xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 8993389ed1555f9b3739fcafc0cb63d0889cea75)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 #include "dp_rx_tid.h"
26 
27 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
28 
29 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
30 
31 #define DP_BLOCKMEM_SIZE 4096
32 #define WBM2_SW_PPE_REL_RING_ID 6
33 #define WBM2_SW_PPE_REL_MAP_ID 11
34 #define DP_TX_PPEDS_POOL_ID 0xF
35 
36 /* Alignment for consistent memory for DP rings*/
37 #define DP_RING_BASE_ALIGN 32
38 
39 #define DP_RSSI_INVAL 0x80
40 #define DP_RSSI_AVG_WEIGHT 2
41 /*
42  * Formula to derive avg_rssi is taken from wifi2.o firmware
43  */
44 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
45 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
46 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
47 
48 /* Macro For NYSM value received in VHT TLV */
49 #define VHT_SGI_NYSM 3
50 
51 #define INVALID_WBM_RING_NUM 0xF
52 
53 #ifdef FEATURE_DIRECT_LINK
54 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
55 #ifdef IPA_OFFLOAD
56 #ifdef IPA_WDI3_VLAN_SUPPORT
57 #define DIRECT_LINK_REFILL_RING_IDX     4
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     3
60 #endif
61 #else
62 #define DIRECT_LINK_REFILL_RING_IDX     2
63 #endif
64 #endif
65 
66 #define DP_MAX_VLAN_IDS 4096
67 #define DP_VLAN_UNTAGGED 0
68 #define DP_VLAN_TAGGED_MULTICAST 1
69 #define DP_VLAN_TAGGED_UNICAST 2
70 
71 /**
72  * struct htt_dbgfs_cfg - structure to maintain required htt data
73  * @msg_word: htt msg sent to upper layer
74  * @m: qdf debugfs file pointer
75  */
76 struct htt_dbgfs_cfg {
77 	uint32_t *msg_word;
78 	qdf_debugfs_file_t m;
79 };
80 
81 /* Cookie MSB bits assigned for different use case.
82  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
83  * If in future number of pdev are more than 3.
84  */
85 /* Reserve for default case */
86 #define DBG_STATS_COOKIE_DEFAULT 0x0
87 
88 /* Reserve for DP Stats: 3rd bit */
89 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
90 
91 /* Reserve for HTT Stats debugfs support: 4th bit */
92 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
93 
94 /*Reserve for HTT Stats debugfs support: 5th bit */
95 #define DBG_SYSFS_STATS_COOKIE BIT(5)
96 
97 /* Reserve for HTT Stats OBSS PD support: 6th bit */
98 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
99 
100 /*
101  * Bitmap of HTT PPDU TLV types for Default mode
102  */
103 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
104 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
106 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
107 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
108 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
109 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
110 
111 /* PPDU STATS CFG */
112 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
113 
114 /* PPDU stats mask sent to FW to enable enhanced stats */
115 #define DP_PPDU_STATS_CFG_ENH_STATS \
116 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
117 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
119 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
120 
121 /* PPDU stats mask sent to FW to support debug sniffer feature */
122 #define DP_PPDU_STATS_CFG_SNIFFER \
123 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
124 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
125 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
126 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
127 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
128 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
129 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
130 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
131 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
132 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
133 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
134 
135 /* PPDU stats mask sent to FW to support BPR feature*/
136 #define DP_PPDU_STATS_CFG_BPR \
137 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
138 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
139 
140 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
141 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
142 				   DP_PPDU_STATS_CFG_ENH_STATS)
143 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
144 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
145 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
146 
147 /*
148  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
149  */
150 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
151 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
152 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
153 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
154 
155 /*
156  * Bitmap of HTT PPDU TLV types for Delayed BA
157  */
158 #define HTT_PPDU_STATUS_TLV_BITMAP \
159 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
161 
162 /*
163  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
164  */
165 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
166 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
167 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
168 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
169 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
170 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
171 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
173 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
174 
175 /*
176  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
177  */
178 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
179 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
180 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
181 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
182 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
183 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
184 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
185 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
186 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
187 
188 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
189 	[HAL_DOT11A] = DOT11_A,
190 	[HAL_DOT11B] = DOT11_B,
191 	[HAL_DOT11N_MM] = DOT11_N,
192 	[HAL_DOT11AC] = DOT11_AC,
193 	[HAL_DOT11AX] = DOT11_AX,
194 	[HAL_DOT11BA] = DOT11_MAX,
195 #ifdef WLAN_FEATURE_11BE
196 	[HAL_DOT11BE] = DOT11_BE,
197 #else
198 	[HAL_DOT11BE] = DOT11_MAX,
199 #endif
200 	[HAL_DOT11AZ] = DOT11_MAX,
201 	[HAL_DOT11N_GF] = DOT11_MAX,
202 };
203 
204 #ifdef GLOBAL_ASSERT_AVOIDANCE
205 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
206 	(qdf_unlikely(!(_expr)) ? ((_handle)->stats._field++, true) : false)
207 
208 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
209 				((_handle)->ppeds_stats._field++)
210 
211 static inline bool dp_assert_always_internal(bool expr)
212 {
213 	return !expr;
214 }
215 #else
216 static inline bool __dp_assert_always_internal(bool expr)
217 {
218 	qdf_assert_always(expr);
219 
220 	return false;
221 }
222 
223 #define dp_assert_always_internal(_expr) __dp_assert_always_internal(_expr)
224 
225 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
226 				dp_assert_always_internal(_expr)
227 
228 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
229 				dp_assert_always_internal(_expr)
230 #endif
231 
232 #ifdef WLAN_FEATURE_11BE
233 /**
234  * dp_get_mcs_array_index_by_pkt_type_mcs() - get the destination mcs index
235  *					      in array
236  * @pkt_type: host SW pkt type
237  * @mcs: mcs value for TX/RX rate
238  *
239  * Return: succeeded - valid index in mcs array
240  *	   fail - same value as MCS_MAX
241  */
242 static inline uint8_t
243 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
244 {
245 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
246 
247 	switch (pkt_type) {
248 	case DOT11_A:
249 		dst_mcs_idx =
250 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
251 		break;
252 	case DOT11_B:
253 		dst_mcs_idx =
254 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
255 		break;
256 	case DOT11_N:
257 		dst_mcs_idx =
258 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
259 		break;
260 	case DOT11_AC:
261 		dst_mcs_idx =
262 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
263 		break;
264 	case DOT11_AX:
265 		dst_mcs_idx =
266 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
267 		break;
268 	case DOT11_BE:
269 		dst_mcs_idx =
270 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
271 		break;
272 	default:
273 		break;
274 	}
275 
276 	return dst_mcs_idx;
277 }
278 #else
279 static inline uint8_t
280 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
281 {
282 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
283 
284 	switch (pkt_type) {
285 	case DOT11_A:
286 		dst_mcs_idx =
287 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
288 		break;
289 	case DOT11_B:
290 		dst_mcs_idx =
291 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
292 		break;
293 	case DOT11_N:
294 		dst_mcs_idx =
295 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
296 		break;
297 	case DOT11_AC:
298 		dst_mcs_idx =
299 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
300 		break;
301 	case DOT11_AX:
302 		dst_mcs_idx =
303 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
304 		break;
305 	default:
306 		break;
307 	}
308 
309 	return dst_mcs_idx;
310 }
311 #endif
312 
313 #ifdef WIFI_MONITOR_SUPPORT
314 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
315 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
316 #else
317 static inline
318 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
319 {
320 	return QDF_STATUS_SUCCESS;
321 }
322 
323 static inline
324 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
325 {
326 	return QDF_STATUS_SUCCESS;
327 }
328 #endif
329 
330 /**
331  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
332  * @eh: Ethernet header of incoming packet
333  * @vdev: dp_vdev object of the VAP on which this data packet is received
334  *
335  * Return: 1 if the destination mac is correct,
336  *         0 if this frame is not correctly destined to this VAP/MLD
337  */
338 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
339 
340 #ifdef MONITOR_MODULARIZED_ENABLE
341 static inline bool dp_monitor_modularized_enable(void)
342 {
343 	return TRUE;
344 }
345 
346 static inline QDF_STATUS
347 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
348 
349 static inline QDF_STATUS
350 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
351 #else
352 static inline bool dp_monitor_modularized_enable(void)
353 {
354 	return FALSE;
355 }
356 
357 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
358 {
359 	return dp_mon_soc_attach(soc);
360 }
361 
362 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
363 {
364 	return dp_mon_soc_detach(soc);
365 }
366 #endif
367 
368 #ifndef WIFI_MONITOR_SUPPORT
369 #define MON_BUF_MIN_ENTRIES 64
370 
371 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
372 {
373 	return QDF_STATUS_SUCCESS;
374 }
375 
376 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
377 {
378 	return QDF_STATUS_SUCCESS;
379 }
380 
381 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
382 {
383 	return QDF_STATUS_E_FAILURE;
384 }
385 
386 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
387 {
388 	return QDF_STATUS_E_FAILURE;
389 }
390 
391 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
392 						struct dp_peer *peer)
393 {
394 	return QDF_STATUS_SUCCESS;
395 }
396 
397 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
398 						struct dp_peer *peer)
399 {
400 	return QDF_STATUS_E_FAILURE;
401 }
402 
403 static inline struct cdp_peer_rate_stats_ctx*
404 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
405 {
406 	return NULL;
407 }
408 
409 static inline
410 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
411 {
412 }
413 
414 static inline
415 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
416 			       void *arg, enum cdp_stat_update_type type)
417 {
418 }
419 
420 static inline
421 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
422 					       struct dp_pdev *pdev)
423 {
424 }
425 
426 static inline
427 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
428 					   struct dp_peer *peer,
429 					   enum cdp_peer_stats_type type,
430 					   cdp_peer_stats_param_t *buf)
431 {
432 	return QDF_STATUS_E_FAILURE;
433 }
434 
435 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
436 {
437 	return QDF_STATUS_SUCCESS;
438 }
439 
440 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
441 {
442 	return QDF_STATUS_SUCCESS;
443 }
444 
445 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
446 {
447 	return QDF_STATUS_SUCCESS;
448 }
449 
450 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
451 							 int val)
452 {
453 	return QDF_STATUS_E_FAILURE;
454 }
455 
456 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
457 {
458 }
459 
460 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
461 						   struct dp_pdev *pdev,
462 						   int mac_id,
463 						   int mac_for_pdev)
464 {
465 	return QDF_STATUS_SUCCESS;
466 }
467 
468 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
469 						uint32_t quota)
470 {
471 }
472 
473 static inline
474 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
475 			    uint32_t mac_id, uint32_t quota)
476 {
477 	return 0;
478 }
479 
480 static inline
481 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
482 					 uint32_t mac_id, uint32_t quota)
483 {
484 	return 0;
485 }
486 
487 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
488 					   struct dp_peer *peer)
489 {
490 }
491 
492 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
493 					      struct dp_peer *peer)
494 {
495 }
496 
497 static inline
498 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
499 					struct dp_peer *peer,
500 					uint16_t peer_id)
501 {
502 }
503 
504 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
505 {
506 }
507 
508 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
509 {
510 }
511 
512 static inline
513 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
514 {
515 	return QDF_STATUS_SUCCESS;
516 }
517 
518 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
519 							   struct dp_peer *peer)
520 {
521 }
522 
523 static inline
524 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
525 					   struct dp_tx_desc_s *desc,
526 					   struct hal_tx_completion_status *ts,
527 					   uint16_t peer_id)
528 {
529 	return QDF_STATUS_E_FAILURE;
530 }
531 
532 static inline
533 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
534 				       struct dp_pdev *pdev,
535 				       struct dp_peer *peer,
536 				       struct hal_tx_completion_status *ts,
537 				       qdf_nbuf_t netbuf)
538 {
539 	return QDF_STATUS_E_FAILURE;
540 }
541 
542 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
543 						     uint32_t *msg_word,
544 						     qdf_nbuf_t htt_t2h_msg)
545 {
546 	return true;
547 }
548 
549 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
550 {
551 	return QDF_STATUS_SUCCESS;
552 }
553 
554 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
555 {
556 }
557 
558 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
559 {
560 }
561 
562 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
563 							  uint32_t val)
564 {
565 	return QDF_STATUS_E_INVAL;
566 }
567 
568 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
569 						   struct dp_peer *peer,
570 						   uint8_t is_tx_pkt_cap_enable,
571 						   uint8_t *peer_mac)
572 {
573 	return QDF_STATUS_E_INVAL;
574 }
575 
576 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
577 							  uint32_t val)
578 {
579 	return QDF_STATUS_E_INVAL;
580 }
581 
582 static inline
583 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
584 {
585 	return QDF_STATUS_E_FAILURE;
586 }
587 
588 static inline
589 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
590 {
591 	return 0;
592 }
593 
594 static inline
595 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
596 {
597 }
598 
599 static inline
600 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
601 {
602 }
603 
604 static inline
605 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
606 {
607 	return false;
608 }
609 
610 static inline
611 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
612 {
613 	return false;
614 }
615 
616 static inline
617 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
618 {
619 	return false;
620 }
621 
622 static inline
623 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
624 				bool enable)
625 {
626 	return 0;
627 }
628 
629 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
630 {
631 }
632 
633 static inline
634 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
635 {
636 	return QDF_STATUS_E_FAILURE;
637 }
638 
639 static inline
640 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
641 {
642 }
643 
644 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
645 							  uint8_t *rx_pkt_hdr)
646 {
647 	return QDF_STATUS_E_FAILURE;
648 }
649 
650 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
651 {
652 }
653 
654 static inline
655 void dp_monitor_reap_timer_init(struct dp_soc *soc)
656 {
657 }
658 
659 static inline
660 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
661 {
662 }
663 
664 static inline
665 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
666 				 enum cdp_mon_reap_source source)
667 {
668 	return false;
669 }
670 
671 static inline
672 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
673 				enum cdp_mon_reap_source source)
674 {
675 	return false;
676 }
677 
678 static inline void
679 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
680 {
681 }
682 
683 static inline
684 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
685 {
686 }
687 
688 static inline
689 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
690 {
691 }
692 
693 static inline
694 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
695 {
696 }
697 
698 static inline
699 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
700 {
701 	return false;
702 }
703 
704 static inline struct qdf_mem_multi_page_t*
705 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
706 {
707 	return NULL;
708 }
709 
710 static inline struct dp_srng*
711 dp_monitor_get_link_desc_ring(struct dp_soc *soc, uint32_t mac_id)
712 {
713 	return NULL;
714 }
715 
716 static inline uint32_t
717 dp_monitor_get_num_link_desc_ring_entries(struct dp_soc *soc)
718 {
719 	return 0;
720 }
721 
722 static inline uint32_t *
723 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
724 {
725 	return NULL;
726 }
727 
728 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
729 {
730 	return QDF_STATUS_E_FAILURE;
731 }
732 
733 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
734 {
735 	return false;
736 }
737 
738 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
739 						 struct ol_txrx_ops *txrx_ops)
740 {
741 }
742 
743 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
744 {
745 	return false;
746 }
747 
748 static inline
749 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
750 {
751 }
752 
753 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
754 					  struct dp_vdev *vdev)
755 {
756 }
757 
758 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
759 {
760 }
761 
762 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
763 						     struct dp_peer *ta_peer,
764 						     uint8_t *mac_addr,
765 						     qdf_nbuf_t nbuf,
766 						     uint32_t flags)
767 {
768 }
769 
770 static inline void
771 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
772 {
773 }
774 
775 static inline void
776 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
777 {
778 }
779 
780 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
781 {
782 }
783 
784 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
785 {
786 	return false;
787 }
788 
789 static inline
790 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
791 					   struct dp_vdev *vdev,
792 					   struct dp_neighbour_peer *peer)
793 {
794 }
795 
796 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
797 {
798 	return false;
799 }
800 
801 static inline enum reg_wifi_band
802 dp_monitor_get_chan_band(struct dp_pdev *pdev)
803 {
804 	return 0;
805 }
806 
807 static inline int
808 dp_monitor_get_chan_num(struct dp_pdev *pdev)
809 {
810 	return 0;
811 }
812 
813 static inline qdf_freq_t
814 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
815 {
816 	return 0;
817 }
818 
819 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
820 					      struct dp_soc *soc,
821 					      uint8_t *rx_tlv_hdr)
822 {
823 }
824 
825 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
826 {
827 }
828 
829 static inline
830 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
831 					  uint16_t peer_id, uint32_t ppdu_id,
832 					  uint8_t first_msdu)
833 {
834 	return QDF_STATUS_SUCCESS;
835 }
836 
837 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
838 {
839 	return false;
840 }
841 
842 static inline struct dp_vdev*
843 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
844 {
845 	return NULL;
846 }
847 
848 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
849 							   void *rx_desc)
850 {
851 	return QDF_STATUS_E_FAILURE;
852 }
853 
854 static inline struct mon_rx_status*
855 dp_monitor_get_rx_status(struct dp_pdev *pdev)
856 {
857 	return NULL;
858 }
859 
860 static inline
861 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
862 {
863 }
864 
865 static inline
866 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
867 						      bool val)
868 {
869 }
870 
871 static inline QDF_STATUS
872 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
873 				     struct cdp_peer_tx_capture_stats *stats)
874 {
875 	return QDF_STATUS_E_FAILURE;
876 }
877 
878 static inline QDF_STATUS
879 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
880 				     struct cdp_pdev_tx_capture_stats *stats)
881 {
882 	return QDF_STATUS_E_FAILURE;
883 }
884 
885 #ifdef DP_POWER_SAVE
886 static inline
887 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
888 {
889 }
890 
891 static inline
892 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
893 {
894 }
895 #endif
896 
897 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
898 {
899 	return false;
900 }
901 
902 static inline void
903 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
904 			 struct htt_rx_ring_tlv_filter *tlv_filter)
905 {
906 }
907 
908 static inline void dp_monitor_soc_init(struct dp_soc *soc)
909 {
910 }
911 
912 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
913 {
914 }
915 
916 static inline
917 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
918 							int val)
919 {
920 	return QDF_STATUS_SUCCESS;
921 }
922 
923 static inline QDF_STATUS
924 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
925 						      int mask1, int mask2)
926 {
927 	return QDF_STATUS_SUCCESS;
928 }
929 
930 static inline QDF_STATUS
931 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
932 						   int *mask, int *mask_cont)
933 {
934 	return QDF_STATUS_SUCCESS;
935 }
936 
937 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
938 {
939 	return QDF_STATUS_E_FAILURE;
940 }
941 
942 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
943 {
944 	return false;
945 }
946 
947 static inline
948 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
949 {
950 	return 0;
951 }
952 
953 static inline uint32_t
954 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
955 		  uint32_t mac_id, uint32_t quota)
956 {
957 	return 0;
958 }
959 
960 static inline uint32_t
961 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
962 {
963 	return 0;
964 }
965 
966 static inline
967 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
968 {
969 	return 0;
970 }
971 
972 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
973 {
974 	return 0;
975 }
976 
977 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
978 {
979 	return 0;
980 }
981 
982 static inline void
983 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
984 		 struct htt_rx_ring_tlv_filter *tlv_filter)
985 {
986 }
987 
988 static inline void
989 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
990 			    struct htt_rx_ring_tlv_filter *tlv_filter)
991 {
992 }
993 
994 static inline void
995 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
996 			      struct htt_rx_ring_tlv_filter *tlv_filter)
997 {
998 }
999 
1000 static inline void
1001 dp_mon_rx_wmask_subscribe(struct dp_soc *soc,
1002 			  uint32_t *msg_word, int pdev_id,
1003 			  struct htt_rx_ring_tlv_filter *tlv_filter)
1004 {
1005 }
1006 
1007 static inline void
1008 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
1009 			 struct htt_rx_ring_tlv_filter *tlv_filter)
1010 {
1011 }
1012 
1013 static inline void
1014 dp_mon_rx_enable_pkt_tlv_offset(struct dp_soc *soc, uint32_t *msg_word,
1015 				struct htt_rx_ring_tlv_filter *tlv_filter)
1016 {
1017 }
1018 
1019 static inline void
1020 dp_mon_rx_enable_fpmo(struct dp_soc *soc, uint32_t *msg_word,
1021 		      struct htt_rx_ring_tlv_filter *tlv_filter)
1022 {
1023 }
1024 
1025 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
1026 static inline
1027 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
1028 				     struct cdp_peer_telemetry_stats *stats)
1029 {
1030 }
1031 
1032 static inline
1033 void dp_monitor_peer_deter_stats(struct dp_peer *peer,
1034 				 struct cdp_peer_telemetry_stats *stats)
1035 {
1036 }
1037 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
1038 #endif /* !WIFI_MONITOR_SUPPORT */
1039 
1040 /**
1041  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
1042  * dp soc handle
1043  * @psoc: CDP psoc handle
1044  *
1045  * Return: struct dp_soc pointer
1046  */
1047 static inline
1048 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
1049 {
1050 	return (struct dp_soc *)psoc;
1051 }
1052 
1053 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
1054 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
1055 
1056 /**
1057  * enum timer_yield_status - yield status code used in monitor mode timer.
