xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 4902c68f4d4507da5cf7607fa013a97fcb10adba)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 #include "dp_rx_tid.h"
26 
27 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
28 
29 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
30 
31 #define DP_BLOCKMEM_SIZE 4096
32 #define WBM2_SW_PPE_REL_RING_ID 6
33 #define WBM2_SW_PPE_REL_MAP_ID 11
34 #define DP_TX_PPEDS_POOL_ID 0xF
35 
36 /* Alignment for consistent memory for DP rings*/
37 #define DP_RING_BASE_ALIGN 32
38 
39 #define DP_RSSI_INVAL 0x80
40 #define DP_RSSI_AVG_WEIGHT 2
41 /*
42  * Formula to derive avg_rssi is taken from wifi2.o firmware
43  */
44 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
45 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
46 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
47 
48 /* Macro For NYSM value received in VHT TLV */
49 #define VHT_SGI_NYSM 3
50 
51 #define INVALID_WBM_RING_NUM 0xF
52 
53 #ifdef FEATURE_DIRECT_LINK
54 #define DIRECT_LINK_REFILL_RING_ENTRIES 64
55 #ifdef IPA_OFFLOAD
56 #ifdef IPA_WDI3_VLAN_SUPPORT
57 #define DIRECT_LINK_REFILL_RING_IDX     4
58 #else
59 #define DIRECT_LINK_REFILL_RING_IDX     3
60 #endif
61 #else
62 #define DIRECT_LINK_REFILL_RING_IDX     2
63 #endif
64 #endif
65 
66 #define DP_MAX_VLAN_IDS 4096
67 #define DP_VLAN_UNTAGGED 0
68 #define DP_VLAN_TAGGED_MULTICAST 1
69 #define DP_VLAN_TAGGED_UNICAST 2
70 
71 /**
72  * struct htt_dbgfs_cfg - structure to maintain required htt data
73  * @msg_word: htt msg sent to upper layer
74  * @m: qdf debugfs file pointer
75  */
76 struct htt_dbgfs_cfg {
77 	uint32_t *msg_word;
78 	qdf_debugfs_file_t m;
79 };
80 
81 /* Cookie MSB bits assigned for different use case.
82  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
83  * If in future number of pdev are more than 3.
84  */
85 /* Reserve for default case */
86 #define DBG_STATS_COOKIE_DEFAULT 0x0
87 
88 /* Reserve for DP Stats: 3rd bit */
89 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
90 
91 /* Reserve for HTT Stats debugfs support: 4th bit */
92 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
93 
94 /*Reserve for HTT Stats debugfs support: 5th bit */
95 #define DBG_SYSFS_STATS_COOKIE BIT(5)
96 
97 /* Reserve for HTT Stats OBSS PD support: 6th bit */
98 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
99 
100 /*
101  * Bitmap of HTT PPDU TLV types for Default mode
102  */
103 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
104 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
106 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
107 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
108 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
109 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
110 
111 /* PPDU STATS CFG */
112 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
113 
114 /* PPDU stats mask sent to FW to enable enhanced stats */
115 #define DP_PPDU_STATS_CFG_ENH_STATS \
116 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
117 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
118 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
119 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
120 
121 /* PPDU stats mask sent to FW to support debug sniffer feature */
122 #define DP_PPDU_STATS_CFG_SNIFFER \
123 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
124 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
125 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
126 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
127 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
128 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
129 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
130 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
131 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
132 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
133 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
134 
135 /* PPDU stats mask sent to FW to support BPR feature*/
136 #define DP_PPDU_STATS_CFG_BPR \
137 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
138 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
139 
140 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
141 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
142 				   DP_PPDU_STATS_CFG_ENH_STATS)
143 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
144 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
145 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
146 
147 /*
148  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
149  */
150 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
151 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
152 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
153 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
154 
155 /*
156  * Bitmap of HTT PPDU TLV types for Delayed BA
157  */
158 #define HTT_PPDU_STATUS_TLV_BITMAP \
159 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
161 
162 /*
163  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
164  */
165 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
166 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
167 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
168 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
169 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
170 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
171 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
172 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
173 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
174 
175 /*
176  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
177  */
178 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
179 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
180 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
181 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
182 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
183 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
184 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
185 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
186 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
187 
188 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
189 	[HAL_DOT11A] = DOT11_A,
190 	[HAL_DOT11B] = DOT11_B,
191 	[HAL_DOT11N_MM] = DOT11_N,
192 	[HAL_DOT11AC] = DOT11_AC,
193 	[HAL_DOT11AX] = DOT11_AX,
194 	[HAL_DOT11BA] = DOT11_MAX,
195 #ifdef WLAN_FEATURE_11BE
196 	[HAL_DOT11BE] = DOT11_BE,
197 #else
198 	[HAL_DOT11BE] = DOT11_MAX,
199 #endif
200 	[HAL_DOT11AZ] = DOT11_MAX,
201 	[HAL_DOT11N_GF] = DOT11_MAX,
202 };
203 
204 #ifdef GLOBAL_ASSERT_AVOIDANCE
205 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
206 	(qdf_unlikely(!(_expr)) ? ((_handle)->stats._field++, true) : false)
207 
208 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
209 				((_handle)->ppeds_stats._field++)
210 
211 static inline bool dp_assert_always_internal(bool expr)
212 {
213 	return !expr;
214 }
215 #else
216 static inline bool __dp_assert_always_internal(bool expr)
217 {
218 	qdf_assert_always(expr);
219 
220 	return false;
221 }
222 
223 #define dp_assert_always_internal(_expr) __dp_assert_always_internal(_expr)
224 
225 #define dp_assert_always_internal_stat(_expr, _handle, _field) \
226 				dp_assert_always_internal(_expr)
227 
228 #define dp_assert_always_internal_ds_stat(_expr, _handle, _field) \
229 				dp_assert_always_internal(_expr)
230 #endif
231 
232 #ifdef WLAN_FEATURE_11BE
233 /**
234  * dp_get_mcs_array_index_by_pkt_type_mcs() - get the destination mcs index
235  *					      in array
236  * @pkt_type: host SW pkt type
237  * @mcs: mcs value for TX/RX rate
238  *
239  * Return: succeeded - valid index in mcs array
240  *	   fail - same value as MCS_MAX
241  */
242 static inline uint8_t
243 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
244 {
245 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
246 
247 	switch (pkt_type) {
248 	case DOT11_A:
249 		dst_mcs_idx =
250 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
251 		break;
252 	case DOT11_B:
253 		dst_mcs_idx =
254 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
255 		break;
256 	case DOT11_N:
257 		dst_mcs_idx =
258 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
259 		break;
260 	case DOT11_AC:
261 		dst_mcs_idx =
262 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
263 		break;
264 	case DOT11_AX:
265 		dst_mcs_idx =
266 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
267 		break;
268 	case DOT11_BE:
269 		dst_mcs_idx =
270 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
271 		break;
272 	default:
273 		break;
274 	}
275 
276 	return dst_mcs_idx;
277 }
278 #else
279 static inline uint8_t
280 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
281 {
282 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
283 
284 	switch (pkt_type) {
285 	case DOT11_A:
286 		dst_mcs_idx =
287 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
288 		break;
289 	case DOT11_B:
290 		dst_mcs_idx =
291 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
292 		break;
293 	case DOT11_N:
294 		dst_mcs_idx =
295 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
296 		break;
297 	case DOT11_AC:
298 		dst_mcs_idx =
299 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
300 		break;
301 	case DOT11_AX:
302 		dst_mcs_idx =
303 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
304 		break;
305 	default:
306 		break;
307 	}
308 
309 	return dst_mcs_idx;
310 }
311 #endif
312 
313 #ifdef WIFI_MONITOR_SUPPORT
314 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
315 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
316 #else
317 static inline
318 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc)
319 {
320 	return QDF_STATUS_SUCCESS;
321 }
322 
323 static inline
324 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc)
325 {
326 	return QDF_STATUS_SUCCESS;
327 }
328 #endif
329 
330 /**
331  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
332  * @eh: Ethernet header of incoming packet
333  * @vdev: dp_vdev object of the VAP on which this data packet is received
334  *
335  * Return: 1 if the destination mac is correct,
336  *         0 if this frame is not correctly destined to this VAP/MLD
337  */
338 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
339 
340 #ifdef MONITOR_MODULARIZED_ENABLE
341 static inline bool dp_monitor_modularized_enable(void)
342 {
343 	return TRUE;
344 }
345 
346 static inline QDF_STATUS
347 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
348 
349 static inline QDF_STATUS
350 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
351 #else
352 static inline bool dp_monitor_modularized_enable(void)
353 {
354 	return FALSE;
355 }
356 
357 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
358 {
359 	return dp_mon_soc_attach(soc);
360 }
361 
362 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
363 {
364 	return dp_mon_soc_detach(soc);
365 }
366 #endif
367 
368 #ifndef WIFI_MONITOR_SUPPORT
369 #define MON_BUF_MIN_ENTRIES 64
370 
371 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
372 {
373 	return QDF_STATUS_SUCCESS;
374 }
375 
376 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
377 {
378 	return QDF_STATUS_SUCCESS;
379 }
380 
381 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
382 {
383 	return QDF_STATUS_E_FAILURE;
384 }
385 
386 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
387 {
388 	return QDF_STATUS_E_FAILURE;
389 }
390 
391 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
392 						struct dp_peer *peer)
393 {
394 	return QDF_STATUS_SUCCESS;
395 }
396 
397 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
398 						struct dp_peer *peer)
399 {
400 	return QDF_STATUS_E_FAILURE;
401 }
402 
403 static inline struct cdp_peer_rate_stats_ctx*
404 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
405 {
406 	return NULL;
407 }
408 
409 static inline
410 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
411 {
412 }
413 
414 static inline
415 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
416 			       void *arg, enum cdp_stat_update_type type)
417 {
418 }
419 
420 static inline
421 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
422 					       struct dp_pdev *pdev)
423 {
424 }
425 
426 static inline
427 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
428 					   struct dp_peer *peer,
429 					   enum cdp_peer_stats_type type,
430 					   cdp_peer_stats_param_t *buf)
431 {
432 	return QDF_STATUS_E_FAILURE;
433 }
434 
435 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
436 {
437 	return QDF_STATUS_SUCCESS;
438 }
439 
440 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
441 {
442 	return QDF_STATUS_SUCCESS;
443 }
444 
445 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
446 {
447 	return QDF_STATUS_SUCCESS;
448 }
449 
450 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
451 							 int val)
452 {
453 	return QDF_STATUS_E_FAILURE;
454 }
455 
456 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
457 {
458 }
459 
460 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
461 						   struct dp_pdev *pdev,
462 						   int mac_id,
463 						   int mac_for_pdev)
464 {
465 	return QDF_STATUS_SUCCESS;
466 }
467 
468 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
469 						uint32_t quota)
470 {
471 }
472 
473 static inline
474 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
475 			    uint32_t mac_id, uint32_t quota)
476 {
477 	return 0;
478 }
479 
480 static inline
481 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
482 					 uint32_t mac_id, uint32_t quota)
483 {
484 	return 0;
485 }
486 
487 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
488 					   struct dp_peer *peer)
489 {
490 }
491 
492 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
493 					      struct dp_peer *peer)
494 {
495 }
496 
497 static inline
498 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
499 					struct dp_peer *peer,
500 					uint16_t peer_id)
501 {
502 }
503 
504 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
505 {
506 }
507 
508 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
509 {
510 }
511 
512 static inline
513 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
514 {
515 	return QDF_STATUS_SUCCESS;
516 }
517 
518 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
519 							   struct dp_peer *peer)
520 {
521 }
522 
523 static inline
524 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
525 					   struct dp_tx_desc_s *desc,
526 					   struct hal_tx_completion_status *ts,
527 					   uint16_t peer_id)
528 {
529 	return QDF_STATUS_E_FAILURE;
530 }
531 
532 static inline
533 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
534 				       struct dp_pdev *pdev,
535 				       struct dp_peer *peer,
536 				       struct hal_tx_completion_status *ts,
537 				       qdf_nbuf_t netbuf)
538 {
539 	return QDF_STATUS_E_FAILURE;
540 }
541 
542 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
543 						     uint32_t *msg_word,
544 						     qdf_nbuf_t htt_t2h_msg)
545 {
546 	return true;
547 }
548 
549 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
550 {
551 	return QDF_STATUS_SUCCESS;
552 }
553 
554 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
555 {
556 }
557 
558 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
559 {
560 }
561 
562 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
563 							  uint32_t val)
564 {
565 	return QDF_STATUS_E_INVAL;
566 }
567 
568 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
569 						   struct dp_peer *peer,
570 						   uint8_t is_tx_pkt_cap_enable,
571 						   uint8_t *peer_mac)
572 {
573 	return QDF_STATUS_E_INVAL;
574 }
575 
576 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
577 							  uint32_t val)
578 {
579 	return QDF_STATUS_E_INVAL;
580 }
581 
582 static inline
583 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
584 {
585 	return QDF_STATUS_E_FAILURE;
586 }
587 
588 static inline
589 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
590 {
591 	return 0;
592 }
593 
594 static inline
595 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
596 {
597 }
598 
599 static inline
600 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
601 {
602 }
603 
604 static inline
605 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
606 {
607 	return false;
608 }
609 
610 static inline
611 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
612 {
613 	return false;
614 }
615 
616 static inline
617 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
618 {
619 	return false;
620 }
621 
622 static inline
623 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
624 				bool enable)
625 {
626 	return 0;
627 }
628 
629 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
630 {
631 }
632 
633 static inline
634 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
635 {
636 	return QDF_STATUS_E_FAILURE;
637 }
638 
639 static inline
640 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
641 {
642 }
643 
644 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
645 							  uint8_t *rx_pkt_hdr)
646 {
647 	return QDF_STATUS_E_FAILURE;
648 }
649 
650 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
651 {
652 }
653 
654 static inline
655 void dp_monitor_reap_timer_init(struct dp_soc *soc)
656 {
657 }
658 
659 static inline
660 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
661 {
662 }
663 
664 static inline
665 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
666 				 enum cdp_mon_reap_source source)
667 {
668 	return false;
669 }
670 
671 static inline
672 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
673 				enum cdp_mon_reap_source source)
674 {
675 	return false;
676 }
677 
678 static inline void
679 dp_monitor_reap_timer_suspend(struct dp_soc *soc)
680 {
681 }
682 
683 static inline
684 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
685 {
686 }
687 
688 static inline
689 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
690 {
691 }
692 
693 static inline
694 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
695 {
696 }
697 
698 static inline
699 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
700 {
701 	return false;
702 }
703 
704 static inline struct qdf_mem_multi_page_t*
705 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
706 {
707 	return NULL;
708 }
709 
710 static inline struct dp_srng*
711 dp_monitor_get_link_desc_ring(struct dp_soc *soc, uint32_t mac_id)
712 {
713 	return NULL;
714 }
715 
716 static inline uint32_t
717 dp_monitor_get_num_link_desc_ring_entries(struct dp_soc *soc)
718 {
719 	return 0;
720 }
721 
722 static inline uint32_t *
723 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
724 {
725 	return NULL;
726 }
727 
728 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
729 {
730 	return QDF_STATUS_E_FAILURE;
731 }
732 
733 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
734 {
735 	return false;
736 }
737 
738 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
739 						 struct ol_txrx_ops *txrx_ops)
740 {
741 }
742 
743 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
744 {
745 	return false;
746 }
747 
748 static inline
749 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
750 {
751 }
752 
753 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
754 					  struct dp_vdev *vdev)
755 {
756 }
757 
758 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
759 {
760 }
761 
762 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
763 						     struct dp_peer *ta_peer,
764 						     uint8_t *mac_addr,
765 						     qdf_nbuf_t nbuf,
766 						     uint32_t flags)
767 {
768 }
769 
770 static inline void
771 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
772 {
773 }
774 
775 static inline void
776 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
777 {
778 }
779 
780 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
781 {
782 }
783 
784 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
785 {
786 	return false;
787 }
788 
789 static inline
790 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
791 					   struct dp_vdev *vdev,
792 					   struct dp_neighbour_peer *peer)
793 {
794 }
795 
796 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
797 {
798 	return false;
799 }
800 
801 static inline enum reg_wifi_band
802 dp_monitor_get_chan_band(struct dp_pdev *pdev)
803 {
804 	return 0;
805 }
806 
807 static inline int
808 dp_monitor_get_chan_num(struct dp_pdev *pdev)
809 {
810 	return 0;
811 }
812 
813 static inline qdf_freq_t
814 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
815 {
816 	return 0;
817 }
818 
819 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
820 					      struct dp_soc *soc,
821 					      uint8_t *rx_tlv_hdr)
822 {
823 }
824 
825 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
826 {
827 }
828 
829 static inline
830 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
831 					  uint16_t peer_id, uint32_t ppdu_id,
832 					  uint8_t first_msdu)
833 {
834 	return QDF_STATUS_SUCCESS;
835 }
836 
837 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
838 {
839 	return false;
840 }
841 
842 static inline struct dp_vdev*
843 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
844 {
845 	return NULL;
846 }
847 
848 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
849 							   void *rx_desc)
850 {
851 	return QDF_STATUS_E_FAILURE;
852 }
853 
854 static inline struct mon_rx_status*
855 dp_monitor_get_rx_status(struct dp_pdev *pdev)
856 {
857 	return NULL;
858 }
859 
860 static inline
861 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
862 {
863 }
864 
865 static inline
866 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
867 						      bool val)
868 {
869 }
870 
871 static inline QDF_STATUS
872 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
873 				     struct cdp_peer_tx_capture_stats *stats)
874 {
875 	return QDF_STATUS_E_FAILURE;
876 }
877 
878 static inline QDF_STATUS
879 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
880 				     struct cdp_pdev_tx_capture_stats *stats)
881 {
882 	return QDF_STATUS_E_FAILURE;
883 }
884 
885 #ifdef DP_POWER_SAVE
886 static inline
887 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
888 {
889 }
890 
891 static inline
892 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
893 {
894 }
895 #endif
896 
897 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
898 {
899 	return false;
900 }
901 
902 static inline void
903 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
904 			 struct htt_rx_ring_tlv_filter *tlv_filter)
905 {
906 }
907 
908 static inline void dp_monitor_soc_init(struct dp_soc *soc)
909 {
910 }
911 
912 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
913 {
914 }
915 
916 static inline
917 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
918 							int val)
919 {
920 	return QDF_STATUS_SUCCESS;
921 }
922 
923 static inline QDF_STATUS
924 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
925 						      int mask1, int mask2)
926 {
927 	return QDF_STATUS_SUCCESS;
928 }
929 
930 static inline QDF_STATUS
931 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
932 						   int *mask, int *mask_cont)
933 {
934 	return QDF_STATUS_SUCCESS;
935 }
936 
937 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
938 {
939 	return QDF_STATUS_E_FAILURE;
940 }
941 
942 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
943 {
944 	return false;
945 }
946 
947 static inline
948 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
949 {
950 	return 0;
951 }
952 
953 static inline uint32_t
954 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
955 		  uint32_t mac_id, uint32_t quota)
956 {
957 	return 0;
958 }
959 
960 static inline uint32_t
961 dp_print_txmon_ring_stat_from_hal(struct dp_pdev *pdev)
962 {
963 	return 0;
964 }
965 
966 static inline
967 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
968 {
969 	return 0;
970 }
971 
972 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
973 {
974 	return 0;
975 }
976 
977 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
978 {
979 	return 0;
980 }
981 
982 static inline void
983 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
984 		 struct htt_rx_ring_tlv_filter *tlv_filter)
985 {
986 }
987 
988 static inline void
989 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
990 			    struct htt_rx_ring_tlv_filter *tlv_filter)
991 {
992 }
993 
994 static inline void
995 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
996 			      struct htt_rx_ring_tlv_filter *tlv_filter)
997 {
998 }
999 
1000 static inline void
1001 dp_mon_rx_wmask_subscribe(struct dp_soc *soc,
1002 			  uint32_t *msg_word, int pdev_id,
1003 			  struct htt_rx_ring_tlv_filter *tlv_filter)
1004 {
1005 }
1006 
1007 static inline void
1008 dp_mon_rx_mac_filter_set(struct dp_soc *soc, uint32_t *msg_word,
1009 			 struct htt_rx_ring_tlv_filter *tlv_filter)
1010 {
1011 }
1012 
1013 static inline void
1014 dp_mon_rx_enable_pkt_tlv_offset(struct dp_soc *soc, uint32_t *msg_word,
1015 				struct htt_rx_ring_tlv_filter *tlv_filter)
1016 {
1017 }
1018 
1019 static inline void
1020 dp_mon_rx_enable_fpmo(struct dp_soc *soc, uint32_t *msg_word,
1021 		      struct htt_rx_ring_tlv_filter *tlv_filter)
1022 {
1023 }
1024 
1025 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
1026 static inline
1027 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
1028 				     struct cdp_peer_telemetry_stats *stats)
1029 {
1030 }
1031 
1032 static inline
1033 void dp_monitor_peer_deter_stats(struct dp_peer *peer,
1034 				 struct cdp_peer_telemetry_stats *stats)
1035 {
1036 }
1037 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
1038 #endif /* !WIFI_MONITOR_SUPPORT */
1039 
1040 /**
1041  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
1042  * dp soc handle
1043  * @psoc: CDP psoc handle
1044  *
1045  * Return: struct dp_soc pointer
1046  */
1047 static inline
1048 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
1049 {
1050 	return (struct dp_soc *)psoc;
1051 }
1052 
1053 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
1054 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
1055 
1056 /**
1057  * enum timer_yield_status - yield status code used in monitor mode timer.
