xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/dp_internal.h (revision 2888b71da71bce103343119fa1b31f4a0cee07c8)
1 /*
2  * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #ifndef _DP_INTERNAL_H_
21 #define _DP_INTERNAL_H_
22 
23 #include "dp_types.h"
24 #include "dp_htt.h"
25 
26 #define RX_BUFFER_SIZE_PKTLOG_LITE 1024
27 
28 #define DP_PEER_WDS_COUNT_INVALID UINT_MAX
29 
30 #define DP_BLOCKMEM_SIZE 4096
31 
32 /* Alignment for consistent memory for DP rings*/
33 #define DP_RING_BASE_ALIGN 32
34 
35 #define DP_RSSI_INVAL 0x80
36 #define DP_RSSI_AVG_WEIGHT 2
37 /*
38  * Formula to derive avg_rssi is taken from wifi2.o firmware
39  */
40 #define DP_GET_AVG_RSSI(avg_rssi, last_rssi) \
41 	(((avg_rssi) - (((uint8_t)(avg_rssi)) >> DP_RSSI_AVG_WEIGHT)) \
42 	+ ((((uint8_t)(last_rssi)) >> DP_RSSI_AVG_WEIGHT)))
43 
44 /* Macro For NYSM value received in VHT TLV */
45 #define VHT_SGI_NYSM 3
46 
47 #define INVALID_WBM_RING_NUM 0xF
48 
49 /* struct htt_dbgfs_cfg - structure to maintain required htt data
50  * @msg_word: htt msg sent to upper layer
51  * @m: qdf debugfs file pointer
52  */
53 struct htt_dbgfs_cfg {
54 	uint32_t *msg_word;
55 	qdf_debugfs_file_t m;
56 };
57 
58 /* Cookie MSB bits assigned for different use case.
59  * Note: User can't use last 3 bits, as it is reserved for pdev_id.
60  * If in future number of pdev are more than 3.
61  */
62 /* Reserve for default case */
63 #define DBG_STATS_COOKIE_DEFAULT 0x0
64 
65 /* Reserve for DP Stats: 3rd bit */
66 #define DBG_STATS_COOKIE_DP_STATS BIT(3)
67 
68 /* Reserve for HTT Stats debugfs support: 4th bit */
69 #define DBG_STATS_COOKIE_HTT_DBGFS BIT(4)
70 
71 /*Reserve for HTT Stats debugfs support: 5th bit */
72 #define DBG_SYSFS_STATS_COOKIE BIT(5)
73 
74 /**
75  * Bitmap of HTT PPDU TLV types for Default mode
76  */
77 #define HTT_PPDU_DEFAULT_TLV_BITMAP \
78 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
79 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
80 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
81 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
82 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
83 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
84 
85 /* PPDU STATS CFG */
86 #define DP_PPDU_STATS_CFG_ALL 0xFFFF
87 
88 /* PPDU stats mask sent to FW to enable enhanced stats */
89 #define DP_PPDU_STATS_CFG_ENH_STATS \
90 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
91 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
92 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
93 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
94 
95 /* PPDU stats mask sent to FW to support debug sniffer feature */
96 #define DP_PPDU_STATS_CFG_SNIFFER \
97 	(HTT_PPDU_DEFAULT_TLV_BITMAP) | \
98 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV) | \
99 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV) | \
100 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
101 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
102 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
103 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
104 	(1 << HTT_PPDU_STATS_USR_COMPLTN_FLUSH_TLV) | \
105 	(1 << HTT_PPDU_STATS_USR_COMMON_ARRAY_TLV) | \
106 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
107 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
108 
109 /* PPDU stats mask sent to FW to support BPR feature*/
110 #define DP_PPDU_STATS_CFG_BPR \
111 	(1 << HTT_PPDU_STATS_TX_MGMTCTRL_PAYLOAD_TLV) | \
112 	(1 << HTT_PPDU_STATS_USERS_INFO_TLV)
113 
114 /* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
115 #define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
116 				   DP_PPDU_STATS_CFG_ENH_STATS)
117 /* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
118 #define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
119 				      DP_PPDU_TXLITE_STATS_BITMASK_CFG)
120 
121 /**
122  * Bitmap of HTT PPDU delayed ba TLV types for Default mode
123  */
124 #define HTT_PPDU_DELAYED_BA_TLV_BITMAP \
125 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
126 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
127 	(1 << HTT_PPDU_STATS_USR_RATE_TLV)
128 
129 /**
130  * Bitmap of HTT PPDU TLV types for Delayed BA
131  */
132 #define HTT_PPDU_STATUS_TLV_BITMAP \
133 	(1 << HTT_PPDU_STATS_COMMON_TLV) | \
134 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV)
135 
136 /**
137  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 64
138  */
139 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_64 \
140 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
141 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
142 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
143 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
144 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
145 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
146 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_64_TLV) | \
147 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_64_TLV))
148 
149 /**
150  * Bitmap of HTT PPDU TLV types for Sniffer mode bitmap 256
151  */
152 #define HTT_PPDU_SNIFFER_AMPDU_TLV_BITMAP_256 \
153 	((1 << HTT_PPDU_STATS_COMMON_TLV) | \
154 	(1 << HTT_PPDU_STATS_USR_COMMON_TLV) | \
155 	(1 << HTT_PPDU_STATS_USR_RATE_TLV) | \
156 	(1 << HTT_PPDU_STATS_SCH_CMD_STATUS_TLV) | \
157 	(1 << HTT_PPDU_STATS_USR_COMPLTN_COMMON_TLV) | \
158 	(1 << HTT_PPDU_STATS_USR_COMPLTN_ACK_BA_STATUS_TLV) | \
159 	(1 << HTT_PPDU_STATS_USR_COMPLTN_BA_BITMAP_256_TLV) | \
160 	(1 << HTT_PPDU_STATS_USR_MPDU_ENQ_BITMAP_256_TLV))
161 
162 static const enum cdp_packet_type hal_2_dp_pkt_type_map[HAL_DOT11_MAX] = {
163 	[HAL_DOT11A] = DOT11_A,
164 	[HAL_DOT11B] = DOT11_B,
165 	[HAL_DOT11N_MM] = DOT11_N,
166 	[HAL_DOT11AC] = DOT11_AC,
167 	[HAL_DOT11AX] = DOT11_AX,
168 	[HAL_DOT11BA] = DOT11_MAX,
169 #ifdef WLAN_FEATURE_11BE
170 	[HAL_DOT11BE] = DOT11_BE,
171 #else
172 	[HAL_DOT11BE] = DOT11_MAX,
173 #endif
174 	[HAL_DOT11AZ] = DOT11_MAX,
175 	[HAL_DOT11N_GF] = DOT11_MAX,
176 };
177 
178 #ifdef WLAN_FEATURE_11BE
179 /**
180  * dp_get_mcs_array_index_by_pkt_type_mcs () - get the destination mcs index
181 					       in array
182  * @pkt_type: host SW pkt type
183  * @mcs: mcs value for TX/RX rate
184  *
185  * Return: succeeded - valid index in mcs array
186 	   fail - same value as MCS_MAX
187  */
188 static inline uint8_t
189 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
190 {
191 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
192 
193 	switch (pkt_type) {
194 	case DOT11_A:
195 		dst_mcs_idx =
196 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
197 		break;
198 	case DOT11_B:
199 		dst_mcs_idx =
200 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
201 		break;
202 	case DOT11_N:
203 		dst_mcs_idx =
204 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
205 		break;
206 	case DOT11_AC:
207 		dst_mcs_idx =
208 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
209 		break;
210 	case DOT11_AX:
211 		dst_mcs_idx =
212 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
213 		break;
214 	case DOT11_BE:
215 		dst_mcs_idx =
216 			mcs >= MAX_MCS_11BE ? (MAX_MCS - 1) : mcs;
217 		break;
218 	default:
219 		break;
220 	}
221 
222 	return dst_mcs_idx;
223 }
224 #else
225 static inline uint8_t
226 dp_get_mcs_array_index_by_pkt_type_mcs(uint32_t pkt_type, uint32_t mcs)
227 {
228 	uint8_t dst_mcs_idx = MCS_INVALID_ARRAY_INDEX;
229 
230 	switch (pkt_type) {
231 	case DOT11_A:
232 		dst_mcs_idx =
233 			mcs >= MAX_MCS_11A ? (MAX_MCS - 1) : mcs;
234 		break;
235 	case DOT11_B:
236 		dst_mcs_idx =
237 			mcs >= MAX_MCS_11B ? (MAX_MCS - 1) : mcs;
238 		break;
239 	case DOT11_N:
240 		dst_mcs_idx =
241 			mcs >= MAX_MCS_11N ? (MAX_MCS - 1) : mcs;
242 		break;
243 	case DOT11_AC:
244 		dst_mcs_idx =
245 			mcs >= MAX_MCS_11AC ? (MAX_MCS - 1) : mcs;
246 		break;
247 	case DOT11_AX:
248 		dst_mcs_idx =
249 			mcs >= MAX_MCS_11AX ? (MAX_MCS - 1) : mcs;
250 		break;
251 	default:
252 		break;
253 	}
254 
255 	return dst_mcs_idx;
256 }
257 #endif
258 
259 QDF_STATUS dp_mon_soc_attach(struct dp_soc *soc);
260 QDF_STATUS dp_mon_soc_detach(struct dp_soc *soc);
261 
262 /*
263  * dp_rx_err_match_dhost() - function to check whether dest-mac is correct
264  * @eh: Ethernet header of incoming packet
265  * @vdev: dp_vdev object of the VAP on which this data packet is received
266  *
267  * Return: 1 if the destination mac is correct,
268  *         0 if this frame is not correctly destined to this VAP/MLD
269  */
270 int dp_rx_err_match_dhost(qdf_ether_header_t *eh, struct dp_vdev *vdev);
271 
272 #ifdef MONITOR_MODULARIZED_ENABLE
273 static inline bool dp_monitor_modularized_enable(void)
274 {
275 	return TRUE;
276 }
277 
278 static inline QDF_STATUS
279 dp_mon_soc_attach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
280 
281 static inline QDF_STATUS
282 dp_mon_soc_detach_wrapper(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; }
283 #else
284 static inline bool dp_monitor_modularized_enable(void)
285 {
286 	return FALSE;
287 }
288 
289 static inline QDF_STATUS dp_mon_soc_attach_wrapper(struct dp_soc *soc)
290 {
291 	return dp_mon_soc_attach(soc);
292 }
293 
294 static inline QDF_STATUS dp_mon_soc_detach_wrapper(struct dp_soc *soc)
295 {
296 	return dp_mon_soc_detach(soc);
297 }
298 #endif
299 
300 #ifndef WIFI_MONITOR_SUPPORT
301 #define MON_BUF_MIN_ENTRIES 64
302 
303 static inline QDF_STATUS dp_monitor_pdev_attach(struct dp_pdev *pdev)
304 {
305 	return QDF_STATUS_SUCCESS;
306 }
307 
308 static inline QDF_STATUS dp_monitor_pdev_detach(struct dp_pdev *pdev)
309 {
310 	return QDF_STATUS_SUCCESS;
311 }
312 
313 static inline QDF_STATUS dp_monitor_vdev_attach(struct dp_vdev *vdev)
314 {
315 	return QDF_STATUS_E_FAILURE;
316 }
317 
318 static inline QDF_STATUS dp_monitor_vdev_detach(struct dp_vdev *vdev)
319 {
320 	return QDF_STATUS_E_FAILURE;
321 }
322 
323 static inline QDF_STATUS dp_monitor_peer_attach(struct dp_soc *soc,
324 						struct dp_peer *peer)
325 {
326 	return QDF_STATUS_SUCCESS;
327 }
328 
329 static inline QDF_STATUS dp_monitor_peer_detach(struct dp_soc *soc,
330 						struct dp_peer *peer)
331 {
332 	return QDF_STATUS_E_FAILURE;
333 }
334 
335 static inline struct cdp_peer_rate_stats_ctx*
336 dp_monitor_peer_get_peerstats_ctx(struct dp_soc *soc, struct dp_peer *peer)
337 {
338 	return NULL;
339 }
340 
341 static inline
342 void dp_monitor_peer_reset_stats(struct dp_soc *soc, struct dp_peer *peer)
343 {
344 }
345 
346 static inline
347 void dp_monitor_peer_get_stats(struct dp_soc *soc, struct dp_peer *peer,
348 			       void *arg, enum cdp_stat_update_type type)
349 {
350 }
351 
352 static inline
353 void dp_monitor_invalid_peer_update_pdev_stats(struct dp_soc *soc,
354 					       struct dp_pdev *pdev)
355 {
356 }
357 
358 static inline
359 QDF_STATUS dp_monitor_peer_get_stats_param(struct dp_soc *soc,
360 					   struct dp_peer *peer,
361 					   enum cdp_peer_stats_type type,
362 					   cdp_peer_stats_param_t *buf)
363 {
364 	return QDF_STATUS_E_FAILURE;
365 }
366 
367 static inline QDF_STATUS dp_monitor_pdev_init(struct dp_pdev *pdev)
368 {
369 	return QDF_STATUS_SUCCESS;
370 }
371 
372 static inline QDF_STATUS dp_monitor_pdev_deinit(struct dp_pdev *pdev)
373 {
374 	return QDF_STATUS_SUCCESS;
375 }
376 
377 static inline QDF_STATUS dp_monitor_soc_cfg_init(struct dp_soc *soc)
378 {
379 	return QDF_STATUS_SUCCESS;
380 }
381 
382 static inline QDF_STATUS dp_monitor_config_debug_sniffer(struct dp_pdev *pdev,
383 							 int val)
384 {
385 	return QDF_STATUS_E_FAILURE;
386 }
387 
388 static inline void dp_monitor_flush_rings(struct dp_soc *soc)
389 {
390 }
391 
392 static inline QDF_STATUS dp_monitor_htt_srng_setup(struct dp_soc *soc,
393 						   struct dp_pdev *pdev,
394 						   int mac_id,
395 						   int mac_for_pdev)
396 {
397 	return QDF_STATUS_SUCCESS;
398 }
399 
400 static inline void dp_monitor_service_mon_rings(struct dp_soc *soc,
401 						uint32_t quota)
402 {
403 }
404 
405 static inline
406 uint32_t dp_monitor_process(struct dp_soc *soc, struct dp_intr *int_ctx,
407 			    uint32_t mac_id, uint32_t quota)
408 {
409 	return 0;
410 }
411 
412 static inline
413 uint32_t dp_monitor_drop_packets_for_mac(struct dp_pdev *pdev,
414 					 uint32_t mac_id, uint32_t quota)
415 {
416 	return 0;
417 }
418 
419 static inline void dp_monitor_peer_tx_init(struct dp_pdev *pdev,