1058  * @DP_TIMER_NO_YIELD: do not yield
1059  * @DP_TIMER_WORK_DONE: yield because work is done
1060  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
1061  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
1062  */
1063 enum timer_yield_status {
1064 	DP_TIMER_NO_YIELD,
1065 	DP_TIMER_WORK_DONE,
1066 	DP_TIMER_WORK_EXHAUST,
1067 	DP_TIMER_TIME_EXHAUST,
1068 };
1069 
1070 #if DP_PRINT_ENABLE
1071 #include <qdf_types.h> /* qdf_vprint */
1072 #include <cdp_txrx_handle.h>
1073 
1074 enum {
1075 	/* FATAL_ERR - print only irrecoverable error messages */
1076 	DP_PRINT_LEVEL_FATAL_ERR,
1077 
1078 	/* ERR - include non-fatal err messages */
1079 	DP_PRINT_LEVEL_ERR,
1080 
1081 	/* WARN - include warnings */
1082 	DP_PRINT_LEVEL_WARN,
1083 
1084 	/* INFO1 - include fundamental, infrequent events */
1085 	DP_PRINT_LEVEL_INFO1,
1086 
1087 	/* INFO2 - include non-fundamental but infrequent events */
1088 	DP_PRINT_LEVEL_INFO2,
1089 };
1090 
1091 #define dp_print(level, fmt, ...) do { \
1092 	if (level <= g_txrx_print_level) \
1093 		qdf_print(fmt, ## __VA_ARGS__); \
1094 while (0)
1095 #define DP_PRINT(level, fmt, ...) do { \
1096 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1097 while (0)
1098 #else
1099 #define DP_PRINT(level, fmt, ...)
1100 #endif /* DP_PRINT_ENABLE */
1101 
1102 #define DP_TRACE(LVL, fmt, args ...)                             \
1103 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1104 		fmt, ## args)
1105 
1106 #ifdef WLAN_SYSFS_DP_STATS
1107 void DP_PRINT_STATS(const char *fmt, ...);
1108 #else /* WLAN_SYSFS_DP_STATS */
1109 #ifdef DP_PRINT_NO_CONSOLE
1110 /* Stat prints should not go to console or kernel logs.*/
1111 #define DP_PRINT_STATS(fmt, args ...)\
1112 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1113 		  fmt, ## args)
1114 #else
1115 #define DP_PRINT_STATS(fmt, args ...)\
1116 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1117 		  fmt, ## args)
1118 #endif
1119 #endif /* WLAN_SYSFS_DP_STATS */
1120 
1121 #define DP_STATS_INIT(_handle) \
1122 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1123 
1124 #define DP_TXRX_PEER_STATS_INIT(_handle, size) \
1125 	qdf_mem_zero(&((_handle)->stats[0]), size)
1126 
1127 #define DP_STATS_CLR(_handle) \
1128 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1129 
1130 #define DP_TXRX_PEER_STATS_CLR(_handle, size) \
1131 	qdf_mem_zero(&((_handle)->stats[0]), size)
1132 
1133 #ifndef DISABLE_DP_STATS
1134 #define DP_STATS_INC(_handle, _field, _delta) \
1135 { \
1136 	if (likely(_handle)) \
1137 		_handle->stats._field += _delta; \
1138 }
1139 
1140 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link) \
1141 { \
1142 	if (likely(_handle)) \
1143 		_handle->stats[_link]._field += _delta; \
1144 }
1145 
1146 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1147 { \
1148 	if (likely(_handle)) \
1149 		_handle->_field += _delta; \
1150 }
1151 
1152 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1153 { \
1154 	if (_cond && likely(_handle)) \
1155 		_handle->stats._field += _delta; \
1156 }
1157 
1158 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1159 { \
1160 	if (_cond && likely(_handle)) \
1161 		_handle->stats[_link]._field += _delta; \
1162 }
1163 
1164 #define DP_STATS_DEC(_handle, _field, _delta) \
1165 { \
1166 	if (likely(_handle)) \
1167 		_handle->stats._field -= _delta; \
1168 }
1169 
1170 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1171 { \
1172 	if (likely(_handle)) \
1173 		_handle->_field -= _delta; \
1174 }
1175 
1176 #define DP_STATS_UPD(_handle, _field, _delta) \
1177 { \
1178 	if (likely(_handle)) \
1179 		_handle->stats._field = _delta; \
1180 }
1181 
1182 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link) \
1183 { \
1184 	if (likely(_handle)) \
1185 		_handle->stats[_link]._field = _delta; \
1186 }
1187 
1188 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1189 { \
1190 	DP_STATS_INC(_handle, _field.num, _count); \
1191 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1192 }
1193 
1194 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1195 { \
1196 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1197 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1198 }
1199 
1200 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1201 { \
1202 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1203 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1204 }
1205 
1206 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1207 { \
1208 	_handle_a->stats._field += _handle_b->stats._field; \
1209 }
1210 
1211 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1212 { \
1213 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1214 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1215 }
1216 
1217 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1218 { \
1219 	_handle_a->stats._field = _handle_b->stats._field; \
1220 }
1221 
1222 #else
1223 #define DP_STATS_INC(_handle, _field, _delta)
1224 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link)
1225 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1226 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1227 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link)
1228 #define DP_STATS_DEC(_handle, _field, _delta)
1229 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1230 #define DP_STATS_UPD(_handle, _field, _delta)
1231 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link)
1232 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1233 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1234 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1235 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1236 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1237 #endif
1238 
1239 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta, _link) \
1240 { \
1241 	DP_PEER_LINK_STATS_INC(_handle, per_pkt_stats._field, _delta, _link); \
1242 }
1243 
1244 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1245 { \
1246 	DP_PEER_LINK_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond, _link); \
1247 }
1248 
1249 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes, _link) \
1250 { \
1251 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count, _link); \
1252 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes, _link) \
1253 }
1254 
1255 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond, _link) \
1256 { \
1257 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond, _link); \
1258 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond, _link) \
1259 }
1260 
1261 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta, _link) \
1262 { \
1263 	DP_PEER_LINK_STATS_UPD(_handle, per_pkt_stats._field, _delta, _link); \
1264 }
1265 
1266 #ifndef QCA_ENHANCED_STATS_SUPPORT
1267 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta, _link) \
1268 { \
1269 	DP_PEER_LINK_STATS_INC(_handle, extd_stats._field, _delta, _link); \
1270 }
1271 
1272 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1273 { \
1274 	DP_PEER_LINK_STATS_INCC(_handle, extd_stats._field, _delta, _cond, _link); \
1275 }
1276 
1277 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta, _link) \
1278 { \
1279 	DP_PEER_LINK_STATS_UPD(_handle, extd_stats._field, _delta, _link); \
1280 }
1281 #endif
1282 
1283 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1284 	defined(QCA_ENHANCED_STATS_SUPPORT)
1285 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1286 { \
1287 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1288 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1289 }
1290 
1291 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1292 { \
1293 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1294 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1295 }
1296 
1297 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1298 { \
1299 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1300 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1301 }
1302 
1303 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1304 { \
1305 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1306 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1307 }
1308 
1309 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1310 { \
1311 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1312 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1313 }
1314 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1315 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1316 { \
1317 	if (!(_handle->hw_txrx_stats_en)) \
1318 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1319 }
1320 
1321 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1322 { \
1323 	if (!(_handle->hw_txrx_stats_en)) \
1324 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1325 }
1326 
1327 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1328 { \
1329 	if (!(_handle->hw_txrx_stats_en)) \
1330 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1331 }
1332 
1333 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1334 { \
1335 	if (!(_handle->hw_txrx_stats_en)) \
1336 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1337 }
1338 
1339 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1340 { \
1341 	if (!(_handle->hw_txrx_stats_en)) \
1342 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1343 }
1344 #else
1345 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1346 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1347 
1348 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1349 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1350 
1351 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1352 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link);
1353 
1354 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1355 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link);
1356 
1357 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1358 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link);
1359 #endif
1360 
1361 #ifdef ENABLE_DP_HIST_STATS
1362 #define DP_HIST_INIT() \
1363 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1364 
1365 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1366 { \
1367 		++num_of_packets[_pdev_id]; \
1368 }
1369 
1370 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1371 	do {                                                              \
1372 		if (_p_cntrs == 1) {                                      \
1373 			DP_STATS_INC(_pdev,                               \
1374 				tx_comp_histogram.pkts_1, 1);             \
1375 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1376 			DP_STATS_INC(_pdev,                               \
1377 				tx_comp_histogram.pkts_2_20, 1);          \
1378 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1379 			DP_STATS_INC(_pdev,                               \
1380 				tx_comp_histogram.pkts_21_40, 1);         \
1381 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1382 			DP_STATS_INC(_pdev,                               \
1383 				tx_comp_histogram.pkts_41_60, 1);         \
1384 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1385 			DP_STATS_INC(_pdev,                               \
1386 				tx_comp_histogram.pkts_61_80, 1);         \
1387 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1388 			DP_STATS_INC(_pdev,                               \
1389 				tx_comp_histogram.pkts_81_100, 1);        \
1390 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1391 			DP_STATS_INC(_pdev,                               \
1392 				tx_comp_histogram.pkts_101_200, 1);       \
1393 		} else if (_p_cntrs > 200) {                              \
1394 			DP_STATS_INC(_pdev,                               \
1395 				tx_comp_histogram.pkts_201_plus, 1);      \
1396 		}                                                         \
1397 	} while (0)
1398 
1399 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1400 	do {                                                              \
1401 		if (_p_cntrs == 1) {                                      \
1402 			DP_STATS_INC(_pdev,                               \
1403 				rx_ind_histogram.pkts_1, 1);              \
1404 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1405 			DP_STATS_INC(_pdev,                               \
1406 				rx_ind_histogram.pkts_2_20, 1);           \
1407 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1408 			DP_STATS_INC(_pdev,                               \
1409 				rx_ind_histogram.pkts_21_40, 1);          \
1410 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1411 			DP_STATS_INC(_pdev,                               \
1412 				rx_ind_histogram.pkts_41_60, 1);          \
1413 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1414 			DP_STATS_INC(_pdev,                               \
1415 				rx_ind_histogram.pkts_61_80, 1);          \
1416 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1417 			DP_STATS_INC(_pdev,                               \
1418 				rx_ind_histogram.pkts_81_100, 1);         \
1419 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1420 			DP_STATS_INC(_pdev,                               \
1421 				rx_ind_histogram.pkts_101_200, 1);        \
1422 		} else if (_p_cntrs > 200) {                              \
1423 			DP_STATS_INC(_pdev,                               \
1424 				rx_ind_histogram.pkts_201_plus, 1);       \
1425 		}                                                         \
1426 	} while (0)
1427 
1428 #define DP_TX_HIST_STATS_PER_PDEV() \
1429 	do { \
1430 		uint8_t hist_stats = 0; \
1431 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1432 				hist_stats++) { \
1433 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1434 					num_of_packets[hist_stats]); \
1435 		} \
1436 	}  while (0)
1437 
1438 
1439 #define DP_RX_HIST_STATS_PER_PDEV() \
1440 	do { \
1441 		uint8_t hist_stats = 0; \
1442 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1443 				hist_stats++) { \
1444 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1445 					num_of_packets[hist_stats]); \
1446 		} \
1447 	}  while (0)
1448 
1449 #else
1450 #define DP_HIST_INIT()
1451 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1452 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1453 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1454 #define DP_RX_HIST_STATS_PER_PDEV()
1455 #define DP_TX_HIST_STATS_PER_PDEV()
1456 #endif /* DISABLE_DP_STATS */
1457 
1458 #define FRAME_MASK_IPV4_ARP   1
1459 #define FRAME_MASK_IPV4_DHCP  2
1460 #define FRAME_MASK_IPV4_EAPOL 4
1461 #define FRAME_MASK_IPV6_DHCP  8
1462 
1463 static inline int dp_log2_ceil(unsigned int value)
1464 {
1465 	unsigned int tmp = value;
1466 	int log2 = -1;
1467 
1468 	if (qdf_unlikely(value == 0))
1469 		return 0;
1470 	while (tmp) {
1471 		log2++;
1472 		tmp >>= 1;
1473 	}
1474 	if (1 << log2 != value)
1475 		log2++;
1476 	return log2;
1477 }
1478 
1479 #ifdef QCA_SUPPORT_PEER_ISOLATION
1480 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1481 
1482 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1483 					 bool val)
1484 {
1485 	txrx_peer->isolation = val;
1486 }
1487 
1488 #else
1489 #define dp_get_peer_isolation(_peer) (0)
1490 
1491 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1492 {
1493 }
1494 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1495 
1496 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev);
1497 
1498 #ifdef QCA_SUPPORT_WDS_EXTENDED
1499 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1500 {
1501 	txrx_peer->wds_ext.osif_peer = NULL;
1502 	txrx_peer->wds_ext.init = 0;
1503 }
1504 #else
1505 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1506 {
1507 }
1508 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1509 
1510 #ifdef QCA_HOST2FW_RXBUF_RING
1511 static inline
1512 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1513 {
1514 	return &pdev->rx_mac_buf_ring[lmac_id];
1515 }
1516 #else
1517 static inline
1518 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1519 {
1520 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1521 }
1522 #endif
1523 
1524 /*
1525  * The lmac ID for a particular channel band is fixed.
