xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 45c28558a520fd0e975b20c0ad534a0aa7f08021)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 
26 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
27 
28 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
29 
30 #define DP_BLOCKMEM_SIZE 4096
31 
32 /* Alignment for consistent memory for DP rings*/
33 #define DP_RING_BASE_ALIGN 32
34 
35 #define DP_RSSI_INVAL 0x80
36 #define DP_RSSI_AVG_WEIGHT 2
37 /*
38  * Formula to derive avg_rssi is taken from wifi2.o firmware
39  */
40 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
41 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
42 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
43 
44 /* Macro For NYSM value received in VHT TLV */
45 #define VHT_SGI_NYSM 3
46 
47 #define INVALID_WBM_RING_NUM 0xF
48 
49 /* struct htt_dbgfs_cfg - structure to maintain required htt data
50  * @msg_word: htt msg sent to upper layer
51  * @m: qdf debugfs file pointer
52  */
53 struct htt_dbgfs_cfg {
54 	uint32_t *msg_word;
55 	qdf_debugfs_file_t m;
56 };
57 
58 /* Cookie MSB bits assigned for different use case.
59  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
60  * If in future number of pdev are more than 3.
61  */
62 /* Reserve for default case */
63 #define DBG_STATS_COOKIE_DEFAULT 0x0
64 
65 /* Reserve for DP Stats: 3rd bit */
66 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
67 
68 /* Reserve for HTT Stats debugfs support: 4th bit */
69 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
70 
71 /*Reserve for HTT Stats debugfs support: 5th bit */
72 #define DBG_SYSFS_STATS_COOKIE BIT(5)
73 
74 /* Reserve for HTT Stats OBSS PD support: 6th bit */
75 #define DBG_STATS_COOKIE_HTT_OBSS BIT(6)
76 
77 /**
78  * Bitmap of HTT PPDU TLV types for Default mode
79  */
80 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
81 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
82 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
83 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
84 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
85 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
86 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
87 
88 /* PPDU STATS CFG */
89 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
90 
91 /* PPDU stats mask sent to FW to enable enhanced stats */
92 #define DP_PPDU_STATS_CFG_ENH_STATS \
93 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
94 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
95 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
96 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
97 
98 /* PPDU stats mask sent to FW to support debug sniffer feature */
99 #define DP_PPDU_STATS_CFG_SNIFFER \
100 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
101 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
102 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
103 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
104 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
106 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
107 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
108 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
109 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
110 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
111 
112 /* PPDU stats mask sent to FW to support BPR feature*/
113 #define DP_PPDU_STATS_CFG_BPR \
114 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
115 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
116 
117 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
118 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
119 				   DP_PPDU_STATS_CFG_ENH_STATS)
120 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
121 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
122 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
123 
124 /**
125  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
126  */
127 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
128 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
129 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
130 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
131 
132 /**
133  * Bitmap of HTT PPDU TLV types for Delayed BA
134  */
135 #define HTT_PPDU_STATUS_TLV_BITMAP \
136 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
137 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
138 
139 /**
140  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
141  */
142 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
143 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
144 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
145 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
146 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
147 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
148 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
149 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
150 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
151 
152 /**
153  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
154  */
155 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
156 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
157 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
158 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
159 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
161 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
162 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
163 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
164 
165 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
166 	[HAL_DOT11A] = DOT11_A,
167 	[HAL_DOT11B] = DOT11_B,
168 	[HAL_DOT11N_MM] = DOT11_N,
169 	[HAL_DOT11AC] = DOT11_AC,
170 	[HAL_DOT11AX] = DOT11_AX,
171 	[HAL_DOT11BA] = DOT11_MAX,
172 #ifdef WLAN_FEATURE_11BE
173 	[HAL_DOT11BE] = DOT11_BE,
174 #else
175 	[HAL_DOT11BE] = DOT11_MAX,
176 #endif
177 	[HAL_DOT11AZ] = DOT11_MAX,
178 	[HAL_DOT11N_GF] = DOT11_MAX,
179 };
180 
181 #ifdef WLAN_FEATURE_11BE
182 /**
183  * dp_get_mcs_array_index_by_pkt_type_mcs () - get the destination mcs index
184 					       in array
185  * @pkt_type: host SW pkt type
186  * @mcs: mcs value for TX/RX rate
187  *
188  * Return: succeeded - valid index in mcs array
189 	   fail - same value as MCS_MAX
190  */
191 static inline uint8_t
192 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
193 {
194 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
195 
196 	switch (pkt_type) {
197 	case DOT11_A:
198 		dst_mcs_idx =
199 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
200 		break;
201 	case DOT11_B:
202 		dst_mcs_idx =
203 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
204 		break;
205 	case DOT11_N:
206 		dst_mcs_idx =
207 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
208 		break;
209 	case DOT11_AC:
210 		dst_mcs_idx =
211 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
212 		break;
213 	case DOT11_AX:
214 		dst_mcs_idx =
215 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
216 		break;
217 	case DOT11_BE:
218 		dst_mcs_idx =
219 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
220 		break;
221 	default:
222 		break;
223 	}
224 
225 	return dst_mcs_idx;
226 }
227 #else
228 static inline uint8_t
229 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
230 {
231 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
232 
233 	switch (pkt_type) {
234 	case DOT11_A:
235 		dst_mcs_idx =
236 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
237 		break;
238 	case DOT11_B:
239 		dst_mcs_idx =
240 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
241 		break;
242 	case DOT11_N:
243 		dst_mcs_idx =
244 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
245 		break;
246 	case DOT11_AC:
247 		dst_mcs_idx =
248 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
249 		break;
250 	case DOT11_AX:
251 		dst_mcs_idx =
252 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
253 		break;
254 	default:
255 		break;
256 	}
257 
258 	return dst_mcs_idx;
259 }
260 #endif
261 
262 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
263 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
264 
265 /*
266  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
267  * @eh: Ethernet header of incoming packet
268  * @vdev: dp_vdev object of the VAP on which this data packet is received
269  *
270  * Return: 1 if the destination mac is correct,
271  *         0 if this frame is not correctly destined to this VAP/MLD
272  */
273 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
274 
275 #ifdef MONITOR_MODULARIZED_ENABLE
276 static inline bool dp_monitor_modularized_enable(void)
277 {
278 	return TRUE;
279 }
280 
281 static inline QDF_STATUS
282 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
283 
284 static inline QDF_STATUS
285 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
286 #else
287 static inline bool dp_monitor_modularized_enable(void)
288 {
289 	return FALSE;
290 }
291 
292 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
293 {
294 	return dp_mon_soc_attach(soc);
295 }
296 
297 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
298 {
299 	return dp_mon_soc_detach(soc);
300 }
301 #endif
302 
303 #ifndef WIFI_MONITOR_SUPPORT
304 #define MON_BUF_MIN_ENTRIES 64
305 
306 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
307 {
308 	return QDF_STATUS_SUCCESS;
309 }
310 
311 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
312 {
313 	return QDF_STATUS_SUCCESS;
314 }
315 
316 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
317 {
318 	return QDF_STATUS_E_FAILURE;
319 }
320 
321 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
322 {
323 	return QDF_STATUS_E_FAILURE;
324 }
325 
326 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
327 						struct dp_peer *peer)
328 {
329 	return QDF_STATUS_SUCCESS;
330 }
331 
332 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
333 						struct dp_peer *peer)
334 {
335 	return QDF_STATUS_E_FAILURE;
336 }
337 
338 static inline struct cdp_peer_rate_stats_ctx*
339 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
340 {
341 	return NULL;
342 }
343 
344 static inline
345 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
346 {
347 }
348 
349 static inline
350 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
351 			       void *arg, enum cdp_stat_update_type type)
352 {
353 }
354 
355 static inline
356 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
357 					       struct dp_pdev *pdev)
358 {
359 }
360 
361 static inline
362 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
363 					   struct dp_peer *peer,
364 					   enum cdp_peer_stats_type type,
365 					   cdp_peer_stats_param_t *buf)
366 {
367 	return QDF_STATUS_E_FAILURE;
368 }
369 
370 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
371 {
372 	return QDF_STATUS_SUCCESS;
373 }
374 
375 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
376 {
377 	return QDF_STATUS_SUCCESS;
378 }
379 
380 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
381 {
382 	return QDF_STATUS_SUCCESS;
383 }
384 
385 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
386 							 int val)
387 {
388 	return QDF_STATUS_E_FAILURE;
389 }
390 
391 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
392 {
393 }
394 
395 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
396 						   struct dp_pdev *pdev,
397 						   int mac_id,
398 						   int mac_for_pdev)
399 {
400 	return QDF_STATUS_SUCCESS;
401 }
402 
403 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
404 						uint32_t quota)
405 {
406 }
407 
408 static inline
409 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
410 			    uint32_t mac_id, uint32_t quota)
411 {
412 	return 0;
413 }
414 
415 static inline
416 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
417 					 uint32_t mac_id, uint32_t quota)
418 {
419 	return 0;
420 }
421 
422 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
423 					   struct dp_peer *peer)
424 {
425 }
426 
427 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
428 					      struct dp_peer *peer)
429 {
430 }
431 
432 static inline
433 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
434 					struct dp_peer *peer,
435 					uint16_t peer_id)
436 {
437 }
438 
439 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
440 {
441 }
442 
443 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
444 {
445 }
446 
447 static inline
448 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
449 {
450 	return QDF_STATUS_SUCCESS;
451 }
452 
453 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
454 							   struct dp_peer *peer)
455 {
456 }
457 
458 static inline
459 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
460 					   struct dp_tx_desc_s *desc,
461 					   struct hal_tx_completion_status *ts,
462 					   uint16_t peer_id)
463 {
464 	return QDF_STATUS_E_FAILURE;
465 }
466 
467 static inline
468 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
469 				       struct dp_pdev *pdev,
470 				       struct dp_peer *peer,
471 				       struct hal_tx_completion_status *ts,
472 				       qdf_nbuf_t netbuf)
473 {
474 	return QDF_STATUS_E_FAILURE;
475 }
476 
477 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
478 						     uint32_t *msg_word,
479 						     qdf_nbuf_t htt_t2h_msg)
480 {
481 	return true;
482 }
483 
484 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
485 {
486 	return QDF_STATUS_SUCCESS;
487 }
488 
489 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
490 {
491 }
492 
493 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
494 {
495 }
496 
497 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
498 							  uint32_t val)
499 {
500 	return QDF_STATUS_E_INVAL;
501 }
502 
503 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
504 						   struct dp_peer *peer,
505 						   uint8_t is_tx_pkt_cap_enable,
506 						   uint8_t *peer_mac)
507 {
508 	return QDF_STATUS_E_INVAL;
509 }
510 
511 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
512 							  uint32_t val)
513 {
514 	return QDF_STATUS_E_INVAL;
515 }
516 
517 static inline
518 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
519 {
520 	return QDF_STATUS_E_FAILURE;
521 }
522 
523 static inline
524 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
525 {
526 	return 0;
527 }
528 
529 static inline
530 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
531 {
532 }
533 
534 static inline
535 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
536 {
537 }
538 
539 static inline
540 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
541 {
542 	return false;
543 }
544 
545 static inline
546 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
547 {
548 	return false;
549 }
550 
551 static inline
552 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
553 {
554 	return false;
555 }
556 
557 static inline
558 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
559 				bool enable)
560 {
561 	return 0;
562 }
563 
564 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
565 {
566 }
567 
568 static inline
569 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
570 {
571 	return QDF_STATUS_E_FAILURE;
572 }
573 
574 static inline
575 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
576 {
577 }
578 
579 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
580 							  uint8_t *rx_pkt_hdr)
581 {
582 	return QDF_STATUS_E_FAILURE;
583 }
584 
585 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
586 {
587 }
588 
589 static inline
590 void dp_monitor_reap_timer_init(struct dp_soc *soc)
591 {
592 }
593 
594 static inline
595 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
596 {
597 }
598 
599 static inline
600 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
601 				 enum cdp_mon_reap_source source)
602 {
603 	return false;
604 }
605 
606 static inline
607 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
608 				enum cdp_mon_reap_source source)
609 {
610 	return false;
611 }
612 
613 static inline
614 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
615 {
616 }
617 
618 static inline
619 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
620 {
621 }
622 
623 static inline
624 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
625 {
626 }
627 
628 static inline
629 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
630 {
631 	return false;
632 }
633 
634 static inline struct qdf_mem_multi_page_t*
635 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
636 {
637 	return NULL;
638 }
639 
640 static inline uint32_t *
641 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
642 {
643 	return NULL;
644 }
645 
646 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
647 {
648 	return QDF_STATUS_E_FAILURE;
649 }
650 
651 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
652 {
653 	return false;
654 }
655 
656 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
657 						 struct ol_txrx_ops *txrx_ops)
658 {
659 }
660 
661 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
662 {
663 	return false;
664 }
665 
666 static inline
667 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
668 {
669 }
670 
671 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
672 					  struct dp_vdev *vdev)
673 {
674 }
675 
676 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
677 {
678 }
679 
680 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
681 						     struct dp_peer *ta_peer,
682 						     uint8_t *mac_addr,
683 						     qdf_nbuf_t nbuf,
684 						     uint32_t flags)
685 {
686 }
687 
688 static inline void
689 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
690 {
691 }
692 
693 static inline void
694 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
695 {
696 }
697 
698 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
699 {
700 }
701 
702 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
703 {
704 	return false;
705 }
706 
707 static inline
708 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
709 					   struct dp_vdev *vdev,
710 					   struct dp_neighbour_peer *peer)
711 {
712 }
713 
714 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
715 {
716 	return false;
717 }
718 
719 static inline enum reg_wifi_band
720 dp_monitor_get_chan_band(struct dp_pdev *pdev)
721 {
722 	return 0;
723 }
724 
725 static inline int
726 dp_monitor_get_chan_num(struct dp_pdev *pdev)
727 {
728 	return 0;
729 }
730 
731 static inline qdf_freq_t
732 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
733 {
734 	return 0;
735 }
736 
737 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
738 					      struct dp_soc *soc,
739 					      uint8_t *rx_tlv_hdr)
740 {