420 					   struct dp_peer *peer)
421 {
422 }
423 
424 static inline void dp_monitor_peer_tx_cleanup(struct dp_vdev *vdev,
425 					      struct dp_peer *peer)
426 {
427 }
428 
429 static inline
430 void dp_monitor_peer_tid_peer_id_update(struct dp_soc *soc,
431 					struct dp_peer *peer,
432 					uint16_t peer_id)
433 {
434 }
435 
436 static inline void dp_monitor_tx_ppdu_stats_attach(struct dp_pdev *pdev)
437 {
438 }
439 
440 static inline void dp_monitor_tx_ppdu_stats_detach(struct dp_pdev *pdev)
441 {
442 }
443 
444 static inline
445 QDF_STATUS dp_monitor_tx_capture_debugfs_init(struct dp_pdev *pdev)
446 {
447 	return QDF_STATUS_SUCCESS;
448 }
449 
450 static inline void dp_monitor_peer_tx_capture_filter_check(struct dp_pdev *pdev,
451 							   struct dp_peer *peer)
452 {
453 }
454 
455 static inline
456 QDF_STATUS dp_monitor_tx_add_to_comp_queue(struct dp_soc *soc,
457 					   struct dp_tx_desc_s *desc,
458 					   struct hal_tx_completion_status *ts,
459 					   uint16_t peer_id)
460 {
461 	return QDF_STATUS_E_FAILURE;
462 }
463 
464 static inline
465 QDF_STATUS monitor_update_msdu_to_list(struct dp_soc *soc,
466 				       struct dp_pdev *pdev,
467 				       struct dp_peer *peer,
468 				       struct hal_tx_completion_status *ts,
469 				       qdf_nbuf_t netbuf)
470 {
471 	return QDF_STATUS_E_FAILURE;
472 }
473 
474 static inline bool dp_monitor_ppdu_stats_ind_handler(struct htt_soc *soc,
475 						     uint32_t *msg_word,
476 						     qdf_nbuf_t htt_t2h_msg)
477 {
478 	return true;
479 }
480 
481 static inline QDF_STATUS dp_monitor_htt_ppdu_stats_attach(struct dp_pdev *pdev)
482 {
483 	return QDF_STATUS_SUCCESS;
484 }
485 
486 static inline void dp_monitor_htt_ppdu_stats_detach(struct dp_pdev *pdev)
487 {
488 }
489 
490 static inline void dp_monitor_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
491 {
492 }
493 
494 static inline QDF_STATUS dp_monitor_config_enh_tx_capture(struct dp_pdev *pdev,
495 							  uint32_t val)
496 {
497 	return QDF_STATUS_E_INVAL;
498 }
499 
500 static inline QDF_STATUS dp_monitor_tx_peer_filter(struct dp_pdev *pdev,
501 						   struct dp_peer *peer,
502 						   uint8_t is_tx_pkt_cap_enable,
503 						   uint8_t *peer_mac)
504 {
505 	return QDF_STATUS_E_INVAL;
506 }
507 
508 static inline QDF_STATUS dp_monitor_config_enh_rx_capture(struct dp_pdev *pdev,
509 							  uint32_t val)
510 {
511 	return QDF_STATUS_E_INVAL;
512 }
513 
514 static inline
515 QDF_STATUS dp_monitor_set_bpr_enable(struct dp_pdev *pdev, uint32_t val)
516 {
517 	return QDF_STATUS_E_FAILURE;
518 }
519 
520 static inline
521 int dp_monitor_set_filter_neigh_peers(struct dp_pdev *pdev, bool val)
522 {
523 	return 0;
524 }
525 
526 static inline
527 void dp_monitor_set_atf_stats_enable(struct dp_pdev *pdev, bool value)
528 {
529 }
530 
531 static inline
532 void dp_monitor_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor)
533 {
534 }
535 
536 static inline
537 bool dp_monitor_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle)
538 {
539 	return false;
540 }
541 
542 static inline
543 bool dp_monitor_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle)
544 {
545 	return false;
546 }
547 
548 static inline
549 bool dp_monitor_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle)
550 {
551 	return false;
552 }
553 
554 static inline
555 int dp_monitor_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
556 				bool enable)
557 {
558 	return 0;
559 }
560 
561 static inline void dp_monitor_pktlogmod_exit(struct dp_pdev *pdev)
562 {
563 }
564 
565 static inline
566 QDF_STATUS dp_monitor_vdev_set_monitor_mode_buf_rings(struct dp_pdev *pdev)
567 {
568 	return QDF_STATUS_E_FAILURE;
569 }
570 
571 static inline
572 void dp_monitor_neighbour_peers_detach(struct dp_pdev *pdev)
573 {
574 }
575 
576 static inline QDF_STATUS dp_monitor_filter_neighbour_peer(struct dp_pdev *pdev,
577 							  uint8_t *rx_pkt_hdr)
578 {
579 	return QDF_STATUS_E_FAILURE;
580 }
581 
582 static inline void dp_monitor_print_pdev_tx_capture_stats(struct dp_pdev *pdev)
583 {
584 }
585 
586 static inline
587 void dp_monitor_reap_timer_init(struct dp_soc *soc)
588 {
589 }
590 
591 static inline
592 void dp_monitor_reap_timer_deinit(struct dp_soc *soc)
593 {
594 }
595 
596 static inline
597 bool dp_monitor_reap_timer_start(struct dp_soc *soc,
598 				 enum cdp_mon_reap_source source)
599 {
600 	return false;
601 }
602 
603 static inline
604 bool dp_monitor_reap_timer_stop(struct dp_soc *soc,
605 				enum cdp_mon_reap_source source)
606 {
607 	return false;
608 }
609 
610 static inline
611 void dp_monitor_vdev_timer_init(struct dp_soc *soc)
612 {
613 }
614 
615 static inline
616 void dp_monitor_vdev_timer_deinit(struct dp_soc *soc)
617 {
618 }
619 
620 static inline
621 void dp_monitor_vdev_timer_start(struct dp_soc *soc)
622 {
623 }
624 
625 static inline
626 bool dp_monitor_vdev_timer_stop(struct dp_soc *soc)
627 {
628 	return false;
629 }
630 
631 static inline struct qdf_mem_multi_page_t*
632 dp_monitor_get_link_desc_pages(struct dp_soc *soc, uint32_t mac_id)
633 {
634 	return NULL;
635 }
636 
637 static inline uint32_t *
638 dp_monitor_get_total_link_descs(struct dp_soc *soc, uint32_t mac_id)
639 {
640 	return NULL;
641 }
642 
643 static inline QDF_STATUS dp_monitor_drop_inv_peer_pkts(struct dp_vdev *vdev)
644 {
645 	return QDF_STATUS_E_FAILURE;
646 }
647 
648 static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev)
649 {
650 	return false;
651 }
652 
653 static inline void dp_monitor_vdev_register_osif(struct dp_vdev *vdev,
654 						 struct ol_txrx_ops *txrx_ops)
655 {
656 }
657 
658 static inline bool dp_monitor_is_vdev_timer_running(struct dp_soc *soc)
659 {
660 	return false;
661 }
662 
663 static inline
664 void dp_monitor_pdev_set_mon_vdev(struct dp_vdev *vdev)
665 {
666 }
667 
668 static inline void dp_monitor_vdev_delete(struct dp_soc *soc,
669 					  struct dp_vdev *vdev)
670 {
671 }
672 
673 static inline void dp_peer_ppdu_delayed_ba_init(struct dp_peer *peer)
674 {
675 }
676 
677 static inline void dp_monitor_neighbour_peer_add_ast(struct dp_pdev *pdev,
678 						     struct dp_peer *ta_peer,
679 						     uint8_t *mac_addr,
680 						     qdf_nbuf_t nbuf,
681 						     uint32_t flags)
682 {
683 }
684 
685 static inline void
686 dp_monitor_set_chan_band(struct dp_pdev *pdev, enum reg_wifi_band chan_band)
687 {
688 }
689 
690 static inline void
691 dp_monitor_set_chan_freq(struct dp_pdev *pdev, qdf_freq_t chan_freq)
692 {
693 }
694 
695 static inline void dp_monitor_set_chan_num(struct dp_pdev *pdev, int chan_num)
696 {
697 }
698 
699 static inline bool dp_monitor_is_enable_mcopy_mode(struct dp_pdev *pdev)
700 {
701 	return false;
702 }
703 
704 static inline
705 void dp_monitor_neighbour_peer_list_remove(struct dp_pdev *pdev,
706 					   struct dp_vdev *vdev,
707 					   struct dp_neighbour_peer *peer)
708 {
709 }
710 
711 static inline bool dp_monitor_is_chan_band_known(struct dp_pdev *pdev)
712 {
713 	return false;
714 }
715 
716 static inline enum reg_wifi_band
717 dp_monitor_get_chan_band(struct dp_pdev *pdev)
718 {
719 	return 0;
720 }
721 
722 static inline int
723 dp_monitor_get_chan_num(struct dp_pdev *pdev)
724 {
725 	return 0;
726 }
727 
728 static inline qdf_freq_t
729 dp_monitor_get_chan_freq(struct dp_pdev *pdev)
730 {
731 	return 0;
732 }
733 
734 static inline void dp_monitor_get_mpdu_status(struct dp_pdev *pdev,
735 					      struct dp_soc *soc,
736 					      uint8_t *rx_tlv_hdr)
737 {
738 }
739 
740 static inline void dp_monitor_print_tx_stats(struct dp_pdev *pdev)
741 {
742 }
743 
744 static inline
745 QDF_STATUS dp_monitor_mcopy_check_deliver(struct dp_pdev *pdev,
746 					  uint16_t peer_id, uint32_t ppdu_id,
747 					  uint8_t first_msdu)
748 {
749 	return QDF_STATUS_SUCCESS;
750 }
751 
752 static inline bool dp_monitor_is_enable_tx_sniffer(struct dp_pdev *pdev)
753 {
754 	return false;
755 }
756 
757 static inline struct dp_vdev*
758 dp_monitor_get_monitor_vdev_from_pdev(struct dp_pdev *pdev)
759 {
760 	return NULL;
761 }
762 
763 static inline QDF_STATUS dp_monitor_check_com_info_ppdu_id(struct dp_pdev *pdev,
764 							   void *rx_desc)
765 {
766 	return QDF_STATUS_E_FAILURE;
767 }
768 
769 static inline struct mon_rx_status*
770 dp_monitor_get_rx_status(struct dp_pdev *pdev)
771 {
772 	return NULL;
773 }
774 
775 static inline
776 void dp_monitor_pdev_config_scan_spcl_vap(struct dp_pdev *pdev, bool val)
777 {
778 }
779 
780 static inline
781 void dp_monitor_pdev_reset_scan_spcl_vap_stats_enable(struct dp_pdev *pdev,
782 						      bool val)
783 {
784 }
785 
786 static inline QDF_STATUS
787 dp_monitor_peer_tx_capture_get_stats(struct dp_soc *soc, struct dp_peer *peer,
788 				     struct cdp_peer_tx_capture_stats *stats)
789 {
790 	return QDF_STATUS_E_FAILURE;
791 }
792 
793 static inline QDF_STATUS
794 dp_monitor_pdev_tx_capture_get_stats(struct dp_soc *soc, struct dp_pdev *pdev,
795 				     struct cdp_pdev_tx_capture_stats *stats)
796 {
797 	return QDF_STATUS_E_FAILURE;
798 }
799 
800 #ifdef DP_POWER_SAVE
801 static inline
802 void dp_monitor_pktlog_reap_pending_frames(struct dp_pdev *pdev)
803 {
804 }
805 
806 static inline
807 void dp_monitor_pktlog_start_reap_timer(struct dp_pdev *pdev)
808 {
809 }
810 #endif
811 
812 static inline bool dp_monitor_is_configured(struct dp_pdev *pdev)
813 {
814 	return false;
815 }
816 
817 static inline void
818 dp_mon_rx_hdr_length_set(struct dp_soc *soc, uint32_t *msg_word,
819 			 struct htt_rx_ring_tlv_filter *tlv_filter)
820 {
821 }
822 
823 static inline void dp_monitor_soc_init(struct dp_soc *soc)
824 {
825 }
826 
827 static inline void dp_monitor_soc_deinit(struct dp_soc *soc)
828 {
829 }
830 
831 static inline
832 QDF_STATUS dp_monitor_config_undecoded_metadata_capture(struct dp_pdev *pdev,
833 							int val)
834 {
835 	return QDF_STATUS_SUCCESS;
836 }
837 
838 static inline QDF_STATUS
839 dp_monitor_config_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
840 						      int mask1, int mask2)
841 {
842 	return QDF_STATUS_SUCCESS;
843 }
844 
845 static inline QDF_STATUS
846 dp_monitor_get_undecoded_metadata_phyrx_error_mask(struct dp_pdev *pdev,
847 						   int *mask, int *mask_cont)
848 {
849 	return QDF_STATUS_SUCCESS;
850 }
851 
852 static inline QDF_STATUS dp_monitor_soc_htt_srng_setup(struct dp_soc *soc)
853 {
854 	return QDF_STATUS_E_FAILURE;
855 }
856 
857 static inline bool dp_is_monitor_mode_using_poll(struct dp_soc *soc)
858 {
859 	return false;
860 }
861 
862 static inline
863 uint32_t dp_tx_mon_buf_refill(struct dp_intr *int_ctx)
864 {
865 	return 0;
866 }
867 
868 static inline uint32_t
869 dp_tx_mon_process(struct dp_soc *soc, struct dp_intr *int_ctx,
870 		  uint32_t mac_id, uint32_t quota)
871 {
872 	return 0;
873 }
874 
875 static inline
876 uint32_t dp_rx_mon_buf_refill(struct dp_intr *int_ctx)
877 {
878 	return 0;
879 }
880 
881 static inline bool dp_monitor_is_tx_cap_enabled(struct dp_peer *peer)
882 {
883 	return 0;
884 }
885 
886 static inline bool dp_monitor_is_rx_cap_enabled(struct dp_peer *peer)
887 {
888 	return 0;
889 }
890 
891 static inline void
892 dp_rx_mon_enable(struct dp_soc *soc, uint32_t *msg_word,
893 		 struct htt_rx_ring_tlv_filter *tlv_filter)
894 {
895 }
896 
897 static inline void
898 dp_mon_rx_packet_length_set(struct dp_soc *soc, uint32_t *msg_word,
899 			    struct htt_rx_ring_tlv_filter *tlv_filter)
900 {
901 }
902 
903 static inline void
904 dp_mon_rx_enable_mpdu_logging(struct dp_soc *soc, uint32_t *msg_word,
905 			      struct htt_rx_ring_tlv_filter *tlv_filter)
906 {
907 }
908 
909 static inline void
910 dp_mon_rx_wmask_subscribe(struct dp_soc *soc, uint32_t *msg_word,
911 			  struct htt_rx_ring_tlv_filter *tlv_filter)
912 {
913 }
914 
915 static inline
916 void dp_monitor_peer_telemetry_stats(struct dp_peer *peer,
917 				     struct cdp_peer_telemetry_stats *stats)
918 {
919 }
920 #endif
921 
922 /**
923  * cdp_soc_t_to_dp_soc() - typecast cdp_soc_t to
924  * dp soc handle
925  * @psoc: CDP psoc handle
926  *
927  * Return: struct dp_soc pointer
928  */
929 static inline
930 struct dp_soc *cdp_soc_t_to_dp_soc(struct cdp_soc_t *psoc)
931 {
932 	return (struct dp_soc *)psoc;
933 }
934 
935 #define DP_MAX_TIMER_EXEC_TIME_TICKS \
936 		(QDF_LOG_TIMESTAMP_CYCLES_PER_10_US * 100 * 20)
937 
938 /**
939  * enum timer_yield_status - yield status code used in monitor mode timer.
