xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 5db38f17138c409346f0ba0d72e13640f35d04b5)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 #include "dp_rx_tid.h"
26 
27 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
28 
29 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
30 
31 #define DP_BLOCKMEM_SIZE 4096
32 #define WBM2_SW_PPE_REL_RING_ID 6
33 #define WBM2_SW_PPE_REL_MAP_ID 11
34 #define DP_TX_PPEDS_POOL_ID 0xF
35 
36 /* Alignment for consistent memory for DP rings*/
37 #define DP_RING_BASE_ALIGN 32
38 
39 #define DP_RSSI_INVAL 0x80
40 #define DP_RSSI_AVG_WEIGHT 2
41 /*
42  * Formula to derive avg_rssi is taken from wifi2.o firmware
43  */
44 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
45 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
46 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
47 
48 /* Macro For NYSM value received in VHT TLV */
49 #define VHT_SGI_NYSM 3
50 
51 #define INVALID_WBM_RING_NUM 0xF
52 
53 #ifdef FEATURE_DIRECT_LINK
54 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
55 #ifdef IPA_OFFLOAD
56 #ifdef IPA_WDI3_VLAN_SUPPORT
57 #define DIRECT_LINK_REFILL_RING_IDX     4
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     3
60 #endif
61 #else
62 #define DIRECT_LINK_REFILL_RING_IDX     2
63 #endif
64 #endif
65 
66 #define DP_MAX_VLAN_IDS 4096
67 #define DP_VLAN_UNTAGGED 0
68 #define DP_VLAN_TAGGED_MULTICAST 1
69 #define DP_VLAN_TAGGED_UNICAST 2
70 
71 /**
72  * struct htt_dbgfs_cfg - structure to maintain required htt data
73  * @msg_word: htt msg sent to upper layer
74  * @m: qdf debugfs file pointer
75  */
76 struct htt_dbgfs_cfg {
77 	uint32_t *msg_word;
78 	qdf_debugfs_file_t m;
79 };
80 
81 /* Cookie MSB bits assigned for different use case.
82  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
83  * If in future number of pdev are more than 3.
84  */
85 /* Reserve for default case */
86 #define DBG_STATS_COOKIE_DEFAULT 0x0
87 
88 /* Reserve for DP Stats: 3rd bit */
89 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
90 
91 /* Reserve for HTT Stats debugfs support: 4th bit */
92 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
93 
94 /*Reserve for HTT Stats debugfs support: 5th bit */
95 #define DBG_SYSFS_STATS_COOKIE BIT(5)
96 
97 /* Reserve for HTT Stats OBSS PD support: 6th bit */
98 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
99 
100 /*
101  * Bitmap of HTT PPDU TLV types for Default mode
102  */
103 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
104 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
106 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
107 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
108 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
109 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
110 
111 /* PPDU STATS CFG */
112 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
113 
114 /* PPDU stats mask sent to FW to enable enhanced stats */
115 #define DP_PPDU_STATS_CFG_ENH_STATS \
116 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
117 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
119 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
120 
121 /* PPDU stats mask sent to FW to support debug sniffer feature */
122 #define DP_PPDU_STATS_CFG_SNIFFER \
123 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
124 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
125 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
126 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
127 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
128 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
129 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
130 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
131 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
132 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
133 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
134 
135 /* PPDU stats mask sent to FW to support BPR feature*/
136 #define DP_PPDU_STATS_CFG_BPR \
137 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
138 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
139 
140 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
141 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
142 				   DP_PPDU_STATS_CFG_ENH_STATS)
143 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
144 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
145 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
146 
147 /*
148  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
149  */
150 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
151 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
152 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
153 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
154 
155 /*
156  * Bitmap of HTT PPDU TLV types for Delayed BA
157  */
158 #define HTT_PPDU_STATUS_TLV_BITMAP \
159 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
161 
162 /*
163  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
164  */
165 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
166 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
167 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
168 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
169 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
170 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
171 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
173 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
174 
175 /*
176  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
177  */
178 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
179 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
180 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
181 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
182 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
183 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
184 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
185 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
186 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
187 
188 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
189 	[HAL_DOT11A] = DOT11_A,
190 	[HAL_DOT11B] = DOT11_B,
191 	[HAL_DOT11N_MM] = DOT11_N,
192 	[HAL_DOT11AC] = DOT11_AC,
193 	[HAL_DOT11AX] = DOT11_AX,
194 	[HAL_DOT11BA] = DOT11_MAX,
195 #ifdef WLAN_FEATURE_11BE
196 	[HAL_DOT11BE] = DOT11_BE,
197 #else
198 	[HAL_DOT11BE] = DOT11_MAX,
199 #endif
200 	[HAL_DOT11AZ] = DOT11_MAX,
201 	[HAL_DOT11N_GF] = DOT11_MAX,
202 };
203 
204 #ifdef WLAN_FEATURE_11BE
205 /**
206  * dp_get_mcs_array_index_by_pkt_type_mcs() - get the destination mcs index
207  *					      in array
208  * @pkt_type: host SW pkt type
209  * @mcs: mcs value for TX/RX rate
210  *
211  * Return: succeeded - valid index in mcs array
212  *	   fail - same value as MCS_MAX
213  */
214 static inline uint8_t
215 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
216 {
217 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
218 
219 	switch (pkt_type) {
220 	case DOT11_A:
221 		dst_mcs_idx =
222 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
223 		break;
224 	case DOT11_B:
225 		dst_mcs_idx =
226 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
227 		break;
228 	case DOT11_N:
229 		dst_mcs_idx =
230 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
231 		break;
232 	case DOT11_AC:
233 		dst_mcs_idx =
234 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
235 		break;
236 	case DOT11_AX:
237 		dst_mcs_idx =
238 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
239 		break;
240 	case DOT11_BE:
241 		dst_mcs_idx =
242 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
243 		break;
244 	default:
245 		break;
246 	}
247 
248 	return dst_mcs_idx;
249 }
250 #else
251 static inline uint8_t
252 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
253 {
254 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
255 
256 	switch (pkt_type) {
257 	case DOT11_A:
258 		dst_mcs_idx =
259 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
260 		break;
261 	case DOT11_B:
262 		dst_mcs_idx =
263 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
264 		break;
265 	case DOT11_N:
266 		dst_mcs_idx =
267 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
268 		break;
269 	case DOT11_AC:
270 		dst_mcs_idx =
271 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
272 		break;
273 	case DOT11_AX:
274 		dst_mcs_idx =
275 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
276 		break;
277 	default:
278 		break;
279 	}
280 
281 	return dst_mcs_idx;
282 }
283 #endif
284 
285 #ifdef WIFI_MONITOR_SUPPORT
286 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
287 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
288 #else
289 static inline
290 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
291 {
292 	return QDF_STATUS_SUCCESS;
293 }
294 
295 static inline
296 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
297 {
298 	return QDF_STATUS_SUCCESS;
299 }
300 #endif
301 
302 /**
303  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
304  * @eh: Ethernet header of incoming packet
305  * @vdev: dp_vdev object of the VAP on which this data packet is received
306  *
307  * Return: 1 if the destination mac is correct,
308  *         0 if this frame is not correctly destined to this VAP/MLD
309  */
310 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
311 
312 #ifdef MONITOR_MODULARIZED_ENABLE
313 static inline bool dp_monitor_modularized_enable(void)
314 {
315 	return TRUE;
316 }
317 
318 static inline QDF_STATUS
319 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
320 
321 static inline QDF_STATUS
322 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
323 #else
324 static inline bool dp_monitor_modularized_enable(void)
325 {
326 	return FALSE;
327 }
328 
329 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
330 {
331 	return dp_mon_soc_attach(soc);
332 }
333 
334 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
335 {
336 	return dp_mon_soc_detach(soc);
337 }
338 #endif
339 
340 #ifndef WIFI_MONITOR_SUPPORT
341 #define MON_BUF_MIN_ENTRIES 64
342 
343 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
344 {
345 	return QDF_STATUS_SUCCESS;
346 }
347 
348 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
349 {
350 	return QDF_STATUS_SUCCESS;
351 }
352 
353 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
354 {
355 	return QDF_STATUS_E_FAILURE;
356 }
357 
358 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
359 {
360 	return QDF_STATUS_E_FAILURE;
361 }
362 
363 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
364 						struct dp_peer *peer)
365 {
366 	return QDF_STATUS_SUCCESS;
367 }
368 
369 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
370 						struct dp_peer *peer)
371 {
372 	return QDF_STATUS_E_FAILURE;
373 }
374 
375 static inline struct cdp_peer_rate_stats_ctx*
376 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
377 {
378 	return NULL;
379 }
380 
381 static inline
382 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
383 {
384 }
385 
386 static inline
387 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
388 			       void *arg, enum cdp_stat_update_type type)
389 {
390 }
391 
392 static inline
393 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
394 					       struct dp_pdev *pdev)
395 {
396 }
397 
398 static inline
399 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
400 					   struct dp_peer *peer,
401 					   enum cdp_peer_stats_type type,
402 					   cdp_peer_stats_param_t *buf)
403 {
404 	return QDF_STATUS_E_FAILURE;
405 }
406 
407 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
408 {
409 	return QDF_STATUS_SUCCESS;
410 }
411 
412 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
413 {
414 	return QDF_STATUS_SUCCESS;
415 }
416 
417 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
418 {
419 	return QDF_STATUS_SUCCESS;
420 }
421 
422 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
423 							 int val)
424 {
425 	return QDF_STATUS_E_FAILURE;
426 }
427 
428 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
429 {
430 }
431 
432 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
433 						   struct dp_pdev *pdev,
434 						   int mac_id,
435 						   int mac_for_pdev)
436 {
437 	return QDF_STATUS_SUCCESS;
438 }
439 
440 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
441 						uint32_t quota)
442 {
443 }
444 
445 static inline
446 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
447 			    uint32_t mac_id, uint32_t quota)
448 {
449 	return 0;
450 }
451 
452 static inline
453 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
454 					 uint32_t mac_id, uint32_t quota)
455 {
456 	return 0;
457 }
458 
459 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
460 					   struct dp_peer *peer)
461 {
462 }
463 
464 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
465 					      struct dp_peer *peer)
466 {
467 }
468 
469 static inline
470 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
471 					struct dp_peer *peer,
472 					uint16_t peer_id)
473 {
474 }
475 
476 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
477 {
478 }
479 
480 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
481 {
482 }
483 
484 static inline
485 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
486 {
487 	return QDF_STATUS_SUCCESS;
488 }
489 
490 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
491 							   struct dp_peer *peer)
492 {
493 }
494 
495 static inline
496 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
497 					   struct dp_tx_desc_s *desc,
498 					   struct hal_tx_completion_status *ts,
499 					   uint16_t peer_id)
500 {
501 	return QDF_STATUS_E_FAILURE;
502 }
503 
504 static inline
505 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
506 				       struct dp_pdev *pdev,
507 				       struct dp_peer *peer,
508 				       struct hal_tx_completion_status *ts,
509 				       qdf_nbuf_t netbuf)
510 {
511 	return QDF_STATUS_E_FAILURE;
512 }
513 
514 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
515 						     uint32_t *msg_word,
516 						     qdf_nbuf_t htt_t2h_msg)
517 {
518 	return true;
519 }
520 
521 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
522 {
523 	return QDF_STATUS_SUCCESS;
524 }
525 
526 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
527 {
528 }
529 
530 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
531 {
532 }
533 
534 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
535 							  uint32_t val)
536 {
537 	return QDF_STATUS_E_INVAL;
538 }
539 
540 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
541 						   struct dp_peer *peer,
542 						   uint8_t is_tx_pkt_cap_enable,
543 						   uint8_t *peer_mac)
544 {
545 	return QDF_STATUS_E_INVAL;
546 }
547 
548 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
549 							  uint32_t val)
550 {
551 	return QDF_STATUS_E_INVAL;
552 }
553 
554 static inline
555 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
556 {
557 	return QDF_STATUS_E_FAILURE;
558 }
559 
560 static inline
561 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
562 {
563 	return 0;
564 }
565 
566 static inline
567 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
568 {
569 }
570 
571 static inline
572 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
573 {
574 }
575 
576 static inline
577 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
578 {
579 	return false;
580 }
581 
582 static inline
583 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
584 {
585 	return false;
586 }
587 
588 static inline
589 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
590 {
591 	return false;
592 }
593 
594 static inline
595 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
596 				bool enable)
597 {
598 	return 0;
599 }
600 
601 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
602 {
603 }
604 
605 static inline
606 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
607 {
608 	return QDF_STATUS_E_FAILURE;
609 }
610 
611 static inline
612 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
613 {
614 }
615 
616 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
617 							  uint8_t *rx_pkt_hdr)
618 {
619 	return QDF_STATUS_E_FAILURE;
620 }
621 
622 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
623 {
624 }
625 
626 static inline
627 void dp_monitor_reap_timer_init(struct dp_soc *soc)
628 {
629 }
630 
631 static inline
632 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
633 {
634 }
635 
636 static inline
637 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
638 				 enum cdp_mon_reap_source source)
639 {
640 	return false;
641 }
642 
643 static inline
644 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
645 				enum cdp_mon_reap_source source)
646 {
647 	return false;
648 }
649 
650 static inline void
651 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
652 {
653 }
654 
655 static inline
656 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
657 {
658 }
659 
660 static inline
661 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
662 {
663 }
664 
665 static inline
666 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
667 {
668 }
669 
670 static inline
671 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
672 {
673 	return false;
674 }
675 
676 static inline struct qdf_mem_multi_page_t*
677 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
678 {
679 	return NULL;
680 }
681 
682 static inline uint32_t *
683 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
684 {
685 	return NULL;
686 }
687 
688 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
689 {
690 	return QDF_STATUS_E_FAILURE;
691 }
692 
693 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
694 {
695 	return false;
696 }
697 
698 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
699 						 struct ol_txrx_ops *txrx_ops)
700 {
701 }
702 
703 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
704 {
705 	return false;
706 }
707 
708 static inline
709 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
710 {
711 }
712 
713 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
714 					  struct dp_vdev *vdev)
715 {
716 }
717 
718 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
719 {
720 }
721 
722 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
723 						     struct dp_peer *ta_peer,
724 						     uint8_t *mac_addr,
725 						     qdf_nbuf_t nbuf,
726 						     uint32_t flags)
727 {
728 }
729 
730 static inline void
731 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
732 {
733 }
734 
735 static inline void
736 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
737 {
738 }
739 
740 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
741 {
742 }
743 
744 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
745 {
746 	return false;
747 }
748 
749 static inline
750 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
751 					   struct dp_vdev *vdev,
752 					   struct dp_neighbour_peer *peer)
753 {
754 }
755 
756 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
757 {
758 	return false;
759 }
760 
761 static inline enum reg_wifi_band
762 dp_monitor_get_chan_band(struct dp_pdev *pdev)
763 {
764 	return 0;
765 }
766 
767 static inline int
768 dp_monitor_get_chan_num(struct dp_pdev *pdev)
769 {
770 	return 0;
771 }
772 
773 static inline qdf_freq_t
774 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
775 {
776 	return 0;
777 }
778 
779 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
780 					      struct dp_soc *soc,
781 					      uint8_t *rx_tlv_hdr)
782 {
783 }
784 
785 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
786 {
787 }
788 
789 static inline
790 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
791 					  uint16_t peer_id, uint32_t ppdu_id,
792 					  uint8_t first_msdu)
793 {
794 	return QDF_STATUS_SUCCESS;
795 }
796 
797 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
798 {
799 	return false;
800 }
801 
802 static inline struct dp_vdev*
803 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
804 {
805 	return NULL;
806 }
807 
808 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
809 							   void *rx_desc)
810 {
811 	return QDF_STATUS_E_FAILURE;
812 }
813 
814 static inline struct mon_rx_status*
815 dp_monitor_get_rx_status(struct dp_pdev *pdev)
816 {
817 	return NULL;
818 }
819 
820 static inline
821 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
822 {
823 }
824 
825 static inline
826 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
827 						      bool val)
828 {
829 }
830 
831 static inline QDF_STATUS
832 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
833 				     struct cdp_peer_tx_capture_stats *stats)
834 {
835 	return QDF_STATUS_E_FAILURE;
836 }
837 
838 static inline QDF_STATUS
839 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
840 				     struct cdp_pdev_tx_capture_stats *stats)
841 {
842 	return QDF_STATUS_E_FAILURE;
843 }
844 
845 #ifdef DP_POWER_SAVE
846 static inline
847 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
848 {
849 }
850 
851 static inline
852 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
853 {
854 }
855 #endif
856 
857 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
858 {
859 	return false;
860 }
861 
862 static inline void
863 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
864 			 struct htt_rx_ring_tlv_filter *tlv_filter)
865 {
866 }
867 
868 static inline void dp_monitor_soc_init(struct dp_soc *soc)
869 {
870 }
871 
872 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
873 {
874 }
875 
876 static inline
877 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
878 							int val)
879 {
880 	return QDF_STATUS_SUCCESS;
881 }
882 
883 static inline QDF_STATUS
884 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
885 						      int mask1, int mask2)
886 {
887 	return QDF_STATUS_SUCCESS;
888 }
889 
890 static inline QDF_STATUS
891 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
892 						   int *mask, int *mask_cont)
893 {
894 	return QDF_STATUS_SUCCESS;
895 }
896 
897 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
898 {
899 	return QDF_STATUS_E_FAILURE;
900 }
901 
902 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
903 {
904 	return false;
905 }
906 
907 static inline
908 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
909 {
910 	return 0;
911 }
912 
913 static inline uint32_t
914 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
915 		  uint32_t mac_id, uint32_t quota)
916 {
917 	return 0;
918 }
919 
920 static inline uint32_t
921 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
922 {
923 	return 0;
924 }
925 
926 static inline
927 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
928 {
929 	return 0;
930 }
931 
932 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
933 {
934 	return 0;
935 }
936 
937 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
938 {
939 	return 0;
940 }
941 
942 static inline void
943 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
944 		 struct htt_rx_ring_tlv_filter *tlv_filter)
945 {
946 }
947 
948 static inline void
949 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
950 			    struct htt_rx_ring_tlv_filter *tlv_filter)
951 {
952 }
953 
954 static inline void
955 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
956 			      struct htt_rx_ring_tlv_filter *tlv_filter)
957 {
958 }
959 
960 static inline void
961 dp_mon_rx_wmask_subscribe(struct dp_soc *soc, uint32_t *msg_word,
962 			  struct htt_rx_ring_tlv_filter *tlv_filter)
963 {
964 }
965 
966 static inline void
967 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
968 			 struct htt_rx_ring_tlv_filter *tlv_filter)
969 {
970 }
971 
972 static inline void
973 dp_mon_rx_enable_pkt_tlv_offset(struct dp_soc *soc, uint32_t *msg_word,
974 				struct htt_rx_ring_tlv_filter *tlv_filter)
975 {
976 }
977 
978 static inline void
979 dp_mon_rx_enable_fpmo(struct dp_soc *soc, uint32_t *msg_word,
980 		      struct htt_rx_ring_tlv_filter *tlv_filter)
981 {
982 }
983 
984 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
985 static inline
986 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
987 				     struct cdp_peer_telemetry_stats *stats)
988 {
989 }
990 
991 static inline
992 void dp_monitor_peer_deter_stats(struct dp_peer *peer,
993 				 struct cdp_peer_telemetry_stats *stats)
994 {
995 }
996 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
997 #endif /* !WIFI_MONITOR_SUPPORT */
998 
999 /**
1000  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
1001  * dp soc handle
1002  * @psoc: CDP psoc handle
1003  *
1004  * Return: struct dp_soc pointer
1005  */
1006 static inline
1007 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
1008 {
1009 	return (struct dp_soc *)psoc;
1010 }
1011 
1012 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
1013 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
1014 
1015 /**
1016  * enum timer_yield_status - yield status code used in monitor mode timer.