1526  * 2.4GHz band uses lmac_id = 1
1527  * 5GHz/6GHz band uses lmac_id=0
1528  */
1529 #define DP_INVALID_LMAC_ID	(-1)
1530 #define DP_MON_INVALID_LMAC_ID	(-1)
1531 #define DP_MAC0_LMAC_ID	0
1532 #define DP_MAC1_LMAC_ID	1
1533 
1534 #ifdef FEATURE_TSO_STATS
1535 /**
1536  * dp_init_tso_stats() - Clear tso stats
1537  * @pdev: pdev handle
1538  *
1539  * Return: None
1540  */
1541 static inline
1542 void dp_init_tso_stats(struct dp_pdev *pdev)
1543 {
1544 	if (pdev) {
1545 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1546 			     sizeof((pdev)->stats.tso_stats));
1547 		qdf_atomic_init(&pdev->tso_idx);
1548 	}
1549 }
1550 
1551 /**
1552  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1553  * @pdev: pdev handle
1554  * @_p_cntrs: number of tso segments for a tso packet
1555  *
1556  * Return: None
1557  */
1558 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1559 					   uint8_t _p_cntrs);
1560 
1561 /**
1562  * dp_tso_segment_update() - Collect tso segment information
1563  * @pdev: pdev handle
1564  * @stats_idx: tso packet number
1565  * @idx: tso segment number
1566  * @seg: tso segment
1567  *
1568  * Return: None
1569  */
1570 void dp_tso_segment_update(struct dp_pdev *pdev,
1571 			   uint32_t stats_idx,
1572 			   uint8_t idx,
1573 			   struct qdf_tso_seg_t seg);
1574 
1575 /**
1576  * dp_tso_packet_update() - TSO Packet information
1577  * @pdev: pdev handle
1578  * @stats_idx: tso packet number
1579  * @msdu: nbuf handle
1580  * @num_segs: tso segments
1581  *
1582  * Return: None
1583  */
1584 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1585 			  qdf_nbuf_t msdu, uint16_t num_segs);
1586 
1587 /**
1588  * dp_tso_segment_stats_update() - TSO Segment stats
1589  * @pdev: pdev handle
1590  * @stats_seg: tso segment list
1591  * @stats_idx: tso packet number
1592  *
1593  * Return: None
1594  */
1595 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1596 				 struct qdf_tso_seg_elem_t *stats_seg,
1597 				 uint32_t stats_idx);
1598 
1599 /**
1600  * dp_print_tso_stats() - dump tso statistics
1601  * @soc:soc handle
1602  * @level: verbosity level
1603  *
1604  * Return: None
1605  */
1606 void dp_print_tso_stats(struct dp_soc *soc,
1607 			enum qdf_stats_verbosity_level level);
1608 
1609 /**
1610  * dp_txrx_clear_tso_stats() - clear tso stats
1611  * @soc: soc handle
1612  *
1613  * Return: None
1614  */
1615 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1616 #else
1617 static inline
1618 void dp_init_tso_stats(struct dp_pdev *pdev)
1619 {
1620 }
1621 
1622 static inline
1623 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1624 					   uint8_t _p_cntrs)
1625 {
1626 }
1627 
1628 static inline
1629 void dp_tso_segment_update(struct dp_pdev *pdev,
1630 			   uint32_t stats_idx,
1631 			   uint32_t idx,
1632 			   struct qdf_tso_seg_t seg)
1633 {
1634 }
1635 
1636 static inline
1637 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1638 			  qdf_nbuf_t msdu, uint16_t num_segs)
1639 {
1640 }
1641 
1642 static inline
1643 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1644 				 struct qdf_tso_seg_elem_t *stats_seg,
1645 				 uint32_t stats_idx)
1646 {
1647 }
1648 
1649 static inline
1650 void dp_print_tso_stats(struct dp_soc *soc,
1651 			enum qdf_stats_verbosity_level level)
1652 {
1653 }
1654 
1655 static inline
1656 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1657 {
1658 }
1659 #endif /* FEATURE_TSO_STATS */
1660 
1661 /**
1662  * dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1663  * @peer: DP peer handle
1664  * @type: Requested stats type
1665  * @buf: Buffer to hold the value
1666  *
1667  * Return: status success/failure
1668  */
1669 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1670 						enum cdp_peer_stats_type type,
1671 						cdp_peer_stats_param_t *buf);
1672 
1673 /**
1674  * dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1675  * @peer: DP peer handle
1676  * @type: Requested stats type
1677  * @buf: Buffer to hold the value
1678  *
1679  * Return: status success/failure
1680  */
1681 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1682 					     enum cdp_peer_stats_type type,
1683 					     cdp_peer_stats_param_t *buf);
1684 
1685 #define DP_HTT_T2H_HP_PIPE 5
1686 /**
1687  * dp_update_pdev_stats(): Update the pdev stats
1688  * @tgtobj: pdev handle
1689  * @srcobj: vdev stats structure
1690  *
1691  * Update the pdev stats from the specified vdev stats
1692  *
1693  * Return: None
1694  */
1695 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1696 			  struct cdp_vdev_stats *srcobj);
1697 
1698 /**
1699  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1700  * @tgtobj: vdev handle
1701  *
1702  * Update the vdev ingress stats
1703  *
1704  * Return: None
1705  */
1706 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1707 
1708 /**
1709  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1710  * @tgtobj: tgt buffer for vdev stats
1711  * @srcobj: srcobj vdev stats
1712  *
1713  * Return: None
1714  */
1715 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1716 			       struct cdp_vdev_stats *srcobj);
1717 
1718 /**
1719  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1720  * @tgtobj: pdev handle
1721  * @srcobj: vdev stats structure
1722  *
1723  * Update the pdev ingress stats from the specified vdev stats
1724  *
1725  * Return: None
1726  */
1727 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1728 				  struct dp_vdev *srcobj);
1729 
1730 /**
1731  * dp_update_vdev_stats(): Update the vdev stats
1732  * @soc: soc handle
1733  * @srcobj: DP_PEER object
1734  * @arg: point to vdev stats structure
1735  *
1736  * Update the vdev stats from the specified peer stats
1737  *
1738  * Return: None
1739  */
1740 void dp_update_vdev_stats(struct dp_soc *soc,
1741 			  struct dp_peer *srcobj,
1742 			  void *arg);
1743 
1744 /**
1745  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1746  * @vdev: DP_VDEV handle
1747  * @peer: DP_PEER handle
1748  *
1749  * Return: None
1750  */
1751 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1752 					struct dp_peer *peer);
1753 
1754 #ifdef IPA_OFFLOAD
1755 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1756 { \
1757 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1758 }
1759 
1760 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1761 { \
1762 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1763 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1764 }
1765 #else
1766 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1767 
1768 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1769 #endif
1770 
1771 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1772 	do {				\
1773 		uint8_t i;		\
1774 		uint8_t pream_type;	\
1775 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1776 			for (i = 0; i < MAX_MCS; i++) { \
1777 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1778 					tx.pkt_type[pream_type].mcs_count[i]); \
1779 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1780 					rx.pkt_type[pream_type].mcs_count[i]); \
1781 			} \
1782 		} \
1783 		  \
1784 		for (i = 0; i < MAX_BW; i++) { \
1785 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1786 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1787 		} \
1788 		  \
1789 		for (i = 0; i < SS_COUNT; i++) { \
1790 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1791 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1792 		} \
1793 		for (i = 0; i < WME_AC_MAX; i++) { \
1794 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1795 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1796 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1797 				      tx.wme_ac_type_bytes[i]); \
1798 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1799 				      rx.wme_ac_type_bytes[i]); \
1800 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1801 		\
1802 		} \
1803 		\
1804 		for (i = 0; i < MAX_GI; i++) { \
1805 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1806 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1807 		} \
1808 		\
1809 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1810 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1811 		\
1812 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1813 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1814 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1815 		} \
1816 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1817 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1818 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1819 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1820 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1821 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1822 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1823 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1824 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1825 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1826 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1827 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1828 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1829 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1830 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1831 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1832 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1833 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1834 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1835 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1836 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1837 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1838 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1839 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1840 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1841 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1842 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1843 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1844 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1845 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1846 								\
1847 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1848 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1849 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1850 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1851 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1852 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1853 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1854 		if (_srcobj->stats.rx.snr != 0) \
1855 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1856 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1857 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1858 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1859 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1860 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1861 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1862 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1863 								\
1864 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1865 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1866 									\
1867 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1868 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1869 									\
1870 		_srcobj->stats.rx.unicast.num = \
1871 			_srcobj->stats.rx.to_stack.num - \
1872 					_srcobj->stats.rx.multicast.num; \
1873 		_srcobj->stats.rx.unicast.bytes = \
1874 			_srcobj->stats.rx.to_stack.bytes - \
1875 					_srcobj->stats.rx.multicast.bytes; \
1876 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1877 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1878 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1879 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1880 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1881 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1882 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1883 								  \
1884 		_tgtobj->stats.tx.last_ack_rssi =	\
1885 			_srcobj->stats.tx.last_ack_rssi; \
1886 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1887 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1888 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1889 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1890 	}  while (0)
1891 
1892 #ifdef VDEV_PEER_PROTOCOL_COUNT
1893 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1894 { \
1895 	uint8_t j; \
1896 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1897 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1898 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1899 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1900 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1901 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1902 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1903 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1904 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1905 	} \
1906 }
1907 #else
1908 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1909 #endif
1910 
1911 #ifdef WLAN_FEATURE_11BE
1912 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1913 	do { \
1914 		uint8_t i, mu_type; \
1915 		for (i = 0; i < MAX_MCS; i++) { \
1916 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1917 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1918 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1919 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1920 		} \
1921 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1922 			for (i = 0; i < MAX_MCS; i++) { \
1923 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1924 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1925 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1926 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1927 			} \
1928 		} \
1929 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1930 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1931 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1932 		} \
1933 	} while (0)
1934 #else
1935 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1936 #endif
1937 
1938 #define DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj) \
1939 	do { \
1940 		_tgtobj->tx.comp_pkt.num += _srcobj->tx.comp_pkt.num; \
1941 		_tgtobj->tx.comp_pkt.bytes += _srcobj->tx.comp_pkt.bytes; \
1942 		_tgtobj->tx.tx_failed += _srcobj->tx.tx_failed; \
1943 		_tgtobj->rx.to_stack.num += _srcobj->rx.to_stack.num; \
1944 		_tgtobj->rx.to_stack.bytes += _srcobj->rx.to_stack.bytes; \
1945 	} while (0)
1946 
1947 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1948 	do { \
1949 		uint8_t i; \
1950 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1951 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1952 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1953 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1954 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1955 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1956 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1957 		_tgtobj->tx.nawds_mcast.bytes += \
1958 					_srcobj->tx.nawds_mcast.bytes; \
1959 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1960 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1961 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1962 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1963 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1964 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1965 		_tgtobj->tx.dropped.fw_rem.num += \
1966 					_srcobj->tx.dropped.fw_rem.num; \
1967 		_tgtobj->tx.dropped.fw_rem.bytes += \
1968 					_srcobj->tx.dropped.fw_rem.bytes; \
1969 		_tgtobj->tx.dropped.fw_rem_notx += \
1970 					_srcobj->tx.dropped.fw_rem_notx; \
1971 		_tgtobj->tx.dropped.fw_rem_tx += \
1972 					_srcobj->tx.dropped.fw_rem_tx; \
1973 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1974 		_tgtobj->tx.dropped.fw_reason1 += \
1975 					_srcobj->tx.dropped.fw_reason1; \
1976 		_tgtobj->tx.dropped.fw_reason2 += \
1977 					_srcobj->tx.dropped.fw_reason2; \
1978 		_tgtobj->tx.dropped.fw_reason3 += \
1979 					_srcobj->tx.dropped.fw_reason3; \
1980 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1981 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1982 		_tgtobj->tx.dropped.fw_rem_no_match += \
1983 					_srcobj->tx.dropped.fw_rem_no_match; \
1984 		_tgtobj->tx.dropped.drop_threshold += \
1985 					_srcobj->tx.dropped.drop_threshold; \
1986 		_tgtobj->tx.dropped.drop_link_desc_na += \
1987 					_srcobj->tx.dropped.drop_link_desc_na; \
1988 		_tgtobj->tx.dropped.invalid_drop += \
1989 					_srcobj->tx.dropped.invalid_drop; \
1990 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1991 					_srcobj->tx.dropped.mcast_vdev_drop; \
1992 		_tgtobj->tx.dropped.invalid_rr += \
1993 					_srcobj->tx.dropped.invalid_rr; \
1994 		_tgtobj->tx.failed_retry_count += \
1995 					_srcobj->tx.failed_retry_count; \
1996 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1997 		_tgtobj->tx.multiple_retry_count += \
1998 					_srcobj->tx.multiple_retry_count; \
1999 		_tgtobj->tx.tx_success_twt.num += \
2000 					_srcobj->tx.tx_success_twt.num; \
2001 		_tgtobj->tx.tx_success_twt.bytes += \
2002 					_srcobj->tx.tx_success_twt.bytes; \
2003 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
2004 		_tgtobj->tx.release_src_not_tqm += \
2005 					_srcobj->tx.release_src_not_tqm; \
2006 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
2007 			_tgtobj->tx.no_ack_count[i] += \
2008 					_srcobj->tx.no_ack_count[i];\
2009 		} \
2010 		\
2011 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
2012 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
2013 		_tgtobj->rx.rx_success.num += _srcobj->rx.rx_success.num;\
2014 		_tgtobj->rx.rx_success.bytes += _srcobj->rx.rx_success.bytes;\
2015 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
2016 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
2017 		_tgtobj->rx.unicast.num += _srcobj->rx.unicast.num; \
2018 		_tgtobj->rx.unicast.bytes += _srcobj->rx.unicast.bytes; \
2019 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
2020 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
2021 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
2022 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
2023 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
2024 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
2025 		_tgtobj->rx.ppeds_drop.num += _srcobj->rx.ppeds_drop.num; \
2026 		_tgtobj->rx.ppeds_drop.bytes += _srcobj->rx.ppeds_drop.bytes; \
2027 		_tgtobj->rx.intra_bss.pkts.num += \
2028 					_srcobj->rx.intra_bss.pkts.num; \
2029 		_tgtobj->rx.intra_bss.pkts.bytes += \
2030 					_srcobj->rx.intra_bss.pkts.bytes; \
2031 		_tgtobj->rx.intra_bss.fail.num += \
2032 					_srcobj->rx.intra_bss.fail.num; \
2033 		_tgtobj->rx.intra_bss.fail.bytes += \
2034 					_srcobj->rx.intra_bss.fail.bytes; \
2035 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
2036 					_srcobj->rx.intra_bss.mdns_no_fwd; \
2037 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
2038 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
2039 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
2040 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
2041 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
2042 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
2043 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
2044 					_srcobj->rx.err.rxdma_wifi_parse_err; \
2045 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
2046 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
2047 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
2048 		_tgtobj->rx.multipass_rx_pkt_drop += \
2049 					_srcobj->rx.multipass_rx_pkt_drop; \
2050 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
2051 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
2052 		_tgtobj->rx.policy_check_drop += \
2053 					_srcobj->rx.policy_check_drop; \
2054 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
2055 		_tgtobj->rx.to_stack_twt.bytes += \
2056 					_srcobj->rx.to_stack_twt.bytes; \
2057 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
2058 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
2059 			_tgtobj->rx.rcvd_reo[i].num += \
2060 					 _srcobj->rx.rcvd_reo[i].num; \
2061 			_tgtobj->rx.rcvd_reo[i].bytes += \
2062 					_srcobj->rx.rcvd_reo[i].bytes; \
2063 			_tgtobj->rx.rcvd.num += \
2064 					 _srcobj->rx.rcvd_reo[i].num; \
2065 			_tgtobj->rx.rcvd.bytes += \
2066 					_srcobj->rx.rcvd_reo[i].bytes; \
2067 		} \
2068 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
2069 			_tgtobj->rx.rx_lmac[i].num += \
2070 					_srcobj->rx.rx_lmac[i].num; \
2071 			_tgtobj->rx.rx_lmac[i].bytes += \
2072 					_srcobj->rx.rx_lmac[i].bytes; \
2073 		} \
2074 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
2075 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
2076 	} while (0)
2077 
2078 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
2079 	do { \
2080 		uint8_t i, pream_type, mu_type; \
2081 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
2082 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
2083 		_tgtobj->tx.retries += _srcobj->tx.retries; \
2084 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
2085 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
2086 		_tgtobj->tx.num_ppdu_cookie_valid += \
2087 					_srcobj->tx.num_ppdu_cookie_valid; \
2088 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
2089 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
2090 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
2091 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
2092 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
2093 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
2094 		_tgtobj->tx.mcast_last_tx_rate = \
2095 					_srcobj->tx.mcast_last_tx_rate; \
2096 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
2097 					_srcobj->tx.mcast_last_tx_rate_mcs; \
2098 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
2099 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
2100 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
2101 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
2102 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
2103 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
2104 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
2105 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
2106 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
2107 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
2108 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
2109 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
2110 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
2111 		_tgtobj->tx.mpdu_success_with_retries += \
2112 					_srcobj->tx.mpdu_success_with_retries; \
2113 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