741 }
742 
743 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
744 {
745 }
746 
747 static inline
748 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
749 					  uint16_t peer_id, uint32_t ppdu_id,
750 					  uint8_t first_msdu)
751 {
752 	return QDF_STATUS_SUCCESS;
753 }
754 
755 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
756 {
757 	return false;
758 }
759 
760 static inline struct dp_vdev*
761 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
762 {
763 	return NULL;
764 }
765 
766 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
767 							   void *rx_desc)
768 {
769 	return QDF_STATUS_E_FAILURE;
770 }
771 
772 static inline struct mon_rx_status*
773 dp_monitor_get_rx_status(struct dp_pdev *pdev)
774 {
775 	return NULL;
776 }
777 
778 static inline
779 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
780 {
781 }
782 
783 static inline
784 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
785 						      bool val)
786 {
787 }
788 
789 static inline QDF_STATUS
790 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
791 				     struct cdp_peer_tx_capture_stats *stats)
792 {
793 	return QDF_STATUS_E_FAILURE;
794 }
795 
796 static inline QDF_STATUS
797 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
798 				     struct cdp_pdev_tx_capture_stats *stats)
799 {
800 	return QDF_STATUS_E_FAILURE;
801 }
802 
803 #ifdef DP_POWER_SAVE
804 static inline
805 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
806 {
807 }
808 
809 static inline
810 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
811 {
812 }
813 #endif
814 
815 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
816 {
817 	return false;
818 }
819 
820 static inline void
821 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
822 			 struct htt_rx_ring_tlv_filter *tlv_filter)
823 {
824 }
825 
826 static inline void dp_monitor_soc_init(struct dp_soc *soc)
827 {
828 }
829 
830 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
831 {
832 }
833 
834 static inline
835 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
836 							int val)
837 {
838 	return QDF_STATUS_SUCCESS;
839 }
840 
841 static inline QDF_STATUS
842 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
843 						      int mask1, int mask2)
844 {
845 	return QDF_STATUS_SUCCESS;
846 }
847 
848 static inline QDF_STATUS
849 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
850 						   int *mask, int *mask_cont)
851 {
852 	return QDF_STATUS_SUCCESS;
853 }
854 
855 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
856 {
857 	return QDF_STATUS_E_FAILURE;
858 }
859 
860 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
861 {
862 	return false;
863 }
864 
865 static inline
866 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
867 {
868 	return 0;
869 }
870 
871 static inline uint32_t
872 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
873 		  uint32_t mac_id, uint32_t quota)
874 {
875 	return 0;
876 }
877 
878 static inline
879 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
880 {
881 	return 0;
882 }
883 
884 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
885 {
886 	return 0;
887 }
888 
889 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
890 {
891 	return 0;
892 }
893 
894 static inline void
895 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
896 		 struct htt_rx_ring_tlv_filter *tlv_filter)
897 {
898 }
899 
900 static inline void
901 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
902 			    struct htt_rx_ring_tlv_filter *tlv_filter)
903 {
904 }
905 
906 static inline void
907 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
908 			      struct htt_rx_ring_tlv_filter *tlv_filter)
909 {
910 }
911 
912 static inline void
913 dp_mon_rx_wmask_subscribe(struct dp_soc *soc, uint32_t *msg_word,
914 			  struct htt_rx_ring_tlv_filter *tlv_filter)
915 {
916 }
917 
918 static inline
919 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
920 				     struct cdp_peer_telemetry_stats *stats)
921 {
922 }
923 #endif
924 
925 /**
926  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
927  * dp soc handle
928  * @psoc: CDP psoc handle
929  *
930  * Return: struct dp_soc pointer
931  */
932 static inline
933 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
934 {
935 	return (struct dp_soc *)psoc;
936 }
937 
938 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
939 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
940 
941 /**
942  * enum timer_yield_status - yield status code used in monitor mode timer.
943  * @DP_TIMER_NO_YIELD: do not yield
944  * @DP_TIMER_WORK_DONE: yield because work is done
945  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
946  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
947  */
948 enum timer_yield_status {
949 	DP_TIMER_NO_YIELD,
950 	DP_TIMER_WORK_DONE,
951 	DP_TIMER_WORK_EXHAUST,
952 	DP_TIMER_TIME_EXHAUST,
953 };
954 
955 #if DP_PRINT_ENABLE
956 #include <qdf_types.h> /* qdf_vprint */
957 #include <cdp_txrx_handle.h>
958 
959 enum {
960 	/* FATAL_ERR - print only irrecoverable error messages */
961 	DP_PRINT_LEVEL_FATAL_ERR,
962 
963 	/* ERR - include non-fatal err messages */
964 	DP_PRINT_LEVEL_ERR,
965 
966 	/* WARN - include warnings */
967 	DP_PRINT_LEVEL_WARN,
968 
969 	/* INFO1 - include fundamental, infrequent events */
970 	DP_PRINT_LEVEL_INFO1,
971 
972 	/* INFO2 - include non-fundamental but infrequent events */
973 	DP_PRINT_LEVEL_INFO2,
974 };
975 
976 #define dp_print(level, fmt, ...) do { \
977 	if (level <= g_txrx_print_level) \
978 		qdf_print(fmt, ## __VA_ARGS__); \
979 while (0)
980 #define DP_PRINT(level, fmt, ...) do { \
981 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
982 while (0)
983 #else
984 #define DP_PRINT(level, fmt, ...)
985 #endif /* DP_PRINT_ENABLE */
986 
987 #define DP_TRACE(LVL, fmt, args ...)                             \
988 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
989 		fmt, ## args)
990 
991 #ifdef WLAN_SYSFS_DP_STATS
992 void DP_PRINT_STATS(const char *fmt, ...);
993 #else /* WLAN_SYSFS_DP_STATS */
994 #ifdef DP_PRINT_NO_CONSOLE
995 /* Stat prints should not go to console or kernel logs.*/
996 #define DP_PRINT_STATS(fmt, args ...)\
997 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
998 		  fmt, ## args)
999 #else
1000 #define DP_PRINT_STATS(fmt, args ...)\
1001 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1002 		  fmt, ## args)
1003 #endif
1004 #endif /* WLAN_SYSFS_DP_STATS */
1005 
1006 #define DP_STATS_INIT(_handle) \
1007 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1008 
1009 #define DP_STATS_CLR(_handle) \
1010 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1011 
1012 #ifndef DISABLE_DP_STATS
1013 #define DP_STATS_INC(_handle, _field, _delta) \
1014 { \
1015 	if (likely(_handle)) \
1016 		_handle->stats._field += _delta; \
1017 }
1018 
1019 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1020 { \
1021 	if (likely(_handle)) \
1022 		_handle->_field += _delta; \
1023 }
1024 
1025 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1026 { \
1027 	if (_cond && likely(_handle)) \
1028 		_handle->stats._field += _delta; \
1029 }
1030 
1031 #define DP_STATS_DEC(_handle, _field, _delta) \
1032 { \
1033 	if (likely(_handle)) \
1034 		_handle->stats._field -= _delta; \
1035 }
1036 
1037 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1038 { \
1039 	if (likely(_handle)) \
1040 		_handle->_field -= _delta; \
1041 }
1042 
1043 #define DP_STATS_UPD(_handle, _field, _delta) \
1044 { \
1045 	if (likely(_handle)) \
1046 		_handle->stats._field = _delta; \
1047 }
1048 
1049 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1050 { \
1051 	DP_STATS_INC(_handle, _field.num, _count); \
1052 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1053 }
1054 
1055 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1056 { \
1057 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1058 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1059 }
1060 
1061 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1062 { \
1063 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1064 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1065 }
1066 
1067 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1068 { \
1069 	_handle_a->stats._field += _handle_b->stats._field; \
1070 }
1071 
1072 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1073 { \
1074 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1075 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1076 }
1077 
1078 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1079 { \
1080 	_handle_a->stats._field = _handle_b->stats._field; \
1081 }
1082 
1083 #else
1084 #define DP_STATS_INC(_handle, _field, _delta)
1085 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1086 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1087 #define DP_STATS_DEC(_handle, _field, _delta)
1088 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1089 #define DP_STATS_UPD(_handle, _field, _delta)
1090 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1091 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1092 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1093 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1094 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1095 #endif
1096 
1097 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta) \
1098 { \
1099 	DP_STATS_INC(_handle, per_pkt_stats._field, _delta); \
1100 }
1101 
1102 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond) \
1103 { \
1104 	DP_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond); \
1105 }
1106 
1107 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1108 { \
1109 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count); \
1110 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes) \
1111 }
1112 
1113 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1114 { \
1115 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond); \
1116 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1117 }
1118 
1119 #ifndef QCA_ENHANCED_STATS_SUPPORT
1120 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta) \
1121 { \
1122 	DP_STATS_INC(_handle, extd_stats._field, _delta); \
1123 }
1124 
1125 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond) \
1126 { \
1127 	DP_STATS_INCC(_handle, extd_stats._field, _delta, _cond); \
1128 }
1129 
1130 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta) \
1131 { \
1132 	DP_STATS_UPD(_handle, extd_stats._field, _delta); \
1133 }
1134 #endif
1135 
1136 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1137 	defined(QCA_ENHANCED_STATS_SUPPORT)
1138 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1139 { \
1140 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1141 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1142 }
1143 
1144 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1145 { \
1146 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1147 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1148 }
1149 
1150 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1151 { \
1152 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1153 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1154 }
1155 
1156 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1157 { \
1158 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1159 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1160 }
1161 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1162 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1163 { \
1164 	if (!(_handle->hw_txrx_stats_en)) \
1165 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1166 }
1167 
1168 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1169 { \
1170 	if (!(_handle->hw_txrx_stats_en)) \
1171 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1172 }
1173 
1174 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1175 { \
1176 	if (!(_handle->hw_txrx_stats_en)) \
1177 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1178 }
1179 
1180 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1181 { \
1182 	if (!(_handle->hw_txrx_stats_en)) \
1183 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1184 }
1185 #else
1186 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1187 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1188 
1189 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1190 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1191 
1192 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1193 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes);
1194 
1195 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1196 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes);
1197 #endif
1198 
1199 #ifdef ENABLE_DP_HIST_STATS
1200 #define DP_HIST_INIT() \
1201 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1202 
1203 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1204 { \
1205 		++num_of_packets[_pdev_id]; \
1206 }
1207 
1208 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1209 	do {                                                              \
1210 		if (_p_cntrs == 1) {                                      \
1211 			DP_STATS_INC(_pdev,                               \
1212 				tx_comp_histogram.pkts_1, 1);             \
1213 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1214 			DP_STATS_INC(_pdev,                               \
1215 				tx_comp_histogram.pkts_2_20, 1);          \
1216 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1217 			DP_STATS_INC(_pdev,                               \
1218 				tx_comp_histogram.pkts_21_40, 1);         \
1219 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1220 			DP_STATS_INC(_pdev,                               \
1221 				tx_comp_histogram.pkts_41_60, 1);         \
1222 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1223 			DP_STATS_INC(_pdev,                               \
1224 				tx_comp_histogram.pkts_61_80, 1);         \
1225 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1226 			DP_STATS_INC(_pdev,                               \
1227 				tx_comp_histogram.pkts_81_100, 1);        \
1228 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1229 			DP_STATS_INC(_pdev,                               \
1230 				tx_comp_histogram.pkts_101_200, 1);       \
1231 		} else if (_p_cntrs > 200) {                              \
1232 			DP_STATS_INC(_pdev,                               \
1233 				tx_comp_histogram.pkts_201_plus, 1);      \
1234 		}                                                         \
1235 	} while (0)
1236 
1237 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1238 	do {                                                              \
1239 		if (_p_cntrs == 1) {                                      \
1240 			DP_STATS_INC(_pdev,                               \
1241 				rx_ind_histogram.pkts_1, 1);              \
1242 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1243 			DP_STATS_INC(_pdev,                               \
1244 				rx_ind_histogram.pkts_2_20, 1);           \
1245 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1246 			DP_STATS_INC(_pdev,                               \
1247 				rx_ind_histogram.pkts_21_40, 1);          \
1248 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1249 			DP_STATS_INC(_pdev,                               \
1250 				rx_ind_histogram.pkts_41_60, 1);          \
1251 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1252 			DP_STATS_INC(_pdev,                               \
1253 				rx_ind_histogram.pkts_61_80, 1);          \
1254 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1255 			DP_STATS_INC(_pdev,                               \
1256 				rx_ind_histogram.pkts_81_100, 1);         \
1257 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1258 			DP_STATS_INC(_pdev,                               \
1259 				rx_ind_histogram.pkts_101_200, 1);        \
1260 		} else if (_p_cntrs > 200) {                              \
1261 			DP_STATS_INC(_pdev,                               \
1262 				rx_ind_histogram.pkts_201_plus, 1);       \
1263 		}                                                         \
1264 	} while (0)
1265 
1266 #define DP_TX_HIST_STATS_PER_PDEV() \
1267 	do { \
1268 		uint8_t hist_stats = 0; \
1269 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1270 				hist_stats++) { \
1271 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1272 					num_of_packets[hist_stats]); \
1273 		} \
1274 	}  while (0)
1275 
1276 
1277 #define DP_RX_HIST_STATS_PER_PDEV() \
1278 	do { \
1279 		uint8_t hist_stats = 0; \
1280 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1281 				hist_stats++) { \
1282 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1283 					num_of_packets[hist_stats]); \
1284 		} \
1285 	}  while (0)
1286 
1287 #else
1288 #define DP_HIST_INIT()
1289 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1290 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1291 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1292 #define DP_RX_HIST_STATS_PER_PDEV()
1293 #define DP_TX_HIST_STATS_PER_PDEV()
1294 #endif /* DISABLE_DP_STATS */
1295 
1296 #define FRAME_MASK_IPV4_ARP   1
1297 #define FRAME_MASK_IPV4_DHCP  2
1298 #define FRAME_MASK_IPV4_EAPOL 4
1299 #define FRAME_MASK_IPV6_DHCP  8
1300 
1301 static inline int dp_log2_ceil(unsigned int value)
1302 {
1303 	unsigned int tmp = value;
1304 	int log2 = -1;
1305 
1306 	while (tmp) {
1307 		log2++;
1308 		tmp >>= 1;
1309 	}
1310 	if (1 << log2 != value)
1311 		log2++;
1312 	return log2;
1313 }
1314 
1315 #ifdef QCA_SUPPORT_PEER_ISOLATION
1316 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1317 
1318 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1319 					 bool val)
1320 {
1321 	txrx_peer->isolation = val;
1322 }
1323 
1324 #else
1325 #define dp_get_peer_isolation(_peer) (0)
1326 
1327 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1328 {
1329 }
1330 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1331 
1332 #ifdef QCA_SUPPORT_WDS_EXTENDED
1333 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1334 {
1335 	txrx_peer->wds_ext.init = 0;
1336 }
1337 #else
1338 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1339 {
1340 }
1341 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1342 
1343 #ifdef QCA_HOST2FW_RXBUF_RING
1344 static inline
1345 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1346 {
1347 	return &pdev->rx_mac_buf_ring[lmac_id];
1348 }
1349 #else
1350 static inline
1351 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1352 {
1353 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1354 }
1355 #endif
1356 
1357 /**
1358  * The lmac ID for a particular channel band is fixed.