1058  * @DP_TIMER_NO_YIELD: do not yield
1059  * @DP_TIMER_WORK_DONE: yield because work is done
1060  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
1061  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
1062  */
1063 enum timer_yield_status {
1064 	DP_TIMER_NO_YIELD,
1065 	DP_TIMER_WORK_DONE,
1066 	DP_TIMER_WORK_EXHAUST,
1067 	DP_TIMER_TIME_EXHAUST,
1068 };
1069 
1070 #if DP_PRINT_ENABLE
1071 #include <qdf_types.h> /* qdf_vprint */
1072 #include <cdp_txrx_handle.h>
1073 
1074 enum {
1075 	/* FATAL_ERR - print only irrecoverable error messages */
1076 	DP_PRINT_LEVEL_FATAL_ERR,
1077 
1078 	/* ERR - include non-fatal err messages */
1079 	DP_PRINT_LEVEL_ERR,
1080 
1081 	/* WARN - include warnings */
1082 	DP_PRINT_LEVEL_WARN,
1083 
1084 	/* INFO1 - include fundamental, infrequent events */
1085 	DP_PRINT_LEVEL_INFO1,
1086 
1087 	/* INFO2 - include non-fundamental but infrequent events */
1088 	DP_PRINT_LEVEL_INFO2,
1089 };
1090 
1091 #define dp_print(level, fmt, ...) do { \
1092 	if (level <= g_txrx_print_level) \
1093 		qdf_print(fmt, ## __VA_ARGS__); \
1094 while (0)
1095 #define DP_PRINT(level, fmt, ...) do { \
1096 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
1097 while (0)
1098 #else
1099 #define DP_PRINT(level, fmt, ...)
1100 #endif /* DP_PRINT_ENABLE */
1101 
1102 #define DP_TRACE(LVL, fmt, args ...)                             \
1103 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
1104 		fmt, ## args)
1105 
1106 #ifdef WLAN_SYSFS_DP_STATS
1107 void DP_PRINT_STATS(const char *fmt, ...);
1108 #else /* WLAN_SYSFS_DP_STATS */
1109 #ifdef DP_PRINT_NO_CONSOLE
1110 /* Stat prints should not go to console or kernel logs.*/
1111 #define DP_PRINT_STATS(fmt, args ...)\
1112 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
1113 		  fmt, ## args)
1114 #else
1115 #define DP_PRINT_STATS(fmt, args ...)\
1116 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1117 		  fmt, ## args)
1118 #endif
1119 #endif /* WLAN_SYSFS_DP_STATS */
1120 
1121 #define DP_STATS_INIT(_handle) \
1122 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1123 
1124 #define DP_TXRX_PEER_STATS_INIT(_handle, size) \
1125 	qdf_mem_zero(&((_handle)->stats[0]), size)
1126 
1127 #define DP_STATS_CLR(_handle) \
1128 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1129 
1130 #define DP_TXRX_PEER_STATS_CLR(_handle, size) \
1131 	qdf_mem_zero(&((_handle)->stats[0]), size)
1132 
1133 #ifndef DISABLE_DP_STATS
1134 #define DP_STATS_INC(_handle, _field, _delta) \
1135 { \
1136 	if (likely(_handle)) \
1137 		_handle->stats._field += _delta; \
1138 }
1139 
1140 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link) \
1141 { \
1142 	if (likely(_handle)) \
1143 		_handle->stats[_link]._field += _delta; \
1144 }
1145 
1146 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1147 { \
1148 	if (likely(_handle)) \
1149 		_handle->_field += _delta; \
1150 }
1151 
1152 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1153 { \
1154 	if (_cond && likely(_handle)) \
1155 		_handle->stats._field += _delta; \
1156 }
1157 
1158 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1159 { \
1160 	if (_cond && likely(_handle)) \
1161 		_handle->stats[_link]._field += _delta; \
1162 }
1163 
1164 #define DP_STATS_DEC(_handle, _field, _delta) \
1165 { \
1166 	if (likely(_handle)) \
1167 		_handle->stats._field -= _delta; \
1168 }
1169 
1170 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1171 { \
1172 	if (likely(_handle)) \
1173 		_handle->_field -= _delta; \
1174 }
1175 
1176 #define DP_STATS_UPD(_handle, _field, _delta) \
1177 { \
1178 	if (likely(_handle)) \
1179 		_handle->stats._field = _delta; \
1180 }
1181 
1182 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link) \
1183 { \
1184 	if (likely(_handle)) \
1185 		_handle->stats[_link]._field = _delta; \
1186 }
1187 
1188 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1189 { \
1190 	DP_STATS_INC(_handle, _field.num, _count); \
1191 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1192 }
1193 
1194 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1195 { \
1196 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1197 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1198 }
1199 
1200 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1201 { \
1202 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1203 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1204 }
1205 
1206 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1207 { \
1208 	_handle_a->stats._field += _handle_b->stats._field; \
1209 }
1210 
1211 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1212 { \
1213 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1214 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1215 }
1216 
1217 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1218 { \
1219 	_handle_a->stats._field = _handle_b->stats._field; \
1220 }
1221 
1222 #else
1223 #define DP_STATS_INC(_handle, _field, _delta)
1224 #define DP_PEER_LINK_STATS_INC(_handle, _field, _delta, _link)
1225 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1226 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1227 #define DP_PEER_LINK_STATS_INCC(_handle, _field, _delta, _cond, _link)
1228 #define DP_STATS_DEC(_handle, _field, _delta)
1229 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1230 #define DP_STATS_UPD(_handle, _field, _delta)
1231 #define DP_PEER_LINK_STATS_UPD(_handle, _field, _delta, _link)
1232 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1233 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1234 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1235 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1236 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1237 #endif
1238 
1239 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta, _link) \
1240 { \
1241 	DP_PEER_LINK_STATS_INC(_handle, per_pkt_stats._field, _delta, _link); \
1242 }
1243 
1244 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1245 { \
1246 	DP_PEER_LINK_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond, _link); \
1247 }
1248 
1249 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes, _link) \
1250 { \
1251 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count, _link); \
1252 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes, _link) \
1253 }
1254 
1255 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond, _link) \
1256 { \
1257 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond, _link); \
1258 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond, _link) \
1259 }
1260 
1261 #define DP_PEER_PER_PKT_STATS_UPD(_handle, _field, _delta, _link) \
1262 { \
1263 	DP_PEER_LINK_STATS_UPD(_handle, per_pkt_stats._field, _delta, _link); \
1264 }
1265 
1266 #ifndef QCA_ENHANCED_STATS_SUPPORT
1267 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta, _link) \
1268 { \
1269 	DP_PEER_LINK_STATS_INC(_handle, extd_stats._field, _delta, _link); \
1270 }
1271 
1272 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond, _link) \
1273 { \
1274 	DP_PEER_LINK_STATS_INCC(_handle, extd_stats._field, _delta, _cond, _link); \
1275 }
1276 
1277 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta, _link) \
1278 { \
1279 	DP_PEER_LINK_STATS_UPD(_handle, extd_stats._field, _delta, _link); \
1280 }
1281 #endif
1282 
1283 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1284 	defined(QCA_ENHANCED_STATS_SUPPORT)
1285 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1286 { \
1287 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1288 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1289 }
1290 
1291 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1292 { \
1293 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1294 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1295 }
1296 
1297 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1298 { \
1299 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1300 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1301 }
1302 
1303 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1304 { \
1305 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1306 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1307 }
1308 
1309 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1310 { \
1311 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1312 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1313 }
1314 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1315 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1316 { \
1317 	if (!(_handle->hw_txrx_stats_en)) \
1318 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1319 }
1320 
1321 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1322 { \
1323 	if (!(_handle->hw_txrx_stats_en)) \
1324 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1325 }
1326 
1327 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1328 { \
1329 	if (!(_handle->hw_txrx_stats_en)) \
1330 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link); \
1331 }
1332 
1333 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1334 { \
1335 	if (!(_handle->hw_txrx_stats_en)) \
1336 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link); \
1337 }
1338 
1339 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1340 { \
1341 	if (!(_handle->hw_txrx_stats_en)) \
1342 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link); \
1343 }
1344 #else
1345 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1346 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1347 
1348 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1349 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1350 
1351 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1352 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes, _link);
1353 
1354 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1355 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes, _link);
1356 
1357 #define DP_PEER_UC_INCC_PKT(_handle, _count, _bytes, _cond, _link) \
1358 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.unicast, _count, _bytes, _link);
1359 #endif
1360 
1361 #ifdef ENABLE_DP_HIST_STATS
1362 #define DP_HIST_INIT() \
1363 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1364 
1365 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1366 { \
1367 		++num_of_packets[_pdev_id]; \
1368 }
1369 
1370 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1371 	do {                                                              \
1372 		if (_p_cntrs == 1) {                                      \
1373 			DP_STATS_INC(_pdev,                               \
1374 				tx_comp_histogram.pkts_1, 1);             \
1375 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1376 			DP_STATS_INC(_pdev,                               \
1377 				tx_comp_histogram.pkts_2_20, 1);          \
1378 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1379 			DP_STATS_INC(_pdev,                               \
1380 				tx_comp_histogram.pkts_21_40, 1);         \
1381 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1382 			DP_STATS_INC(_pdev,                               \
1383 				tx_comp_histogram.pkts_41_60, 1);         \
1384 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1385 			DP_STATS_INC(_pdev,                               \
1386 				tx_comp_histogram.pkts_61_80, 1);         \
1387 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1388 			DP_STATS_INC(_pdev,                               \
1389 				tx_comp_histogram.pkts_81_100, 1);        \
1390 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1391 			DP_STATS_INC(_pdev,                               \
1392 				tx_comp_histogram.pkts_101_200, 1);       \
1393 		} else if (_p_cntrs > 200) {                              \
1394 			DP_STATS_INC(_pdev,                               \
1395 				tx_comp_histogram.pkts_201_plus, 1);      \
1396 		}                                                         \
1397 	} while (0)
1398 
1399 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1400 	do {                                                              \
1401 		if (_p_cntrs == 1) {                                      \
1402 			DP_STATS_INC(_pdev,                               \
1403 				rx_ind_histogram.pkts_1, 1);              \
1404 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1405 			DP_STATS_INC(_pdev,                               \
1406 				rx_ind_histogram.pkts_2_20, 1);           \
1407 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1408 			DP_STATS_INC(_pdev,                               \
1409 				rx_ind_histogram.pkts_21_40, 1);          \
1410 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1411 			DP_STATS_INC(_pdev,                               \
1412 				rx_ind_histogram.pkts_41_60, 1);          \
1413 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1414 			DP_STATS_INC(_pdev,                               \
1415 				rx_ind_histogram.pkts_61_80, 1);          \
1416 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1417 			DP_STATS_INC(_pdev,                               \
1418 				rx_ind_histogram.pkts_81_100, 1);         \
1419 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1420 			DP_STATS_INC(_pdev,                               \
1421 				rx_ind_histogram.pkts_101_200, 1);        \
1422 		} else if (_p_cntrs > 200) {                              \
1423 			DP_STATS_INC(_pdev,                               \
1424 				rx_ind_histogram.pkts_201_plus, 1);       \
1425 		}                                                         \
1426 	} while (0)
1427 
1428 #define DP_TX_HIST_STATS_PER_PDEV() \
1429 	do { \
1430 		uint8_t hist_stats = 0; \
1431 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1432 				hist_stats++) { \
1433 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1434 					num_of_packets[hist_stats]); \
1435 		} \
1436 	}  while (0)
1437 
1438 
1439 #define DP_RX_HIST_STATS_PER_PDEV() \
1440 	do { \
1441 		uint8_t hist_stats = 0; \
1442 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1443 				hist_stats++) { \
1444 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1445 					num_of_packets[hist_stats]); \
1446 		} \
1447 	}  while (0)
1448 
1449 #else
1450 #define DP_HIST_INIT()
1451 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1452 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1453 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1454 #define DP_RX_HIST_STATS_PER_PDEV()
1455 #define DP_TX_HIST_STATS_PER_PDEV()
1456 #endif /* DISABLE_DP_STATS */
1457 
1458 #define FRAME_MASK_IPV4_ARP   1
1459 #define FRAME_MASK_IPV4_DHCP  2
1460 #define FRAME_MASK_IPV4_EAPOL 4
1461 #define FRAME_MASK_IPV6_DHCP  8
1462 
1463 static inline int dp_log2_ceil(unsigned int value)
1464 {
1465 	unsigned int tmp = value;
1466 	int log2 = -1;
1467 
1468 	while (tmp) {
1469 		log2++;
1470 		tmp >>= 1;
1471 	}
1472 	if (1 << log2 != value)
1473 		log2++;
1474 	return log2;
1475 }
1476 
1477 #ifdef QCA_SUPPORT_PEER_ISOLATION
1478 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1479 
1480 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1481 					 bool val)
1482 {
1483 	txrx_peer->isolation = val;
1484 }
1485 
1486 #else
1487 #define dp_get_peer_isolation(_peer) (0)
1488 
1489 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1490 {
1491 }
1492 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1493 
1494 bool dp_vdev_is_wds_ext_enabled(struct dp_vdev *vdev);
1495 
1496 #ifdef QCA_SUPPORT_WDS_EXTENDED
1497 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1498 {
1499 	txrx_peer->wds_ext.osif_peer = NULL;
1500 	txrx_peer->wds_ext.init = 0;
1501 }
1502 #else
1503 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1504 {
1505 }
1506 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1507 
1508 #ifdef QCA_HOST2FW_RXBUF_RING
1509 static inline
1510 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1511 {
1512 	return &pdev->rx_mac_buf_ring[lmac_id];
1513 }
1514 #else
1515 static inline
1516 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1517 {
1518 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1519 }
1520 #endif
1521 
1522 /*
1523  * The lmac ID for a particular channel band is fixed.