2114 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
2115 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
2116 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
2117 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2118 			for (i = 0; i < MAX_MCS; i++) \
2119 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
2120 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
2121 		} \
2122 		for (i = 0; i < WME_AC_MAX; i++) { \
2123 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
2124 			_tgtobj->tx.wme_ac_type_bytes[i] += \
2125 					_srcobj->tx.wme_ac_type_bytes[i]; \
2126 			_tgtobj->tx.excess_retries_per_ac[i] += \
2127 					_srcobj->tx.excess_retries_per_ac[i]; \
2128 		} \
2129 		for (i = 0; i < MAX_GI; i++) { \
2130 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2131 		} \
2132 		for (i = 0; i < SS_COUNT; i++) { \
2133 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2134 		} \
2135 		for (i = 0; i < MAX_BW; i++) { \
2136 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2137 		} \
2138 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2139 			_tgtobj->tx.ru_loc[i].num_msdu += \
2140 					_srcobj->tx.ru_loc[i].num_msdu; \
2141 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2142 					_srcobj->tx.ru_loc[i].num_mpdu; \
2143 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2144 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2145 		} \
2146 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2147 			_tgtobj->tx.transmit_type[i].num_msdu += \
2148 					_srcobj->tx.transmit_type[i].num_msdu; \
2149 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2150 					_srcobj->tx.transmit_type[i].num_mpdu; \
2151 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2152 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2153 		} \
2154 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2155 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2156 		} \
2157 		_tgtobj->tx.tx_ucast_total.num += \
2158 				_srcobj->tx.tx_ucast_total.num;\
2159 		_tgtobj->tx.tx_ucast_total.bytes += \
2160 				 _srcobj->tx.tx_ucast_total.bytes;\
2161 		_tgtobj->tx.tx_ucast_success.num += \
2162 				_srcobj->tx.tx_ucast_success.num; \
2163 		_tgtobj->tx.tx_ucast_success.bytes += \
2164 				_srcobj->tx.tx_ucast_success.bytes; \
2165 		\
2166 		for (i = 0; i < CDP_RSSI_CHAIN_LEN; i++) \
2167 			_tgtobj->tx.rssi_chain[i] = _srcobj->tx.rssi_chain[i]; \
2168 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2169 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2170 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2171 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2172 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2173 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2174 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2175 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2176 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2177 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2178 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2179 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2180 		_tgtobj->rx.rx_snr_measured_time = \
2181 					_srcobj->rx.rx_snr_measured_time; \
2182 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2183 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2184 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2185 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2186 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2187 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2188 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2189 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2190 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2191 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2192 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2193 			for (i = 0; i < MAX_MCS; i++) { \
2194 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2195 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2196 			} \
2197 		} \
2198 		for (i = 0; i < WME_AC_MAX; i++) { \
2199 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2200 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2201 					_srcobj->rx.wme_ac_type_bytes[i]; \
2202 		} \
2203 		for (i = 0; i < MAX_MCS; i++) { \
2204 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2205 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2206 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2207 		} \
2208 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2209 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2210 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2211 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2212 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2213 			for (i = 0; i < SS_COUNT; i++) \
2214 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2215 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2216 			for (i = 0; i < MAX_MCS; i++) \
2217 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2218 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2219 		} \
2220 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2221 			_tgtobj->rx.reception_type[i] += \
2222 					_srcobj->rx.reception_type[i]; \
2223 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2224 		} \
2225 		for (i = 0; i < MAX_GI; i++) { \
2226 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2227 		} \
2228 		for (i = 0; i < SS_COUNT; i++) { \
2229 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2230 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2231 		} \
2232 		for (i = 0; i < MAX_BW; i++) { \
2233 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2234 		} \
2235 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2236 	} while (0)
2237 
2238 #define DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj) \
2239 	do { \
2240 		DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj); \
2241 		DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj); \
2242 		DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj); \
2243 	} while (0)
2244 
2245 #define DP_UPDATE_INGRESS_STATS(_tgtobj, _srcobj) \
2246 	do { \
2247 		uint8_t i = 0; \
2248 		_tgtobj->tx_i.rcvd.num += _srcobj->tx_i.rcvd.num; \
2249 		_tgtobj->tx_i.rcvd.bytes += _srcobj->tx_i.rcvd.bytes; \
2250 		_tgtobj->tx_i.rcvd_in_fast_xmit_flow += \
2251 					_srcobj->tx_i.rcvd_in_fast_xmit_flow; \
2252 		for (i = 0; i < CDP_MAX_TX_DATA_RINGS; i++) { \
2253 			_tgtobj->tx_i.rcvd_per_core[i] += \
2254 					_srcobj->tx_i.rcvd_per_core[i]; \
2255 		} \
2256 		_tgtobj->tx_i.processed.num += _srcobj->tx_i.processed.num; \
2257 		_tgtobj->tx_i.processed.bytes += \
2258 						_srcobj->tx_i.processed.bytes; \
2259 		_tgtobj->tx_i.reinject_pkts.num += \
2260 					_srcobj->tx_i.reinject_pkts.num; \
2261 		_tgtobj->tx_i.reinject_pkts.bytes += \
2262 					_srcobj->tx_i.reinject_pkts.bytes; \
2263 		_tgtobj->tx_i.inspect_pkts.num += \
2264 					_srcobj->tx_i.inspect_pkts.num; \
2265 		_tgtobj->tx_i.inspect_pkts.bytes += \
2266 				_srcobj->tx_i.inspect_pkts.bytes; \
2267 		_tgtobj->tx_i.nawds_mcast.num += \
2268 					_srcobj->tx_i.nawds_mcast.num; \
2269 		_tgtobj->tx_i.nawds_mcast.bytes += \
2270 					_srcobj->tx_i.nawds_mcast.bytes; \
2271 		_tgtobj->tx_i.bcast.num += _srcobj->tx_i.bcast.num; \
2272 		_tgtobj->tx_i.bcast.bytes += _srcobj->tx_i.bcast.bytes; \
2273 		_tgtobj->tx_i.raw.raw_pkt.num += \
2274 					_srcobj->tx_i.raw.raw_pkt.num; \
2275 		_tgtobj->tx_i.raw.raw_pkt.bytes += \
2276 					_srcobj->tx_i.raw.raw_pkt.bytes; \
2277 		_tgtobj->tx_i.raw.dma_map_error += \
2278 					_srcobj->tx_i.raw.dma_map_error; \
2279 		_tgtobj->tx_i.raw.invalid_raw_pkt_datatype += \
2280 				_srcobj->tx_i.raw.invalid_raw_pkt_datatype; \
2281 		_tgtobj->tx_i.raw.num_frags_overflow_err += \
2282 				_srcobj->tx_i.raw.num_frags_overflow_err; \
2283 		_tgtobj->tx_i.sg.sg_pkt.num += _srcobj->tx_i.sg.sg_pkt.num; \
2284 		_tgtobj->tx_i.sg.sg_pkt.bytes += \
2285 					_srcobj->tx_i.sg.sg_pkt.bytes; \
2286 		_tgtobj->tx_i.sg.non_sg_pkts.num += \
2287 					_srcobj->tx_i.sg.non_sg_pkts.num; \
2288 		_tgtobj->tx_i.sg.non_sg_pkts.bytes += \
2289 					_srcobj->tx_i.sg.non_sg_pkts.bytes; \
2290 		_tgtobj->tx_i.sg.dropped_host.num += \
2291 					_srcobj->tx_i.sg.dropped_host.num; \
2292 		_tgtobj->tx_i.sg.dropped_host.bytes += \
2293 					_srcobj->tx_i.sg.dropped_host.bytes; \
2294 		_tgtobj->tx_i.sg.dropped_target += \
2295 					_srcobj->tx_i.sg.dropped_target; \
2296 		_tgtobj->tx_i.sg.dma_map_error += \
2297 					_srcobj->tx_i.sg.dma_map_error; \
2298 		_tgtobj->tx_i.mcast_en.mcast_pkt.num += \
2299 					_srcobj->tx_i.mcast_en.mcast_pkt.num; \
2300 		_tgtobj->tx_i.mcast_en.mcast_pkt.bytes += \
2301 				_srcobj->tx_i.mcast_en.mcast_pkt.bytes; \
2302 		_tgtobj->tx_i.mcast_en.dropped_map_error += \
2303 				_srcobj->tx_i.mcast_en.dropped_map_error; \
2304 		_tgtobj->tx_i.mcast_en.dropped_self_mac += \
2305 				_srcobj->tx_i.mcast_en.dropped_self_mac; \
2306 		_tgtobj->tx_i.mcast_en.dropped_send_fail += \
2307 				_srcobj->tx_i.mcast_en.dropped_send_fail; \
2308 		_tgtobj->tx_i.mcast_en.ucast += _srcobj->tx_i.mcast_en.ucast; \
2309 		_tgtobj->tx_i.mcast_en.fail_seg_alloc += \
2310 					_srcobj->tx_i.mcast_en.fail_seg_alloc; \
2311 		_tgtobj->tx_i.mcast_en.clone_fail += \
2312 					_srcobj->tx_i.mcast_en.clone_fail; \
2313 		_tgtobj->tx_i.igmp_mcast_en.igmp_rcvd += \
2314 				_srcobj->tx_i.igmp_mcast_en.igmp_rcvd; \
2315 		_tgtobj->tx_i.igmp_mcast_en.igmp_ucast_converted += \
2316 			_srcobj->tx_i.igmp_mcast_en.igmp_ucast_converted; \
2317 		_tgtobj->tx_i.dropped.desc_na.num += \
2318 				_srcobj->tx_i.dropped.desc_na.num; \
2319 		_tgtobj->tx_i.dropped.desc_na.bytes += \
2320 				_srcobj->tx_i.dropped.desc_na.bytes; \
2321 		_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.num += \
2322 			_srcobj->tx_i.dropped.desc_na_exc_alloc_fail.num; \
2323 		_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes += \
2324 			_srcobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes; \
2325 		_tgtobj->tx_i.dropped.desc_na_exc_outstand.num += \
2326 			_srcobj->tx_i.dropped.desc_na_exc_outstand.num; \
2327 		_tgtobj->tx_i.dropped.desc_na_exc_outstand.bytes += \
2328 			_srcobj->tx_i.dropped.desc_na_exc_outstand.bytes; \
2329 		_tgtobj->tx_i.dropped.exc_desc_na.num += \
2330 				_srcobj->tx_i.dropped.exc_desc_na.num; \
2331 		_tgtobj->tx_i.dropped.exc_desc_na.bytes += \
2332 				_srcobj->tx_i.dropped.exc_desc_na.bytes; \
2333 		_tgtobj->tx_i.dropped.ring_full += \
2334 					_srcobj->tx_i.dropped.ring_full; \
2335 		_tgtobj->tx_i.dropped.enqueue_fail += \
2336 					_srcobj->tx_i.dropped.enqueue_fail; \
2337 		_tgtobj->tx_i.dropped.dma_error += \
2338 					_srcobj->tx_i.dropped.dma_error; \
2339 		_tgtobj->tx_i.dropped.res_full += \
2340 					_srcobj->tx_i.dropped.res_full; \
2341 		_tgtobj->tx_i.dropped.headroom_insufficient += \
2342 				_srcobj->tx_i.dropped.headroom_insufficient; \
2343 		_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check += \
2344 			_srcobj->tx_i.dropped.fail_per_pkt_vdev_id_check; \
2345 		_tgtobj->tx_i.dropped.drop_ingress += \
2346 				_srcobj->tx_i.dropped.drop_ingress; \
2347 		_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path += \
2348 			_srcobj->tx_i.dropped.invalid_peer_id_in_exc_path; \
2349 		_tgtobj->tx_i.dropped.tx_mcast_drop += \
2350 					_srcobj->tx_i.dropped.tx_mcast_drop; \
2351 		_tgtobj->tx_i.dropped.fw2wbm_tx_drop += \
2352 					_srcobj->tx_i.dropped.fw2wbm_tx_drop; \
2353 		_tgtobj->tx_i.dropped.dropped_pkt.num = \
2354 			_tgtobj->tx_i.dropped.dma_error + \
2355 			_tgtobj->tx_i.dropped.ring_full + \
2356 			_tgtobj->tx_i.dropped.enqueue_fail + \
2357 			_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check + \
2358 			_tgtobj->tx_i.dropped.desc_na.num + \
2359 			_tgtobj->tx_i.dropped.res_full + \
2360 			_tgtobj->tx_i.dropped.drop_ingress + \
2361 			_tgtobj->tx_i.dropped.headroom_insufficient + \
2362 			_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path + \
2363 			_tgtobj->tx_i.dropped.tx_mcast_drop + \
2364 			_tgtobj->tx_i.dropped.fw2wbm_tx_drop; \
2365 		_tgtobj->tx_i.dropped.dropped_pkt.bytes += \
2366 				_srcobj->tx_i.dropped.dropped_pkt.bytes; \
2367 		_tgtobj->tx_i.mesh.exception_fw += \
2368 					_srcobj->tx_i.mesh.exception_fw; \
2369 		_tgtobj->tx_i.mesh.completion_fw += \
2370 					_srcobj->tx_i.mesh.completion_fw; \
2371 		_tgtobj->tx_i.cce_classified += \
2372 					_srcobj->tx_i.cce_classified; \
2373 		_tgtobj->tx_i.cce_classified_raw += \
2374 					_srcobj->tx_i.cce_classified_raw; \
2375 		_tgtobj->tx_i.sniffer_rcvd.num += \
2376 					_srcobj->tx_i.sniffer_rcvd.num; \
2377 		_tgtobj->tx_i.sniffer_rcvd.bytes += \
2378 					_srcobj->tx_i.sniffer_rcvd.bytes; \
2379 		_tgtobj->rx_i.reo_rcvd_pkt.num += \
2380 					_srcobj->rx_i.reo_rcvd_pkt.num; \
2381 		_tgtobj->rx_i.reo_rcvd_pkt.bytes += \
2382 					_srcobj->rx_i.reo_rcvd_pkt.bytes; \
2383 		_tgtobj->rx_i.null_q_desc_pkt.num += \
2384 					_srcobj->rx_i.null_q_desc_pkt.num; \
2385 		_tgtobj->rx_i.null_q_desc_pkt.bytes += \
2386 					_srcobj->rx_i.null_q_desc_pkt.bytes; \
2387 		_tgtobj->rx_i.routed_eapol_pkt.num += \
2388 					_srcobj->rx_i.routed_eapol_pkt.num; \
2389 		_tgtobj->rx_i.routed_eapol_pkt.bytes += \
2390 					_srcobj->rx_i.routed_eapol_pkt.bytes; \
2391 	} while (0)
2392 
2393 #define DP_UPDATE_VDEV_STATS(_tgtobj, _srcobj) \
2394 	do { \
2395 		DP_UPDATE_INGRESS_STATS(_tgtobj, _srcobj); \
2396 		DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj); \
2397 	} while (0)
2398 
2399 /**
2400  * dp_peer_find_attach() - Allocates memory for peer objects
2401  * @soc: SoC handle
2402  *
2403  * Return: QDF_STATUS
2404  */
2405 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2406 
2407 /**
2408  * dp_peer_find_detach() - Frees memory for peer objects
2409  * @soc: SoC handle
2410  *
2411  * Return: none
2412  */
2413 void dp_peer_find_detach(struct dp_soc *soc);
2414 
2415 /**
2416  * dp_peer_find_hash_add() - add peer to peer_hash_table
2417  * @soc: soc handle
2418  * @peer: peer handle
2419  *
2420  * Return: none
2421  */
2422 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2423 
2424 /**
2425  * dp_peer_find_hash_remove() - remove peer from peer_hash_table
2426  * @soc: soc handle
2427  * @peer: peer handle
2428  *
2429  * Return: none
2430  */
2431 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2432 
2433 /* unused?? */
2434 void dp_peer_find_hash_erase(struct dp_soc *soc);
2435 
2436 /**
2437  * dp_peer_vdev_list_add() - add peer into vdev's peer list
2438  * @soc: soc handle
2439  * @vdev: vdev handle
2440  * @peer: peer handle
2441  *
2442  * Return: none
2443  */
2444 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2445 			   struct dp_peer *peer);
2446 
2447 /**
2448  * dp_peer_vdev_list_remove() - remove peer from vdev's peer list
2449  * @soc: SoC handle
2450  * @vdev: VDEV handle
2451  * @peer: peer handle
2452  *
2453  * Return: none
2454  */
2455 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2456 			      struct dp_peer *peer);
2457 
2458 /**
2459  * dp_peer_find_id_to_obj_add() - Add peer into peer_id table
2460  * @soc: SoC handle
2461  * @peer: peer handle
2462  * @peer_id: peer_id
2463  *
2464  * Return: None
2465  */
2466 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2467 				struct dp_peer *peer,
2468 				uint16_t peer_id);
2469 
2470 /**
2471  * dp_txrx_peer_attach_add() - Attach txrx_peer and add it to peer_id table
2472  * @soc: SoC handle
2473  * @peer: peer handle
2474  * @txrx_peer: txrx peer handle
2475  *
2476  * Return: None
2477  */
2478 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2479 			     struct dp_peer *peer,
2480 			     struct dp_txrx_peer *txrx_peer);
2481 
2482 /**
2483  * dp_peer_find_id_to_obj_remove() - remove peer from peer_id table
2484  * @soc: SoC handle
2485  * @peer_id: peer_id
2486  *
2487  * Return: None
2488  */
2489 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2490 				   uint16_t peer_id);
2491 
2492 /**
2493  * dp_vdev_unref_delete() - check and process vdev delete
2494  * @soc: DP specific soc pointer
2495  * @vdev: DP specific vdev pointer
2496  * @mod_id: module id
2497  *
2498  */
2499 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2500 			  enum dp_mod_id mod_id);
2501 
2502 /**
2503  * dp_peer_ppdu_delayed_ba_cleanup() - free ppdu allocated in peer
2504  * @peer: Datapath peer
2505  *
2506  * Return: void
2507  */
2508 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2509 
2510 /**
2511  * dp_peer_rx_init() - Initialize receive TID state
2512  * @pdev: Datapath pdev
2513  * @peer: Datapath peer
2514  *
2515  */
2516 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2517 
2518 /**
2519  * dp_peer_cleanup() - Cleanup peer information
2520  * @vdev: Datapath vdev
2521  * @peer: Datapath peer
2522  *
2523  */
2524 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2525 
2526 #ifdef DP_PEER_EXTENDED_API
2527 /**
2528  * dp_register_peer() - Register peer into physical device
2529  * @soc_hdl: data path soc handle
2530  * @pdev_id: device instance id
2531  * @sta_desc: peer description
2532  *
2533  * Register peer into physical device
2534  *
2535  * Return: QDF_STATUS_SUCCESS registration success
2536  *         QDF_STATUS_E_FAULT peer not found
2537  */
2538 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2539 			    struct ol_txrx_desc_type *sta_desc);
2540 
2541 /**
2542  * dp_clear_peer() - remove peer from physical device
2543  * @soc_hdl: data path soc handle
2544  * @pdev_id: device instance id
2545  * @peer_addr: peer mac address
2546  *
2547  * remove peer from physical device
2548  *
2549  * Return: QDF_STATUS_SUCCESS registration success
2550  *         QDF_STATUS_E_FAULT peer not found
2551  */
2552 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2553 			 struct qdf_mac_addr peer_addr);
2554 
2555 /**
2556  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2557  * @soc_hdl: datapath soc handle
2558  * @vdev_id: vdev instance id
2559  * @peer_addr: peer mac address
2560  *
2561  * Return: true or false
2562  */
2563 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2564 				uint8_t *peer_addr);
2565 
2566 /**
2567  * dp_find_peer_exist_on_other_vdev - find if peer exists
2568  * on other than the given vdev
2569  * @soc_hdl: datapath soc handle
2570  * @vdev_id: vdev instance id
2571  * @peer_addr: peer mac address
2572  * @max_bssid: max number of bssids
2573  *
2574  * Return: true or false
2575  */
2576 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2577 				      uint8_t vdev_id, uint8_t *peer_addr,
2578 				      uint16_t max_bssid);
2579 
2580 /**
2581  * dp_peer_state_update() - update peer local state
2582  * @soc: datapath soc handle
2583  * @peer_mac: peer mac address
2584  * @state: new peer local state
2585  *
2586  * update peer local state
2587  *
2588  * Return: QDF_STATUS_SUCCESS registration success
2589  */
2590 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2591 				enum ol_txrx_peer_state state);
2592 
2593 /**
2594  * dp_get_vdevid() - Get virtual interface id which peer registered
2595  * @soc_hdl: datapath soc handle
2596  * @peer_mac: peer mac address
2597  * @vdev_id: virtual interface id which peer registered
2598  *
2599  * Get virtual interface id which peer registered
2600  *
2601  * Return: QDF_STATUS_SUCCESS registration success
2602  */
2603 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2604 			 uint8_t *vdev_id);
2605 
2606 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2607 		struct qdf_mac_addr peer_addr);
2608 
2609 /**
2610  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2611  * @peer: peer instance
2612  *
2613  * Get virtual interface instance which peer belongs
2614  *
2615  * Return: virtual interface instance pointer
2616  *         NULL in case cannot find
2617  */
2618 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2619 
2620 /**
2621  * dp_peer_get_peer_mac_addr() - Get peer mac address
2622  * @peer: peer instance
2623  *
2624  * Get peer mac address
2625  *
2626  * Return: peer mac address pointer
2627  *         NULL in case cannot find
2628  */
2629 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2630 
2631 /**
2632  * dp_get_peer_state() - Get local peer state
2633  * @soc: datapath soc handle
2634  * @vdev_id: vdev id
2635  * @peer_mac: peer mac addr
2636  *
2637  * Get local peer state
2638  *
2639  * Return: peer status
2640  */
2641 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2642 		      uint8_t *peer_mac);
2643 
2644 /**
2645  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2646  * @pdev: data path device instance
2647  *
2648  * local peer id pool alloc for physical device
2649  *
2650  * Return: none
2651  */
2652 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2653 
2654 /**
2655  * dp_local_peer_id_alloc() - allocate local peer id
2656  * @pdev: data path device instance
2657  * @peer: new peer instance
2658  *
2659  * allocate local peer id
2660  *
2661  * Return: none
2662  */
2663 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2664 
2665 /**
2666  * dp_local_peer_id_free() - remove local peer id
2667  * @pdev: data path device instance
2668  * @peer: peer instance should be removed
2669  *
2670  * remove local peer id
2671  *
2672  * Return: none
2673  */
2674 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2675 
2676 /**
2677  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2678  * @soc_hdl: datapath soc handle
2679  * @vdev_id: vdev_id
2680  * @peer_mac: peer mac addr
2681  * @val: tdls peer flag
2682  *
2683  * Return: none
2684  */
2685 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2686 			      uint8_t *peer_mac, bool val);
2687 #else
2688 static inline
2689 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2690 			 uint8_t *vdev_id)
2691 {
2692 	return QDF_STATUS_E_NOSUPPORT;
2693 }
2694 
2695 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2696 {
2697 }
2698 
2699 static inline
2700 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2701 {
2702 }
2703 
2704 static inline
2705 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2706 {
2707 }
2708 
2709 static inline
2710 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2711 			      uint8_t *peer_mac, bool val)
2712 {
2713 }
2714 #endif
2715 
2716 /**
2717  * dp_find_peer_exist - find peer if already exists
2718  * @soc_hdl: datapath soc handle
2719  * @pdev_id: physical device instance id
2720  * @peer_addr: peer mac address
2721  *
2722  * Return: true or false
2723  */
2724 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2725 			uint8_t *peer_addr);
2726 
2727 #ifdef DP_UMAC_HW_RESET_SUPPORT
2728 /**
2729  * dp_pause_reo_send_cmd() - Pause Reo send commands.
2730  * @soc: dp soc
2731  *
2732  * Return: none
2733  */
2734 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2735 
2736 /**
2737  * dp_resume_reo_send_cmd() - Resume Reo send commands.
