);
2896 
2897 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2898 		     wdi_event_subscribe *event_cb_sub_handle,
2899 		     uint32_t event);
2900 
2901 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
2902 			  void *data, u_int16_t peer_id,
2903 			  int status, u_int8_t pdev_id);
2904 
2905 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
2906 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
2907 
2908 static inline void
2909 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
2910 			    void *cb_context,
2911 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2912 			    uint8_t pipe_id)
2913 {
2914 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
2915 
2916 	/* TODO: Temporary change to bypass HTC connection for this new
2917 	 * HIF pipe, which will be used for packet log and other high-
2918 	 * priority HTT messages. Proper HTC connection to be added
2919 	 * later once required FW changes are available
2920 	 */
2921 	hif_pipe_callbacks.rxCompletionHandler = callback;
2922 	hif_pipe_callbacks.Context = cb_context;
2923 	hif_update_pipe_callback(dp_soc->hif_handle,
2924 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
2925 }
2926 #else
2927 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2928 				     wdi_event_subscribe *event_cb_sub_handle,
2929 				     uint32_t event)
2930 {
2931 	return 0;
2932 }
2933 
2934 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2935 				   wdi_event_subscribe *event_cb_sub_handle,
2936 				   uint32_t event)
2937 {
2938 	return 0;
2939 }
2940 
2941 static inline
2942 void dp_wdi_event_handler(enum WDI_EVENT event,
2943 			  struct dp_soc *soc,
2944 			  void *data, u_int16_t peer_id,
2945 			  int status, u_int8_t pdev_id)
2946 {
2947 }
2948 
2949 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
2950 {
2951 	return 0;
2952 }
2953 
2954 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
2955 {
2956 	return 0;
2957 }
2958 
2959 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2960 		uint32_t stats_type_upload_mask, uint8_t mac_id)
2961 {
2962 	return 0;
2963 }
2964 
2965 static inline void
2966 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
2967 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2968 			    uint8_t pipe_id)
2969 {
2970 }
2971 #endif /* CONFIG_WIN */
2972 
2973 #ifdef VDEV_PEER_PROTOCOL_COUNT
2974 /**
2975  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2976  * @vdev: VDEV DP object
2977  * @nbuf: data packet
2978  * @peer: DP TXRX Peer object
2979  * @is_egress: whether egress or ingress
2980  * @is_rx: whether rx or tx
2981  *
2982  * This function updates the per-peer protocol counters
2983  * Return: void
2984  */
2985 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
2986 					    qdf_nbuf_t nbuf,
2987 					    struct dp_txrx_peer *txrx_peer,
2988 					    bool is_egress,
2989 					    bool is_rx);
2990 
2991 /**
2992  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2993  * @soc: SOC DP object
2994  * @vdev_id: vdev_id
2995  * @nbuf: data packet
2996  * @is_egress: whether egress or ingress
2997  * @is_rx: whether rx or tx
2998  *
2999  * This function updates the per-peer protocol counters
3000  * Return: void
3001  */
3002 
3003 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
3004 				       int8_t vdev_id,
3005 				       qdf_nbuf_t nbuf,
3006 				       bool is_egress,
3007 				       bool is_rx);
3008 
3009 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3010 					       qdf_nbuf_t nbuf);
3011 
3012 #else
3013 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
3014 					       is_egress, is_rx)
3015 
3016 static inline
3017 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3018 					       qdf_nbuf_t nbuf)
3019 {
3020 }
3021 
3022 #endif
3023 
3024 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3025 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
3026 
3027 /**
3028  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
3029  * @soc: DP soc context
3030  *
3031  * Return: none
3032  */
3033 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3034 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3035 	bool force);
3036 #else
3037 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3038 {
3039 }
3040 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3041 
3042 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3043 static inline int
3044 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3045 {
3046 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3047 }
3048 
3049 static inline void
3050 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3051 {
3052 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3053 }
3054 
3055 #else
3056 static inline int
3057 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3058 {
3059 	return hal_srng_access_start(soc, hal_ring_hdl);
3060 }
3061 
3062 static inline void
3063 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3064 {
3065 	hal_srng_access_end(soc, hal_ring_hdl);
3066 }
3067 #endif
3068 
3069 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
3070 /**
3071  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
3072  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3073  * @soc: DP Soc handle
3074  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
3075  *
3076  * Return: 0 on success; error on failure
3077  */
3078 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3079 			 hal_ring_handle_t hal_ring_hdl);
3080 
3081 /**
3082  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
3083  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3084  * @soc: DP Soc handle
3085  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
3086  *
3087  * Return: void
3088  */
3089 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3090 			hal_ring_handle_t hal_ring_hdl);
3091 
3092 #else
3093 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
3094 				       struct dp_soc *dp_soc,
3095 				       hal_ring_handle_t hal_ring_hdl)
3096 {
3097 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3098 
3099 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
3100 }
3101 
3102 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
3103 				      struct dp_soc *dp_soc,
3104 				      hal_ring_handle_t hal_ring_hdl)
3105 {
3106 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3107 
3108 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
3109 }
3110 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
3111 
3112 #ifdef QCA_CACHED_RING_DESC
3113 /**
3114  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
3115  * @dp_socsoc: DP Soc handle
3116  * @hal_ring: opaque pointer to the HAL Destination Ring
3117  *
3118  * Return: HAL ring descriptor
3119  */
3120 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3121 					 hal_ring_handle_t hal_ring_hdl)
3122 {
3123 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3124 
3125 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
3126 }
3127 
3128 /**
3129  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
3130  * descriptors