1524  * 2.4GHz band uses lmac_id = 1
1525  * 5GHz/6GHz band uses lmac_id=0
1526  */
1527 #define DP_INVALID_LMAC_ID	(-1)
1528 #define DP_MON_INVALID_LMAC_ID	(-1)
1529 #define DP_MAC0_LMAC_ID	0
1530 #define DP_MAC1_LMAC_ID	1
1531 
1532 #ifdef FEATURE_TSO_STATS
1533 /**
1534  * dp_init_tso_stats() - Clear tso stats
1535  * @pdev: pdev handle
1536  *
1537  * Return: None
1538  */
1539 static inline
1540 void dp_init_tso_stats(struct dp_pdev *pdev)
1541 {
1542 	if (pdev) {
1543 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1544 			     sizeof((pdev)->stats.tso_stats));
1545 		qdf_atomic_init(&pdev->tso_idx);
1546 	}
1547 }
1548 
1549 /**
1550  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1551  * @pdev: pdev handle
1552  * @_p_cntrs: number of tso segments for a tso packet
1553  *
1554  * Return: None
1555  */
1556 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1557 					   uint8_t _p_cntrs);
1558 
1559 /**
1560  * dp_tso_segment_update() - Collect tso segment information
1561  * @pdev: pdev handle
1562  * @stats_idx: tso packet number
1563  * @idx: tso segment number
1564  * @seg: tso segment
1565  *
1566  * Return: None
1567  */
1568 void dp_tso_segment_update(struct dp_pdev *pdev,
1569 			   uint32_t stats_idx,
1570 			   uint8_t idx,
1571 			   struct qdf_tso_seg_t seg);
1572 
1573 /**
1574  * dp_tso_packet_update() - TSO Packet information
1575  * @pdev: pdev handle
1576  * @stats_idx: tso packet number
1577  * @msdu: nbuf handle
1578  * @num_segs: tso segments
1579  *
1580  * Return: None
1581  */
1582 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1583 			  qdf_nbuf_t msdu, uint16_t num_segs);
1584 
1585 /**
1586  * dp_tso_segment_stats_update() - TSO Segment stats
1587  * @pdev: pdev handle
1588  * @stats_seg: tso segment list
1589  * @stats_idx: tso packet number
1590  *
1591  * Return: None
1592  */
1593 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1594 				 struct qdf_tso_seg_elem_t *stats_seg,
1595 				 uint32_t stats_idx);
1596 
1597 /**
1598  * dp_print_tso_stats() - dump tso statistics
1599  * @soc:soc handle
1600  * @level: verbosity level
1601  *
1602  * Return: None
1603  */
1604 void dp_print_tso_stats(struct dp_soc *soc,
1605 			enum qdf_stats_verbosity_level level);
1606 
1607 /**
1608  * dp_txrx_clear_tso_stats() - clear tso stats
1609  * @soc: soc handle
1610  *
1611  * Return: None
1612  */
1613 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1614 #else
1615 static inline
1616 void dp_init_tso_stats(struct dp_pdev *pdev)
1617 {
1618 }
1619 
1620 static inline
1621 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1622 					   uint8_t _p_cntrs)
1623 {
1624 }
1625 
1626 static inline
1627 void dp_tso_segment_update(struct dp_pdev *pdev,
1628 			   uint32_t stats_idx,
1629 			   uint32_t idx,
1630 			   struct qdf_tso_seg_t seg)
1631 {
1632 }
1633 
1634 static inline
1635 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1636 			  qdf_nbuf_t msdu, uint16_t num_segs)
1637 {
1638 }
1639 
1640 static inline
1641 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1642 				 struct qdf_tso_seg_elem_t *stats_seg,
1643 				 uint32_t stats_idx)
1644 {
1645 }
1646 
1647 static inline
1648 void dp_print_tso_stats(struct dp_soc *soc,
1649 			enum qdf_stats_verbosity_level level)
1650 {
1651 }
1652 
1653 static inline
1654 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1655 {
1656 }
1657 #endif /* FEATURE_TSO_STATS */
1658 
1659 /**
1660  * dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1661  * @peer: DP peer handle
1662  * @type: Requested stats type
1663  * @buf: Buffer to hold the value
1664  *
1665  * Return: status success/failure
1666  */
1667 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1668 						enum cdp_peer_stats_type type,
1669 						cdp_peer_stats_param_t *buf);
1670 
1671 /**
1672  * dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1673  * @peer: DP peer handle
1674  * @type: Requested stats type
1675  * @buf: Buffer to hold the value
1676  *
1677  * Return: status success/failure
1678  */
1679 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1680 					     enum cdp_peer_stats_type type,
1681 					     cdp_peer_stats_param_t *buf);
1682 
1683 #define DP_HTT_T2H_HP_PIPE 5
1684 /**
1685  * dp_update_pdev_stats(): Update the pdev stats
1686  * @tgtobj: pdev handle
1687  * @srcobj: vdev stats structure
1688  *
1689  * Update the pdev stats from the specified vdev stats
1690  *
1691  * Return: None
1692  */
1693 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1694 			  struct cdp_vdev_stats *srcobj);
1695 
1696 /**
1697  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1698  * @tgtobj: vdev handle
1699  *
1700  * Update the vdev ingress stats
1701  *
1702  * Return: None
1703  */
1704 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1705 
1706 /**
1707  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1708  * @tgtobj: tgt buffer for vdev stats
1709  * @srcobj: srcobj vdev stats
1710  *
1711  * Return: None
1712  */
1713 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1714 			       struct cdp_vdev_stats *srcobj);
1715 
1716 /**
1717  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1718  * @tgtobj: pdev handle
1719  * @srcobj: vdev stats structure
1720  *
1721  * Update the pdev ingress stats from the specified vdev stats
1722  *
1723  * Return: None
1724  */
1725 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1726 				  struct dp_vdev *srcobj);
1727 
1728 /**
1729  * dp_update_vdev_stats(): Update the vdev stats
1730  * @soc: soc handle
1731  * @srcobj: DP_PEER object
1732  * @arg: point to vdev stats structure
1733  *
1734  * Update the vdev stats from the specified peer stats
1735  *
1736  * Return: None
1737  */
1738 void dp_update_vdev_stats(struct dp_soc *soc,
1739 			  struct dp_peer *srcobj,
1740 			  void *arg);
1741 
1742 /**
1743  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1744  * @vdev: DP_VDEV handle
1745  * @peer: DP_PEER handle
1746  *
1747  * Return: None
1748  */
1749 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1750 					struct dp_peer *peer);
1751 
1752 #ifdef IPA_OFFLOAD
1753 #define DP_IPA_UPDATE_RX_STATS(__tgtobj, __srcobj) \
1754 { \
1755 	DP_STATS_AGGR_PKT(__tgtobj, __srcobj, rx.rx_total); \
1756 }
1757 
1758 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(__tgtobj, __srcobj) \
1759 { \
1760 	(__tgtobj)->rx.rx_total.num += (__srcobj)->rx.rx_total.num; \
1761 	(__tgtobj)->rx.rx_total.bytes += (__srcobj)->rx.rx_total.bytes; \
1762 }
1763 #else
1764 #define DP_IPA_UPDATE_PER_PKT_RX_STATS(tgtobj, srcobj) \
1765 
1766 #define DP_IPA_UPDATE_RX_STATS(tgtobj, srcobj)
1767 #endif
1768 
1769 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1770 	do {				\
1771 		uint8_t i;		\
1772 		uint8_t pream_type;	\
1773 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1774 			for (i = 0; i < MAX_MCS; i++) { \
1775 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1776 					tx.pkt_type[pream_type].mcs_count[i]); \
1777 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1778 					rx.pkt_type[pream_type].mcs_count[i]); \
1779 			} \
1780 		} \
1781 		  \
1782 		for (i = 0; i < MAX_BW; i++) { \
1783 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1784 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1785 		} \
1786 		  \
1787 		for (i = 0; i < SS_COUNT; i++) { \
1788 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1789 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1790 		} \
1791 		for (i = 0; i < WME_AC_MAX; i++) { \
1792 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1793 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1794 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1795 				      tx.wme_ac_type_bytes[i]); \
1796 			DP_STATS_AGGR(_tgtobj, _srcobj, \
1797 				      rx.wme_ac_type_bytes[i]); \
1798 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1799 		\
1800 		} \
1801 		\
1802 		for (i = 0; i < MAX_GI; i++) { \
1803 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1804 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1805 		} \
1806 		\
1807 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1808 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1809 		\
1810 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1811 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1812 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1813 		} \
1814 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1815 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1816 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1817 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1818 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1819 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1820 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1821 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1822 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1823 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1824 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1825 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1826 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1827 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1828 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1829 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1830 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1831 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1832 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1833 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1834 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1835 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1836 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1837 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1838 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1839 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1840 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1841 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1842 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_total); \
1843 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_ucast_success); \
1844 								\
1845 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1846 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1847 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1848 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1849 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1850 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1851 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1852 		if (_srcobj->stats.rx.snr != 0) \
1853 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1854 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1855 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1856 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1857 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1858 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1859 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1860 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1861 								\
1862 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1863 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1864 									\
1865 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1866 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1867 									\
1868 		_srcobj->stats.rx.unicast.num = \
1869 			_srcobj->stats.rx.to_stack.num - \
1870 					_srcobj->stats.rx.multicast.num; \
1871 		_srcobj->stats.rx.unicast.bytes = \
1872 			_srcobj->stats.rx.to_stack.bytes - \
1873 					_srcobj->stats.rx.multicast.bytes; \
1874 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1875 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1876 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1877 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1878 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1879 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1880 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1881 								  \
1882 		_tgtobj->stats.tx.last_ack_rssi =	\
1883 			_srcobj->stats.tx.last_ack_rssi; \
1884 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1885 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1886 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1887 		DP_IPA_UPDATE_RX_STATS(_tgtobj, _srcobj); \
1888 	}  while (0)
1889 
1890 #ifdef VDEV_PEER_PROTOCOL_COUNT
1891 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1892 { \
1893 	uint8_t j; \
1894 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1895 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1896 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1897 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1898 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1899 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1900 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1901 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1902 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1903 	} \
1904 }
1905 #else
1906 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1907 #endif
1908 
1909 #ifdef WLAN_FEATURE_11BE
1910 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1911 	do { \
1912 		uint8_t i, mu_type; \
1913 		for (i = 0; i < MAX_MCS; i++) { \
1914 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1915 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1916 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1917 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1918 		} \
1919 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1920 			for (i = 0; i < MAX_MCS; i++) { \
1921 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1922 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1923 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1924 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1925 			} \
1926 		} \
1927 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1928 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1929 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1930 		} \
1931 	} while (0)
1932 #else
1933 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1934 #endif
1935 
1936 #define DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj) \
1937 	do { \
1938 		_tgtobj->tx.comp_pkt.num += _srcobj->tx.comp_pkt.num; \
1939 		_tgtobj->tx.comp_pkt.bytes += _srcobj->tx.comp_pkt.bytes; \
1940 		_tgtobj->tx.tx_failed += _srcobj->tx.tx_failed; \
1941 		_tgtobj->rx.to_stack.num += _srcobj->rx.to_stack.num; \
1942 		_tgtobj->rx.to_stack.bytes += _srcobj->rx.to_stack.bytes; \
1943 	} while (0)
1944 
1945 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1946 	do { \
1947 		uint8_t i; \
1948 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1949 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1950 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1951 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1952 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1953 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1954 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1955 		_tgtobj->tx.nawds_mcast.bytes += \
1956 					_srcobj->tx.nawds_mcast.bytes; \
1957 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1958 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1959 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1960 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1961 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1962 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1963 		_tgtobj->tx.dropped.fw_rem.num += \
1964 					_srcobj->tx.dropped.fw_rem.num; \
1965 		_tgtobj->tx.dropped.fw_rem.bytes += \
1966 					_srcobj->tx.dropped.fw_rem.bytes; \
1967 		_tgtobj->tx.dropped.fw_rem_notx += \
1968 					_srcobj->tx.dropped.fw_rem_notx; \
1969 		_tgtobj->tx.dropped.fw_rem_tx += \
1970 					_srcobj->tx.dropped.fw_rem_tx; \
1971 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1972 		_tgtobj->tx.dropped.fw_reason1 += \
1973 					_srcobj->tx.dropped.fw_reason1; \
1974 		_tgtobj->tx.dropped.fw_reason2 += \
1975 					_srcobj->tx.dropped.fw_reason2; \
1976 		_tgtobj->tx.dropped.fw_reason3 += \
1977 					_srcobj->tx.dropped.fw_reason3; \
1978 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1979 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1980 		_tgtobj->tx.dropped.fw_rem_no_match += \
1981 					_srcobj->tx.dropped.fw_rem_no_match; \
1982 		_tgtobj->tx.dropped.drop_threshold += \
1983 					_srcobj->tx.dropped.drop_threshold; \
1984 		_tgtobj->tx.dropped.drop_link_desc_na += \
1985 					_srcobj->tx.dropped.drop_link_desc_na; \
1986 		_tgtobj->tx.dropped.invalid_drop += \
1987 					_srcobj->tx.dropped.invalid_drop; \
1988 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1989 					_srcobj->tx.dropped.mcast_vdev_drop; \
1990 		_tgtobj->tx.dropped.invalid_rr += \
1991 					_srcobj->tx.dropped.invalid_rr; \
1992 		_tgtobj->tx.failed_retry_count += \
1993 					_srcobj->tx.failed_retry_count; \
1994 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1995 		_tgtobj->tx.multiple_retry_count += \
1996 					_srcobj->tx.multiple_retry_count; \
1997 		_tgtobj->tx.tx_success_twt.num += \
1998 					_srcobj->tx.tx_success_twt.num; \
1999 		_tgtobj->tx.tx_success_twt.bytes += \
2000 					_srcobj->tx.tx_success_twt.bytes; \
2001 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
2002 		_tgtobj->tx.release_src_not_tqm += \
2003 					_srcobj->tx.release_src_not_tqm; \
2004 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
2005 			_tgtobj->tx.no_ack_count[i] += \
2006 					_srcobj->tx.no_ack_count[i];\
2007 		} \
2008 		\
2009 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
2010 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
2011 		_tgtobj->rx.rx_success.num += _srcobj->rx.rx_success.num;\
2012 		_tgtobj->rx.rx_success.bytes += _srcobj->rx.rx_success.bytes;\
2013 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
2014 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
2015 		_tgtobj->rx.unicast.num += _srcobj->rx.unicast.num; \
2016 		_tgtobj->rx.unicast.bytes += _srcobj->rx.unicast.bytes; \
2017 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
2018 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
2019 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
2020 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
2021 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
2022 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
2023 		_tgtobj->rx.ppeds_drop.num += _srcobj->rx.ppeds_drop.num; \
2024 		_tgtobj->rx.ppeds_drop.bytes += _srcobj->rx.ppeds_drop.bytes; \
2025 		_tgtobj->rx.intra_bss.pkts.num += \
2026 					_srcobj->rx.intra_bss.pkts.num; \
2027 		_tgtobj->rx.intra_bss.pkts.bytes += \
2028 					_srcobj->rx.intra_bss.pkts.bytes; \
2029 		_tgtobj->rx.intra_bss.fail.num += \
2030 					_srcobj->rx.intra_bss.fail.num; \
2031 		_tgtobj->rx.intra_bss.fail.bytes += \
2032 					_srcobj->rx.intra_bss.fail.bytes; \
2033 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
2034 					_srcobj->rx.intra_bss.mdns_no_fwd; \
2035 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
2036 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
2037 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
2038 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
2039 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
2040 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
2041 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
2042 					_srcobj->rx.err.rxdma_wifi_parse_err; \
2043 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
2044 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
2045 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
2046 		_tgtobj->rx.multipass_rx_pkt_drop += \
2047 					_srcobj->rx.multipass_rx_pkt_drop; \
2048 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
2049 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
2050 		_tgtobj->rx.policy_check_drop += \
2051 					_srcobj->rx.policy_check_drop; \
2052 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
2053 		_tgtobj->rx.to_stack_twt.bytes += \
2054 					_srcobj->rx.to_stack_twt.bytes; \
2055 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
2056 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
2057 			_tgtobj->rx.rcvd_reo[i].num += \
2058 					 _srcobj->rx.rcvd_reo[i].num; \
2059 			_tgtobj->rx.rcvd_reo[i].bytes += \
2060 					_srcobj->rx.rcvd_reo[i].bytes; \
2061 			_tgtobj->rx.rcvd.num += \
2062 					 _srcobj->rx.rcvd_reo[i].num; \
2063 			_tgtobj->rx.rcvd.bytes += \
2064 					_srcobj->rx.rcvd_reo[i].bytes; \
2065 		} \
2066 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
2067 			_tgtobj->rx.rx_lmac[i].num += \
2068 					_srcobj->rx.rx_lmac[i].num; \
2069 			_tgtobj->rx.rx_lmac[i].bytes += \
2070 					_srcobj->rx.rx_lmac[i].bytes; \
2071 		} \
2072 		DP_IPA_UPDATE_PER_PKT_RX_STATS(_tgtobj, _srcobj); \
2073 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
2074 	} while (0)
2075 
2076 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
2077 	do { \
2078 		uint8_t i, pream_type, mu_type; \
2079 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
2080 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
2081 		_tgtobj->tx.retries += _srcobj->tx.retries; \
2082 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
2083 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
2084 		_tgtobj->tx.num_ppdu_cookie_valid += \
2085 					_srcobj->tx.num_ppdu_cookie_valid; \
2086 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
2087 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
2088 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
2089 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
2090 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
2091 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
2092 		_tgtobj->tx.mcast_last_tx_rate = \
2093 					_srcobj->tx.mcast_last_tx_rate; \
2094 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
2095 					_srcobj->tx.mcast_last_tx_rate_mcs; \
2096 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
2097 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
2098 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
2099 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
2100 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
2101 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
2102 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
2103 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
2104 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
2105 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
2106 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
2107 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
2108 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
2109 		_tgtobj->tx.mpdu_success_with_retries += \
2110 					_srcobj->tx.mpdu_success_with_retries; \