1017  * @DP_TIMER_NO_YIELD: do not yield
1018  * @DP_TIMER_WORK_DONE: yield because work is done
1019  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
1020  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
1021  */
1022 enum timer_yield_status {
1023 	DP_TIMER_NO_YIELD,
1024 	DP_TIMER_WORK_DONE,
1025 	DP_TIMER_WORK_EXHAUST,
1026 	DP_TIMER_TIME_EXHAUST,
1027 };
1028 
1029 #if DP_PRINT_ENABLE
1030 #include <qdf_types.h> /* qdf_vprint */
1031 #include <cdp_txrx_handle.h>
1032 
1033 enum {
1034 	/* FATAL_ERR - print only irrecoverable error messages */
1035 	DP_PRINT_LEVEL_FATAL_ERR,
1036 
1037 	/* ERR - include non-fatal err messages */
1038 	DP_PRINT_LEVEL_ERR,
1039 
1040 	/* WARN - include warnings */
1041 	DP_PRINT_LEVEL_WARN,
1042 
1043 	/* INFO1 - include fundamental, infrequent events */
1044 	DP_PRINT_LEVEL_INFO1,
1045 
1046 	/* INFO2 - include non-fundamental but infrequent events */
1047 	DP_PRINT_LEVEL_INFO2,
1048 };
1049 
1050 #define dp_print(level, fmt, ...) do { \
1051 	if (level <= g_txrx_print_level) \
1052 		qdf_print(fmt, ## __VA_ARGS__); \
1053 while (0)
1054 #define DP_PRINT(level, fmt, ...) do { \
1055 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1056 while (0)
1057 #else
1058 #define DP_PRINT(level, fmt, ...)
1059 #endif /* DP_PRINT_ENABLE */
1060 
1061 #define DP_TRACE(LVL, fmt, args ...)                             \
1062 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1063 		fmt, ## args)
1064 
1065 #ifdef WLAN_SYSFS_DP_STATS
1066 void DP_PRINT_STATS(const char *fmt, ...);
1067 #else /* WLAN_SYSFS_DP_STATS */
1068 #ifdef DP_PRINT_NO_CONSOLE
1069 /* Stat prints should not go to console or kernel logs.*/
1070 #define DP_PRINT_STATS(fmt, args ...)\
1071 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1072 		  fmt, ## args)
1073 #else
1074 #define DP_PRINT_STATS(fmt, args ...)\
1075 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1076 		  fmt, ## args)
1077 #endif
1078 #endif /* WLAN_SYSFS_DP_STATS */
1079 
1080 #define DP_STATS_INIT(_handle) \
1081 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1082 
1083 #define DP_TXRX_PEER_STATS_INIT(_handle, size) \
1084 	qdf_mem_zero(&((_handle)->stats[0]), size)
1085 
1086 #define DP_STATS_CLR(_handle) \
1087 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1088 
1089 #define DP_TXRX_PEER_STATS_CLR(_handle, size) \
1090 	qdf_mem_zero(&((_handle)->stats[0]), size)
1091 
1092 #ifndef DISABLE_DP_STATS
1093 #define DP_STATS_INC(_handle, _field, _delta) \
1094 { \
1095 	if (likely(_handle)) \
1096 		_handle->stats._field += _delta; \
1097 }
1098 
1099 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link) \
1100 { \
1101 	if (likely(_handle)) \
1102 		_handle->stats[_link]._field += _delta; \
1103 }
1104 
1105 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1106 { \
1107 	if (likely(_handle)) \
1108 		_handle->_field += _delta; \
1109 }
1110 
1111 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1112 { \
1113 	if (_cond && likely(_handle)) \
1114 		_handle->stats._field += _delta; \
1115 }
1116 
1117 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1118 { \
1119 	if (_cond && likely(_handle)) \
1120 		_handle->stats[_link]._field += _delta; \
1121 }
1122 
1123 #define DP_STATS_DEC(_handle, _field, _delta) \
1124 { \
1125 	if (likely(_handle)) \
1126 		_handle->stats._field -= _delta; \
1127 }
1128 
1129 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1130 { \
1131 	if (likely(_handle)) \
1132 		_handle->_field -= _delta; \
1133 }
1134 
1135 #define DP_STATS_UPD(_handle, _field, _delta) \
1136 { \
1137 	if (likely(_handle)) \
1138 		_handle->stats._field = _delta; \
1139 }
1140 
1141 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link) \
1142 { \
1143 	if (likely(_handle)) \
1144 		_handle->stats[_link]._field = _delta; \
1145 }
1146 
1147 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1148 { \
1149 	DP_STATS_INC(_handle, _field.num, _count); \
1150 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1151 }
1152 
1153 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1154 { \
1155 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1156 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1157 }
1158 
1159 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1160 { \
1161 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1162 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1163 }
1164 
1165 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1166 { \
1167 	_handle_a->stats._field += _handle_b->stats._field; \
1168 }
1169 
1170 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1171 { \
1172 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1173 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1174 }
1175 
1176 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1177 { \
1178 	_handle_a->stats._field = _handle_b->stats._field; \
1179 }
1180 
1181 #else
1182 #define DP_STATS_INC(_handle, _field, _delta)
1183 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link)
1184 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1185 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1186 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link)
1187 #define DP_STATS_DEC(_handle, _field, _delta)
1188 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1189 #define DP_STATS_UPD(_handle, _field, _delta)
1190 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link)
1191 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1192 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1193 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1194 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1195 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1196 #endif
1197 
1198 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta, _link) \
1199 { \
1200 	DP_PEER_LINK_STATS_INC(_handle, per_pkt_stats._field, _delta, _link); \
1201 }
1202 
1203 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1204 { \
1205 	DP_PEER_LINK_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond, _link); \
1206 }
1207 
1208 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes, _link) \
1209 { \
1210 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count, _link); \
1211 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes, _link) \
1212 }
1213 
1214 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond, _link) \
1215 { \
1216 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond, _link); \
1217 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond, _link) \
1218 }
1219 
1220 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta, _link) \
1221 { \
1222 	DP_PEER_LINK_STATS_UPD(_handle, per_pkt_stats._field, _delta, _link); \
1223 }
1224 
1225 #ifndef QCA_ENHANCED_STATS_SUPPORT
1226 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta, _link) \
1227 { \
1228 	DP_PEER_LINK_STATS_INC(_handle, extd_stats._field, _delta, _link); \
1229 }
1230 
1231 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1232 { \
1233 	DP_PEER_LINK_STATS_INCC(_handle, extd_stats._field, _delta, _cond, _link); \
1234 }
1235 
1236 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta, _link) \
1237 { \
1238 	DP_PEER_LINK_STATS_UPD(_handle, extd_stats._field, _delta, _link); \
1239 }
1240 #endif
1241 
1242 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1243 	defined(QCA_ENHANCED_STATS_SUPPORT)
1244 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1245 { \
1246 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1247 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1248 }
1249 
1250 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1251 { \
1252 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1253 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1254 }
1255 
1256 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1257 { \
1258 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1259 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1260 }
1261 
1262 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1263 { \
1264 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1265 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1266 }
1267 
1268 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1269 { \
1270 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1271 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1272 }
1273 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1274 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1275 { \
1276 	if (!(_handle->hw_txrx_stats_en)) \
1277 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1278 }
1279 
1280 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1281 { \
1282 	if (!(_handle->hw_txrx_stats_en)) \
1283 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1284 }
1285 
1286 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1287 { \
1288 	if (!(_handle->hw_txrx_stats_en)) \
1289 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1290 }
1291 
1292 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1293 { \
1294 	if (!(_handle->hw_txrx_stats_en)) \
1295 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1296 }
1297 
1298 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1299 { \
1300 	if (!(_handle->hw_txrx_stats_en)) \
1301 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1302 }
1303 #else
1304 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1305 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1306 
1307 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1308 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1309 
1310 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1311 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link);
1312 
1313 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1314 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link);
1315 
1316 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1317 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link);
1318 #endif
1319 
1320 #ifdef ENABLE_DP_HIST_STATS
1321 #define DP_HIST_INIT() \
1322 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1323 
1324 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1325 { \
1326 		++num_of_packets[_pdev_id]; \
1327 }
1328 
1329 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1330 	do {                                                              \
1331 		if (_p_cntrs == 1) {                                      \
1332 			DP_STATS_INC(_pdev,                               \
1333 				tx_comp_histogram.pkts_1, 1);             \
1334 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1335 			DP_STATS_INC(_pdev,                               \
1336 				tx_comp_histogram.pkts_2_20, 1);          \
1337 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1338 			DP_STATS_INC(_pdev,                               \
1339 				tx_comp_histogram.pkts_21_40, 1);         \
1340 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1341 			DP_STATS_INC(_pdev,                               \
1342 				tx_comp_histogram.pkts_41_60, 1);         \
1343 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1344 			DP_STATS_INC(_pdev,                               \
1345 				tx_comp_histogram.pkts_61_80, 1);         \
1346 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1347 			DP_STATS_INC(_pdev,                               \
1348 				tx_comp_histogram.pkts_81_100, 1);        \
1349 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1350 			DP_STATS_INC(_pdev,                               \
1351 				tx_comp_histogram.pkts_101_200, 1);       \
1352 		} else if (_p_cntrs > 200) {                              \
1353 			DP_STATS_INC(_pdev,                               \
1354 				tx_comp_histogram.pkts_201_plus, 1);      \
1355 		}                                                         \
1356 	} while (0)
1357 
1358 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1359 	do {                                                              \
1360 		if (_p_cntrs == 1) {                                      \
1361 			DP_STATS_INC(_pdev,                               \
1362 				rx_ind_histogram.pkts_1, 1);              \
1363 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1364 			DP_STATS_INC(_pdev,                               \
1365 				rx_ind_histogram.pkts_2_20, 1);           \
1366 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1367 			DP_STATS_INC(_pdev,                               \
1368 				rx_ind_histogram.pkts_21_40, 1);          \
1369 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1370 			DP_STATS_INC(_pdev,                               \
1371 				rx_ind_histogram.pkts_41_60, 1);          \
1372 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1373 			DP_STATS_INC(_pdev,                               \
1374 				rx_ind_histogram.pkts_61_80, 1);          \
1375 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1376 			DP_STATS_INC(_pdev,                               \
1377 				rx_ind_histogram.pkts_81_100, 1);         \
1378 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1379 			DP_STATS_INC(_pdev,                               \
1380 				rx_ind_histogram.pkts_101_200, 1);        \
1381 		} else if (_p_cntrs > 200) {                              \
1382 			DP_STATS_INC(_pdev,                               \
1383 				rx_ind_histogram.pkts_201_plus, 1);       \
1384 		}                                                         \
1385 	} while (0)
1386 
1387 #define DP_TX_HIST_STATS_PER_PDEV() \
1388 	do { \
1389 		uint8_t hist_stats = 0; \
1390 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1391 				hist_stats++) { \
1392 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1393 					num_of_packets[hist_stats]); \
1394 		} \
1395 	}  while (0)
1396 
1397 
1398 #define DP_RX_HIST_STATS_PER_PDEV() \
1399 	do { \
1400 		uint8_t hist_stats = 0; \
1401 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1402 				hist_stats++) { \
1403 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1404 					num_of_packets[hist_stats]); \
1405 		} \
1406 	}  while (0)
1407 
1408 #else
1409 #define DP_HIST_INIT()
1410 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1411 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1412 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1413 #define DP_RX_HIST_STATS_PER_PDEV()
1414 #define DP_TX_HIST_STATS_PER_PDEV()
1415 #endif /* DISABLE_DP_STATS */
1416 
1417 #define FRAME_MASK_IPV4_ARP   1
1418 #define FRAME_MASK_IPV4_DHCP  2
1419 #define FRAME_MASK_IPV4_EAPOL 4
1420 #define FRAME_MASK_IPV6_DHCP  8
1421 
1422 static inline int dp_log2_ceil(unsigned int value)
1423 {
1424 	unsigned int tmp = value;
1425 	int log2 = -1;
1426 
1427 	while (tmp) {
1428 		log2++;
1429 		tmp >>= 1;
1430 	}
1431 	if (1 << log2 != value)
1432 		log2++;
1433 	return log2;
1434 }
1435 
1436 #ifdef QCA_SUPPORT_PEER_ISOLATION
1437 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1438 
1439 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1440 					 bool val)
1441 {
1442 	txrx_peer->isolation = val;
1443 }
1444 
1445 #else
1446 #define dp_get_peer_isolation(_peer) (0)
1447 
1448 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1449 {
1450 }
1451 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1452 
1453 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev);
1454 
1455 #ifdef QCA_SUPPORT_WDS_EXTENDED
1456 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1457 {
1458 	txrx_peer->wds_ext.osif_peer = NULL;
1459 	txrx_peer->wds_ext.init = 0;
1460 }
1461 #else
1462 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1463 {
1464 }
1465 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1466 
1467 #ifdef QCA_HOST2FW_RXBUF_RING
1468 static inline
1469 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1470 {
1471 	return &pdev->rx_mac_buf_ring[lmac_id];
1472 }
1473 #else
1474 static inline
1475 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1476 {
1477 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1478 }
1479 #endif
1480 
1481 /*
1482  * The lmac ID for a particular channel band is fixed.