3131  * @dp_socsoc: DP Soc handle
3132  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3133  * @num_entries: Entry count
3134  *
3135  * Return: None
3136  */
3137 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3138 						hal_ring_handle_t hal_ring_hdl,
3139 						uint32_t num_entries)
3140 {
3141 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3142 
3143 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
3144 }
3145 #else
3146 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3147 					 hal_ring_handle_t hal_ring_hdl)
3148 {
3149 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3150 
3151 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3152 }
3153 
3154 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3155 						hal_ring_handle_t hal_ring_hdl,
3156 						uint32_t num_entries)
3157 {
3158 }
3159 #endif /* QCA_CACHED_RING_DESC */
3160 
3161 #if defined(QCA_CACHED_RING_DESC) && \
3162 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3163 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3164 /**
3165  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3166  * @hal_soc_hdl: HAL SOC handle
3167  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3168  * @num_entries: Entry count
3169  *
3170  * Return: None
3171  */
3172 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3173 					 hal_ring_handle_t hal_ring_hdl,
3174 					 uint32_t num_entries)
3175 {
3176 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3177 }
3178 
3179 /**
3180  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3181  *					 32 byte descriptor starting at
3182  *					 64 byte offset
3183  * @hal_soc_hdl: HAL SOC handle
3184  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3185  * @num_entries: Entry count
3186  *
3187  * Return: None
3188  */
3189 static inline
3190 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3191 					hal_ring_handle_t hal_ring_hdl,
3192 					uint32_t num_entries)
3193 {
3194 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3195 						  num_entries);
3196 }
3197 #else
3198 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3199 					 hal_ring_handle_t hal_ring_hdl,
3200 					 uint32_t num_entries)
3201 {
3202 	return NULL;
3203 }
3204 
3205 static inline
3206 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3207 					hal_ring_handle_t hal_ring_hdl,
3208 					uint32_t num_entries)
3209 {
3210 	return NULL;
3211 }
3212 #endif
3213 
3214 #ifdef QCA_ENH_V3_STATS_SUPPORT
3215 /**
3216  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3217  * @pdev: DP_PDEV handle
3218  *
3219  * Return:void
3220  */
3221 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3222 
3223 /**
3224  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3225  * @pdev: DP_PDEV handle
3226  *
3227  * Return:void
3228  */
3229 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3230 
3231 /**
3232  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3233  * @pdev: DP_PDEV handle
3234  *
3235  * Return:void
3236  */
3237 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3238 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3239 
3240 /**
3241  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3242  * @soc_hdl: soc handle
3243  * @pdev_id: id of dp_pdev handle
3244  * @tid_stats: Pointer for cdp_tid_stats_intf
3245  *
3246  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3247  */
3248 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3249 				 struct cdp_tid_stats_intf *tid_stats);
3250 
3251 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3252 
3253 /**
3254  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3255  * @vdev: DP vdev handle
3256  *
3257  * Return: struct cdp_vdev pointer
3258  */
3259 static inline
3260 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3261 {
3262 	return (struct cdp_vdev *)vdev;
3263 }
3264 
3265 /**
3266  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3267  * @pdev: DP pdev handle
3268  *
3269  * Return: struct cdp_pdev pointer
3270  */
3271 static inline
3272 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3273 {
3274 	return (struct cdp_pdev *)pdev;
3275 }
3276 
3277 /**
3278  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3279  * @psoc: DP psoc handle
3280  *
3281  * Return: struct cdp_soc pointer
3282  */
3283 static inline
3284 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3285 {
3286 	return (struct cdp_soc *)psoc;
3287 }
3288 
3289 /**
3290  * dp_soc_to_cdp_soc_t() - typecast dp psoc to
3291  * ol txrx soc handle
3292  * @psoc: DP psoc handle
3293  *
3294  * Return: struct cdp_soc_t pointer
3295  */
3296 static inline
3297 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
3298 {
3299 	return (struct cdp_soc_t *)psoc;
3300 }
3301 
3302 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
3303 /**
3304  * dp_rx_flow_update_fse_stats() - Update a flow's statistics
3305  * @pdev: pdev handle
3306  * @flow_id: flow index (truncated hash) in the Rx FST
3307  *
3308  * Return: Success when flow statistcs is updated, error on failure
3309  */
3310 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3311 				    struct cdp_rx_flow_info *rx_flow_info,
3312 				    struct cdp_flow_stats *stats);
3313 
3314 /**
3315  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3316  * @pdev: pdev handle
3317  * @rx_flow_info: DP flow parameters
3318  *
3319  * Return: Success when flow is deleted, error on failure
3320  */
3321 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3322 				   struct cdp_rx_flow_info *rx_flow_info);
3323 
3324 /**
3325  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3326  * @pdev: DP pdev instance
3327  * @rx_flow_info: DP flow parameters
3328  *
3329  * Return: Success when flow is added, no-memory or already exists on error
3330  */
3331 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3332 				struct cdp_rx_flow_info *rx_flow_info);
3333 
3334 /**
3335  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3336  * @soc: SoC handle
3337  * @pdev: Pdev handle
3338  *
3339  * Return: Handle to flow search table entry
3340  */
3341 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3342 
3343 /**
3344  * dp_rx_fst_detach() - De-initialize Rx FST
3345  * @soc: SoC handle
3346  * @pdev: Pdev handle
3347  *
3348  * Return: None
3349  */
3350 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3351 
3352 /**
3353  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3354  * @soc: SoC handle
3355  * @pdev: Pdev handle
3356  *
3357  * Return: Success when fst parameters are programmed in FW, error otherwise
3358  */
3359 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3360 					struct dp_pdev *pdev);
3361 
3362 /** dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3363  * @pdev: pdev handle
3364  * @flow_id: flow index (truncated hash) in the Rx FST
3365  *
3366  * Return: Success when flow statistcs is updated, error on failure
3367  */
3368 QDF_STATUS
3369 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3370 
3371 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3372 
3373 /**