2111 		_tgtobj->tx.rts_success = _srcobj->tx.rts_success; \
2112 		_tgtobj->tx.rts_failure = _srcobj->tx.rts_failure; \
2113 		_tgtobj->tx.bar_cnt = _srcobj->tx.bar_cnt; \
2114 		_tgtobj->tx.ndpa_cnt = _srcobj->tx.ndpa_cnt; \
2115 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2116 			for (i = 0; i < MAX_MCS; i++) \
2117 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
2118 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
2119 		} \
2120 		for (i = 0; i < WME_AC_MAX; i++) { \
2121 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
2122 			_tgtobj->tx.wme_ac_type_bytes[i] += \
2123 					_srcobj->tx.wme_ac_type_bytes[i]; \
2124 			_tgtobj->tx.excess_retries_per_ac[i] += \
2125 					_srcobj->tx.excess_retries_per_ac[i]; \
2126 		} \
2127 		for (i = 0; i < MAX_GI; i++) { \
2128 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
2129 		} \
2130 		for (i = 0; i < SS_COUNT; i++) { \
2131 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
2132 		} \
2133 		for (i = 0; i < MAX_BW; i++) { \
2134 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
2135 		} \
2136 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
2137 			_tgtobj->tx.ru_loc[i].num_msdu += \
2138 					_srcobj->tx.ru_loc[i].num_msdu; \
2139 			_tgtobj->tx.ru_loc[i].num_mpdu += \
2140 					_srcobj->tx.ru_loc[i].num_mpdu; \
2141 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
2142 					_srcobj->tx.ru_loc[i].mpdu_tried; \
2143 		} \
2144 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
2145 			_tgtobj->tx.transmit_type[i].num_msdu += \
2146 					_srcobj->tx.transmit_type[i].num_msdu; \
2147 			_tgtobj->tx.transmit_type[i].num_mpdu += \
2148 					_srcobj->tx.transmit_type[i].num_mpdu; \
2149 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
2150 					_srcobj->tx.transmit_type[i].mpdu_tried; \
2151 		} \
2152 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
2153 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
2154 		} \
2155 		_tgtobj->tx.tx_ucast_total.num += \
2156 				_srcobj->tx.tx_ucast_total.num;\
2157 		_tgtobj->tx.tx_ucast_total.bytes += \
2158 				 _srcobj->tx.tx_ucast_total.bytes;\
2159 		_tgtobj->tx.tx_ucast_success.num += \
2160 				_srcobj->tx.tx_ucast_success.num; \
2161 		_tgtobj->tx.tx_ucast_success.bytes += \
2162 				_srcobj->tx.tx_ucast_success.bytes; \
2163 		\
2164 		for (i = 0; i < CDP_RSSI_CHAIN_LEN; i++) \
2165 			_tgtobj->tx.rssi_chain[i] = _srcobj->tx.rssi_chain[i]; \
2166 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
2167 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
2168 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
2169 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
2170 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
2171 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
2172 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
2173 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
2174 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
2175 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
2176 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
2177 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
2178 		_tgtobj->rx.rx_snr_measured_time = \
2179 					_srcobj->rx.rx_snr_measured_time; \
2180 		_tgtobj->rx.snr = _srcobj->rx.snr; \
2181 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
2182 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
2183 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
2184 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
2185 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
2186 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
2187 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
2188 		_tgtobj->rx.bar_cnt = _srcobj->rx.bar_cnt; \
2189 		_tgtobj->rx.ndpa_cnt = _srcobj->rx.ndpa_cnt; \
2190 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
2191 			for (i = 0; i < MAX_MCS; i++) { \
2192 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
2193 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
2194 			} \
2195 		} \
2196 		for (i = 0; i < WME_AC_MAX; i++) { \
2197 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
2198 			_tgtobj->rx.wme_ac_type_bytes[i] += \
2199 					_srcobj->rx.wme_ac_type_bytes[i]; \
2200 		} \
2201 		for (i = 0; i < MAX_MCS; i++) { \
2202 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
2203 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
2204 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
2205 		} \
2206 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
2207 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
2208 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
2209 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
2210 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
2211 			for (i = 0; i < SS_COUNT; i++) \
2212 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
2213 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
2214 			for (i = 0; i < MAX_MCS; i++) \
2215 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
2216 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
2217 		} \
2218 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
2219 			_tgtobj->rx.reception_type[i] += \
2220 					_srcobj->rx.reception_type[i]; \
2221 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
2222 		} \
2223 		for (i = 0; i < MAX_GI; i++) { \
2224 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2225 		} \
2226 		for (i = 0; i < SS_COUNT; i++) { \
2227 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2228 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2229 		} \
2230 		for (i = 0; i < MAX_BW; i++) { \
2231 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2232 		} \
2233 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2234 	} while (0)
2235 
2236 #define DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj) \
2237 	do { \
2238 		DP_UPDATE_BASIC_STATS(_tgtobj, _srcobj); \
2239 		DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj); \
2240 		DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj); \
2241 	} while (0)
2242 
2243 #define DP_UPDATE_INGRESS_STATS(_tgtobj, _srcobj) \
2244 	do { \
2245 		uint8_t i = 0; \
2246 		_tgtobj->tx_i.rcvd.num += _srcobj->tx_i.rcvd.num; \
2247 		_tgtobj->tx_i.rcvd.bytes += _srcobj->tx_i.rcvd.bytes; \
2248 		_tgtobj->tx_i.rcvd_in_fast_xmit_flow += \
2249 					_srcobj->tx_i.rcvd_in_fast_xmit_flow; \
2250 		for (i = 0; i < CDP_MAX_TX_DATA_RINGS; i++) { \
2251 			_tgtobj->tx_i.rcvd_per_core[i] += \
2252 					_srcobj->tx_i.rcvd_per_core[i]; \
2253 		} \
2254 		_tgtobj->tx_i.processed.num += _srcobj->tx_i.processed.num; \
2255 		_tgtobj->tx_i.processed.bytes += \
2256 						_srcobj->tx_i.processed.bytes; \
2257 		_tgtobj->tx_i.reinject_pkts.num += \
2258 					_srcobj->tx_i.reinject_pkts.num; \
2259 		_tgtobj->tx_i.reinject_pkts.bytes += \
2260 					_srcobj->tx_i.reinject_pkts.bytes; \
2261 		_tgtobj->tx_i.inspect_pkts.num += \
2262 					_srcobj->tx_i.inspect_pkts.num; \
2263 		_tgtobj->tx_i.inspect_pkts.bytes += \
2264 				_srcobj->tx_i.inspect_pkts.bytes; \
2265 		_tgtobj->tx_i.nawds_mcast.num += \
2266 					_srcobj->tx_i.nawds_mcast.num; \
2267 		_tgtobj->tx_i.nawds_mcast.bytes += \
2268 					_srcobj->tx_i.nawds_mcast.bytes; \
2269 		_tgtobj->tx_i.bcast.num += _srcobj->tx_i.bcast.num; \
2270 		_tgtobj->tx_i.bcast.bytes += _srcobj->tx_i.bcast.bytes; \
2271 		_tgtobj->tx_i.raw.raw_pkt.num += \
2272 					_srcobj->tx_i.raw.raw_pkt.num; \
2273 		_tgtobj->tx_i.raw.raw_pkt.bytes += \
2274 					_srcobj->tx_i.raw.raw_pkt.bytes; \
2275 		_tgtobj->tx_i.raw.dma_map_error += \
2276 					_srcobj->tx_i.raw.dma_map_error; \
2277 		_tgtobj->tx_i.raw.invalid_raw_pkt_datatype += \
2278 				_srcobj->tx_i.raw.invalid_raw_pkt_datatype; \
2279 		_tgtobj->tx_i.raw.num_frags_overflow_err += \
2280 				_srcobj->tx_i.raw.num_frags_overflow_err; \
2281 		_tgtobj->tx_i.sg.sg_pkt.num += _srcobj->tx_i.sg.sg_pkt.num; \
2282 		_tgtobj->tx_i.sg.sg_pkt.bytes += \
2283 					_srcobj->tx_i.sg.sg_pkt.bytes; \
2284 		_tgtobj->tx_i.sg.non_sg_pkts.num += \
2285 					_srcobj->tx_i.sg.non_sg_pkts.num; \
2286 		_tgtobj->tx_i.sg.non_sg_pkts.bytes += \
2287 					_srcobj->tx_i.sg.non_sg_pkts.bytes; \
2288 		_tgtobj->tx_i.sg.dropped_host.num += \
2289 					_srcobj->tx_i.sg.dropped_host.num; \
2290 		_tgtobj->tx_i.sg.dropped_host.bytes += \
2291 					_srcobj->tx_i.sg.dropped_host.bytes; \
2292 		_tgtobj->tx_i.sg.dropped_target += \
2293 					_srcobj->tx_i.sg.dropped_target; \
2294 		_tgtobj->tx_i.sg.dma_map_error += \
2295 					_srcobj->tx_i.sg.dma_map_error; \
2296 		_tgtobj->tx_i.mcast_en.mcast_pkt.num += \
2297 					_srcobj->tx_i.mcast_en.mcast_pkt.num; \
2298 		_tgtobj->tx_i.mcast_en.mcast_pkt.bytes += \
2299 				_srcobj->tx_i.mcast_en.mcast_pkt.bytes; \
2300 		_tgtobj->tx_i.mcast_en.dropped_map_error += \
2301 				_srcobj->tx_i.mcast_en.dropped_map_error; \
2302 		_tgtobj->tx_i.mcast_en.dropped_self_mac += \
2303 				_srcobj->tx_i.mcast_en.dropped_self_mac; \
2304 		_tgtobj->tx_i.mcast_en.dropped_send_fail += \
2305 				_srcobj->tx_i.mcast_en.dropped_send_fail; \
2306 		_tgtobj->tx_i.mcast_en.ucast += _srcobj->tx_i.mcast_en.ucast; \
2307 		_tgtobj->tx_i.mcast_en.fail_seg_alloc += \
2308 					_srcobj->tx_i.mcast_en.fail_seg_alloc; \
2309 		_tgtobj->tx_i.mcast_en.clone_fail += \
2310 					_srcobj->tx_i.mcast_en.clone_fail; \
2311 		_tgtobj->tx_i.igmp_mcast_en.igmp_rcvd += \
2312 				_srcobj->tx_i.igmp_mcast_en.igmp_rcvd; \
2313 		_tgtobj->tx_i.igmp_mcast_en.igmp_ucast_converted += \
2314 			_srcobj->tx_i.igmp_mcast_en.igmp_ucast_converted; \
2315 		_tgtobj->tx_i.dropped.desc_na.num += \
2316 				_srcobj->tx_i.dropped.desc_na.num; \
2317 		_tgtobj->tx_i.dropped.desc_na.bytes += \
2318 				_srcobj->tx_i.dropped.desc_na.bytes; \
2319 		_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.num += \
2320 			_srcobj->tx_i.dropped.desc_na_exc_alloc_fail.num; \
2321 		_tgtobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes += \
2322 			_srcobj->tx_i.dropped.desc_na_exc_alloc_fail.bytes; \
2323 		_tgtobj->tx_i.dropped.desc_na_exc_outstand.num += \
2324 			_srcobj->tx_i.dropped.desc_na_exc_outstand.num; \
2325 		_tgtobj->tx_i.dropped.desc_na_exc_outstand.bytes += \
2326 			_srcobj->tx_i.dropped.desc_na_exc_outstand.bytes; \
2327 		_tgtobj->tx_i.dropped.exc_desc_na.num += \
2328 				_srcobj->tx_i.dropped.exc_desc_na.num; \
2329 		_tgtobj->tx_i.dropped.exc_desc_na.bytes += \
2330 				_srcobj->tx_i.dropped.exc_desc_na.bytes; \
2331 		_tgtobj->tx_i.dropped.ring_full += \
2332 					_srcobj->tx_i.dropped.ring_full; \
2333 		_tgtobj->tx_i.dropped.enqueue_fail += \
2334 					_srcobj->tx_i.dropped.enqueue_fail; \
2335 		_tgtobj->tx_i.dropped.dma_error += \
2336 					_srcobj->tx_i.dropped.dma_error; \
2337 		_tgtobj->tx_i.dropped.res_full += \
2338 					_srcobj->tx_i.dropped.res_full; \
2339 		_tgtobj->tx_i.dropped.headroom_insufficient += \
2340 				_srcobj->tx_i.dropped.headroom_insufficient; \
2341 		_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check += \
2342 			_srcobj->tx_i.dropped.fail_per_pkt_vdev_id_check; \
2343 		_tgtobj->tx_i.dropped.drop_ingress += \
2344 				_srcobj->tx_i.dropped.drop_ingress; \
2345 		_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path += \
2346 			_srcobj->tx_i.dropped.invalid_peer_id_in_exc_path; \
2347 		_tgtobj->tx_i.dropped.tx_mcast_drop += \
2348 					_srcobj->tx_i.dropped.tx_mcast_drop; \
2349 		_tgtobj->tx_i.dropped.fw2wbm_tx_drop += \
2350 					_srcobj->tx_i.dropped.fw2wbm_tx_drop; \
2351 		_tgtobj->tx_i.dropped.dropped_pkt.num = \
2352 			_tgtobj->tx_i.dropped.dma_error + \
2353 			_tgtobj->tx_i.dropped.ring_full + \
2354 			_tgtobj->tx_i.dropped.enqueue_fail + \
2355 			_tgtobj->tx_i.dropped.fail_per_pkt_vdev_id_check + \
2356 			_tgtobj->tx_i.dropped.desc_na.num + \
2357 			_tgtobj->tx_i.dropped.res_full + \
2358 			_tgtobj->tx_i.dropped.drop_ingress + \
2359 			_tgtobj->tx_i.dropped.headroom_insufficient + \
2360 			_tgtobj->tx_i.dropped.invalid_peer_id_in_exc_path + \
2361 			_tgtobj->tx_i.dropped.tx_mcast_drop + \
2362 			_tgtobj->tx_i.dropped.fw2wbm_tx_drop; \
2363 		_tgtobj->tx_i.dropped.dropped_pkt.bytes += \
2364 				_srcobj->tx_i.dropped.dropped_pkt.bytes; \
2365 		_tgtobj->tx_i.mesh.exception_fw += \
2366 					_srcobj->tx_i.mesh.exception_fw; \
2367 		_tgtobj->tx_i.mesh.completion_fw += \
2368 					_srcobj->tx_i.mesh.completion_fw; \
2369 		_tgtobj->tx_i.cce_classified += \
2370 					_srcobj->tx_i.cce_classified; \
2371 		_tgtobj->tx_i.cce_classified_raw += \
2372 					_srcobj->tx_i.cce_classified_raw; \
2373 		_tgtobj->tx_i.sniffer_rcvd.num += \
2374 					_srcobj->tx_i.sniffer_rcvd.num; \
2375 		_tgtobj->tx_i.sniffer_rcvd.bytes += \
2376 					_srcobj->tx_i.sniffer_rcvd.bytes; \
2377 		_tgtobj->rx_i.reo_rcvd_pkt.num += \
2378 					_srcobj->rx_i.reo_rcvd_pkt.num; \
2379 		_tgtobj->rx_i.reo_rcvd_pkt.bytes += \
2380 					_srcobj->rx_i.reo_rcvd_pkt.bytes; \
2381 		_tgtobj->rx_i.null_q_desc_pkt.num += \
2382 					_srcobj->rx_i.null_q_desc_pkt.num; \
2383 		_tgtobj->rx_i.null_q_desc_pkt.bytes += \
2384 					_srcobj->rx_i.null_q_desc_pkt.bytes; \
2385 		_tgtobj->rx_i.routed_eapol_pkt.num += \
2386 					_srcobj->rx_i.routed_eapol_pkt.num; \
2387 		_tgtobj->rx_i.routed_eapol_pkt.bytes += \
2388 					_srcobj->rx_i.routed_eapol_pkt.bytes; \
2389 	} while (0)
2390 
2391 #define DP_UPDATE_VDEV_STATS(_tgtobj, _srcobj) \
2392 	do { \
2393 		DP_UPDATE_INGRESS_STATS(_tgtobj, _srcobj); \
2394 		DP_UPDATE_VDEV_STATS_FOR_UNMAPPED_PEERS(_tgtobj, _srcobj); \
2395 	} while (0)
2396 
2397 /**
2398  * dp_peer_find_attach() - Allocates memory for peer objects
2399  * @soc: SoC handle
2400  *
2401  * Return: QDF_STATUS
2402  */
2403 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2404 
2405 /**
2406  * dp_peer_find_detach() - Frees memory for peer objects
2407  * @soc: SoC handle
2408  *
2409  * Return: none
2410  */
2411 void dp_peer_find_detach(struct dp_soc *soc);
2412 
2413 /**
2414  * dp_peer_find_hash_add() - add peer to peer_hash_table
2415  * @soc: soc handle
2416  * @peer: peer handle
2417  *
2418  * Return: none
2419  */
2420 void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2421 
2422 /**
2423  * dp_peer_find_hash_remove() - remove peer from peer_hash_table
2424  * @soc: soc handle
2425  * @peer: peer handle
2426  *
2427  * Return: none
2428  */
2429 void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2430 
2431 /* unused?? */
2432 void dp_peer_find_hash_erase(struct dp_soc *soc);
2433 
2434 /**
2435  * dp_peer_vdev_list_add() - add peer into vdev's peer list
2436  * @soc: soc handle
2437  * @vdev: vdev handle
2438  * @peer: peer handle
2439  *
2440  * Return: none
2441  */
2442 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2443 			   struct dp_peer *peer);
2444 
2445 /**
2446  * dp_peer_vdev_list_remove() - remove peer from vdev's peer list
2447  * @soc: SoC handle
2448  * @vdev: VDEV handle
2449  * @peer: peer handle
2450  *
2451  * Return: none
2452  */
2453 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2454 			      struct dp_peer *peer);
2455 
2456 /**
2457  * dp_peer_find_id_to_obj_add() - Add peer into peer_id table
2458  * @soc: SoC handle
2459  * @peer: peer handle
2460  * @peer_id: peer_id
2461  *
2462  * Return: None
2463  */
2464 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2465 				struct dp_peer *peer,
2466 				uint16_t peer_id);
2467 
2468 /**
2469  * dp_txrx_peer_attach_add() - Attach txrx_peer and add it to peer_id table
2470  * @soc: SoC handle
2471  * @peer: peer handle
2472  * @txrx_peer: txrx peer handle
2473  *
2474  * Return: None
2475  */
2476 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2477 			     struct dp_peer *peer,
2478 			     struct dp_txrx_peer *txrx_peer);
2479 
2480 /**
2481  * dp_peer_find_id_to_obj_remove() - remove peer from peer_id table
2482  * @soc: SoC handle
2483  * @peer_id: peer_id
2484  *
2485  * Return: None
2486  */
2487 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2488 				   uint16_t peer_id);
2489 
2490 /**
2491  * dp_vdev_unref_delete() - check and process vdev delete
2492  * @soc: DP specific soc pointer
2493  * @vdev: DP specific vdev pointer
2494  * @mod_id: module id
2495  *
2496  */
2497 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2498 			  enum dp_mod_id mod_id);
2499 
2500 /**
2501  * dp_peer_ppdu_delayed_ba_cleanup() - free ppdu allocated in peer
2502  * @peer: Datapath peer
2503  *
2504  * Return: void
2505  */
2506 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2507 
2508 /**
2509  * dp_peer_rx_init() - Initialize receive TID state
2510  * @pdev: Datapath pdev
2511  * @peer: Datapath peer
2512  *
2513  */
2514 void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2515 
2516 /**
2517  * dp_peer_cleanup() - Cleanup peer information
2518  * @vdev: Datapath vdev
2519  * @peer: Datapath peer
2520  *
2521  */
2522 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2523 
2524 #ifdef DP_PEER_EXTENDED_API
2525 /**
2526  * dp_register_peer() - Register peer into physical device
2527  * @soc_hdl: data path soc handle
2528  * @pdev_id: device instance id
2529  * @sta_desc: peer description
2530  *
2531  * Register peer into physical device
2532  *
2533  * Return: QDF_STATUS_SUCCESS registration success
2534  *         QDF_STATUS_E_FAULT peer not found
2535  */
2536 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2537 			    struct ol_txrx_desc_type *sta_desc);
2538 
2539 /**
2540  * dp_clear_peer() - remove peer from physical device
2541  * @soc_hdl: data path soc handle
2542  * @pdev_id: device instance id
2543  * @peer_addr: peer mac address
2544  *
2545  * remove peer from physical device
2546  *
2547  * Return: QDF_STATUS_SUCCESS registration success
2548  *         QDF_STATUS_E_FAULT peer not found
2549  */
2550 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2551 			 struct qdf_mac_addr peer_addr);
2552 
2553 /**
2554  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2555  * @soc_hdl: datapath soc handle
2556  * @vdev_id: vdev instance id
2557  * @peer_addr: peer mac address
2558  *
2559  * Return: true or false
2560  */
2561 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2562 				uint8_t *peer_addr);
2563 
2564 /**
2565  * dp_find_peer_exist_on_other_vdev - find if peer exists
2566  * on other than the given vdev
2567  * @soc_hdl: datapath soc handle
2568  * @vdev_id: vdev instance id
2569  * @peer_addr: peer mac address
2570  * @max_bssid: max number of bssids
2571  *
2572  * Return: true or false
2573  */
2574 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2575 				      uint8_t vdev_id, uint8_t *peer_addr,
2576 				      uint16_t max_bssid);
2577 
2578 /**
2579  * dp_peer_state_update() - update peer local state
2580  * @soc: datapath soc handle
2581  * @peer_mac: peer mac address
2582  * @state: new peer local state
2583  *
2584  * update peer local state
2585  *
2586  * Return: QDF_STATUS_SUCCESS registration success
2587  */
2588 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2589 				enum ol_txrx_peer_state state);
2590 
2591 /**
2592  * dp_get_vdevid() - Get virtual interface id which peer registered
2593  * @soc_hdl: datapath soc handle
2594  * @peer_mac: peer mac address
2595  * @vdev_id: virtual interface id which peer registered
2596  *
2597  * Get virtual interface id which peer registered
2598  *
2599  * Return: QDF_STATUS_SUCCESS registration success
2600  */
2601 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2602 			 uint8_t *vdev_id);
2603 
2604 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2605 		struct qdf_mac_addr peer_addr);
2606 
2607 /**
2608  * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
2609  * @peer: peer instance
2610  *
2611  * Get virtual interface instance which peer belongs
2612  *
2613  * Return: virtual interface instance pointer
2614  *         NULL in case cannot find
2615  */
2616 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2617 
2618 /**
2619  * dp_peer_get_peer_mac_addr() - Get peer mac address
2620  * @peer: peer instance
2621  *
2622  * Get peer mac address
2623  *
2624  * Return: peer mac address pointer
2625  *         NULL in case cannot find
2626  */
2627 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2628 
2629 /**
2630  * dp_get_peer_state() - Get local peer state
2631  * @soc: datapath soc handle
2632  * @vdev_id: vdev id
2633  * @peer_mac: peer mac addr
2634  *
2635  * Get local peer state
2636  *
2637  * Return: peer status
2638  */
2639 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2640 		      uint8_t *peer_mac);
2641 
2642 /**
2643  * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
2644  * @pdev: data path device instance
2645  *
2646  * local peer id pool alloc for physical device
2647  *
2648  * Return: none
2649  */
2650 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2651 
2652 /**
2653  * dp_local_peer_id_alloc() - allocate local peer id
2654  * @pdev: data path device instance
2655  * @peer: new peer instance
2656  *
2657  * allocate local peer id
2658  *
2659  * Return: none
2660  */
2661 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2662 
2663 /**
2664  * dp_local_peer_id_free() - remove local peer id
2665  * @pdev: data path device instance
2666  * @peer: peer instance should be removed
2667  *
2668  * remove local peer id
2669  *
2670  * Return: none
2671  */
2672 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2673 
2674 /**
2675  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2676  * @soc_hdl: datapath soc handle
2677  * @vdev_id: vdev_id
2678  * @peer_mac: peer mac addr
2679  * @val: tdls peer flag
2680  *
2681  * Return: none
2682  */
2683 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2684 			      uint8_t *peer_mac, bool val);
2685 #else
2686 static inline
2687 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2688 			 uint8_t *vdev_id)
2689 {
2690 	return QDF_STATUS_E_NOSUPPORT;
2691 }
2692 
2693 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2694 {
2695 }
2696 
2697 static inline
2698 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2699 {
2700 }
2701 
2702 static inline
2703 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2704 {
2705 }
2706 
2707 static inline
2708 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2709 			      uint8_t *peer_mac, bool val)
2710 {
2711 }
2712 #endif
2713 
2714 /**
2715  * dp_find_peer_exist - find peer if already exists
2716  * @soc_hdl: datapath soc handle
2717  * @pdev_id: physical device instance id
2718  * @peer_addr: peer mac address
2719  *
2720  * Return: true or false
2721  */
2722 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2723 			uint8_t *peer_addr);
2724 
2725 #ifdef DP_UMAC_HW_RESET_SUPPORT
2726 /**
2727  * dp_pause_reo_send_cmd() - Pause Reo send commands.
2728  * @soc: dp soc
2729  *
2730  * Return: none
2731  */
2732 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2733 
2734 /**
2735  * dp_resume_reo_send_cmd() - Resume Reo send commands.