1483  * 2.4GHz band uses lmac_id = 1
1484  * 5GHz/6GHz band uses lmac_id=0
1485  */
1486 #define DP_INVALID_LMAC_ID	(-1)
1487 #define DP_MON_INVALID_LMAC_ID	(-1)
1488 #define DP_MAC0_LMAC_ID	0
1489 #define DP_MAC1_LMAC_ID	1
1490 
1491 #ifdef FEATURE_TSO_STATS
1492 /**
1493  * dp_init_tso_stats() - Clear tso stats
1494  * @pdev: pdev handle
1495  *
1496  * Return: None
1497  */
1498 static inline
1499 void dp_init_tso_stats(struct dp_pdev *pdev)
1500 {
1501 	if (pdev) {
1502 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1503 			     sizeof((pdev)->stats.tso_stats));
1504 		qdf_atomic_init(&pdev->tso_idx);
1505 	}
1506 }
1507 
1508 /**
1509  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1510  * @pdev: pdev handle
1511  * @_p_cntrs: number of tso segments for a tso packet
1512  *
1513  * Return: None
1514  */
1515 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1516 					   uint8_t _p_cntrs);
1517 
1518 /**
1519  * dp_tso_segment_update() - Collect tso segment information
1520  * @pdev: pdev handle
1521  * @stats_idx: tso packet number
1522  * @idx: tso segment number
1523  * @seg: tso segment
1524  *
1525  * Return: None
1526  */
1527 void dp_tso_segment_update(struct dp_pdev *pdev,
1528 			   uint32_t stats_idx,
1529 			   uint8_t idx,
1530 			   struct qdf_tso_seg_t seg);
1531 
1532 /**
1533  * dp_tso_packet_update() - TSO Packet information
1534  * @pdev: pdev handle
1535  * @stats_idx: tso packet number
1536  * @msdu: nbuf handle
1537  * @num_segs: tso segments
1538  *
1539  * Return: None
1540  */
1541 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1542 			  qdf_nbuf_t msdu, uint16_t num_segs);
1543 
1544 /**
1545  * dp_tso_segment_stats_update() - TSO Segment stats
1546  * @pdev: pdev handle
1547  * @stats_seg: tso segment list
1548  * @stats_idx: tso packet number
1549  *
1550  * Return: None
1551  */
1552 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1553 				 struct qdf_tso_seg_elem_t *stats_seg,
1554 				 uint32_t stats_idx);
1555 
1556 /**
1557  * dp_print_tso_stats() - dump tso statistics
1558  * @soc:soc handle
1559  * @level: verbosity level
1560  *
1561  * Return: None
1562  */
1563 void dp_print_tso_stats(struct dp_soc *soc,
1564 			enum qdf_stats_verbosity_level level);
1565 
1566 /**
1567  * dp_txrx_clear_tso_stats() - clear tso stats
1568  * @soc: soc handle
1569  *
1570  * Return: None
1571  */
1572 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1573 #else
1574 static inline
1575 void dp_init_tso_stats(struct dp_pdev *pdev)
1576 {
1577 }
1578 
1579 static inline
1580 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1581 					   uint8_t _p_cntrs)
1582 {
1583 }
1584 
1585 static inline
1586 void dp_tso_segment_update(struct dp_pdev *pdev,
1587 			   uint32_t stats_idx,
1588 			   uint32_t idx,
1589 			   struct qdf_tso_seg_t seg)
1590 {
1591 }
1592 
1593 static inline
1594 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1595 			  qdf_nbuf_t msdu, uint16_t num_segs)
1596 {
1597 }
1598 
1599 static inline
1600 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1601 				 struct qdf_tso_seg_elem_t *stats_seg,
1602 				 uint32_t stats_idx)
1603 {
1604 }
1605 
1606 static inline
1607 void dp_print_tso_stats(struct dp_soc *soc,
1608 			enum qdf_stats_verbosity_level level)
1609 {
1610 }
1611 
1612 static inline
1613 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1614 {
1615 }
1616 #endif /* FEATURE_TSO_STATS */
1617 
1618 /**
1619  * dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1620  * @peer: DP peer handle
1621  * @type: Requested stats type
1622  * @buf: Buffer to hold the value
1623  *
1624  * Return: status success/failure
1625  */
1626 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1627 						enum cdp_peer_stats_type type,
1628 						cdp_peer_stats_param_t *buf);
1629 
1630 /**
1631  * dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1632  * @peer: DP peer handle
1633  * @type: Requested stats type
1634  * @buf: Buffer to hold the value
1635  *
1636  * Return: status success/failure
1637  */
1638 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1639 					     enum cdp_peer_stats_type type,
1640 					     cdp_peer_stats_param_t *buf);
1641 
1642 #define DP_HTT_T2H_HP_PIPE 5
1643 /**
1644  * dp_update_pdev_stats(): Update the pdev stats
1645  * @tgtobj: pdev handle
1646  * @srcobj: vdev stats structure
1647  *
1648  * Update the pdev stats from the specified vdev stats
1649  *
1650  * Return: None
1651  */
1652 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1653 			  struct cdp_vdev_stats *srcobj);
1654 
1655 /**
1656  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1657  * @tgtobj: vdev handle
1658  *
1659  * Update the vdev ingress stats
1660  *
1661  * Return: None
1662  */
1663 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1664 
1665 /**
1666  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1667  * @tgtobj: tgt buffer for vdev stats
1668  * @srcobj: srcobj vdev stats
1669  *
1670  * Return: None
1671  */
1672 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1673 			       struct cdp_vdev_stats *srcobj);
1674 
1675 /**
1676  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1677  * @tgtobj: pdev handle
1678  * @srcobj: vdev stats structure
1679  *
1680  * Update the pdev ingress stats from the specified vdev stats
1681  *
1682  * Return: None
1683  */
1684 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1685 				  struct dp_vdev *srcobj);
1686 
1687 /**
1688  * dp_update_vdev_stats(): Update the vdev stats
1689  * @soc: soc handle
1690  * @srcobj: DP_PEER object
1691  * @arg: point to vdev stats structure
1692  *
1693  * Update the vdev stats from the specified peer stats
1694  *
1695  * Return: None
1696  */
1697 void dp_update_vdev_stats(struct dp_soc *soc,
1698 			  struct dp_peer *srcobj,
1699 			  void *arg);
1700 
1701 /**
1702  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1703  * @vdev: DP_VDEV handle
1704  * @peer: DP_PEER handle
1705  *
1706  * Return: None
1707  */
1708 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1709 					struct dp_peer *peer);
1710 
1711 #ifdef IPA_OFFLOAD
1712 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1713 { \
1714 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1715 }
1716 
1717 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1718 { \
1719 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1720 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1721 }
1722 #else
1723 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1724 
1725 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1726 #endif
1727 
1728 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1729 	do {				\
1730 		uint8_t i;		\
1731 		uint8_t pream_type;	\
1732 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1733 			for (i = 0; i < MAX_MCS; i++) { \
1734 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1735 					tx.pkt_type[pream_type].mcs_count[i]); \
1736 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1737 					rx.pkt_type[pream_type].mcs_count[i]); \
1738 			} \
1739 		} \
1740 		  \
1741 		for (i = 0; i < MAX_BW; i++) { \
1742 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1743 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1744 		} \
1745 		  \
1746 		for (i = 0; i < SS_COUNT; i++) { \
1747 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1748 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1749 		} \
1750 		for (i = 0; i < WME_AC_MAX; i++) { \
1751 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1752 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1753 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1754 				      tx.wme_ac_type_bytes[i]); \
1755 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1756 				      rx.wme_ac_type_bytes[i]); \
1757 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1758 		\
1759 		} \
1760 		\
1761 		for (i = 0; i < MAX_GI; i++) { \
1762 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1763 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1764 		} \
1765 		\
1766 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1767 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1768 		\
1769 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1770 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1771 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1772 		} \
1773 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1774 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1775 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1776 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1777 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1778 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1779 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1780 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1781 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1782 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1783 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1784 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1785 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1786 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1787 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1788 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1789 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1790 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1791 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1792 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1793 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1794 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1795 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1796 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1797 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1798 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1799 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1800 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1801 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1802 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1803 								\
1804 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1805 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1806 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1807 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1808 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1809 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1810 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1811 		if (_srcobj->stats.rx.snr != 0) \
1812 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1813 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1814 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1815 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1816 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1817 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1818 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1819 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1820 								\
1821 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1822 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1823 									\
1824 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1825 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1826 									\
1827 		_srcobj->stats.rx.unicast.num = \
1828 			_srcobj->stats.rx.to_stack.num - \
1829 					_srcobj->stats.rx.multicast.num; \
1830 		_srcobj->stats.rx.unicast.bytes = \
1831 			_srcobj->stats.rx.to_stack.bytes - \
1832 					_srcobj->stats.rx.multicast.bytes; \
1833 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1834 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1835 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1836 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1837 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1838 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1839 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1840 								  \
1841 		_tgtobj->stats.tx.last_ack_rssi =	\
1842 			_srcobj->stats.tx.last_ack_rssi; \
1843 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1844 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1845 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1846 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1847 	}  while (0)
1848 
1849 #ifdef VDEV_PEER_PROTOCOL_COUNT
1850 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1851 { \
1852 	uint8_t j; \
1853 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1854 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1855 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1856 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1857 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1858 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1859 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1860 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1861 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1862 	} \
1863 }
1864 #else
1865 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1866 #endif
1867 
1868 #ifdef WLAN_FEATURE_11BE
1869 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1870 	do { \
1871 		uint8_t i, mu_type; \
1872 		for (i = 0; i < MAX_MCS; i++) { \
1873 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1874 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1875 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1876 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1877 		} \
1878 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1879 			for (i = 0; i < MAX_MCS; i++) { \
1880 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1881 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1882 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1883 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1884 			} \
1885 		} \
1886 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1887 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1888 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1889 		} \
1890 	} while (0)
1891 #else
1892 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1893 #endif
1894 
1895 #define DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj) \
1896 	do { \
1897 		_tgtobj->tx.comp_pkt.num += _srcobj->tx.comp_pkt.num; \
1898 		_tgtobj->tx.comp_pkt.bytes += _srcobj->tx.comp_pkt.bytes; \
1899 		_tgtobj->tx.tx_failed += _srcobj->tx.tx_failed; \
1900 		_tgtobj->rx.to_stack.num += _srcobj->rx.to_stack.num; \
1901 		_tgtobj->rx.to_stack.bytes += _srcobj->rx.to_stack.bytes; \
1902 	} while (0)
1903 
1904 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1905 	do { \
1906 		uint8_t i; \
1907 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1908 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1909 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1910 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1911 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1912 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1913 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1914 		_tgtobj->tx.nawds_mcast.bytes += \
1915 					_srcobj->tx.nawds_mcast.bytes; \
1916 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1917 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1918 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1919 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1920 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1921 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1922 		_tgtobj->tx.dropped.fw_rem.num += \
1923 					_srcobj->tx.dropped.fw_rem.num; \
1924 		_tgtobj->tx.dropped.fw_rem.bytes += \
1925 					_srcobj->tx.dropped.fw_rem.bytes; \
1926 		_tgtobj->tx.dropped.fw_rem_notx += \
1927 					_srcobj->tx.dropped.fw_rem_notx; \
1928 		_tgtobj->tx.dropped.fw_rem_tx += \
1929 					_srcobj->tx.dropped.fw_rem_tx; \
1930 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1931 		_tgtobj->tx.dropped.fw_reason1 += \
1932 					_srcobj->tx.dropped.fw_reason1; \
1933 		_tgtobj->tx.dropped.fw_reason2 += \
1934 					_srcobj->tx.dropped.fw_reason2; \
1935 		_tgtobj->tx.dropped.fw_reason3 += \
1936 					_srcobj->tx.dropped.fw_reason3; \
1937 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1938 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1939 		_tgtobj->tx.dropped.fw_rem_no_match += \
1940 					_srcobj->tx.dropped.fw_rem_no_match; \
1941 		_tgtobj->tx.dropped.drop_threshold += \
1942 					_srcobj->tx.dropped.drop_threshold; \
1943 		_tgtobj->tx.dropped.drop_link_desc_na += \
1944 					_srcobj->tx.dropped.drop_link_desc_na; \
1945 		_tgtobj->tx.dropped.invalid_drop += \
1946 					_srcobj->tx.dropped.invalid_drop; \
1947 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1948 					_srcobj->tx.dropped.mcast_vdev_drop; \
1949 		_tgtobj->tx.dropped.invalid_rr += \
1950 					_srcobj->tx.dropped.invalid_rr; \
1951 		_tgtobj->tx.failed_retry_count += \
1952 					_srcobj->tx.failed_retry_count; \
1953 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1954 		_tgtobj->tx.multiple_retry_count += \
1955 					_srcobj->tx.multiple_retry_count; \
1956 		_tgtobj->tx.tx_success_twt.num += \
1957 					_srcobj->tx.tx_success_twt.num; \
1958 		_tgtobj->tx.tx_success_twt.bytes += \
1959 					_srcobj->tx.tx_success_twt.bytes; \
1960 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1961 		_tgtobj->tx.release_src_not_tqm += \
1962 					_srcobj->tx.release_src_not_tqm; \
1963 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1964 			_tgtobj->tx.no_ack_count[i] += \
1965 					_srcobj->tx.no_ack_count[i];\
1966 		} \
1967 		\
1968 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1969 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1970 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1971 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1972 		_tgtobj->rx.unicast.num += _srcobj->rx.unicast.num; \
1973 		_tgtobj->rx.unicast.bytes += _srcobj->rx.unicast.bytes; \
1974 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1975 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1976 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1977 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1978 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1979 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1980 		_tgtobj->rx.ppeds_drop.num += _srcobj->rx.ppeds_drop.num; \
1981 		_tgtobj->rx.ppeds_drop.bytes += _srcobj->rx.ppeds_drop.bytes; \
1982 		_tgtobj->rx.intra_bss.pkts.num += \
1983 					_srcobj->rx.intra_bss.pkts.num; \
1984 		_tgtobj->rx.intra_bss.pkts.bytes += \
1985 					_srcobj->rx.intra_bss.pkts.bytes; \
1986 		_tgtobj->rx.intra_bss.fail.num += \
1987 					_srcobj->rx.intra_bss.fail.num; \
1988 		_tgtobj->rx.intra_bss.fail.bytes += \
1989 					_srcobj->rx.intra_bss.fail.bytes; \
1990 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1991 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1992 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1993 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1994 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1995 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1996 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1997 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1998 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1999 					_srcobj->rx.err.rxdma_wifi_parse_err; \
2000 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
2001 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
2002 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
2003 		_tgtobj->rx.multipass_rx_pkt_drop += \
2004 					_srcobj->rx.multipass_rx_pkt_drop; \
2005 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
2006 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
2007 		_tgtobj->rx.policy_check_drop += \
2008 					_srcobj->rx.policy_check_drop; \
2009 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
2010 		_tgtobj->rx.to_stack_twt.bytes += \
2011 					_srcobj->rx.to_stack_twt.bytes; \
2012 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
2013 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
2014 			_tgtobj->rx.rcvd_reo[i].num += \
2015 					 _srcobj->rx.rcvd_reo[i].num; \
2016 			_tgtobj->rx.rcvd_reo[i].bytes += \
2017 					_srcobj->rx.rcvd_reo[i].bytes; \
2018 		} \
2019 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
2020 			_tgtobj->rx.rx_lmac[i].num += \
2021 					_srcobj->rx.rx_lmac[i].num; \
2022 			_tgtobj->rx.rx_lmac[i].bytes += \
2023 					_srcobj->rx.rx_lmac[i].bytes; \
2024 		} \
2025 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
2026 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
2027 	} while (0)
2028 
2029 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
2030 	do { \
2031 		uint8_t i, pream_type, mu_type; \
2032 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
2033 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
2034 		_tgtobj->tx.retries += _srcobj->tx.retries; \
2035 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
2036 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
2037 		_tgtobj->tx.num_ppdu_cookie_valid += \
2038 					_srcobj->tx.num_ppdu_cookie_valid; \
2039 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
2040 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
2041 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
2042 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
2043 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
2044 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
2045 		_tgtobj->tx.mcast_last_tx_rate = \
2046 					_srcobj->tx.mcast_last_tx_rate; \
2047 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
2048 					_srcobj->tx.mcast_last_tx_rate_mcs; \
2049 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
2050 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
2051 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
2052 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
2053 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
2054 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
2055 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
2056 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
2057 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
2058 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
2059 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
2060 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
2061 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
2062 		_tgtobj->tx.mpdu_success_with_retries += \
2063 					_srcobj->tx.mpdu_success_with_retries; \
2064 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
2065 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
2066 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
2067 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
2068 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2069 			for (i = 0; i < MAX_MCS; i++) \
2070 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
2071 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
2072 		} \
2073 		for (i = 0; i < WME_AC_MAX; i++) { \
2074 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
2075 			_tgtobj->tx.wme_ac_type_bytes[i] += \
2076 					_srcobj->tx.wme_ac_type_bytes[i]; \
2077 			_tgtobj->tx.excess_retries_per_ac[i] += \
2078 					_srcobj->tx.excess_retries_per_ac[i]; \
2079 		} \
2080 		for (i = 0; i < MAX_GI; i++) { \
2081 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2082 		} \
2083 		for (i = 0; i < SS_COUNT; i++) { \
2084 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2085 		} \
2086 		for (i = 0; i < MAX_BW; i++) { \
2087 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2088 		} \
2089 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2090 			_tgtobj->tx.ru_loc[i].num_msdu += \
2091 					_srcobj->tx.ru_loc[i].num_msdu; \
2092 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2093 					_srcobj->tx.ru_loc[i].num_mpdu; \
2094 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2095 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2096 		} \
2097 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2098 			_tgtobj->tx.transmit_type[i].num_msdu += \
2099 					_srcobj->tx.transmit_type[i].num_msdu; \
2100 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2101 					_srcobj->tx.transmit_type[i].num_mpdu; \
2102 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2103 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2104 		} \
2105 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2106 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2107 		} \
2108 		_tgtobj->tx.tx_ucast_total.num += \
2109 				_srcobj->tx.tx_ucast_total.num;\
2110 		_tgtobj->tx.tx_ucast_total.bytes += \
2111 				 _srcobj->tx.tx_ucast_total.bytes;\
2112 		_tgtobj->tx.tx_ucast_success.num += \