940  * @DP_TIMER_NO_YIELD: do not yield
941  * @DP_TIMER_WORK_DONE: yield because work is done
942  * @DP_TIMER_WORK_EXHAUST: yield because work quota is exhausted
943  * @DP_TIMER_TIME_EXHAUST: yield due to time slot exhausted
944  */
945 enum timer_yield_status {
946 	DP_TIMER_NO_YIELD,
947 	DP_TIMER_WORK_DONE,
948 	DP_TIMER_WORK_EXHAUST,
949 	DP_TIMER_TIME_EXHAUST,
950 };
951 
952 #if DP_PRINT_ENABLE
953 #include <stdarg.h>       /* va_list */
954 #include <qdf_types.h> /* qdf_vprint */
955 #include <cdp_txrx_handle.h>
956 
957 enum {
958 	/* FATAL_ERR - print only irrecoverable error messages */
959 	DP_PRINT_LEVEL_FATAL_ERR,
960 
961 	/* ERR - include non-fatal err messages */
962 	DP_PRINT_LEVEL_ERR,
963 
964 	/* WARN - include warnings */
965 	DP_PRINT_LEVEL_WARN,
966 
967 	/* INFO1 - include fundamental, infrequent events */
968 	DP_PRINT_LEVEL_INFO1,
969 
970 	/* INFO2 - include non-fundamental but infrequent events */
971 	DP_PRINT_LEVEL_INFO2,
972 };
973 
974 #define dp_print(level, fmt, ...) do { \
975 	if (level <= g_txrx_print_level) \
976 		qdf_print(fmt, ## __VA_ARGS__); \
977 while (0)
978 #define DP_PRINT(level, fmt, ...) do { \
979 	dp_print(level, "DP: " fmt, ## __VA_ARGS__); \
980 while (0)
981 #else
982 #define DP_PRINT(level, fmt, ...)
983 #endif /* DP_PRINT_ENABLE */
984 
985 #define DP_TRACE(LVL, fmt, args ...)                             \
986 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_##LVL,       \
987 		fmt, ## args)
988 
989 #ifdef WLAN_SYSFS_DP_STATS
990 void DP_PRINT_STATS(const char *fmt, ...);
991 #else /* WLAN_SYSFS_DP_STATS */
992 #ifdef DP_PRINT_NO_CONSOLE
993 /* Stat prints should not go to console or kernel logs.*/
994 #define DP_PRINT_STATS(fmt, args ...)\
995 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,       \
996 		  fmt, ## args)
997 #else
998 #define DP_PRINT_STATS(fmt, args ...)\
999 	QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_FATAL,\
1000 		  fmt, ## args)
1001 #endif
1002 #endif /* WLAN_SYSFS_DP_STATS */
1003 
1004 #define DP_STATS_INIT(_handle) \
1005 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1006 
1007 #define DP_STATS_CLR(_handle) \
1008 	qdf_mem_zero(&((_handle)->stats), sizeof((_handle)->stats))
1009 
1010 #ifndef DISABLE_DP_STATS
1011 #define DP_STATS_INC(_handle, _field, _delta) \
1012 { \
1013 	if (likely(_handle)) \
1014 		_handle->stats._field += _delta; \
1015 }
1016 
1017 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta) \
1018 { \
1019 	if (likely(_handle)) \
1020 		_handle->_field += _delta; \
1021 }
1022 
1023 #define DP_STATS_INCC(_handle, _field, _delta, _cond) \
1024 { \
1025 	if (_cond && likely(_handle)) \
1026 		_handle->stats._field += _delta; \
1027 }
1028 
1029 #define DP_STATS_DEC(_handle, _field, _delta) \
1030 { \
1031 	if (likely(_handle)) \
1032 		_handle->stats._field -= _delta; \
1033 }
1034 
1035 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta) \
1036 { \
1037 	if (likely(_handle)) \
1038 		_handle->_field -= _delta; \
1039 }
1040 
1041 #define DP_STATS_UPD(_handle, _field, _delta) \
1042 { \
1043 	if (likely(_handle)) \
1044 		_handle->stats._field = _delta; \
1045 }
1046 
1047 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1048 { \
1049 	DP_STATS_INC(_handle, _field.num, _count); \
1050 	DP_STATS_INC(_handle, _field.bytes, _bytes) \
1051 }
1052 
1053 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes) \
1054 { \
1055 	DP_PEER_STATS_FLAT_INC(_handle, _field.num, _count); \
1056 	DP_PEER_STATS_FLAT_INC(_handle, _field.bytes, _bytes) \
1057 }
1058 
1059 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1060 { \
1061 	DP_STATS_INCC(_handle, _field.num, _count, _cond); \
1062 	DP_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1063 }
1064 
1065 #define DP_STATS_AGGR(_handle_a, _handle_b, _field) \
1066 { \
1067 	_handle_a->stats._field += _handle_b->stats._field; \
1068 }
1069 
1070 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field) \
1071 { \
1072 	DP_STATS_AGGR(_handle_a, _handle_b, _field.num); \
1073 	DP_STATS_AGGR(_handle_a, _handle_b, _field.bytes);\
1074 }
1075 
1076 #define DP_STATS_UPD_STRUCT(_handle_a, _handle_b, _field) \
1077 { \
1078 	_handle_a->stats._field = _handle_b->stats._field; \
1079 }
1080 
1081 #else
1082 #define DP_STATS_INC(_handle, _field, _delta)
1083 #define DP_PEER_STATS_FLAT_INC(_handle, _field, _delta)
1084 #define DP_STATS_INCC(_handle, _field, _delta, _cond)
1085 #define DP_STATS_DEC(_handle, _field, _delta)
1086 #define DP_PEER_STATS_FLAT_DEC(_handle, _field, _delta)
1087 #define DP_STATS_UPD(_handle, _field, _delta)
1088 #define DP_STATS_INC_PKT(_handle, _field, _count, _bytes)
1089 #define DP_PEER_STATS_FLAT_INC_PKT(_handle, _field, _count, _bytes)
1090 #define DP_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond)
1091 #define DP_STATS_AGGR(_handle_a, _handle_b, _field)
1092 #define DP_STATS_AGGR_PKT(_handle_a, _handle_b, _field)
1093 #endif
1094 
1095 #define DP_PEER_PER_PKT_STATS_INC(_handle, _field, _delta) \
1096 { \
1097 	DP_STATS_INC(_handle, per_pkt_stats._field, _delta); \
1098 }
1099 
1100 #define DP_PEER_PER_PKT_STATS_INCC(_handle, _field, _delta, _cond) \
1101 { \
1102 	DP_STATS_INCC(_handle, per_pkt_stats._field, _delta, _cond); \
1103 }
1104 
1105 #define DP_PEER_PER_PKT_STATS_INC_PKT(_handle, _field, _count, _bytes) \
1106 { \
1107 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.num, _count); \
1108 	DP_PEER_PER_PKT_STATS_INC(_handle, _field.bytes, _bytes) \
1109 }
1110 
1111 #define DP_PEER_PER_PKT_STATS_INCC_PKT(_handle, _field, _count, _bytes, _cond) \
1112 { \
1113 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.num, _count, _cond); \
1114 	DP_PEER_PER_PKT_STATS_INCC(_handle, _field.bytes, _bytes, _cond) \
1115 }
1116 
1117 #ifndef QCA_ENHANCED_STATS_SUPPORT
1118 #define DP_PEER_EXTD_STATS_INC(_handle, _field, _delta) \
1119 { \
1120 	DP_STATS_INC(_handle, extd_stats._field, _delta); \
1121 }
1122 
1123 #define DP_PEER_EXTD_STATS_INCC(_handle, _field, _delta, _cond) \
1124 { \
1125 	DP_STATS_INCC(_handle, extd_stats._field, _delta, _cond); \
1126 }
1127 
1128 #define DP_PEER_EXTD_STATS_UPD(_handle, _field, _delta) \
1129 { \
1130 	DP_STATS_UPD(_handle, extd_stats._field, _delta); \
1131 }
1132 #endif
1133 
1134 #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
1135 	defined(QCA_ENHANCED_STATS_SUPPORT)
1136 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1137 { \
1138 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1139 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1140 }
1141 
1142 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1143 { \
1144 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1145 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1146 }
1147 
1148 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1149 { \
1150 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1151 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1152 }
1153 
1154 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1155 { \
1156 	if (_cond || !(_handle->hw_txrx_stats_en)) \
1157 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1158 }
1159 #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
1160 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1161 { \
1162 	if (!(_handle->hw_txrx_stats_en)) \
1163 		DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes); \
1164 }
1165 
1166 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1167 { \
1168 	if (!(_handle->hw_txrx_stats_en)) \
1169 		DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count); \
1170 }
1171 
1172 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1173 { \
1174 	if (!(_handle->hw_txrx_stats_en)) \
1175 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes); \
1176 }
1177 
1178 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1179 { \
1180 	if (!(_handle->hw_txrx_stats_en)) \
1181 		DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes); \
1182 }
1183 #else
1184 #define DP_PEER_TO_STACK_INCC_PKT(_handle, _count, _bytes, _cond) \
1185 	DP_PEER_STATS_FLAT_INC_PKT(_handle, to_stack, _count, _bytes);
1186 
1187 #define DP_PEER_TO_STACK_DECC(_handle, _count, _cond) \
1188 	DP_PEER_STATS_FLAT_DEC(_handle, to_stack.num, _count);
1189 
1190 #define DP_PEER_MC_INCC_PKT(_handle, _count, _bytes, _cond) \
1191 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.multicast, _count, _bytes);
1192 
1193 #define DP_PEER_BC_INCC_PKT(_handle, _count, _bytes, _cond) \
1194 	DP_PEER_PER_PKT_STATS_INC_PKT(_handle, rx.bcast, _count, _bytes);
1195 #endif
1196 
1197 #ifdef ENABLE_DP_HIST_STATS
1198 #define DP_HIST_INIT() \
1199 	uint32_t num_of_packets[MAX_PDEV_CNT] = {0};
1200 
1201 #define DP_HIST_PACKET_COUNT_INC(_pdev_id) \
1202 { \
1203 		++num_of_packets[_pdev_id]; \
1204 }
1205 
1206 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1207 	do {                                                              \
1208 		if (_p_cntrs == 1) {                                      \
1209 			DP_STATS_INC(_pdev,                               \
1210 				tx_comp_histogram.pkts_1, 1);             \
1211 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1212 			DP_STATS_INC(_pdev,                               \
1213 				tx_comp_histogram.pkts_2_20, 1);          \
1214 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1215 			DP_STATS_INC(_pdev,                               \
1216 				tx_comp_histogram.pkts_21_40, 1);         \
1217 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1218 			DP_STATS_INC(_pdev,                               \
1219 				tx_comp_histogram.pkts_41_60, 1);         \
1220 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1221 			DP_STATS_INC(_pdev,                               \
1222 				tx_comp_histogram.pkts_61_80, 1);         \
1223 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1224 			DP_STATS_INC(_pdev,                               \
1225 				tx_comp_histogram.pkts_81_100, 1);        \
1226 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1227 			DP_STATS_INC(_pdev,                               \
1228 				tx_comp_histogram.pkts_101_200, 1);       \
1229 		} else if (_p_cntrs > 200) {                              \
1230 			DP_STATS_INC(_pdev,                               \
1231 				tx_comp_histogram.pkts_201_plus, 1);      \
1232 		}                                                         \
1233 	} while (0)
1234 
1235 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs) \
1236 	do {                                                              \
1237 		if (_p_cntrs == 1) {                                      \
1238 			DP_STATS_INC(_pdev,                               \
1239 				rx_ind_histogram.pkts_1, 1);              \
1240 		} else if (_p_cntrs > 1 && _p_cntrs <= 20) {              \
1241 			DP_STATS_INC(_pdev,                               \
1242 				rx_ind_histogram.pkts_2_20, 1);           \
1243 		} else if (_p_cntrs > 20 && _p_cntrs <= 40) {             \
1244 			DP_STATS_INC(_pdev,                               \
1245 				rx_ind_histogram.pkts_21_40, 1);          \
1246 		} else if (_p_cntrs > 40 && _p_cntrs <= 60) {             \
1247 			DP_STATS_INC(_pdev,                               \
1248 				rx_ind_histogram.pkts_41_60, 1);          \
1249 		} else if (_p_cntrs > 60 && _p_cntrs <= 80) {             \
1250 			DP_STATS_INC(_pdev,                               \
1251 				rx_ind_histogram.pkts_61_80, 1);          \
1252 		} else if (_p_cntrs > 80 && _p_cntrs <= 100) {            \
1253 			DP_STATS_INC(_pdev,                               \
1254 				rx_ind_histogram.pkts_81_100, 1);         \
1255 		} else if (_p_cntrs > 100 && _p_cntrs <= 200) {           \
1256 			DP_STATS_INC(_pdev,                               \
1257 				rx_ind_histogram.pkts_101_200, 1);        \