3374  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3375  * @soc: SoC handle
3376  * @pdev: Pdev handle
3377  *
3378  * Return: Handle to flow search table entry
3379  */
3380 static inline
3381 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3382 {
3383 	return QDF_STATUS_SUCCESS;
3384 }
3385 
3386 /**
3387  * dp_rx_fst_detach() - De-initialize Rx FST
3388  * @soc: SoC handle
3389  * @pdev: Pdev handle
3390  *
3391  * Return: None
3392  */
3393 static inline
3394 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
3395 {
3396 }
3397 #endif
3398 
3399 /**
3400  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
3401  * @soc: SoC handle
3402  * @pdev: Pdev handle
3403  *
3404  * Return: Handle to flow search table entry
3405  */
3406 extern QDF_STATUS
3407 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
3408 
3409 /**
3410  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
3411  * @soc: SoC handle
3412  * @pdev: Pdev handle
3413  *
3414  * Return: None
3415  */
3416 extern void
3417 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
3418 
3419 /**
3420  * dp_vdev_get_ref() - API to take a reference for VDEV object
3421  *
3422  * @soc		: core DP soc context
3423  * @vdev	: DP vdev
3424  * @mod_id	: module id
3425  *
3426  * Return:	QDF_STATUS_SUCCESS if reference held successfully
3427  *		else QDF_STATUS_E_INVAL
3428  */
3429 static inline
3430 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
3431 			   enum dp_mod_id mod_id)
3432 {
3433 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
3434 		return QDF_STATUS_E_INVAL;
3435 
3436 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
3437 
3438 	return QDF_STATUS_SUCCESS;
3439 }
3440 
3441 /**
3442  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
3443  * @soc: core DP soc context
3444  * @vdev_id: vdev id from vdev object can be retrieved
3445  * @mod_id: module id which is requesting the reference
3446  *
3447  * Return: struct dp_vdev*: Pointer to DP vdev object
3448  */
3449 static inline struct dp_vdev *
3450 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
3451 		      enum dp_mod_id mod_id)
3452 {
3453 	struct dp_vdev *vdev = NULL;
3454 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3455 		return NULL;
3456 
3457 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3458 	vdev = soc->vdev_id_map[vdev_id];
3459 
3460 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
3461 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3462 		return NULL;
3463 	}
3464 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3465 
3466 	return vdev;
3467 }
3468 
3469 /**
3470  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
3471  * @soc: core DP soc context
3472  * @pdev_id: pdev id from pdev object can be retrieved
3473  *
3474  * Return: struct dp_pdev*: Pointer to DP pdev object
3475  */
3476 static inline struct dp_pdev *
3477 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
3478 				   uint8_t pdev_id)
3479 {
3480 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
3481 		return NULL;
3482 
3483 	return soc->pdev_list[pdev_id];
3484 }
3485 
3486 /*
3487  * dp_rx_tid_update_wifi3() – Update receive TID state
3488  * @peer: Datapath peer handle
3489  * @tid: TID
3490  * @ba_window_size: BlockAck window size
3491  * @start_seq: Starting sequence number
3492  * @bar_update: BAR update triggered
3493  *
3494  * Return: QDF_STATUS code
3495  */
3496 QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
3497 					 ba_window_size, uint32_t start_seq,
3498 					 bool bar_update);
3499 
3500 /**
3501  * dp_get_peer_mac_list(): function to get peer mac list of vdev
3502  * @soc: Datapath soc handle
3503  * @vdev_id: vdev id
3504  * @newmac: Table of the clients mac
3505  * @mac_cnt: No. of MACs required
3506  * @limit: Limit the number of clients
3507  *
3508  * return: no of clients
3509  */
3510 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
3511 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
3512 			      u_int16_t mac_cnt, bool limit);
3513 
3514 /*
3515  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
3516  *				       DBS check
3517  * @soc: DP SoC context
3518  * @max_mac_rings: Pointer to variable for No of MAC rings
3519  *
3520  * Return: None
3521  */
3522 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
3523 				     int *max_mac_rings);
3524 
3525 
3526 #if defined(WLAN_SUPPORT_RX_FISA)
3527 void dp_rx_dump_fisa_table(struct dp_soc *soc);
3528 
3529 /**
3530  * dp_print_fisa_stats() - Print FISA stats
3531  * @soc: DP soc handle
3532  *
3533  * Return: None
3534  */
3535 void dp_print_fisa_stats(struct dp_soc *soc);
3536 
3537 /*
3538  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
3539  * @soc:		DP SoC context
3540  * @num_entries:	Number of flow search entries
3541  * @cmem_ba_lo:		CMEM base address low
3542  * @cmem_ba_hi:		CMEM base address high
3543  *
3544  * Return: None
3545  */
3546 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3547 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
3548 
3549 void
3550 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
3551 
3552 /*
3553  * dp_rx_fst_requeue_wq() - Re-queue pending work queue tasks
3554  * @soc:		DP SoC context
3555  *
3556  * Return: None
3557  */
3558 void dp_rx_fst_requeue_wq(struct dp_soc *soc);
3559 #else
3560 static inline void
3561 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3562 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
3563 {
3564 }
3565 
3566 static inline void
3567 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
3568 {
3569 }
3570 
3571 static inline void
3572 dp_rx_fst_requeue_wq(struct dp_soc *soc)
3573 {
3574 }
3575 
3576 static inline void dp_print_fisa_stats(struct dp_soc *soc)
3577 {
3578 }
3579 #endif /* WLAN_SUPPORT_RX_FISA */
3580 
3581 #ifdef MAX_ALLOC_PAGE_SIZE
3582 /**
3583  * dp_set_page_size() - Set the max page size for hw link desc.
3584  * For MCL the page size is set to OS defined value and for WIN
3585  * the page size is set to the max_alloc_size cfg ini
3586  * param.
3587  * This is to ensure that WIN gets contiguous memory allocations
3588  * as per requirement.
3589  * @pages: link desc page handle
3590  * @max_alloc_size: max_alloc_size
3591  *
3592  * Return: None
3593  */
3594 static inline
3595 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3596 			  uint32_t max_alloc_size)
3597 {
3598 	pages->page_size = qdf_page_size;
3599 }
3600 
3601 #else
3602 static inline
3603 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3604 			  uint32_t max_alloc_size)
3605 {
3606 	pages->page_size = max_alloc_size;
3607 }
3608 #endif /* MAX_ALLOC_PAGE_SIZE */
3609 
3610 /**
3611  * dp_history_get_next_index() - get the next entry to record an entry
3612  *				 in the history.
3613  * @curr_idx: Current index where the last entry is written.
3614  * @max_entries: Max number of entries in the history
3615  *
3616  * This function assumes that the max number os entries is a power of 2.
3617  *
3618  * Returns: The index where the next entry is to be written.