2738  * @soc: dp soc
2739  *
2740  * Return: none
2741  */
2742 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2743 
2744 /**
2745  * dp_cleanup_reo_cmd_module - Clean up the reo cmd module
2746  * @soc: DP SoC handle
2747  *
2748  * Return: none
2749  */
2750 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2751 
2752 /**
2753  * dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
2754  * @soc: DP SOC handle
2755  *
2756  * Return: none
2757  */
2758 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2759 
2760 /**
2761  * dp_reset_rx_reo_tid_queue() - Reset the reo tid queues
2762  * @soc: dp soc
2763  * @hw_qdesc_vaddr: starting address of the tid queues
2764  * @size: size of the memory pointed to by hw_qdesc_vaddr
2765  *
2766  * Return: none
2767  */
2768 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2769 			       uint32_t size);
2770 
2771 
2772 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
2773 {
2774 	notify_pre_reset_fw_callback callback = soc->notify_fw_callback;
2775 
2776 	if (callback)
2777 		callback(soc);
2778 }
2779 
2780 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2781 /**
2782  * dp_umac_reset_complete_umac_recovery() - Complete Umac reset session
2783  * @soc: dp soc handle
2784  *
2785  * Return: void
2786  */
2787 void dp_umac_reset_complete_umac_recovery(struct dp_soc *soc);
2788 
2789 /**
2790  * dp_umac_reset_initiate_umac_recovery() - Initiate Umac reset session
2791  * @soc: dp soc handle
2792  * @umac_reset_ctx: Umac reset context
2793  * @rx_event: Rx event received
2794  * @is_target_recovery: Flag to indicate if it is triggered for target recovery
2795  *
2796  * Return: status
2797  */
2798 QDF_STATUS dp_umac_reset_initiate_umac_recovery(struct dp_soc *soc,
2799 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2800 				enum umac_reset_rx_event rx_event,
2801 				bool is_target_recovery);
2802 
2803 /**
2804  * dp_umac_reset_handle_action_cb() - Function to call action callback
2805  * @soc: dp soc handle
2806  * @umac_reset_ctx: Umac reset context
2807  * @action: Action to call the callback for
2808  *
2809  * Return: QDF_STATUS status
2810  */
2811 QDF_STATUS dp_umac_reset_handle_action_cb(struct dp_soc *soc,
2812 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2813 				enum umac_reset_action action);
2814 
2815 /**
2816  * dp_umac_reset_post_tx_cmd() - Iterate partner socs and post Tx command
2817  * @umac_reset_ctx: UMAC reset context
2818  * @tx_cmd: Tx command to be posted
2819  *
2820  * Return: QDF status of operation
2821  */
2822 QDF_STATUS
2823 dp_umac_reset_post_tx_cmd(struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2824 			  enum umac_reset_tx_cmd tx_cmd);
2825 
2826 /**
2827  * dp_umac_reset_initiator_check() - Check if soc is the Umac reset initiator
2828  * @soc: dp soc handle
2829  *
2830  * Return: true if the soc is initiator or false otherwise
2831  */
2832 bool dp_umac_reset_initiator_check(struct dp_soc *soc);
2833 
2834 /**
2835  * dp_umac_reset_target_recovery_check() - Check if this is for target recovery
2836  * @soc: dp soc handle
2837  *
2838  * Return: true if the session is for target recovery or false otherwise
2839  */
2840 bool dp_umac_reset_target_recovery_check(struct dp_soc *soc);
2841 
2842 /**
2843  * dp_umac_reset_is_soc_ignored() - Check if this soc is to be ignored
2844  * @soc: dp soc handle
2845  *
2846  * Return: true if the soc is ignored or false otherwise
2847  */
2848 bool dp_umac_reset_is_soc_ignored(struct dp_soc *soc);
2849 
2850 /**
2851  * dp_mlo_umac_reset_stats_print() - API to print MLO umac reset stats
2852  * @soc: dp soc handle
2853  *
2854  * Return: QDF_STATUS
2855  */
2856 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc);
2857 #else
2858 static inline
2859 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc)
2860 {
2861 	return QDF_STATUS_SUCCESS;
2862 }
2863 #endif
2864 #else
2865 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
2866 {
2867 }
2868 #endif
2869 
2870 #if defined(DP_UMAC_HW_RESET_SUPPORT) && defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2871 /**
2872  * dp_umac_reset_notify_asserted_soc() - API to notify the asserted SOC
2873  * @soc: dp soc
2874  *
2875  * Return: QDF_STATUS
2876  */
2877 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc);
2878 
2879 /**
2880  * dp_get_umac_reset_in_progress_state() - API to check umac reset in progress
2881  * state
2882  * @psoc: dp soc handle
2883  *
2884  * Return: umac reset state
2885  */
2886 enum cdp_umac_reset_state
2887 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc);
2888 #else
2889 static inline
2890 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc)
2891 {
2892 	return QDF_STATUS_SUCCESS;
2893 }
2894 
2895 static inline enum cdp_umac_reset_state
2896 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc)
2897 {
2898 	return CDP_UMAC_RESET_NOT_IN_PROGRESS;
2899 }
2900 #endif
2901 
2902 #ifndef WLAN_SOFTUMAC_SUPPORT
2903 QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc, enum hal_reo_cmd_type type,
2904 			   struct hal_reo_cmd_params *params,
2905 			   void (*callback_fn), void *data);
2906 
2907 /**
2908  * dp_reo_cmdlist_destroy() - Free REO commands in the queue
2909  * @soc: DP SoC handle
2910  *
2911  * Return: none
2912  */
2913 void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2914 
2915 /**
2916  * dp_reo_status_ring_handler() - Handler for REO Status ring
2917  * @int_ctx: pointer to DP interrupt context
2918  * @soc: DP Soc handle
2919  *
2920  * Return: Number of descriptors reaped
2921  */
2922 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2923 				    struct dp_soc *soc);
2924 #endif
2925 
2926 /**
2927  * dp_aggregate_vdev_stats() - Consolidate stats at VDEV level
2928  * @vdev: DP VDEV handle
2929  * @vdev_stats: aggregate statistics
2930  *
2931  * return: void
2932  */
2933 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2934 			     struct cdp_vdev_stats *vdev_stats);
2935 
2936 /**
2937  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
2938  * @soc_hdl: CDP SoC handle
2939  * @vdev_id: vdev Id
2940  * @buf: buffer for vdev stats
2941  * @is_aggregate: are aggregate stats being collected
2942  *
2943  * Return: QDF_STATUS
2944  */
2945 QDF_STATUS
2946 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2947 		       void *buf, bool is_aggregate);
2948 
2949 /**
2950  * dp_rx_bar_stats_cb() - BAR received stats callback
2951  * @soc: SOC handle
2952  * @cb_ctxt: Call back context
2953  * @reo_status: Reo status
2954  *
2955  * Return: void
2956  */
2957 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2958 			union hal_reo_status *reo_status);
2959 
2960 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2961 				     qdf_nbuf_t nbuf,
2962 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2963 				     uint8_t new_mac_cnt, uint8_t tid,
2964 				     bool is_igmp, bool is_dms_pkt);
2965 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2966 
2967 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2968 
2969 /**
2970  * dp_h2t_ext_stats_msg_send(): function to construct HTT message to pass to FW
2971  * @pdev: DP PDEV handle
2972  * @stats_type_upload_mask: stats type requested by user
2973  * @config_param_0: extra configuration parameters
2974  * @config_param_1: extra configuration parameters
2975  * @config_param_2: extra configuration parameters
2976  * @config_param_3: extra configuration parameters
2977  * @cookie:
2978  * @cookie_msb:
2979  * @mac_id: mac number
2980  *
2981  * Return: QDF STATUS
2982  */
2983 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2984 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2985 		uint32_t config_param_1, uint32_t config_param_2,
2986 		uint32_t config_param_3, int cookie, int cookie_msb,
2987 		uint8_t mac_id);
2988 
2989 /**
2990  * dp_htt_stats_print_tag() - function to select the tag type and
2991  * print the corresponding tag structure
2992  * @pdev: pdev pointer
2993  * @tag_type: tag type that is to be printed
2994  * @tag_buf: pointer to the tag structure
2995  *
2996  * Return: void
2997  */
2998 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2999 			    uint8_t tag_type, uint32_t *tag_buf);
3000 
3001 /**
3002  * dp_htt_stats_copy_tag() - function to select the tag type and
3003  * copy the corresponding tag structure
3004  * @pdev: DP_PDEV handle
3005  * @tag_type: tag type that is to be printed
3006  * @tag_buf: pointer to the tag structure
3007  *
3008  * Return: void
3009  */
3010 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
3011 
3012 /**
3013  * dp_h2t_3tuple_config_send(): function to construct 3 tuple configuration
3014  * HTT message to pass to FW
3015  * @pdev: DP PDEV handle
3016  * @tuple_mask: tuple configuration to report 3 tuple hash value in either
3017  * toeplitz_2_or_4 or flow_id_toeplitz in MSDU START TLV.
3018  *
3019  * tuple_mask[1:0]:
3020  *   00 - Do not report 3 tuple hash value
3021  *   10 - Report 3 tuple hash value in toeplitz_2_or_4
3022  *   01 - Report 3 tuple hash value in flow_id_toeplitz
3023  *   11 - Report 3 tuple hash value in both toeplitz_2_or_4 & flow_id_toeplitz
3024  * @mac_id: MAC ID
3025  *
3026  * Return: QDF STATUS
3027  */
3028 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
3029 				     uint8_t mac_id);
3030 
3031 #ifdef IPA_OFFLOAD
3032 /**
3033  * dp_peer_update_tid_stats_from_reo() - update rx pkt and byte count from reo
3034  * @soc: soc handle
3035  * @cb_ctxt: combination of peer_id and tid
3036  * @reo_status: reo status
3037  *
3038  * Return: void
3039  */
3040 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
3041 				       union hal_reo_status *reo_status);
3042 
3043 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
3044 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
3045 #ifdef IPA_OPT_WIFI_DP
3046 void dp_ipa_wdi_opt_dpath_notify_flt_rlsd(int flt0_rslt,
3047 					  int flt1_rslt);
3048 void dp_ipa_wdi_opt_dpath_notify_flt_add_rem_cb(int flt0_rslt, int flt1_rslt);
3049 void dp_ipa_wdi_opt_dpath_notify_flt_rsvd(bool is_success);
3050 #endif
3051 #ifdef QCA_ENHANCED_STATS_SUPPORT
3052 /**
3053  * dp_peer_aggregate_tid_stats - aggregate rx tid stats
3054  * @peer: Data Path peer
3055  *
3056  * Return: void
3057  */
3058 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
3059 #endif
3060 #else
3061 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
3062 {
3063 }
3064 #endif
3065 
3066 /**
3067  * dp_set_key_sec_type_wifi3() - set security mode of key
3068  * @soc: Datapath soc handle
3069  * @vdev_id: id of atapath vdev
3070  * @peer_mac: Datapath peer mac address
3071  * @sec_type: security type
3072  * @is_unicast: key type
3073  *
3074  */
3075 QDF_STATUS
3076 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
3077 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
3078 			  bool is_unicast);
3079 
3080 /**
3081  * dp_get_pdev_for_mac_id() -  Return pdev for mac_id
3082  * @soc: handle to DP soc
3083  * @mac_id: MAC id
3084  *
3085  * Return: Return pdev corresponding to MAC
3086  */
3087 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
3088 
3089 QDF_STATUS
3090 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
3091 		   uint8_t *peer_mac,
3092 		   bool is_unicast, uint32_t *key);
3093 
3094 /**
3095  * dp_check_pdev_exists() - Validate pdev before use
3096  * @soc: dp soc handle
3097  * @data: pdev handle
3098  *
3099  * Return: 0 - success/invalid - failure
3100  */
3101 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
3102 
3103 /**
3104  * dp_update_delay_stats() - Update delay statistics in structure
3105  *				and fill min, max and avg delay
3106  * @tstats: tid tx stats
3107  * @rstats: tid rx stats
3108  * @delay: delay in ms
3109  * @tid: tid value
3110  * @mode: type of tx delay mode
3111  * @ring_id: ring number
3112  * @delay_in_us: flag to indicate whether the delay is in ms or us
3113  *
3114  * Return: none
3115  */
3116 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
3117 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
3118 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
3119 			   bool delay_in_us);
3120 
3121 /**
3122  * dp_print_ring_stats(): Print tail and head pointer
3123  * @pdev: DP_PDEV handle
3124  *
3125  * Return: void
3126  */
3127 void dp_print_ring_stats(struct dp_pdev *pdev);
3128 
3129 /**
3130  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
3131  * @soc: soc handle
3132  * @srng: srng handle
3133  * @ring_type: ring type
3134  *
3135  * Return: void
3136  */
3137 void
3138 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
3139 			    enum hal_ring_type ring_type);
3140 
3141 /**
3142  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
3143  * @pdev: DP pdev handle
3144  *
3145  * Return: void
3146  */
3147 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
3148 
3149 /**
3150  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
3151  * @soc: Soc handle
3152  *
3153  * Return: void
3154  */
3155 void dp_print_soc_cfg_params(struct dp_soc *soc);
3156 
3157 /**
3158  * dp_srng_get_str_from_hal_ring_type() - Return string name for a ring
3159  * @ring_type: Ring
3160  *
3161  * Return: char const pointer
3162  */
3163 const
3164 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
3165 
3166 /**
3167  * dp_txrx_path_stats() - Function to display dump stats
3168  * @soc: soc handle
3169  *
3170  * Return: none
3171  */
3172 void dp_txrx_path_stats(struct dp_soc *soc);
3173 
3174 /**
3175  * dp_print_per_ring_stats(): Packet count per ring
3176  * @soc: soc handle
3177  *
3178  * Return: None
3179  */
3180 void dp_print_per_ring_stats(struct dp_soc *soc);
3181 
3182 /**
3183  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
3184  * @pdev: DP PDEV handle
3185  *
3186  * Return: void
3187  */
3188 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
3189 
3190 /**
3191  * dp_print_rx_rates(): Print Rx rate stats
3192  * @vdev: DP_VDEV handle
3193  *
3194  * Return:void
3195  */
3196 void dp_print_rx_rates(struct dp_vdev *vdev);
3197 
3198 /**
3199  * dp_print_tx_rates(): Print tx rates
3200  * @vdev: DP_VDEV handle
3201  *
3202  * Return:void
3203  */
3204 void dp_print_tx_rates(struct dp_vdev *vdev);
3205 
3206 /**
3207  * dp_print_peer_stats():print peer stats
3208  * @peer: DP_PEER handle
3209  * @peer_stats: buffer holding peer stats
3210  *
3211  * return void
3212  */
3213 void dp_print_peer_stats(struct dp_peer *peer,
3214 			 struct cdp_peer_stats *peer_stats);
3215 
3216 /**
3217  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
3218  * @pdev: DP_PDEV Handle
3219  *
3220  * Return:void
3221  */
3222 void
3223 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
3224 
3225 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MCAST_MLO)
3226 /**
3227  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3228  * @vdev: DP_VDEV Handle
3229  *
3230  * Return:void
3231  */
3232 void
3233 dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev);
3234 #else
3235 /**
3236  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3237  * @vdev: DP_VDEV Handle
3238  *
3239  * Return:void
3240  */
3241 static inline
3242 void dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev)
3243 {
3244 }
3245 #endif
3246 
3247 /**
3248  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
3249  * @pdev: DP_PDEV Handle
3250  *
3251  * Return: void
3252  */
3253 void
3254 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
3255 
3256 /**
3257  * dp_print_soc_tx_stats(): Print SOC level  stats
3258  * @soc: DP_SOC Handle
3259  *
3260  * Return: void
3261  */
3262 void dp_print_soc_tx_stats(struct dp_soc *soc);
3263 
3264 #ifdef QCA_SUPPORT_DP_GLOBAL_CTX
3265 /**
3266  * dp_print_global_desc_count(): Print global desc in use
3267  *
3268  * Return: void
3269  */
3270 void dp_print_global_desc_count(void);
3271 #else
3272 /**
3273  * dp_print_global_desc_count(): Print global desc in use
3274  *
3275  * Return: void
3276  */
3277 static inline
3278 void dp_print_global_desc_count(void)
3279 {
3280 }
3281 #endif
3282 
3283 /**
3284  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
3285  * @soc: dp_soc handle
3286  *
3287  * Return: None
3288  */
3289 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
3290 
3291 /**
3292  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
3293  * @soc: dp_soc handle
3294  *
3295  * Return: None
3296  */
3297 
3298 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
3299 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
3300 /**
3301  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
3302  *				  for all SRNGs
3303  * @soc: DP soc handle
3304  * @srng_mask: SRNGs mask for dumping usage watermark stats
3305  *
3306  * Return: None
3307  */
3308 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
3309 #else
3310 static inline
3311 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
3312 {
3313 }
3314 #endif
3315 
3316 /**
3317  * dp_print_soc_rx_stats() - Print SOC level Rx stats
3318  * @soc: DP_SOC Handle
3319  *
3320  * Return: void
3321  */
3322 void dp_print_soc_rx_stats(struct dp_soc *soc);
3323 
3324 /**
3325  * dp_get_mac_id_for_pdev() - Return mac corresponding to pdev for mac
3326  *
3327  * @mac_id: MAC id
3328  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3329  *
3330  * Single pdev using both MACs will operate on both MAC rings,
3331  * which is the case for MCL.
3332  * For WIN each PDEV will operate one ring, so index is zero.
3333  *
3334  */
3335 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
3336 {
3337 	if (mac_id && pdev_id) {
3338 		qdf_print("Both mac_id and pdev_id cannot be non zero");
3339 		QDF_BUG(0);
3340 		return 0;
3341 	}
3342 	return (mac_id + pdev_id);
3343 }
3344 
3345 /**
3346  * dp_get_lmac_id_for_pdev_id() - Return lmac id corresponding to host pdev id
3347  * @soc: soc pointer
3348  * @mac_id: MAC id
3349  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3350  *
3351  * For MCL, Single pdev using both MACs will operate on both MAC rings.
3352  *
3353  * For WIN, each PDEV will operate one ring.
3354  *
3355  */
3356 static inline int
3357 dp_get_lmac_id_for_pdev_id
3358 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
3359 {
3360 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3361 		if (mac_id && pdev_id) {
3362 			qdf_print("Both mac_id and pdev_id cannot be non zero");
3363 			QDF_BUG(0);
3364 			return 0;
3365 		}
3366 		return (mac_id + pdev_id);
3367 	}
3368 
3369 	return soc->pdev_list[pdev_id]->lmac_id;
3370 }
3371 
3372 /**
3373  * dp_get_pdev_for_lmac_id() - Return pdev pointer corresponding to lmac id
3374  * @soc: soc pointer
3375  * @lmac_id: LMAC id
3376  *
3377  * For MCL, Single pdev exists
3378  *
3379  * For WIN, each PDEV will operate one ring.
3380  *
3381  */
3382 static inline struct dp_pdev *
3383 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
3384 {
3385 	uint8_t i = 0;
3386 
3387 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3388 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
3389 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
3390 	}
3391 
3392 	/* Typically for MCL as there only 1 PDEV*/
3393 	return soc->pdev_list[0];
3394 }
3395 
3396 /**
3397  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
3398  *                                          corresponding to host pdev id
3399  * @soc: soc pointer
3400  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3401  *
3402  * Return: target pdev_id for host pdev id. For WIN, this is derived through
3403  * a two step process:
3404  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
3405  *    during mode switch)
3406  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
3407  *
3408  * For MCL, return the offset-1 translated mac_id
3409  */
3410 static inline int
3411 dp_calculate_target_pdev_id_from_host_pdev_id
3412 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3413 {
3414 	struct dp_pdev *pdev;
3415 
3416 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3417 		return DP_SW2HW_MACID(mac_for_pdev);
3418 
3419 	pdev = soc->pdev_list[mac_for_pdev];
3420 
3421 	/*non-MCL case, get original target_pdev mapping*/
3422 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
3423 }
3424 
3425 /**
3426  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
3427  *                                         to host pdev id
3428  * @soc: soc pointer
3429  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3430  *
3431  * Return: target pdev_id for host pdev id.
3432  * For WIN, return the value stored in pdev object.
3433  * For MCL, return the offset-1 translated mac_id.
3434  */
3435 static inline int
3436 dp_get_target_pdev_id_for_host_pdev_id
3437 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3438 {
3439 	struct dp_pdev *pdev;
3440 
3441 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3442 		return DP_SW2HW_MACID(mac_for_pdev);
3443 
3444 	pdev = soc->pdev_list[mac_for_pdev];
3445 
3446 	return pdev->target_pdev_id;
3447 }
3448 
3449 /**
3450  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
3451  *                                         to target pdev id
3452  * @soc: soc pointer
3453  * @pdev_id: pdev_id corresponding to target pdev
3454  *
3455  * Return: host pdev_id for target pdev id. For WIN, this is derived through
3456  * a two step process:
3457  * 1. Get lmac_id corresponding to target pdev_id
3458  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
3459  *
3460  * For MCL, return the 0-offset pdev_id
3461  */
3462 static inline int
3463 dp_get_host_pdev_id_for_target_pdev_id
3464 	(struct dp_soc *soc, uint32_t pdev_id)
3465 {
3466 	struct dp_pdev *pdev;
3467 	int lmac_id;
3468 
3469 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3470 		return DP_HW2SW_MACID(pdev_id);
3471 
3472 	/*non-MCL case, get original target_lmac mapping from target pdev*/
3473 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
3474 					  DP_HW2SW_MACID(pdev_id));
3475 
3476 	/*Get host pdev from lmac*/
3477 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
3478 
3479 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
3480 }
3481 
3482 /**
3483  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
3484  *
3485  * @soc: handle to DP soc
3486  * @mac_id: MAC id
3487  *
3488  * Single pdev using both MACs will operate on both MAC rings,
3489  * which is the case for MCL.
3490  * For WIN each PDEV will operate one ring, so index is zero.
3491  *
3492  */
3493 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
3494 {
3495 	/*
3496 	 * Single pdev using both MACs will operate on both MAC rings,
3497 	 * which is the case for MCL.
3498 	 */
3499 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3500 		return mac_id;
3501 
3502 	/* For WIN each PDEV will operate one ring, so index is zero. */
3503 	return 0;
3504 }
3505 
3506 /**
3507  * dp_is_subtype_data() - check if the frame subtype is data
3508  *
3509  * @frame_ctrl: Frame control field
3510  *
3511  * check the frame control field and verify if the packet
3512  * is a data packet.
3513  *
3514  * Return: true or false
3515  */
3516 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
3517 {
3518 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
3519 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
3520 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3521 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
3522 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3523 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
3524 		return true;
3525 	}
3526 
3527 	return false;
3528 }
3529 
3530 #ifdef WDI_EVENT_ENABLE
3531 /**
3532  * dp_h2t_cfg_stats_msg_send(): function to construct HTT message to pass to FW
3533  * @pdev: DP PDEV handle
3534  * @stats_type_upload_mask: stats type requested by user
3535  * @mac_id: Mac id number
3536  *
3537  * return: QDF STATUS
3538  */
3539 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3540 				uint32_t stats_type_upload_mask,
3541 				uint8_t mac_id);
3542 
3543 /**
3544  * dp_wdi_event_unsub() - WDI event unsubscribe
3545  * @soc: soc handle
3546  * @pdev_id: id of pdev
3547  * @event_cb_sub_handle: subscribed event handle
3548  * @event: Event to be unsubscribe
3549  *
3550  * Return: 0 for success. nonzero for failure.