1258 		} else if (_p_cntrs > 200) {                              \
1259 			DP_STATS_INC(_pdev,                               \
1260 				rx_ind_histogram.pkts_201_plus, 1);       \
1261 		}                                                         \
1262 	} while (0)
1263 
1264 #define DP_TX_HIST_STATS_PER_PDEV() \
1265 	do { \
1266 		uint8_t hist_stats = 0; \
1267 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1268 				hist_stats++) { \
1269 			DP_TX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1270 					num_of_packets[hist_stats]); \
1271 		} \
1272 	}  while (0)
1273 
1274 
1275 #define DP_RX_HIST_STATS_PER_PDEV() \
1276 	do { \
1277 		uint8_t hist_stats = 0; \
1278 		for (hist_stats = 0; hist_stats < soc->pdev_count; \
1279 				hist_stats++) { \
1280 			DP_RX_HISTOGRAM_UPDATE(soc->pdev_list[hist_stats], \
1281 					num_of_packets[hist_stats]); \
1282 		} \
1283 	}  while (0)
1284 
1285 #else
1286 #define DP_HIST_INIT()
1287 #define DP_HIST_PACKET_COUNT_INC(_pdev_id)
1288 #define DP_TX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1289 #define DP_RX_HISTOGRAM_UPDATE(_pdev, _p_cntrs)
1290 #define DP_RX_HIST_STATS_PER_PDEV()
1291 #define DP_TX_HIST_STATS_PER_PDEV()
1292 #endif /* DISABLE_DP_STATS */
1293 
1294 #define FRAME_MASK_IPV4_ARP   1
1295 #define FRAME_MASK_IPV4_DHCP  2
1296 #define FRAME_MASK_IPV4_EAPOL 4
1297 #define FRAME_MASK_IPV6_DHCP  8
1298 
1299 static inline int dp_log2_ceil(unsigned int value)
1300 {
1301 	unsigned int tmp = value;
1302 	int log2 = -1;
1303 
1304 	while (tmp) {
1305 		log2++;
1306 		tmp >>= 1;
1307 	}
1308 	if (1 << log2 != value)
1309 		log2++;
1310 	return log2;
1311 }
1312 
1313 #ifdef QCA_SUPPORT_PEER_ISOLATION
1314 #define dp_get_peer_isolation(_peer) ((_peer)->isolation)
1315 
1316 static inline void dp_set_peer_isolation(struct dp_txrx_peer *txrx_peer,
1317 					 bool val)
1318 {
1319 	txrx_peer->isolation = val;
1320 }
1321 
1322 #else
1323 #define dp_get_peer_isolation(_peer) (0)
1324 
1325 static inline void dp_set_peer_isolation(struct dp_txrx_peer *peer, bool val)
1326 {
1327 }
1328 #endif /* QCA_SUPPORT_PEER_ISOLATION */
1329 
1330 #ifdef QCA_SUPPORT_WDS_EXTENDED
1331 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1332 {
1333 	txrx_peer->wds_ext.init = 0;
1334 }
1335 #else
1336 static inline void dp_wds_ext_peer_init(struct dp_txrx_peer *txrx_peer)
1337 {
1338 }
1339 #endif /* QCA_SUPPORT_WDS_EXTENDED */
1340 
1341 #ifdef QCA_HOST2FW_RXBUF_RING
1342 static inline
1343 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1344 {
1345 	return &pdev->rx_mac_buf_ring[lmac_id];
1346 }
1347 #else
1348 static inline
1349 struct dp_srng *dp_get_rxdma_ring(struct dp_pdev *pdev, int lmac_id)
1350 {
1351 	return &pdev->soc->rx_refill_buf_ring[lmac_id];
1352 }
1353 #endif
1354 
1355 /**
1356  * The lmac ID for a particular channel band is fixed.
1357  * 2.4GHz band uses lmac_id = 1
1358  * 5GHz/6GHz band uses lmac_id=0
1359  */
1360 #define DP_INVALID_LMAC_ID	(-1)
1361 #define DP_MON_INVALID_LMAC_ID	(-1)
1362 #define DP_MAC0_LMAC_ID	0
1363 #define DP_MAC1_LMAC_ID	1
1364 
1365 #ifdef FEATURE_TSO_STATS
1366 /**
1367  * dp_init_tso_stats() - Clear tso stats
1368  * @pdev: pdev handle
1369  *
1370  * Return: None
1371  */
1372 static inline
1373 void dp_init_tso_stats(struct dp_pdev *pdev)
1374 {
1375 	if (pdev) {
1376 		qdf_mem_zero(&((pdev)->stats.tso_stats),
1377 			     sizeof((pdev)->stats.tso_stats));
1378 		qdf_atomic_init(&pdev->tso_idx);
1379 	}
1380 }
1381 
1382 /**
1383  * dp_stats_tso_segment_histogram_update() - TSO Segment Histogram
1384  * @pdev: pdev handle
1385  * @_p_cntrs: number of tso segments for a tso packet
1386  *
1387  * Return: None
1388  */
1389 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1390 					   uint8_t _p_cntrs);
1391 
1392 /**
1393  * dp_tso_segment_update() - Collect tso segment information
1394  * @pdev: pdev handle
1395  * @stats_idx: tso packet number
1396  * @idx: tso segment number
1397  * @seg: tso segment
1398  *
1399  * Return: None
1400  */
1401 void dp_tso_segment_update(struct dp_pdev *pdev,
1402 			   uint32_t stats_idx,
1403 			   uint8_t idx,
1404 			   struct qdf_tso_seg_t seg);
1405 
1406 /**
1407  * dp_tso_packet_update() - TSO Packet information
1408  * @pdev: pdev handle
1409  * @stats_idx: tso packet number
1410  * @msdu: nbuf handle
1411  * @num_segs: tso segments
1412  *
1413  * Return: None
1414  */
1415 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1416 			  qdf_nbuf_t msdu, uint16_t num_segs);
1417 
1418 /**
1419  * dp_tso_segment_stats_update() - TSO Segment stats
1420  * @pdev: pdev handle
1421  * @stats_seg: tso segment list
1422  * @stats_idx: tso packet number
1423  *
1424  * Return: None
1425  */
1426 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1427 				 struct qdf_tso_seg_elem_t *stats_seg,
1428 				 uint32_t stats_idx);
1429 
1430 /**
1431  * dp_print_tso_stats() - dump tso statistics
1432  * @soc:soc handle
1433  * @level: verbosity level
1434  *
1435  * Return: None
1436  */
1437 void dp_print_tso_stats(struct dp_soc *soc,
1438 			enum qdf_stats_verbosity_level level);
1439 
1440 /**
1441  * dp_txrx_clear_tso_stats() - clear tso stats
1442  * @soc: soc handle
1443  *
1444  * Return: None
1445  */
1446 void dp_txrx_clear_tso_stats(struct dp_soc *soc);
1447 #else
1448 static inline
1449 void dp_init_tso_stats(struct dp_pdev *pdev)
1450 {
1451 }
1452 
1453 static inline
1454 void dp_stats_tso_segment_histogram_update(struct dp_pdev *pdev,
1455 					   uint8_t _p_cntrs)
1456 {
1457 }
1458 
1459 static inline
1460 void dp_tso_segment_update(struct dp_pdev *pdev,
1461 			   uint32_t stats_idx,
1462 			   uint32_t idx,
1463 			   struct qdf_tso_seg_t seg)
1464 {
1465 }
1466 
1467 static inline
1468 void dp_tso_packet_update(struct dp_pdev *pdev, uint32_t stats_idx,
1469 			  qdf_nbuf_t msdu, uint16_t num_segs)
1470 {
1471 }
1472 
1473 static inline
1474 void dp_tso_segment_stats_update(struct dp_pdev *pdev,
1475 				 struct qdf_tso_seg_elem_t *stats_seg,
1476 				 uint32_t stats_idx)
1477 {
1478 }
1479 
1480 static inline
1481 void dp_print_tso_stats(struct dp_soc *soc,
1482 			enum qdf_stats_verbosity_level level)
1483 {
1484 }
1485 
1486 static inline
1487 void dp_txrx_clear_tso_stats(struct dp_soc *soc)
1488 {
1489 }
1490 #endif /* FEATURE_TSO_STATS */
1491 
1492 /* dp_txrx_get_peer_per_pkt_stats_param() - Get peer per pkt stats param
1493  * @peer: DP peer handle
1494  * @type: Requested stats type
1495  * @ buf: Buffer to hold the value
1496  *
1497  * Return: status success/failure
1498  */
1499 QDF_STATUS dp_txrx_get_peer_per_pkt_stats_param(struct dp_peer *peer,
1500 						enum cdp_peer_stats_type type,
1501 						cdp_peer_stats_param_t *buf);
1502 
1503 /* dp_txrx_get_peer_extd_stats_param() - Get peer extd stats param
1504  * @peer: DP peer handle
1505  * @type: Requested stats type
1506  * @ buf: Buffer to hold the value
1507  *
1508  * Return: status success/failure
1509  */
1510 QDF_STATUS dp_txrx_get_peer_extd_stats_param(struct dp_peer *peer,
1511 					     enum cdp_peer_stats_type type,
1512 					     cdp_peer_stats_param_t *buf);
1513 
1514 #define DP_HTT_T2H_HP_PIPE 5
1515 /**
1516  * dp_update_pdev_stats(): Update the pdev stats
1517  * @tgtobj: pdev handle
1518  * @srcobj: vdev stats structure
1519  *
1520  * Update the pdev stats from the specified vdev stats
1521  *
1522  * return: None
1523  */
1524 void dp_update_pdev_stats(struct dp_pdev *tgtobj,
1525 			  struct cdp_vdev_stats *srcobj);
1526 
1527 /**
1528  * dp_update_vdev_ingress_stats(): Update the vdev ingress stats
1529  * @tgtobj: vdev handle
1530  *
1531  * Update the vdev ingress stats
1532  *
1533  * return: None
1534  */
1535 void dp_update_vdev_ingress_stats(struct dp_vdev *tgtobj);
1536 
1537 /**
1538  * dp_update_vdev_rate_stats() - Update the vdev rate stats
1539  * @tgtobj: tgt buffer for vdev stats
1540  * @srcobj: srcobj vdev stats
1541  *
1542  * Return: None
1543  */
1544 void dp_update_vdev_rate_stats(struct cdp_vdev_stats *tgtobj,
1545 			       struct cdp_vdev_stats *srcobj);
1546 
1547 /**
1548  * dp_update_pdev_ingress_stats(): Update the pdev ingress stats
1549  * @tgtobj: pdev handle
1550  * @srcobj: vdev stats structure
1551  *
1552  * Update the pdev ingress stats from the specified vdev stats
1553  *
1554  * return: None
1555  */
1556 void dp_update_pdev_ingress_stats(struct dp_pdev *tgtobj,
1557 				  struct dp_vdev *srcobj);
1558 
1559 /**
1560  * dp_update_vdev_stats(): Update the vdev stats
1561  * @soc: soc handle
1562  * @srcobj: DP_PEER object
1563  * @arg: point to vdev stats structure
1564  *
1565  * Update the vdev stats from the specified peer stats
1566  *
1567  * return: None
1568  */
1569 void dp_update_vdev_stats(struct dp_soc *soc,
1570 			  struct dp_peer *srcobj,
1571 			  void *arg);
1572 
1573 /**
1574  * dp_update_vdev_stats_on_peer_unmap() - Update the vdev stats on peer unmap
1575  * @vdev: DP_VDEV handle
1576  * @peer: DP_PEER handle
1577  *
1578  * Return: None
1579  */
1580 void dp_update_vdev_stats_on_peer_unmap(struct dp_vdev *vdev,
1581 					struct dp_peer *peer);
1582 
1583 #define DP_UPDATE_STATS(_tgtobj, _srcobj)	\
1584 	do {				\
1585 		uint8_t i;		\
1586 		uint8_t pream_type;	\
1587 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1588 			for (i = 0; i < MAX_MCS; i++) { \
1589 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1590 					tx.pkt_type[pream_type].mcs_count[i]); \
1591 				DP_STATS_AGGR(_tgtobj, _srcobj, \
1592 					rx.pkt_type[pream_type].mcs_count[i]); \
1593 			} \
1594 		} \
1595 		  \
1596 		for (i = 0; i < MAX_BW; i++) { \
1597 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.bw[i]); \
1598 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.bw[i]); \
1599 		} \
1600 		  \
1601 		for (i = 0; i < SS_COUNT; i++) { \
1602 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.nss[i]); \
1603 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.nss[i]); \
1604 		} \
1605 		for (i = 0; i < WME_AC_MAX; i++) { \
1606 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.wme_ac_type[i]); \
1607 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.wme_ac_type[i]); \
1608 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.excess_retries_per_ac[i]); \
1609 		\
1610 		} \
1611 		\
1612 		for (i = 0; i < MAX_GI; i++) { \
1613 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.sgi_count[i]); \
1614 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.sgi_count[i]); \
1615 		} \
1616 		\
1617 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) \
1618 			DP_STATS_AGGR(_tgtobj, _srcobj, rx.reception_type[i]); \
1619 		\
1620 		if (!wlan_cfg_get_vdev_stats_hw_offload_config(soc->wlan_cfg_ctx)) { \
1621 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.comp_pkt); \
1622 			DP_STATS_AGGR(_tgtobj, _srcobj, tx.tx_failed); \
1623 		} \
1624 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.ucast); \
1625 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.mcast); \
1626 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.bcast); \
1627 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.tx_success); \
1628 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.nawds_mcast); \
1629 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.nawds_mcast_drop); \
1630 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ofdma); \
1631 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.stbc); \
1632 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ldpc); \
1633 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.retries); \
1634 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_amsdu_cnt); \
1635 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.amsdu_cnt); \
1636 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.non_ampdu_cnt); \
1637 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.ampdu_cnt); \