3619  */
3620 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
3621 						 uint32_t max_entries)
3622 {
3623 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
3624 
3625 	return idx & (max_entries - 1);
3626 }
3627 
3628 /**
3629  * dp_rx_skip_tlvs() - Skip TLVs len + L2 hdr_offset, save in nbuf->cb
3630  * @nbuf: nbuf cb to be updated
3631  * @l2_hdr_offset: l2_hdr_offset
3632  *
3633  * Return: None
3634  */
3635 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
3636 
3637 #ifndef FEATURE_WDS
3638 static inline void
3639 dp_hmwds_ast_add_notify(struct dp_peer *peer,
3640 			uint8_t *mac_addr,
3641 			enum cdp_txrx_ast_entry_type type,
3642 			QDF_STATUS err,
3643 			bool is_peer_map)
3644 {
3645 }
3646 #endif
3647 
3648 #ifdef HTT_STATS_DEBUGFS_SUPPORT
3649 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3650  * debugfs for HTT stats
3651  * @pdev: dp pdev handle
3652  *
3653  * Return: QDF_STATUS
3654  */
3655 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
3656 
3657 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3658  * HTT stats
3659  * @pdev: dp pdev handle
3660  *
3661  * Return: none
3662  */
3663 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
3664 #else
3665 
3666 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3667  * debugfs for HTT stats
3668  * @pdev: dp pdev handle
3669  *
3670  * Return: QDF_STATUS
3671  */
3672 static inline QDF_STATUS
3673 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
3674 {
3675 	return QDF_STATUS_SUCCESS;
3676 }
3677 
3678 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3679  * HTT stats
3680  * @pdev: dp pdev handle
3681  *
3682  * Return: none
3683  */
3684 static inline void
3685 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
3686 {
3687 }
3688 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
3689 
3690 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3691 /**
3692  * dp_soc_swlm_attach() - attach the software latency manager resources
3693  * @soc: Datapath global soc handle
3694  *
3695  * Returns: QDF_STATUS
3696  */
3697 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
3698 {
3699 	return QDF_STATUS_SUCCESS;
3700 }
3701 
3702 /**
3703  * dp_soc_swlm_detach() - detach the software latency manager resources
3704  * @soc: Datapath global soc handle
3705  *
3706  * Returns: QDF_STATUS
3707  */
3708 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
3709 {
3710 	return QDF_STATUS_SUCCESS;
3711 }
3712 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3713 
3714 /**
3715  * dp_get_peer_id(): function to get peer id by mac
3716  * @soc: Datapath soc handle
3717  * @vdev_id: vdev id
3718  * @mac: Peer mac address
3719  *
3720  * return: valid peer id on success
3721  *         HTT_INVALID_PEER on failure
3722  */
3723 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
3724 
3725 #ifdef QCA_SUPPORT_WDS_EXTENDED
3726 /**
3727  * dp_wds_ext_set_peer_state(): function to set peer state
3728  * @soc: Datapath soc handle
3729  * @vdev_id: vdev id
3730  * @mac: Peer mac address
3731  * @rx: rx function pointer
3732  *
3733  * return: QDF_STATUS_SUCCESS on success
3734  *         QDF_STATUS_E_INVAL if peer is not found
3735  *         QDF_STATUS_E_ALREADY if rx is already set/unset
3736  */
3737 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
3738 				  uint8_t vdev_id,
3739 				  uint8_t *mac,
3740 				  ol_txrx_rx_fp rx,
3741 				  ol_osif_peer_handle osif_peer);
3742 #endif /* QCA_SUPPORT_WDS_EXTENDED */
3743 
3744 #ifdef DP_MEM_PRE_ALLOC
3745 
3746 /**
3747  * dp_context_alloc_mem() - allocate memory for DP context
3748  * @soc: datapath soc handle
3749  * @ctxt_type: DP context type
3750  * @ctxt_size: DP context size
3751  *
3752  * Return: DP context address
3753  */
3754 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3755 			   size_t ctxt_size);
3756 
3757 /**
3758  * dp_context_free_mem() - Free memory of DP context
3759  * @soc: datapath soc handle
3760  * @ctxt_type: DP context type
3761  * @vaddr: Address of context memory
3762  *
3763  * Return: None
3764  */
3765 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3766 			 void *vaddr);
3767 
3768 /**
3769  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
3770  * @soc: datapath soc handle
3771  * @desc_type: memory request source type
3772  * @pages: multi page information storage
3773  * @element_size: each element size
3774  * @element_num: total number of elements should be allocated
3775  * @memctxt: memory context
3776  * @cacheable: coherent memory or cacheable memory
3777  *
3778  * This function is a wrapper for memory allocation over multiple
3779  * pages, if dp prealloc method is registered, then will try prealloc
3780  * firstly. if prealloc failed, fall back to regular way over
3781  * qdf_mem_multi_pages_alloc().
3782  *
3783  * Return: None
3784  */
3785 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3786 				   enum dp_desc_type desc_type,
3787 				   struct qdf_mem_multi_page_t *pages,
3788 				   size_t element_size,
3789 				   uint32_t element_num,
3790 				   qdf_dma_context_t memctxt,
3791 				   bool cacheable);
3792 
3793 /**
3794  * dp_desc_multi_pages_mem_free() - free multiple pages memory
3795  * @soc: datapath soc handle
3796  * @desc_type: memory request source type
3797  * @pages: multi page information storage
3798  * @memctxt: memory context
3799  * @cacheable: coherent memory or cacheable memory
3800  *
3801  * This function is a wrapper for multiple pages memory free,
3802  * if memory is got from prealloc pool, put it back to pool.
3803  * otherwise free by qdf_mem_multi_pages_free().
3804  *
3805  * Return: None
3806  */
3807 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3808 				  enum dp_desc_type desc_type,
3809 				  struct qdf_mem_multi_page_t *pages,
3810 				  qdf_dma_context_t memctxt,
3811 				  bool cacheable);
3812 
3813 #else
3814 static inline
3815 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3816 			   size_t ctxt_size)
3817 {
3818 	return qdf_mem_malloc(ctxt_size);
3819 }
3820 
3821 static inline
3822 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3823 			 void *vaddr)
3824 {
3825 	qdf_mem_free(vaddr);
3826 }
3827 
3828 static inline
3829 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3830 				   enum dp_desc_type desc_type,
3831 				   struct qdf_mem_multi_page_t *pages,
3832 				   size_t element_size,
3833 				   uint32_t element_num,
3834 				   qdf_dma_context_t memctxt,
3835 				   bool cacheable)
3836 {
3837 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
3838 				  element_num, memctxt, cacheable);
3839 }
3840 
3841 static inline
3842 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3843 				  enum dp_desc_type desc_type,
3844 				  struct qdf_mem_multi_page_t *pages,
3845 				  qdf_dma_context_t memctxt,
3846 				  bool cacheable)
3847 {
3848 	qdf_mem_multi_pages_free(soc->osdev, pages,
3849 				 memctxt, cacheable);
3850 }
3851 #endif
3852 
3853 /**
3854  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
3855  *					  history.
3856  * @index: atomic index
3857  * @num_entries_per_slot: Number of entries per slot
3858  * @allocated: is allocated or not
3859  * @entry: pointers to array of records
3860  */
3861 struct dp_frag_history_opaque_atomic {
3862 	qdf_atomic_t index;
3863 	uint16_t num_entries_per_slot;
3864 	uint16_t allocated;
3865 	void *entry[0];
3866 };
3867 
3868 static inline QDF_STATUS
3869 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
3870 			   uint32_t max_slots, uint32_t max_entries_per_slot,
3871 			   uint32_t entry_size,
3872 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
3873 {
3874 	struct dp_frag_history_opaque_atomic *history =
3875 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3876 	size_t alloc_size = max_entries_per_slot * entry_size;
3877 	int i;
3878 
3879 	for (i = 0; i < max_slots; i++) {
3880 		if (attempt_prealloc)
3881 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
3882 								 alloc_size);
3883 		else
3884 			history->entry[i] = qdf_mem_malloc(alloc_size);
3885 
3886 		if (!history->entry[i])
3887 			goto exit;
3888 	}
3889 
3890 	qdf_atomic_init(&history->index);
3891 	history->allocated = 1;
3892 	history->num_entries_per_slot = max_entries_per_slot;
3893 
3894 	return QDF_STATUS_SUCCESS;
3895 exit:
3896 	for (i = i - 1; i >= 0; i--) {
3897 		if (attempt_prealloc)
3898 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3899 		else
3900 			qdf_mem_free(history->entry[i]);
3901 	}
3902 
3903 	return QDF_STATUS_E_NOMEM;
3904 }
3905 
3906 static inline
3907 void dp_soc_frag_history_detach(struct dp_soc *soc,
3908 				void *history_hdl, uint32_t max_slots,
3909 				bool attempt_prealloc,
3910 				enum dp_ctxt_type ctxt_type)
3911 {
3912 	struct dp_frag_history_opaque_atomic *history =
3913 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3914 	int i;
3915 
3916 	for (i = 0; i < max_slots; i++) {
3917 		if (attempt_prealloc)
3918 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3919 		else
3920 			qdf_mem_free(history->entry[i]);
3921 	}
3922 
3923 	history->allocated = 0;
3924 }
3925 
3926 /**
3927  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
3928  *					entry in a fragmented history with
3929  *					index being atomic.