3551  */
3552 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3553 		       wdi_event_subscribe *event_cb_sub_handle,
3554 		       uint32_t event);
3555 
3556 /**
3557  * dp_wdi_event_sub() - Subscribe WDI event
3558  * @soc: soc handle
3559  * @pdev_id: id of pdev
3560  * @event_cb_sub_handle: subscribe event handle
3561  * @event: Event to be subscribe
3562  *
3563  * Return: 0 for success. nonzero for failure.
3564  */
3565 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3566 		     wdi_event_subscribe *event_cb_sub_handle,
3567 		     uint32_t event);
3568 
3569 /**
3570  * dp_wdi_event_handler() - Event handler for WDI event
3571  * @event: wdi event number
3572  * @soc: soc handle
3573  * @data: pointer to data
3574  * @peer_id: peer id number
3575  * @status: HTT rx status
3576  * @pdev_id: id of pdev
3577  *
3578  * It will be called to register WDI event
3579  *
3580  * Return: None
3581  */
3582 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
3583 			  void *data, u_int16_t peer_id,
3584 			  int status, u_int8_t pdev_id);
3585 
3586 /**
3587  * dp_wdi_event_attach() - Attach wdi event
3588  * @txrx_pdev: DP pdev handle
3589  *
3590  * Return: 0 for success. nonzero for failure.
3591  */
3592 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
3593 
3594 /**
3595  * dp_wdi_event_detach() - Detach WDI event
3596  * @txrx_pdev: DP pdev handle
3597  *
3598  * Return: 0 for success. nonzero for failure.
3599  */
3600 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
3601 
3602 static inline void
3603 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
3604 			    void *cb_context,
3605 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3606 			    uint8_t pipe_id)
3607 {
3608 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
3609 
3610 	/* TODO: Temporary change to bypass HTC connection for this new
3611 	 * HIF pipe, which will be used for packet log and other high-
3612 	 * priority HTT messages. Proper HTC connection to be added
3613 	 * later once required FW changes are available
3614 	 */
3615 	hif_pipe_callbacks.rxCompletionHandler = callback;
3616 	hif_pipe_callbacks.Context = cb_context;
3617 	hif_update_pipe_callback(dp_soc->hif_handle,
3618 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
3619 }
3620 #else
3621 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3622 				     wdi_event_subscribe *event_cb_sub_handle,
3623 				     uint32_t event)
3624 {
3625 	return 0;
3626 }
3627 
3628 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3629 				   wdi_event_subscribe *event_cb_sub_handle,
3630 				   uint32_t event)
3631 {
3632 	return 0;
3633 }
3634 
3635 static inline
3636 void dp_wdi_event_handler(enum WDI_EVENT event,
3637 			  struct dp_soc *soc,
3638 			  void *data, u_int16_t peer_id,
3639 			  int status, u_int8_t pdev_id)
3640 {
3641 }
3642 
3643 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
3644 {
3645 	return 0;
3646 }
3647 
3648 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
3649 {
3650 	return 0;
3651 }
3652 
3653 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3654 		uint32_t stats_type_upload_mask, uint8_t mac_id)
3655 {
3656 	return 0;
3657 }
3658 
3659 static inline void
3660 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
3661 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3662 			    uint8_t pipe_id)
3663 {
3664 }
3665 #endif
3666 
3667 #ifdef VDEV_PEER_PROTOCOL_COUNT
3668 /**
3669  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3670  * @vdev: VDEV DP object
3671  * @nbuf: data packet
3672  * @txrx_peer: DP TXRX Peer object
3673  * @is_egress: whether egress or ingress
3674  * @is_rx: whether rx or tx
3675  *
3676  * This function updates the per-peer protocol counters
3677  * Return: void
3678  */
3679 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
3680 					    qdf_nbuf_t nbuf,
3681 					    struct dp_txrx_peer *txrx_peer,
3682 					    bool is_egress,
3683 					    bool is_rx);
3684 
3685 /**
3686  * dp_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3687  * @soc: SOC DP object
3688  * @vdev_id: vdev_id
3689  * @nbuf: data packet
3690  * @is_egress: whether egress or ingress
3691  * @is_rx: whether rx or tx
3692  *
3693  * This function updates the per-peer protocol counters
3694  *
3695  * Return: void
3696  */
3697 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
3698 				       int8_t vdev_id,
3699 				       qdf_nbuf_t nbuf,
3700 				       bool is_egress,
3701 				       bool is_rx);
3702 
3703 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3704 					       qdf_nbuf_t nbuf);
3705 
3706 #else
3707 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
3708 					       is_egress, is_rx)
3709 
3710 static inline
3711 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3712 					       qdf_nbuf_t nbuf)
3713 {
3714 }
3715 
3716 #endif
3717 
3718 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3719 /**
3720  * dp_tx_dump_flow_pool_info() - dump global_pool and flow_pool info
3721  * @soc_hdl: Handle to struct cdp_soc
3722  *
3723  * Return: none
3724  */
3725 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
3726 
3727 /**
3728  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
3729  * @soc: DP soc context
3730  *
3731  * Return: none
3732  */
3733 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3734 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3735 	bool force);
3736 #else
3737 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3738 {
3739 }
3740 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3741 
3742 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3743 static inline int
3744 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3745 {
3746 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3747 }
3748 
3749 static inline void
3750 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3751 {
3752 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3753 }
3754 
3755 #else
3756 static inline int
3757 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3758 {
3759 	return hal_srng_access_start(soc, hal_ring_hdl);
3760 }
3761 
3762 static inline void
3763 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3764 {
3765 	hal_srng_access_end(soc, hal_ring_hdl);
3766 }
3767 #endif
3768 
3769 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
3770 /**
3771  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
3772  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3773  * @dp_soc: DP Soc handle
3774  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3775  *                serviced
3776  *
3777  * Return: 0 on success; error on failure
3778  */
3779 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3780 			 hal_ring_handle_t hal_ring_hdl);
3781 
3782 /**
3783  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
3784  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3785  * @dp_soc: DP Soc handle
3786  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3787  *                serviced
3788  *
3789  * Return: void
3790  */
3791 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3792 			hal_ring_handle_t hal_ring_hdl);
3793 
3794 #else
3795 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
3796 				       struct dp_soc *dp_soc,
3797 				       hal_ring_handle_t hal_ring_hdl)
3798 {
3799 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3800 
3801 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
3802 }
3803 
3804 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
3805 				      struct dp_soc *dp_soc,
3806 				      hal_ring_handle_t hal_ring_hdl)
3807 {
3808 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3809 
3810 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
3811 }
3812 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
3813 
3814 #ifdef QCA_CACHED_RING_DESC
3815 /**
3816  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
3817  * @dp_soc: DP Soc handle
3818  * @hal_ring_hdl: opaque pointer to the HAL Destination Ring
3819  *
3820  * Return: HAL ring descriptor
3821  */
3822 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3823 					 hal_ring_handle_t hal_ring_hdl)
3824 {
3825 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3826 
3827 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
3828 }
3829 
3830 /**
3831  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
3832  * descriptors
3833  * @dp_soc: DP Soc handle
3834  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3835  * @num_entries: Entry count
3836  *
3837  * Return: None
3838  */
3839 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3840 						hal_ring_handle_t hal_ring_hdl,
3841 						uint32_t num_entries)
3842 {
3843 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3844 
3845 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
3846 }
3847 #else
3848 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3849 					 hal_ring_handle_t hal_ring_hdl)
3850 {
3851 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3852 
3853 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3854 }
3855 
3856 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3857 						hal_ring_handle_t hal_ring_hdl,
3858 						uint32_t num_entries)
3859 {
3860 }
3861 #endif /* QCA_CACHED_RING_DESC */
3862 
3863 #if defined(QCA_CACHED_RING_DESC) && \
3864 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3865 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3866 /**
3867  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3868  * @hal_soc: HAL SOC handle
3869  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3870  * @num_entries: Entry count
3871  *
3872  * Return: None
3873  */
3874 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3875 					 hal_ring_handle_t hal_ring_hdl,
3876 					 uint32_t num_entries)
3877 {
3878 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3879 }
3880 
3881 /**
3882  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3883  *					 32 byte descriptor starting at
3884  *					 64 byte offset
3885  * @hal_soc: HAL SOC handle
3886  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3887  * @num_entries: Entry count
3888  *
3889  * Return: None
3890  */
3891 static inline
3892 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3893 					hal_ring_handle_t hal_ring_hdl,
3894 					uint32_t num_entries)
3895 {
3896 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3897 						  num_entries);
3898 }
3899 #else
3900 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3901 					 hal_ring_handle_t hal_ring_hdl,
3902 					 uint32_t num_entries)
3903 {
3904 	return NULL;
3905 }
3906 
3907 static inline
3908 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3909 					hal_ring_handle_t hal_ring_hdl,
3910 					uint32_t num_entries)
3911 {
3912 	return NULL;
3913 }
3914 #endif
3915 
3916 #ifdef QCA_ENH_V3_STATS_SUPPORT
3917 /**
3918  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3919  * @pdev: DP_PDEV handle
3920  *
3921  * Return:void
3922  */
3923 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3924 
3925 /**
3926  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3927  * @pdev: DP_PDEV handle
3928  *
3929  * Return:void
3930  */
3931 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3932 
3933 /**
3934  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3935  * @pdev: DP_PDEV handle
3936  *
3937  * Return:void
3938  */
3939 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3940 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3941 
3942 /**
3943  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3944  * @soc_hdl: soc handle
3945  * @pdev_id: id of dp_pdev handle
3946  * @tid_stats: Pointer for cdp_tid_stats_intf
3947  *
3948  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3949  */
3950 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3951 				 struct cdp_tid_stats_intf *tid_stats);
3952 
3953 /**
3954  * dp_soc_set_txrx_ring_map()
3955  * @soc: DP handler for soc
3956  *
3957  * Return: Void
3958  */
3959 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3960 
3961 /**
3962  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3963  * @vdev: DP vdev handle
3964  *
3965  * Return: struct cdp_vdev pointer
3966  */
3967 static inline
3968 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3969 {
3970 	return (struct cdp_vdev *)vdev;
3971 }
3972 
3973 /**
3974  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3975  * @pdev: DP pdev handle
3976  *
3977  * Return: struct cdp_pdev pointer
3978  */
3979 static inline
3980 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3981 {
3982 	return (struct cdp_pdev *)pdev;
3983 }
3984 
3985 /**
3986  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3987  * @psoc: DP psoc handle
3988  *
3989  * Return: struct cdp_soc pointer
3990  */
3991 static inline
3992 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3993 {
3994 	return (struct cdp_soc *)psoc;
3995 }
3996 
3997 /**
3998  * dp_soc_to_cdp_soc_t() - typecast dp psoc to ol txrx soc handle
3999  * @psoc: DP psoc handle
4000  *
4001  * Return: struct cdp_soc_t pointer
4002  */
4003 static inline
4004 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
4005 {
4006 	return (struct cdp_soc_t *)psoc;
4007 }
4008 
4009 #if defined(WLAN_SUPPORT_RX_FLOW_TAG)
4010 /**
4011  * dp_rx_flow_get_fse_stats() - Retrieve a flow's statistics
4012  * @pdev: pdev handle
4013  * @rx_flow_info: flow information in the Rx FST
4014  * @stats: stats to update
4015  *
4016  * Return: Success when flow statistcs is updated, error on failure
4017  */
4018 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
4019 				    struct cdp_rx_flow_info *rx_flow_info,
4020 				    struct cdp_flow_stats *stats);
4021 
4022 /**
4023  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
4024  * @pdev: pdev handle
4025  * @rx_flow_info: DP flow parameters
4026  *
4027  * Return: Success when flow is deleted, error on failure
4028  */
4029 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
4030 				   struct cdp_rx_flow_info *rx_flow_info);
4031 
4032 /**
4033  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
4034  * @pdev: DP pdev instance
4035  * @rx_flow_info: DP flow parameters
4036  *
4037  * Return: Success when flow is added, no-memory or already exists on error
4038  */
4039 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
4040 				struct cdp_rx_flow_info *rx_flow_info);
4041 
4042 /**
4043  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
4044  * @soc: SoC handle
4045  * @pdev: Pdev handle
4046  *
4047  * Return: Handle to flow search table entry
4048  */
4049 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
4050 
4051 /**
4052  * dp_rx_fst_detach() - De-initialize Rx FST
4053  * @soc: SoC handle
4054  * @pdev: Pdev handle
4055  *
4056  * Return: None
4057  */
4058 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
4059 
4060 /**
4061  * dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
4062  * @pdev: pdev handle
4063  * @flow_id: flow index (truncated hash) in the Rx FST
4064  *
4065  * Return: Success when flow statistcs is updated, error on failure
4066  */
4067 QDF_STATUS
4068 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
4069 #endif
4070 
4071 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4072 /**
4073  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
4074  * @soc: SoC handle
4075  * @pdev: Pdev handle
4076  *
4077  * Return: Success when fst parameters are programmed in FW, error otherwise
4078  */
4079 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
4080 					struct dp_pdev *pdev);
4081 #endif
4082 
4083 /**
4084  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
4085  * @soc: SoC handle
4086  * @pdev: Pdev handle
4087  *
4088  * Return: Handle to flow search table entry
4089  */
4090 extern QDF_STATUS
4091 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4092 
4093 /**
4094  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
4095  * @soc: SoC handle
4096  * @pdev: Pdev handle
4097  *
4098  * Return: None
4099  */
4100 extern void
4101 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4102 
4103 /**
4104  * dp_vdev_get_ref() - API to take a reference for VDEV object
4105  *
4106  * @soc		: core DP soc context
4107  * @vdev	: DP vdev
4108  * @mod_id	: module id
4109  *
4110  * Return:	QDF_STATUS_SUCCESS if reference held successfully
4111  *		else QDF_STATUS_E_INVAL
4112  */
4113 static inline
4114 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
4115 			   enum dp_mod_id mod_id)
4116 {
4117 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
4118 		return QDF_STATUS_E_INVAL;
4119 
4120 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
4121 
4122 	return QDF_STATUS_SUCCESS;
4123 }
4124 
4125 /**
4126  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
4127  * @soc: core DP soc context
4128  * @vdev_id: vdev id from vdev object can be retrieved
4129  * @mod_id: module id which is requesting the reference
4130  *
4131  * Return: struct dp_vdev*: Pointer to DP vdev object
4132  */
4133 static inline struct dp_vdev *
4134 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
4135 		      enum dp_mod_id mod_id)
4136 {
4137 	struct dp_vdev *vdev = NULL;
4138 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
4139 		return NULL;
4140 
4141 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4142 	vdev = soc->vdev_id_map[vdev_id];
4143 
4144 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
4145 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4146 		return NULL;
4147 	}
4148 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4149 
4150 	return vdev;
4151 }
4152 
4153 /**
4154  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
4155  * @soc: core DP soc context
4156  * @pdev_id: pdev id from pdev object can be retrieved
4157  *
4158  * Return: struct dp_pdev*: Pointer to DP pdev object
4159  */
4160 static inline struct dp_pdev *
4161 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
4162 				   uint8_t pdev_id)
4163 {
4164 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
4165 		return NULL;
4166 
4167 	return soc->pdev_list[pdev_id];
4168 }
4169 
4170 /**
4171  * dp_get_peer_mac_list(): function to get peer mac list of vdev
4172  * @soc: Datapath soc handle
4173  * @vdev_id: vdev id
4174  * @newmac: Table of the clients mac
4175  * @mac_cnt: No. of MACs required
4176  * @limit: Limit the number of clients
4177  *
4178  * Return: no of clients
4179  */
4180 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
4181 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
4182 			      u_int16_t mac_cnt, bool limit);
4183 
4184 /**
4185  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
4186  *				       DBS check
4187  * @soc: DP SoC context
4188  * @max_mac_rings: Pointer to variable for No of MAC rings
4189  *
4190  * Return: None
4191  */
4192 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
4193 				     int *max_mac_rings);
4194 
4195 
4196 #if defined(WLAN_SUPPORT_RX_FISA)
4197 /**
4198  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
4199  * @soc:		DP SoC context
4200  * @num_entries:	Number of flow search entries
4201  * @cmem_ba_lo:		CMEM base address low
4202  * @cmem_ba_hi:		CMEM base address high
4203  *
4204  * Return: None
4205  */
4206 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4207 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
4208 
4209 /**
4210  * dp_fisa_config() - FISA config handler
4211  * @cdp_soc: CDP SoC handle
4212  * @pdev_id: PDEV ID
4213  * @config_id: FISA config ID
4214  * @cfg: FISA config msg data
4215  */
4216 QDF_STATUS dp_fisa_config(ol_txrx_soc_handle cdp_soc, uint8_t pdev_id,
4217 			  enum cdp_fisa_config_id config_id,
4218 			  union cdp_fisa_config *cfg);
4219 #else
4220 static inline void
4221 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4222 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
4223 {
4224 }
4225 #endif /* WLAN_SUPPORT_RX_FISA */
4226 
4227 #ifdef MAX_ALLOC_PAGE_SIZE
4228 /**
4229  * dp_set_max_page_size() - Set the max page size for hw link desc.
4230  * @pages: link desc page handle
4231  * @max_alloc_size: max_alloc_size
4232  *
4233  * For MCL the page size is set to OS defined value and for WIN
4234  * the page size is set to the max_alloc_size cfg ini
4235  * param.
4236  * This is to ensure that WIN gets contiguous memory allocations
4237  * as per requirement.
4238  *
4239  * Return: None
4240  */
4241 static inline
4242 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4243 			  uint32_t max_alloc_size)
4244 {
4245 	pages->page_size = qdf_page_size;
4246 }
4247 
4248 #else
4249 static inline
4250 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4251 			  uint32_t max_alloc_size)
4252 {
4253 	pages->page_size = max_alloc_size;
4254 }
4255 #endif /* MAX_ALLOC_PAGE_SIZE */
4256 
4257 /**
4258  * dp_history_get_next_index() - get the next entry to record an entry
4259  *				 in the history.
4260  * @curr_idx: Current index where the last entry is written.
4261  * @max_entries: Max number of entries in the history
4262  *
4263  * This function assumes that the max number os entries is a power of 2.
4264  *
4265  * Return: The index where the next entry is to be written.