1638 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, tx.dropped.fw_rem); \
1639 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_tx); \
1640 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_notx); \
1641 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason1); \
1642 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason2); \
1643 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_reason3); \
1644 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_queue_disable); \
1645 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.fw_rem_no_match); \
1646 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_threshold); \
1647 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.drop_link_desc_na); \
1648 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_drop); \
1649 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.mcast_vdev_drop); \
1650 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.invalid_rr); \
1651 		DP_STATS_AGGR(_tgtobj, _srcobj, tx.dropped.age_out); \
1652 								\
1653 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.mic_err); \
1654 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.decrypt_err); \
1655 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.fcserr); \
1656 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.pn_err); \
1657 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.oor_err); \
1658 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.jump_2k_err); \
1659 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.err.rxdma_wifi_parse_err); \
1660 		if (_srcobj->stats.rx.snr != 0) \
1661 			DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.snr); \
1662 		DP_STATS_UPD_STRUCT(_tgtobj, _srcobj, rx.rx_rate); \
1663 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_ampdu_cnt); \
1664 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.ampdu_cnt); \
1665 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.non_amsdu_cnt); \
1666 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.amsdu_cnt); \
1667 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.nawds_mcast_drop); \
1668 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.to_stack); \
1669 								\
1670 		for (i = 0; i <  CDP_MAX_RX_RINGS; i++)	\
1671 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rcvd_reo[i]); \
1672 									\
1673 		for (i = 0; i <  CDP_MAX_LMACS; i++) \
1674 			DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.rx_lmac[i]); \
1675 									\
1676 		_srcobj->stats.rx.unicast.num = \
1677 			_srcobj->stats.rx.to_stack.num - \
1678 					_srcobj->stats.rx.multicast.num; \
1679 		_srcobj->stats.rx.unicast.bytes = \
1680 			_srcobj->stats.rx.to_stack.bytes - \
1681 					_srcobj->stats.rx.multicast.bytes; \
1682 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.unicast); \
1683 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.multicast); \
1684 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.bcast); \
1685 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.raw); \
1686 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.pkts); \
1687 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.intra_bss.fail); \
1688 		DP_STATS_AGGR_PKT(_tgtobj, _srcobj, rx.mec_drop); \
1689 								  \
1690 		_tgtobj->stats.tx.last_ack_rssi =	\
1691 			_srcobj->stats.tx.last_ack_rssi; \
1692 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.multipass_rx_pkt_drop); \
1693 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.peer_unauth_rx_pkt_drop); \
1694 		DP_STATS_AGGR(_tgtobj, _srcobj, rx.policy_check_drop); \
1695 	}  while (0)
1696 
1697 #ifdef VDEV_PEER_PROTOCOL_COUNT
1698 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj) \
1699 { \
1700 	uint8_t j; \
1701 	for (j = 0; j < CDP_TRACE_MAX; j++) { \
1702 		_tgtobj->tx.protocol_trace_cnt[j].egress_cnt += \
1703 			_srcobj->tx.protocol_trace_cnt[j].egress_cnt; \
1704 		_tgtobj->tx.protocol_trace_cnt[j].ingress_cnt += \
1705 			_srcobj->tx.protocol_trace_cnt[j].ingress_cnt; \
1706 		_tgtobj->rx.protocol_trace_cnt[j].egress_cnt += \
1707 			_srcobj->rx.protocol_trace_cnt[j].egress_cnt; \
1708 		_tgtobj->rx.protocol_trace_cnt[j].ingress_cnt += \
1709 			_srcobj->rx.protocol_trace_cnt[j].ingress_cnt; \
1710 	} \
1711 }
1712 #else
1713 #define DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj)
1714 #endif
1715 
1716 #ifdef WLAN_FEATURE_11BE
1717 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj) \
1718 	do { \
1719 		uint8_t i, mu_type; \
1720 		for (i = 0; i < MAX_MCS; i++) { \
1721 			_tgtobj->tx.su_be_ppdu_cnt.mcs_count[i] += \
1722 				_srcobj->tx.su_be_ppdu_cnt.mcs_count[i]; \
1723 			_tgtobj->rx.su_be_ppdu_cnt.mcs_count[i] += \
1724 				_srcobj->rx.su_be_ppdu_cnt.mcs_count[i]; \
1725 		} \
1726 		for (mu_type = 0; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1727 			for (i = 0; i < MAX_MCS; i++) { \
1728 				_tgtobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1729 					_srcobj->tx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1730 				_tgtobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i] += \
1731 					_srcobj->rx.mu_be_ppdu_cnt[mu_type].mcs_count[i]; \
1732 			} \
1733 		} \
1734 		for (i = 0; i < MAX_PUNCTURED_MODE; i++) { \
1735 			_tgtobj->tx.punc_bw[i] += _srcobj->tx.punc_bw[i]; \
1736 			_tgtobj->rx.punc_bw[i] += _srcobj->rx.punc_bw[i]; \
1737 		} \
1738 	} while (0)
1739 #else
1740 #define DP_UPDATE_11BE_STATS(_tgtobj, _srcobj)
1741 #endif
1742 
1743 #define DP_UPDATE_PER_PKT_STATS(_tgtobj, _srcobj) \
1744 	do { \
1745 		uint8_t i; \
1746 		_tgtobj->tx.ucast.num += _srcobj->tx.ucast.num; \
1747 		_tgtobj->tx.ucast.bytes += _srcobj->tx.ucast.bytes; \
1748 		_tgtobj->tx.mcast.num += _srcobj->tx.mcast.num; \
1749 		_tgtobj->tx.mcast.bytes += _srcobj->tx.mcast.bytes; \
1750 		_tgtobj->tx.bcast.num += _srcobj->tx.bcast.num; \
1751 		_tgtobj->tx.bcast.bytes += _srcobj->tx.bcast.bytes; \
1752 		_tgtobj->tx.nawds_mcast.num += _srcobj->tx.nawds_mcast.num; \
1753 		_tgtobj->tx.nawds_mcast.bytes += \
1754 					_srcobj->tx.nawds_mcast.bytes; \
1755 		_tgtobj->tx.tx_success.num += _srcobj->tx.tx_success.num; \
1756 		_tgtobj->tx.tx_success.bytes += _srcobj->tx.tx_success.bytes; \
1757 		_tgtobj->tx.nawds_mcast_drop += _srcobj->tx.nawds_mcast_drop; \
1758 		_tgtobj->tx.ofdma += _srcobj->tx.ofdma; \
1759 		_tgtobj->tx.non_amsdu_cnt += _srcobj->tx.non_amsdu_cnt; \
1760 		_tgtobj->tx.amsdu_cnt += _srcobj->tx.amsdu_cnt; \
1761 		_tgtobj->tx.dropped.fw_rem.num += \
1762 					_srcobj->tx.dropped.fw_rem.num; \
1763 		_tgtobj->tx.dropped.fw_rem.bytes += \
1764 					_srcobj->tx.dropped.fw_rem.bytes; \
1765 		_tgtobj->tx.dropped.fw_rem_notx += \
1766 					_srcobj->tx.dropped.fw_rem_notx; \
1767 		_tgtobj->tx.dropped.fw_rem_tx += \
1768 					_srcobj->tx.dropped.fw_rem_tx; \
1769 		_tgtobj->tx.dropped.age_out += _srcobj->tx.dropped.age_out; \
1770 		_tgtobj->tx.dropped.fw_reason1 += \
1771 					_srcobj->tx.dropped.fw_reason1; \
1772 		_tgtobj->tx.dropped.fw_reason2 += \
1773 					_srcobj->tx.dropped.fw_reason2; \
1774 		_tgtobj->tx.dropped.fw_reason3 += \
1775 					_srcobj->tx.dropped.fw_reason3; \
1776 		_tgtobj->tx.dropped.fw_rem_queue_disable += \
1777 					_srcobj->tx.dropped.fw_rem_queue_disable; \
1778 		_tgtobj->tx.dropped.fw_rem_no_match += \
1779 					_srcobj->tx.dropped.fw_rem_no_match; \
1780 		_tgtobj->tx.dropped.drop_threshold += \
1781 					_srcobj->tx.dropped.drop_threshold; \
1782 		_tgtobj->tx.dropped.drop_link_desc_na += \
1783 					_srcobj->tx.dropped.drop_link_desc_na; \
1784 		_tgtobj->tx.dropped.invalid_drop += \
1785 					_srcobj->tx.dropped.invalid_drop; \
1786 		_tgtobj->tx.dropped.mcast_vdev_drop += \
1787 					_srcobj->tx.dropped.mcast_vdev_drop; \
1788 		_tgtobj->tx.dropped.invalid_rr += \
1789 					_srcobj->tx.dropped.invalid_rr; \
1790 		_tgtobj->tx.failed_retry_count += \
1791 					_srcobj->tx.failed_retry_count; \
1792 		_tgtobj->tx.retry_count += _srcobj->tx.retry_count; \
1793 		_tgtobj->tx.multiple_retry_count += \
1794 					_srcobj->tx.multiple_retry_count; \
1795 		_tgtobj->tx.tx_success_twt.num += \
1796 					_srcobj->tx.tx_success_twt.num; \
1797 		_tgtobj->tx.tx_success_twt.bytes += \
1798 					_srcobj->tx.tx_success_twt.bytes; \
1799 		_tgtobj->tx.last_tx_ts = _srcobj->tx.last_tx_ts; \
1800 		_tgtobj->tx.release_src_not_tqm += \
1801 					_srcobj->tx.release_src_not_tqm; \
1802 		for (i = 0; i < QDF_PROTO_SUBTYPE_MAX; i++) { \
1803 			_tgtobj->tx.no_ack_count[i] += \
1804 					_srcobj->tx.no_ack_count[i];\
1805 		} \
1806 		\
1807 		_tgtobj->rx.multicast.num += _srcobj->rx.multicast.num; \
1808 		_tgtobj->rx.multicast.bytes += _srcobj->rx.multicast.bytes; \
1809 		_tgtobj->rx.bcast.num += _srcobj->rx.bcast.num; \
1810 		_tgtobj->rx.bcast.bytes += _srcobj->rx.bcast.bytes; \
1811 		if (_tgtobj->rx.to_stack.num >= _tgtobj->rx.multicast.num) \
1812 			_tgtobj->rx.unicast.num = \
1813 				_tgtobj->rx.to_stack.num - _tgtobj->rx.multicast.num; \
1814 		if (_tgtobj->rx.to_stack.bytes >= _tgtobj->rx.multicast.bytes) \
1815 			_tgtobj->rx.unicast.bytes = \
1816 				_tgtobj->rx.to_stack.bytes - _tgtobj->rx.multicast.bytes; \
1817 		_tgtobj->rx.raw.num += _srcobj->rx.raw.num; \
1818 		_tgtobj->rx.raw.bytes += _srcobj->rx.raw.bytes; \
1819 		_tgtobj->rx.nawds_mcast_drop += _srcobj->rx.nawds_mcast_drop; \
1820 		_tgtobj->rx.mcast_3addr_drop += _srcobj->rx.mcast_3addr_drop; \
1821 		_tgtobj->rx.mec_drop.num += _srcobj->rx.mec_drop.num; \
1822 		_tgtobj->rx.mec_drop.bytes += _srcobj->rx.mec_drop.bytes; \
1823 		_tgtobj->rx.intra_bss.pkts.num += \
1824 					_srcobj->rx.intra_bss.pkts.num; \
1825 		_tgtobj->rx.intra_bss.pkts.bytes += \
1826 					_srcobj->rx.intra_bss.pkts.bytes; \
1827 		_tgtobj->rx.intra_bss.fail.num += \
1828 					_srcobj->rx.intra_bss.fail.num; \
1829 		_tgtobj->rx.intra_bss.fail.bytes += \
1830 					_srcobj->rx.intra_bss.fail.bytes; \
1831 		_tgtobj->rx.intra_bss.mdns_no_fwd += \
1832 					_srcobj->rx.intra_bss.mdns_no_fwd; \
1833 		_tgtobj->rx.err.mic_err += _srcobj->rx.err.mic_err; \
1834 		_tgtobj->rx.err.decrypt_err += _srcobj->rx.err.decrypt_err; \
1835 		_tgtobj->rx.err.fcserr += _srcobj->rx.err.fcserr; \
1836 		_tgtobj->rx.err.pn_err += _srcobj->rx.err.pn_err; \
1837 		_tgtobj->rx.err.oor_err += _srcobj->rx.err.oor_err; \
1838 		_tgtobj->rx.err.jump_2k_err += _srcobj->rx.err.jump_2k_err; \
1839 		_tgtobj->rx.err.rxdma_wifi_parse_err += \
1840 					_srcobj->rx.err.rxdma_wifi_parse_err; \
1841 		_tgtobj->rx.non_amsdu_cnt += _srcobj->rx.non_amsdu_cnt; \
1842 		_tgtobj->rx.amsdu_cnt += _srcobj->rx.amsdu_cnt; \
1843 		_tgtobj->rx.rx_retries += _srcobj->rx.rx_retries; \
1844 		_tgtobj->rx.multipass_rx_pkt_drop += \
1845 					_srcobj->rx.multipass_rx_pkt_drop; \
1846 		_tgtobj->rx.peer_unauth_rx_pkt_drop += \
1847 					_srcobj->rx.peer_unauth_rx_pkt_drop; \
1848 		_tgtobj->rx.policy_check_drop += \
1849 					_srcobj->rx.policy_check_drop; \
1850 		_tgtobj->rx.to_stack_twt.num += _srcobj->rx.to_stack_twt.num; \
1851 		_tgtobj->rx.to_stack_twt.bytes += \
1852 					_srcobj->rx.to_stack_twt.bytes; \
1853 		_tgtobj->rx.last_rx_ts = _srcobj->rx.last_rx_ts; \
1854 		for (i = 0; i < CDP_MAX_RX_RINGS; i++) { \
1855 			_tgtobj->rx.rcvd_reo[i].num += \
1856 					 _srcobj->rx.rcvd_reo[i].num; \
1857 			_tgtobj->rx.rcvd_reo[i].bytes += \
1858 					_srcobj->rx.rcvd_reo[i].bytes; \
1859 		} \
1860 		for (i = 0; i < CDP_MAX_LMACS; i++) { \
1861 			_tgtobj->rx.rx_lmac[i].num += \
1862 					_srcobj->rx.rx_lmac[i].num; \
1863 			_tgtobj->rx.rx_lmac[i].bytes += \
1864 					_srcobj->rx.rx_lmac[i].bytes; \
1865 		} \
1866 		DP_UPDATE_PROTOCOL_COUNT_STATS(_tgtobj, _srcobj); \
1867 	} while (0)
1868 
1869 #define DP_UPDATE_EXTD_STATS(_tgtobj, _srcobj) \
1870 	do { \
1871 		uint8_t i, pream_type, mu_type; \
1872 		_tgtobj->tx.stbc += _srcobj->tx.stbc; \
1873 		_tgtobj->tx.ldpc += _srcobj->tx.ldpc; \