3930  * @curr_idx: address of the current index where the last entry was written
3931  * @next_idx: pointer to update the next index
3932  * @slot: pointer to update the history slot to be selected
3933  * @slot_shift: BITwise shift mask for slot (in index)
3934  * @max_entries_per_slot: Max number of entries in a slot of history
3935  * @max_entries: Total number of entries in the history (sum of all slots)
3936  *
3937  * This function assumes that the "max_entries_per_slot" and "max_entries"
3938  * are a power-of-2.
3939  *
3940  * Return: None
3941  */
3942 static inline void
3943 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
3944 				 uint16_t *slot, uint32_t slot_shift,
3945 				 uint32_t max_entries_per_slot,
3946 				 uint32_t max_entries)
3947 {
3948 	uint32_t idx;
3949 
3950 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
3951 
3952 	*slot = idx >> slot_shift;
3953 	*next_idx = idx & (max_entries_per_slot - 1);
3954 }
3955 
3956 #ifdef FEATURE_RUNTIME_PM
3957 /**
3958  * dp_runtime_get() - Get dp runtime refcount
3959  * @soc: Datapath soc handle
3960  *
3961  * Get dp runtime refcount by increment of an atomic variable, which can block
3962  * dp runtime resume to wait to flush pending tx by runtime suspend.
3963  *
3964  * Return: Current refcount
3965  */
3966 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3967 {
3968 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
3969 }
3970 
3971 /**
3972  * dp_runtime_put() - Return dp runtime refcount
3973  * @soc: Datapath soc handle
3974  *
3975  * Return dp runtime refcount by decrement of an atomic variable, allow dp
3976  * runtime resume finish.
3977  *
3978  * Return: Current refcount
3979  */
3980 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3981 {
3982 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
3983 }
3984 
3985 /**
3986  * dp_runtime_get_refcount() - Get dp runtime refcount
3987  * @soc: Datapath soc handle
3988  *
3989  * Get dp runtime refcount by returning an atomic variable
3990  *
3991  * Return: Current refcount
3992  */
3993 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
3994 {
3995 	return qdf_atomic_read(&soc->dp_runtime_refcount);
3996 }
3997 
3998 /**
3999  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
4000  * @soc: Datapath soc handle
4001  *
4002  * Return: QDF_STATUS
4003  */
4004 static inline void dp_runtime_init(struct dp_soc *soc)
4005 {
4006 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
4007 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
4008 	qdf_atomic_init(&soc->dp_runtime_refcount);
4009 }
4010 
4011 /**
4012  * dp_runtime_deinit() - Deinit DP related runtime PM clients
4013  *
4014  * Return: None
4015  */
4016 static inline void dp_runtime_deinit(void)
4017 {
4018 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
4019 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
4020 }
4021 
4022 /**
4023  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
4024  * @soc: Datapath soc handle
4025  *
4026  * Return: None
4027  */
4028 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4029 {
4030 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
4031 
4032 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4033 }
4034 #else
4035 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4036 {
4037 	return 0;
4038 }
4039 
4040 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4041 {
4042 	return 0;
4043 }
4044 
4045 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4046 {
4047 	return QDF_STATUS_SUCCESS;
4048 }
4049 
4050 static inline void dp_runtime_deinit(void)
4051 {
4052 }
4053 
4054 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4055 {
4056 }
4057 #endif
4058 
4059 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
4060 {
4061 	if (soc->cdp_soc.ol_ops->get_con_mode)
4062 		return soc->cdp_soc.ol_ops->get_con_mode();
4063 
4064 	return QDF_GLOBAL_MAX_MODE;
4065 }
4066 
4067 /*
4068  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
4069  *				processing
4070  * @pdev: Datapath PDEV handle
4071  *
4072  */
4073 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
4074 
4075 /*
4076  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
4077  *				processing
4078  * @pdev: Datapath PDEV handle
4079  *
4080  * Return: QDF_STATUS_SUCCESS: Success
4081  *         QDF_STATUS_E_NOMEM: Error
4082  */
4083 
4084 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
4085 
4086 /**
4087  * dp_peer_flush_frags() - Flush all fragments for a particular
4088  *  peer
4089  * @soc_hdl - data path soc handle
4090  * @vdev_id - vdev id
4091  * @peer_addr - peer mac address
4092  *
4093  * Return: None
4094  */
4095 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4096 			 uint8_t *peer_mac);
4097 
4098 /**
4099  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
4100  * @soc: pointer to dp_soc handle
4101  *
4102  * Return:
4103  */
4104 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
4105 
4106 /**
4107  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
4108  * @soc_hdl: soc handle
4109  * @soc_stats: buffer to hold the values
4110  *
4111  * Return: QDF_STATUS_SUCCESS: Success
4112  *         QDF_STATUS_E_FAILURE: Error
4113  */
4114 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
4115 				 struct cdp_soc_stats *soc_stats);
4116 
4117 /**
4118  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
4119  * @soc: soc handle
4120  * @vdev_id: id of vdev handle
4121  * @peer_mac: mac of DP_PEER handle
4122  * @delay_stats: pointer to delay stats array
4123  *
4124  * Return: QDF_STATUS_SUCCESS: Success
4125  *         QDF_STATUS_E_FAILURE: Error
4126  */
4127 QDF_STATUS
4128 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4129 			     uint8_t *peer_mac,
4130 			     struct cdp_delay_tid_stats *delay_stats);
4131 
4132 /**
4133  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
4134  * @soc: soc handle
4135  * @pdev_id: id of pdev handle
4136  * @vdev_id: id of vdev handle
4137  * @peer_mac: mac of DP_PEER handle
4138  * @tid_stats: pointer to jitter stats array
4139  *
4140  * Return: QDF_STATUS_SUCCESS: Success
4141  *         QDF_STATUS_E_FAILURE: Error
4142  */
4143 QDF_STATUS
4144 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4145 			      uint8_t vdev_id, uint8_t *peer_mac,
4146 			      struct cdp_peer_tid_stats *tid_stats);
4147 
4148 /* dp_peer_get_tx_capture_stats - to get peer Tx Capture stats
4149  * @soc_hdl: soc handle
4150  * @vdev_id: id of vdev handle
4151  * @peer_mac: mac of DP_PEER handle
4152  * @stats: pointer to peer tx capture stats