1359  * 2.4GHz band uses lmac_id = 1
1360  * 5GHz/6GHz band uses lmac_id=0
1361  */
1362 #define DP_INVALID_LMAC_ID	(-1)
1363 #define DP_MON_INVALID_LMAC_ID	(-1)
1364 #define DP_MAC0_LMAC_ID	0
1365 #define DP_MAC1_LMAC_ID	1
1366 
1367 #ifdef FEATURE_TSO_STATS
1368 /**
1369  * dp_init_tso_stats() - Clear tso stats
1370  * @pdev: pdev handle
1371  *
1372  * Return: None
1373  */
1374 static inline
1375 void dp_init_tso_stats(struct dp_pdev *pdev)
1376 {
1377 	if (pdev) {
1378 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1379 			     sizeof((pdev)->stats.tso_stats));
1380 		qdf_atomic_init(&pdev->tso_idx);
1381 	}
1382 }
1383 
1384 /**
1385  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1386  * @pdev: pdev handle
1387  * @_p_cntrs: number of tso segments for a tso packet
1388  *
1389  * Return: None
1390  */
1391 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1392 					   uint8_t _p_cntrs);
1393 
1394 /**
1395  * dp_tso_segment_update() - Collect tso segment information
1396  * @pdev: pdev handle
1397  * @stats_idx: tso packet number
1398  * @idx: tso segment number
1399  * @seg: tso segment
1400  *
1401  * Return: None
1402  */
1403 void dp_tso_segment_update(struct dp_pdev *pdev,
1404 			   uint32_t stats_idx,
1405 			   uint8_t idx,
1406 			   struct qdf_tso_seg_t seg);
1407 
1408 /**
1409  * dp_tso_packet_update() - TSO Packet information
1410  * @pdev: pdev handle
1411  * @stats_idx: tso packet number
1412  * @msdu: nbuf handle
1413  * @num_segs: tso segments
1414  *
1415  * Return: None
1416  */
1417 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1418 			  qdf_nbuf_t msdu, uint16_t num_segs);
1419 
1420 /**
1421  * dp_tso_segment_stats_update() - TSO Segment stats
1422  * @pdev: pdev handle
1423  * @stats_seg: tso segment list
1424  * @stats_idx: tso packet number
1425  *
1426  * Return: None
1427  */
1428 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1429 				 struct qdf_tso_seg_elem_t *stats_seg,
1430 				 uint32_t stats_idx);
1431 
1432 /**
1433  * dp_print_tso_stats() - dump tso statistics
1434  * @soc:soc handle
1435  * @level: verbosity level
1436  *
1437  * Return: None
1438  */
1439 void dp_print_tso_stats(struct dp_soc *soc,
1440 			enum qdf_stats_verbosity_level level);
1441 
1442 /**
1443  * dp_txrx_clear_tso_stats() - clear tso stats
1444  * @soc: soc handle
1445  *
1446  * Return: None
1447  */
1448 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1449 #else
1450 static inline
1451 void dp_init_tso_stats(struct dp_pdev *pdev)
1452 {
1453 }
1454 
1455 static inline
1456 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1457 					   uint8_t _p_cntrs)
1458 {
1459 }
1460 
1461 static inline
1462 void dp_tso_segment_update(struct dp_pdev *pdev,
1463 			   uint32_t stats_idx,
1464 			   uint32_t idx,
1465 			   struct qdf_tso_seg_t seg)
1466 {
1467 }
1468 
1469 static inline
1470 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1471 			  qdf_nbuf_t msdu, uint16_t num_segs)
1472 {
1473 }
1474 
1475 static inline
1476 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1477 				 struct qdf_tso_seg_elem_t *stats_seg,
1478 				 uint32_t stats_idx)
1479 {
1480 }
1481 
1482 static inline
1483 void dp_print_tso_stats(struct dp_soc *soc,
1484 			enum qdf_stats_verbosity_level level)
1485 {
1486 }
1487 
1488 static inline
1489 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1490 {
1491 }
1492 #endif /* FEATURE_TSO_STATS */
1493 
1494 /* dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1495  * @peer: DP peer handle
1496  * @type: Requested stats type
1497  * @ buf: Buffer to hold the value
1498  *
1499  * Return: status success/failure
1500  */
1501 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1502 						enum cdp_peer_stats_type type,
1503 						cdp_peer_stats_param_t *buf);
1504 
1505 /* dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1506  * @peer: DP peer handle
1507  * @type: Requested stats type
1508  * @ buf: Buffer to hold the value
1509  *
1510  * Return: status success/failure
1511  */
1512 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1513 					     enum cdp_peer_stats_type type,
1514 					     cdp_peer_stats_param_t *buf);
1515 
1516 #define DP_HTT_T2H_HP_PIPE 5
1517 /**
1518  * dp_update_pdev_stats(): Update the pdev stats
1519  * @tgtobj: pdev handle
1520  * @srcobj: vdev stats structure
1521  *
1522  * Update the pdev stats from the specified vdev stats
1523  *
1524  * return: None
1525  */
1526 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1527 			  struct cdp_vdev_stats *srcobj);
1528 
1529 /**
1530  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1531  * @tgtobj: vdev handle
1532  *
1533  * Update the vdev ingress stats
1534  *
1535  * return: None
1536  */
1537 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1538 
1539 /**
1540  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1541  * @tgtobj: tgt buffer for vdev stats
1542  * @srcobj: srcobj vdev stats
1543  *
1544  * Return: None
1545  */
1546 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1547 			       struct cdp_vdev_stats *srcobj);
1548 
1549 /**
1550  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1551  * @tgtobj: pdev handle
1552  * @srcobj: vdev stats structure
1553  *
1554  * Update the pdev ingress stats from the specified vdev stats
1555  *
1556  * return: None
1557  */
1558 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1559 				  struct dp_vdev *srcobj);
1560 
1561 /**
1562  * dp_update_vdev_stats(): Update the vdev stats
1563  * @soc: soc handle
1564  * @srcobj: DP_PEER object
1565  * @arg: point to vdev stats structure
1566  *
1567  * Update the vdev stats from the specified peer stats
1568  *
1569  * return: None
1570  */
1571 void dp_update_vdev_stats(struct dp_soc *soc,
1572 			  struct dp_peer *srcobj,
1573 			  void *arg);
1574 
1575 /**
1576  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1577  * @vdev: DP_VDEV handle
1578  * @peer: DP_PEER handle
1579  *
1580  * Return: None
1581  */
1582 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1583 					struct dp_peer *peer);
1584 
1585 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1586 	do {				\
1587 		uint8_t i;		\
1588 		uint8_t pream_type;	\
1589 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1590 			for (i = 0; i < MAX_MCS; i++) { \
1591 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1592 					tx.pkt_type[pream_type].mcs_count[i]); \
1593 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1594 					rx.pkt_type[pream_type].mcs_count[i]); \
1595 			} \
1596 		} \
1597 		  \
1598 		for (i = 0; i < MAX_BW; i++) { \
1599 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1600 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1601 		} \
1602 		  \
1603 		for (i = 0; i < SS_COUNT; i++) { \
1604 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1605 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1606 		} \
1607 		for (i = 0; i < WME_AC_MAX; i++) { \
1608 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1609 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1610 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1611 		\
1612 		} \
1613 		\
1614 		for (i = 0; i < MAX_GI; i++) { \
1615 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1616 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1617 		} \
1618 		\
1619 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1620 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1621 		\
1622 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1623 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1624 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1625 		} \
1626 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1627 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1628 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1629 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1630 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1631 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1632 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1633 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1634 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1635 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1636 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1637 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1638 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1639 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1640 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1641 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1642 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1643 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1644 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1645 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1646 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1647 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1648 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1649 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1650 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1651 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1652 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1653 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1654 								\
1655 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1656 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1657 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1658 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1659 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1660 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1661 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1662 		if (_srcobj->stats.rx.snr != 0) \
1663 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1664 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1665 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1666 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1667 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1668 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1669 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1670 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1671 								\
1672 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1673 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1674 									\
1675 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1676 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1677 									\
1678 		_srcobj->stats.rx.unicast.num = \
1679 			_srcobj->stats.rx.to_stack.num - \
1680 					_srcobj->stats.rx.multicast.num; \
1681 		_srcobj->stats.rx.unicast.bytes = \
1682 			_srcobj->stats.rx.to_stack.bytes - \
1683 					_srcobj->stats.rx.multicast.bytes; \
1684 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1685 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1686 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1687 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1688 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1689 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1690 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1691 								  \
1692 		_tgtobj->stats.tx.last_ack_rssi =	\
1693 			_srcobj->stats.tx.last_ack_rssi; \
1694 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1695 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1696 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1697 	}  while (0)
1698 
1699 #ifdef VDEV_PEER_PROTOCOL_COUNT
1700 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1701 { \
1702 	uint8_t j; \
1703 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1704 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1705 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1706 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1707 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1708 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1709 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1710 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1711 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1712 	} \
1713 }
1714 #else
1715 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1716 #endif
1717 
1718 #ifdef WLAN_FEATURE_11BE
1719 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1720 	do { \
1721 		uint8_t i, mu_type; \
1722 		for (i = 0; i < MAX_MCS; i++) { \
1723 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1724 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1725 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1726 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1727 		} \
1728 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1729 			for (i = 0; i < MAX_MCS; i++) { \
1730 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1731 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1732 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1733 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1734 			} \
1735 		} \
1736 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1737 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1738 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1739 		} \
1740 	} while (0)
1741 #else
1742 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1743 #endif
1744 
1745 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1746 	do { \
1747 		uint8_t i; \
1748 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1749 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1750 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1751 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1752 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1753 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1754 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1755 		_tgtobj->tx.nawds_mcast.bytes += \
1756 					_srcobj->tx.nawds_mcast.bytes; \
1757 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1758 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1759 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1760 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1761 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1762 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1763 		_tgtobj->tx.dropped.fw_rem.num += \
1764 					_srcobj->tx.dropped.fw_rem.num; \
1765 		_tgtobj->tx.dropped.fw_rem.bytes += \
1766 					_srcobj->tx.dropped.fw_rem.bytes; \
1767 		_tgtobj->tx.dropped.fw_rem_notx += \
1768 					_srcobj->tx.dropped.fw_rem_notx; \
1769 		_tgtobj->tx.dropped.fw_rem_tx += \
1770 					_srcobj->tx.dropped.fw_rem_tx; \
1771 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1772 		_tgtobj->tx.dropped.fw_reason1 += \
1773 					_srcobj->tx.dropped.fw_reason1; \
1774 		_tgtobj->tx.dropped.fw_reason2 += \
1775 					_srcobj->tx.dropped.fw_reason2; \
1776 		_tgtobj->tx.dropped.fw_reason3 += \
1777 					_srcobj->tx.dropped.fw_reason3; \
1778 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1779 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1780 		_tgtobj->tx.dropped.fw_rem_no_match += \
1781 					_srcobj->tx.dropped.fw_rem_no_match; \
1782 		_tgtobj->tx.dropped.drop_threshold += \
1783 					_srcobj->tx.dropped.drop_threshold; \
1784 		_tgtobj->tx.dropped.drop_link_desc_na += \
1785 					_srcobj->tx.dropped.drop_link_desc_na; \
1786 		_tgtobj->tx.dropped.invalid_drop += \
1787 					_srcobj->tx.dropped.invalid_drop; \
1788 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1789 					_srcobj->tx.dropped.mcast_vdev_drop; \
1790 		_tgtobj->tx.dropped.invalid_rr += \
1791 					_srcobj->tx.dropped.invalid_rr; \
1792 		_tgtobj->tx.failed_retry_count += \
1793 					_srcobj->tx.failed_retry_count; \
1794 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1795 		_tgtobj->tx.multiple_retry_count += \
1796 					_srcobj->tx.multiple_retry_count; \
1797 		_tgtobj->tx.tx_success_twt.num += \
1798 					_srcobj->tx.tx_success_twt.num; \
1799 		_tgtobj->tx.tx_success_twt.bytes += \
1800 					_srcobj->tx.tx_success_twt.bytes; \
1801 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1802 		_tgtobj->tx.release_src_not_tqm += \
1803 					_srcobj->tx.release_src_not_tqm; \
1804 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1805 			_tgtobj->tx.no_ack_count[i] += \
1806 					_srcobj->tx.no_ack_count[i];\
1807 		} \
1808 		\
1809 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1810 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1811 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1812 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1813 		if (_tgtobj->rx.to_stack.num >= _tgtobj->rx.multicast.num) \
1814 			_tgtobj->rx.unicast.num = \
1815 				_tgtobj->rx.to_stack.num - _tgtobj->rx.multicast.num; \
1816 		if (_tgtobj->rx.to_stack.bytes >= _tgtobj->rx.multicast.bytes) \
1817 			_tgtobj->rx.unicast.bytes = \
1818 				_tgtobj->rx.to_stack.bytes - _tgtobj->rx.multicast.bytes; \
1819 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1820 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1821 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1822 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1823 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1824 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1825 		_tgtobj->rx.intra_bss.pkts.num += \