1874 		_tgtobj->tx.retries += _srcobj->tx.retries; \
1875 		_tgtobj->tx.ampdu_cnt += _srcobj->tx.ampdu_cnt; \
1876 		_tgtobj->tx.non_ampdu_cnt += _srcobj->tx.non_ampdu_cnt; \
1877 		_tgtobj->tx.num_ppdu_cookie_valid += \
1878 					_srcobj->tx.num_ppdu_cookie_valid; \
1879 		_tgtobj->tx.tx_ppdus += _srcobj->tx.tx_ppdus; \
1880 		_tgtobj->tx.tx_mpdus_success += _srcobj->tx.tx_mpdus_success; \
1881 		_tgtobj->tx.tx_mpdus_tried += _srcobj->tx.tx_mpdus_tried; \
1882 		_tgtobj->tx.tx_rate = _srcobj->tx.tx_rate; \
1883 		_tgtobj->tx.last_tx_rate = _srcobj->tx.last_tx_rate; \
1884 		_tgtobj->tx.last_tx_rate_mcs = _srcobj->tx.last_tx_rate_mcs; \
1885 		_tgtobj->tx.mcast_last_tx_rate = \
1886 					_srcobj->tx.mcast_last_tx_rate; \
1887 		_tgtobj->tx.mcast_last_tx_rate_mcs = \
1888 					_srcobj->tx.mcast_last_tx_rate_mcs; \
1889 		_tgtobj->tx.rnd_avg_tx_rate = _srcobj->tx.rnd_avg_tx_rate; \
1890 		_tgtobj->tx.avg_tx_rate = _srcobj->tx.avg_tx_rate; \
1891 		_tgtobj->tx.tx_ratecode = _srcobj->tx.tx_ratecode; \
1892 		_tgtobj->tx.pream_punct_cnt += _srcobj->tx.pream_punct_cnt; \
1893 		_tgtobj->tx.ru_start = _srcobj->tx.ru_start; \
1894 		_tgtobj->tx.ru_tones = _srcobj->tx.ru_tones; \
1895 		_tgtobj->tx.last_ack_rssi = _srcobj->tx.last_ack_rssi; \
1896 		_tgtobj->tx.nss_info = _srcobj->tx.nss_info; \
1897 		_tgtobj->tx.mcs_info = _srcobj->tx.mcs_info; \
1898 		_tgtobj->tx.bw_info = _srcobj->tx.bw_info; \
1899 		_tgtobj->tx.gi_info = _srcobj->tx.gi_info; \
1900 		_tgtobj->tx.preamble_info = _srcobj->tx.preamble_info; \
1901 		_tgtobj->tx.retries_mpdu += _srcobj->tx.retries_mpdu; \
1902 		_tgtobj->tx.mpdu_success_with_retries += \
1903 					_srcobj->tx.mpdu_success_with_retries; \
1904 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1905 			for (i = 0; i < MAX_MCS; i++) \
1906 				_tgtobj->tx.pkt_type[pream_type].mcs_count[i] += \
1907 				_srcobj->tx.pkt_type[pream_type].mcs_count[i]; \
1908 		} \
1909 		for (i = 0; i < WME_AC_MAX; i++) { \
1910 			_tgtobj->tx.wme_ac_type[i] += _srcobj->tx.wme_ac_type[i]; \
1911 			_tgtobj->tx.excess_retries_per_ac[i] += \
1912 					_srcobj->tx.excess_retries_per_ac[i]; \
1913 		} \
1914 		for (i = 0; i < MAX_GI; i++) { \
1915 			_tgtobj->tx.sgi_count[i] += _srcobj->tx.sgi_count[i]; \
1916 		} \
1917 		for (i = 0; i < SS_COUNT; i++) { \
1918 			_tgtobj->tx.nss[i] += _srcobj->tx.nss[i]; \
1919 		} \
1920 		for (i = 0; i < MAX_BW; i++) { \
1921 			_tgtobj->tx.bw[i] += _srcobj->tx.bw[i]; \
1922 		} \
1923 		for (i = 0; i < MAX_RU_LOCATIONS; i++) { \
1924 			_tgtobj->tx.ru_loc[i].num_msdu += \
1925 					_srcobj->tx.ru_loc[i].num_msdu; \
1926 			_tgtobj->tx.ru_loc[i].num_mpdu += \
1927 					_srcobj->tx.ru_loc[i].num_mpdu; \
1928 			_tgtobj->tx.ru_loc[i].mpdu_tried += \
1929 					_srcobj->tx.ru_loc[i].mpdu_tried; \
1930 		} \
1931 		for (i = 0; i < MAX_TRANSMIT_TYPES; i++) { \
1932 			_tgtobj->tx.transmit_type[i].num_msdu += \
1933 					_srcobj->tx.transmit_type[i].num_msdu; \
1934 			_tgtobj->tx.transmit_type[i].num_mpdu += \
1935 					_srcobj->tx.transmit_type[i].num_mpdu; \
1936 			_tgtobj->tx.transmit_type[i].mpdu_tried += \
1937 					_srcobj->tx.transmit_type[i].mpdu_tried; \
1938 		} \
1939 		for (i = 0; i < MAX_MU_GROUP_ID; i++) { \
1940 			_tgtobj->tx.mu_group_id[i] = _srcobj->tx.mu_group_id[i]; \
1941 		} \
1942 		\
1943 		_tgtobj->rx.mpdu_cnt_fcs_ok += _srcobj->rx.mpdu_cnt_fcs_ok; \
1944 		_tgtobj->rx.mpdu_cnt_fcs_err += _srcobj->rx.mpdu_cnt_fcs_err; \
1945 		_tgtobj->rx.non_ampdu_cnt += _srcobj->rx.non_ampdu_cnt; \
1946 		_tgtobj->rx.ampdu_cnt += _srcobj->rx.ampdu_cnt; \
1947 		_tgtobj->rx.rx_mpdus += _srcobj->rx.rx_mpdus; \
1948 		_tgtobj->rx.rx_ppdus += _srcobj->rx.rx_ppdus; \
1949 		_tgtobj->rx.rx_rate = _srcobj->rx.rx_rate; \
1950 		_tgtobj->rx.last_rx_rate = _srcobj->rx.last_rx_rate; \
1951 		_tgtobj->rx.rnd_avg_rx_rate = _srcobj->rx.rnd_avg_rx_rate; \
1952 		_tgtobj->rx.avg_rx_rate = _srcobj->rx.avg_rx_rate; \
1953 		_tgtobj->rx.rx_ratecode = _srcobj->rx.rx_ratecode; \
1954 		_tgtobj->rx.avg_snr = _srcobj->rx.avg_snr; \
1955 		_tgtobj->rx.rx_snr_measured_time = \
1956 					_srcobj->rx.rx_snr_measured_time; \
1957 		_tgtobj->rx.snr = _srcobj->rx.snr; \
1958 		_tgtobj->rx.last_snr = _srcobj->rx.last_snr; \
1959 		_tgtobj->rx.nss_info = _srcobj->rx.nss_info; \
1960 		_tgtobj->rx.mcs_info = _srcobj->rx.mcs_info; \
1961 		_tgtobj->rx.bw_info = _srcobj->rx.bw_info; \
1962 		_tgtobj->rx.gi_info = _srcobj->rx.gi_info; \
1963 		_tgtobj->rx.preamble_info = _srcobj->rx.preamble_info; \
1964 		_tgtobj->rx.mpdu_retry_cnt += _srcobj->rx.mpdu_retry_cnt; \
1965 		for (pream_type = 0; pream_type < DOT11_MAX; pream_type++) { \
1966 			for (i = 0; i < MAX_MCS; i++) { \
1967 				_tgtobj->rx.pkt_type[pream_type].mcs_count[i] += \
1968 					_srcobj->rx.pkt_type[pream_type].mcs_count[i]; \
1969 			} \
1970 		} \
1971 		for (i = 0; i < WME_AC_MAX; i++) { \
1972 			_tgtobj->rx.wme_ac_type[i] += _srcobj->rx.wme_ac_type[i]; \
1973 		} \
1974 		for (i = 0; i < MAX_MCS; i++) { \
1975 			_tgtobj->rx.su_ax_ppdu_cnt.mcs_count[i] += \
1976 					_srcobj->rx.su_ax_ppdu_cnt.mcs_count[i]; \
1977 			_tgtobj->rx.rx_mpdu_cnt[i] += _srcobj->rx.rx_mpdu_cnt[i]; \
1978 		} \
1979 		for (mu_type = 0 ; mu_type < TXRX_TYPE_MU_MAX; mu_type++) { \
1980 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok += \
1981 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_ok; \
1982 			_tgtobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err += \
1983 				_srcobj->rx.rx_mu[mu_type].mpdu_cnt_fcs_err; \
1984 			for (i = 0; i < SS_COUNT; i++) \
1985 				_tgtobj->rx.rx_mu[mu_type].ppdu_nss[i] += \
1986 					_srcobj->rx.rx_mu[mu_type].ppdu_nss[i]; \
1987 			for (i = 0; i < MAX_MCS; i++) \
1988 				_tgtobj->rx.rx_mu[mu_type].ppdu.mcs_count[i] += \
1989 					_srcobj->rx.rx_mu[mu_type].ppdu.mcs_count[i]; \
1990 		} \
1991 		for (i = 0; i < MAX_RECEPTION_TYPES; i++) { \
1992 			_tgtobj->rx.reception_type[i] += \
1993 					_srcobj->rx.reception_type[i]; \
1994 			_tgtobj->rx.ppdu_cnt[i] += _srcobj->rx.ppdu_cnt[i]; \
1995 		} \
1996 		for (i = 0; i < MAX_GI; i++) { \
1997 			_tgtobj->rx.sgi_count[i] += _srcobj->rx.sgi_count[i]; \
1998 		} \
1999 		for (i = 0; i < SS_COUNT; i++) { \
2000 			_tgtobj->rx.nss[i] += _srcobj->rx.nss[i]; \
2001 			_tgtobj->rx.ppdu_nss[i] += _srcobj->rx.ppdu_nss[i]; \
2002 		} \
2003 		for (i = 0; i < MAX_BW; i++) { \
2004 			_tgtobj->rx.bw[i] += _srcobj->rx.bw[i]; \
2005 		} \
2006 		DP_UPDATE_11BE_STATS(_tgtobj, _srcobj); \
2007 	} while (0)
2008 
2009 /**
2010  * dp_peer_find_attach() - Allocates memory for peer objects
2011  * @soc: SoC handle
2012  *
2013  * Return: QDF_STATUS
2014  */
2015 QDF_STATUS dp_peer_find_attach(struct dp_soc *soc);
2016 extern void dp_peer_find_detach(struct dp_soc *soc);
2017 extern void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer);
2018 extern void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer);
2019 extern void dp_peer_find_hash_erase(struct dp_soc *soc);
2020 void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
2021 			   struct dp_peer *peer);
2022 void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev,
2023 			      struct dp_peer *peer);
2024 void dp_peer_find_id_to_obj_add(struct dp_soc *soc,
2025 				struct dp_peer *peer,
2026 				uint16_t peer_id);
2027 void dp_txrx_peer_attach_add(struct dp_soc *soc,
2028 			     struct dp_peer *peer,
2029 			     struct dp_txrx_peer *txrx_peer);
2030 void dp_peer_find_id_to_obj_remove(struct dp_soc *soc,
2031 				   uint16_t peer_id);
2032 void dp_vdev_unref_delete(struct dp_soc *soc, struct dp_vdev *vdev,
2033 			  enum dp_mod_id mod_id);
2034 
2035 /*
2036  * dp_peer_ppdu_delayed_ba_cleanup() free ppdu allocated in peer
2037  * @peer: Datapath peer
2038  *
2039  * return: void
2040  */
2041 void dp_peer_ppdu_delayed_ba_cleanup(struct dp_peer *peer);
2042 
2043 extern void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer);
2044 void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2045 void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer);
2046 
2047 #ifdef DP_PEER_EXTENDED_API
2048 /**
2049  * dp_register_peer() - Register peer into physical device
2050  * @soc_hdl - data path soc handle
2051  * @pdev_id - device instance id
2052  * @sta_desc - peer description
2053  *
2054  * Register peer into physical device
2055  *
2056  * Return: QDF_STATUS_SUCCESS registration success
2057  *         QDF_STATUS_E_FAULT peer not found
2058  */
2059 QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2060 			    struct ol_txrx_desc_type *sta_desc);
2061 
2062 /**
2063  * dp_clear_peer() - remove peer from physical device
2064  * @soc_hdl - data path soc handle
2065  * @pdev_id - device instance id
2066  * @peer_addr - peer mac address
2067  *
2068  * remove peer from physical device
2069  *
2070  * Return: QDF_STATUS_SUCCESS registration success
2071  *         QDF_STATUS_E_FAULT peer not found
2072  */
2073 QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2074 			 struct qdf_mac_addr peer_addr);
2075 
2076 /*
2077  * dp_find_peer_exist - find peer if already exists
2078  * @soc: datapath soc handle
2079  * @pdev_id: physical device instance id
2080  * @peer_mac_addr: peer mac address
2081  *
2082  * Return: true or false
2083  */
2084 bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
2085 			uint8_t *peer_addr);
2086 
2087 /*
2088  * dp_find_peer_exist_on_vdev - find if peer exists on the given vdev
2089  * @soc: datapath soc handle
2090  * @vdev_id: vdev instance id
2091  * @peer_mac_addr: peer mac address
2092  *
2093  * Return: true or false
2094  */
2095 bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2096 				uint8_t *peer_addr);
2097 
2098 /*
2099  * dp_find_peer_exist_on_other_vdev - find if peer exists
2100  * on other than the given vdev
2101  * @soc: datapath soc handle
2102  * @vdev_id: vdev instance id
2103  * @peer_mac_addr: peer mac address
2104  * @max_bssid: max number of bssids
2105  *
2106  * Return: true or false
2107  */
2108 bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl,
2109 				      uint8_t vdev_id, uint8_t *peer_addr,
2110 				      uint16_t max_bssid);
2111 
2112 /**
2113  * dp_peer_state_update() - update peer local state
2114  * @pdev - data path device instance
2115  * @peer_addr - peer mac address
2116  * @state - new peer local state
2117  *
2118  * update peer local state
2119  *
2120  * Return: QDF_STATUS_SUCCESS registration success
2121  */
2122 QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc, uint8_t *peer_mac,
2123 				enum ol_txrx_peer_state state);
2124 
2125 /**
2126  * dp_get_vdevid() - Get virtual interface id which peer registered
2127  * @soc - datapath soc handle
2128  * @peer_mac - peer mac address
2129  * @vdev_id - virtual interface id which peer registered
2130  *
2131  * Get virtual interface id which peer registered
2132  *
2133  * Return: QDF_STATUS_SUCCESS registration success
2134  */
2135 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2136 			 uint8_t *vdev_id);
2137 struct cdp_vdev *dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle,
2138 		struct qdf_mac_addr peer_addr);
2139 struct cdp_vdev *dp_get_vdev_for_peer(void *peer);
2140 uint8_t *dp_peer_get_peer_mac_addr(void *peer);
2141 
2142 /**
2143  * dp_get_peer_state() - Get local peer state
2144  * @soc - datapath soc handle
2145  * @vdev_id - vdev id
2146  * @peer_mac - peer mac addr
2147  *
2148  * Get local peer state
2149  *
2150  * Return: peer status
2151  */
2152 int dp_get_peer_state(struct cdp_soc_t *soc, uint8_t vdev_id,
2153 		      uint8_t *peer_mac);
2154 void dp_local_peer_id_pool_init(struct dp_pdev *pdev);
2155 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer);
2156 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer);
2157 /**
2158  * dp_set_peer_as_tdls_peer() - set tdls peer flag to peer