2113 				_srcobj->tx.tx_ucast_success.num; \
2114 		_tgtobj->tx.tx_ucast_success.bytes += \
2115 				_srcobj->tx.tx_ucast_success.bytes; \
2116 		\
2117 		for (i = 0; i < CDP_RSSI_CHAIN_LEN; i++) \
2118 			_tgtobj->tx.rssi_chain[i] = _srcobj->tx.rssi_chain[i]; \
2119 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2120 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2121 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2122 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2123 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2124 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2125 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2126 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2127 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2128 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2129 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2130 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2131 		_tgtobj->rx.rx_snr_measured_time = \
2132 					_srcobj->rx.rx_snr_measured_time; \
2133 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2134 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2135 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2136 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2137 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2138 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2139 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2140 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2141 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2142 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2143 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2144 			for (i = 0; i < MAX_MCS; i++) { \
2145 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2146 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2147 			} \
2148 		} \
2149 		for (i = 0; i < WME_AC_MAX; i++) { \
2150 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2151 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2152 					_srcobj->rx.wme_ac_type_bytes[i]; \
2153 		} \
2154 		for (i = 0; i < MAX_MCS; i++) { \
2155 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2156 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2157 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2158 		} \
2159 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2160 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2161 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2162 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2163 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2164 			for (i = 0; i < SS_COUNT; i++) \
2165 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2166 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2167 			for (i = 0; i < MAX_MCS; i++) \
2168 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2169 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2170 		} \
2171 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2172 			_tgtobj->rx.reception_type[i] += \
2173 					_srcobj->rx.reception_type[i]; \
2174 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2175 		} \
2176 		for (i = 0; i < MAX_GI; i++) { \
2177 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2178 		} \
2179 		for (i = 0; i < SS_COUNT; i++) { \
2180 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2181 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2182 		} \
2183 		for (i = 0; i < MAX_BW; i++) { \
2184 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2185 		} \
2186 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2187 	} while (0)
2188 
2189 #define DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj) \
2190 	do { \
2191 		DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj); \
2192 		DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj); \
2193 		DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj); \
2194 	} while (0)
2195 
2196 #define DP_UPDATE_INGRESS_STATS(_tgtobj, _srcobj) \
2197 	do { \
2198 		uint8_t i = 0; \
2199 		_tgtobj->tx_i.rcvd.num += _srcobj->tx_i.rcvd.num; \
2200 		_tgtobj->tx_i.rcvd.bytes += _srcobj->tx_i.rcvd.bytes; \
2201 		_tgtobj->tx_i.rcvd_in_fast_xmit_flow += \
2202 					_srcobj->tx_i.rcvd_in_fast_xmit_flow; \
2203 		for (i = 0; i < CDP_MAX_TX_DATA_RINGS; i++) { \
2204 			_tgtobj->tx_i.rcvd_per_core[i] += \
2205 					_srcobj->tx_i.rcvd_per_core[i]; \
2206 		} \
2207 		_tgtobj->tx_i.processed.num += _srcobj->tx_i.processed.num; \
2208 		_tgtobj->tx_i.processed.bytes += \
2209 						_srcobj->tx_i.processed.bytes; \
2210 		_tgtobj->tx_i.reinject_pkts.num += \
2211 					_srcobj->tx_i.reinject_pkts.num; \
2212 		_tgtobj->tx_i.reinject_pkts.bytes += \
2213 					_srcobj->tx_i.reinject_pkts.bytes; \
2214 		_tgtobj->tx_i.inspect_pkts.num += \
2215 					_srcobj->tx_i.inspect_pkts.num; \
2216 		_tgtobj->tx_i.inspect_pkts.bytes += \
2217 				_srcobj->tx_i.inspect_pkts.bytes; \
2218 		_tgtobj->tx_i.nawds_mcast.num += \
2219 					_srcobj->tx_i.nawds_mcast.num; \
2220 		_tgtobj->tx_i.nawds_mcast.bytes += \
2221 					_srcobj->tx_i.nawds_mcast.bytes; \
2222 		_tgtobj->tx_i.bcast.num += _srcobj->tx_i.bcast.num; \
2223 		_tgtobj->tx_i.bcast.bytes += _srcobj->tx_i.bcast.bytes; \
2224 		_tgtobj->tx_i.raw.raw_pkt.num += \
2225 					_srcobj->tx_i.raw.raw_pkt.num; \
2226 		_tgtobj->tx_i.raw.raw_pkt.bytes += \
2227 					_srcobj->tx_i.raw.raw_pkt.bytes; \
2228 		_tgtobj->tx_i.raw.dma_map_error += \
2229 					_srcobj->tx_i.raw.dma_map_error; \
2230 		_tgtobj->tx_i.raw.invalid_raw_pkt_datatype += \
2231 				_srcobj->tx_i.raw.invalid_raw_pkt_datatype; \
2232 		_tgtobj->tx_i.raw.num_frags_overflow_err += \
2233 				_srcobj->tx_i.raw.num_frags_overflow_err; \
2234 		_tgtobj->tx_i.sg.sg_pkt.num += _srcobj->tx_i.sg.sg_pkt.num; \
2235 		_tgtobj->tx_i.sg.sg_pkt.bytes += \
2236 					_srcobj->tx_i.sg.sg_pkt.bytes; \
2237 		_tgtobj->tx_i.sg.non_sg_pkts.num += \
2238 					_srcobj->tx_i.sg.non_sg_pkts.num; \
2239 		_tgtobj->tx_i.sg.non_sg_pkts.bytes += \
2240 					_srcobj->tx_i.sg.non_sg_pkts.bytes; \
2241 		_tgtobj->tx_i.sg.dropped_host.num += \
2242 					_srcobj->tx_i.sg.dropped_host.num; \
2243 		_tgtobj->tx_i.sg.dropped_host.bytes += \
2244 					_srcobj->tx_i.sg.dropped_host.bytes; \
2245 		_tgtobj->tx_i.sg.dropped_target += \
2246 					_srcobj->tx_i.sg.dropped_target; \
2247 		_tgtobj->tx_i.sg.dma_map_error += \
2248 					_srcobj->tx_i.sg.dma_map_error; \
2249 		_tgtobj->tx_i.mcast_en.mcast_pkt.num += \
2250 					_srcobj->tx_i.mcast_en.mcast_pkt.num; \
2251 		_tgtobj->tx_i.mcast_en.mcast_pkt.bytes += \
2252 				_srcobj->tx_i.mcast_en.mcast_pkt.bytes; \
2253 		_tgtobj->tx_i.mcast_en.dropped_map_error += \
2254 				_srcobj->tx_i.mcast_en.dropped_map_error; \
2255 		_tgtobj->tx_i.mcast_en.dropped_self_mac += \
2256 				_srcobj->tx_i.mcast_en.dropped_self_mac; \
2257 		_tgtobj->tx_i.mcast_en.dropped_send_fail += \
2258 				_srcobj->tx_i.mcast_en.dropped_send_fail; \
2259 		_tgtobj->tx_i.mcast_en.ucast += _srcobj->tx_i.mcast_en.ucast; \
2260 		_tgtobj->tx_i.mcast_en.fail_seg_alloc += \
2261 					_srcobj->tx_i.mcast_en.fail_seg_alloc; \
2262 		_tgtobj->tx_i.mcast_en.clone_fail += \
2263 					_srcobj->tx_i.mcast_en.clone_fail; \
2264 		_tgtobj->tx_i.igmp_mcast_en.igmp_rcvd += \
2265 				_srcobj->tx_i.igmp_mcast_en.igmp_rcvd; \
2266 		_tgtobj->tx_i.igmp_mcast_en.igmp_ucast_converted += \
2267 			_srcobj->tx_i.igmp_mcast_en.igmp_ucast_converted; \
2268 		_tgtobj->tx_i.dropped.desc_na.num += \
2269 				_srcobj->tx_i.dropped.desc_na.num; \
2270 		_tgtobj->tx_i.dropped.desc_na.bytes += \
2271 				_srcobj->tx_i.dropped.desc_na.bytes; \
2272 		_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.num += \
2273 			_srcobj->tx_i.dropped.desc_na_exc_alloc_fail.num; \
2274 		_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes += \
2275 			_srcobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes; \
2276 		_tgtobj->tx_i.dropped.desc_na_exc_outstand.num += \
2277 			_srcobj->tx_i.dropped.desc_na_exc_outstand.num; \
2278 		_tgtobj->tx_i.dropped.desc_na_exc_outstand.bytes += \
2279 			_srcobj->tx_i.dropped.desc_na_exc_outstand.bytes; \
2280 		_tgtobj->tx_i.dropped.exc_desc_na.num += \
2281 				_srcobj->tx_i.dropped.exc_desc_na.num; \
2282 		_tgtobj->tx_i.dropped.exc_desc_na.bytes += \
2283 				_srcobj->tx_i.dropped.exc_desc_na.bytes; \
2284 		_tgtobj->tx_i.dropped.ring_full += \
2285 					_srcobj->tx_i.dropped.ring_full; \
2286 		_tgtobj->tx_i.dropped.enqueue_fail += \
2287 					_srcobj->tx_i.dropped.enqueue_fail; \
2288 		_tgtobj->tx_i.dropped.dma_error += \
2289 					_srcobj->tx_i.dropped.dma_error; \
2290 		_tgtobj->tx_i.dropped.res_full += \
2291 					_srcobj->tx_i.dropped.res_full; \
2292 		_tgtobj->tx_i.dropped.headroom_insufficient += \
2293 				_srcobj->tx_i.dropped.headroom_insufficient; \
2294 		_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check += \
2295 			_srcobj->tx_i.dropped.fail_per_pkt_vdev_id_check; \
2296 		_tgtobj->tx_i.dropped.drop_ingress += \
2297 				_srcobj->tx_i.dropped.drop_ingress; \
2298 		_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path += \
2299 			_srcobj->tx_i.dropped.invalid_peer_id_in_exc_path; \
2300 		_tgtobj->tx_i.dropped.tx_mcast_drop += \
2301 					_srcobj->tx_i.dropped.tx_mcast_drop; \
2302 		_tgtobj->tx_i.dropped.fw2wbm_tx_drop += \
2303 					_srcobj->tx_i.dropped.fw2wbm_tx_drop; \
2304 		_tgtobj->tx_i.dropped.dropped_pkt.num = \
2305 			_tgtobj->tx_i.dropped.dma_error + \
2306 			_tgtobj->tx_i.dropped.ring_full + \
2307 			_tgtobj->tx_i.dropped.enqueue_fail + \
2308 			_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check + \
2309 			_tgtobj->tx_i.dropped.desc_na.num + \
2310 			_tgtobj->tx_i.dropped.res_full + \
2311 			_tgtobj->tx_i.dropped.drop_ingress + \
2312 			_tgtobj->tx_i.dropped.headroom_insufficient + \
2313 			_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path + \
2314 			_tgtobj->tx_i.dropped.tx_mcast_drop + \
2315 			_tgtobj->tx_i.dropped.fw2wbm_tx_drop; \
2316 		_tgtobj->tx_i.dropped.dropped_pkt.bytes += \
2317 				_srcobj->tx_i.dropped.dropped_pkt.bytes; \
2318 		_tgtobj->tx_i.mesh.exception_fw += \
2319 					_srcobj->tx_i.mesh.exception_fw; \
2320 		_tgtobj->tx_i.mesh.completion_fw += \
2321 					_srcobj->tx_i.mesh.completion_fw; \
2322 		_tgtobj->tx_i.cce_classified += \
2323 					_srcobj->tx_i.cce_classified; \
2324 		_tgtobj->tx_i.cce_classified_raw += \
2325 					_srcobj->tx_i.cce_classified_raw; \
2326 		_tgtobj->tx_i.sniffer_rcvd.num += \
2327 					_srcobj->tx_i.sniffer_rcvd.num; \
2328 		_tgtobj->tx_i.sniffer_rcvd.bytes += \
2329 					_srcobj->tx_i.sniffer_rcvd.bytes; \
2330 		_tgtobj->rx_i.reo_rcvd_pkt.num += \
2331 					_srcobj->rx_i.reo_rcvd_pkt.num; \
2332 		_tgtobj->rx_i.reo_rcvd_pkt.bytes += \
2333 					_srcobj->rx_i.reo_rcvd_pkt.bytes; \
2334 		_tgtobj->rx_i.null_q_desc_pkt.num += \
2335 					_srcobj->rx_i.null_q_desc_pkt.num; \
2336 		_tgtobj->rx_i.null_q_desc_pkt.bytes += \
2337 					_srcobj->rx_i.null_q_desc_pkt.bytes; \
2338 		_tgtobj->rx_i.routed_eapol_pkt.num += \
2339 					_srcobj->rx_i.routed_eapol_pkt.num; \
2340 		_tgtobj->rx_i.routed_eapol_pkt.bytes += \
2341 					_srcobj->rx_i.routed_eapol_pkt.bytes; \
2342 	} while (0)
2343 /**
2344  * dp_peer_find_attach() - Allocates memory for peer objects
2345  * @soc: SoC handle
2346  *
2347  * Return: QDF_STATUS
2348  */
2349 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2350 
2351 /**
2352  * dp_peer_find_detach() - Frees memory for peer objects
2353  * @soc: SoC handle
2354  *
2355  * Return: none
2356  */
2357 void dp_peer_find_detach(struct dp_soc *soc);
2358 
2359 /**
2360  * dp_peer_find_hash_add() - add peer to peer_hash_table
2361  * @soc: soc handle
2362  * @peer: peer handle
2363  *
2364  * Return: none
2365  */
2366 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2367 
2368 /**
2369  * dp_peer_find_hash_remove() - remove peer from peer_hash_table
2370  * @soc: soc handle
2371  * @peer: peer handle
2372  *
2373  * Return: none
2374  */
2375 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2376 
2377 /* unused?? */
2378 void dp_peer_find_hash_erase(struct dp_soc *soc);
2379 
2380 /**
2381  * dp_peer_vdev_list_add() - add peer into vdev's peer list
2382  * @soc: soc handle
2383  * @vdev: vdev handle
2384  * @peer: peer handle
2385  *
2386  * Return: none
2387  */
2388 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2389 			   struct dp_peer *peer);
2390 
2391 /**
2392  * dp_peer_vdev_list_remove() - remove peer from vdev's peer list
2393  * @soc: SoC handle
2394  * @vdev: VDEV handle
2395  * @peer: peer handle
2396  *
2397  * Return: none
2398  */
2399 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2400 			      struct dp_peer *peer);
2401 
2402 /**
2403  * dp_peer_find_id_to_obj_add() - Add peer into peer_id table
2404  * @soc: SoC handle
2405  * @peer: peer handle
2406  * @peer_id: peer_id
2407  *
2408  * Return: None
2409  */
2410 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2411 				struct dp_peer *peer,
2412 				uint16_t peer_id);
2413 
2414 /**
2415  * dp_txrx_peer_attach_add() - Attach txrx_peer and add it to peer_id table
2416  * @soc: SoC handle
2417  * @peer: peer handle
2418  * @txrx_peer: txrx peer handle
2419  *
2420  * Return: None
2421  */
2422 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2423 			     struct dp_peer *peer,
2424 			     struct dp_txrx_peer *txrx_peer);
2425 
2426 /**
2427  * dp_peer_find_id_to_obj_remove() - remove peer from peer_id table
2428  * @soc: SoC handle
2429  * @peer_id: peer_id
2430  *
2431  * Return: None
2432  */
2433 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2434 				   uint16_t peer_id);
2435 
2436 /**
2437  * dp_vdev_unref_delete() - check and process vdev delete
2438  * @soc: DP specific soc pointer
2439  * @vdev: DP specific vdev pointer
2440  * @mod_id: module id
2441  *
2442  */
2443 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2444 			  enum dp_mod_id mod_id);
2445 
2446 /**
2447  * dp_peer_ppdu_delayed_ba_cleanup() - free ppdu allocated in peer
2448  * @peer: Datapath peer
2449  *
2450  * Return: void
2451  */
2452 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2453 
2454 /**
2455  * dp_peer_rx_init() - Initialize receive TID state
2456  * @pdev: Datapath pdev
2457  * @peer: Datapath peer
2458  *
2459  */
2460 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2461 
2462 /**
2463  * dp_peer_cleanup() - Cleanup peer information
2464  * @vdev: Datapath vdev
2465  * @peer: Datapath peer
2466  *
2467  */
2468 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2469 
2470 #ifdef DP_PEER_EXTENDED_API
2471 /**
2472  * dp_register_peer() - Register peer into physical device
2473  * @soc_hdl: data path soc handle
2474  * @pdev_id: device instance id
2475  * @sta_desc: peer description
2476  *
2477  * Register peer into physical device
2478  *
2479  * Return: QDF_STATUS_SUCCESS registration success
2480  *         QDF_STATUS_E_FAULT peer not found
2481  */
2482 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2483 			    struct ol_txrx_desc_type *sta_desc);
2484 
2485 /**
2486  * dp_clear_peer() - remove peer from physical device
2487  * @soc_hdl: data path soc handle
2488  * @pdev_id: device instance id
2489  * @peer_addr: peer mac address
2490  *
2491  * remove peer from physical device
2492  *
2493  * Return: QDF_STATUS_SUCCESS registration success
2494  *         QDF_STATUS_E_FAULT peer not found
2495  */
2496 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2497 			 struct qdf_mac_addr peer_addr);
2498 
2499 /**
2500  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2501  * @soc_hdl: datapath soc handle
2502  * @vdev_id: vdev instance id
2503  * @peer_addr: peer mac address
2504  *
2505  * Return: true or false
2506  */
2507 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2508 				uint8_t *peer_addr);
2509 
2510 /**
2511  * dp_find_peer_exist_on_other_vdev - find if peer exists
2512  * on other than the given vdev
2513  * @soc_hdl: datapath soc handle
2514  * @vdev_id: vdev instance id
2515  * @peer_addr: peer mac address
2516  * @max_bssid: max number of bssids
2517  *
2518  * Return: true or false
2519  */
2520 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2521 				      uint8_t vdev_id, uint8_t *peer_addr,
2522 				      uint16_t max_bssid);
2523 
2524 /**
2525  * dp_peer_state_update() - update peer local state
2526  * @soc: datapath soc handle
2527  * @peer_mac: peer mac address
2528  * @state: new peer local state
2529  *
2530  * update peer local state
2531  *
2532  * Return: QDF_STATUS_SUCCESS registration success
2533  */
2534 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2535 				enum ol_txrx_peer_state state);
2536 
2537 /**
2538  * dp_get_vdevid() - Get virtual interface id which peer registered
2539  * @soc_hdl: datapath soc handle
2540  * @peer_mac: peer mac address
2541  * @vdev_id: virtual interface id which peer registered
2542  *
2543  * Get virtual interface id which peer registered
2544  *
2545  * Return: QDF_STATUS_SUCCESS registration success
2546  */
2547 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2548 			 uint8_t *vdev_id);
2549 
2550 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2551 		struct qdf_mac_addr peer_addr);
2552 
2553 /**
2554  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2555  * @peer: peer instance
2556  *
2557  * Get virtual interface instance which peer belongs
2558  *
2559  * Return: virtual interface instance pointer
2560  *         NULL in case cannot find
2561  */
2562 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2563 
2564 /**
2565  * dp_peer_get_peer_mac_addr() - Get peer mac address
2566  * @peer: peer instance
2567  *
2568  * Get peer mac address
2569  *
2570  * Return: peer mac address pointer
2571  *         NULL in case cannot find
2572  */
2573 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2574 
2575 /**
2576  * dp_get_peer_state() - Get local peer state
2577  * @soc: datapath soc handle
2578  * @vdev_id: vdev id
2579  * @peer_mac: peer mac addr
2580  *
2581  * Get local peer state
2582  *
2583  * Return: peer status
2584  */
2585 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2586 		      uint8_t *peer_mac);
2587 
2588 /**
2589  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2590  * @pdev: data path device instance
2591  *
2592  * local peer id pool alloc for physical device
2593  *
2594  * Return: none
2595  */
2596 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2597 
2598 /**
2599  * dp_local_peer_id_alloc() - allocate local peer id
2600  * @pdev: data path device instance
2601  * @peer: new peer instance
2602  *
2603  * allocate local peer id
2604  *
2605  * Return: none
2606  */
2607 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2608 
2609 /**
2610  * dp_local_peer_id_free() - remove local peer id
2611  * @pdev: data path device instance
2612  * @peer: peer instance should be removed
2613  *
2614  * remove local peer id
2615  *
2616  * Return: none
2617  */
2618 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2619 
2620 /**
2621  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2622  * @soc_hdl: datapath soc handle
2623  * @vdev_id: vdev_id
2624  * @peer_mac: peer mac addr
2625  * @val: tdls peer flag
2626  *
2627  * Return: none
2628  */
2629 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2630 			      uint8_t *peer_mac, bool val);
2631 #else
2632 static inline
2633 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2634 			 uint8_t *vdev_id)
2635 {
2636 	return QDF_STATUS_E_NOSUPPORT;
2637 }
2638 
2639 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2640 {
2641 }
2642 
2643 static inline
2644 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2645 {
2646 }
2647 
2648 static inline
2649 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2650 {
2651 }
2652 
2653 static inline
2654 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2655 			      uint8_t *peer_mac, bool val)
2656 {
2657 }
2658 #endif
2659 
2660 /**
2661  * dp_find_peer_exist - find peer if already exists
2662  * @soc_hdl: datapath soc handle
2663  * @pdev_id: physical device instance id
2664  * @peer_addr: peer mac address
2665  *
2666  * Return: true or false
2667  */
2668 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2669 			uint8_t *peer_addr);
2670 
2671 #ifdef DP_UMAC_HW_RESET_SUPPORT
2672 /**
2673  * dp_pause_reo_send_cmd() - Pause Reo send commands.
2674  * @soc: dp soc
2675  *
2676  * Return: none
2677  */
2678 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2679 
2680 /**
2681  * dp_resume_reo_send_cmd() - Resume Reo send commands.
2682  * @soc: dp soc
2683  *
2684  * Return: none
2685  */
2686 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2687 
2688 /**
2689  * dp_cleanup_reo_cmd_module - Clean up the reo cmd module
2690  * @soc: DP SoC handle
2691  *
2692  * Return: none
2693  */
2694 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2695 
2696 /**
2697  * dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
2698  * @soc: DP SOC handle
2699  *
2700  * Return: none
2701  */
2702 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2703 
2704 /**
2705  * dp_reset_rx_reo_tid_queue() - Reset the reo tid queues
2706  * @soc: dp soc
2707  * @hw_qdesc_vaddr: starting address of the tid queues
2708  * @size: size of the memory pointed to by hw_qdesc_vaddr
2709  *
2710  * Return: none
2711  */
2712 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2713 			       uint32_t size);
2714 
2715 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2716 /**
2717  * dp_umac_reset_complete_umac_recovery() - Complete Umac reset session
2718  * @soc: dp soc handle
2719  *
2720  * Return: void
2721  */
2722 void dp_umac_reset_complete_umac_recovery(struct dp_soc *soc);
2723 
2724 /**
2725  * dp_umac_reset_initiate_umac_recovery() - Initiate Umac reset session
2726  * @soc: dp soc handle
2727  * @umac_reset_ctx: Umac reset context
2728  * @rx_event: Rx event received
2729  * @is_target_recovery: Flag to indicate if it is triggered for target recovery
2730  *
2731  * Return: status
2732  */
2733 QDF_STATUS dp_umac_reset_initiate_umac_recovery(struct dp_soc *soc,
2734 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2735 				enum umac_reset_rx_event rx_event,
2736 				bool is_target_recovery);
2737 
2738 /**
2739  * dp_umac_reset_handle_action_cb() - Function to call action callback
2740  * @soc: dp soc handle
2741  * @umac_reset_ctx: Umac reset context
2742  * @action: Action to call the callback for
2743  *
2744  * Return: QDF_STATUS status
2745  */
2746 QDF_STATUS dp_umac_reset_handle_action_cb(struct dp_soc *soc,
2747 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2748 				enum umac_reset_action action);
2749 
2750 /**
2751  * dp_umac_reset_post_tx_cmd() - Iterate partner socs and post Tx command
2752  * @umac_reset_ctx: UMAC reset context
2753  * @tx_cmd: Tx command to be posted
2754  *
2755  * Return: QDF status of operation
2756  */
2757 QDF_STATUS
2758 dp_umac_reset_post_tx_cmd(struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2759 			  enum umac_reset_tx_cmd tx_cmd);
2760 
2761 /**
2762  * dp_umac_reset_initiator_check() - Check if soc is the Umac reset initiator
2763  * @soc: dp soc handle
2764  *
2765  * Return: true if the soc is initiator or false otherwise
2766  */
2767 bool dp_umac_reset_initiator_check(struct dp_soc *soc);
2768 
2769 /**
2770  * dp_umac_reset_target_recovery_check() - Check if this is for target recovery
2771  * @soc: dp soc handle
2772  *
2773  * Return: true if the session is for target recovery or false otherwise
2774  */
2775 bool dp_umac_reset_target_recovery_check(struct dp_soc *soc);
2776 
2777 /**
2778  * dp_umac_reset_is_soc_ignored() - Check if this soc is to be ignored
2779  * @soc: dp soc handle
2780  *
2781  * Return: true if the soc is ignored or false otherwise
2782  */
2783 bool dp_umac_reset_is_soc_ignored(struct dp_soc *soc);
2784 
2785 /**
2786  * dp_mlo_umac_reset_stats_print() - API to print MLO umac reset stats
2787  * @soc: dp soc handle
2788  *
2789  * Return: QDF_STATUS
2790  */
2791 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc);
2792 #else
2793 static inline
2794 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc)
2795 {
2796 	return QDF_STATUS_SUCCESS;
2797 }
2798 #endif
2799 
2800 #endif
2801 
2802 #if defined(DP_UMAC_HW_RESET_SUPPORT) && defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2803 /**
2804  * dp_umac_reset_notify_asserted_soc() - API to notify the asserted SOC
2805  * @soc: dp soc
2806  *
2807  * Return: QDF_STATUS
2808  */
2809 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc);
2810 
2811 /**
2812  * dp_umac_reset_is_inprogress() - Check if umac reset is in progress
2813  * @psoc: dp soc handle
2814  *
2815  * Return: true if umac reset is in progress, else false.