2736  * @soc: dp soc
2737  *
2738  * Return: none
2739  */
2740 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2741 
2742 /**
2743  * dp_cleanup_reo_cmd_module - Clean up the reo cmd module
2744  * @soc: DP SoC handle
2745  *
2746  * Return: none
2747  */
2748 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2749 
2750 /**
2751  * dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
2752  * @soc: DP SOC handle
2753  *
2754  * Return: none
2755  */
2756 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2757 
2758 /**
2759  * dp_reset_rx_reo_tid_queue() - Reset the reo tid queues
2760  * @soc: dp soc
2761  * @hw_qdesc_vaddr: starting address of the tid queues
2762  * @size: size of the memory pointed to by hw_qdesc_vaddr
2763  *
2764  * Return: none
2765  */
2766 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2767 			       uint32_t size);
2768 
2769 
2770 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
2771 {
2772 	notify_pre_reset_fw_callback callback = soc->notify_fw_callback;
2773 
2774 	if (callback)
2775 		callback(soc);
2776 }
2777 
2778 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2779 /**
2780  * dp_umac_reset_complete_umac_recovery() - Complete Umac reset session
2781  * @soc: dp soc handle
2782  *
2783  * Return: void
2784  */
2785 void dp_umac_reset_complete_umac_recovery(struct dp_soc *soc);
2786 
2787 /**
2788  * dp_umac_reset_initiate_umac_recovery() - Initiate Umac reset session
2789  * @soc: dp soc handle
2790  * @umac_reset_ctx: Umac reset context
2791  * @rx_event: Rx event received
2792  * @is_target_recovery: Flag to indicate if it is triggered for target recovery
2793  *
2794  * Return: status
2795  */
2796 QDF_STATUS dp_umac_reset_initiate_umac_recovery(struct dp_soc *soc,
2797 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2798 				enum umac_reset_rx_event rx_event,
2799 				bool is_target_recovery);
2800 
2801 /**
2802  * dp_umac_reset_handle_action_cb() - Function to call action callback
2803  * @soc: dp soc handle
2804  * @umac_reset_ctx: Umac reset context
2805  * @action: Action to call the callback for
2806  *
2807  * Return: QDF_STATUS status
2808  */
2809 QDF_STATUS dp_umac_reset_handle_action_cb(struct dp_soc *soc,
2810 				struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2811 				enum umac_reset_action action);
2812 
2813 /**
2814  * dp_umac_reset_post_tx_cmd() - Iterate partner socs and post Tx command
2815  * @umac_reset_ctx: UMAC reset context
2816  * @tx_cmd: Tx command to be posted
2817  *
2818  * Return: QDF status of operation
2819  */
2820 QDF_STATUS
2821 dp_umac_reset_post_tx_cmd(struct dp_soc_umac_reset_ctx *umac_reset_ctx,
2822 			  enum umac_reset_tx_cmd tx_cmd);
2823 
2824 /**
2825  * dp_umac_reset_initiator_check() - Check if soc is the Umac reset initiator
2826  * @soc: dp soc handle
2827  *
2828  * Return: true if the soc is initiator or false otherwise
2829  */
2830 bool dp_umac_reset_initiator_check(struct dp_soc *soc);
2831 
2832 /**
2833  * dp_umac_reset_target_recovery_check() - Check if this is for target recovery
2834  * @soc: dp soc handle
2835  *
2836  * Return: true if the session is for target recovery or false otherwise
2837  */
2838 bool dp_umac_reset_target_recovery_check(struct dp_soc *soc);
2839 
2840 /**
2841  * dp_umac_reset_is_soc_ignored() - Check if this soc is to be ignored
2842  * @soc: dp soc handle
2843  *
2844  * Return: true if the soc is ignored or false otherwise
2845  */
2846 bool dp_umac_reset_is_soc_ignored(struct dp_soc *soc);
2847 
2848 /**
2849  * dp_mlo_umac_reset_stats_print() - API to print MLO umac reset stats
2850  * @soc: dp soc handle
2851  *
2852  * Return: QDF_STATUS
2853  */
2854 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc);
2855 #else
2856 static inline
2857 QDF_STATUS dp_mlo_umac_reset_stats_print(struct dp_soc *soc)
2858 {
2859 	return QDF_STATUS_SUCCESS;
2860 }
2861 #endif
2862 #else
2863 static inline void dp_umac_reset_trigger_pre_reset_notify_cb(struct dp_soc *soc)
2864 {
2865 }
2866 #endif
2867 
2868 #if defined(DP_UMAC_HW_RESET_SUPPORT) && defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
2869 /**
2870  * dp_umac_reset_notify_asserted_soc() - API to notify the asserted SOC
2871  * @soc: dp soc
2872  *
2873  * Return: QDF_STATUS
2874  */
2875 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc);
2876 
2877 /**
2878  * dp_get_umac_reset_in_progress_state() - API to check umac reset in progress
2879  * state
2880  * @psoc: dp soc handle
2881  *
2882  * Return: umac reset state
2883  */
2884 enum cdp_umac_reset_state
2885 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc);
2886 #else
2887 static inline
2888 QDF_STATUS dp_umac_reset_notify_asserted_soc(struct dp_soc *soc)
2889 {
2890 	return QDF_STATUS_SUCCESS;
2891 }
2892 
2893 static inline enum cdp_umac_reset_state
2894 dp_get_umac_reset_in_progress_state(struct cdp_soc_t *psoc)
2895 {
2896 	return CDP_UMAC_RESET_NOT_IN_PROGRESS;
2897 }
2898 #endif
2899 
2900 #ifndef WLAN_SOFTUMAC_SUPPORT
2901 QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc, enum hal_reo_cmd_type type,
2902 			   struct hal_reo_cmd_params *params,
2903 			   void (*callback_fn), void *data);
2904 
2905 /**
2906  * dp_reo_cmdlist_destroy() - Free REO commands in the queue
2907  * @soc: DP SoC handle
2908  *
2909  * Return: none
2910  */
2911 void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2912 
2913 /**
2914  * dp_reo_status_ring_handler() - Handler for REO Status ring
2915  * @int_ctx: pointer to DP interrupt context
2916  * @soc: DP Soc handle
2917  *
2918  * Return: Number of descriptors reaped
2919  */
2920 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2921 				    struct dp_soc *soc);
2922 #endif
2923 
2924 /**
2925  * dp_aggregate_vdev_stats() - Consolidate stats at VDEV level
2926  * @vdev: DP VDEV handle
2927  * @vdev_stats: aggregate statistics
2928  *
2929  * return: void
2930  */
2931 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2932 			     struct cdp_vdev_stats *vdev_stats);
2933 
2934 /**
2935  * dp_txrx_get_vdev_stats() - Update buffer with cdp_vdev_stats
2936  * @soc_hdl: CDP SoC handle
2937  * @vdev_id: vdev Id
2938  * @buf: buffer for vdev stats
2939  * @is_aggregate: are aggregate stats being collected
2940  *
2941  * Return: QDF_STATUS
2942  */
2943 QDF_STATUS
2944 dp_txrx_get_vdev_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2945 		       void *buf, bool is_aggregate);
2946 
2947 /**
2948  * dp_rx_bar_stats_cb() - BAR received stats callback
2949  * @soc: SOC handle
2950  * @cb_ctxt: Call back context
2951  * @reo_status: Reo status
2952  *
2953  * Return: void
2954  */
2955 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2956 			union hal_reo_status *reo_status);
2957 
2958 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2959 				     qdf_nbuf_t nbuf,
2960 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2961 				     uint8_t new_mac_cnt, uint8_t tid,
2962 				     bool is_igmp, bool is_dms_pkt);
2963 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2964 
2965 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2966 
2967 /**
2968  * dp_h2t_ext_stats_msg_send(): function to construct HTT message to pass to FW
2969  * @pdev: DP PDEV handle
2970  * @stats_type_upload_mask: stats type requested by user
2971  * @config_param_0: extra configuration parameters
2972  * @config_param_1: extra configuration parameters
2973  * @config_param_2: extra configuration parameters
2974  * @config_param_3: extra configuration parameters
2975  * @cookie:
2976  * @cookie_msb:
2977  * @mac_id: mac number
2978  *
2979  * Return: QDF STATUS
2980  */
2981 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2982 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2983 		uint32_t config_param_1, uint32_t config_param_2,
2984 		uint32_t config_param_3, int cookie, int cookie_msb,
2985 		uint8_t mac_id);
2986 
2987 /**
2988  * dp_htt_stats_print_tag() - function to select the tag type and
2989  * print the corresponding tag structure
2990  * @pdev: pdev pointer
2991  * @tag_type: tag type that is to be printed
2992  * @tag_buf: pointer to the tag structure
2993  *
2994  * Return: void
2995  */
2996 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2997 			    uint8_t tag_type, uint32_t *tag_buf);
2998 
2999 /**
3000  * dp_htt_stats_copy_tag() - function to select the tag type and
3001  * copy the corresponding tag structure
3002  * @pdev: DP_PDEV handle
3003  * @tag_type: tag type that is to be printed
3004  * @tag_buf: pointer to the tag structure
3005  *
3006  * Return: void
3007  */
3008 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
3009 
3010 /**
3011  * dp_h2t_3tuple_config_send(): function to construct 3 tuple configuration
3012  * HTT message to pass to FW
3013  * @pdev: DP PDEV handle
3014  * @tuple_mask: tuple configuration to report 3 tuple hash value in either
3015  * toeplitz_2_or_4 or flow_id_toeplitz in MSDU START TLV.
3016  *
3017  * tuple_mask[1:0]:
3018  *   00 - Do not report 3 tuple hash value
3019  *   10 - Report 3 tuple hash value in toeplitz_2_or_4
3020  *   01 - Report 3 tuple hash value in flow_id_toeplitz
3021  *   11 - Report 3 tuple hash value in both toeplitz_2_or_4 & flow_id_toeplitz
3022  * @mac_id: MAC ID
3023  *
3024  * Return: QDF STATUS
3025  */
3026 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
3027 				     uint8_t mac_id);
3028 
3029 #ifdef IPA_OFFLOAD
3030 /**
3031  * dp_peer_update_tid_stats_from_reo() - update rx pkt and byte count from reo
3032  * @soc: soc handle
3033  * @cb_ctxt: combination of peer_id and tid
3034  * @reo_status: reo status
3035  *
3036  * Return: void
3037  */
3038 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
3039 				       union hal_reo_status *reo_status);
3040 
3041 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
3042 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
3043 #ifdef IPA_OPT_WIFI_DP
3044 void dp_ipa_wdi_opt_dpath_notify_flt_rlsd(int flt0_rslt,
3045 					  int flt1_rslt);
3046 void dp_ipa_wdi_opt_dpath_notify_flt_add_rem_cb(int flt0_rslt, int flt1_rslt);
3047 void dp_ipa_wdi_opt_dpath_notify_flt_rsvd(bool is_success);
3048 #endif
3049 #ifdef QCA_ENHANCED_STATS_SUPPORT
3050 /**
3051  * dp_peer_aggregate_tid_stats - aggregate rx tid stats
3052  * @peer: Data Path peer
3053  *
3054  * Return: void
3055  */
3056 void dp_peer_aggregate_tid_stats(struct dp_peer *peer);
3057 #endif
3058 #else
3059 static inline void dp_peer_aggregate_tid_stats(struct dp_peer *peer)
3060 {
3061 }
3062 #endif
3063 
3064 /**
3065  * dp_set_key_sec_type_wifi3() - set security mode of key
3066  * @soc: Datapath soc handle
3067  * @vdev_id: id of atapath vdev
3068  * @peer_mac: Datapath peer mac address
3069  * @sec_type: security type
3070  * @is_unicast: key type
3071  *
3072  */
3073 QDF_STATUS
3074 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
3075 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
3076 			  bool is_unicast);
3077 
3078 /**
3079  * dp_get_pdev_for_mac_id() -  Return pdev for mac_id
3080  * @soc: handle to DP soc
3081  * @mac_id: MAC id
3082  *
3083  * Return: Return pdev corresponding to MAC
3084  */
3085 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
3086 
3087 QDF_STATUS
3088 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
3089 		   uint8_t *peer_mac,
3090 		   bool is_unicast, uint32_t *key);
3091 
3092 /**
3093  * dp_check_pdev_exists() - Validate pdev before use
3094  * @soc: dp soc handle
3095  * @data: pdev handle
3096  *
3097  * Return: 0 - success/invalid - failure
3098  */
3099 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
3100 
3101 /**
3102  * dp_update_delay_stats() - Update delay statistics in structure
3103  *				and fill min, max and avg delay
3104  * @tstats: tid tx stats
3105  * @rstats: tid rx stats
3106  * @delay: delay in ms
3107  * @tid: tid value
3108  * @mode: type of tx delay mode
3109  * @ring_id: ring number
3110  * @delay_in_us: flag to indicate whether the delay is in ms or us
3111  *
3112  * Return: none
3113  */
3114 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
3115 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
3116 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
3117 			   bool delay_in_us);
3118 
3119 /**
3120  * dp_print_ring_stats(): Print tail and head pointer
3121  * @pdev: DP_PDEV handle
3122  *
3123  * Return: void
3124  */
3125 void dp_print_ring_stats(struct dp_pdev *pdev);
3126 
3127 /**
3128  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
3129  * @soc: soc handle
3130  * @srng: srng handle
3131  * @ring_type: ring type
3132  *
3133  * Return: void
3134  */
3135 void
3136 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
3137 			    enum hal_ring_type ring_type);
3138 
3139 /**
3140  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
3141  * @pdev: DP pdev handle
3142  *
3143  * Return: void
3144  */
3145 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
3146 
3147 /**
3148  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
3149  * @soc: Soc handle
3150  *
3151  * Return: void
3152  */
3153 void dp_print_soc_cfg_params(struct dp_soc *soc);
3154 
3155 /**
3156  * dp_srng_get_str_from_hal_ring_type() - Return string name for a ring
3157  * @ring_type: Ring
3158  *
3159  * Return: char const pointer
3160  */
3161 const
3162 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
3163 
3164 /**
3165  * dp_txrx_path_stats() - Function to display dump stats
3166  * @soc: soc handle
3167  *
3168  * Return: none
3169  */
3170 void dp_txrx_path_stats(struct dp_soc *soc);
3171 
3172 /**
3173  * dp_print_per_ring_stats(): Packet count per ring
3174  * @soc: soc handle
3175  *
3176  * Return: None
3177  */
3178 void dp_print_per_ring_stats(struct dp_soc *soc);
3179 
3180 /**
3181  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
3182  * @pdev: DP PDEV handle
3183  *
3184  * Return: void
3185  */
3186 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
3187 
3188 /**
3189  * dp_print_rx_rates(): Print Rx rate stats
3190  * @vdev: DP_VDEV handle
3191  *
3192  * Return:void
3193  */
3194 void dp_print_rx_rates(struct dp_vdev *vdev);
3195 
3196 /**
3197  * dp_print_tx_rates(): Print tx rates
3198  * @vdev: DP_VDEV handle
3199  *
3200  * Return:void
3201  */
3202 void dp_print_tx_rates(struct dp_vdev *vdev);
3203 
3204 /**
3205  * dp_print_peer_stats():print peer stats
3206  * @peer: DP_PEER handle
3207  * @peer_stats: buffer holding peer stats
3208  *
3209  * return void
3210  */
3211 void dp_print_peer_stats(struct dp_peer *peer,
3212 			 struct cdp_peer_stats *peer_stats);
3213 
3214 /**
3215  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
3216  * @pdev: DP_PDEV Handle
3217  *
3218  * Return:void
3219  */
3220 void
3221 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
3222 
3223 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MCAST_MLO)
3224 /**
3225  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3226  * @vdev: DP_VDEV Handle
3227  *
3228  * Return:void
3229  */
3230 void
3231 dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev);
3232 #else
3233 /**
3234  * dp_print_vdev_mlo_mcast_tx_stats(): Print vdev level mlo mcast tx stats
3235  * @vdev: DP_VDEV Handle
3236  *
3237  * Return:void
3238  */
3239 static inline
3240 void dp_print_vdev_mlo_mcast_tx_stats(struct dp_vdev *vdev)
3241 {
3242 }
3243 #endif
3244 
3245 /**
3246  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
3247  * @pdev: DP_PDEV Handle
3248  *
3249  * Return: void
3250  */
3251 void
3252 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
3253 
3254 /**
3255  * dp_print_soc_tx_stats(): Print SOC level  stats
3256  * @soc: DP_SOC Handle
3257  *
3258  * Return: void
3259  */
3260 void dp_print_soc_tx_stats(struct dp_soc *soc);
3261 
3262 #ifdef QCA_SUPPORT_DP_GLOBAL_CTX
3263 /**
3264  * dp_print_global_desc_count(): Print global desc in use
3265  *
3266  * Return: void
3267  */
3268 void dp_print_global_desc_count(void);
3269 #else
3270 /**
3271  * dp_print_global_desc_count(): Print global desc in use
3272  *
3273  * Return: void
3274  */
3275 static inline
3276 void dp_print_global_desc_count(void)
3277 {
3278 }
3279 #endif
3280 
3281 /**
3282  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
3283  * @soc: dp_soc handle
3284  *
3285  * Return: None
3286  */
3287 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
3288 
3289 /**
3290  * dp_print_tx_ppeds_stats() - Print Tx in use stats for the soc in DS
3291  * @soc: dp_soc handle
3292  *
3293  * Return: None
3294  */
3295 
3296 void dp_print_tx_ppeds_stats(struct dp_soc *soc);
3297 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
3298 /**
3299  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
3300  *				  for all SRNGs
3301  * @soc: DP soc handle
3302  * @srng_mask: SRNGs mask for dumping usage watermark stats
3303  *
3304  * Return: None
3305  */
3306 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
3307 #else
3308 static inline
3309 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
3310 {
3311 }
3312 #endif
3313 
3314 /**
3315  * dp_print_soc_rx_stats() - Print SOC level Rx stats
3316  * @soc: DP_SOC Handle
3317  *
3318  * Return: void
3319  */
3320 void dp_print_soc_rx_stats(struct dp_soc *soc);
3321 
3322 /**
3323  * dp_get_mac_id_for_pdev() - Return mac corresponding to pdev for mac
3324  *
3325  * @mac_id: MAC id
3326  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3327  *
3328  * Single pdev using both MACs will operate on both MAC rings,
3329  * which is the case for MCL.
3330  * For WIN each PDEV will operate one ring, so index is zero.
3331  *
3332  */
3333 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
3334 {
3335 	if (mac_id && pdev_id) {
3336 		qdf_print("Both mac_id and pdev_id cannot be non zero");
3337 		QDF_BUG(0);
3338 		return 0;
3339 	}
3340 	return (mac_id + pdev_id);
3341 }
3342 
3343 /**
3344  * dp_get_lmac_id_for_pdev_id() - Return lmac id corresponding to host pdev id
3345  * @soc: soc pointer
3346  * @mac_id: MAC id
3347  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
3348  *
3349  * For MCL, Single pdev using both MACs will operate on both MAC rings.
3350  *
3351  * For WIN, each PDEV will operate one ring.
3352  *
3353  */
3354 static inline int
3355 dp_get_lmac_id_for_pdev_id
3356 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
3357 {
3358 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3359 		if (mac_id && pdev_id) {
3360 			qdf_print("Both mac_id and pdev_id cannot be non zero");
3361 			QDF_BUG(0);
3362 			return 0;
3363 		}
3364 		return (mac_id + pdev_id);
3365 	}
3366 
3367 	return soc->pdev_list[pdev_id]->lmac_id;
3368 }
3369 
3370 /**
3371  * dp_get_pdev_for_lmac_id() - Return pdev pointer corresponding to lmac id
3372  * @soc: soc pointer
3373  * @lmac_id: LMAC id
3374  *
3375  * For MCL, Single pdev exists
3376  *
3377  * For WIN, each PDEV will operate one ring.
3378  *
3379  */
3380 static inline struct dp_pdev *
3381 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
3382 {
3383 	uint8_t i = 0;
3384 
3385 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
3386 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
3387 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
3388 	}
3389 
3390 	/* Typically for MCL as there only 1 PDEV*/
3391 	return soc->pdev_list[0];
3392 }
3393 
3394 /**
3395  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
3396  *                                          corresponding to host pdev id
3397  * @soc: soc pointer
3398  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3399  *
3400  * Return: target pdev_id for host pdev id. For WIN, this is derived through
3401  * a two step process:
3402  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
3403  *    during mode switch)
3404  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
3405  *
3406  * For MCL, return the offset-1 translated mac_id
3407  */
3408 static inline int
3409 dp_calculate_target_pdev_id_from_host_pdev_id
3410 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3411 {
3412 	struct dp_pdev *pdev;
3413 
3414 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3415 		return DP_SW2HW_MACID(mac_for_pdev);
3416 
3417 	pdev = soc->pdev_list[mac_for_pdev];
3418 
3419 	/*non-MCL case, get original target_pdev mapping*/
3420 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
3421 }
3422 
3423 /**
3424  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
3425  *                                         to host pdev id
3426  * @soc: soc pointer
3427  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
3428  *
3429  * Return: target pdev_id for host pdev id.
3430  * For WIN, return the value stored in pdev object.
3431  * For MCL, return the offset-1 translated mac_id.
3432  */
3433 static inline int
3434 dp_get_target_pdev_id_for_host_pdev_id
3435 	(struct dp_soc *soc, uint32_t mac_for_pdev)
3436 {
3437 	struct dp_pdev *pdev;
3438 
3439 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3440 		return DP_SW2HW_MACID(mac_for_pdev);
3441 
3442 	pdev = soc->pdev_list[mac_for_pdev];
3443 
3444 	return pdev->target_pdev_id;
3445 }
3446 
3447 /**
3448  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
3449  *                                         to target pdev id
3450  * @soc: soc pointer
3451  * @pdev_id: pdev_id corresponding to target pdev
3452  *
3453  * Return: host pdev_id for target pdev id. For WIN, this is derived through
3454  * a two step process:
3455  * 1. Get lmac_id corresponding to target pdev_id
3456  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
3457  *
3458  * For MCL, return the 0-offset pdev_id
3459  */
3460 static inline int
3461 dp_get_host_pdev_id_for_target_pdev_id
3462 	(struct dp_soc *soc, uint32_t pdev_id)
3463 {
3464 	struct dp_pdev *pdev;
3465 	int lmac_id;
3466 
3467 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3468 		return DP_HW2SW_MACID(pdev_id);
3469 
3470 	/*non-MCL case, get original target_lmac mapping from target pdev*/
3471 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
3472 					  DP_HW2SW_MACID(pdev_id));
3473 
3474 	/*Get host pdev from lmac*/
3475 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
3476 
3477 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
3478 }
3479 
3480 /**
3481  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
3482  *
3483  * @soc: handle to DP soc
3484  * @mac_id: MAC id
3485  *
3486  * Single pdev using both MACs will operate on both MAC rings,
3487  * which is the case for MCL.
3488  * For WIN each PDEV will operate one ring, so index is zero.
3489  *
3490  */
3491 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
3492 {
3493 	/*
3494 	 * Single pdev using both MACs will operate on both MAC rings,
3495 	 * which is the case for MCL.
3496 	 */
3497 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
3498 		return mac_id;
3499 
3500 	/* For WIN each PDEV will operate one ring, so index is zero. */
3501 	return 0;
3502 }
3503 
3504 /**
3505  * dp_is_subtype_data() - check if the frame subtype is data
3506  *
3507  * @frame_ctrl: Frame control field
3508  *
3509  * check the frame control field and verify if the packet
3510  * is a data packet.