4266  */
4267 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
4268 						 uint32_t max_entries)
4269 {
4270 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
4271 
4272 	return idx & (max_entries - 1);
4273 }
4274 
4275 /**
4276  * dp_rx_skip_tlvs() - Skip TLVs len + L3 padding, save in nbuf->cb
4277  * @soc: Datapath soc handle
4278  * @nbuf: nbuf cb to be updated
4279  * @l3_padding: L3 padding
4280  *
4281  * Return: None
4282  */
4283 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
4284 
4285 #ifndef FEATURE_WDS
4286 static inline void
4287 dp_hmwds_ast_add_notify(struct dp_peer *peer,
4288 			uint8_t *mac_addr,
4289 			enum cdp_txrx_ast_entry_type type,
4290 			QDF_STATUS err,
4291 			bool is_peer_map)
4292 {
4293 }
4294 #endif
4295 
4296 #ifdef HTT_STATS_DEBUGFS_SUPPORT
4297 /**
4298  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4299  * debugfs for HTT stats
4300  * @pdev: dp pdev handle
4301  *
4302  * Return: QDF_STATUS
4303  */
4304 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
4305 
4306 /**
4307  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4308  * HTT stats
4309  * @pdev: dp pdev handle
4310  *
4311  * Return: none
4312  */
4313 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
4314 #else
4315 
4316 /**
4317  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4318  * debugfs for HTT stats
4319  * @pdev: dp pdev handle
4320  *
4321  * Return: QDF_STATUS
4322  */
4323 static inline QDF_STATUS
4324 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
4325 {
4326 	return QDF_STATUS_SUCCESS;
4327 }
4328 
4329 /**
4330  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4331  * HTT stats
4332  * @pdev: dp pdev handle
4333  *
4334  * Return: none
4335  */
4336 static inline void
4337 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
4338 {
4339 }
4340 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
4341 
4342 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4343 /**
4344  * dp_soc_swlm_attach() - attach the software latency manager resources
4345  * @soc: Datapath global soc handle
4346  *
4347  * Return: QDF_STATUS
4348  */
4349 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
4350 {
4351 	return QDF_STATUS_SUCCESS;
4352 }
4353 
4354 /**
4355  * dp_soc_swlm_detach() - detach the software latency manager resources
4356  * @soc: Datapath global soc handle
4357  *
4358  * Return: QDF_STATUS
4359  */
4360 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
4361 {
4362 	return QDF_STATUS_SUCCESS;
4363 }
4364 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4365 
4366 #ifndef WLAN_DP_PROFILE_SUPPORT
4367 static inline void wlan_dp_soc_cfg_sync_profile(struct cdp_soc_t *cdp_soc) {}
4368 
4369 static inline void wlan_dp_pdev_cfg_sync_profile(struct cdp_soc_t *cdp_soc,
4370 						 uint8_t pdev_id) {}
4371 #endif
4372 
4373 /**
4374  * dp_get_peer_id(): function to get peer id by mac
4375  * @soc: Datapath soc handle
4376  * @vdev_id: vdev id
4377  * @mac: Peer mac address
4378  *
4379  * Return: valid peer id on success
4380  *         HTT_INVALID_PEER on failure
4381  */
4382 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
4383 
4384 #ifdef QCA_SUPPORT_WDS_EXTENDED
4385 /**
4386  * dp_wds_ext_set_peer_rx(): function to set peer rx handler
4387  * @soc: Datapath soc handle
4388  * @vdev_id: vdev id
4389  * @mac: Peer mac address
4390  * @rx: rx function pointer
4391  * @osif_peer: OSIF peer handle
4392  *
4393  * Return: QDF_STATUS_SUCCESS on success
4394  *         QDF_STATUS_E_INVAL if peer is not found
4395  *         QDF_STATUS_E_ALREADY if rx is already set/unset
4396  */
4397 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
4398 				  uint8_t vdev_id,
4399 				  uint8_t *mac,
4400 				  ol_txrx_rx_fp rx,
4401 				  ol_osif_peer_handle osif_peer);
4402 
4403 /**
4404  * dp_wds_ext_get_peer_osif_handle(): function to get peer osif handle
4405  * @soc: Datapath soc handle
4406  * @vdev_id: vdev id
4407  * @mac: Peer mac address
4408  * @osif_peer: OSIF peer handle
4409  *
4410  * Return: QDF_STATUS_SUCCESS on success
4411  *         QDF_STATUS_E_INVAL if peer is not found
4412  */
4413 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
4414 				ol_txrx_soc_handle soc,
4415 				uint8_t vdev_id,
4416 				uint8_t *mac,
4417 				ol_osif_peer_handle *osif_peer);
4418 
4419 #endif /* QCA_SUPPORT_WDS_EXTENDED */
4420 
4421 #ifdef DP_MEM_PRE_ALLOC
4422 
4423 /**
4424  * dp_context_alloc_mem() - allocate memory for DP context
4425  * @soc: datapath soc handle
4426  * @ctxt_type: DP context type
4427  * @ctxt_size: DP context size
4428  *
4429  * Return: DP context address
4430  */
4431 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4432 			   size_t ctxt_size);
4433 
4434 /**
4435  * dp_context_free_mem() - Free memory of DP context
4436  * @soc: datapath soc handle
4437  * @ctxt_type: DP context type
4438  * @vaddr: Address of context memory
4439  *
4440  * Return: None
4441  */
4442 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4443 			 void *vaddr);
4444 
4445 /**
4446  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
4447  * @soc: datapath soc handle
4448  * @desc_type: memory request source type
4449  * @pages: multi page information storage
4450  * @element_size: each element size
4451  * @element_num: total number of elements should be allocated
4452  * @memctxt: memory context
4453  * @cacheable: coherent memory or cacheable memory
4454  *
4455  * This function is a wrapper for memory allocation over multiple
4456  * pages, if dp prealloc method is registered, then will try prealloc
4457  * firstly. if prealloc failed, fall back to regular way over
4458  * qdf_mem_multi_pages_alloc().
4459  *
4460  * Return: None
4461  */
4462 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4463 				   enum qdf_dp_desc_type desc_type,
4464 				   struct qdf_mem_multi_page_t *pages,
4465 				   size_t element_size,
4466 				   uint32_t element_num,
4467 				   qdf_dma_context_t memctxt,
4468 				   bool cacheable);
4469 
4470 /**
4471  * dp_desc_multi_pages_mem_free() - free multiple pages memory
4472  * @soc: datapath soc handle
4473  * @desc_type: memory request source type
4474  * @pages: multi page information storage
4475  * @memctxt: memory context
4476  * @cacheable: coherent memory or cacheable memory
4477  *
4478  * This function is a wrapper for multiple pages memory free,
4479  * if memory is got from prealloc pool, put it back to pool.
4480  * otherwise free by qdf_mem_multi_pages_free().
4481  *
4482  * Return: None
4483  */
4484 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4485 				  enum qdf_dp_desc_type desc_type,
4486 				  struct qdf_mem_multi_page_t *pages,
4487 				  qdf_dma_context_t memctxt,
4488 				  bool cacheable);
4489 
4490 #else
4491 static inline
4492 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4493 			   size_t ctxt_size)
4494 {
4495 	return qdf_mem_malloc(ctxt_size);
4496 }
4497 
4498 static inline
4499 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4500 			 void *vaddr)
4501 {
4502 	qdf_mem_free(vaddr);
4503 }
4504 
4505 static inline
4506 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4507 				   enum qdf_dp_desc_type desc_type,
4508 				   struct qdf_mem_multi_page_t *pages,
4509 				   size_t element_size,
4510 				   uint32_t element_num,
4511 				   qdf_dma_context_t memctxt,
4512 				   bool cacheable)
4513 {
4514 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
4515 				  element_num, memctxt, cacheable);
4516 }
4517 
4518 static inline
4519 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4520 				  enum qdf_dp_desc_type desc_type,
4521 				  struct qdf_mem_multi_page_t *pages,
4522 				  qdf_dma_context_t memctxt,
4523 				  bool cacheable)
4524 {
4525 	qdf_mem_multi_pages_free(soc->osdev, pages,
4526 				 memctxt, cacheable);
4527 }
4528 #endif
4529 
4530 /**
4531  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
4532  *					  history.
4533  * @index: atomic index
4534  * @num_entries_per_slot: Number of entries per slot
4535  * @allocated: is allocated or not
4536  * @entry: pointers to array of records
4537  */
4538 struct dp_frag_history_opaque_atomic {
4539 	qdf_atomic_t index;
4540 	uint16_t num_entries_per_slot;
4541 	uint16_t allocated;
4542 	void *entry[0];
4543 };
4544 
4545 static inline QDF_STATUS
4546 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
4547 			   uint32_t max_slots, uint32_t max_entries_per_slot,
4548 			   uint32_t entry_size,
4549 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
4550 {
4551 	struct dp_frag_history_opaque_atomic *history =
4552 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4553 	size_t alloc_size = max_entries_per_slot * entry_size;
4554 	int i;
4555 
4556 	for (i = 0; i < max_slots; i++) {
4557 		if (attempt_prealloc)
4558 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
4559 								 alloc_size);
4560 		else
4561 			history->entry[i] = qdf_mem_malloc(alloc_size);
4562 
4563 		if (!history->entry[i])
4564 			goto exit;
4565 	}
4566 
4567 	qdf_atomic_init(&history->index);
4568 	history->allocated = 1;
4569 	history->num_entries_per_slot = max_entries_per_slot;
4570 
4571 	return QDF_STATUS_SUCCESS;
4572 exit:
4573 	for (i = i - 1; i >= 0; i--) {
4574 		if (attempt_prealloc)
4575 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4576 		else
4577 			qdf_mem_free(history->entry[i]);
4578 	}
4579 
4580 	return QDF_STATUS_E_NOMEM;
4581 }
4582 
4583 static inline
4584 void dp_soc_frag_history_detach(struct dp_soc *soc,
4585 				void *history_hdl, uint32_t max_slots,
4586 				bool attempt_prealloc,
4587 				enum dp_ctxt_type ctxt_type)
4588 {
4589 	struct dp_frag_history_opaque_atomic *history =
4590 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4591 	int i;
4592 
4593 	for (i = 0; i < max_slots; i++) {
4594 		if (attempt_prealloc)
4595 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4596 		else
4597 			qdf_mem_free(history->entry[i]);
4598 	}
4599 
4600 	history->allocated = 0;
4601 }
4602 
4603 /**
4604  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
4605  *					entry in a fragmented history with
4606  *					index being atomic.
4607  * @curr_idx: address of the current index where the last entry was written
4608  * @next_idx: pointer to update the next index
4609  * @slot: pointer to update the history slot to be selected
4610  * @slot_shift: BITwise shift mask for slot (in index)
4611  * @max_entries_per_slot: Max number of entries in a slot of history
4612  * @max_entries: Total number of entries in the history (sum of all slots)
4613  *
4614  * This function assumes that the "max_entries_per_slot" and "max_entries"
4615  * are a power-of-2.
4616  *
4617  * Return: None
4618  */
4619 static inline void
4620 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
4621 				 uint16_t *slot, uint32_t slot_shift,
4622 				 uint32_t max_entries_per_slot,
4623 				 uint32_t max_entries)
4624 {
4625 	uint32_t idx;
4626 
4627 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
4628 
4629 	*slot = idx >> slot_shift;
4630 	*next_idx = idx & (max_entries_per_slot - 1);
4631 }
4632 
4633 #ifdef FEATURE_RUNTIME_PM
4634 /**
4635  * dp_runtime_get() - Get dp runtime refcount
4636  * @soc: Datapath soc handle
4637  *
4638  * Get dp runtime refcount by increment of an atomic variable, which can block
4639  * dp runtime resume to wait to flush pending tx by runtime suspend.
4640  *
4641  * Return: Current refcount
4642  */
4643 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4644 {
4645 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
4646 }
4647 
4648 /**
4649  * dp_runtime_put() - Return dp runtime refcount
4650  * @soc: Datapath soc handle
4651  *
4652  * Return dp runtime refcount by decrement of an atomic variable, allow dp
4653  * runtime resume finish.
4654  *
4655  * Return: Current refcount
4656  */
4657 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4658 {
4659 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
4660 }
4661 
4662 /**
4663  * dp_runtime_get_refcount() - Get dp runtime refcount
4664  * @soc: Datapath soc handle
4665  *
4666  * Get dp runtime refcount by returning an atomic variable
4667  *
4668  * Return: Current refcount
4669  */
4670 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
4671 {
4672 	return qdf_atomic_read(&soc->dp_runtime_refcount);
4673 }
4674 
4675 /**
4676  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
4677  * @soc: Datapath soc handle
4678  *
4679  * Return: QDF_STATUS
4680  */
4681 static inline void dp_runtime_init(struct dp_soc *soc)
4682 {
4683 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
4684 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
4685 	qdf_atomic_init(&soc->dp_runtime_refcount);
4686 }
4687 
4688 /**
4689  * dp_runtime_deinit() - Deinit DP related runtime PM clients
4690  *
4691  * Return: None
4692  */
4693 static inline void dp_runtime_deinit(void)
4694 {
4695 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
4696 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
4697 }
4698 
4699 /**
4700  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
4701  * @soc: Datapath soc handle
4702  *
4703  * Return: None
4704  */
4705 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4706 {
4707 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
4708 
4709 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4710 }
4711 #else
4712 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4713 {
4714 	return 0;
4715 }
4716 
4717 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4718 {
4719 	return 0;
4720 }
4721 
4722 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4723 {
4724 	return QDF_STATUS_SUCCESS;
4725 }
4726 
4727 static inline void dp_runtime_deinit(void)
4728 {
4729 }
4730 
4731 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4732 {
4733 }
4734 #endif
4735 
4736 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
4737 {
4738 	if (soc->cdp_soc.ol_ops->get_con_mode)
4739 		return soc->cdp_soc.ol_ops->get_con_mode();
4740 
4741 	return QDF_GLOBAL_MAX_MODE;
4742 }
4743 
4744 /**
4745  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
4746  *				processing
4747  * @pdev: Datapath PDEV handle
4748  *
4749  */
4750 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
4751 
4752 /**
4753  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
4754  *				processing
4755  * @pdev: Datapath PDEV handle
4756  *
4757  * Return: QDF_STATUS_SUCCESS: Success
4758  *         QDF_STATUS_E_NOMEM: Error
4759  */
4760 
4761 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
4762 
4763 /**
4764  * dp_peer_flush_frags() - Flush all fragments for a particular
4765  *  peer
4766  * @soc_hdl: data path soc handle
4767  * @vdev_id: vdev id
4768  * @peer_mac: peer mac address
4769  *
4770  * Return: None
4771  */
4772 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4773 			 uint8_t *peer_mac);
4774 
4775 /**
4776  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
4777  * @soc: pointer to dp_soc handle
4778  *
4779  * Return:
4780  */
4781 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
4782 
4783 /**
4784  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
4785  * @soc_hdl: soc handle
4786  * @soc_stats: buffer to hold the values
4787  *
4788  * Return: QDF_STATUS_SUCCESS: Success
4789  *         QDF_STATUS_E_FAILURE: Error
4790  */
4791 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
4792 				 struct cdp_soc_stats *soc_stats);
4793 
4794 /**
4795  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
4796  * @soc_hdl: soc handle
4797  * @vdev_id: id of vdev handle
4798  * @peer_mac: mac of DP_PEER handle
4799  * @delay_stats: pointer to delay stats array
4800  *
4801  * Return: QDF_STATUS_SUCCESS: Success
4802  *         QDF_STATUS_E_FAILURE: Error
4803  */
4804 QDF_STATUS
4805 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4806 			     uint8_t *peer_mac,
4807 			     struct cdp_delay_tid_stats *delay_stats);
4808 
4809 /**
4810  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
4811  * @soc_hdl: soc handle
4812  * @pdev_id: id of pdev handle
4813  * @vdev_id: id of vdev handle
4814  * @peer_mac: mac of DP_PEER handle
4815  * @tid_stats: pointer to jitter stats array
4816  *
4817  * Return: QDF_STATUS_SUCCESS: Success
4818  *         QDF_STATUS_E_FAILURE: Error
4819  */
4820 QDF_STATUS
4821 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4822 			      uint8_t vdev_id, uint8_t *peer_mac,
4823 			      struct cdp_peer_tid_stats *tid_stats);
4824 
4825 /**
4826  * dp_peer_get_tx_capture_stats() - to get peer Tx Capture stats
4827  * @soc_hdl: soc handle
4828  * @vdev_id: id of vdev handle
4829  * @peer_mac: mac of DP_PEER handle
4830  * @stats: pointer to peer tx capture stats
4831  *
4832  * Return: QDF_STATUS_SUCCESS: Success
4833  *         QDF_STATUS_E_FAILURE: Error
4834  */
4835 QDF_STATUS
4836 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
4837 			     uint8_t vdev_id, uint8_t *peer_mac,
4838 			     struct cdp_peer_tx_capture_stats *stats);
4839 
4840 /**
4841  * dp_pdev_get_tx_capture_stats() - to get pdev Tx Capture stats
4842  * @soc_hdl: soc handle
4843  * @pdev_id: id of pdev handle
4844  * @stats: pointer to pdev tx capture stats
4845  *
4846  * Return: QDF_STATUS_SUCCESS: Success
4847  *         QDF_STATUS_E_FAILURE: Error
4848  */
4849 QDF_STATUS
4850 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4851 			     struct cdp_pdev_tx_capture_stats *stats);
4852 
4853 #ifdef HW_TX_DELAY_STATS_ENABLE
4854 /**
4855  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
4856  *  is enabled for vdev
4857  * @vdev: dp vdev
4858  *
4859  * Return: true if tx delay stats is enabled for vdev else false
4860  */
4861 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4862 {
4863 	return vdev->hw_tx_delay_stats_enabled;
4864 }
4865 
4866 /**
4867  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4868  *  for pdev
4869  * @soc: dp soc
4870  *
4871  * Return: None
4872  */
4873 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4874 
4875 /**
4876  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4877  * @soc: soc handle
4878  *
4879  * Return: None
4880  */
4881 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4882 #else
4883 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4884 {
4885 	return 0;
4886 }
4887 
4888 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4889 {
4890 }
4891 
4892 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4893 {
4894 }
4895 #endif
4896 
4897 static inline void
4898 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4899 {
4900 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4901 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4902 			      LRO_IPV4_SEED_ARR_SZ));
4903 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4904 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4905 			      LRO_IPV6_SEED_ARR_SZ));
4906 }
4907 
4908 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
4909 /**
4910  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4911  * @soc_hdl: soc handle
4912  * @pdev_id: id of pdev handle
4913  * @stats: pointer to pdev telemetry stats
4914  *
4915  * Return: QDF_STATUS_SUCCESS: Success
4916  *         QDF_STATUS_E_FAILURE: Error
4917  */
4918 QDF_STATUS
4919 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4920 			    struct cdp_pdev_telemetry_stats *stats);
4921 
4922 /**
4923  * dp_get_peer_telemetry_stats() - API to get peer telemetry stats
4924  * @soc_hdl: soc handle
4925  * @addr: peer mac
4926  * @stats: pointer to peer telemetry stats
4927  *
4928  * Return: QDF_STATUS_SUCCESS: Success
4929  *         QDF_STATUS_E_FAILURE: Error
4930  */
4931 QDF_STATUS
4932 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4933 			    struct cdp_peer_telemetry_stats *stats);
4934 
4935 /**
4936  * dp_get_peer_deter_stats() - API to get peer deterministic stats
4937  * @soc_hdl: soc handle
4938  * @vdev_id: id of vdev handle
4939  * @addr: peer mac
4940  * @stats: pointer to peer deterministic stats
4941  *
4942  * Return: QDF_STATUS_SUCCESS: Success
4943  *         QDF_STATUS_E_FAILURE: Error
4944  */
4945 QDF_STATUS
4946 dp_get_peer_deter_stats(struct cdp_soc_t *soc_hdl,
4947 			uint8_t vdev_id,
4948 			uint8_t *addr,
4949 			struct cdp_peer_deter_stats *stats);
4950 
4951 /**
4952  * dp_get_pdev_deter_stats() - API to get pdev deterministic stats
4953  * @soc_hdl: soc handle
4954  * @pdev_id: id of pdev handle
4955  * @stats: pointer to pdev deterministic stats
4956  *
4957  * Return: QDF_STATUS_SUCCESS: Success
4958  *         QDF_STATUS_E_FAILURE: Error
4959  */
4960 QDF_STATUS
4961 dp_get_pdev_deter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4962 			struct cdp_pdev_deter_stats *stats);
4963 
4964 /**
4965  * dp_update_pdev_chan_util_stats() - API to update channel utilization stats
4966  * @soc_hdl: soc handle
4967  * @pdev_id: id of pdev handle
4968  * @ch_util: Pointer to channel util stats
4969  *
4970  * Return: QDF_STATUS_SUCCESS: Success
4971  *         QDF_STATUS_E_FAILURE: Error
4972  */
4973 QDF_STATUS
4974 dp_update_pdev_chan_util_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4975 			       struct cdp_pdev_chan_util_stats *ch_util);
4976 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
4977 
4978 #ifdef CONNECTIVITY_PKTLOG
4979 /**
4980  * dp_tx_send_pktlog() - send tx packet log
4981  * @soc: soc handle
4982  * @pdev: pdev handle
4983  * @tx_desc: TX software descriptor
4984  * @nbuf: nbuf
4985  * @status: status of tx packet
4986  *
4987  * This function is used to send tx packet for logging
4988  *
4989  * Return: None
4990  *
4991  */
4992 static inline
4993 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4994 		       struct dp_tx_desc_s *tx_desc,
4995 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4996 {
4997 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4998 
4999 	if (qdf_unlikely(packetdump_cb) &&
5000 	    dp_tx_frm_std == tx_desc->frm_type) {
5001 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5002 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
5003 	}
5004 }
5005 
5006 /**
5007  * dp_rx_send_pktlog() - send rx packet log
5008  * @soc: soc handle
5009  * @pdev: pdev handle
5010  * @nbuf: nbuf
5011  * @status: status of rx packet
5012  *
5013  * This function is used to send rx packet for logging
5014  *
5015  * Return: None
5016  *
5017  */
5018 static inline
5019 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5020 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5021 {
5022 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5023 
5024 	if (qdf_unlikely(packetdump_cb)) {
5025 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5026 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5027 			      nbuf, status, QDF_RX_DATA_PKT);
5028 	}
5029 }
5030 
5031 /**
5032  * dp_rx_err_send_pktlog() - send rx error packet log
5033  * @soc: soc handle
5034  * @pdev: pdev handle
5035  * @mpdu_desc_info: MPDU descriptor info
5036  * @nbuf: nbuf
5037  * @status: status of rx packet
5038  * @set_pktlen: weither to set packet length
5039  *
5040  * This API should only be called when we have not removed
5041  * Rx TLV from head, and head is pointing to rx_tlv
5042  *
5043  * This function is used to send rx packet from error path
5044  * for logging for which rx packet tlv is not removed.