4153  *
4154  * Return: QDF_STATUS_SUCCESS: Success
4155  *         QDF_STATUS_E_FAILURE: Error
4156  */
4157 QDF_STATUS
4158 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
4159 			     uint8_t vdev_id, uint8_t *peer_mac,
4160 			     struct cdp_peer_tx_capture_stats *stats);
4161 
4162 /* dp_pdev_get_tx_capture_stats - to get pdev Tx Capture stats
4163  * @soc_hdl: soc handle
4164  * @pdev_id: id of pdev handle
4165  * @stats: pointer to pdev tx capture stats
4166  *
4167  * Return: QDF_STATUS_SUCCESS: Success
4168  *         QDF_STATUS_E_FAILURE: Error
4169  */
4170 QDF_STATUS
4171 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4172 			     struct cdp_pdev_tx_capture_stats *stats);
4173 
4174 #ifdef HW_TX_DELAY_STATS_ENABLE
4175 /*
4176  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
4177  *  is enabled for vdev
4178  * @vdev: dp vdev
4179  *
4180  * Return: true if tx delay stats is enabled for vdev else false
4181  */
4182 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4183 {
4184 	return vdev->hw_tx_delay_stats_enabled;
4185 }
4186 
4187 /*
4188  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4189  *  for pdev
4190  * @soc: dp soc
4191  *
4192  * Return: None
4193  */
4194 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4195 
4196 /**
4197  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4198  * @soc: soc handle
4199  *
4200  * Return: None
4201  */
4202 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4203 #else
4204 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4205 {
4206 	return 0;
4207 }
4208 
4209 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4210 {
4211 }
4212 
4213 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4214 {
4215 }
4216 #endif
4217 
4218 static inline void
4219 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4220 {
4221 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4222 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4223 			      LRO_IPV4_SEED_ARR_SZ));
4224 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4225 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4226 			      LRO_IPV6_SEED_ARR_SZ));
4227 }
4228 
4229 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
4230 /*
4231  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4232  * @soc_hdl: soc handle
4233  * @pdev_id: id of pdev handle
4234  * @stats: pointer to pdev telemetry stats
4235  *
4236  * Return: QDF_STATUS_SUCCESS: Success
4237  *         QDF_STATUS_E_FAILURE: Error
4238  */
4239 QDF_STATUS
4240 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4241 			    struct cdp_pdev_telemetry_stats *stats);
4242 
4243 /*
4244  * dp_get_peer_telemetry_stats- API to get peer telemetry stats
4245  * @soc_hdl: soc handle
4246  * @addr: peer mac
4247  * @stats: pointer to peer telemetry stats
4248  *
4249  * Return: QDF_STATUS_SUCCESS: Success
4250  *         QDF_STATUS_E_FAILURE: Error
4251  */
4252 QDF_STATUS
4253 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4254 			    struct cdp_peer_telemetry_stats *stats);
4255 
4256 /*
4257  * dp_get_peer_deter_stats- API to get peer deterministic stats
4258  * @soc_hdl: soc handle
4259  * @vdev_id: id of vdev handle
4260  * @addr: peer mac
4261  * @stats: pointer to peer deterministic stats
4262  *
4263  * Return: QDF_STATUS_SUCCESS: Success
4264  *         QDF_STATUS_E_FAILURE: Error
4265  */
4266 QDF_STATUS
4267 dp_get_peer_deter_stats(struct cdp_soc_t *soc_hdl,
4268 			uint8_t vdev_id,
4269 			uint8_t *addr,
4270 			struct cdp_peer_deter_stats *stats);
4271 
4272 /*
4273  * dp_get_pdev_deter_stats- API to get pdev deterministic stats
4274  * @soc_hdl: soc handle
4275  * @pdev_id: id of pdev handle
4276  * @stats: pointer to pdev deterministic stats
4277  *
4278  * Return: QDF_STATUS_SUCCESS: Success
4279  *         QDF_STATUS_E_FAILURE: Error
4280  */
4281 QDF_STATUS
4282 dp_get_pdev_deter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4283 			struct cdp_pdev_deter_stats *stats);
4284 
4285 /*
4286  * dp_update_pdev_chan_util_stats- API to update channel utilization stats
4287  * @soc_hdl: soc handle
4288  * @pdev_id: id of pdev handle
4289  * @ch_util: Pointer to channel util stats
4290  *
4291  * Return: QDF_STATUS_SUCCESS: Success
4292  *         QDF_STATUS_E_FAILURE: Error
4293  */
4294 QDF_STATUS
4295 dp_update_pdev_chan_util_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4296 			       struct cdp_pdev_chan_util_stats *ch_util);
4297 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
4298 
4299 #ifdef CONNECTIVITY_PKTLOG
4300 /*
4301  * dp_tx_send_pktlog() - send tx packet log
4302  * @soc: soc handle
4303  * @pdev: pdev handle
4304  * @tx_desc: TX software descriptor
4305  * @nbuf: nbuf
4306  * @status: status of tx packet
4307  *
4308  * This function is used to send tx packet for logging
4309  *
4310  * Return: None
4311  *
4312  */
4313 static inline
4314 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4315 		       struct dp_tx_desc_s *tx_desc,
4316 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4317 {
4318 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4319 
4320 	if (qdf_unlikely(packetdump_cb) &&
4321 	    dp_tx_frm_std == tx_desc->frm_type) {
4322 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4323 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
4324 	}
4325 }
4326 
4327 /*
4328  * dp_rx_send_pktlog() - send rx packet log
4329  * @soc: soc handle
4330  * @pdev: pdev handle
4331  * @nbuf: nbuf
4332  * @status: status of rx packet
4333  *
4334  * This function is used to send rx packet for logging
4335  *
4336  * Return: None
4337  *
4338  */
4339 static inline
4340 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4341 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4342 {
4343 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4344 
4345 	if (qdf_unlikely(packetdump_cb)) {
4346 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4347 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4348 			      nbuf, status, QDF_RX_DATA_PKT);
4349 	}
4350 }
4351 
4352 /*
4353  * dp_rx_err_send_pktlog() - send rx error packet log
4354  * @soc: soc handle
4355  * @pdev: pdev handle
4356  * @mpdu_desc_info: MPDU descriptor info
4357  * @nbuf: nbuf
4358  * @status: status of rx packet
4359  * @set_pktlen: weither to set packet length
4360  *
4361  * This API should only be called when we have not removed
4362  * Rx TLV from head, and head is pointing to rx_tlv
4363  *
4364  * This function is used to send rx packet from error path
4365  * for logging for which rx packet tlv is not removed.