3511  *
3512  * Return: true or false
3513  */
3514 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
3515 {
3516 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
3517 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
3518 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3519 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
3520 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
3521 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
3522 		return true;
3523 	}
3524 
3525 	return false;
3526 }
3527 
3528 #ifdef WDI_EVENT_ENABLE
3529 /**
3530  * dp_h2t_cfg_stats_msg_send(): function to construct HTT message to pass to FW
3531  * @pdev: DP PDEV handle
3532  * @stats_type_upload_mask: stats type requested by user
3533  * @mac_id: Mac id number
3534  *
3535  * return: QDF STATUS
3536  */
3537 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3538 				uint32_t stats_type_upload_mask,
3539 				uint8_t mac_id);
3540 
3541 /**
3542  * dp_wdi_event_unsub() - WDI event unsubscribe
3543  * @soc: soc handle
3544  * @pdev_id: id of pdev
3545  * @event_cb_sub_handle: subscribed event handle
3546  * @event: Event to be unsubscribe
3547  *
3548  * Return: 0 for success. nonzero for failure.
3549  */
3550 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3551 		       wdi_event_subscribe *event_cb_sub_handle,
3552 		       uint32_t event);
3553 
3554 /**
3555  * dp_wdi_event_sub() - Subscribe WDI event
3556  * @soc: soc handle
3557  * @pdev_id: id of pdev
3558  * @event_cb_sub_handle: subscribe event handle
3559  * @event: Event to be subscribe
3560  *
3561  * Return: 0 for success. nonzero for failure.
3562  */
3563 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3564 		     wdi_event_subscribe *event_cb_sub_handle,
3565 		     uint32_t event);
3566 
3567 /**
3568  * dp_wdi_event_handler() - Event handler for WDI event
3569  * @event: wdi event number
3570  * @soc: soc handle
3571  * @data: pointer to data
3572  * @peer_id: peer id number
3573  * @status: HTT rx status
3574  * @pdev_id: id of pdev
3575  *
3576  * It will be called to register WDI event
3577  *
3578  * Return: None
3579  */
3580 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
3581 			  void *data, u_int16_t peer_id,
3582 			  int status, u_int8_t pdev_id);
3583 
3584 /**
3585  * dp_wdi_event_attach() - Attach wdi event
3586  * @txrx_pdev: DP pdev handle
3587  *
3588  * Return: 0 for success. nonzero for failure.
3589  */
3590 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
3591 
3592 /**
3593  * dp_wdi_event_detach() - Detach WDI event
3594  * @txrx_pdev: DP pdev handle
3595  *
3596  * Return: 0 for success. nonzero for failure.
3597  */
3598 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
3599 
3600 static inline void
3601 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
3602 			    void *cb_context,
3603 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3604 			    uint8_t pipe_id)
3605 {
3606 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
3607 
3608 	/* TODO: Temporary change to bypass HTC connection for this new
3609 	 * HIF pipe, which will be used for packet log and other high-
3610 	 * priority HTT messages. Proper HTC connection to be added
3611 	 * later once required FW changes are available
3612 	 */
3613 	hif_pipe_callbacks.rxCompletionHandler = callback;
3614 	hif_pipe_callbacks.Context = cb_context;
3615 	hif_update_pipe_callback(dp_soc->hif_handle,
3616 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
3617 }
3618 #else
3619 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
3620 				     wdi_event_subscribe *event_cb_sub_handle,
3621 				     uint32_t event)
3622 {
3623 	return 0;
3624 }
3625 
3626 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
3627 				   wdi_event_subscribe *event_cb_sub_handle,
3628 				   uint32_t event)
3629 {
3630 	return 0;
3631 }
3632 
3633 static inline
3634 void dp_wdi_event_handler(enum WDI_EVENT event,
3635 			  struct dp_soc *soc,
3636 			  void *data, u_int16_t peer_id,
3637 			  int status, u_int8_t pdev_id)
3638 {
3639 }
3640 
3641 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
3642 {
3643 	return 0;
3644 }
3645 
3646 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
3647 {
3648 	return 0;
3649 }
3650 
3651 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
3652 		uint32_t stats_type_upload_mask, uint8_t mac_id)
3653 {
3654 	return 0;
3655 }
3656 
3657 static inline void
3658 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
3659 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
3660 			    uint8_t pipe_id)
3661 {
3662 }
3663 #endif
3664 
3665 #ifdef VDEV_PEER_PROTOCOL_COUNT
3666 /**
3667  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3668  * @vdev: VDEV DP object
3669  * @nbuf: data packet
3670  * @txrx_peer: DP TXRX Peer object
3671  * @is_egress: whether egress or ingress
3672  * @is_rx: whether rx or tx
3673  *
3674  * This function updates the per-peer protocol counters
3675  * Return: void
3676  */
3677 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
3678 					    qdf_nbuf_t nbuf,
3679 					    struct dp_txrx_peer *txrx_peer,
3680 					    bool is_egress,
3681 					    bool is_rx);
3682 
3683 /**
3684  * dp_peer_stats_update_protocol_cnt() - update per-peer protocol counters
3685  * @soc: SOC DP object
3686  * @vdev_id: vdev_id
3687  * @nbuf: data packet
3688  * @is_egress: whether egress or ingress
3689  * @is_rx: whether rx or tx
3690  *
3691  * This function updates the per-peer protocol counters
3692  *
3693  * Return: void
3694  */
3695 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
3696 				       int8_t vdev_id,
3697 				       qdf_nbuf_t nbuf,
3698 				       bool is_egress,
3699 				       bool is_rx);
3700 
3701 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3702 					       qdf_nbuf_t nbuf);
3703 
3704 #else
3705 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
3706 					       is_egress, is_rx)
3707 
3708 static inline
3709 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
3710 					       qdf_nbuf_t nbuf)
3711 {
3712 }
3713 
3714 #endif
3715 
3716 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
3717 /**
3718  * dp_tx_dump_flow_pool_info() - dump global_pool and flow_pool info
3719  * @soc_hdl: Handle to struct cdp_soc
3720  *
3721  * Return: none
3722  */
3723 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
3724 
3725 /**
3726  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
3727  * @soc: DP soc context
3728  *
3729  * Return: none
3730  */
3731 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
3732 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
3733 	bool force);
3734 #else
3735 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
3736 {
3737 }
3738 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
3739 
3740 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
3741 static inline int
3742 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3743 {
3744 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
3745 }
3746 
3747 static inline void
3748 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3749 {
3750 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
3751 }
3752 
3753 #else
3754 static inline int
3755 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3756 {
3757 	return hal_srng_access_start(soc, hal_ring_hdl);
3758 }
3759 
3760 static inline void
3761 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
3762 {
3763 	hal_srng_access_end(soc, hal_ring_hdl);
3764 }
3765 #endif
3766 
3767 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
3768 /**
3769  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
3770  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3771  * @dp_soc: DP Soc handle
3772  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3773  *                serviced
3774  *
3775  * Return: 0 on success; error on failure
3776  */
3777 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3778 			 hal_ring_handle_t hal_ring_hdl);
3779 
3780 /**
3781  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
3782  * @int_ctx: pointer to DP interrupt context. This should not be NULL
3783  * @dp_soc: DP Soc handle
3784  * @hal_ring_hdl: opaque pointer to the HAL Rx Error Ring, which will be
3785  *                serviced
3786  *
3787  * Return: void
3788  */
3789 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
3790 			hal_ring_handle_t hal_ring_hdl);
3791 
3792 #else
3793 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
3794 				       struct dp_soc *dp_soc,
3795 				       hal_ring_handle_t hal_ring_hdl)
3796 {
3797 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3798 
3799 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
3800 }
3801 
3802 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
3803 				      struct dp_soc *dp_soc,
3804 				      hal_ring_handle_t hal_ring_hdl)
3805 {
3806 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3807 
3808 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
3809 }
3810 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
3811 
3812 #ifdef QCA_CACHED_RING_DESC
3813 /**
3814  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
3815  * @dp_soc: DP Soc handle
3816  * @hal_ring_hdl: opaque pointer to the HAL Destination Ring
3817  *
3818  * Return: HAL ring descriptor
3819  */
3820 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3821 					 hal_ring_handle_t hal_ring_hdl)
3822 {
3823 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3824 
3825 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
3826 }
3827 
3828 /**
3829  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
3830  * descriptors
3831  * @dp_soc: DP Soc handle
3832  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3833  * @num_entries: Entry count
3834  *
3835  * Return: None
3836  */
3837 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3838 						hal_ring_handle_t hal_ring_hdl,
3839 						uint32_t num_entries)
3840 {
3841 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3842 
3843 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
3844 }
3845 #else
3846 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3847 					 hal_ring_handle_t hal_ring_hdl)
3848 {
3849 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3850 
3851 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3852 }
3853 
3854 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3855 						hal_ring_handle_t hal_ring_hdl,
3856 						uint32_t num_entries)
3857 {
3858 }
3859 #endif /* QCA_CACHED_RING_DESC */
3860 
3861 #if defined(QCA_CACHED_RING_DESC) && \
3862 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3863 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3864 /**
3865  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3866  * @hal_soc: HAL SOC handle
3867  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3868  * @num_entries: Entry count
3869  *
3870  * Return: None
3871  */
3872 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3873 					 hal_ring_handle_t hal_ring_hdl,
3874 					 uint32_t num_entries)
3875 {
3876 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3877 }
3878 
3879 /**
3880  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3881  *					 32 byte descriptor starting at
3882  *					 64 byte offset
3883  * @hal_soc: HAL SOC handle
3884  * @hal_ring_hdl: opaque pointer to the HAL Rx Destination ring
3885  * @num_entries: Entry count
3886  *
3887  * Return: None
3888  */
3889 static inline
3890 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3891 					hal_ring_handle_t hal_ring_hdl,
3892 					uint32_t num_entries)
3893 {
3894 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3895 						  num_entries);
3896 }
3897 #else
3898 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3899 					 hal_ring_handle_t hal_ring_hdl,
3900 					 uint32_t num_entries)
3901 {
3902 	return NULL;
3903 }
3904 
3905 static inline
3906 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3907 					hal_ring_handle_t hal_ring_hdl,
3908 					uint32_t num_entries)
3909 {
3910 	return NULL;
3911 }
3912 #endif
3913 
3914 #ifdef QCA_ENH_V3_STATS_SUPPORT
3915 /**
3916  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3917  * @pdev: DP_PDEV handle
3918  *
3919  * Return:void
3920  */
3921 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3922 
3923 /**
3924  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3925  * @pdev: DP_PDEV handle
3926  *
3927  * Return:void
3928  */
3929 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3930 
3931 /**
3932  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3933  * @pdev: DP_PDEV handle
3934  *
3935  * Return:void
3936  */
3937 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3938 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3939 
3940 /**
3941  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3942  * @soc_hdl: soc handle
3943  * @pdev_id: id of dp_pdev handle
3944  * @tid_stats: Pointer for cdp_tid_stats_intf
3945  *
3946  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3947  */
3948 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3949 				 struct cdp_tid_stats_intf *tid_stats);
3950 
3951 /**
3952  * dp_soc_set_txrx_ring_map()
3953  * @soc: DP handler for soc
3954  *
3955  * Return: Void
3956  */
3957 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3958 
3959 /**
3960  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3961  * @vdev: DP vdev handle
3962  *
3963  * Return: struct cdp_vdev pointer
3964  */
3965 static inline
3966 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3967 {
3968 	return (struct cdp_vdev *)vdev;
3969 }
3970 
3971 /**
3972  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3973  * @pdev: DP pdev handle
3974  *
3975  * Return: struct cdp_pdev pointer
3976  */
3977 static inline
3978 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3979 {
3980 	return (struct cdp_pdev *)pdev;
3981 }
3982 
3983 /**
3984  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3985  * @psoc: DP psoc handle
3986  *
3987  * Return: struct cdp_soc pointer
3988  */
3989 static inline
3990 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3991 {
3992 	return (struct cdp_soc *)psoc;
3993 }
3994 
3995 /**
3996  * dp_soc_to_cdp_soc_t() - typecast dp psoc to ol txrx soc handle
3997  * @psoc: DP psoc handle
3998  *
3999  * Return: struct cdp_soc_t pointer
4000  */
4001 static inline
4002 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
4003 {
4004 	return (struct cdp_soc_t *)psoc;
4005 }
4006 
4007 #if defined(WLAN_SUPPORT_RX_FLOW_TAG)
4008 /**
4009  * dp_rx_flow_get_fse_stats() - Retrieve a flow's statistics
4010  * @pdev: pdev handle
4011  * @rx_flow_info: flow information in the Rx FST
4012  * @stats: stats to update
4013  *
4014  * Return: Success when flow statistcs is updated, error on failure
4015  */
4016 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
4017 				    struct cdp_rx_flow_info *rx_flow_info,
4018 				    struct cdp_flow_stats *stats);
4019 
4020 /**
4021  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
4022  * @pdev: pdev handle
4023  * @rx_flow_info: DP flow parameters
4024  *
4025  * Return: Success when flow is deleted, error on failure
4026  */
4027 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
4028 				   struct cdp_rx_flow_info *rx_flow_info);
4029 
4030 /**
4031  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
4032  * @pdev: DP pdev instance
4033  * @rx_flow_info: DP flow parameters
4034  *
4035  * Return: Success when flow is added, no-memory or already exists on error
4036  */
4037 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
4038 				struct cdp_rx_flow_info *rx_flow_info);
4039 
4040 /**
4041  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
4042  * @soc: SoC handle
4043  * @pdev: Pdev handle
4044  *
4045  * Return: Handle to flow search table entry
4046  */
4047 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
4048 
4049 /**
4050  * dp_rx_fst_detach() - De-initialize Rx FST
4051  * @soc: SoC handle
4052  * @pdev: Pdev handle
4053  *
4054  * Return: None
4055  */
4056 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
4057 
4058 /**
4059  * dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
4060  * @pdev: pdev handle
4061  * @flow_id: flow index (truncated hash) in the Rx FST
4062  *
4063  * Return: Success when flow statistcs is updated, error on failure
4064  */
4065 QDF_STATUS
4066 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
4067 #endif
4068 
4069 #ifdef WLAN_SUPPORT_RX_FLOW_TAG
4070 /**
4071  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
4072  * @soc: SoC handle
4073  * @pdev: Pdev handle
4074  *
4075  * Return: Success when fst parameters are programmed in FW, error otherwise
4076  */
4077 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
4078 					struct dp_pdev *pdev);
4079 #endif
4080 
4081 /**
4082  * dp_rx_fst_attach_wrapper() - wrapper API for dp_rx_fst_attach
4083  * @soc: SoC handle
4084  * @pdev: Pdev handle
4085  *
4086  * Return: Handle to flow search table entry
4087  */
4088 extern QDF_STATUS
4089 dp_rx_fst_attach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4090 
4091 /**
4092  * dp_rx_fst_detach_wrapper() - wrapper API for dp_rx_fst_detach
4093  * @soc: SoC handle
4094  * @pdev: Pdev handle
4095  *
4096  * Return: None
4097  */
4098 extern void
4099 dp_rx_fst_detach_wrapper(struct dp_soc *soc, struct dp_pdev *pdev);
4100 
4101 /**
4102  * dp_vdev_get_ref() - API to take a reference for VDEV object
4103  *
4104  * @soc		: core DP soc context
4105  * @vdev	: DP vdev
4106  * @mod_id	: module id
4107  *
4108  * Return:	QDF_STATUS_SUCCESS if reference held successfully
4109  *		else QDF_STATUS_E_INVAL
4110  */
4111 static inline
4112 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
4113 			   enum dp_mod_id mod_id)
4114 {
4115 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
4116 		return QDF_STATUS_E_INVAL;
4117 
4118 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
4119 
4120 	return QDF_STATUS_SUCCESS;
4121 }
4122 
4123 /**
4124  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
4125  * @soc: core DP soc context
4126  * @vdev_id: vdev id from vdev object can be retrieved
4127  * @mod_id: module id which is requesting the reference
4128  *
4129  * Return: struct dp_vdev*: Pointer to DP vdev object
4130  */
4131 static inline struct dp_vdev *
4132 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
4133 		      enum dp_mod_id mod_id)
4134 {
4135 	struct dp_vdev *vdev = NULL;
4136 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
4137 		return NULL;
4138 
4139 	qdf_spin_lock_bh(&soc->vdev_map_lock);
4140 	vdev = soc->vdev_id_map[vdev_id];
4141 
4142 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
4143 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
4144 		return NULL;
4145 	}
4146 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
4147 
4148 	return vdev;
4149 }
4150 
4151 /**
4152  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
4153  * @soc: core DP soc context
4154  * @pdev_id: pdev id from pdev object can be retrieved
4155  *
4156  * Return: struct dp_pdev*: Pointer to DP pdev object
4157  */
4158 static inline struct dp_pdev *
4159 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
4160 				   uint8_t pdev_id)
4161 {
4162 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
4163 		return NULL;
4164 
4165 	return soc->pdev_list[pdev_id];
4166 }
4167 
4168 /**
4169  * dp_get_peer_mac_list(): function to get peer mac list of vdev
4170  * @soc: Datapath soc handle
4171  * @vdev_id: vdev id
4172  * @newmac: Table of the clients mac
4173  * @mac_cnt: No. of MACs required
4174  * @limit: Limit the number of clients
4175  *
4176  * Return: no of clients
4177  */
4178 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
4179 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
4180 			      u_int16_t mac_cnt, bool limit);
4181 
4182 /**
4183  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
4184  *				       DBS check
4185  * @soc: DP SoC context
4186  * @max_mac_rings: Pointer to variable for No of MAC rings
4187  *
4188  * Return: None
4189  */
4190 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
4191 				     int *max_mac_rings);
4192 
4193 
4194 #if defined(WLAN_SUPPORT_RX_FISA)
4195 /**
4196  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
4197  * @soc:		DP SoC context
4198  * @num_entries:	Number of flow search entries
4199  * @cmem_ba_lo:		CMEM base address low
4200  * @cmem_ba_hi:		CMEM base address high
4201  *
4202  * Return: None
4203  */
4204 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4205 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
4206 
4207 /**
4208  * dp_fisa_config() - FISA config handler
4209  * @cdp_soc: CDP SoC handle
4210  * @pdev_id: PDEV ID
4211  * @config_id: FISA config ID
4212  * @cfg: FISA config msg data
4213  */
4214 QDF_STATUS dp_fisa_config(ol_txrx_soc_handle cdp_soc, uint8_t pdev_id,
4215 			  enum cdp_fisa_config_id config_id,
4216 			  union cdp_fisa_config *cfg);
4217 #else
4218 static inline void
4219 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
4220 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
4221 {
4222 }
4223 #endif /* WLAN_SUPPORT_RX_FISA */
4224 
4225 #ifdef MAX_ALLOC_PAGE_SIZE
4226 /**
4227  * dp_set_max_page_size() - Set the max page size for hw link desc.
4228  * @pages: link desc page handle
4229  * @max_alloc_size: max_alloc_size
4230  *
4231  * For MCL the page size is set to OS defined value and for WIN
4232  * the page size is set to the max_alloc_size cfg ini
4233  * param.
4234  * This is to ensure that WIN gets contiguous memory allocations
4235  * as per requirement.
4236  *
4237  * Return: None
4238  */
4239 static inline
4240 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4241 			  uint32_t max_alloc_size)
4242 {
4243 	pages->page_size = qdf_page_size;
4244 }
4245 
4246 #else
4247 static inline
4248 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
4249 			  uint32_t max_alloc_size)
4250 {
4251 	pages->page_size = max_alloc_size;
4252 }
4253 #endif /* MAX_ALLOC_PAGE_SIZE */
4254 
4255 /**
4256  * dp_history_get_next_index() - get the next entry to record an entry
4257  *				 in the history.
4258  * @curr_idx: Current index where the last entry is written.
4259  * @max_entries: Max number of entries in the history
4260  *
4261  * This function assumes that the max number os entries is a power of 2.
4262  *
4263  * Return: The index where the next entry is to be written.