2159  * @soc_hdl: datapath soc handle
2160  * @vdev_id: vdev_id
2161  * @peer_mac: peer mac addr
2162  * @val: tdls peer flag
2163  *
2164  * Return: none
2165  */
2166 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2167 			      uint8_t *peer_mac, bool val);
2168 #else
2169 /**
2170  * dp_get_vdevid() - Get virtual interface id which peer registered
2171  * @soc - datapath soc handle
2172  * @peer_mac - peer mac address
2173  * @vdev_id - virtual interface id which peer registered
2174  *
2175  * Get virtual interface id which peer registered
2176  *
2177  * Return: QDF_STATUS_SUCCESS registration success
2178  */
2179 static inline
2180 QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac,
2181 			 uint8_t *vdev_id)
2182 {
2183 	return QDF_STATUS_E_NOSUPPORT;
2184 }
2185 
2186 static inline void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
2187 {
2188 }
2189 
2190 static inline
2191 void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
2192 {
2193 }
2194 
2195 static inline
2196 void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
2197 {
2198 }
2199 
2200 static inline
2201 void dp_set_peer_as_tdls_peer(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
2202 			      uint8_t *peer_mac, bool val)
2203 {
2204 }
2205 #endif
2206 
2207 int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc,
2208 				      uint8_t *peer_mac, uint16_t vdev_id,
2209 				      uint8_t tid,
2210 				      int status);
2211 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc,
2212 				  uint8_t *peer_mac, uint16_t vdev_id,
2213 				  uint8_t dialogtoken, uint16_t tid,
2214 				  uint16_t batimeout,
2215 				  uint16_t buffersize,
2216 				  uint16_t startseqnum);
2217 QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc,
2218 					uint8_t *peer_mac, uint16_t vdev_id,
2219 					uint8_t tid, uint8_t *dialogtoken,
2220 					uint16_t *statuscode,
2221 					uint16_t *buffersize,
2222 					uint16_t *batimeout);
2223 QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc,
2224 				 uint8_t *peer_mac,
2225 				 uint16_t vdev_id, uint8_t tid,
2226 				 uint16_t statuscode);
2227 int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2228 			   uint16_t vdev_id, int tid,
2229 			   uint16_t reasoncode);
2230 
2231 /**
2232  * dp_rx_tid_update_ba_win_size() - Update the DP tid BA window size
2233  * @soc: soc handle
2234  * @peer_mac: mac address of peer handle
2235  * @vdev_id: id of vdev handle
2236  * @tid: tid
2237  * @buffersize: BA window size
2238  *
2239  * Return: success/failure of tid update
2240  */
2241 QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc,
2242 					uint8_t *peer_mac, uint16_t vdev_id,
2243 					uint8_t tid, uint16_t buffersize);
2244 
2245 /*
2246  * dp_delba_tx_completion_wifi3() -  Handle delba tx completion
2247  *
2248  * @cdp_soc: soc handle
2249  * @vdev_id: id of the vdev handle
2250  * @peer_mac: peer mac address
2251  * @tid: Tid number
2252  * @status: Tx completion status
2253  * Indicate status of delba Tx to DP for stats update and retry
2254  * delba if tx failed.
2255  *
2256  */
2257 int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac,
2258 				 uint16_t vdev_id, uint8_t tid,
2259 				 int status);
2260 extern QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
2261 					uint32_t ba_window_size,
2262 					uint32_t start_seq);
2263 
2264 #ifdef DP_UMAC_HW_RESET_SUPPORT
2265 void dp_pause_reo_send_cmd(struct dp_soc *soc);
2266 
2267 void dp_resume_reo_send_cmd(struct dp_soc *soc);
2268 void dp_cleanup_reo_cmd_module(struct dp_soc *soc);
2269 void dp_reo_desc_freelist_destroy(struct dp_soc *soc);
2270 void dp_reset_rx_reo_tid_queue(struct dp_soc *soc, void *hw_qdesc_vaddr,
2271 			       uint32_t size);
2272 #endif
2273 
2274 extern QDF_STATUS dp_reo_send_cmd(struct dp_soc *soc,
2275 	enum hal_reo_cmd_type type, struct hal_reo_cmd_params *params,
2276 	void (*callback_fn), void *data);
2277 
2278 extern void dp_reo_cmdlist_destroy(struct dp_soc *soc);
2279 
2280 /**
2281  * dp_reo_status_ring_handler - Handler for REO Status ring
2282  * @int_ctx: pointer to DP interrupt context
2283  * @soc: DP Soc handle
2284  *
2285  * Returns: Number of descriptors reaped
2286  */
2287 uint32_t dp_reo_status_ring_handler(struct dp_intr *int_ctx,
2288 				    struct dp_soc *soc);
2289 void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
2290 			     struct cdp_vdev_stats *vdev_stats);
2291 void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2292 	union hal_reo_status *reo_status);
2293 void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
2294 		union hal_reo_status *reo_status);
2295 uint16_t dp_tx_me_send_convert_ucast(struct cdp_soc_t *soc, uint8_t vdev_id,
2296 				     qdf_nbuf_t nbuf,
2297 				     uint8_t newmac[][QDF_MAC_ADDR_SIZE],
2298 				     uint8_t new_mac_cnt, uint8_t tid,
2299 				     bool is_igmp, bool is_dms_pkt);
2300 void dp_tx_me_alloc_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2301 
2302 void dp_tx_me_free_descriptor(struct cdp_soc_t *soc, uint8_t pdev_id);
2303 QDF_STATUS dp_h2t_ext_stats_msg_send(struct dp_pdev *pdev,
2304 		uint32_t stats_type_upload_mask, uint32_t config_param_0,
2305 		uint32_t config_param_1, uint32_t config_param_2,
2306 		uint32_t config_param_3, int cookie, int cookie_msb,
2307 		uint8_t mac_id);
2308 void dp_htt_stats_print_tag(struct dp_pdev *pdev,
2309 			    uint8_t tag_type, uint32_t *tag_buf);
2310 void dp_htt_stats_copy_tag(struct dp_pdev *pdev, uint8_t tag_type, uint32_t *tag_buf);
2311 QDF_STATUS dp_h2t_3tuple_config_send(struct dp_pdev *pdev, uint32_t tuple_mask,
2312 				     uint8_t mac_id);
2313 /**
2314  * dp_rxtid_stats_cmd_cb - function pointer for peer
2315  *			   rx tid stats cmd call_back
2316  */
2317 typedef void (*dp_rxtid_stats_cmd_cb)(struct dp_soc *soc, void *cb_ctxt,
2318 				      union hal_reo_status *reo_status);
2319 int dp_peer_rxtid_stats(struct dp_peer *peer,
2320 			dp_rxtid_stats_cmd_cb dp_stats_cmd_cb,
2321 			void *cb_ctxt);
2322 #ifdef IPA_OFFLOAD
2323 void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt,
2324 				       union hal_reo_status *reo_status);
2325 int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer,
2326 				dp_rxtid_stats_cmd_cb dp_stats_cmd_cb);
2327 #endif
2328 QDF_STATUS
2329 dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2330 		      uint8_t *peer_mac, enum cdp_sec_type sec_type,
2331 		      uint32_t *rx_pn);
2332 
2333 QDF_STATUS
2334 dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id,
2335 			  uint8_t *peer_mac, enum cdp_sec_type sec_type,
2336 			  bool is_unicast);
2337 
2338 void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id);
2339 
2340 QDF_STATUS
2341 dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id,
2342 		   uint8_t *peer_mac,
2343 		   bool is_unicast, uint32_t *key);
2344 
2345 /**
2346  * dp_check_pdev_exists() - Validate pdev before use
2347  * @soc - dp soc handle
2348  * @data - pdev handle
2349  *
2350  * Return: 0 - success/invalid - failure
2351  */
2352 bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data);
2353 
2354 /**
2355  * dp_update_delay_stats() - Update delay statistics in structure
2356  *				and fill min, max and avg delay
2357  * @tstats: tid tx stats
2358  * @rstats: tid rx stats
2359  * @delay: delay in ms
2360  * @tid: tid value
2361  * @mode: type of tx delay mode
2362  * @ring id: ring number
2363  * @delay_in_us: flag to indicate whether the delay is in ms or us
2364  *
2365  * Return: none
2366  */
2367 void dp_update_delay_stats(struct cdp_tid_tx_stats *tstats,
2368 			   struct cdp_tid_rx_stats *rstats, uint32_t delay,
2369 			   uint8_t tid, uint8_t mode, uint8_t ring_id,
2370 			   bool delay_in_us);
2371 
2372 /**
2373  * dp_print_ring_stats(): Print tail and head pointer
2374  * @pdev: DP_PDEV handle
2375  *
2376  * Return:void
2377  */
2378 void dp_print_ring_stats(struct dp_pdev *pdev);
2379 
2380 /**
2381  * dp_print_pdev_cfg_params() - Print the pdev cfg parameters
2382  * @pdev_handle: DP pdev handle
2383  *
2384  * Return - void
2385  */
2386 void dp_print_pdev_cfg_params(struct dp_pdev *pdev);
2387 
2388 /**
2389  * dp_print_soc_cfg_params()- Dump soc wlan config parameters
2390  * @soc_handle: Soc handle
2391  *
2392  * Return: void
2393  */
2394 void dp_print_soc_cfg_params(struct dp_soc *soc);
2395 
2396 /**
2397  * dp_srng_get_str_from_ring_type() - Return string name for a ring
2398  * @ring_type: Ring
2399  *
2400  * Return: char const pointer
2401  */
2402 const
2403 char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type);
2404 
2405 /*
2406  * dp_txrx_path_stats() - Function to display dump stats
2407  * @soc - soc handle
2408  *
2409  * return: none
2410  */
2411 void dp_txrx_path_stats(struct dp_soc *soc);
2412 
2413 /*
2414  * dp_print_per_ring_stats(): Packet count per ring
2415  * @soc - soc handle
2416  *
2417  * Return - None
2418  */
2419 void dp_print_per_ring_stats(struct dp_soc *soc);
2420 
2421 /**
2422  * dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
2423  * @pdev: DP PDEV handle
2424  *
2425  * return: void
2426  */
2427 void dp_aggregate_pdev_stats(struct dp_pdev *pdev);
2428 
2429 /**
2430  * dp_print_rx_rates(): Print Rx rate stats
2431  * @vdev: DP_VDEV handle
2432  *
2433  * Return:void
2434  */
2435 void dp_print_rx_rates(struct dp_vdev *vdev);
2436 
2437 /**
2438  * dp_print_tx_rates(): Print tx rates
2439  * @vdev: DP_VDEV handle
2440  *
2441  * Return:void
2442  */
2443 void dp_print_tx_rates(struct dp_vdev *vdev);
2444 
2445 /**
2446  * dp_print_peer_stats():print peer stats
2447  * @peer: DP_PEER handle
2448  * @peer_stats: buffer holding peer stats
2449  *
2450  * return void
2451  */
2452 void dp_print_peer_stats(struct dp_peer *peer,
2453 			 struct cdp_peer_stats *peer_stats);
2454 
2455 /**
2456  * dp_print_pdev_tx_stats(): Print Pdev level TX stats
2457  * @pdev: DP_PDEV Handle
2458  *
2459  * Return:void
2460  */
2461 void
2462 dp_print_pdev_tx_stats(struct dp_pdev *pdev);
2463 
2464 /**
2465  * dp_print_pdev_rx_stats(): Print Pdev level RX stats
2466  * @pdev: DP_PDEV Handle
2467  *
2468  * Return: void
2469  */
2470 void
2471 dp_print_pdev_rx_stats(struct dp_pdev *pdev);
2472 
2473 /**
2474  * dp_print_soc_tx_stats(): Print SOC level  stats
2475  * @soc DP_SOC Handle
2476  *
2477  * Return: void
2478  */
2479 void dp_print_soc_tx_stats(struct dp_soc *soc);
2480 
2481 /**
2482  * dp_print_soc_interrupt_stats() - Print interrupt stats for the soc
2483  * @soc: dp_soc handle
2484  *
2485  * Return: None
2486  */
2487 void dp_print_soc_interrupt_stats(struct dp_soc *soc);
2488 
2489 #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING
2490 /**
2491  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2492  *				  for all SRNGs
2493  * @soc: DP soc handle
2494  * @srng_mask: SRNGs mask for dumping usage watermark stats
2495  *
2496  * Return: None
2497  */
2498 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask);
2499 #else
2500 /**
2501  * dp_dump_srng_high_wm_stats() - Print the ring usage high watermark stats
2502  *				  for all SRNGs
2503  * @soc: DP soc handle
2504  * @srng_mask: SRNGs mask for dumping usage watermark stats
2505  *
2506  * Return: None
2507  */
2508 static inline
2509 void dp_dump_srng_high_wm_stats(struct dp_soc *soc, uint64_t srng_mask)
2510 {
2511 }
2512 #endif
2513 
2514 /**
2515  * dp_print_soc_rx_stats: Print SOC level Rx stats
2516  * @soc: DP_SOC Handle
2517  *
2518  * Return:void
2519  */
2520 void dp_print_soc_rx_stats(struct dp_soc *soc);
2521 
2522 /**
2523  * dp_get_mac_id_for_pdev() -  Return mac corresponding to pdev for mac
2524  *
2525  * @mac_id: MAC id
2526  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2527  *
2528  * Single pdev using both MACs will operate on both MAC rings,
2529  * which is the case for MCL.