2816  */
2817 bool dp_umac_reset_is_inprogress(struct cdp_soc_t *psoc);
2818 #else
2819 static inline
2820 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc)
2821 {
2822 	return QDF_STATUS_SUCCESS;
2823 }
2824 
2825 static inline
2826 bool dp_umac_reset_is_inprogress(struct cdp_soc_t *psoc)
2827 {
2828 	return false;
2829 }
2830 #endif
2831 
2832 #ifndef WLAN_SOFTUMAC_SUPPORT
2833 QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc, enum hal_reo_cmd_type type,
2834 			   struct hal_reo_cmd_params *params,
2835 			   void (*callback_fn), void *data);
2836 
2837 /**
2838  * dp_reo_cmdlist_destroy() - Free REO commands in the queue
2839  * @soc: DP SoC handle
2840  *
2841  * Return: none
2842  */
2843 void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2844 
2845 /**
2846  * dp_reo_status_ring_handler() - Handler for REO Status ring
2847  * @int_ctx: pointer to DP interrupt context
2848  * @soc: DP Soc handle
2849  *
2850  * Return: Number of descriptors reaped
2851  */
2852 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2853 				    struct dp_soc *soc);
2854 #endif
2855 
2856 /**
2857  * dp_aggregate_vdev_stats() - Consolidate stats at VDEV level
2858  * @vdev: DP VDEV handle
2859  * @vdev_stats: aggregate statistics
2860  *
2861  * return: void
2862  */
2863 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2864 			     struct cdp_vdev_stats *vdev_stats);
2865 
2866 /**
2867  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
2868  * @soc_hdl: CDP SoC handle
2869  * @vdev_id: vdev Id
2870  * @buf: buffer for vdev stats
2871  * @is_aggregate: are aggregate stats being collected
2872  *
2873  * Return: QDF_STATUS
2874  */
2875 QDF_STATUS
2876 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2877 		       void *buf, bool is_aggregate);
2878 
2879 /**
2880  * dp_rx_bar_stats_cb() - BAR received stats callback
2881  * @soc: SOC handle
2882  * @cb_ctxt: Call back context
2883  * @reo_status: Reo status
2884  *
2885  * Return: void
2886  */
2887 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2888 			union hal_reo_status *reo_status);
2889 
2890 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2891 				     qdf_nbuf_t nbuf,
2892 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2893 				     uint8_t new_mac_cnt, uint8_t tid,
2894 				     bool is_igmp, bool is_dms_pkt);
2895 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2896 
2897 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2898 
2899 /**
2900  * dp_h2t_ext_stats_msg_send(): function to construct HTT message to pass to FW
2901  * @pdev: DP PDEV handle
2902  * @stats_type_upload_mask: stats type requested by user
2903  * @config_param_0: extra configuration parameters
2904  * @config_param_1: extra configuration parameters
2905  * @config_param_2: extra configuration parameters
2906  * @config_param_3: extra configuration parameters
2907  * @cookie:
2908  * @cookie_msb:
2909  * @mac_id: mac number
2910  *
2911  * Return: QDF STATUS
2912  */
2913 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2914 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2915 		uint32_t config_param_1, uint32_t config_param_2,
2916 		uint32_t config_param_3, int cookie, int cookie_msb,
2917 		uint8_t mac_id);
2918 
2919 /**
2920  * dp_htt_stats_print_tag() - function to select the tag type and
2921  * print the corresponding tag structure
2922  * @pdev: pdev pointer
2923  * @tag_type: tag type that is to be printed
2924  * @tag_buf: pointer to the tag structure
2925  *
2926  * Return: void
2927  */
2928 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2929 			    uint8_t tag_type, uint32_t *tag_buf);
2930 
2931 /**
2932  * dp_htt_stats_copy_tag() - function to select the tag type and
2933  * copy the corresponding tag structure
2934  * @pdev: DP_PDEV handle
2935  * @tag_type: tag type that is to be printed
2936  * @tag_buf: pointer to the tag structure
2937  *
2938  * Return: void
2939  */
2940 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2941 
2942 /**
2943  * dp_h2t_3tuple_config_send(): function to construct 3 tuple configuration
2944  * HTT message to pass to FW
2945  * @pdev: DP PDEV handle
2946  * @tuple_mask: tuple configuration to report 3 tuple hash value in either
2947  * toeplitz_2_or_4 or flow_id_toeplitz in MSDU START TLV.
2948  *
2949  * tuple_mask[1:0]:
2950  *   00 - Do not report 3 tuple hash value
2951  *   10 - Report 3 tuple hash value in toeplitz_2_or_4
2952  *   01 - Report 3 tuple hash value in flow_id_toeplitz
2953  *   11 - Report 3 tuple hash value in both toeplitz_2_or_4 & flow_id_toeplitz
2954  * @mac_id: MAC ID
2955  *
2956  * Return: QDF STATUS
2957  */
2958 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2959 				     uint8_t mac_id);
2960 
2961 #ifdef IPA_OFFLOAD
2962 /**
2963  * dp_peer_update_tid_stats_from_reo() - update rx pkt and byte count from reo
2964  * @soc: soc handle
2965  * @cb_ctxt: combination of peer_id and tid
2966  * @reo_status: reo status
2967  *
2968  * Return: void
2969  */
2970 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2971 				       union hal_reo_status *reo_status);
2972 
2973 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2974 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2975 #ifdef IPA_OPT_WIFI_DP
2976 void dp_ipa_wdi_opt_dpath_notify_flt_rlsd(int flt0_rslt,
2977 					  int flt1_rslt);
2978 void dp_ipa_wdi_opt_dpath_notify_flt_add_rem_cb(int flt0_rslt, int flt1_rslt);
2979 void dp_ipa_wdi_opt_dpath_notify_flt_rsvd(bool is_success);
2980 #endif
2981 #ifdef QCA_ENHANCED_STATS_SUPPORT
2982 /**
2983  * dp_peer_aggregate_tid_stats - aggregate rx tid stats
2984  * @peer: Data Path peer
2985  *
2986  * Return: void
2987  */
2988 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
2989 #endif
2990 #else
2991 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
2992 {
2993 }
2994 #endif
2995 
2996 /**
2997  * dp_set_key_sec_type_wifi3() - set security mode of key
2998  * @soc: Datapath soc handle
2999  * @vdev_id: id of atapath vdev
3000  * @peer_mac: Datapath peer mac address
3001  * @sec_type: security type
3002  * @is_unicast: key type
3003  *
3004  */
3005 QDF_STATUS
3006 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
3007 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
3008 			  bool is_unicast);
3009 
3010 /**
3011  * dp_get_pdev_for_mac_id() -  Return pdev for mac_id
3012  * @soc: handle to DP soc
3013  * @mac_id: MAC id
3014  *
3015  * Return: Return pdev corresponding to MAC
3016  */
3017 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
3018 
3019 QDF_STATUS
3020 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
3021 		   uint8_t *peer_mac,
3022 		   bool is_unicast, uint32_t *key);
3023 
3024 /**
3025  * dp_check_pdev_exists() - Validate pdev before use
3026  * @soc: dp soc handle
3027  * @data: pdev handle
3028  *
3029  * Return: 0 - success/invalid - failure
3030  */
3031 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
3032 
3033 /**
3034  * dp_update_delay_stats() - Update delay statistics in structure
3035  *				and fill min, max and avg delay
3036  * @tstats: tid tx stats
3037  * @rstats: tid rx stats
3038  * @delay: delay in ms
3039  * @tid: tid value
3040  * @mode: type of tx delay mode
3041  * @ring_id: ring number
3042  * @delay_in_us: flag to indicate whether the delay is in ms or us
3043  *
3044  * Return: none
3045  */
3046 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
3047 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
3048 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
3049 			   bool delay_in_us);
3050 
3051 /**
3052  * dp_print_ring_stats(): Print tail and head pointer
3053  * @pdev: DP_PDEV handle
3054  *
3055  * Return: void
3056  */
3057 void dp_print_ring_stats(struct dp_pdev *pdev);
3058 
3059 /**
3060  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
3061  * @soc: soc handle
3062  * @srng: srng handle
3063  * @ring_type: ring type
3064  *
3065  * Return: void
3066  */
3067 void
3068 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
3069 			    enum hal_ring_type ring_type);
3070 
3071 /**
3072  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
3073  * @pdev: DP pdev handle
3074  *
3075  * Return: void
3076  */
3077 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
3078 
3079 /**
3080  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
3081  * @soc: Soc handle
3082  *
3083  * Return: void
3084  */
3085 void dp_print_soc_cfg_params(struct dp_soc *soc);
3086 
3087 /**
3088  * dp_srng_get_str_from_hal_ring_type() - Return string name for a ring
3089  * @ring_type: Ring
3090  *
3091  * Return: char const pointer
3092  */
3093 const
3094 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
3095 
3096 /**
3097  * dp_txrx_path_stats() - Function to display dump stats
3098  * @soc: soc handle
3099  *
3100  * Return: none
3101  */
3102 void dp_txrx_path_stats(struct dp_soc *soc);
3103 
3104 /**
3105  * dp_print_per_ring_stats(): Packet count per ring
3106  * @soc: soc handle
3107  *
3108  * Return: None
3109  */
3110 void dp_print_per_ring_stats(struct dp_soc *soc);
3111 
3112 /**
3113  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
3114  * @pdev: DP PDEV handle
3115  *
3116  * Return: void
3117  */
3118 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
3119 
3120 /**
3121  * dp_print_rx_rates(): Print Rx rate stats
3122  * @vdev: DP_VDEV handle
3123  *
3124  * Return:void
3125  */
3126 void dp_print_rx_rates(struct dp_vdev *vdev);
3127 
3128 /**
3129  * dp_print_tx_rates(): Print tx rates
3130  * @vdev: DP_VDEV handle
3131  *
3132  * Return:void
3133  */
3134 void dp_print_tx_rates(struct dp_vdev *vdev);
3135 
3136 /**
3137  * dp_print_peer_stats():print peer stats
3138  * @peer: DP_PEER handle
3139  * @peer_stats: buffer holding peer stats
3140  *
3141  * return void
3142  */
3143 void dp_print_peer_stats(struct dp_peer *peer,
3144 			 struct cdp_peer_stats *peer_stats);
3145 
3146 /**
3147  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
3148  * @pdev: DP_PDEV Handle
3149  *
3150  * Return:void
3151  */
3152 void
3153 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
3154 
3155 /**
3156  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
3157  * @pdev: DP_PDEV Handle
3158  *
3159  * Return: void
3160  */
3161 void
3162 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
3163 
3164 /**
3165  * dp_print_soc_tx_stats(): Print SOC level  stats
3166  * @soc: DP_SOC Handle
3167  *
3168  * Return: void
3169  */
3170 void dp_print_soc_tx_stats(struct dp_soc *soc);
3171 
3172 #ifdef QCA_SUPPORT_DP_GLOBAL_CTX
3173 /**
3174  * dp_print_global_desc_count(): Print global desc in use
3175  *
3176  * Return: void
3177  */
3178 void dp_print_global_desc_count(void);
3179 #else
3180 /**
3181  * dp_print_global_desc_count(): Print global desc in use
3182  *
3183  * Return: void
3184  */
3185 static inline
3186 void dp_print_global_desc_count(void)
3187 {
3188 }
3189 #endif
3190 
3191 /**
3192  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
3193  * @soc: dp_soc handle
3194  *
3195  * Return: None
3196  */
3197 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
3198 
3199 /**
3200  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
3201  * @soc: dp_soc handle
3202  *
3203  * Return: None
3204  */
3205 
3206 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
3207 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
3208 /**
3209  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
3210  *				  for all SRNGs
3211  * @soc: DP soc handle
3212  * @srng_mask: SRNGs mask for dumping usage watermark stats
3213  *
3214  * Return: None
3215  */
3216 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
3217 #else
3218 static inline
3219 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
3220 {
3221 }
3222 #endif
3223 
3224 /**
3225  * dp_print_soc_rx_stats() - Print SOC level Rx stats
3226  * @soc: DP_SOC Handle
3227  *
3228  * Return: void
3229  */
3230 void dp_print_soc_rx_stats(struct dp_soc *soc);
3231 
3232 /**
3233  * dp_get_mac_id_for_pdev() - Return mac corresponding to pdev for mac
3234  *
3235  * @mac_id: MAC id
3236  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3237  *
3238  * Single pdev using both MACs will operate on both MAC rings,
3239  * which is the case for MCL.
3240  * For WIN each PDEV will operate one ring, so index is zero.
3241  *
3242  */
3243 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
3244 {
3245 	if (mac_id && pdev_id) {
3246 		qdf_print("Both mac_id and pdev_id cannot be non zero");
3247 		QDF_BUG(0);
3248 		return 0;
3249 	}
3250 	return (mac_id + pdev_id);
3251 }
3252 
3253 /**
3254  * dp_get_lmac_id_for_pdev_id() - Return lmac id corresponding to host pdev id
3255  * @soc: soc pointer
3256  * @mac_id: MAC id
3257  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3258  *
3259  * For MCL, Single pdev using both MACs will operate on both MAC rings.
3260  *
3261  * For WIN, each PDEV will operate one ring.
3262  *
3263  */
3264 static inline int
3265 dp_get_lmac_id_for_pdev_id
3266 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
3267 {
3268 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3269 		if (mac_id && pdev_id) {
3270 			qdf_print("Both mac_id and pdev_id cannot be non zero");
3271 			QDF_BUG(0);
3272 			return 0;
3273 		}
3274 		return (mac_id + pdev_id);
3275 	}
3276 
3277 	return soc->pdev_list[pdev_id]->lmac_id;
3278 }
3279 
3280 /**
3281  * dp_get_pdev_for_lmac_id() - Return pdev pointer corresponding to lmac id
3282  * @soc: soc pointer
3283  * @lmac_id: LMAC id
3284  *
3285  * For MCL, Single pdev exists
3286  *
3287  * For WIN, each PDEV will operate one ring.
3288  *
3289  */
3290 static inline struct dp_pdev *
3291 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
3292 {
3293 	uint8_t i = 0;
3294 
3295 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3296 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
3297 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
3298 	}
3299 
3300 	/* Typically for MCL as there only 1 PDEV*/
3301 	return soc->pdev_list[0];
3302 }
3303 
3304 /**
3305  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
3306  *                                          corresponding to host pdev id
3307  * @soc: soc pointer
3308  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3309  *
3310  * Return: target pdev_id for host pdev id. For WIN, this is derived through
3311  * a two step process:
3312  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
3313  *    during mode switch)
3314  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
3315  *
3316  * For MCL, return the offset-1 translated mac_id
3317  */
3318 static inline int
3319 dp_calculate_target_pdev_id_from_host_pdev_id
3320 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3321 {
3322 	struct dp_pdev *pdev;
3323 
3324 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3325 		return DP_SW2HW_MACID(mac_for_pdev);
3326 
3327 	pdev = soc->pdev_list[mac_for_pdev];
3328 
3329 	/*non-MCL case, get original target_pdev mapping*/
3330 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
3331 }
3332 
3333 /**
3334  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
3335  *                                         to host pdev id
3336  * @soc: soc pointer
3337  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3338  *
3339  * Return: target pdev_id for host pdev id.
3340  * For WIN, return the value stored in pdev object.
3341  * For MCL, return the offset-1 translated mac_id.
3342  */
3343 static inline int
3344 dp_get_target_pdev_id_for_host_pdev_id
3345 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3346 {
3347 	struct dp_pdev *pdev;
3348 
3349 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3350 		return DP_SW2HW_MACID(mac_for_pdev);
3351 
3352 	pdev = soc->pdev_list[mac_for_pdev];
3353 
3354 	return pdev->target_pdev_id;
3355 }
3356 
3357 /**
3358  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
3359  *                                         to target pdev id
3360  * @soc: soc pointer
3361  * @pdev_id: pdev_id corresponding to target pdev
3362  *
3363  * Return: host pdev_id for target pdev id. For WIN, this is derived through
3364  * a two step process:
3365  * 1. Get lmac_id corresponding to target pdev_id
3366  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
3367  *
3368  * For MCL, return the 0-offset pdev_id
3369  */
3370 static inline int
3371 dp_get_host_pdev_id_for_target_pdev_id
3372 	(struct dp_soc *soc, uint32_t pdev_id)
3373 {
3374 	struct dp_pdev *pdev;
3375 	int lmac_id;
3376 
3377 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3378 		return DP_HW2SW_MACID(pdev_id);
3379 
3380 	/*non-MCL case, get original target_lmac mapping from target pdev*/
3381 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
3382 					  DP_HW2SW_MACID(pdev_id));
3383 
3384 	/*Get host pdev from lmac*/
3385 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
3386 
3387 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
3388 }
3389 
3390 /**
3391  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
3392  *
3393  * @soc: handle to DP soc
3394  * @mac_id: MAC id
3395  *
3396  * Single pdev using both MACs will operate on both MAC rings,
3397  * which is the case for MCL.
3398  * For WIN each PDEV will operate one ring, so index is zero.
3399  *
3400  */
3401 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
3402 {
3403 	/*
3404 	 * Single pdev using both MACs will operate on both MAC rings,
3405 	 * which is the case for MCL.
3406 	 */
3407 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3408 		return mac_id;
3409 
3410 	/* For WIN each PDEV will operate one ring, so index is zero. */
3411 	return 0;
3412 }
3413 
3414 /**
3415  * dp_is_subtype_data() - check if the frame subtype is data
3416  *
3417  * @frame_ctrl: Frame control field
3418  *
3419  * check the frame control field and verify if the packet
3420  * is a data packet.