4264  */
4265 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
4266 						 uint32_t max_entries)
4267 {
4268 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
4269 
4270 	return idx & (max_entries - 1);
4271 }
4272 
4273 /**
4274  * dp_rx_skip_tlvs() - Skip TLVs len + L3 padding, save in nbuf->cb
4275  * @soc: Datapath soc handle
4276  * @nbuf: nbuf cb to be updated
4277  * @l3_padding: L3 padding
4278  *
4279  * Return: None
4280  */
4281 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
4282 
4283 #ifndef FEATURE_WDS
4284 static inline void
4285 dp_hmwds_ast_add_notify(struct dp_peer *peer,
4286 			uint8_t *mac_addr,
4287 			enum cdp_txrx_ast_entry_type type,
4288 			QDF_STATUS err,
4289 			bool is_peer_map)
4290 {
4291 }
4292 #endif
4293 
4294 #ifdef HTT_STATS_DEBUGFS_SUPPORT
4295 /**
4296  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4297  * debugfs for HTT stats
4298  * @pdev: dp pdev handle
4299  *
4300  * Return: QDF_STATUS
4301  */
4302 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
4303 
4304 /**
4305  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4306  * HTT stats
4307  * @pdev: dp pdev handle
4308  *
4309  * Return: none
4310  */
4311 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
4312 #else
4313 
4314 /**
4315  * dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
4316  * debugfs for HTT stats
4317  * @pdev: dp pdev handle
4318  *
4319  * Return: QDF_STATUS
4320  */
4321 static inline QDF_STATUS
4322 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
4323 {
4324 	return QDF_STATUS_SUCCESS;
4325 }
4326 
4327 /**
4328  * dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
4329  * HTT stats
4330  * @pdev: dp pdev handle
4331  *
4332  * Return: none
4333  */
4334 static inline void
4335 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
4336 {
4337 }
4338 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
4339 
4340 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
4341 /**
4342  * dp_soc_swlm_attach() - attach the software latency manager resources
4343  * @soc: Datapath global soc handle
4344  *
4345  * Return: QDF_STATUS
4346  */
4347 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
4348 {
4349 	return QDF_STATUS_SUCCESS;
4350 }
4351 
4352 /**
4353  * dp_soc_swlm_detach() - detach the software latency manager resources
4354  * @soc: Datapath global soc handle
4355  *
4356  * Return: QDF_STATUS
4357  */
4358 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
4359 {
4360 	return QDF_STATUS_SUCCESS;
4361 }
4362 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
4363 
4364 #ifndef WLAN_DP_PROFILE_SUPPORT
4365 static inline void wlan_dp_soc_cfg_sync_profile(struct cdp_soc_t *cdp_soc) {}
4366 
4367 static inline void wlan_dp_pdev_cfg_sync_profile(struct cdp_soc_t *cdp_soc,
4368 						 uint8_t pdev_id) {}
4369 #endif
4370 
4371 /**
4372  * dp_get_peer_id(): function to get peer id by mac
4373  * @soc: Datapath soc handle
4374  * @vdev_id: vdev id
4375  * @mac: Peer mac address
4376  *
4377  * Return: valid peer id on success
4378  *         HTT_INVALID_PEER on failure
4379  */
4380 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
4381 
4382 #ifdef QCA_SUPPORT_WDS_EXTENDED
4383 /**
4384  * dp_wds_ext_set_peer_rx(): function to set peer rx handler
4385  * @soc: Datapath soc handle
4386  * @vdev_id: vdev id
4387  * @mac: Peer mac address
4388  * @rx: rx function pointer
4389  * @osif_peer: OSIF peer handle
4390  *
4391  * Return: QDF_STATUS_SUCCESS on success
4392  *         QDF_STATUS_E_INVAL if peer is not found
4393  *         QDF_STATUS_E_ALREADY if rx is already set/unset
4394  */
4395 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
4396 				  uint8_t vdev_id,
4397 				  uint8_t *mac,
4398 				  ol_txrx_rx_fp rx,
4399 				  ol_osif_peer_handle osif_peer);
4400 
4401 /**
4402  * dp_wds_ext_get_peer_osif_handle(): function to get peer osif handle
4403  * @soc: Datapath soc handle
4404  * @vdev_id: vdev id
4405  * @mac: Peer mac address
4406  * @osif_peer: OSIF peer handle
4407  *
4408  * Return: QDF_STATUS_SUCCESS on success
4409  *         QDF_STATUS_E_INVAL if peer is not found
4410  */
4411 QDF_STATUS dp_wds_ext_get_peer_osif_handle(
4412 				ol_txrx_soc_handle soc,
4413 				uint8_t vdev_id,
4414 				uint8_t *mac,
4415 				ol_osif_peer_handle *osif_peer);
4416 
4417 #endif /* QCA_SUPPORT_WDS_EXTENDED */
4418 
4419 #ifdef DP_MEM_PRE_ALLOC
4420 
4421 /**
4422  * dp_context_alloc_mem() - allocate memory for DP context
4423  * @soc: datapath soc handle
4424  * @ctxt_type: DP context type
4425  * @ctxt_size: DP context size
4426  *
4427  * Return: DP context address
4428  */
4429 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4430 			   size_t ctxt_size);
4431 
4432 /**
4433  * dp_context_free_mem() - Free memory of DP context
4434  * @soc: datapath soc handle
4435  * @ctxt_type: DP context type
4436  * @vaddr: Address of context memory
4437  *
4438  * Return: None
4439  */
4440 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4441 			 void *vaddr);
4442 
4443 /**
4444  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
4445  * @soc: datapath soc handle
4446  * @desc_type: memory request source type
4447  * @pages: multi page information storage
4448  * @element_size: each element size
4449  * @element_num: total number of elements should be allocated
4450  * @memctxt: memory context
4451  * @cacheable: coherent memory or cacheable memory
4452  *
4453  * This function is a wrapper for memory allocation over multiple
4454  * pages, if dp prealloc method is registered, then will try prealloc
4455  * firstly. if prealloc failed, fall back to regular way over
4456  * qdf_mem_multi_pages_alloc().
4457  *
4458  * Return: None
4459  */
4460 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4461 				   enum qdf_dp_desc_type desc_type,
4462 				   struct qdf_mem_multi_page_t *pages,
4463 				   size_t element_size,
4464 				   uint32_t element_num,
4465 				   qdf_dma_context_t memctxt,
4466 				   bool cacheable);
4467 
4468 /**
4469  * dp_desc_multi_pages_mem_free() - free multiple pages memory
4470  * @soc: datapath soc handle
4471  * @desc_type: memory request source type
4472  * @pages: multi page information storage
4473  * @memctxt: memory context
4474  * @cacheable: coherent memory or cacheable memory
4475  *
4476  * This function is a wrapper for multiple pages memory free,
4477  * if memory is got from prealloc pool, put it back to pool.
4478  * otherwise free by qdf_mem_multi_pages_free().
4479  *
4480  * Return: None
4481  */
4482 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4483 				  enum qdf_dp_desc_type desc_type,
4484 				  struct qdf_mem_multi_page_t *pages,
4485 				  qdf_dma_context_t memctxt,
4486 				  bool cacheable);
4487 
4488 #else
4489 static inline
4490 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4491 			   size_t ctxt_size)
4492 {
4493 	return qdf_mem_malloc(ctxt_size);
4494 }
4495 
4496 static inline
4497 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
4498 			 void *vaddr)
4499 {
4500 	qdf_mem_free(vaddr);
4501 }
4502 
4503 static inline
4504 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
4505 				   enum qdf_dp_desc_type desc_type,
4506 				   struct qdf_mem_multi_page_t *pages,
4507 				   size_t element_size,
4508 				   uint32_t element_num,
4509 				   qdf_dma_context_t memctxt,
4510 				   bool cacheable)
4511 {
4512 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
4513 				  element_num, memctxt, cacheable);
4514 }
4515 
4516 static inline
4517 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
4518 				  enum qdf_dp_desc_type desc_type,
4519 				  struct qdf_mem_multi_page_t *pages,
4520 				  qdf_dma_context_t memctxt,
4521 				  bool cacheable)
4522 {
4523 	qdf_mem_multi_pages_free(soc->osdev, pages,
4524 				 memctxt, cacheable);
4525 }
4526 #endif
4527 
4528 /**
4529  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
4530  *					  history.
4531  * @index: atomic index
4532  * @num_entries_per_slot: Number of entries per slot
4533  * @allocated: is allocated or not
4534  * @entry: pointers to array of records
4535  */
4536 struct dp_frag_history_opaque_atomic {
4537 	qdf_atomic_t index;
4538 	uint16_t num_entries_per_slot;
4539 	uint16_t allocated;
4540 	void *entry[0];
4541 };
4542 
4543 static inline QDF_STATUS
4544 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
4545 			   uint32_t max_slots, uint32_t max_entries_per_slot,
4546 			   uint32_t entry_size,
4547 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
4548 {
4549 	struct dp_frag_history_opaque_atomic *history =
4550 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4551 	size_t alloc_size = max_entries_per_slot * entry_size;
4552 	int i;
4553 
4554 	for (i = 0; i < max_slots; i++) {
4555 		if (attempt_prealloc)
4556 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
4557 								 alloc_size);
4558 		else
4559 			history->entry[i] = qdf_mem_malloc(alloc_size);
4560 
4561 		if (!history->entry[i])
4562 			goto exit;
4563 	}
4564 
4565 	qdf_atomic_init(&history->index);
4566 	history->allocated = 1;
4567 	history->num_entries_per_slot = max_entries_per_slot;
4568 
4569 	return QDF_STATUS_SUCCESS;
4570 exit:
4571 	for (i = i - 1; i >= 0; i--) {
4572 		if (attempt_prealloc)
4573 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4574 		else
4575 			qdf_mem_free(history->entry[i]);
4576 	}
4577 
4578 	return QDF_STATUS_E_NOMEM;
4579 }
4580 
4581 static inline
4582 void dp_soc_frag_history_detach(struct dp_soc *soc,
4583 				void *history_hdl, uint32_t max_slots,
4584 				bool attempt_prealloc,
4585 				enum dp_ctxt_type ctxt_type)
4586 {
4587 	struct dp_frag_history_opaque_atomic *history =
4588 			(struct dp_frag_history_opaque_atomic *)history_hdl;
4589 	int i;
4590 
4591 	for (i = 0; i < max_slots; i++) {
4592 		if (attempt_prealloc)
4593 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
4594 		else
4595 			qdf_mem_free(history->entry[i]);
4596 	}
4597 
4598 	history->allocated = 0;
4599 }
4600 
4601 /**
4602  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
4603  *					entry in a fragmented history with
4604  *					index being atomic.
4605  * @curr_idx: address of the current index where the last entry was written
4606  * @next_idx: pointer to update the next index
4607  * @slot: pointer to update the history slot to be selected
4608  * @slot_shift: BITwise shift mask for slot (in index)
4609  * @max_entries_per_slot: Max number of entries in a slot of history
4610  * @max_entries: Total number of entries in the history (sum of all slots)
4611  *
4612  * This function assumes that the "max_entries_per_slot" and "max_entries"
4613  * are a power-of-2.
4614  *
4615  * Return: None
4616  */
4617 static inline void
4618 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
4619 				 uint16_t *slot, uint32_t slot_shift,
4620 				 uint32_t max_entries_per_slot,
4621 				 uint32_t max_entries)
4622 {
4623 	uint32_t idx;
4624 
4625 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
4626 
4627 	*slot = idx >> slot_shift;
4628 	*next_idx = idx & (max_entries_per_slot - 1);
4629 }
4630 
4631 #ifdef FEATURE_RUNTIME_PM
4632 /**
4633  * dp_runtime_get() - Get dp runtime refcount
4634  * @soc: Datapath soc handle
4635  *
4636  * Get dp runtime refcount by increment of an atomic variable, which can block
4637  * dp runtime resume to wait to flush pending tx by runtime suspend.
4638  *
4639  * Return: Current refcount
4640  */
4641 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4642 {
4643 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
4644 }
4645 
4646 /**
4647  * dp_runtime_put() - Return dp runtime refcount
4648  * @soc: Datapath soc handle
4649  *
4650  * Return dp runtime refcount by decrement of an atomic variable, allow dp
4651  * runtime resume finish.
4652  *
4653  * Return: Current refcount
4654  */
4655 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4656 {
4657 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
4658 }
4659 
4660 /**
4661  * dp_runtime_get_refcount() - Get dp runtime refcount
4662  * @soc: Datapath soc handle
4663  *
4664  * Get dp runtime refcount by returning an atomic variable
4665  *
4666  * Return: Current refcount
4667  */
4668 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
4669 {
4670 	return qdf_atomic_read(&soc->dp_runtime_refcount);
4671 }
4672 
4673 /**
4674  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
4675  * @soc: Datapath soc handle
4676  *
4677  * Return: QDF_STATUS
4678  */
4679 static inline void dp_runtime_init(struct dp_soc *soc)
4680 {
4681 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
4682 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
4683 	qdf_atomic_init(&soc->dp_runtime_refcount);
4684 }
4685 
4686 /**
4687  * dp_runtime_deinit() - Deinit DP related runtime PM clients
4688  *
4689  * Return: None
4690  */
4691 static inline void dp_runtime_deinit(void)
4692 {
4693 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
4694 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
4695 }
4696 
4697 /**
4698  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
4699  * @soc: Datapath soc handle
4700  *
4701  * Return: None
4702  */
4703 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4704 {
4705 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
4706 
4707 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
4708 }
4709 #else
4710 static inline int32_t dp_runtime_get(struct dp_soc *soc)
4711 {
4712 	return 0;
4713 }
4714 
4715 static inline int32_t dp_runtime_put(struct dp_soc *soc)
4716 {
4717 	return 0;
4718 }
4719 
4720 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
4721 {
4722 	return QDF_STATUS_SUCCESS;
4723 }
4724 
4725 static inline void dp_runtime_deinit(void)
4726 {
4727 }
4728 
4729 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
4730 {
4731 }
4732 #endif
4733 
4734 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
4735 {
4736 	if (soc->cdp_soc.ol_ops->get_con_mode)
4737 		return soc->cdp_soc.ol_ops->get_con_mode();
4738 
4739 	return QDF_GLOBAL_MAX_MODE;
4740 }
4741 
4742 /**
4743  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
4744  *				processing
4745  * @pdev: Datapath PDEV handle
4746  *
4747  */
4748 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
4749 
4750 /**
4751  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
4752  *				processing
4753  * @pdev: Datapath PDEV handle
4754  *
4755  * Return: QDF_STATUS_SUCCESS: Success
4756  *         QDF_STATUS_E_NOMEM: Error
4757  */
4758 
4759 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
4760 
4761 /**
4762  * dp_peer_flush_frags() - Flush all fragments for a particular
4763  *  peer
4764  * @soc_hdl: data path soc handle
4765  * @vdev_id: vdev id
4766  * @peer_mac: peer mac address
4767  *
4768  * Return: None
4769  */
4770 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4771 			 uint8_t *peer_mac);
4772 
4773 /**
4774  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
4775  * @soc: pointer to dp_soc handle
4776  *
4777  * Return:
4778  */
4779 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
4780 
4781 /**
4782  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
4783  * @soc_hdl: soc handle
4784  * @soc_stats: buffer to hold the values
4785  *
4786  * Return: QDF_STATUS_SUCCESS: Success
4787  *         QDF_STATUS_E_FAILURE: Error
4788  */
4789 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
4790 				 struct cdp_soc_stats *soc_stats);
4791 
4792 /**
4793  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
4794  * @soc_hdl: soc handle
4795  * @vdev_id: id of vdev handle
4796  * @peer_mac: mac of DP_PEER handle
4797  * @delay_stats: pointer to delay stats array
4798  *
4799  * Return: QDF_STATUS_SUCCESS: Success
4800  *         QDF_STATUS_E_FAILURE: Error
4801  */
4802 QDF_STATUS
4803 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
4804 			     uint8_t *peer_mac,
4805 			     struct cdp_delay_tid_stats *delay_stats);
4806 
4807 /**
4808  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
4809  * @soc_hdl: soc handle
4810  * @pdev_id: id of pdev handle
4811  * @vdev_id: id of vdev handle
4812  * @peer_mac: mac of DP_PEER handle
4813  * @tid_stats: pointer to jitter stats array
4814  *
4815  * Return: QDF_STATUS_SUCCESS: Success
4816  *         QDF_STATUS_E_FAILURE: Error
4817  */
4818 QDF_STATUS
4819 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4820 			      uint8_t vdev_id, uint8_t *peer_mac,
4821 			      struct cdp_peer_tid_stats *tid_stats);
4822 
4823 /**
4824  * dp_peer_get_tx_capture_stats() - to get peer Tx Capture stats
4825  * @soc_hdl: soc handle
4826  * @vdev_id: id of vdev handle
4827  * @peer_mac: mac of DP_PEER handle
4828  * @stats: pointer to peer tx capture stats
4829  *
4830  * Return: QDF_STATUS_SUCCESS: Success
4831  *         QDF_STATUS_E_FAILURE: Error
4832  */
4833 QDF_STATUS
4834 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
4835 			     uint8_t vdev_id, uint8_t *peer_mac,
4836 			     struct cdp_peer_tx_capture_stats *stats);
4837 
4838 /**
4839  * dp_pdev_get_tx_capture_stats() - to get pdev Tx Capture stats
4840  * @soc_hdl: soc handle
4841  * @pdev_id: id of pdev handle
4842  * @stats: pointer to pdev tx capture stats
4843  *
4844  * Return: QDF_STATUS_SUCCESS: Success
4845  *         QDF_STATUS_E_FAILURE: Error
4846  */
4847 QDF_STATUS
4848 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4849 			     struct cdp_pdev_tx_capture_stats *stats);
4850 
4851 #ifdef HW_TX_DELAY_STATS_ENABLE
4852 /**
4853  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
4854  *  is enabled for vdev
4855  * @vdev: dp vdev
4856  *
4857  * Return: true if tx delay stats is enabled for vdev else false
4858  */
4859 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4860 {
4861 	return vdev->hw_tx_delay_stats_enabled;
4862 }
4863 
4864 /**
4865  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4866  *  for pdev
4867  * @soc: dp soc
4868  *
4869  * Return: None
4870  */
4871 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4872 
4873 /**
4874  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4875  * @soc: soc handle
4876  *
4877  * Return: None
4878  */
4879 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4880 #else
4881 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4882 {
4883 	return 0;
4884 }
4885 
4886 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4887 {
4888 }
4889 
4890 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4891 {
4892 }
4893 #endif
4894 
4895 static inline void
4896 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4897 {
4898 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4899 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4900 			      LRO_IPV4_SEED_ARR_SZ));
4901 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4902 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4903 			      LRO_IPV6_SEED_ARR_SZ));
4904 }
4905 
4906 #ifdef WLAN_CONFIG_TELEMETRY_AGENT
4907 /**
4908  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4909  * @soc_hdl: soc handle
4910  * @pdev_id: id of pdev handle
4911  * @stats: pointer to pdev telemetry stats
4912  *
4913  * Return: QDF_STATUS_SUCCESS: Success
4914  *         QDF_STATUS_E_FAILURE: Error
4915  */
4916 QDF_STATUS
4917 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4918 			    struct cdp_pdev_telemetry_stats *stats);
4919 
4920 /**
4921  * dp_get_peer_telemetry_stats() - API to get peer telemetry stats
4922  * @soc_hdl: soc handle
4923  * @addr: peer mac
4924  * @stats: pointer to peer telemetry stats
4925  *
4926  * Return: QDF_STATUS_SUCCESS: Success
4927  *         QDF_STATUS_E_FAILURE: Error
4928  */
4929 QDF_STATUS
4930 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4931 			    struct cdp_peer_telemetry_stats *stats);
4932 
4933 /**
4934  * dp_get_peer_deter_stats() - API to get peer deterministic stats
4935  * @soc_hdl: soc handle
4936  * @vdev_id: id of vdev handle
4937  * @addr: peer mac
4938  * @stats: pointer to peer deterministic stats
4939  *
4940  * Return: QDF_STATUS_SUCCESS: Success
4941  *         QDF_STATUS_E_FAILURE: Error
4942  */
4943 QDF_STATUS
4944 dp_get_peer_deter_stats(struct cdp_soc_t *soc_hdl,
4945 			uint8_t vdev_id,
4946 			uint8_t *addr,
4947 			struct cdp_peer_deter_stats *stats);
4948 
4949 /**
4950  * dp_get_pdev_deter_stats() - API to get pdev deterministic stats
4951  * @soc_hdl: soc handle
4952  * @pdev_id: id of pdev handle
4953  * @stats: pointer to pdev deterministic stats
4954  *
4955  * Return: QDF_STATUS_SUCCESS: Success
4956  *         QDF_STATUS_E_FAILURE: Error
4957  */
4958 QDF_STATUS
4959 dp_get_pdev_deter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4960 			struct cdp_pdev_deter_stats *stats);
4961 
4962 /**
4963  * dp_update_pdev_chan_util_stats() - API to update channel utilization stats
4964  * @soc_hdl: soc handle
4965  * @pdev_id: id of pdev handle
4966  * @ch_util: Pointer to channel util stats
4967  *
4968  * Return: QDF_STATUS_SUCCESS: Success
4969  *         QDF_STATUS_E_FAILURE: Error
4970  */
4971 QDF_STATUS
4972 dp_update_pdev_chan_util_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4973 			       struct cdp_pdev_chan_util_stats *ch_util);
4974 #endif /* WLAN_CONFIG_TELEMETRY_AGENT */
4975 
4976 #ifdef CONNECTIVITY_PKTLOG
4977 /**
4978  * dp_tx_send_pktlog() - send tx packet log
4979  * @soc: soc handle
4980  * @pdev: pdev handle
4981  * @tx_desc: TX software descriptor
4982  * @nbuf: nbuf
4983  * @status: status of tx packet
4984  *
4985  * This function is used to send tx packet for logging
4986  *
4987  * Return: None
4988  *
4989  */
4990 static inline
4991 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4992 		       struct dp_tx_desc_s *tx_desc,
4993 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4994 {
4995 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4996 
4997 	if (qdf_unlikely(packetdump_cb) &&
4998 	    dp_tx_frm_std == tx_desc->frm_type) {
4999 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5000 			      tx_desc->vdev_id, nbuf, status, QDF_TX_DATA_PKT);
5001 	}
5002 }
5003 
5004 /**
5005  * dp_rx_send_pktlog() - send rx packet log
5006  * @soc: soc handle
5007  * @pdev: pdev handle
5008  * @nbuf: nbuf
5009  * @status: status of rx packet
5010  *
5011  * This function is used to send rx packet for logging
5012  *
5013  * Return: None
5014  *
5015  */
5016 static inline
5017 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5018 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5019 {
5020 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5021 
5022 	if (qdf_unlikely(packetdump_cb)) {
5023 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5024 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5025 			      nbuf, status, QDF_RX_DATA_PKT);
5026 	}
5027 }
5028 
5029 /**
5030  * dp_rx_err_send_pktlog() - send rx error packet log
5031  * @soc: soc handle
5032  * @pdev: pdev handle
5033  * @mpdu_desc_info: MPDU descriptor info
5034  * @nbuf: nbuf
5035  * @status: status of rx packet
5036  * @set_pktlen: weither to set packet length
5037  *
5038  * This API should only be called when we have not removed
5039  * Rx TLV from head, and head is pointing to rx_tlv
5040  *
5041  * This function is used to send rx packet from error path
5042  * for logging for which rx packet tlv is not removed.