5045  *
5046  * Return: None
5047  *
5048  */
5049 static inline
5050 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5051 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5052 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5053 			   bool set_pktlen)
5054 {
5055 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5056 	qdf_size_t skip_size;
5057 	uint16_t msdu_len, nbuf_len;
5058 	uint8_t *rx_tlv_hdr;
5059 	struct hal_rx_msdu_metadata msdu_metadata;
5060 	uint16_t buf_size;
5061 
5062 	buf_size = wlan_cfg_rx_buffer_size(soc->wlan_cfg_ctx);
5063 
5064 	if (qdf_unlikely(packetdump_cb)) {
5065 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
5066 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
5067 							  rx_tlv_hdr);
5068 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
5069 					 &msdu_metadata);
5070 
5071 		if (mpdu_desc_info->bar_frame ||
5072 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
5073 			skip_size = soc->rx_pkt_tlv_size;
5074 		else
5075 			skip_size = soc->rx_pkt_tlv_size +
5076 					msdu_metadata.l3_hdr_pad;
5077 
5078 		if (set_pktlen) {
5079 			msdu_len = nbuf_len + skip_size;
5080 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len, buf_size));
5081 		}
5082 
5083 		qdf_nbuf_pull_head(nbuf, skip_size);
5084 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5085 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5086 			      nbuf, status, QDF_RX_DATA_PKT);
5087 		qdf_nbuf_push_head(nbuf, skip_size);
5088 	}
5089 }
5090 
5091 #else
5092 static inline
5093 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5094 		       struct dp_tx_desc_s *tx_desc,
5095 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5096 {
5097 }
5098 
5099 static inline
5100 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5101 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5102 {
5103 }
5104 
5105 static inline
5106 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5107 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5108 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5109 			   bool set_pktlen)
5110 {
5111 }
5112 #endif
5113 
5114 /**
5115  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
5116  * @soc  : Data path soc handle
5117  * @pdev : PDEV handle
5118  *
5119  * Return: None
5120  */
5121 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
5122 
5123 #ifdef FEATURE_DIRECT_LINK
5124 /**
5125  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
5126  * @soc_hdl: DP SOC handle
5127  * @pdev_id: pdev id
5128  *
5129  * Return: Handle to SRNG
5130  */
5131 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5132 						 uint8_t pdev_id);
5133 
5134 /**
5135  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
5136  *  pdev
5137  * @soc_hdl: DP SOC handle
5138  * @pdev_id: pdev id
5139  *
5140  * Return: None
5141  */
5142 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5143 					uint8_t pdev_id);
5144 #else
5145 static inline
5146 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5147 						 uint8_t pdev_id)
5148 {
5149 	return NULL;
5150 }
5151 
5152 static inline
5153 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5154 					uint8_t pdev_id)
5155 {
5156 }
5157 #endif
5158 
5159 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
5160 static inline
5161 void dp_cfg_event_record(struct dp_soc *soc,
5162 			 enum dp_cfg_event_type event,
5163 			 union dp_cfg_event_desc *cfg_event_desc)
5164 {
5165 	struct dp_cfg_event_history *cfg_event_history =
5166 						&soc->cfg_event_history;
5167 	struct dp_cfg_event *entry;
5168 	uint32_t idx;
5169 	uint16_t slot;
5170 
5171 	dp_get_frag_hist_next_atomic_idx(&cfg_event_history->index, &idx,
5172 					 &slot,
5173 					 DP_CFG_EVT_HIST_SLOT_SHIFT,
5174 					 DP_CFG_EVT_HIST_PER_SLOT_MAX,
5175 					 DP_CFG_EVT_HISTORY_SIZE);
5176 
5177 	entry = &cfg_event_history->entry[slot][idx];
5178 
5179 	entry->timestamp = qdf_get_log_timestamp();
5180 	entry->type = event;
5181 	qdf_mem_copy(&entry->event_desc, cfg_event_desc,
5182 		     sizeof(entry->event_desc));
5183 }
5184 
5185 static inline void
5186 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5187 			     struct dp_vdev *vdev)
5188 {
5189 	union dp_cfg_event_desc cfg_evt_desc = {0};
5190 	struct dp_vdev_attach_detach_desc *vdev_evt =
5191 						&cfg_evt_desc.vdev_evt;
5192 
5193 	if (qdf_unlikely(event != DP_CFG_EVENT_VDEV_ATTACH &&
5194 			 event != DP_CFG_EVENT_VDEV_UNREF_DEL &&
5195 			 event != DP_CFG_EVENT_VDEV_DETACH)) {
5196 		qdf_assert_always(0);
5197 		return;
5198 	}
5199 
5200 	vdev_evt->vdev = vdev;
5201 	vdev_evt->vdev_id = vdev->vdev_id;
5202 	vdev_evt->ref_count = qdf_atomic_read(&vdev->ref_cnt);
5203 	vdev_evt->mac_addr = vdev->mac_addr;
5204 
5205 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5206 }
5207 
5208 static inline void
5209 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5210 			     struct dp_peer *peer, struct dp_vdev *vdev,
5211 			     uint8_t is_reuse)
5212 {
5213 	union dp_cfg_event_desc cfg_evt_desc = {0};
5214 	struct dp_peer_cmn_ops_desc *peer_evt = &cfg_evt_desc.peer_cmn_evt;
5215 
5216 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_CREATE &&
5217 			 event != DP_CFG_EVENT_PEER_DELETE &&
5218 			 event != DP_CFG_EVENT_PEER_UNREF_DEL)) {
5219 		qdf_assert_always(0);
5220 		return;
5221 	}
5222 
5223 	peer_evt->peer = peer;
5224 	peer_evt->vdev = vdev;
5225 	peer_evt->vdev_id = vdev->vdev_id;
5226 	peer_evt->is_reuse = is_reuse;
5227 	peer_evt->peer_ref_count = qdf_atomic_read(&peer->ref_cnt);
5228 	peer_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5229 	peer_evt->mac_addr = peer->mac_addr;
5230 	peer_evt->vdev_mac_addr = vdev->mac_addr;
5231 
5232 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5233 }
5234 
5235 static inline void
5236 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5237 					enum dp_cfg_event_type event,
5238 					struct dp_peer *mld_peer,
5239 					struct dp_peer *link_peer,
5240 					uint8_t idx, uint8_t result)
5241 {
5242 	union dp_cfg_event_desc cfg_evt_desc = {0};
5243 	struct dp_mlo_add_del_link_desc *mlo_link_delink_evt =
5244 					&cfg_evt_desc.mlo_link_delink_evt;
5245 
5246 	if (qdf_unlikely(event != DP_CFG_EVENT_MLO_ADD_LINK &&
5247 			 event != DP_CFG_EVENT_MLO_DEL_LINK)) {
5248 		qdf_assert_always(0);
5249 		return;
5250 	}
5251 
5252 	mlo_link_delink_evt->link_peer = link_peer;
5253 	mlo_link_delink_evt->mld_peer = mld_peer;
5254 	mlo_link_delink_evt->link_mac_addr = link_peer->mac_addr;
5255 	mlo_link_delink_evt->mld_mac_addr = mld_peer->mac_addr;
5256 	mlo_link_delink_evt->num_links = mld_peer->num_links;
5257 	mlo_link_delink_evt->action_result = result;
5258 	mlo_link_delink_evt->idx = idx;
5259 
5260 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5261 }
5262 
5263 static inline void
5264 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5265 					      struct dp_peer *mld_peer,
5266 					      struct dp_vdev *prev_vdev,
5267 					      struct dp_vdev *new_vdev)
5268 {
5269 	union dp_cfg_event_desc cfg_evt_desc = {0};
5270 	struct dp_mlo_setup_vdev_update_desc *vdev_update_evt =
5271 					&cfg_evt_desc.mlo_setup_vdev_update;
5272 
5273 	vdev_update_evt->mld_peer = mld_peer;
5274 	vdev_update_evt->prev_vdev = prev_vdev;
5275 	vdev_update_evt->new_vdev = new_vdev;
5276 
5277 	dp_cfg_event_record(soc, DP_CFG_EVENT_MLO_SETUP_VDEV_UPDATE,
5278 			    &cfg_evt_desc);
5279 }
5280 
5281 static inline void
5282 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5283 				       enum dp_cfg_event_type event,
5284 				       struct dp_peer *peer,
5285 				       uint8_t *mac_addr,
5286 				       uint8_t is_ml_peer,
5287 				       uint16_t peer_id, uint16_t ml_peer_id,
5288 				       uint16_t hw_peer_id, uint8_t vdev_id)
5289 {
5290 	union dp_cfg_event_desc cfg_evt_desc = {0};
5291 	struct dp_rx_peer_map_unmap_desc *peer_map_unmap_evt =
5292 					&cfg_evt_desc.peer_map_unmap_evt;
5293 
5294 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_MAP &&
5295 			 event != DP_CFG_EVENT_PEER_UNMAP &&
5296 			 event != DP_CFG_EVENT_MLO_PEER_MAP &&
5297 			 event != DP_CFG_EVENT_MLO_PEER_UNMAP)) {
5298 		qdf_assert_always(0);
5299 		return;
5300 	}
5301 
5302 	peer_map_unmap_evt->peer_id = peer_id;
5303 	peer_map_unmap_evt->ml_peer_id = ml_peer_id;
5304 	peer_map_unmap_evt->hw_peer_id = hw_peer_id;
5305 	peer_map_unmap_evt->vdev_id = vdev_id;
5306 	/* Peer may be NULL at times, but its not an issue. */
5307 	peer_map_unmap_evt->peer = peer;
5308 	peer_map_unmap_evt->is_ml_peer = is_ml_peer;
5309 	qdf_mem_copy(&peer_map_unmap_evt->mac_addr.raw, mac_addr,
5310 		     QDF_MAC_ADDR_SIZE);
5311 
5312 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5313 }
5314 
5315 static inline void
5316 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5317 				   enum dp_cfg_event_type event,
5318 				   struct dp_peer *peer,
5319 				   struct dp_vdev *vdev,
5320 				   uint8_t vdev_id,
5321 				   struct cdp_peer_setup_info *peer_setup_info)
5322 {
5323 	union dp_cfg_event_desc cfg_evt_desc = {0};
5324 	struct dp_peer_setup_desc *peer_setup_evt =
5325 					&cfg_evt_desc.peer_setup_evt;
5326 
5327 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_SETUP &&
5328 			 event != DP_CFG_EVENT_MLO_SETUP)) {
5329 		qdf_assert_always(0);
5330 		return;
5331 	}
5332 
5333 	peer_setup_evt->peer = peer;
5334 	peer_setup_evt->vdev = vdev;
5335 	if (vdev)
5336 		peer_setup_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5337 	peer_setup_evt->mac_addr = peer->mac_addr;
5338 	peer_setup_evt->vdev_id = vdev_id;
5339 	if (peer_setup_info) {
5340 		peer_setup_evt->is_first_link = peer_setup_info->is_first_link;
5341 		peer_setup_evt->is_primary_link = peer_setup_info->is_primary_link;
5342 		qdf_mem_copy(peer_setup_evt->mld_mac_addr.raw,
5343 			     peer_setup_info->mld_peer_mac,
5344 			     QDF_MAC_ADDR_SIZE);
5345 	}
5346 
5347 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5348 }
5349 #else
5350 
5351 static inline void
5352 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5353 			     struct dp_vdev *vdev)
5354 {
5355 }
5356 
5357 static inline void
5358 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5359 			     struct dp_peer *peer, struct dp_vdev *vdev,
5360 			     uint8_t is_reuse)
5361 {
5362 }
5363 
5364 static inline void
5365 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5366 					enum dp_cfg_event_type event,
5367 					struct dp_peer *mld_peer,
5368 					struct dp_peer *link_peer,
5369 					uint8_t idx, uint8_t result)
5370 {
5371 }
5372 
5373 static inline void
5374 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5375 					      struct dp_peer *mld_peer,
5376 					      struct dp_vdev *prev_vdev,
5377 					      struct dp_vdev *new_vdev)
5378 {
5379 }
5380 
5381 static inline void
5382 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5383 				       enum dp_cfg_event_type event,
5384 				       struct dp_peer *peer,
5385 				       uint8_t *mac_addr,
5386 				       uint8_t is_ml_peer,
5387 				       uint16_t peer_id, uint16_t ml_peer_id,
5388 				       uint16_t hw_peer_id, uint8_t vdev_id)
5389 {
5390 }
5391 
5392 static inline void
5393 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5394 				   enum dp_cfg_event_type event,
5395 				   struct dp_peer *peer,
5396 				   struct dp_vdev *vdev,
5397 				   uint8_t vdev_id,
5398 				   struct cdp_peer_setup_info *peer_setup_info)
5399 {
5400 }
5401 #endif
5402 
5403 #ifndef WLAN_SOFTUMAC_SUPPORT
5404 /**
5405  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
5406  * @txrx_soc: DP SOC handle
5407  *
5408  * Return: none
5409  */
5410 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
5411 #endif
5412 
5413 /**
5414  * dp_get_peer_stats()- Get peer stats
5415  * @peer: Datapath peer
5416  * @peer_stats: buffer for peer stats
5417  *
5418  * Return: none
5419  */
5420 void dp_get_peer_stats(struct dp_peer *peer,
5421 		       struct cdp_peer_stats *peer_stats);
5422 
5423 /**
5424  * dp_get_per_link_peer_stats()- Get per link peer stats
5425  * @peer: Datapath peer
5426  * @peer_stats: buffer for peer stats
5427  * @peer_type: Peer type
5428  * @num_link: Number of ML links
5429  *
5430  * Return: status success/failure
5431  */
5432 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
5433 				      struct cdp_peer_stats *peer_stats,
5434 				      enum cdp_peer_type peer_type,
5435 				      uint8_t num_link);
5436 /**
5437  * dp_get_peer_hw_link_id() - get peer hardware link id
5438  * @soc: soc handle
5439  * @pdev: data path pdev
5440  *
5441  * Return: link_id
5442  */
5443 static inline int
5444 dp_get_peer_hw_link_id(struct dp_soc *soc,
5445 		       struct dp_pdev *pdev)
5446 {
5447 	if (wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx))
5448 		return ((soc->arch_ops.get_hw_link_id(pdev)) + 1);
5449 
5450 	return 0;
5451 }
5452 
5453 #ifdef QCA_MULTIPASS_SUPPORT
5454 /**
5455  * dp_tx_remove_vlan_tag() - Remove 4 bytes of vlan tag
5456  * @vdev: DP vdev handle
5457  * @nbuf: network buffer
5458  *
5459  * Return: void
5460  */
5461 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf);
5462 #endif
5463 
5464 /**
5465  * dp_print_per_link_stats() - Print per link peer stats.
5466  * @soc_hdl: soc handle.
5467  * @vdev_id: vdev_id.
5468  *
5469  * Return: None.
5470  */
5471 void dp_print_per_link_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id);
5472 
5473 /**
5474  * dp_get_ring_stats_from_hal(): get hal level ring pointer values
5475  * @soc: DP_SOC handle
5476  * @srng: DP_SRNG handle
5477  * @ring_type: srng src/dst ring
5478  * @_tailp: pointer to tail of ring
5479  * @_headp: pointer to head of ring
5480  * @_hw_headp: pointer to head of ring in HW
5481  * @_hw_tailp: pointer to tail of ring in HW
5482  *
5483  * Return: void
5484  */
5485 static inline void
5486 dp_get_ring_stats_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
5487 			   enum hal_ring_type ring_type,
5488 			   uint32_t *_tailp, uint32_t *_headp,
5489 			   int32_t *_hw_headp, int32_t *_hw_tailp)
5490 {
5491 	uint32_t tailp;
5492 	uint32_t headp;
5493 	int32_t hw_headp = -1;
5494 	int32_t hw_tailp = -1;
5495 	struct hal_soc *hal_soc;
5496 
5497 	if (soc && srng && srng->hal_srng) {
5498 		hal_soc = (struct hal_soc *)soc->hal_soc;
5499 		hal_get_sw_hptp(soc->hal_soc, srng->hal_srng, &tailp, &headp);
5500 		*_headp = headp;
5501 		*_tailp = tailp;
5502 
5503 		hal_get_hw_hptp(soc->hal_soc, srng->hal_srng, &hw_headp,
5504 				&hw_tailp, ring_type);
5505 		*_hw_headp = hw_headp;
5506 		*_hw_tailp = hw_tailp;
5507 	}
5508 }
5509 
5510 #ifdef WLAN_FEATURE_TX_LATENCY_STATS
5511 /**
5512  * dp_h2t_tx_latency_stats_cfg_msg_send(): send HTT message for tx latency
5513  * stats config to FW
5514  * @dp_soc: DP SOC handle
5515  * @vdev_id: vdev id
5516  * @enable: indicates enablement of the feature
5517  * @period: statistical period for transmit latency in terms of ms
5518  * @granularity: granularity for tx latency distribution
5519  *
5520  * return: QDF STATUS
5521  */
5522 QDF_STATUS
5523 dp_h2t_tx_latency_stats_cfg_msg_send(struct dp_soc *dp_soc, uint16_t vdev_id,
5524 				     bool enable, uint32_t period,
5525 				     uint32_t granularity);
5526 
5527 /**
5528  * dp_tx_latency_stats_update_cca() - update transmit latency statistics for
5529  * CCA
5530  * @soc: dp soc handle
5531  * @peer_id: peer id
5532  * @granularity: granularity of distribution
5533  * @distribution: distribution of transmit latency statistics
5534  * @avg: average of CCA latency(in microseconds) within a cycle
5535  *
5536  * Return: None
5537  */
5538 void
5539 dp_tx_latency_stats_update_cca(struct dp_soc *soc, uint16_t peer_id,
5540 			       uint32_t granularity, uint32_t *distribution,
5541 			       uint32_t avg);
5542 
5543 /**
5544  * dp_tx_latency_stats_report() - report transmit latency statistics for each
5545  * vdev of specified pdev
5546  * @soc: dp soc handle
5547  * @pdev: dp pdev Handle
5548  *
5549  * Return: None
5550  */
5551 void dp_tx_latency_stats_report(struct dp_soc *soc, struct dp_pdev *pdev);
5552 #endif
5553 #endif /* #ifndef _DP_INTERNAL_H_ */
5554