1826 					_srcobj->rx.intra_bss.pkts.num; \
1827 		_tgtobj->rx.intra_bss.pkts.bytes += \
1828 					_srcobj->rx.intra_bss.pkts.bytes; \
1829 		_tgtobj->rx.intra_bss.fail.num += \
1830 					_srcobj->rx.intra_bss.fail.num; \
1831 		_tgtobj->rx.intra_bss.fail.bytes += \
1832 					_srcobj->rx.intra_bss.fail.bytes; \
1833 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1834 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1835 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1836 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1837 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1838 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1839 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1840 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1841 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1842 					_srcobj->rx.err.rxdma_wifi_parse_err; \
1843 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
1844 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
1845 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
1846 		_tgtobj->rx.multipass_rx_pkt_drop += \
1847 					_srcobj->rx.multipass_rx_pkt_drop; \
1848 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
1849 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
1850 		_tgtobj->rx.policy_check_drop += \
1851 					_srcobj->rx.policy_check_drop; \
1852 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
1853 		_tgtobj->rx.to_stack_twt.bytes += \
1854 					_srcobj->rx.to_stack_twt.bytes; \
1855 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
1856 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
1857 			_tgtobj->rx.rcvd_reo[i].num += \
1858 					 _srcobj->rx.rcvd_reo[i].num; \
1859 			_tgtobj->rx.rcvd_reo[i].bytes += \
1860 					_srcobj->rx.rcvd_reo[i].bytes; \
1861 		} \
1862 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
1863 			_tgtobj->rx.rx_lmac[i].num += \
1864 					_srcobj->rx.rx_lmac[i].num; \
1865 			_tgtobj->rx.rx_lmac[i].bytes += \
1866 					_srcobj->rx.rx_lmac[i].bytes; \
1867 		} \
1868 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
1869 	} while (0)
1870 
1871 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
1872 	do { \
1873 		uint8_t i, pream_type, mu_type; \
1874 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
1875 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
1876 		_tgtobj->tx.retries += _srcobj->tx.retries; \
1877 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
1878 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
1879 		_tgtobj->tx.num_ppdu_cookie_valid += \
1880 					_srcobj->tx.num_ppdu_cookie_valid; \
1881 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
1882 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
1883 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
1884 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
1885 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
1886 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
1887 		_tgtobj->tx.mcast_last_tx_rate = \
1888 					_srcobj->tx.mcast_last_tx_rate; \
1889 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
1890 					_srcobj->tx.mcast_last_tx_rate_mcs; \
1891 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
1892 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
1893 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
1894 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
1895 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
1896 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
1897 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
1898 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
1899 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
1900 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
1901 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
1902 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
1903 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
1904 		_tgtobj->tx.mpdu_success_with_retries += \
1905 					_srcobj->tx.mpdu_success_with_retries; \
1906 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1907 			for (i = 0; i < MAX_MCS; i++) \
1908 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
1909 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
1910 		} \
1911 		for (i = 0; i < WME_AC_MAX; i++) { \
1912 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
1913 			_tgtobj->tx.excess_retries_per_ac[i] += \
1914 					_srcobj->tx.excess_retries_per_ac[i]; \
1915 		} \
1916 		for (i = 0; i < MAX_GI; i++) { \
1917 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
1918 		} \
1919 		for (i = 0; i < SS_COUNT; i++) { \
1920 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
1921 		} \
1922 		for (i = 0; i < MAX_BW; i++) { \
1923 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
1924 		} \
1925 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
1926 			_tgtobj->tx.ru_loc[i].num_msdu += \
1927 					_srcobj->tx.ru_loc[i].num_msdu; \
1928 			_tgtobj->tx.ru_loc[i].num_mpdu += \
1929 					_srcobj->tx.ru_loc[i].num_mpdu; \
1930 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
1931 					_srcobj->tx.ru_loc[i].mpdu_tried; \
1932 		} \
1933 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
1934 			_tgtobj->tx.transmit_type[i].num_msdu += \
1935 					_srcobj->tx.transmit_type[i].num_msdu; \
1936 			_tgtobj->tx.transmit_type[i].num_mpdu += \
1937 					_srcobj->tx.transmit_type[i].num_mpdu; \
1938 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
1939 					_srcobj->tx.transmit_type[i].mpdu_tried; \
1940 		} \
1941 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
1942 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
1943 		} \
1944 		\
1945 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
1946 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
1947 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
1948 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
1949 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
1950 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
1951 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
1952 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
1953 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
1954 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
1955 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
1956 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
1957 		_tgtobj->rx.rx_snr_measured_time = \
1958 					_srcobj->rx.rx_snr_measured_time; \
1959 		_tgtobj->rx.snr = _srcobj->rx.snr; \
1960 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
1961 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
1962 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
1963 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
1964 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
1965 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
1966 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
1967 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1968 			for (i = 0; i < MAX_MCS; i++) { \
1969 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
1970 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
1971 			} \
1972 		} \
1973 		for (i = 0; i < WME_AC_MAX; i++) { \
1974 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
1975 		} \
1976 		for (i = 0; i < MAX_MCS; i++) { \
1977 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
1978 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
1979 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
1980 		} \
1981 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1982 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
1983 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
1984 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
1985 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
1986 			for (i = 0; i < SS_COUNT; i++) \
1987 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
1988 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
1989 			for (i = 0; i < MAX_MCS; i++) \
1990 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
1991 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
1992 		} \
1993 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
1994 			_tgtobj->rx.reception_type[i] += \
1995 					_srcobj->rx.reception_type[i]; \
1996 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
1997 		} \
1998 		for (i = 0; i < MAX_GI; i++) { \
1999 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
2000 		} \
2001 		for (i = 0; i < SS_COUNT; i++) { \
2002 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2003 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2004 		} \
2005 		for (i = 0; i < MAX_BW; i++) { \
2006 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2007 		} \
2008 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2009 	} while (0)
2010 
2011 /**
2012  * dp_peer_find_attach() - Allocates memory for peer objects
2013  * @soc: SoC handle
2014  *
2015  * Return: QDF_STATUS
2016  */
2017 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2018 extern void dp_peer_find_detach(struct dp_soc *soc);
2019 extern void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2020 extern void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2021 extern void dp_peer_find_hash_erase(struct dp_soc *soc);
2022 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2023 			   struct dp_peer *peer);
2024 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2025 			      struct dp_peer *peer);
2026 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2027 				struct dp_peer *peer,
2028 				uint16_t peer_id);
2029 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2030 			     struct dp_peer *peer,
2031 			     struct dp_txrx_peer *txrx_peer);
2032 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2033 				   uint16_t peer_id);
2034 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2035 			  enum dp_mod_id mod_id);
2036 
2037 /*
2038  * dp_peer_ppdu_delayed_ba_cleanup() free ppdu allocated in peer
2039  * @peer: Datapath peer
2040  *
2041  * return: void
2042  */
2043 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2044 
2045 extern void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2046 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2047 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2048 
2049 #ifdef DP_PEER_EXTENDED_API
2050 /**
2051  * dp_register_peer() - Register peer into physical device
2052  * @soc_hdl - data path soc handle
2053  * @pdev_id - device instance id
2054  * @sta_desc - peer description
2055  *
2056  * Register peer into physical device
2057  *
2058  * Return: QDF_STATUS_SUCCESS registration success
2059  *         QDF_STATUS_E_FAULT peer not found
2060  */
2061 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2062 			    struct ol_txrx_desc_type *sta_desc);
2063 
2064 /**
2065  * dp_clear_peer() - remove peer from physical device
2066  * @soc_hdl - data path soc handle
2067  * @pdev_id - device instance id
2068  * @peer_addr - peer mac address
2069  *
2070  * remove peer from physical device
2071  *
2072  * Return: QDF_STATUS_SUCCESS registration success
2073  *         QDF_STATUS_E_FAULT peer not found
2074  */
2075 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2076 			 struct qdf_mac_addr peer_addr);
2077 
2078 /*
2079  * dp_find_peer_exist - find peer if already exists
2080  * @soc: datapath soc handle
2081  * @pdev_id: physical device instance id
2082  * @peer_mac_addr: peer mac address
2083  *
2084  * Return: true or false
2085  */
2086 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2087 			uint8_t *peer_addr);
2088 
2089 /*
2090  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2091  * @soc: datapath soc handle
2092  * @vdev_id: vdev instance id
2093  * @peer_mac_addr: peer mac address
2094  *
2095  * Return: true or false
2096  */
2097 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2098 				uint8_t *peer_addr);
2099 
2100 /*
2101  * dp_find_peer_exist_on_other_vdev - find if peer exists
2102  * on other than the given vdev
2103  * @soc: datapath soc handle
2104  * @vdev_id: vdev instance id
2105  * @peer_mac_addr: peer mac address
2106  * @max_bssid: max number of bssids
2107  *
2108  * Return: true or false
2109  */
2110 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2111 				      uint8_t vdev_id, uint8_t *peer_addr,
2112 				      uint16_t max_bssid);
2113 
2114 /**
2115  * dp_peer_state_update() - update peer local state
2116  * @pdev - data path device instance
2117  * @peer_addr - peer mac address
2118  * @state - new peer local state
2119  *
2120  * update peer local state
2121  *
2122  * Return: QDF_STATUS_SUCCESS registration success
2123  */
2124 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2125 				enum ol_txrx_peer_state state);
2126 
2127 /**
2128  * dp_get_vdevid() - Get virtual interface id which peer registered
2129  * @soc - datapath soc handle
2130  * @peer_mac - peer mac address
2131  * @vdev_id - virtual interface id which peer registered
2132  *
2133  * Get virtual interface id which peer registered
2134  *
2135  * Return: QDF_STATUS_SUCCESS registration success
2136  */
2137 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2138 			 uint8_t *vdev_id);
2139 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2140 		struct qdf_mac_addr peer_addr);
2141 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2142 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2143 
2144 /**
2145  * dp_get_peer_state() - Get local peer state
2146  * @soc - datapath soc handle
2147  * @vdev_id - vdev id
2148  * @peer_mac - peer mac addr
2149  *
2150  * Get local peer state
2151  *
2152  * Return: peer status
2153  */
2154 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2155 		      uint8_t *peer_mac);
2156 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2157 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2158 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2159 /**
2160  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2161  * @soc_hdl: datapath soc handle
2162  * @vdev_id: vdev_id
2163  * @peer_mac: peer mac addr
2164  * @val: tdls peer flag
2165  *
2166  * Return: none
2167  */
2168 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2169 			      uint8_t *peer_mac, bool val);
2170 #else
2171 /**
2172  * dp_get_vdevid() - Get virtual interface id which peer registered
2173  * @soc - datapath soc handle
2174  * @peer_mac - peer mac address
2175  * @vdev_id - virtual interface id which peer registered
2176  *
2177  * Get virtual interface id which peer registered
2178  *
2179  * Return: QDF_STATUS_SUCCESS registration success
2180  */
2181 static inline
2182 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2183 			 uint8_t *vdev_id)
2184 {
2185 	return QDF_STATUS_E_NOSUPPORT;
2186 }
2187 
2188 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2189 {
2190 }
2191 
2192 static inline
2193 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2194 {
2195 }
2196 
2197 static inline
2198 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2199 {
2200 }
2201 
2202 static inline
2203 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2204 			      uint8_t *peer_mac, bool val)
2205 {
2206 }
2207 #endif
2208 
2209 int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
2210 				      uint8_t *peer_mac, uint16_t vdev_id,
2211 				      uint8_t tid,
2212 				      int status);
2213 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
2214 				  uint8_t *peer_mac, uint16_t vdev_id,
2215 				  uint8_t dialogtoken, uint16_t tid,
2216 				  uint16_t batimeout,
2217 				  uint16_t buffersize,
2218 				  uint16_t startseqnum);
2219 QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc,
2220 					uint8_t *peer_mac, uint16_t vdev_id,
2221 					uint8_t tid, uint8_t *dialogtoken,
2222 					uint16_t *statuscode,
2223 					uint16_t *buffersize,
2224 					uint16_t *batimeout);
2225 QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc,
2226 				 uint8_t *peer_mac,
2227 				 uint16_t vdev_id, uint8_t tid,
2228 				 uint16_t statuscode);
2229 int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2230 			   uint16_t vdev_id, int tid,
2231 			   uint16_t reasoncode);
2232 
2233 /**
2234  * dp_rx_tid_update_ba_win_size() - Update the DP tid BA window size
2235  * @soc: soc handle
2236  * @peer_mac: mac address of peer handle
2237  * @vdev_id: id of vdev handle
2238  * @tid: tid
2239  * @buffersize: BA window size
2240  *
2241  * Return: success/failure of tid update
2242  */
2243 QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc,
2244 					uint8_t *peer_mac, uint16_t vdev_id,
2245 					uint8_t tid, uint16_t buffersize);
2246 
2247 /*
2248  * dp_delba_tx_completion_wifi3() -  Handle delba tx completion
2249  *
2250  * @cdp_soc: soc handle
2251  * @vdev_id: id of the vdev handle
2252  * @peer_mac: peer mac address
2253  * @tid: Tid number
2254  * @status: Tx completion status
2255  * Indicate status of delba Tx to DP for stats update and retry
2256  * delba if tx failed.