3421  *
3422  * Return: true or false
3423  */
3424 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
3425 {
3426 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
3427 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
3428 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3429 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
3430 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3431 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
3432 		return true;
3433 	}
3434 
3435 	return false;
3436 }
3437 
3438 #ifdef WDI_EVENT_ENABLE
3439 /**
3440  * dp_h2t_cfg_stats_msg_send(): function to construct HTT message to pass to FW
3441  * @pdev: DP PDEV handle
3442  * @stats_type_upload_mask: stats type requested by user
3443  * @mac_id: Mac id number
3444  *
3445  * return: QDF STATUS
3446  */
3447 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3448 				uint32_t stats_type_upload_mask,
3449 				uint8_t mac_id);
3450 
3451 /**
3452  * dp_wdi_event_unsub() - WDI event unsubscribe
3453  * @soc: soc handle
3454  * @pdev_id: id of pdev
3455  * @event_cb_sub_handle: subscribed event handle
3456  * @event: Event to be unsubscribe
3457  *
3458  * Return: 0 for success. nonzero for failure.
3459  */
3460 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3461 		       wdi_event_subscribe *event_cb_sub_handle,
3462 		       uint32_t event);
3463 
3464 /**
3465  * dp_wdi_event_sub() - Subscribe WDI event
3466  * @soc: soc handle
3467  * @pdev_id: id of pdev
3468  * @event_cb_sub_handle: subscribe event handle
3469  * @event: Event to be subscribe
3470  *
3471  * Return: 0 for success. nonzero for failure.
3472  */
3473 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3474 		     wdi_event_subscribe *event_cb_sub_handle,
3475 		     uint32_t event);
3476 
3477 /**
3478  * dp_wdi_event_handler() - Event handler for WDI event
3479  * @event: wdi event number
3480  * @soc: soc handle
3481  * @data: pointer to data
3482  * @peer_id: peer id number
3483  * @status: HTT rx status
3484  * @pdev_id: id of pdev
3485  *
3486  * It will be called to register WDI event
3487  *
3488  * Return: None
3489  */
3490 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
3491 			  void *data, u_int16_t peer_id,
3492 			  int status, u_int8_t pdev_id);
3493 
3494 /**
3495  * dp_wdi_event_attach() - Attach wdi event
3496  * @txrx_pdev: DP pdev handle
3497  *
3498  * Return: 0 for success. nonzero for failure.
3499  */
3500 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
3501 
3502 /**
3503  * dp_wdi_event_detach() - Detach WDI event
3504  * @txrx_pdev: DP pdev handle
3505  *
3506  * Return: 0 for success. nonzero for failure.
3507  */
3508 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
3509 
3510 static inline void
3511 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
3512 			    void *cb_context,
3513 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3514 			    uint8_t pipe_id)
3515 {
3516 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
3517 
3518 	/* TODO: Temporary change to bypass HTC connection for this new
3519 	 * HIF pipe, which will be used for packet log and other high-
3520 	 * priority HTT messages. Proper HTC connection to be added
3521 	 * later once required FW changes are available
3522 	 */
3523 	hif_pipe_callbacks.rxCompletionHandler = callback;
3524 	hif_pipe_callbacks.Context = cb_context;
3525 	hif_update_pipe_callback(dp_soc->hif_handle,
3526 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
3527 }
3528 #else
3529 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3530 				     wdi_event_subscribe *event_cb_sub_handle,
3531 				     uint32_t event)
3532 {
3533 	return 0;
3534 }
3535 
3536 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3537 				   wdi_event_subscribe *event_cb_sub_handle,
3538 				   uint32_t event)
3539 {
3540 	return 0;
3541 }
3542 
3543 static inline
3544 void dp_wdi_event_handler(enum WDI_EVENT event,
3545 			  struct dp_soc *soc,
3546 			  void *data, u_int16_t peer_id,
3547 			  int status, u_int8_t pdev_id)
3548 {
3549 }
3550 
3551 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
3552 {
3553 	return 0;
3554 }
3555 
3556 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
3557 {
3558 	return 0;
3559 }
3560 
3561 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3562 		uint32_t stats_type_upload_mask, uint8_t mac_id)
3563 {
3564 	return 0;
3565 }
3566 
3567 static inline void
3568 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
3569 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3570 			    uint8_t pipe_id)
3571 {
3572 }
3573 #endif
3574 
3575 #ifdef VDEV_PEER_PROTOCOL_COUNT
3576 /**
3577  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3578  * @vdev: VDEV DP object
3579  * @nbuf: data packet
3580  * @txrx_peer: DP TXRX Peer object
3581  * @is_egress: whether egress or ingress
3582  * @is_rx: whether rx or tx
3583  *
3584  * This function updates the per-peer protocol counters
3585  * Return: void
3586  */
3587 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
3588 					    qdf_nbuf_t nbuf,
3589 					    struct dp_txrx_peer *txrx_peer,
3590 					    bool is_egress,
3591 					    bool is_rx);
3592 
3593 /**
3594  * dp_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3595  * @soc: SOC DP object
3596  * @vdev_id: vdev_id
3597  * @nbuf: data packet
3598  * @is_egress: whether egress or ingress
3599  * @is_rx: whether rx or tx
3600  *
3601  * This function updates the per-peer protocol counters
3602  *
3603  * Return: void
3604  */
3605 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
3606 				       int8_t vdev_id,
3607 				       qdf_nbuf_t nbuf,
3608 				       bool is_egress,
3609 				       bool is_rx);
3610 
3611 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3612 					       qdf_nbuf_t nbuf);
3613 
3614 #else
3615 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
3616 					       is_egress, is_rx)
3617 
3618 static inline
3619 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3620 					       qdf_nbuf_t nbuf)
3621 {
3622 }
3623 
3624 #endif
3625 
3626 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3627 /**
3628  * dp_tx_dump_flow_pool_info() - dump global_pool and flow_pool info
3629  * @soc_hdl: Handle to struct cdp_soc
3630  *
3631  * Return: none
3632  */
3633 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
3634 
3635 /**
3636  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
3637  * @soc: DP soc context
3638  *
3639  * Return: none
3640  */
3641 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3642 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3643 	bool force);
3644 #else
3645 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3646 {
3647 }
3648 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3649 
3650 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3651 static inline int
3652 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3653 {
3654 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3655 }
3656 
3657 static inline void
3658 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3659 {
3660 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3661 }
3662 
3663 #else
3664 static inline int
3665 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3666 {
3667 	return hal_srng_access_start(soc, hal_ring_hdl);
3668 }
3669 
3670 static inline void
3671 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3672 {
3673 	hal_srng_access_end(soc, hal_ring_hdl);
3674 }
3675 #endif
3676 
3677 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
3678 /**
3679  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
3680  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3681  * @dp_soc: DP Soc handle
3682  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3683  *                serviced
3684  *
3685  * Return: 0 on success; error on failure
3686  */
3687 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3688 			 hal_ring_handle_t hal_ring_hdl);
3689 
3690 /**
3691  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
3692  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3693  * @dp_soc: DP Soc handle
3694  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3695  *                serviced
3696  *
3697  * Return: void
3698  */
3699 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3700 			hal_ring_handle_t hal_ring_hdl);
3701 
3702 #else
3703 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
3704 				       struct dp_soc *dp_soc,
3705 				       hal_ring_handle_t hal_ring_hdl)
3706 {
3707 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3708 
3709 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
3710 }
3711 
3712 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
3713 				      struct dp_soc *dp_soc,
3714 				      hal_ring_handle_t hal_ring_hdl)
3715 {
3716 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3717 
3718 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
3719 }
3720 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
3721 
3722 #ifdef QCA_CACHED_RING_DESC
3723 /**
3724  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
3725  * @dp_soc: DP Soc handle
3726  * @hal_ring_hdl: opaque pointer to the HAL Destination Ring
3727  *
3728  * Return: HAL ring descriptor
3729  */
3730 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3731 					 hal_ring_handle_t hal_ring_hdl)
3732 {
3733 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3734 
3735 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
3736 }
3737 
3738 /**
3739  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
3740  * descriptors
3741  * @dp_soc: DP Soc handle
3742  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3743  * @num_entries: Entry count
3744  *
3745  * Return: None
3746  */
3747 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3748 						hal_ring_handle_t hal_ring_hdl,
3749 						uint32_t num_entries)
3750 {
3751 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3752 
3753 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
3754 }
3755 #else
3756 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3757 					 hal_ring_handle_t hal_ring_hdl)
3758 {
3759 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3760 
3761 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3762 }
3763 
3764 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3765 						hal_ring_handle_t hal_ring_hdl,
3766 						uint32_t num_entries)
3767 {
3768 }
3769 #endif /* QCA_CACHED_RING_DESC */
3770 
3771 #if defined(QCA_CACHED_RING_DESC) && \
3772 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3773 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3774 /**
3775  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3776  * @hal_soc: HAL SOC handle
3777  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3778  * @num_entries: Entry count
3779  *
3780  * Return: None
3781  */
3782 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3783 					 hal_ring_handle_t hal_ring_hdl,
3784 					 uint32_t num_entries)
3785 {
3786 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3787 }
3788 
3789 /**
3790  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3791  *					 32 byte descriptor starting at
3792  *					 64 byte offset
3793  * @hal_soc: HAL SOC handle
3794  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3795  * @num_entries: Entry count
3796  *
3797  * Return: None
3798  */
3799 static inline
3800 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3801 					hal_ring_handle_t hal_ring_hdl,
3802 					uint32_t num_entries)
3803 {
3804 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3805 						  num_entries);
3806 }
3807 #else
3808 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3809 					 hal_ring_handle_t hal_ring_hdl,
3810 					 uint32_t num_entries)
3811 {
3812 	return NULL;
3813 }
3814 
3815 static inline
3816 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3817 					hal_ring_handle_t hal_ring_hdl,
3818 					uint32_t num_entries)
3819 {
3820 	return NULL;
3821 }
3822 #endif
3823 
3824 #ifdef QCA_ENH_V3_STATS_SUPPORT
3825 /**
3826  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3827  * @pdev: DP_PDEV handle
3828  *
3829  * Return:void
3830  */
3831 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3832 
3833 /**
3834  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3835  * @pdev: DP_PDEV handle
3836  *
3837  * Return:void
3838  */
3839 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3840 
3841 /**
3842  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3843  * @pdev: DP_PDEV handle
3844  *
3845  * Return:void
3846  */
3847 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3848 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3849 
3850 /**
3851  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3852  * @soc_hdl: soc handle
3853  * @pdev_id: id of dp_pdev handle
3854  * @tid_stats: Pointer for cdp_tid_stats_intf
3855  *
3856  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3857  */
3858 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3859 				 struct cdp_tid_stats_intf *tid_stats);
3860 
3861 /**
3862  * dp_soc_set_txrx_ring_map()
3863  * @soc: DP handler for soc
3864  *
3865  * Return: Void
3866  */
3867 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3868 
3869 /**
3870  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3871  * @vdev: DP vdev handle
3872  *
3873  * Return: struct cdp_vdev pointer
3874  */
3875 static inline
3876 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3877 {
3878 	return (struct cdp_vdev *)vdev;
3879 }
3880 
3881 /**
3882  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3883  * @pdev: DP pdev handle
3884  *
3885  * Return: struct cdp_pdev pointer
3886  */
3887 static inline
3888 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3889 {
3890 	return (struct cdp_pdev *)pdev;
3891 }
3892 
3893 /**
3894  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3895  * @psoc: DP psoc handle
3896  *
3897  * Return: struct cdp_soc pointer
3898  */
3899 static inline
3900 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3901 {
3902 	return (struct cdp_soc *)psoc;
3903 }
3904 
3905 /**
3906  * dp_soc_to_cdp_soc_t() - typecast dp psoc to ol txrx soc handle
3907  * @psoc: DP psoc handle
3908  *
3909  * Return: struct cdp_soc_t pointer
3910  */
3911 static inline
3912 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
3913 {
3914 	return (struct cdp_soc_t *)psoc;
3915 }
3916 
3917 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
3918 /**
3919  * dp_rx_flow_get_fse_stats() - Retrieve a flow's statistics
3920  * @pdev: pdev handle
3921  * @rx_flow_info: flow information in the Rx FST
3922  * @stats: stats to update
3923  *
3924  * Return: Success when flow statistcs is updated, error on failure
3925  */
3926 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3927 				    struct cdp_rx_flow_info *rx_flow_info,
3928 				    struct cdp_flow_stats *stats);
3929 
3930 /**
3931  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3932  * @pdev: pdev handle
3933  * @rx_flow_info: DP flow parameters
3934  *
3935  * Return: Success when flow is deleted, error on failure
3936  */
3937 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3938 				   struct cdp_rx_flow_info *rx_flow_info);
3939 
3940 /**
3941  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3942  * @pdev: DP pdev instance
3943  * @rx_flow_info: DP flow parameters
3944  *
3945  * Return: Success when flow is added, no-memory or already exists on error
3946  */
3947 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3948 				struct cdp_rx_flow_info *rx_flow_info);
3949 
3950 /**
3951  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3952  * @soc: SoC handle
3953  * @pdev: Pdev handle
3954  *
3955  * Return: Handle to flow search table entry
3956  */
3957 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3958 
3959 /**
3960  * dp_rx_fst_detach() - De-initialize Rx FST
3961  * @soc: SoC handle
3962  * @pdev: Pdev handle
3963  *
3964  * Return: None
3965  */
3966 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3967 
3968 /**
3969  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3970  * @soc: SoC handle
3971  * @pdev: Pdev handle
3972  *
3973  * Return: Success when fst parameters are programmed in FW, error otherwise
3974  */
3975 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3976 					struct dp_pdev *pdev);
3977 
3978 /**
3979  * dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3980  * @pdev: pdev handle
3981  * @flow_id: flow index (truncated hash) in the Rx FST
3982  *
3983  * Return: Success when flow statistcs is updated, error on failure
3984  */
3985 QDF_STATUS
3986 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3987 
3988 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3989 
3990 /**
3991  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3992  * @soc: SoC handle
3993  * @pdev: Pdev handle
3994  *
3995  * Return: Handle to flow search table entry
3996  */
3997 static inline
3998 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3999 {
4000 	return QDF_STATUS_SUCCESS;
4001 }
4002 
4003 /**
4004  * dp_rx_fst_detach() - De-initialize Rx FST
4005  * @soc: SoC handle
4006  * @pdev: Pdev handle
4007  *
4008  * Return: None
4009  */
4010 static inline
4011 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
4012 {
4013 }
4014 #endif
4015 
4016 /**
4017  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
4018  * @soc: SoC handle
4019  * @pdev: Pdev handle
4020  *
4021  * Return: Handle to flow search table entry
4022  */
4023 extern QDF_STATUS
4024 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4025 
4026 /**
4027  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
4028  * @soc: SoC handle
4029  * @pdev: Pdev handle
4030  *
4031  * Return: None
4032  */
4033 extern void
4034 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4035 
4036 /**
4037  * dp_vdev_get_ref() - API to take a reference for VDEV object
4038  *
4039  * @soc		: core DP soc context
4040  * @vdev	: DP vdev
4041  * @mod_id	: module id
4042  *
4043  * Return:	QDF_STATUS_SUCCESS if reference held successfully
4044  *		else QDF_STATUS_E_INVAL
4045  */
4046 static inline
4047 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
4048 			   enum dp_mod_id mod_id)
4049 {
4050 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
4051 		return QDF_STATUS_E_INVAL;
4052 
4053 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
4054 
4055 	return QDF_STATUS_SUCCESS;
4056 }
4057 
4058 /**
4059  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
4060  * @soc: core DP soc context
4061  * @vdev_id: vdev id from vdev object can be retrieved
4062  * @mod_id: module id which is requesting the reference
4063  *
4064  * Return: struct dp_vdev*: Pointer to DP vdev object
4065  */
4066 static inline struct dp_vdev *
4067 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
4068 		      enum dp_mod_id mod_id)
4069 {
4070 	struct dp_vdev *vdev = NULL;
4071 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
4072 		return NULL;
4073 
4074 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4075 	vdev = soc->vdev_id_map[vdev_id];
4076 
4077 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
4078 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4079 		return NULL;
4080 	}
4081 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4082 
4083 	return vdev;
4084 }
4085 
4086 /**
4087  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
4088  * @soc: core DP soc context
4089  * @pdev_id: pdev id from pdev object can be retrieved
4090  *
4091  * Return: struct dp_pdev*: Pointer to DP pdev object
4092  */
4093 static inline struct dp_pdev *
4094 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
4095 				   uint8_t pdev_id)
4096 {
4097 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
4098 		return NULL;
4099 
4100 	return soc->pdev_list[pdev_id];
4101 }
4102 
4103 /**
4104  * dp_get_peer_mac_list(): function to get peer mac list of vdev
4105  * @soc: Datapath soc handle
4106  * @vdev_id: vdev id
4107  * @newmac: Table of the clients mac
4108  * @mac_cnt: No. of MACs required
4109  * @limit: Limit the number of clients
4110  *
4111  * Return: no of clients
4112  */
4113 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
4114 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
4115 			      u_int16_t mac_cnt, bool limit);
4116 
4117 /**
4118  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
4119  *				       DBS check
4120  * @soc: DP SoC context
4121  * @max_mac_rings: Pointer to variable for No of MAC rings
4122  *
4123  * Return: None
4124  */
4125 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
4126 				     int *max_mac_rings);
4127 
4128 
4129 #if defined(WLAN_SUPPORT_RX_FISA)
4130 void dp_rx_dump_fisa_table(struct dp_soc *soc);
4131 
4132 /**
4133  * dp_print_fisa_stats() - Print FISA stats
4134  * @soc: DP soc handle
4135  *
4136  * Return: None
4137  */
4138 void dp_print_fisa_stats(struct dp_soc *soc);
4139 
4140 /**
4141  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
4142  * @soc:		DP SoC context
4143  * @num_entries:	Number of flow search entries
4144  * @cmem_ba_lo:		CMEM base address low
4145  * @cmem_ba_hi:		CMEM base address high
4146  *
4147  * Return: None
4148  */
4149 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4150 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
4151 
4152 void
4153 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
4154 
4155 /**
4156  * dp_rx_fst_requeue_wq() - Re-queue pending work queue tasks
4157  * @soc:		DP SoC context
4158  *
4159  * Return: None
4160  */
4161 void dp_rx_fst_requeue_wq(struct dp_soc *soc);
4162 #else
4163 static inline void
4164 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4165 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
4166 {
4167 }
4168 
4169 static inline void
4170 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
4171 {
4172 }
4173 
4174 static inline void
4175 dp_rx_fst_requeue_wq(struct dp_soc *soc)
4176 {
4177 }
4178 
4179 static inline void dp_print_fisa_stats(struct dp_soc *soc)
4180 {
4181 }
4182 #endif /* WLAN_SUPPORT_RX_FISA */
4183 
4184 #ifdef MAX_ALLOC_PAGE_SIZE
4185 /**
4186  * dp_set_max_page_size() - Set the max page size for hw link desc.
4187  * @pages: link desc page handle
4188  * @max_alloc_size: max_alloc_size
4189  *
4190  * For MCL the page size is set to OS defined value and for WIN
4191  * the page size is set to the max_alloc_size cfg ini
4192  * param.
4193  * This is to ensure that WIN gets contiguous memory allocations
4194  * as per requirement.
4195  *
4196  * Return: None
4197  */
4198 static inline
4199 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4200 			  uint32_t max_alloc_size)
4201 {
4202 	pages->page_size = qdf_page_size;
4203 }
4204 
4205 #else
4206 static inline
4207 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4208 			  uint32_t max_alloc_size)
4209 {
4210 	pages->page_size = max_alloc_size;
4211 }
4212 #endif /* MAX_ALLOC_PAGE_SIZE */
4213 
4214 /**
4215  * dp_history_get_next_index() - get the next entry to record an entry
4216  *				 in the history.