4366  *
4367  * Return: None
4368  *
4369  */
4370 static inline
4371 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4372 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4373 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4374 			   bool set_pktlen)
4375 {
4376 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4377 	qdf_size_t skip_size;
4378 	uint16_t msdu_len, nbuf_len;
4379 	uint8_t *rx_tlv_hdr;
4380 	struct hal_rx_msdu_metadata msdu_metadata;
4381 
4382 	if (qdf_unlikely(packetdump_cb)) {
4383 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
4384 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
4385 							  rx_tlv_hdr);
4386 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
4387 					 &msdu_metadata);
4388 
4389 		if (mpdu_desc_info->bar_frame ||
4390 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
4391 			skip_size = soc->rx_pkt_tlv_size;
4392 		else
4393 			skip_size = soc->rx_pkt_tlv_size +
4394 					msdu_metadata.l3_hdr_pad;
4395 
4396 		if (set_pktlen) {
4397 			msdu_len = nbuf_len + skip_size;
4398 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
4399 					    (uint16_t)RX_DATA_BUFFER_SIZE));
4400 		}
4401 
4402 		qdf_nbuf_pull_head(nbuf, skip_size);
4403 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4404 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4405 			      nbuf, status, QDF_RX_DATA_PKT);
4406 		qdf_nbuf_push_head(nbuf, skip_size);
4407 	}
4408 }
4409 
4410 #else
4411 static inline
4412 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4413 		       struct dp_tx_desc_s *tx_desc,
4414 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4415 {
4416 }
4417 
4418 static inline
4419 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4420 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4421 {
4422 }
4423 
4424 static inline
4425 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4426 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4427 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4428 			   bool set_pktlen)
4429 {
4430 }
4431 #endif
4432 
4433 /*
4434  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
4435  * @soc  : Data path soc handle
4436  * @pdev : PDEV handle
4437  *
4438  * return: None
4439  */
4440 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
4441 
4442 #ifdef FEATURE_DIRECT_LINK
4443 /*
4444  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
4445  * @soc_hdl: DP SOC handle
4446  * @pdev_id: pdev id
4447  *
4448  * Return: Handle to SRNG
4449  */
4450 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4451 						 uint8_t pdev_id);
4452 
4453 /*
4454  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
4455  *  pdev
4456  * @soc_hdl: DP SOC handle
4457  * @pdev_id: pdev id
4458  *
4459  * Return: None
4460  */
4461 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4462 					uint8_t pdev_id);
4463 #else
4464 static inline
4465 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4466 						 uint8_t pdev_id)
4467 {
4468 	return NULL;
4469 }
4470 
4471 static inline
4472 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
4473 					uint8_t pdev_id)
4474 {
4475 }
4476 #endif
4477 
4478 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
4479 static inline
4480 void dp_cfg_event_record(struct dp_soc *soc,
4481 			 enum dp_cfg_event_type event,
4482 			 union dp_cfg_event_desc *cfg_event_desc)
4483 {
4484 	struct dp_cfg_event_history *cfg_event_history =
4485 						&soc->cfg_event_history;
4486 	struct dp_cfg_event *entry;
4487 	uint32_t idx;
4488 	uint16_t slot;
4489 
4490 	dp_get_frag_hist_next_atomic_idx(&cfg_event_history->index, &idx,
4491 					 &slot,
4492 					 DP_CFG_EVT_HIST_SLOT_SHIFT,
4493 					 DP_CFG_EVT_HIST_PER_SLOT_MAX,
4494 					 DP_CFG_EVT_HISTORY_SIZE);
4495 
4496 	entry = &cfg_event_history->entry[slot][idx];
4497 
4498 	entry->timestamp = qdf_get_log_timestamp();
4499 	entry->type = event;
4500 	qdf_mem_copy(&entry->event_desc, cfg_event_desc,
4501 		     sizeof(entry->event_desc));
4502 }
4503 
4504 static inline void
4505 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
4506 			     struct dp_vdev *vdev)
4507 {
4508 	union dp_cfg_event_desc cfg_evt_desc = {0};
4509 	struct dp_vdev_attach_detach_desc *vdev_evt =
4510 						&cfg_evt_desc.vdev_evt;
4511 
4512 	if (qdf_unlikely(event != DP_CFG_EVENT_VDEV_ATTACH &&
4513 			 event != DP_CFG_EVENT_VDEV_UNREF_DEL &&
4514 			 event != DP_CFG_EVENT_VDEV_DETACH)) {
4515 		qdf_assert_always(0);
4516 		return;
4517 	}
4518 
4519 	vdev_evt->vdev = vdev;
4520 	vdev_evt->vdev_id = vdev->vdev_id;
4521 	vdev_evt->ref_count = qdf_atomic_read(&vdev->ref_cnt);
4522 	vdev_evt->mac_addr = vdev->mac_addr;
4523 
4524 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
4525 }
4526 
4527 static inline void
4528 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
4529 			     struct dp_peer *peer, struct dp_vdev *vdev,
4530 			     uint8_t is_reuse)
4531 {
4532 	union dp_cfg_event_desc cfg_evt_desc = {0};
4533 	struct dp_peer_cmn_ops_desc *peer_evt = &cfg_evt_desc.peer_cmn_evt;
4534 
4535 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_CREATE &&
4536 			 event != DP_CFG_EVENT_PEER_DELETE &&
4537 			 event != DP_CFG_EVENT_PEER_UNREF_DEL)) {
4538 		qdf_assert_always(0);
4539 		return;
4540 	}
4541 
4542 	peer_evt->peer = peer;
4543 	peer_evt->vdev = vdev;
4544 	peer_evt->vdev_id = vdev->vdev_id;
4545 	peer_evt->is_reuse = is_reuse;
4546 	peer_evt->peer_ref_count = qdf_atomic_read(&peer->ref_cnt);
4547 	peer_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
4548 	peer_evt->mac_addr = peer->mac_addr;
4549 	peer_evt->vdev_mac_addr = vdev->mac_addr;
4550 
4551 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
4552 }
4553 
4554 static inline void
4555 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
4556 					enum dp_cfg_event_type event,
4557 					struct dp_peer *mld_peer,