2257  *
2258  */
2259 int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2260 				 uint16_t vdev_id, uint8_t tid,
2261 				 int status);
2262 extern QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
2263 					uint32_t ba_window_size,
2264 					uint32_t start_seq);
2265 
2266 #ifdef DP_UMAC_HW_RESET_SUPPORT
2267 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2268 
2269 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2270 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2271 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2272 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2273 			       uint32_t size);
2274 #endif
2275 
2276 extern QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc,
2277 	enum hal_reo_cmd_type type, struct hal_reo_cmd_params *params,
2278 	void (*callback_fn), void *data);
2279 
2280 extern void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2281 
2282 /**
2283  * dp_reo_status_ring_handler - Handler for REO Status ring
2284  * @int_ctx: pointer to DP interrupt context
2285  * @soc: DP Soc handle
2286  *
2287  * Returns: Number of descriptors reaped
2288  */
2289 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2290 				    struct dp_soc *soc);
2291 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2292 			     struct cdp_vdev_stats *vdev_stats);
2293 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2294 	union hal_reo_status *reo_status);
2295 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2296 		union hal_reo_status *reo_status);
2297 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2298 				     qdf_nbuf_t nbuf,
2299 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2300 				     uint8_t new_mac_cnt, uint8_t tid,
2301 				     bool is_igmp, bool is_dms_pkt);
2302 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2303 
2304 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2305 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2306 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2307 		uint32_t config_param_1, uint32_t config_param_2,
2308 		uint32_t config_param_3, int cookie, int cookie_msb,
2309 		uint8_t mac_id);
2310 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2311 			    uint8_t tag_type, uint32_t *tag_buf);
2312 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2313 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2314 				     uint8_t mac_id);
2315 /**
2316  * dp_rxtid_stats_cmd_cb - function pointer for peer
2317  *			   rx tid stats cmd call_back
2318  */
2319 typedef void (*dp_rxtid_stats_cmd_cb)(struct dp_soc *soc, void *cb_ctxt,
2320 				      union hal_reo_status *reo_status);
2321 int dp_peer_rxtid_stats(struct dp_peer *peer,
2322 			dp_rxtid_stats_cmd_cb dp_stats_cmd_cb,
2323 			void *cb_ctxt);
2324 #ifdef IPA_OFFLOAD
2325 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2326 				       union hal_reo_status *reo_status);
2327 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2328 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2329 #endif
2330 QDF_STATUS
2331 dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2332 		      uint8_t *peer_mac, enum cdp_sec_type sec_type,
2333 		      uint32_t *rx_pn);
2334 
2335 QDF_STATUS
2336 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2337 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
2338 			  bool is_unicast);
2339 
2340 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
2341 
2342 QDF_STATUS
2343 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
2344 		   uint8_t *peer_mac,
2345 		   bool is_unicast, uint32_t *key);
2346 
2347 /**
2348  * dp_check_pdev_exists() - Validate pdev before use
2349  * @soc - dp soc handle
2350  * @data - pdev handle
2351  *
2352  * Return: 0 - success/invalid - failure
2353  */
2354 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
2355 
2356 /**
2357  * dp_update_delay_stats() - Update delay statistics in structure
2358  *				and fill min, max and avg delay
2359  * @tstats: tid tx stats
2360  * @rstats: tid rx stats
2361  * @delay: delay in ms
2362  * @tid: tid value
2363  * @mode: type of tx delay mode
2364  * @ring id: ring number
2365  * @delay_in_us: flag to indicate whether the delay is in ms or us
2366  *
2367  * Return: none
2368  */
2369 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
2370 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
2371 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
2372 			   bool delay_in_us);
2373 
2374 /**
2375  * dp_print_ring_stats(): Print tail and head pointer
2376  * @pdev: DP_PDEV handle
2377  *
2378  * Return:void
2379  */
2380 void dp_print_ring_stats(struct dp_pdev *pdev);
2381 
2382 /**
2383  * dp_print_ring_stat_from_hal(): Print tail and head pointer through hal
2384  * @soc: soc handle
2385  * @srng: srng handle
2386  * @ring_type: ring type
2387  *
2388  * Return:void
2389  */
2390 void
2391 dp_print_ring_stat_from_hal(struct dp_soc *soc,  struct dp_srng *srng,
2392 			    enum hal_ring_type ring_type);
2393 /**
2394  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
2395  * @pdev_handle: DP pdev handle
2396  *
2397  * Return - void
2398  */
2399 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
2400 
2401 /**
2402  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
2403  * @soc_handle: Soc handle
2404  *
2405  * Return: void
2406  */
2407 void dp_print_soc_cfg_params(struct dp_soc *soc);
2408 
2409 /**
2410  * dp_srng_get_str_from_ring_type() - Return string name for a ring
2411  * @ring_type: Ring
2412  *
2413  * Return: char const pointer
2414  */
2415 const
2416 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
2417 
2418 /*
2419  * dp_txrx_path_stats() - Function to display dump stats
2420  * @soc - soc handle
2421  *
2422  * return: none
2423  */
2424 void dp_txrx_path_stats(struct dp_soc *soc);
2425 
2426 /*
2427  * dp_print_per_ring_stats(): Packet count per ring
2428  * @soc - soc handle
2429  *
2430  * Return - None
2431  */
2432 void dp_print_per_ring_stats(struct dp_soc *soc);
2433 
2434 /**
2435  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
2436  * @pdev: DP PDEV handle
2437  *
2438  * return: void
2439  */
2440 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
2441 
2442 /**
2443  * dp_print_rx_rates(): Print Rx rate stats
2444  * @vdev: DP_VDEV handle
2445  *
2446  * Return:void
2447  */
2448 void dp_print_rx_rates(struct dp_vdev *vdev);
2449 
2450 /**
2451  * dp_print_tx_rates(): Print tx rates
2452  * @vdev: DP_VDEV handle
2453  *
2454  * Return:void
2455  */
2456 void dp_print_tx_rates(struct dp_vdev *vdev);
2457 
2458 /**
2459  * dp_print_peer_stats():print peer stats
2460  * @peer: DP_PEER handle
2461  * @peer_stats: buffer holding peer stats
2462  *
2463  * return void
2464  */
2465 void dp_print_peer_stats(struct dp_peer *peer,
2466 			 struct cdp_peer_stats *peer_stats);
2467 
2468 /**
2469  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
2470  * @pdev: DP_PDEV Handle
2471  *
2472  * Return:void
2473  */
2474 void
2475 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
2476 
2477 /**
2478  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
2479  * @pdev: DP_PDEV Handle
2480  *
2481  * Return: void
2482  */
2483 void
2484 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
2485 
2486 /**
2487  * dp_print_soc_tx_stats(): Print SOC level  stats
2488  * @soc DP_SOC Handle
2489  *
2490  * Return: void
2491  */
2492 void dp_print_soc_tx_stats(struct dp_soc *soc);
2493 
2494 /**
2495  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
2496  * @soc: dp_soc handle
2497  *
2498  * Return: None
2499  */
2500 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
2501 
2502 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
2503 /**
2504  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2505  *				  for all SRNGs
2506  * @soc: DP soc handle
2507  * @srng_mask: SRNGs mask for dumping usage watermark stats
2508  *
2509  * Return: None
2510  */
2511 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
2512 #else
2513 /**
2514  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2515  *				  for all SRNGs
2516  * @soc: DP soc handle
2517  * @srng_mask: SRNGs mask for dumping usage watermark stats
2518  *
2519  * Return: None
2520  */
2521 static inline
2522 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
2523 {
2524 }
2525 #endif
2526 
2527 /**
2528  * dp_print_soc_rx_stats: Print SOC level Rx stats
2529  * @soc: DP_SOC Handle
2530  *
2531  * Return:void
2532  */
2533 void dp_print_soc_rx_stats(struct dp_soc *soc);
2534 
2535 /**
2536  * dp_get_mac_id_for_pdev() -  Return mac corresponding to pdev for mac
2537  *
2538  * @mac_id: MAC id
2539  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2540  *
2541  * Single pdev using both MACs will operate on both MAC rings,
2542  * which is the case for MCL.
2543  * For WIN each PDEV will operate one ring, so index is zero.
2544  *
2545  */
2546 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
2547 {
2548 	if (mac_id && pdev_id) {
2549 		qdf_print("Both mac_id and pdev_id cannot be non zero");
2550 		QDF_BUG(0);
2551 		return 0;
2552 	}
2553 	return (mac_id + pdev_id);
2554 }
2555 
2556 /**
2557  * dp_get_lmac_id_for_pdev_id() -  Return lmac id corresponding to host pdev id
2558  * @soc: soc pointer
2559  * @mac_id: MAC id
2560  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2561  *
2562  * For MCL, Single pdev using both MACs will operate on both MAC rings.
2563  *
2564  * For WIN, each PDEV will operate one ring.
2565  *
2566  */
2567 static inline int
2568 dp_get_lmac_id_for_pdev_id
2569 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
2570 {
2571 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2572 		if (mac_id && pdev_id) {
2573 			qdf_print("Both mac_id and pdev_id cannot be non zero");
2574 			QDF_BUG(0);
2575 			return 0;
2576 		}
2577 		return (mac_id + pdev_id);
2578 	}
2579 
2580 	return soc->pdev_list[pdev_id]->lmac_id;
2581 }
2582 
2583 /**
2584  * dp_get_pdev_for_lmac_id() -  Return pdev pointer corresponding to lmac id
2585  * @soc: soc pointer
2586  * @lmac_id: LMAC id
2587  *
2588  * For MCL, Single pdev exists
2589  *
2590  * For WIN, each PDEV will operate one ring.
2591  *
2592  */
2593 static inline struct dp_pdev *
2594 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
2595 {
2596 	uint8_t i = 0;
2597 
2598 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2599 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
2600 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
2601 	}
2602 
2603 	/* Typically for MCL as there only 1 PDEV*/
2604 	return soc->pdev_list[0];
2605 }
2606 
2607 /**
2608  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
2609  *                                          corresponding to host pdev id
2610  * @soc: soc pointer
2611  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2612  *
2613  * returns target pdev_id for host pdev id. For WIN, this is derived through
2614  * a two step process:
2615  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
2616  *    during mode switch)
2617  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
2618  *
2619  * For MCL, return the offset-1 translated mac_id
2620  */
2621 static inline int
2622 dp_calculate_target_pdev_id_from_host_pdev_id
2623 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2624 {
2625 	struct dp_pdev *pdev;
2626 
2627 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2628 		return DP_SW2HW_MACID(mac_for_pdev);
2629 
2630 	pdev = soc->pdev_list[mac_for_pdev];
2631 
2632 	/*non-MCL case, get original target_pdev mapping*/
2633 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
2634 }
2635 
2636 /**
2637  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
2638  *                                         to host pdev id
2639  * @soc: soc pointer
2640  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2641  *
2642  * returns target pdev_id for host pdev id.
2643  * For WIN, return the value stored in pdev object.
2644  * For MCL, return the offset-1 translated mac_id.
2645  */
2646 static inline int
2647 dp_get_target_pdev_id_for_host_pdev_id
2648 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2649 {
2650 	struct dp_pdev *pdev;
2651 
2652 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2653 		return DP_SW2HW_MACID(mac_for_pdev);
2654 
2655 	pdev = soc->pdev_list[mac_for_pdev];
2656 
2657 	return pdev->target_pdev_id;
2658 }
2659 
2660 /**
2661  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
2662  *                                         to target pdev id
2663  * @soc: soc pointer
2664  * @pdev_id: pdev_id corresponding to target pdev
2665  *
2666  * returns host pdev_id for target pdev id. For WIN, this is derived through
2667  * a two step process:
2668  * 1. Get lmac_id corresponding to target pdev_id
2669  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
2670  *
2671  * For MCL, return the 0-offset pdev_id
2672  */
2673 static inline int
2674 dp_get_host_pdev_id_for_target_pdev_id
2675 	(struct dp_soc *soc, uint32_t pdev_id)
2676 {
2677 	struct dp_pdev *pdev;
2678 	int lmac_id;
2679 
2680 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2681 		return DP_HW2SW_MACID(pdev_id);
2682 
2683 	/*non-MCL case, get original target_lmac mapping from target pdev*/
2684 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
2685 					  DP_HW2SW_MACID(pdev_id));
2686 
2687 	/*Get host pdev from lmac*/
2688 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
2689 
2690 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
2691 }
2692 
2693 /*
2694  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
2695  *
2696  * @soc: handle to DP soc
2697  * @mac_id: MAC id
2698  *
2699  * Single pdev using both MACs will operate on both MAC rings,
2700  * which is the case for MCL.