4217  * @curr_idx: Current index where the last entry is written.
4218  * @max_entries: Max number of entries in the history
4219  *
4220  * This function assumes that the max number os entries is a power of 2.
4221  *
4222  * Return: The index where the next entry is to be written.
4223  */
4224 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
4225 						 uint32_t max_entries)
4226 {
4227 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
4228 
4229 	return idx & (max_entries - 1);
4230 }
4231 
4232 /**
4233  * dp_rx_skip_tlvs() - Skip TLVs len + L3 padding, save in nbuf->cb
4234  * @soc: Datapath soc handle
4235  * @nbuf: nbuf cb to be updated
4236  * @l3_padding: L3 padding
4237  *
4238  * Return: None
4239  */
4240 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
4241 
4242 #ifndef FEATURE_WDS
4243 static inline void
4244 dp_hmwds_ast_add_notify(struct dp_peer *peer,
4245 			uint8_t *mac_addr,
4246 			enum cdp_txrx_ast_entry_type type,
4247 			QDF_STATUS err,
4248 			bool is_peer_map)
4249 {
4250 }
4251 #endif
4252 
4253 #ifdef HTT_STATS_DEBUGFS_SUPPORT
4254 /**
4255  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4256  * debugfs for HTT stats
4257  * @pdev: dp pdev handle
4258  *
4259  * Return: QDF_STATUS
4260  */
4261 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
4262 
4263 /**
4264  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4265  * HTT stats
4266  * @pdev: dp pdev handle
4267  *
4268  * Return: none
4269  */
4270 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
4271 #else
4272 
4273 /**
4274  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4275  * debugfs for HTT stats
4276  * @pdev: dp pdev handle
4277  *
4278  * Return: QDF_STATUS
4279  */
4280 static inline QDF_STATUS
4281 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
4282 {
4283 	return QDF_STATUS_SUCCESS;
4284 }
4285 
4286 /**
4287  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4288  * HTT stats
4289  * @pdev: dp pdev handle
4290  *
4291  * Return: none
4292  */
4293 static inline void
4294 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
4295 {
4296 }
4297 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
4298 
4299 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4300 /**
4301  * dp_soc_swlm_attach() - attach the software latency manager resources
4302  * @soc: Datapath global soc handle
4303  *
4304  * Return: QDF_STATUS
4305  */
4306 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
4307 {
4308 	return QDF_STATUS_SUCCESS;
4309 }
4310 
4311 /**
4312  * dp_soc_swlm_detach() - detach the software latency manager resources
4313  * @soc: Datapath global soc handle
4314  *
4315  * Return: QDF_STATUS
4316  */
4317 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
4318 {
4319 	return QDF_STATUS_SUCCESS;
4320 }
4321 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4322 
4323 #ifndef WLAN_DP_PROFILE_SUPPORT
4324 static inline void wlan_dp_soc_cfg_sync_profile(struct cdp_soc_t *cdp_soc) {}
4325 
4326 static inline void wlan_dp_pdev_cfg_sync_profile(struct cdp_soc_t *cdp_soc,
4327 						 uint8_t pdev_id) {}
4328 #endif
4329 
4330 /**
4331  * dp_get_peer_id(): function to get peer id by mac
4332  * @soc: Datapath soc handle
4333  * @vdev_id: vdev id
4334  * @mac: Peer mac address
4335  *
4336  * Return: valid peer id on success
4337  *         HTT_INVALID_PEER on failure
4338  */
4339 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
4340 
4341 #ifdef QCA_SUPPORT_WDS_EXTENDED
4342 /**
4343  * dp_wds_ext_set_peer_rx(): function to set peer rx handler
4344  * @soc: Datapath soc handle
4345  * @vdev_id: vdev id
4346  * @mac: Peer mac address
4347  * @rx: rx function pointer
4348  * @osif_peer: OSIF peer handle
4349  *
4350  * Return: QDF_STATUS_SUCCESS on success
4351  *         QDF_STATUS_E_INVAL if peer is not found
4352  *         QDF_STATUS_E_ALREADY if rx is already set/unset
4353  */
4354 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
4355 				  uint8_t vdev_id,
4356 				  uint8_t *mac,
4357 				  ol_txrx_rx_fp rx,
4358 				  ol_osif_peer_handle osif_peer);
4359 
4360 /**
4361  * dp_wds_ext_get_peer_osif_handle(): function to get peer osif handle
4362  * @soc: Datapath soc handle
4363  * @vdev_id: vdev id
4364  * @mac: Peer mac address
4365  * @osif_peer: OSIF peer handle
4366  *
4367  * Return: QDF_STATUS_SUCCESS on success
4368  *         QDF_STATUS_E_INVAL if peer is not found
4369  */
4370 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
4371 				ol_txrx_soc_handle soc,
4372 				uint8_t vdev_id,
4373 				uint8_t *mac,
4374 				ol_osif_peer_handle *osif_peer);
4375 
4376 #endif /* QCA_SUPPORT_WDS_EXTENDED */
4377 
4378 #ifdef DP_MEM_PRE_ALLOC
4379 
4380 /**
4381  * dp_context_alloc_mem() - allocate memory for DP context
4382  * @soc: datapath soc handle
4383  * @ctxt_type: DP context type
4384  * @ctxt_size: DP context size
4385  *
4386  * Return: DP context address
4387  */
4388 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4389 			   size_t ctxt_size);
4390 
4391 /**
4392  * dp_context_free_mem() - Free memory of DP context
4393  * @soc: datapath soc handle
4394  * @ctxt_type: DP context type
4395  * @vaddr: Address of context memory
4396  *
4397  * Return: None
4398  */
4399 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4400 			 void *vaddr);
4401 
4402 /**
4403  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
4404  * @soc: datapath soc handle
4405  * @desc_type: memory request source type
4406  * @pages: multi page information storage
4407  * @element_size: each element size
4408  * @element_num: total number of elements should be allocated
4409  * @memctxt: memory context
4410  * @cacheable: coherent memory or cacheable memory
4411  *
4412  * This function is a wrapper for memory allocation over multiple
4413  * pages, if dp prealloc method is registered, then will try prealloc
4414  * firstly. if prealloc failed, fall back to regular way over
4415  * qdf_mem_multi_pages_alloc().
4416  *
4417  * Return: None
4418  */
4419 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4420 				   enum qdf_dp_desc_type desc_type,
4421 				   struct qdf_mem_multi_page_t *pages,
4422 				   size_t element_size,
4423 				   uint32_t element_num,
4424 				   qdf_dma_context_t memctxt,
4425 				   bool cacheable);
4426 
4427 /**
4428  * dp_desc_multi_pages_mem_free() - free multiple pages memory
4429  * @soc: datapath soc handle
4430  * @desc_type: memory request source type
4431  * @pages: multi page information storage
4432  * @memctxt: memory context
4433  * @cacheable: coherent memory or cacheable memory
4434  *
4435  * This function is a wrapper for multiple pages memory free,
4436  * if memory is got from prealloc pool, put it back to pool.
4437  * otherwise free by qdf_mem_multi_pages_free().
4438  *
4439  * Return: None
4440  */
4441 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4442 				  enum qdf_dp_desc_type desc_type,
4443 				  struct qdf_mem_multi_page_t *pages,
4444 				  qdf_dma_context_t memctxt,
4445 				  bool cacheable);
4446 
4447 #else
4448 static inline
4449 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4450 			   size_t ctxt_size)
4451 {
4452 	return qdf_mem_malloc(ctxt_size);
4453 }
4454 
4455 static inline
4456 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4457 			 void *vaddr)
4458 {
4459 	qdf_mem_free(vaddr);
4460 }
4461 
4462 static inline
4463 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4464 				   enum qdf_dp_desc_type desc_type,
4465 				   struct qdf_mem_multi_page_t *pages,
4466 				   size_t element_size,
4467 				   uint32_t element_num,
4468 				   qdf_dma_context_t memctxt,
4469 				   bool cacheable)
4470 {
4471 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
4472 				  element_num, memctxt, cacheable);
4473 }
4474 
4475 static inline
4476 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4477 				  enum qdf_dp_desc_type desc_type,
4478 				  struct qdf_mem_multi_page_t *pages,
4479 				  qdf_dma_context_t memctxt,
4480 				  bool cacheable)
4481 {
4482 	qdf_mem_multi_pages_free(soc->osdev, pages,
4483 				 memctxt, cacheable);
4484 }
4485 #endif
4486 
4487 /**
4488  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
4489  *					  history.
4490  * @index: atomic index
4491  * @num_entries_per_slot: Number of entries per slot
4492  * @allocated: is allocated or not
4493  * @entry: pointers to array of records
4494  */
4495 struct dp_frag_history_opaque_atomic {
4496 	qdf_atomic_t index;
4497 	uint16_t num_entries_per_slot;
4498 	uint16_t allocated;
4499 	void *entry[0];
4500 };
4501 
4502 static inline QDF_STATUS
4503 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
4504 			   uint32_t max_slots, uint32_t max_entries_per_slot,
4505 			   uint32_t entry_size,
4506 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
4507 {
4508 	struct dp_frag_history_opaque_atomic *history =
4509 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4510 	size_t alloc_size = max_entries_per_slot * entry_size;
4511 	int i;
4512 
4513 	for (i = 0; i < max_slots; i++) {
4514 		if (attempt_prealloc)
4515 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
4516 								 alloc_size);
4517 		else
4518 			history->entry[i] = qdf_mem_malloc(alloc_size);
4519 
4520 		if (!history->entry[i])
4521 			goto exit;
4522 	}
4523 
4524 	qdf_atomic_init(&history->index);
4525 	history->allocated = 1;
4526 	history->num_entries_per_slot = max_entries_per_slot;
4527 
4528 	return QDF_STATUS_SUCCESS;
4529 exit:
4530 	for (i = i - 1; i >= 0; i--) {
4531 		if (attempt_prealloc)
4532 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4533 		else
4534 			qdf_mem_free(history->entry[i]);
4535 	}
4536 
4537 	return QDF_STATUS_E_NOMEM;
4538 }
4539 
4540 static inline
4541 void dp_soc_frag_history_detach(struct dp_soc *soc,
4542 				void *history_hdl, uint32_t max_slots,
4543 				bool attempt_prealloc,
4544 				enum dp_ctxt_type ctxt_type)
4545 {
4546 	struct dp_frag_history_opaque_atomic *history =
4547 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4548 	int i;
4549 
4550 	for (i = 0; i < max_slots; i++) {
4551 		if (attempt_prealloc)
4552 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4553 		else
4554 			qdf_mem_free(history->entry[i]);
4555 	}
4556 
4557 	history->allocated = 0;
4558 }
4559 
4560 /**
4561  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
4562  *					entry in a fragmented history with
4563  *					index being atomic.
4564  * @curr_idx: address of the current index where the last entry was written
4565  * @next_idx: pointer to update the next index
4566  * @slot: pointer to update the history slot to be selected
4567  * @slot_shift: BITwise shift mask for slot (in index)
4568  * @max_entries_per_slot: Max number of entries in a slot of history
4569  * @max_entries: Total number of entries in the history (sum of all slots)
4570  *
4571  * This function assumes that the "max_entries_per_slot" and "max_entries"
4572  * are a power-of-2.
4573  *
4574  * Return: None
4575  */
4576 static inline void
4577 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
4578 				 uint16_t *slot, uint32_t slot_shift,
4579 				 uint32_t max_entries_per_slot,
4580 				 uint32_t max_entries)
4581 {
4582 	uint32_t idx;
4583 
4584 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
4585 
4586 	*slot = idx >> slot_shift;
4587 	*next_idx = idx & (max_entries_per_slot - 1);
4588 }
4589 
4590 #ifdef FEATURE_RUNTIME_PM
4591 /**
4592  * dp_runtime_get() - Get dp runtime refcount
4593  * @soc: Datapath soc handle
4594  *
4595  * Get dp runtime refcount by increment of an atomic variable, which can block
4596  * dp runtime resume to wait to flush pending tx by runtime suspend.
4597  *
4598  * Return: Current refcount
4599  */
4600 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4601 {
4602 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
4603 }
4604 
4605 /**
4606  * dp_runtime_put() - Return dp runtime refcount
4607  * @soc: Datapath soc handle
4608  *
4609  * Return dp runtime refcount by decrement of an atomic variable, allow dp
4610  * runtime resume finish.
4611  *
4612  * Return: Current refcount
4613  */
4614 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4615 {
4616 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
4617 }
4618 
4619 /**
4620  * dp_runtime_get_refcount() - Get dp runtime refcount
4621  * @soc: Datapath soc handle
4622  *
4623  * Get dp runtime refcount by returning an atomic variable
4624  *
4625  * Return: Current refcount
4626  */
4627 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
4628 {
4629 	return qdf_atomic_read(&soc->dp_runtime_refcount);
4630 }
4631 
4632 /**
4633  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
4634  * @soc: Datapath soc handle
4635  *
4636  * Return: QDF_STATUS
4637  */
4638 static inline void dp_runtime_init(struct dp_soc *soc)
4639 {
4640 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
4641 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
4642 	qdf_atomic_init(&soc->dp_runtime_refcount);
4643 }
4644 
4645 /**
4646  * dp_runtime_deinit() - Deinit DP related runtime PM clients
4647  *
4648  * Return: None
4649  */
4650 static inline void dp_runtime_deinit(void)
4651 {
4652 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
4653 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
4654 }
4655 
4656 /**
4657  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
4658  * @soc: Datapath soc handle
4659  *
4660  * Return: None
4661  */
4662 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4663 {
4664 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
4665 
4666 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4667 }
4668 #else
4669 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4670 {
4671 	return 0;
4672 }
4673 
4674 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4675 {
4676 	return 0;
4677 }
4678 
4679 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4680 {
4681 	return QDF_STATUS_SUCCESS;
4682 }
4683 
4684 static inline void dp_runtime_deinit(void)
4685 {
4686 }
4687 
4688 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4689 {
4690 }
4691 #endif
4692 
4693 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
4694 {
4695 	if (soc->cdp_soc.ol_ops->get_con_mode)
4696 		return soc->cdp_soc.ol_ops->get_con_mode();
4697 
4698 	return QDF_GLOBAL_MAX_MODE;
4699 }
4700 
4701 /**
4702  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
4703  *				processing
4704  * @pdev: Datapath PDEV handle
4705  *
4706  */
4707 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
4708 
4709 /**
4710  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
4711  *				processing
4712  * @pdev: Datapath PDEV handle
4713  *
4714  * Return: QDF_STATUS_SUCCESS: Success
4715  *         QDF_STATUS_E_NOMEM: Error
4716  */
4717 
4718 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
4719 
4720 /**
4721  * dp_peer_flush_frags() - Flush all fragments for a particular
4722  *  peer
4723  * @soc_hdl: data path soc handle
4724  * @vdev_id: vdev id
4725  * @peer_mac: peer mac address
4726  *
4727  * Return: None
4728  */
4729 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4730 			 uint8_t *peer_mac);
4731 
4732 /**
4733  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
4734  * @soc: pointer to dp_soc handle
4735  *
4736  * Return:
4737  */
4738 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
4739 
4740 /**
4741  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
4742  * @soc_hdl: soc handle
4743  * @soc_stats: buffer to hold the values
4744  *
4745  * Return: QDF_STATUS_SUCCESS: Success
4746  *         QDF_STATUS_E_FAILURE: Error
4747  */
4748 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
4749 				 struct cdp_soc_stats *soc_stats);
4750 
4751 /**
4752  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
4753  * @soc_hdl: soc handle
4754  * @vdev_id: id of vdev handle
4755  * @peer_mac: mac of DP_PEER handle
4756  * @delay_stats: pointer to delay stats array
4757  *
4758  * Return: QDF_STATUS_SUCCESS: Success
4759  *         QDF_STATUS_E_FAILURE: Error
4760  */
4761 QDF_STATUS
4762 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4763 			     uint8_t *peer_mac,
4764 			     struct cdp_delay_tid_stats *delay_stats);
4765 
4766 /**
4767  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
4768  * @soc_hdl: soc handle
4769  * @pdev_id: id of pdev handle
4770  * @vdev_id: id of vdev handle
4771  * @peer_mac: mac of DP_PEER handle
4772  * @tid_stats: pointer to jitter stats array
4773  *
4774  * Return: QDF_STATUS_SUCCESS: Success
4775  *         QDF_STATUS_E_FAILURE: Error
4776  */
4777 QDF_STATUS
4778 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4779 			      uint8_t vdev_id, uint8_t *peer_mac,
4780 			      struct cdp_peer_tid_stats *tid_stats);
4781 
4782 /**
4783  * dp_peer_get_tx_capture_stats() - to get peer Tx Capture stats
4784  * @soc_hdl: soc handle
4785  * @vdev_id: id of vdev handle
4786  * @peer_mac: mac of DP_PEER handle
4787  * @stats: pointer to peer tx capture stats
4788  *
4789  * Return: QDF_STATUS_SUCCESS: Success
4790  *         QDF_STATUS_E_FAILURE: Error
4791  */
4792 QDF_STATUS
4793 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
4794 			     uint8_t vdev_id, uint8_t *peer_mac,
4795 			     struct cdp_peer_tx_capture_stats *stats);
4796 
4797 /**
4798  * dp_pdev_get_tx_capture_stats() - to get pdev Tx Capture stats
4799  * @soc_hdl: soc handle
4800  * @pdev_id: id of pdev handle
4801  * @stats: pointer to pdev tx capture stats
4802  *
4803  * Return: QDF_STATUS_SUCCESS: Success
4804  *         QDF_STATUS_E_FAILURE: Error
4805  */
4806 QDF_STATUS
4807 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4808 			     struct cdp_pdev_tx_capture_stats *stats);
4809 
4810 #ifdef HW_TX_DELAY_STATS_ENABLE
4811 /**
4812  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
4813  *  is enabled for vdev
4814  * @vdev: dp vdev
4815  *
4816  * Return: true if tx delay stats is enabled for vdev else false
4817  */
4818 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4819 {
4820 	return vdev->hw_tx_delay_stats_enabled;
4821 }
4822 
4823 /**
4824  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4825  *  for pdev
4826  * @soc: dp soc
4827  *
4828  * Return: None
4829  */
4830 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4831 
4832 /**
4833  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4834  * @soc: soc handle
4835  *
4836  * Return: None
4837  */
4838 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4839 #else
4840 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4841 {
4842 	return 0;
4843 }
4844 
4845 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4846 {
4847 }
4848 
4849 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4850 {
4851 }
4852 #endif
4853 
4854 static inline void
4855 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4856 {
4857 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4858 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4859 			      LRO_IPV4_SEED_ARR_SZ));
4860 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4861 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4862 			      LRO_IPV6_SEED_ARR_SZ));
4863 }
4864 
4865 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
4866 /**
4867  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4868  * @soc_hdl: soc handle
4869  * @pdev_id: id of pdev handle
4870  * @stats: pointer to pdev telemetry stats
4871  *
4872  * Return: QDF_STATUS_SUCCESS: Success
4873  *         QDF_STATUS_E_FAILURE: Error
4874  */
4875 QDF_STATUS
4876 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4877 			    struct cdp_pdev_telemetry_stats *stats);
4878 
4879 /**
4880  * dp_get_peer_telemetry_stats() - API to get peer telemetry stats
4881  * @soc_hdl: soc handle
4882  * @addr: peer mac
4883  * @stats: pointer to peer telemetry stats
4884  *
4885  * Return: QDF_STATUS_SUCCESS: Success
4886  *         QDF_STATUS_E_FAILURE: Error
4887  */
4888 QDF_STATUS
4889 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4890 			    struct cdp_peer_telemetry_stats *stats);
4891 
4892 /**
4893  * dp_get_peer_deter_stats() - API to get peer deterministic stats
4894  * @soc_hdl: soc handle
4895  * @vdev_id: id of vdev handle
4896  * @addr: peer mac
4897  * @stats: pointer to peer deterministic stats
4898  *
4899  * Return: QDF_STATUS_SUCCESS: Success
4900  *         QDF_STATUS_E_FAILURE: Error
4901  */
4902 QDF_STATUS
4903 dp_get_peer_deter_stats(struct cdp_soc_t *soc_hdl,
4904 			uint8_t vdev_id,
4905 			uint8_t *addr,
4906 			struct cdp_peer_deter_stats *stats);
4907 
4908 /**
4909  * dp_get_pdev_deter_stats() - API to get pdev deterministic stats
4910  * @soc_hdl: soc handle
4911  * @pdev_id: id of pdev handle
4912  * @stats: pointer to pdev deterministic stats
4913  *
4914  * Return: QDF_STATUS_SUCCESS: Success
4915  *         QDF_STATUS_E_FAILURE: Error
4916  */
4917 QDF_STATUS
4918 dp_get_pdev_deter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4919 			struct cdp_pdev_deter_stats *stats);
4920 
4921 /**
4922  * dp_update_pdev_chan_util_stats() - API to update channel utilization stats
4923  * @soc_hdl: soc handle
4924  * @pdev_id: id of pdev handle
4925  * @ch_util: Pointer to channel util stats
4926  *
4927  * Return: QDF_STATUS_SUCCESS: Success
4928  *         QDF_STATUS_E_FAILURE: Error
4929  */
4930 QDF_STATUS
4931 dp_update_pdev_chan_util_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4932 			       struct cdp_pdev_chan_util_stats *ch_util);
4933 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
4934 
4935 #ifdef CONNECTIVITY_PKTLOG
4936 /**
4937  * dp_tx_send_pktlog() - send tx packet log
4938  * @soc: soc handle
4939  * @pdev: pdev handle
4940  * @tx_desc: TX software descriptor
4941  * @nbuf: nbuf
4942  * @status: status of tx packet
4943  *
4944  * This function is used to send tx packet for logging
4945  *
4946  * Return: None
4947  *
4948  */
4949 static inline
4950 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4951 		       struct dp_tx_desc_s *tx_desc,
4952 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4953 {
4954 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4955 
4956 	if (qdf_unlikely(packetdump_cb) &&
4957 	    dp_tx_frm_std == tx_desc->frm_type) {
4958 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4959 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
4960 	}
4961 }
4962 
4963 /**
4964  * dp_rx_send_pktlog() - send rx packet log
4965  * @soc: soc handle
4966  * @pdev: pdev handle
4967  * @nbuf: nbuf
4968  * @status: status of rx packet
4969  *
4970  * This function is used to send rx packet for logging
4971  *
4972  * Return: None
4973  *
4974  */
4975 static inline
4976 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4977 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4978 {
4979 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4980 
4981 	if (qdf_unlikely(packetdump_cb)) {
4982 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4983 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4984 			      nbuf, status, QDF_RX_DATA_PKT);
4985 	}
4986 }
4987 
4988 /**
4989  * dp_rx_err_send_pktlog() - send rx error packet log
4990  * @soc: soc handle
4991  * @pdev: pdev handle
4992  * @mpdu_desc_info: MPDU descriptor info
4993  * @nbuf: nbuf
4994  * @status: status of rx packet
4995  * @set_pktlen: weither to set packet length
4996  *
4997  * This API should only be called when we have not removed
4998  * Rx TLV from head, and head is pointing to rx_tlv
4999  *
5000  * This function is used to send rx packet from error path
5001  * for logging for which rx packet tlv is not removed.