5043  *
5044  * Return: None
5045  *
5046  */
5047 static inline
5048 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5049 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5050 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5051 			   bool set_pktlen)
5052 {
5053 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
5054 	qdf_size_t skip_size;
5055 	uint16_t msdu_len, nbuf_len;
5056 	uint8_t *rx_tlv_hdr;
5057 	struct hal_rx_msdu_metadata msdu_metadata;
5058 	uint16_t buf_size;
5059 
5060 	buf_size = wlan_cfg_rx_buffer_size(soc->wlan_cfg_ctx);
5061 
5062 	if (qdf_unlikely(packetdump_cb)) {
5063 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
5064 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
5065 							  rx_tlv_hdr);
5066 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
5067 					 &msdu_metadata);
5068 
5069 		if (mpdu_desc_info->bar_frame ||
5070 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
5071 			skip_size = soc->rx_pkt_tlv_size;
5072 		else
5073 			skip_size = soc->rx_pkt_tlv_size +
5074 					msdu_metadata.l3_hdr_pad;
5075 
5076 		if (set_pktlen) {
5077 			msdu_len = nbuf_len + skip_size;
5078 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len, buf_size));
5079 		}
5080 
5081 		qdf_nbuf_pull_head(nbuf, skip_size);
5082 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
5083 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
5084 			      nbuf, status, QDF_RX_DATA_PKT);
5085 		qdf_nbuf_push_head(nbuf, skip_size);
5086 	}
5087 }
5088 
5089 #else
5090 static inline
5091 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5092 		       struct dp_tx_desc_s *tx_desc,
5093 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5094 {
5095 }
5096 
5097 static inline
5098 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5099 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
5100 {
5101 }
5102 
5103 static inline
5104 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
5105 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
5106 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
5107 			   bool set_pktlen)
5108 {
5109 }
5110 #endif
5111 
5112 /**
5113  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
5114  * @soc  : Data path soc handle
5115  * @pdev : PDEV handle
5116  *
5117  * Return: None
5118  */
5119 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
5120 
5121 #ifdef FEATURE_DIRECT_LINK
5122 /**
5123  * dp_setup_direct_link_refill_ring(): Setup direct link refill ring for pdev
5124  * @soc_hdl: DP SOC handle
5125  * @pdev_id: pdev id
5126  *
5127  * Return: Handle to SRNG
5128  */
5129 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5130 						 uint8_t pdev_id);
5131 
5132 /**
5133  * dp_destroy_direct_link_refill_ring(): Destroy direct link refill ring for
5134  *  pdev
5135  * @soc_hdl: DP SOC handle
5136  * @pdev_id: pdev id
5137  *
5138  * Return: None
5139  */
5140 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5141 					uint8_t pdev_id);
5142 #else
5143 static inline
5144 struct dp_srng *dp_setup_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5145 						 uint8_t pdev_id)
5146 {
5147 	return NULL;
5148 }
5149 
5150 static inline
5151 void dp_destroy_direct_link_refill_ring(struct cdp_soc_t *soc_hdl,
5152 					uint8_t pdev_id)
5153 {
5154 }
5155 #endif
5156 
5157 #ifdef WLAN_FEATURE_DP_CFG_EVENT_HISTORY
5158 static inline
5159 void dp_cfg_event_record(struct dp_soc *soc,
5160 			 enum dp_cfg_event_type event,
5161 			 union dp_cfg_event_desc *cfg_event_desc)
5162 {
5163 	struct dp_cfg_event_history *cfg_event_history =
5164 						&soc->cfg_event_history;
5165 	struct dp_cfg_event *entry;
5166 	uint32_t idx;
5167 	uint16_t slot;
5168 
5169 	dp_get_frag_hist_next_atomic_idx(&cfg_event_history->index, &idx,
5170 					 &slot,
5171 					 DP_CFG_EVT_HIST_SLOT_SHIFT,
5172 					 DP_CFG_EVT_HIST_PER_SLOT_MAX,
5173 					 DP_CFG_EVT_HISTORY_SIZE);
5174 
5175 	entry = &cfg_event_history->entry[slot][idx];
5176 
5177 	entry->timestamp = qdf_get_log_timestamp();
5178 	entry->type = event;
5179 	qdf_mem_copy(&entry->event_desc, cfg_event_desc,
5180 		     sizeof(entry->event_desc));
5181 }
5182 
5183 static inline void
5184 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5185 			     struct dp_vdev *vdev)
5186 {
5187 	union dp_cfg_event_desc cfg_evt_desc = {0};
5188 	struct dp_vdev_attach_detach_desc *vdev_evt =
5189 						&cfg_evt_desc.vdev_evt;
5190 
5191 	if (qdf_unlikely(event != DP_CFG_EVENT_VDEV_ATTACH &&
5192 			 event != DP_CFG_EVENT_VDEV_UNREF_DEL &&
5193 			 event != DP_CFG_EVENT_VDEV_DETACH)) {
5194 		qdf_assert_always(0);
5195 		return;
5196 	}
5197 
5198 	vdev_evt->vdev = vdev;
5199 	vdev_evt->vdev_id = vdev->vdev_id;
5200 	vdev_evt->ref_count = qdf_atomic_read(&vdev->ref_cnt);
5201 	vdev_evt->mac_addr = vdev->mac_addr;
5202 
5203 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5204 }
5205 
5206 static inline void
5207 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5208 			     struct dp_peer *peer, struct dp_vdev *vdev,
5209 			     uint8_t is_reuse)
5210 {
5211 	union dp_cfg_event_desc cfg_evt_desc = {0};
5212 	struct dp_peer_cmn_ops_desc *peer_evt = &cfg_evt_desc.peer_cmn_evt;
5213 
5214 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_CREATE &&
5215 			 event != DP_CFG_EVENT_PEER_DELETE &&
5216 			 event != DP_CFG_EVENT_PEER_UNREF_DEL)) {
5217 		qdf_assert_always(0);
5218 		return;
5219 	}
5220 
5221 	peer_evt->peer = peer;
5222 	peer_evt->vdev = vdev;
5223 	peer_evt->vdev_id = vdev->vdev_id;
5224 	peer_evt->is_reuse = is_reuse;
5225 	peer_evt->peer_ref_count = qdf_atomic_read(&peer->ref_cnt);
5226 	peer_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5227 	peer_evt->mac_addr = peer->mac_addr;
5228 	peer_evt->vdev_mac_addr = vdev->mac_addr;
5229 
5230 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5231 }
5232 
5233 static inline void
5234 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5235 					enum dp_cfg_event_type event,
5236 					struct dp_peer *mld_peer,
5237 					struct dp_peer *link_peer,
5238 					uint8_t idx, uint8_t result)
5239 {
5240 	union dp_cfg_event_desc cfg_evt_desc = {0};
5241 	struct dp_mlo_add_del_link_desc *mlo_link_delink_evt =
5242 					&cfg_evt_desc.mlo_link_delink_evt;
5243 
5244 	if (qdf_unlikely(event != DP_CFG_EVENT_MLO_ADD_LINK &&
5245 			 event != DP_CFG_EVENT_MLO_DEL_LINK)) {
5246 		qdf_assert_always(0);
5247 		return;
5248 	}
5249 
5250 	mlo_link_delink_evt->link_peer = link_peer;
5251 	mlo_link_delink_evt->mld_peer = mld_peer;
5252 	mlo_link_delink_evt->link_mac_addr = link_peer->mac_addr;
5253 	mlo_link_delink_evt->mld_mac_addr = mld_peer->mac_addr;
5254 	mlo_link_delink_evt->num_links = mld_peer->num_links;
5255 	mlo_link_delink_evt->action_result = result;
5256 	mlo_link_delink_evt->idx = idx;
5257 
5258 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5259 }
5260 
5261 static inline void
5262 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5263 					      struct dp_peer *mld_peer,
5264 					      struct dp_vdev *prev_vdev,
5265 					      struct dp_vdev *new_vdev)
5266 {
5267 	union dp_cfg_event_desc cfg_evt_desc = {0};
5268 	struct dp_mlo_setup_vdev_update_desc *vdev_update_evt =
5269 					&cfg_evt_desc.mlo_setup_vdev_update;
5270 
5271 	vdev_update_evt->mld_peer = mld_peer;
5272 	vdev_update_evt->prev_vdev = prev_vdev;
5273 	vdev_update_evt->new_vdev = new_vdev;
5274 
5275 	dp_cfg_event_record(soc, DP_CFG_EVENT_MLO_SETUP_VDEV_UPDATE,
5276 			    &cfg_evt_desc);
5277 }
5278 
5279 static inline void
5280 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5281 				       enum dp_cfg_event_type event,
5282 				       struct dp_peer *peer,
5283 				       uint8_t *mac_addr,
5284 				       uint8_t is_ml_peer,
5285 				       uint16_t peer_id, uint16_t ml_peer_id,
5286 				       uint16_t hw_peer_id, uint8_t vdev_id)
5287 {
5288 	union dp_cfg_event_desc cfg_evt_desc = {0};
5289 	struct dp_rx_peer_map_unmap_desc *peer_map_unmap_evt =
5290 					&cfg_evt_desc.peer_map_unmap_evt;
5291 
5292 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_MAP &&
5293 			 event != DP_CFG_EVENT_PEER_UNMAP &&
5294 			 event != DP_CFG_EVENT_MLO_PEER_MAP &&
5295 			 event != DP_CFG_EVENT_MLO_PEER_UNMAP)) {
5296 		qdf_assert_always(0);
5297 		return;
5298 	}
5299 
5300 	peer_map_unmap_evt->peer_id = peer_id;
5301 	peer_map_unmap_evt->ml_peer_id = ml_peer_id;
5302 	peer_map_unmap_evt->hw_peer_id = hw_peer_id;
5303 	peer_map_unmap_evt->vdev_id = vdev_id;
5304 	/* Peer may be NULL at times, but its not an issue. */
5305 	peer_map_unmap_evt->peer = peer;
5306 	peer_map_unmap_evt->is_ml_peer = is_ml_peer;
5307 	qdf_mem_copy(&peer_map_unmap_evt->mac_addr.raw, mac_addr,
5308 		     QDF_MAC_ADDR_SIZE);
5309 
5310 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5311 }
5312 
5313 static inline void
5314 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5315 				   enum dp_cfg_event_type event,
5316 				   struct dp_peer *peer,
5317 				   struct dp_vdev *vdev,
5318 				   uint8_t vdev_id,
5319 				   struct cdp_peer_setup_info *peer_setup_info)
5320 {
5321 	union dp_cfg_event_desc cfg_evt_desc = {0};
5322 	struct dp_peer_setup_desc *peer_setup_evt =
5323 					&cfg_evt_desc.peer_setup_evt;
5324 
5325 	if (qdf_unlikely(event != DP_CFG_EVENT_PEER_SETUP &&
5326 			 event != DP_CFG_EVENT_MLO_SETUP)) {
5327 		qdf_assert_always(0);
5328 		return;
5329 	}
5330 
5331 	peer_setup_evt->peer = peer;
5332 	peer_setup_evt->vdev = vdev;
5333 	if (vdev)
5334 		peer_setup_evt->vdev_ref_count = qdf_atomic_read(&vdev->ref_cnt);
5335 	peer_setup_evt->mac_addr = peer->mac_addr;
5336 	peer_setup_evt->vdev_id = vdev_id;
5337 	if (peer_setup_info) {
5338 		peer_setup_evt->is_first_link = peer_setup_info->is_first_link;
5339 		peer_setup_evt->is_primary_link = peer_setup_info->is_primary_link;
5340 		qdf_mem_copy(peer_setup_evt->mld_mac_addr.raw,
5341 			     peer_setup_info->mld_peer_mac,
5342 			     QDF_MAC_ADDR_SIZE);
5343 	}
5344 
5345 	dp_cfg_event_record(soc, event, &cfg_evt_desc);
5346 }
5347 #else
5348 
5349 static inline void
5350 dp_cfg_event_record_vdev_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5351 			     struct dp_vdev *vdev)
5352 {
5353 }
5354 
5355 static inline void
5356 dp_cfg_event_record_peer_evt(struct dp_soc *soc, enum dp_cfg_event_type event,
5357 			     struct dp_peer *peer, struct dp_vdev *vdev,
5358 			     uint8_t is_reuse)
5359 {
5360 }
5361 
5362 static inline void
5363 dp_cfg_event_record_mlo_link_delink_evt(struct dp_soc *soc,
5364 					enum dp_cfg_event_type event,
5365 					struct dp_peer *mld_peer,
5366 					struct dp_peer *link_peer,
5367 					uint8_t idx, uint8_t result)
5368 {
5369 }
5370 
5371 static inline void
5372 dp_cfg_event_record_mlo_setup_vdev_update_evt(struct dp_soc *soc,
5373 					      struct dp_peer *mld_peer,
5374 					      struct dp_vdev *prev_vdev,
5375 					      struct dp_vdev *new_vdev)
5376 {
5377 }
5378 
5379 static inline void
5380 dp_cfg_event_record_peer_map_unmap_evt(struct dp_soc *soc,
5381 				       enum dp_cfg_event_type event,
5382 				       struct dp_peer *peer,
5383 				       uint8_t *mac_addr,
5384 				       uint8_t is_ml_peer,
5385 				       uint16_t peer_id, uint16_t ml_peer_id,
5386 				       uint16_t hw_peer_id, uint8_t vdev_id)
5387 {
5388 }
5389 
5390 static inline void
5391 dp_cfg_event_record_peer_setup_evt(struct dp_soc *soc,
5392 				   enum dp_cfg_event_type event,
5393 				   struct dp_peer *peer,
5394 				   struct dp_vdev *vdev,
5395 				   uint8_t vdev_id,
5396 				   struct cdp_peer_setup_info *peer_setup_info)
5397 {
5398 }
5399 #endif
5400 
5401 #ifndef WLAN_SOFTUMAC_SUPPORT
5402 /**
5403  * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
5404  * @txrx_soc: DP SOC handle
5405  *
5406  * Return: none
5407  */
5408 void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc);
5409 #endif
5410 
5411 /**
5412  * dp_get_peer_stats()- Get peer stats
5413  * @peer: Datapath peer
5414  * @peer_stats: buffer for peer stats
5415  *
5416  * Return: none
5417  */
5418 void dp_get_peer_stats(struct dp_peer *peer,
5419 		       struct cdp_peer_stats *peer_stats);
5420 
5421 /**
5422  * dp_get_per_link_peer_stats()- Get per link peer stats
5423  * @peer: Datapath peer
5424  * @peer_stats: buffer for peer stats
5425  * @peer_type: Peer type
5426  * @num_link: Number of ML links
5427  *
5428  * Return: status success/failure
5429  */
5430 QDF_STATUS dp_get_per_link_peer_stats(struct dp_peer *peer,
5431 				      struct cdp_peer_stats *peer_stats,
5432 				      enum cdp_peer_type peer_type,
5433 				      uint8_t num_link);
5434 /**
5435  * dp_get_peer_hw_link_id() - get peer hardware link id
5436  * @soc: soc handle
5437  * @pdev: data path pdev
5438  *
5439  * Return: link_id
5440  */
5441 static inline int
5442 dp_get_peer_hw_link_id(struct dp_soc *soc,
5443 		       struct dp_pdev *pdev)
5444 {
5445 	if (wlan_cfg_is_peer_link_stats_enabled(soc->wlan_cfg_ctx))
5446 		return ((soc->arch_ops.get_hw_link_id(pdev)) + 1);
5447 
5448 	return 0;
5449 }
5450 
5451 #ifdef QCA_MULTIPASS_SUPPORT
5452 /**
5453  * dp_tx_remove_vlan_tag() - Remove 4 bytes of vlan tag
5454  * @vdev: DP vdev handle
5455  * @nbuf: network buffer
5456  *
5457  * Return: void
5458  */
5459 void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf);
5460 #endif
5461 
5462 /**
5463  * dp_print_per_link_stats() - Print per link peer stats.
5464  * @soc_hdl: soc handle.
5465  * @vdev_id: vdev_id.
5466  *
5467  * Return: None.
5468  */
5469 void dp_print_per_link_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id);
5470 
5471 /**
5472  * dp_get_ring_stats_from_hal(): get hal level ring pointer values
5473  * @soc: DP_SOC handle
5474  * @srng: DP_SRNG handle
5475  * @ring_type: srng src/dst ring
5476  * @_tailp: pointer to tail of ring
5477  * @_headp: pointer to head of ring
5478  * @_hw_headp: pointer to head of ring in HW
5479  * @_hw_tailp: pointer to tail of ring in HW
5480  *
5481  * Return: void
5482  */
5483 static inline void
5484 dp_get_ring_stats_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
5485 			   enum hal_ring_type ring_type,
5486 			   uint32_t *_tailp, uint32_t *_headp,
5487 			   int32_t *_hw_headp, int32_t *_hw_tailp)
5488 {
5489 	uint32_t tailp;
5490 	uint32_t headp;
5491 	int32_t hw_headp = -1;
5492 	int32_t hw_tailp = -1;
5493 	struct hal_soc *hal_soc;
5494 
5495 	if (soc && srng && srng->hal_srng) {
5496 		hal_soc = (struct hal_soc *)soc->hal_soc;
5497 		hal_get_sw_hptp(soc->hal_soc, srng->hal_srng, &tailp, &headp);
5498 		*_headp = headp;
5499 		*_tailp = tailp;
5500 
5501 		hal_get_hw_hptp(soc->hal_soc, srng->hal_srng, &hw_headp,
5502 				&hw_tailp, ring_type);
5503 		*_hw_headp = hw_headp;
5504 		*_hw_tailp = hw_tailp;
5505 	}
5506 }
5507 
5508 #endif /* #ifndef _DP_INTERNAL_H_ */
5509