2701  * For WIN each PDEV will operate one ring, so index is zero.
2702  *
2703  */
2704 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
2705 {
2706 	/*
2707 	 * Single pdev using both MACs will operate on both MAC rings,
2708 	 * which is the case for MCL.
2709 	 */
2710 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2711 		return mac_id;
2712 
2713 	/* For WIN each PDEV will operate one ring, so index is zero. */
2714 	return 0;
2715 }
2716 
2717 /*
2718  * dp_is_subtype_data() - check if the frame subtype is data
2719  *
2720  * @frame_ctrl: Frame control field
2721  *
2722  * check the frame control field and verify if the packet
2723  * is a data packet.
2724  *
2725  * Return: true or false
2726  */
2727 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
2728 {
2729 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
2730 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
2731 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2732 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
2733 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2734 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
2735 		return true;
2736 	}
2737 
2738 	return false;
2739 }
2740 
2741 #ifdef WDI_EVENT_ENABLE
2742 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2743 				uint32_t stats_type_upload_mask,
2744 				uint8_t mac_id);
2745 
2746 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2747 		       wdi_event_subscribe *event_cb_sub_handle,
2748 		       uint32_t event);
2749 
2750 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2751 		     wdi_event_subscribe *event_cb_sub_handle,
2752 		     uint32_t event);
2753 
2754 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
2755 			  void *data, u_int16_t peer_id,
2756 			  int status, u_int8_t pdev_id);
2757 
2758 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
2759 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
2760 
2761 static inline void
2762 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
2763 			    void *cb_context,
2764 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2765 			    uint8_t pipe_id)
2766 {
2767 	struct hif_msg_callbacks hif_pipe_callbacks = { 0 };
2768 
2769 	/* TODO: Temporary change to bypass HTC connection for this new
2770 	 * HIF pipe, which will be used for packet log and other high-
2771 	 * priority HTT messages. Proper HTC connection to be added
2772 	 * later once required FW changes are available
2773 	 */
2774 	hif_pipe_callbacks.rxCompletionHandler = callback;
2775 	hif_pipe_callbacks.Context = cb_context;
2776 	hif_update_pipe_callback(dp_soc->hif_handle,
2777 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
2778 }
2779 #else
2780 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2781 				     wdi_event_subscribe *event_cb_sub_handle,
2782 				     uint32_t event)
2783 {
2784 	return 0;
2785 }
2786 
2787 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2788 				   wdi_event_subscribe *event_cb_sub_handle,
2789 				   uint32_t event)
2790 {
2791 	return 0;
2792 }
2793 
2794 static inline
2795 void dp_wdi_event_handler(enum WDI_EVENT event,
2796 			  struct dp_soc *soc,
2797 			  void *data, u_int16_t peer_id,
2798 			  int status, u_int8_t pdev_id)
2799 {
2800 }
2801 
2802 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
2803 {
2804 	return 0;
2805 }
2806 
2807 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
2808 {
2809 	return 0;
2810 }
2811 
2812 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2813 		uint32_t stats_type_upload_mask, uint8_t mac_id)
2814 {
2815 	return 0;
2816 }
2817 
2818 static inline void
2819 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
2820 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2821 			    uint8_t pipe_id)
2822 {
2823 }
2824 #endif /* CONFIG_WIN */
2825 
2826 #ifdef VDEV_PEER_PROTOCOL_COUNT
2827 /**
2828  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2829  * @vdev: VDEV DP object
2830  * @nbuf: data packet
2831  * @peer: DP TXRX Peer object
2832  * @is_egress: whether egress or ingress
2833  * @is_rx: whether rx or tx
2834  *
2835  * This function updates the per-peer protocol counters
2836  * Return: void
2837  */
2838 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
2839 					    qdf_nbuf_t nbuf,
2840 					    struct dp_txrx_peer *txrx_peer,
2841 					    bool is_egress,
2842 					    bool is_rx);
2843 
2844 /**
2845  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2846  * @soc: SOC DP object
2847  * @vdev_id: vdev_id
2848  * @nbuf: data packet
2849  * @is_egress: whether egress or ingress
2850  * @is_rx: whether rx or tx
2851  *
2852  * This function updates the per-peer protocol counters
2853  * Return: void
2854  */
2855 
2856 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
2857 				       int8_t vdev_id,
2858 				       qdf_nbuf_t nbuf,
2859 				       bool is_egress,
2860 				       bool is_rx);
2861 
2862 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2863 					       qdf_nbuf_t nbuf);
2864 
2865 #else
2866 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
2867 					       is_egress, is_rx)
2868 
2869 static inline
2870 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2871 					       qdf_nbuf_t nbuf)
2872 {
2873 }
2874 
2875 #endif
2876 
2877 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
2878 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
2879 
2880 /**
2881  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
2882  * @soc: DP soc context
2883  *
2884  * Return: none
2885  */
2886 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
2887 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
2888 	bool force);
2889 #else
2890 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
2891 {
2892 }
2893 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
2894 
2895 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
2896 static inline int
2897 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2898 {
2899 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
2900 }
2901 
2902 static inline void
2903 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2904 {
2905 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
2906 }
2907 
2908 #else
2909 static inline int
2910 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2911 {
2912 	return hal_srng_access_start(soc, hal_ring_hdl);
2913 }
2914 
2915 static inline void
2916 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2917 {
2918 	hal_srng_access_end(soc, hal_ring_hdl);
2919 }
2920 #endif
2921 
2922 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2923 /**
2924  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
2925  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2926  * @soc: DP Soc handle
2927  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2928  *
2929  * Return: 0 on success; error on failure
2930  */
2931 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2932 			 hal_ring_handle_t hal_ring_hdl);
2933 
2934 /**
2935  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
2936  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2937  * @soc: DP Soc handle
2938  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2939  *
2940  * Return: void
2941  */
2942 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2943 			hal_ring_handle_t hal_ring_hdl);
2944 
2945 #else
2946 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
2947 				       struct dp_soc *dp_soc,
2948 				       hal_ring_handle_t hal_ring_hdl)
2949 {
2950 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2951 
2952 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2953 }
2954 
2955 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
2956 				      struct dp_soc *dp_soc,
2957 				      hal_ring_handle_t hal_ring_hdl)
2958 {
2959 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2960 
2961 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2962 }
2963 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2964 
2965 #ifdef QCA_CACHED_RING_DESC
2966 /**
2967  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
2968  * @dp_socsoc: DP Soc handle
2969  * @hal_ring: opaque pointer to the HAL Destination Ring
2970  *
2971  * Return: HAL ring descriptor
2972  */
2973 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
2974 					 hal_ring_handle_t hal_ring_hdl)
2975 {
2976 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2977 
2978 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
2979 }
2980 
2981 /**
2982  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
2983  * descriptors
2984  * @dp_socsoc: DP Soc handle
2985  * @hal_ring: opaque pointer to the HAL Rx Destination ring
2986  * @num_entries: Entry count
2987  *
2988  * Return: None
2989  */
2990 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
2991 						hal_ring_handle_t hal_ring_hdl,
2992 						uint32_t num_entries)
2993 {
2994 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2995 
2996 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
2997 }
2998 #else
2999 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
3000 					 hal_ring_handle_t hal_ring_hdl)
3001 {
3002 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
3003 
3004 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
3005 }
3006 
3007 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
3008 						hal_ring_handle_t hal_ring_hdl,
3009 						uint32_t num_entries)
3010 {
3011 }
3012 #endif /* QCA_CACHED_RING_DESC */
3013 
3014 #if defined(QCA_CACHED_RING_DESC) && \
3015 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3016 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3017 /**
3018  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3019  * @hal_soc_hdl: HAL SOC handle
3020  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3021  * @num_entries: Entry count
3022  *
3023  * Return: None
3024  */
3025 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3026 					 hal_ring_handle_t hal_ring_hdl,
3027 					 uint32_t num_entries)
3028 {
3029 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3030 }
3031 
3032 /**
3033  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3034  *					 32 byte descriptor starting at
3035  *					 64 byte offset
3036  * @hal_soc_hdl: HAL SOC handle
3037  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3038  * @num_entries: Entry count
3039  *
3040  * Return: None
3041  */
3042 static inline
3043 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3044 					hal_ring_handle_t hal_ring_hdl,
3045 					uint32_t num_entries)
3046 {
3047 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3048 						  num_entries);
3049 }
3050 #else
3051 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3052 					 hal_ring_handle_t hal_ring_hdl,
3053 					 uint32_t num_entries)
3054 {
3055 	return NULL;
3056 }
3057 
3058 static inline
3059 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3060 					hal_ring_handle_t hal_ring_hdl,
3061 					uint32_t num_entries)
3062 {
3063 	return NULL;
3064 }
3065 #endif
3066 
3067 #ifdef QCA_ENH_V3_STATS_SUPPORT
3068 /**
3069  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3070  * @pdev: DP_PDEV handle
3071  *
3072  * Return:void
3073  */
3074 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3075 
3076 /**
3077  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3078  * @pdev: DP_PDEV handle
3079  *
3080  * Return:void
3081  */
3082 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3083 
3084 /**
3085  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3086  * @pdev: DP_PDEV handle
3087  *
3088  * Return:void
3089  */
3090 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3091 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3092 
3093 /**
3094  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3095  * @soc_hdl: soc handle
3096  * @pdev_id: id of dp_pdev handle
3097  * @tid_stats: Pointer for cdp_tid_stats_intf
3098  *
3099  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3100  */
3101 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3102 				 struct cdp_tid_stats_intf *tid_stats);
3103 
3104 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3105 
3106 /**
3107  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3108  * @vdev: DP vdev handle
3109  *
3110  * Return: struct cdp_vdev pointer
3111  */
3112 static inline
3113 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3114 {
3115 	return (struct cdp_vdev *)vdev;
3116 }
3117 
3118 /**
3119  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3120  * @pdev: DP pdev handle
3121  *
3122  * Return: struct cdp_pdev pointer
3123  */
3124 static inline
3125 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3126 {
3127 	return (struct cdp_pdev *)pdev;
3128 }
3129 
3130 /**
3131  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3132  * @psoc: DP psoc handle
3133  *
3134  * Return: struct cdp_soc pointer
3135  */
3136 static inline
3137 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3138 {
3139 	return (struct cdp_soc *)psoc;
3140 }
3141 
3142 /**
3143  * dp_soc_to_cdp_soc_t() - typecast dp psoc to
3144  * ol txrx soc handle
3145  * @psoc: DP psoc handle
3146  *
3147  * Return: struct cdp_soc_t pointer
3148  */
3149 static inline
3150 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
3151 {
3152 	return (struct cdp_soc_t *)psoc;
3153 }
3154 
3155 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
3156 /**
3157  * dp_rx_flow_update_fse_stats() - Update a flow's statistics
3158  * @pdev: pdev handle
3159  * @flow_id: flow index (truncated hash) in the Rx FST
3160  *
3161  * Return: Success when flow statistcs is updated, error on failure
3162  */
3163 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3164 				    struct cdp_rx_flow_info *rx_flow_info,
3165 				    struct cdp_flow_stats *stats);
3166 
3167 /**
3168  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3169  * @pdev: pdev handle
3170  * @rx_flow_info: DP flow parameters
3171  *
3172  * Return: Success when flow is deleted, error on failure
3173  */
3174 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3175 				   struct cdp_rx_flow_info *rx_flow_info);
3176 
3177 /**
3178  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3179  * @pdev: DP pdev instance
3180  * @rx_flow_info: DP flow parameters
3181  *
3182  * Return: Success when flow is added, no-memory or already exists on error
3183  */
3184 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3185 				struct cdp_rx_flow_info *rx_flow_info);
3186 
3187 /**
3188  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3189  * @soc: SoC handle
3190  * @pdev: Pdev handle
3191  *
3192  * Return: Handle to flow search table entry
3193  */
3194 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3195 
3196 /**
3197  * dp_rx_fst_detach() - De-initialize Rx FST
3198  * @soc: SoC handle
3199  * @pdev: Pdev handle
3200  *
3201  * Return: None
3202  */
3203 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3204 
3205 /**
3206  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3207  * @soc: SoC handle
3208  * @pdev: Pdev handle
3209  *
3210  * Return: Success when fst parameters are programmed in FW, error otherwise
3211  */
3212 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3213 					struct dp_pdev *pdev);
3214 
3215 /** dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3216  * @pdev: pdev handle
3217  * @flow_id: flow index (truncated hash) in the Rx FST
3218  *
3219  * Return: Success when flow statistcs is updated, error on failure
3220  */
3221 QDF_STATUS
3222 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3223 
3224 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3225 
3226 /**
3227  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3228  * @soc: SoC handle
3229  * @pdev: Pdev handle
3230  *
3231  * Return: Handle to flow search table entry
3232  */
3233 static inline
3234 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3235 {
3236 	return QDF_STATUS_SUCCESS;
3237 }
3238 
3239 /**
3240  * dp_rx_fst_detach() - De-initialize Rx FST
3241  * @soc: SoC handle
3242  * @pdev: Pdev handle
3243  *
3244  * Return: None
3245  */
3246 static inline
3247 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
3248 {
3249 }
3250 #endif
3251 
3252 /**
3253  * dp_vdev_get_ref() - API to take a reference for VDEV object
3254  *
3255  * @soc		: core DP soc context
3256  * @vdev	: DP vdev
3257  * @mod_id	: module id
3258  *
3259  * Return:	QDF_STATUS_SUCCESS if reference held successfully
3260  *		else QDF_STATUS_E_INVAL
3261  */
3262 static inline
3263 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
3264 			   enum dp_mod_id mod_id)
3265 {
3266 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
3267 		return QDF_STATUS_E_INVAL;
3268 
3269 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
3270 
3271 	return QDF_STATUS_SUCCESS;
3272 }
3273 
3274 /**
3275  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
3276  * @soc: core DP soc context
3277  * @vdev_id: vdev id from vdev object can be retrieved
3278  * @mod_id: module id which is requesting the reference
3279  *
3280  * Return: struct dp_vdev*: Pointer to DP vdev object
3281  */
3282 static inline struct dp_vdev *
3283 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
3284 		      enum dp_mod_id mod_id)
3285 {
3286 	struct dp_vdev *vdev = NULL;
3287 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3288 		return NULL;
3289 
3290 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3291 	vdev = soc->vdev_id_map[vdev_id];
3292 
3293 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
3294 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3295 		return NULL;
3296 	}
3297 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3298 
3299 	return vdev;
3300 }
3301 
3302 /**
3303  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
3304  * @soc: core DP soc context
3305  * @pdev_id: pdev id from pdev object can be retrieved
3306  *
3307  * Return: struct dp_pdev*: Pointer to DP pdev object
3308  */
3309 static inline struct dp_pdev *
3310 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
3311 				   uint8_t pdev_id)
3312 {
3313 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
3314 		return NULL;
3315 
3316 	return soc->pdev_list[pdev_id];
3317 }
3318 
3319 /*
3320  * dp_rx_tid_update_wifi3() – Update receive TID state
3321  * @peer: Datapath peer handle
3322  * @tid: TID
3323  * @ba_window_size: BlockAck window size
3324  * @start_seq: Starting sequence number
3325  * @bar_update: BAR update triggered
3326  *
3327  * Return: QDF_STATUS code
3328  */
3329 QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
3330 					 ba_window_size, uint32_t start_seq,
3331 					 bool bar_update);
3332 
3333 /**
3334  * dp_get_peer_mac_list(): function to get peer mac list of vdev
3335  * @soc: Datapath soc handle
3336  * @vdev_id: vdev id
3337  * @newmac: Table of the clients mac
3338  * @mac_cnt: No. of MACs required
3339  * @limit: Limit the number of clients
3340  *
3341  * return: no of clients
3342  */
3343 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
3344 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
3345 			      u_int16_t mac_cnt, bool limit);
3346 
3347 /*
3348  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
3349  *				       DBS check
3350  * @soc: DP SoC context
3351  * @max_mac_rings: Pointer to variable for No of MAC rings
3352  *
3353  * Return: None
3354  */
3355 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
3356 				     int *max_mac_rings);
3357 
3358 
3359 #if defined(WLAN_SUPPORT_RX_FISA)
3360 void dp_rx_dump_fisa_table(struct dp_soc *soc);
3361 
3362 /**
3363  * dp_print_fisa_stats() - Print FISA stats
3364  * @soc: DP soc handle
3365  *
3366  * Return: None
3367  */
3368 void dp_print_fisa_stats(struct dp_soc *soc);
3369 
3370 /*
3371  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
3372  * @soc:		DP SoC context
3373  * @num_entries:	Number of flow search entries
3374  * @cmem_ba_lo:		CMEM base address low
3375  * @cmem_ba_hi:		CMEM base address high
3376  *
3377  * Return: None
3378  */
3379 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3380 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
3381 
3382 void
3383 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
3384 #else
3385 static inline void
3386 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3387 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
3388 {
3389 }
3390 
3391 static inline void
3392 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
3393 {
3394 }
3395 
3396 static inline void dp_print_fisa_stats(struct dp_soc *soc)
3397 {
3398 }
3399 #endif /* WLAN_SUPPORT_RX_FISA */
3400 
3401 #ifdef MAX_ALLOC_PAGE_SIZE
3402 /**
3403  * dp_set_page_size() - Set the max page size for hw link desc.