5002  *
5003  * Return: None
5004  *
5005  */
5006 static inline
5007 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5008 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5009 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5010 			   bool set_pktlen)
5011 {
5012 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5013 	qdf_size_t skip_size;
5014 	uint16_t msdu_len, nbuf_len;
5015 	uint8_t *rx_tlv_hdr;
5016 	struct hal_rx_msdu_metadata msdu_metadata;
5017 
5018 	if (qdf_unlikely(packetdump_cb)) {
5019 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
5020 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
5021 							  rx_tlv_hdr);
5022 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
5023 					 &msdu_metadata);
5024 
5025 		if (mpdu_desc_info->bar_frame ||
5026 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
5027 			skip_size = soc->rx_pkt_tlv_size;
5028 		else
5029 			skip_size = soc->rx_pkt_tlv_size +
5030 					msdu_metadata.l3_hdr_pad;
5031 
5032 		if (set_pktlen) {
5033 			msdu_len = nbuf_len + skip_size;
5034 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
5035 					    (uint16_t)RX_DATA_BUFFER_SIZE));
5036 		}
5037 
5038 		qdf_nbuf_pull_head(nbuf, skip_size);
5039 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5040 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5041 			      nbuf, status, QDF_RX_DATA_PKT);
5042 		qdf_nbuf_push_head(nbuf, skip_size);
5043 	}
5044 }
5045 
5046 #else
5047 static inline
5048 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5049 		       struct dp_tx_desc_s *tx_desc,
5050 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5051 {
5052 }
5053 
5054 static inline
5055 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5056 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5057 {
5058 }
5059 
5060 static inline
5061 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5062 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5063 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5064 			   bool set_pktlen)
5065 {
5066 }
5067 #endif
5068 
5069 /**
5070  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
5071  * @soc  : Data path soc handle
5072  * @pdev : PDEV handle
5073  *
5074  * Return: None
5075  */
5076 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
5077 
5078 #ifdef FEATURE_DIRECT_LINK
5079 /**
5080  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
5081  * @soc_hdl: DP SOC handle
5082  * @pdev_id: pdev id
5083  *
5084  * Return: Handle to SRNG
5085  */
5086 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5087 						 uint8_t pdev_id);
5088 
5089 /**
5090  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
5091  *  pdev
5092  * @soc_hdl: DP SOC handle
5093  * @pdev_id: pdev id
5094  *
5095  * Return: None
5096  */
5097 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5098 					uint8_t pdev_id);
5099 #else
5100 static inline
5101 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5102 						 uint8_t pdev_id)
5103 {
5104 	return NULL;
5105 }
5106 
5107 static inline
5108 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5109 					uint8_t pdev_id)
5110 {
5111 }
5112 #endif
5113 
5114 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
5115 static inline
5116 void dp_cfg_event_record(struct dp_soc *soc,
5117 			 enum dp_cfg_event_type event,
5118 			 union dp_cfg_event_desc *cfg_event_desc)
5119 {
5120 	struct dp_cfg_event_history *cfg_event_history =
5121 						&soc->cfg_event_history;
5122 	struct dp_cfg_event *entry;
5123 	uint32_t idx;
5124 	uint16_t slot;
5125 
5126 	dp_get_frag_hist_next_atomic_idx(&cfg_event_history->index, &idx,
5127 					 &slot,
5128 					 DP_CFG_EVT_HIST_SLOT_SHIFT,
5129 					 DP_CFG_EVT_HIST_PER_SLOT_MAX,
5130 					 DP_CFG_EVT_HISTORY_SIZE);
5131 
5132 	entry = &cfg_event_history->entry[slot][idx];
5133 
5134 	entry->timestamp = qdf_get_log_timestamp();
5135 	entry->type = event;
5136 	qdf_mem_copy(&entry->event_desc, cfg_event_desc,
5137 		     sizeof(entry->event_desc));
5138 }
5139 
5140 static inline void
5141 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5142 			     struct dp_vdev *vdev)
5143 {
5144 	union dp_cfg_event_desc cfg_evt_desc = {0};
5145 	struct dp_vdev_attach_detach_desc *vdev_evt =
5146 						&cfg_evt_desc.vdev_evt;
5147 
5148 	if (qdf_unlikely(event != DP_CFG_EVENT_VDEV_ATTACH &&
5149 			 event != DP_CFG_EVENT_VDEV_UNREF_DEL &&
5150 			 event != DP_CFG_EVENT_VDEV_DETACH)) {
5151 		qdf_assert_always(0);
5152 		return;
5153 	}
5154 
5155 	vdev_evt->vdev = vdev;
5156 	vdev_evt->vdev_id = vdev->vdev_id;
5157 	vdev_evt->ref_count = qdf_atomic_read(&vdev->ref_cnt);
5158 	vdev_evt->mac_addr = vdev->mac_addr;
5159 
5160 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5161 }
5162 
5163 static inline void
5164 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5165 			     struct dp_peer *peer, struct dp_vdev *vdev,
5166 			     uint8_t is_reuse)
5167 {
5168 	union dp_cfg_event_desc cfg_evt_desc = {0};
5169 	struct dp_peer_cmn_ops_desc *peer_evt = &cfg_evt_desc.peer_cmn_evt;
5170 
5171 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_CREATE &&
5172 			 event != DP_CFG_EVENT_PEER_DELETE &&
5173 			 event != DP_CFG_EVENT_PEER_UNREF_DEL)) {
5174 		qdf_assert_always(0);
5175 		return;
5176 	}
5177 
5178 	peer_evt->peer = peer;
5179 	peer_evt->vdev = vdev;
5180 	peer_evt->vdev_id = vdev->vdev_id;
5181 	peer_evt->is_reuse = is_reuse;
5182 	peer_evt->peer_ref_count = qdf_atomic_read(&peer->ref_cnt);
5183 	peer_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5184 	peer_evt->mac_addr = peer->mac_addr;
5185 	peer_evt->vdev_mac_addr = vdev->mac_addr;
5186 
5187 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5188 }
5189 
5190 static inline void
5191 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5192 					enum dp_cfg_event_type event,
5193 					struct dp_peer *mld_peer,
5194 					struct dp_peer *link_peer,
5195 					uint8_t idx, uint8_t result)
5196 {
5197 	union dp_cfg_event_desc cfg_evt_desc = {0};
5198 	struct dp_mlo_add_del_link_desc *mlo_link_delink_evt =
5199 					&cfg_evt_desc.mlo_link_delink_evt;
5200 
5201 	if (qdf_unlikely(event != DP_CFG_EVENT_MLO_ADD_LINK &&
5202 			 event != DP_CFG_EVENT_MLO_DEL_LINK)) {
5203 		qdf_assert_always(0);
5204 		return;
5205 	}
5206 
5207 	mlo_link_delink_evt->link_peer = link_peer;
5208 	mlo_link_delink_evt->mld_peer = mld_peer;
5209 	mlo_link_delink_evt->link_mac_addr = link_peer->mac_addr;
5210 	mlo_link_delink_evt->mld_mac_addr = mld_peer->mac_addr;
5211 	mlo_link_delink_evt->num_links = mld_peer->num_links;
5212 	mlo_link_delink_evt->action_result = result;
5213 	mlo_link_delink_evt->idx = idx;
5214 
5215 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5216 }
5217 
5218 static inline void
5219 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5220 					      struct dp_peer *mld_peer,
5221 					      struct dp_vdev *prev_vdev,
5222 					      struct dp_vdev *new_vdev)
5223 {
5224 	union dp_cfg_event_desc cfg_evt_desc = {0};
5225 	struct dp_mlo_setup_vdev_update_desc *vdev_update_evt =
5226 					&cfg_evt_desc.mlo_setup_vdev_update;
5227 
5228 	vdev_update_evt->mld_peer = mld_peer;
5229 	vdev_update_evt->prev_vdev = prev_vdev;
5230 	vdev_update_evt->new_vdev = new_vdev;
5231 
5232 	dp_cfg_event_record(soc, DP_CFG_EVENT_MLO_SETUP_VDEV_UPDATE,
5233 			    &cfg_evt_desc);
5234 }
5235 
5236 static inline void
5237 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5238 				       enum dp_cfg_event_type event,
5239 				       struct dp_peer *peer,
5240 				       uint8_t *mac_addr,
5241 				       uint8_t is_ml_peer,
5242 				       uint16_t peer_id, uint16_t ml_peer_id,
5243 				       uint16_t hw_peer_id, uint8_t vdev_id)
5244 {
5245 	union dp_cfg_event_desc cfg_evt_desc = {0};
5246 	struct dp_rx_peer_map_unmap_desc *peer_map_unmap_evt =
5247 					&cfg_evt_desc.peer_map_unmap_evt;
5248 
5249 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_MAP &&
5250 			 event != DP_CFG_EVENT_PEER_UNMAP &&
5251 			 event != DP_CFG_EVENT_MLO_PEER_MAP &&
5252 			 event != DP_CFG_EVENT_MLO_PEER_UNMAP)) {
5253 		qdf_assert_always(0);
5254 		return;
5255 	}
5256 
5257 	peer_map_unmap_evt->peer_id = peer_id;
5258 	peer_map_unmap_evt->ml_peer_id = ml_peer_id;
5259 	peer_map_unmap_evt->hw_peer_id = hw_peer_id;
5260 	peer_map_unmap_evt->vdev_id = vdev_id;
5261 	/* Peer may be NULL at times, but its not an issue. */
5262 	peer_map_unmap_evt->peer = peer;
5263 	peer_map_unmap_evt->is_ml_peer = is_ml_peer;
5264 	qdf_mem_copy(&peer_map_unmap_evt->mac_addr.raw, mac_addr,
5265 		     QDF_MAC_ADDR_SIZE);
5266 
5267 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5268 }
5269 
5270 static inline void
5271 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5272 				   enum dp_cfg_event_type event,
5273 				   struct dp_peer *peer,
5274 				   struct dp_vdev *vdev,
5275 				   uint8_t vdev_id,
5276 				   struct cdp_peer_setup_info *peer_setup_info)
5277 {
5278 	union dp_cfg_event_desc cfg_evt_desc = {0};
5279 	struct dp_peer_setup_desc *peer_setup_evt =
5280 					&cfg_evt_desc.peer_setup_evt;
5281 
5282 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_SETUP &&
5283 			 event != DP_CFG_EVENT_MLO_SETUP)) {
5284 		qdf_assert_always(0);
5285 		return;
5286 	}
5287 
5288 	peer_setup_evt->peer = peer;
5289 	peer_setup_evt->vdev = vdev;
5290 	if (vdev)
5291 		peer_setup_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5292 	peer_setup_evt->mac_addr = peer->mac_addr;
5293 	peer_setup_evt->vdev_id = vdev_id;
5294 	if (peer_setup_info) {
5295 		peer_setup_evt->is_first_link = peer_setup_info->is_first_link;
5296 		peer_setup_evt->is_primary_link = peer_setup_info->is_primary_link;
5297 		qdf_mem_copy(peer_setup_evt->mld_mac_addr.raw,
5298 			     peer_setup_info->mld_peer_mac,
5299 			     QDF_MAC_ADDR_SIZE);
5300 	}
5301 
5302 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5303 }
5304 #else
5305 
5306 static inline void
5307 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5308 			     struct dp_vdev *vdev)
5309 {
5310 }
5311 
5312 static inline void
5313 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5314 			     struct dp_peer *peer, struct dp_vdev *vdev,
5315 			     uint8_t is_reuse)
5316 {
5317 }
5318 
5319 static inline void
5320 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5321 					enum dp_cfg_event_type event,
5322 					struct dp_peer *mld_peer,
5323 					struct dp_peer *link_peer,
5324 					uint8_t idx, uint8_t result)
5325 {
5326 }
5327 
5328 static inline void
5329 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5330 					      struct dp_peer *mld_peer,
5331 					      struct dp_vdev *prev_vdev,
5332 					      struct dp_vdev *new_vdev)
5333 {
5334 }
5335 
5336 static inline void
5337 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5338 				       enum dp_cfg_event_type event,
5339 				       struct dp_peer *peer,
5340 				       uint8_t *mac_addr,
5341 				       uint8_t is_ml_peer,
5342 				       uint16_t peer_id, uint16_t ml_peer_id,
5343 				       uint16_t hw_peer_id, uint8_t vdev_id)
5344 {
5345 }
5346 
5347 static inline void
5348 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5349 				   enum dp_cfg_event_type event,
5350 				   struct dp_peer *peer,
5351 				   struct dp_vdev *vdev,
5352 				   uint8_t vdev_id,
5353 				   struct cdp_peer_setup_info *peer_setup_info)
5354 {
5355 }
5356 #endif
5357 
5358 #ifndef WLAN_SOFTUMAC_SUPPORT
5359 /**
5360  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
5361  * @txrx_soc: DP SOC handle
5362  *
5363  * Return: none
5364  */
5365 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
5366 #endif
5367 
5368 /**
5369  * dp_get_peer_stats()- Get peer stats
5370  * @peer: Datapath peer
5371  * @peer_stats: buffer for peer stats
5372  *
5373  * Return: none
5374  */
5375 void dp_get_peer_stats(struct dp_peer *peer,
5376 		       struct cdp_peer_stats *peer_stats);
5377 
5378 /**
5379  * dp_get_per_link_peer_stats()- Get per link peer stats
5380  * @peer: Datapath peer
5381  * @peer_stats: buffer for peer stats
5382  * @peer_type: Peer type
5383  * @num_link: Number of ML links
5384  *
5385  * Return: status success/failure
5386  */
5387 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
5388 				      struct cdp_peer_stats *peer_stats,
5389 				      enum cdp_peer_type peer_type,
5390 				      uint8_t num_link);
5391 /**
5392  * dp_get_peer_hw_link_id() - get peer hardware link id
5393  * @soc: soc handle
5394  * @pdev: data path pdev
5395  *
5396  * Return: link_id
5397  */
5398 static inline int
5399 dp_get_peer_hw_link_id(struct dp_soc *soc,
5400 		       struct dp_pdev *pdev)
5401 {
5402 	if (wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx))
5403 		return ((soc->arch_ops.get_hw_link_id(pdev)) + 1);
5404 
5405 	return 0;
5406 }
5407 
5408 #ifdef QCA_MULTIPASS_SUPPORT
5409 /**
5410  * dp_tx_remove_vlan_tag() - Remove 4 bytes of vlan tag
5411  * @vdev: DP vdev handle
5412  * @nbuf: network buffer
5413  *
5414  * Return: void
5415  */
5416 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf);
5417 #endif
5418 
5419 /**
5420  * dp_print_per_link_stats() - Print per link peer stats.
5421  * @soc_hdl: soc handle.
5422  * @vdev_id: vdev_id.
5423  *
5424  * Return: None.
5425  */
5426 void dp_print_per_link_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id);
5427 #endif /* #ifndef _DP_INTERNAL_H_ */
5428