4558 					struct dp_peer *link_peer,
4559 					uint8_t idx, uint8_t result)
4560 {
4561 	union dp_cfg_event_desc cfg_evt_desc = {0};
4562 	struct dp_mlo_add_del_link_desc *mlo_link_delink_evt =
4563 					&cfg_evt_desc.mlo_link_delink_evt;
4564 
4565 	if (qdf_unlikely(event != DP_CFG_EVENT_MLO_ADD_LINK &&
4566 			 event != DP_CFG_EVENT_MLO_DEL_LINK)) {
4567 		qdf_assert_always(0);
4568 		return;
4569 	}
4570 
4571 	mlo_link_delink_evt->link_peer = link_peer;
4572 	mlo_link_delink_evt->mld_peer = mld_peer;
4573 	mlo_link_delink_evt->link_mac_addr = link_peer->mac_addr;
4574 	mlo_link_delink_evt->mld_mac_addr = mld_peer->mac_addr;
4575 	mlo_link_delink_evt->num_links = mld_peer->num_links;
4576 	mlo_link_delink_evt->action_result = result;
4577 	mlo_link_delink_evt->idx = idx;
4578 
4579 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
4580 }
4581 
4582 static inline void
4583 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
4584 					      struct dp_peer *mld_peer,
4585 					      struct dp_vdev *prev_vdev,
4586 					      struct dp_vdev *new_vdev)
4587 {
4588 	union dp_cfg_event_desc cfg_evt_desc = {0};
4589 	struct dp_mlo_setup_vdev_update_desc *vdev_update_evt =
4590 					&cfg_evt_desc.mlo_setup_vdev_update;
4591 
4592 	vdev_update_evt->mld_peer = mld_peer;
4593 	vdev_update_evt->prev_vdev = prev_vdev;
4594 	vdev_update_evt->new_vdev = new_vdev;
4595 
4596 	dp_cfg_event_record(soc, DP_CFG_EVENT_MLO_SETUP_VDEV_UPDATE,
4597 			    &cfg_evt_desc);
4598 }
4599 
4600 static inline void
4601 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
4602 				       enum dp_cfg_event_type event,
4603 				       struct dp_peer *peer,
4604 				       uint8_t *mac_addr,
4605 				       uint8_t is_ml_peer,
4606 				       uint16_t peer_id, uint16_t ml_peer_id,
4607 				       uint16_t hw_peer_id, uint8_t vdev_id)
4608 {
4609 	union dp_cfg_event_desc cfg_evt_desc = {0};
4610 	struct dp_rx_peer_map_unmap_desc *peer_map_unmap_evt =
4611 					&cfg_evt_desc.peer_map_unmap_evt;
4612 
4613 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_MAP &&
4614 			 event != DP_CFG_EVENT_PEER_UNMAP &&
4615 			 event != DP_CFG_EVENT_MLO_PEER_MAP &&
4616 			 event != DP_CFG_EVENT_MLO_PEER_UNMAP)) {
4617 		qdf_assert_always(0);
4618 		return;
4619 	}
4620 
4621 	peer_map_unmap_evt->peer_id = peer_id;
4622 	peer_map_unmap_evt->ml_peer_id = ml_peer_id;
4623 	peer_map_unmap_evt->hw_peer_id = hw_peer_id;
4624 	peer_map_unmap_evt->vdev_id = vdev_id;
4625 	/* Peer may be NULL at times, but its not an issue. */
4626 	peer_map_unmap_evt->peer = peer;
4627 	peer_map_unmap_evt->is_ml_peer = is_ml_peer;
4628 	qdf_mem_copy(&peer_map_unmap_evt->mac_addr.raw, mac_addr,
4629 		     QDF_MAC_ADDR_SIZE);
4630 
4631 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
4632 }
4633 
4634 static inline void
4635 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
4636 				   enum dp_cfg_event_type event,
4637 				   struct dp_peer *peer,
4638 				   struct dp_vdev *vdev,
4639 				   uint8_t vdev_id,
4640 				   struct cdp_peer_setup_info *peer_setup_info)
4641 {
4642 	union dp_cfg_event_desc cfg_evt_desc = {0};
4643 	struct dp_peer_setup_desc *peer_setup_evt =
4644 					&cfg_evt_desc.peer_setup_evt;
4645 
4646 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_SETUP &&
4647 			 event != DP_CFG_EVENT_MLO_SETUP)) {
4648 		qdf_assert_always(0);
4649 		return;
4650 	}
4651 
4652 	peer_setup_evt->peer = peer;
4653 	peer_setup_evt->vdev = vdev;
4654 	if (vdev)
4655 		peer_setup_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
4656 	peer_setup_evt->mac_addr = peer->mac_addr;
4657 	peer_setup_evt->vdev_id = vdev_id;
4658 	if (peer_setup_info) {
4659 		peer_setup_evt->is_first_link = peer_setup_info->is_first_link;
4660 		peer_setup_evt->is_primary_link = peer_setup_info->is_primary_link;
4661 		qdf_mem_copy(peer_setup_evt->mld_mac_addr.raw,
4662 			     peer_setup_info->mld_peer_mac,
4663 			     QDF_MAC_ADDR_SIZE);
4664 	}
4665 
4666 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
4667 }
4668 #else
4669 
4670 static inline void
4671 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
4672 			     struct dp_vdev *vdev)
4673 {
4674 }
4675 
4676 static inline void
4677 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
4678 			     struct dp_peer *peer, struct dp_vdev *vdev,
4679 			     uint8_t is_reuse)
4680 {
4681 }
4682 
4683 static inline void
4684 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
4685 					enum dp_cfg_event_type event,
4686 					struct dp_peer *mld_peer,
4687 					struct dp_peer *link_peer,
4688 					uint8_t idx, uint8_t result)
4689 {
4690 }
4691 
4692 static inline void
4693 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
4694 					      struct dp_peer *mld_peer,
4695 					      struct dp_vdev *prev_vdev,
4696 					      struct dp_vdev *new_vdev)
4697 {
4698 }
4699 
4700 static inline void
4701 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
4702 				       enum dp_cfg_event_type event,
4703 				       struct dp_peer *peer,
4704 				       uint8_t *mac_addr,
4705 				       uint8_t is_ml_peer,
4706 				       uint16_t peer_id, uint16_t ml_peer_id,
4707 				       uint16_t hw_peer_id, uint8_t vdev_id)
4708 {
4709 }
4710 
4711 static inline void
4712 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
4713 				   enum dp_cfg_event_type event,
4714 				   struct dp_peer *peer,
4715 				   struct dp_vdev *vdev,
4716 				   uint8_t vdev_id,
4717 				   struct cdp_peer_setup_info *peer_setup_info)
4718 {
4719 }
4720 #endif
4721 
4722 /*
4723  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
4724  * @txrx_soc: DP SOC handle
4725  *
4726  * Return: none
4727  */
4728 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
4729 
4730 void dp_get_peer_stats(struct dp_peer *peer,
4731 		       struct cdp_peer_stats *peer_stats);
4732 
4733 #endif /* #ifndef _DP_INTERNAL_H_ */
4734