3404  * For MCL the page size is set to OS defined value and for WIN
3405  * the page size is set to the max_alloc_size cfg ini
3406  * param.
3407  * This is to ensure that WIN gets contiguous memory allocations
3408  * as per requirement.
3409  * @pages: link desc page handle
3410  * @max_alloc_size: max_alloc_size
3411  *
3412  * Return: None
3413  */
3414 static inline
3415 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3416 			  uint32_t max_alloc_size)
3417 {
3418 	pages->page_size = qdf_page_size;
3419 }
3420 
3421 #else
3422 static inline
3423 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3424 			  uint32_t max_alloc_size)
3425 {
3426 	pages->page_size = max_alloc_size;
3427 }
3428 #endif /* MAX_ALLOC_PAGE_SIZE */
3429 
3430 /**
3431  * dp_history_get_next_index() - get the next entry to record an entry
3432  *				 in the history.
3433  * @curr_idx: Current index where the last entry is written.
3434  * @max_entries: Max number of entries in the history
3435  *
3436  * This function assumes that the max number os entries is a power of 2.
3437  *
3438  * Returns: The index where the next entry is to be written.
3439  */
3440 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
3441 						 uint32_t max_entries)
3442 {
3443 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
3444 
3445 	return idx & (max_entries - 1);
3446 }
3447 
3448 /**
3449  * dp_rx_skip_tlvs() - Skip TLVs len + L2 hdr_offset, save in nbuf->cb
3450  * @nbuf: nbuf cb to be updated
3451  * @l2_hdr_offset: l2_hdr_offset
3452  *
3453  * Return: None
3454  */
3455 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
3456 
3457 #ifndef FEATURE_WDS
3458 static inline void
3459 dp_hmwds_ast_add_notify(struct dp_peer *peer,
3460 			uint8_t *mac_addr,
3461 			enum cdp_txrx_ast_entry_type type,
3462 			QDF_STATUS err,
3463 			bool is_peer_map)
3464 {
3465 }
3466 #endif
3467 
3468 #ifdef HTT_STATS_DEBUGFS_SUPPORT
3469 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3470  * debugfs for HTT stats
3471  * @pdev: dp pdev handle
3472  *
3473  * Return: QDF_STATUS
3474  */
3475 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
3476 
3477 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3478  * HTT stats
3479  * @pdev: dp pdev handle
3480  *
3481  * Return: none
3482  */
3483 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
3484 #else
3485 
3486 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3487  * debugfs for HTT stats
3488  * @pdev: dp pdev handle
3489  *
3490  * Return: QDF_STATUS
3491  */
3492 static inline QDF_STATUS
3493 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
3494 {
3495 	return QDF_STATUS_SUCCESS;
3496 }
3497 
3498 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3499  * HTT stats
3500  * @pdev: dp pdev handle
3501  *
3502  * Return: none
3503  */
3504 static inline void
3505 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
3506 {
3507 }
3508 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
3509 
3510 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3511 /**
3512  * dp_soc_swlm_attach() - attach the software latency manager resources
3513  * @soc: Datapath global soc handle
3514  *
3515  * Returns: QDF_STATUS
3516  */
3517 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
3518 {
3519 	return QDF_STATUS_SUCCESS;
3520 }
3521 
3522 /**
3523  * dp_soc_swlm_detach() - detach the software latency manager resources
3524  * @soc: Datapath global soc handle
3525  *
3526  * Returns: QDF_STATUS
3527  */
3528 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
3529 {
3530 	return QDF_STATUS_SUCCESS;
3531 }
3532 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3533 
3534 /**
3535  * dp_get_peer_id(): function to get peer id by mac
3536  * @soc: Datapath soc handle
3537  * @vdev_id: vdev id
3538  * @mac: Peer mac address
3539  *
3540  * return: valid peer id on success
3541  *         HTT_INVALID_PEER on failure
3542  */
3543 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
3544 
3545 #ifdef QCA_SUPPORT_WDS_EXTENDED
3546 /**
3547  * dp_wds_ext_set_peer_state(): function to set peer state
3548  * @soc: Datapath soc handle
3549  * @vdev_id: vdev id
3550  * @mac: Peer mac address
3551  * @rx: rx function pointer
3552  *
3553  * return: QDF_STATUS_SUCCESS on success
3554  *         QDF_STATUS_E_INVAL if peer is not found
3555  *         QDF_STATUS_E_ALREADY if rx is already set/unset
3556  */
3557 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
3558 				  uint8_t vdev_id,
3559 				  uint8_t *mac,
3560 				  ol_txrx_rx_fp rx,
3561 				  ol_osif_peer_handle osif_peer);
3562 #endif /* QCA_SUPPORT_WDS_EXTENDED */
3563 
3564 #ifdef DP_MEM_PRE_ALLOC
3565 
3566 /**
3567  * dp_context_alloc_mem() - allocate memory for DP context
3568  * @soc: datapath soc handle
3569  * @ctxt_type: DP context type
3570  * @ctxt_size: DP context size
3571  *
3572  * Return: DP context address
3573  */
3574 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3575 			   size_t ctxt_size);
3576 
3577 /**
3578  * dp_context_free_mem() - Free memory of DP context
3579  * @soc: datapath soc handle
3580  * @ctxt_type: DP context type
3581  * @vaddr: Address of context memory
3582  *
3583  * Return: None
3584  */
3585 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3586 			 void *vaddr);
3587 
3588 /**
3589  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
3590  * @soc: datapath soc handle
3591  * @desc_type: memory request source type
3592  * @pages: multi page information storage
3593  * @element_size: each element size
3594  * @element_num: total number of elements should be allocated
3595  * @memctxt: memory context
3596  * @cacheable: coherent memory or cacheable memory
3597  *
3598  * This function is a wrapper for memory allocation over multiple
3599  * pages, if dp prealloc method is registered, then will try prealloc
3600  * firstly. if prealloc failed, fall back to regular way over
3601  * qdf_mem_multi_pages_alloc().
3602  *
3603  * Return: None
3604  */
3605 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3606 				   enum dp_desc_type desc_type,
3607 				   struct qdf_mem_multi_page_t *pages,
3608 				   size_t element_size,
3609 				   uint32_t element_num,
3610 				   qdf_dma_context_t memctxt,
3611 				   bool cacheable);
3612 
3613 /**
3614  * dp_desc_multi_pages_mem_free() - free multiple pages memory
3615  * @soc: datapath soc handle
3616  * @desc_type: memory request source type
3617  * @pages: multi page information storage
3618  * @memctxt: memory context
3619  * @cacheable: coherent memory or cacheable memory
3620  *
3621  * This function is a wrapper for multiple pages memory free,
3622  * if memory is got from prealloc pool, put it back to pool.
3623  * otherwise free by qdf_mem_multi_pages_free().
3624  *
3625  * Return: None
3626  */
3627 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3628 				  enum dp_desc_type desc_type,
3629 				  struct qdf_mem_multi_page_t *pages,
3630 				  qdf_dma_context_t memctxt,
3631 				  bool cacheable);
3632 
3633 #else
3634 static inline
3635 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3636 			   size_t ctxt_size)
3637 {
3638 	return qdf_mem_malloc(ctxt_size);
3639 }
3640 
3641 static inline
3642 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3643 			 void *vaddr)
3644 {
3645 	qdf_mem_free(vaddr);
3646 }
3647 
3648 static inline
3649 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3650 				   enum dp_desc_type desc_type,
3651 				   struct qdf_mem_multi_page_t *pages,
3652 				   size_t element_size,
3653 				   uint32_t element_num,
3654 				   qdf_dma_context_t memctxt,
3655 				   bool cacheable)
3656 {
3657 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
3658 				  element_num, memctxt, cacheable);
3659 }
3660 
3661 static inline
3662 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3663 				  enum dp_desc_type desc_type,
3664 				  struct qdf_mem_multi_page_t *pages,
3665 				  qdf_dma_context_t memctxt,
3666 				  bool cacheable)
3667 {
3668 	qdf_mem_multi_pages_free(soc->osdev, pages,
3669 				 memctxt, cacheable);
3670 }
3671 #endif
3672 
3673 /**
3674  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
3675  *					  history.
3676  * @index: atomic index
3677  * @num_entries_per_slot: Number of entries per slot
3678  * @allocated: is allocated or not
3679  * @entry: pointers to array of records
3680  */
3681 struct dp_frag_history_opaque_atomic {
3682 	qdf_atomic_t index;
3683 	uint16_t num_entries_per_slot;
3684 	uint16_t allocated;
3685 	void *entry[0];
3686 };
3687 
3688 static inline QDF_STATUS
3689 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
3690 			   uint32_t max_slots, uint32_t max_entries_per_slot,
3691 			   uint32_t entry_size,
3692 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
3693 {
3694 	struct dp_frag_history_opaque_atomic *history =
3695 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3696 	size_t alloc_size = max_entries_per_slot * entry_size;
3697 	int i;
3698 
3699 	for (i = 0; i < max_slots; i++) {
3700 		if (attempt_prealloc)
3701 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
3702 								 alloc_size);
3703 		else
3704 			history->entry[i] = qdf_mem_malloc(alloc_size);
3705 
3706 		if (!history->entry[i])
3707 			goto exit;
3708 	}
3709 
3710 	qdf_atomic_init(&history->index);
3711 	history->allocated = 1;
3712 	history->num_entries_per_slot = max_entries_per_slot;
3713 
3714 	return QDF_STATUS_SUCCESS;
3715 exit:
3716 	for (i = i - 1; i >= 0; i--) {
3717 		if (attempt_prealloc)
3718 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3719 		else
3720 			qdf_mem_free(history->entry[i]);
3721 	}
3722 
3723 	return QDF_STATUS_E_NOMEM;
3724 }
3725 
3726 static inline
3727 void dp_soc_frag_history_detach(struct dp_soc *soc,
3728 				void *history_hdl, uint32_t max_slots,
3729 				bool attempt_prealloc,
3730 				enum dp_ctxt_type ctxt_type)
3731 {
3732 	struct dp_frag_history_opaque_atomic *history =
3733 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3734 	int i;
3735 
3736 	for (i = 0; i < max_slots; i++) {
3737 		if (attempt_prealloc)
3738 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3739 		else
3740 			qdf_mem_free(history->entry[i]);
3741 	}
3742 
3743 	history->allocated = 0;
3744 }
3745 
3746 /**
3747  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
3748  *					entry in a fragmented history with
3749  *					index being atomic.
3750  * @curr_idx: address of the current index where the last entry was written
3751  * @next_idx: pointer to update the next index
3752  * @slot: pointer to update the history slot to be selected
3753  * @slot_shift: BITwise shift mask for slot (in index)
3754  * @max_entries_per_slot: Max number of entries in a slot of history
3755  * @max_entries: Total number of entries in the history (sum of all slots)
3756  *
3757  * This function assumes that the "max_entries_per_slot" and "max_entries"
3758  * are a power-of-2.
3759  *
3760  * Return: None
3761  */
3762 static inline void
3763 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
3764 				 uint16_t *slot, uint32_t slot_shift,
3765 				 uint32_t max_entries_per_slot,
3766 				 uint32_t max_entries)
3767 {
3768 	uint32_t idx;
3769 
3770 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
3771 
3772 	*slot = idx >> slot_shift;
3773 	*next_idx = idx & (max_entries_per_slot - 1);
3774 }
3775 
3776 #ifdef FEATURE_RUNTIME_PM
3777 /**
3778  * dp_runtime_get() - Get dp runtime refcount
3779  * @soc: Datapath soc handle
3780  *
3781  * Get dp runtime refcount by increment of an atomic variable, which can block
3782  * dp runtime resume to wait to flush pending tx by runtime suspend.
3783  *
3784  * Return: Current refcount
3785  */
3786 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3787 {
3788 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
3789 }
3790 
3791 /**
3792  * dp_runtime_put() - Return dp runtime refcount
3793  * @soc: Datapath soc handle
3794  *
3795  * Return dp runtime refcount by decrement of an atomic variable, allow dp
3796  * runtime resume finish.
3797  *
3798  * Return: Current refcount
3799  */
3800 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3801 {
3802 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
3803 }
3804 
3805 /**
3806  * dp_runtime_get_refcount() - Get dp runtime refcount
3807  * @soc: Datapath soc handle
3808  *
3809  * Get dp runtime refcount by returning an atomic variable
3810  *
3811  * Return: Current refcount
3812  */
3813 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
3814 {
3815 	return qdf_atomic_read(&soc->dp_runtime_refcount);
3816 }
3817 
3818 /**
3819  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
3820  * @soc: Datapath soc handle
3821  *
3822  * Return: QDF_STATUS
3823  */
3824 static inline void dp_runtime_init(struct dp_soc *soc)
3825 {
3826 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
3827 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
3828 	qdf_atomic_init(&soc->dp_runtime_refcount);
3829 }
3830 
3831 /**
3832  * dp_runtime_deinit() - Deinit DP related runtime PM clients
3833  *
3834  * Return: None
3835  */
3836 static inline void dp_runtime_deinit(void)
3837 {
3838 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
3839 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
3840 }
3841 
3842 /**
3843  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
3844  * @soc: Datapath soc handle
3845  *
3846  * Return: None
3847  */
3848 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3849 {
3850 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
3851 
3852 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
3853 }
3854 #else
3855 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3856 {
3857 	return 0;
3858 }
3859 
3860 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3861 {
3862 	return 0;
3863 }
3864 
3865 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
3866 {
3867 	return QDF_STATUS_SUCCESS;
3868 }
3869 
3870 static inline void dp_runtime_deinit(void)
3871 {
3872 }
3873 
3874 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3875 {
3876 }
3877 #endif
3878 
3879 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
3880 {
3881 	if (soc->cdp_soc.ol_ops->get_con_mode)
3882 		return soc->cdp_soc.ol_ops->get_con_mode();
3883 
3884 	return QDF_GLOBAL_MAX_MODE;
3885 }
3886 
3887 /*
3888  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
3889  *				processing
3890  * @pdev: Datapath PDEV handle
3891  *
3892  */
3893 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
3894 
3895 /*
3896  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
3897  *				processing
3898  * @pdev: Datapath PDEV handle
3899  *
3900  * Return: QDF_STATUS_SUCCESS: Success
3901  *         QDF_STATUS_E_NOMEM: Error
3902  */
3903 
3904 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
3905 
3906 /**
3907  * dp_peer_flush_frags() - Flush all fragments for a particular
3908  *  peer
3909  * @soc_hdl - data path soc handle
3910  * @vdev_id - vdev id
3911  * @peer_addr - peer mac address
3912  *
3913  * Return: None
3914  */
3915 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3916 			 uint8_t *peer_mac);
3917 
3918 /**
3919  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
3920  * @soc: pointer to dp_soc handle
3921  *
3922  * Return:
3923  */
3924 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
3925 
3926 /**
3927  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
3928  * @soc_hdl: soc handle
3929  * @soc_stats: buffer to hold the values
3930  *
3931  * Return: QDF_STATUS_SUCCESS: Success
3932  *         QDF_STATUS_E_FAILURE: Error
3933  */
3934 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
3935 				 struct cdp_soc_stats *soc_stats);
3936 
3937 /**
3938  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
3939  * @soc: soc handle
3940  * @vdev_id: id of vdev handle
3941  * @peer_mac: mac of DP_PEER handle
3942  * @delay_stats: pointer to delay stats array
3943  *
3944  * Return: QDF_STATUS_SUCCESS: Success
3945  *         QDF_STATUS_E_FAILURE: Error
3946  */
3947 QDF_STATUS
3948 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3949 			     uint8_t *peer_mac,
3950 			     struct cdp_delay_tid_stats *delay_stats);
3951 
3952 /**
3953  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
3954  * @soc: soc handle
3955  * @pdev_id: id of pdev handle
3956  * @vdev_id: id of vdev handle
3957  * @peer_mac: mac of DP_PEER handle
3958  * @tid_stats: pointer to jitter stats array
3959  *
3960  * Return: QDF_STATUS_SUCCESS: Success
3961  *         QDF_STATUS_E_FAILURE: Error
3962  */
3963 QDF_STATUS
3964 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3965 			      uint8_t vdev_id, uint8_t *peer_mac,
3966 			      struct cdp_peer_tid_stats *tid_stats);
3967 
3968 /* dp_peer_get_tx_capture_stats - to get peer Tx Capture stats
3969  * @soc_hdl: soc handle
3970  * @vdev_id: id of vdev handle
3971  * @peer_mac: mac of DP_PEER handle
3972  * @stats: pointer to peer tx capture stats
3973  *
3974  * Return: QDF_STATUS_SUCCESS: Success
3975  *         QDF_STATUS_E_FAILURE: Error
3976  */
3977 QDF_STATUS
3978 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
3979 			     uint8_t vdev_id, uint8_t *peer_mac,
3980 			     struct cdp_peer_tx_capture_stats *stats);
3981 
3982 /* dp_pdev_get_tx_capture_stats - to get pdev Tx Capture stats
3983  * @soc_hdl: soc handle
3984  * @pdev_id: id of pdev handle
3985  * @stats: pointer to pdev tx capture stats
3986  *
3987  * Return: QDF_STATUS_SUCCESS: Success
3988  *         QDF_STATUS_E_FAILURE: Error
3989  */
3990 QDF_STATUS
3991 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3992 			     struct cdp_pdev_tx_capture_stats *stats);
3993 
3994 #ifdef HW_TX_DELAY_STATS_ENABLE
3995 /*
3996  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
3997  *  is enabled for vdev
3998  * @vdev: dp vdev
3999  *
4000  * Return: true if tx delay stats is enabled for vdev else false
4001  */
4002 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4003 {
4004 	return vdev->hw_tx_delay_stats_enabled;
4005 }
4006 
4007 /*
4008  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
4009  *  for pdev
4010  * @soc: dp soc
4011  *
4012  * Return: None
4013  */
4014 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4015 
4016 /**
4017  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4018  * @soc: soc handle
4019  *
4020  * Return: None
4021  */
4022 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4023 #else
4024 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4025 {
4026 	return 0;
4027 }
4028 
4029 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4030 {
4031 }
4032 
4033 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4034 {
4035 }
4036 #endif
4037 
4038 static inline void
4039 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4040 {
4041 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4042 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4043 			      LRO_IPV4_SEED_ARR_SZ));
4044 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4045 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4046 			      LRO_IPV6_SEED_ARR_SZ));
4047 }
4048 
4049 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
4050 /*
4051  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4052  * @soc_hdl: soc handle
4053  * @pdev_id: id of pdev handle
4054  * @stats: pointer to pdev telemetry stats
4055  *
4056  * Return: QDF_STATUS_SUCCESS: Success
4057  *         QDF_STATUS_E_FAILURE: Error
4058  */
4059 QDF_STATUS
4060 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4061 			    struct cdp_pdev_telemetry_stats *stats);
4062 
4063 /*
4064  * dp_get_peer_telemetry_stats- API to get peer telemetry stats
4065  * @soc_hdl: soc handle
4066  * @addr: peer mac
4067  * @stats: pointer to peer telemetry stats
4068  *
4069  * Return: QDF_STATUS_SUCCESS: Success
4070  *         QDF_STATUS_E_FAILURE: Error
4071  */
4072 QDF_STATUS
4073 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4074 			    struct cdp_peer_telemetry_stats *stats);
4075 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
4076 
4077 #ifdef CONNECTIVITY_PKTLOG
4078 /*
4079  * dp_tx_send_pktlog() - send tx packet log
4080  * @soc: soc handle
4081  * @pdev: pdev handle
4082  * @tx_desc: TX software descriptor
4083  * @nbuf: nbuf
4084  * @status: status of tx packet
4085  *
4086  * This function is used to send tx packet for logging
4087  *
4088  * Return: None
4089  *
4090  */
4091 static inline
4092 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4093 		       struct dp_tx_desc_s *tx_desc,
4094 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4095 {
4096 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4097 
4098 	if (qdf_unlikely(packetdump_cb) &&
4099 	    dp_tx_frm_std == tx_desc->frm_type) {
4100 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4101 			      QDF_NBUF_CB_TX_VDEV_CTX(nbuf),
4102 			      nbuf, status, QDF_TX_DATA_PKT);
4103 	}
4104 }
4105 
4106 /*
4107  * dp_rx_send_pktlog() - send rx packet log
4108  * @soc: soc handle
4109  * @pdev: pdev handle
4110  * @nbuf: nbuf
4111  * @status: status of rx packet
4112  *
4113  * This function is used to send rx packet for logging
4114  *
4115  * Return: None
4116  *
4117  */
4118 static inline
4119 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4120 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4121 {
4122 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4123 
4124 	if (qdf_unlikely(packetdump_cb)) {
4125 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4126 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4127 			      nbuf, status, QDF_RX_DATA_PKT);
4128 	}
4129 }
4130 
4131 /*
4132  * dp_rx_err_send_pktlog() - send rx error packet log
4133  * @soc: soc handle
4134  * @pdev: pdev handle
4135  * @mpdu_desc_info: MPDU descriptor info
4136  * @nbuf: nbuf
4137  * @status: status of rx packet
4138  * @set_pktlen: weither to set packet length
4139  *
4140  * This API should only be called when we have not removed
4141  * Rx TLV from head, and head is pointing to rx_tlv
4142  *
4143  * This function is used to send rx packet from error path
4144  * for logging for which rx packet tlv is not removed.
4145  *
4146  * Return: None
4147  *
4148  */
4149 static inline
4150 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4151 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4152 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4153 			   bool set_pktlen)
4154 {
4155 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4156 	qdf_size_t skip_size;
4157 	uint16_t msdu_len, nbuf_len;
4158 	uint8_t *rx_tlv_hdr;
4159 	struct hal_rx_msdu_metadata msdu_metadata;
4160 
4161 	if (qdf_unlikely(packetdump_cb)) {
4162 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
4163 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
4164 							  rx_tlv_hdr);
4165 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
4166 					 &msdu_metadata);
4167 
4168 		if (mpdu_desc_info->bar_frame ||
4169 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
4170 			skip_size = soc->rx_pkt_tlv_size;
4171 		else
4172 			skip_size = soc->rx_pkt_tlv_size +
4173 					msdu_metadata.l3_hdr_pad;
4174 
4175 		if (set_pktlen) {
4176 			msdu_len = nbuf_len + skip_size;
4177 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
4178 					    (uint16_t)RX_DATA_BUFFER_SIZE));
4179 		}
4180 
4181 		qdf_nbuf_pull_head(nbuf, skip_size);
4182 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4183 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4184 			      nbuf, status, QDF_RX_DATA_PKT);
4185 		qdf_nbuf_push_head(nbuf, skip_size);
4186 	}
4187 }
4188 
4189 #else
4190 static inline
4191 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4192 		       struct dp_tx_desc_s *tx_desc,
4193 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4194 {
4195 }
4196 
4197 static inline
4198 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4199 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4200 {
4201 }
4202 
4203 static inline
4204 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4205 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4206 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4207 			   bool set_pktlen)
4208 {
4209 }
4210 #endif
4211 
4212 /*
4213  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
4214  * @soc  : Data path soc handle
4215  * @pdev : PDEV handle
4216  *
4217  * return: None
4218  */
4219 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
4220 #endif /* #ifndef _DP_INTERNAL_H_ */
4221