2530  * For WIN each PDEV will operate one ring, so index is zero.
2531  *
2532  */
2533 static inline int dp_get_mac_id_for_pdev(uint32_t mac_id, uint32_t pdev_id)
2534 {
2535 	if (mac_id && pdev_id) {
2536 		qdf_print("Both mac_id and pdev_id cannot be non zero");
2537 		QDF_BUG(0);
2538 		return 0;
2539 	}
2540 	return (mac_id + pdev_id);
2541 }
2542 
2543 /**
2544  * dp_get_lmac_id_for_pdev_id() -  Return lmac id corresponding to host pdev id
2545  * @soc: soc pointer
2546  * @mac_id: MAC id
2547  * @pdev_id: pdev_id corresponding to pdev, 0 for MCL
2548  *
2549  * For MCL, Single pdev using both MACs will operate on both MAC rings.
2550  *
2551  * For WIN, each PDEV will operate one ring.
2552  *
2553  */
2554 static inline int
2555 dp_get_lmac_id_for_pdev_id
2556 	(struct dp_soc *soc, uint32_t mac_id, uint32_t pdev_id)
2557 {
2558 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2559 		if (mac_id && pdev_id) {
2560 			qdf_print("Both mac_id and pdev_id cannot be non zero");
2561 			QDF_BUG(0);
2562 			return 0;
2563 		}
2564 		return (mac_id + pdev_id);
2565 	}
2566 
2567 	return soc->pdev_list[pdev_id]->lmac_id;
2568 }
2569 
2570 /**
2571  * dp_get_pdev_for_lmac_id() -  Return pdev pointer corresponding to lmac id
2572  * @soc: soc pointer
2573  * @lmac_id: LMAC id
2574  *
2575  * For MCL, Single pdev exists
2576  *
2577  * For WIN, each PDEV will operate one ring.
2578  *
2579  */
2580 static inline struct dp_pdev *
2581 	dp_get_pdev_for_lmac_id(struct dp_soc *soc, uint32_t lmac_id)
2582 {
2583 	uint8_t i = 0;
2584 
2585 	if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
2586 		i = wlan_cfg_get_pdev_idx(soc->wlan_cfg_ctx, lmac_id);
2587 		return ((i < MAX_PDEV_CNT) ? soc->pdev_list[i] : NULL);
2588 	}
2589 
2590 	/* Typically for MCL as there only 1 PDEV*/
2591 	return soc->pdev_list[0];
2592 }
2593 
2594 /**
2595  * dp_calculate_target_pdev_id_from_host_pdev_id() - Return target pdev
2596  *                                          corresponding to host pdev id
2597  * @soc: soc pointer
2598  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2599  *
2600  * returns target pdev_id for host pdev id. For WIN, this is derived through
2601  * a two step process:
2602  * 1. Get lmac_id corresponding to host pdev_id (lmac_id can change
2603  *    during mode switch)
2604  * 2. Get target pdev_id (set up during WMI ready) from lmac_id
2605  *
2606  * For MCL, return the offset-1 translated mac_id
2607  */
2608 static inline int
2609 dp_calculate_target_pdev_id_from_host_pdev_id
2610 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2611 {
2612 	struct dp_pdev *pdev;
2613 
2614 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2615 		return DP_SW2HW_MACID(mac_for_pdev);
2616 
2617 	pdev = soc->pdev_list[mac_for_pdev];
2618 
2619 	/*non-MCL case, get original target_pdev mapping*/
2620 	return wlan_cfg_get_target_pdev_id(soc->wlan_cfg_ctx, pdev->lmac_id);
2621 }
2622 
2623 /**
2624  * dp_get_target_pdev_id_for_host_pdev_id() - Return target pdev corresponding
2625  *                                         to host pdev id
2626  * @soc: soc pointer
2627  * @mac_for_pdev: pdev_id corresponding to host pdev for WIN, mac id for MCL
2628  *
2629  * returns target pdev_id for host pdev id.
2630  * For WIN, return the value stored in pdev object.
2631  * For MCL, return the offset-1 translated mac_id.
2632  */
2633 static inline int
2634 dp_get_target_pdev_id_for_host_pdev_id
2635 	(struct dp_soc *soc, uint32_t mac_for_pdev)
2636 {
2637 	struct dp_pdev *pdev;
2638 
2639 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2640 		return DP_SW2HW_MACID(mac_for_pdev);
2641 
2642 	pdev = soc->pdev_list[mac_for_pdev];
2643 
2644 	return pdev->target_pdev_id;
2645 }
2646 
2647 /**
2648  * dp_get_host_pdev_id_for_target_pdev_id() - Return host pdev corresponding
2649  *                                         to target pdev id
2650  * @soc: soc pointer
2651  * @pdev_id: pdev_id corresponding to target pdev
2652  *
2653  * returns host pdev_id for target pdev id. For WIN, this is derived through
2654  * a two step process:
2655  * 1. Get lmac_id corresponding to target pdev_id
2656  * 2. Get host pdev_id (set up during WMI ready) from lmac_id
2657  *
2658  * For MCL, return the 0-offset pdev_id
2659  */
2660 static inline int
2661 dp_get_host_pdev_id_for_target_pdev_id
2662 	(struct dp_soc *soc, uint32_t pdev_id)
2663 {
2664 	struct dp_pdev *pdev;
2665 	int lmac_id;
2666 
2667 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2668 		return DP_HW2SW_MACID(pdev_id);
2669 
2670 	/*non-MCL case, get original target_lmac mapping from target pdev*/
2671 	lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx,
2672 					  DP_HW2SW_MACID(pdev_id));
2673 
2674 	/*Get host pdev from lmac*/
2675 	pdev = dp_get_pdev_for_lmac_id(soc, lmac_id);
2676 
2677 	return pdev ? pdev->pdev_id : INVALID_PDEV_ID;
2678 }
2679 
2680 /*
2681  * dp_get_mac_id_for_mac() -  Return mac corresponding WIN and MCL mac_ids
2682  *
2683  * @soc: handle to DP soc
2684  * @mac_id: MAC id
2685  *
2686  * Single pdev using both MACs will operate on both MAC rings,
2687  * which is the case for MCL.
2688  * For WIN each PDEV will operate one ring, so index is zero.
2689  *
2690  */
2691 static inline int dp_get_mac_id_for_mac(struct dp_soc *soc, uint32_t mac_id)
2692 {
2693 	/*
2694 	 * Single pdev using both MACs will operate on both MAC rings,
2695 	 * which is the case for MCL.
2696 	 */
2697 	if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
2698 		return mac_id;
2699 
2700 	/* For WIN each PDEV will operate one ring, so index is zero. */
2701 	return 0;
2702 }
2703 
2704 /*
2705  * dp_is_subtype_data() - check if the frame subtype is data
2706  *
2707  * @frame_ctrl: Frame control field
2708  *
2709  * check the frame control field and verify if the packet
2710  * is a data packet.
2711  *
2712  * Return: true or false
2713  */
2714 static inline bool dp_is_subtype_data(uint16_t frame_ctrl)
2715 {
2716 	if (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_TYPE_MASK) ==
2717 	    QDF_IEEE80211_FC0_TYPE_DATA) &&
2718 	    (((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2719 	    QDF_IEEE80211_FC0_SUBTYPE_DATA) ||
2720 	    ((qdf_cpu_to_le16(frame_ctrl) & QDF_IEEE80211_FC0_SUBTYPE_MASK) ==
2721 	    QDF_IEEE80211_FC0_SUBTYPE_QOS))) {
2722 		return true;
2723 	}
2724 
2725 	return false;
2726 }
2727 
2728 #ifdef WDI_EVENT_ENABLE
2729 QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2730 				uint32_t stats_type_upload_mask,
2731 				uint8_t mac_id);
2732 
2733 int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2734 		       wdi_event_subscribe *event_cb_sub_handle,
2735 		       uint32_t event);
2736 
2737 int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2738 		     wdi_event_subscribe *event_cb_sub_handle,
2739 		     uint32_t event);
2740 
2741 void dp_wdi_event_handler(enum WDI_EVENT event, struct dp_soc *soc,
2742 			  void *data, u_int16_t peer_id,
2743 			  int status, u_int8_t pdev_id);
2744 
2745 int dp_wdi_event_attach(struct dp_pdev *txrx_pdev);
2746 int dp_wdi_event_detach(struct dp_pdev *txrx_pdev);
2747 
2748 static inline void
2749 dp_hif_update_pipe_callback(struct dp_soc *dp_soc,
2750 			    void *cb_context,
2751 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2752 			    uint8_t pipe_id)
2753 {
2754 	struct hif_msg_callbacks hif_pipe_callbacks;
2755 
2756 	/* TODO: Temporary change to bypass HTC connection for this new
2757 	 * HIF pipe, which will be used for packet log and other high-
2758 	 * priority HTT messages. Proper HTC connection to be added
2759 	 * later once required FW changes are available
2760 	 */
2761 	hif_pipe_callbacks.rxCompletionHandler = callback;
2762 	hif_pipe_callbacks.Context = cb_context;
2763 	hif_update_pipe_callback(dp_soc->hif_handle,
2764 		DP_HTT_T2H_HP_PIPE, &hif_pipe_callbacks);
2765 }
2766 #else
2767 static inline int dp_wdi_event_unsub(struct cdp_soc_t *soc, uint8_t pdev_id,
2768 				     wdi_event_subscribe *event_cb_sub_handle,
2769 				     uint32_t event)
2770 {
2771 	return 0;
2772 }
2773 
2774 static inline int dp_wdi_event_sub(struct cdp_soc_t *soc, uint8_t pdev_id,
2775 				   wdi_event_subscribe *event_cb_sub_handle,
2776 				   uint32_t event)
2777 {
2778 	return 0;
2779 }
2780 
2781 static inline
2782 void dp_wdi_event_handler(enum WDI_EVENT event,
2783 			  struct dp_soc *soc,
2784 			  void *data, u_int16_t peer_id,
2785 			  int status, u_int8_t pdev_id)
2786 {
2787 }
2788 
2789 static inline int dp_wdi_event_attach(struct dp_pdev *txrx_pdev)
2790 {
2791 	return 0;
2792 }
2793 
2794 static inline int dp_wdi_event_detach(struct dp_pdev *txrx_pdev)
2795 {
2796 	return 0;
2797 }
2798 
2799 static inline QDF_STATUS dp_h2t_cfg_stats_msg_send(struct dp_pdev *pdev,
2800 		uint32_t stats_type_upload_mask, uint8_t mac_id)
2801 {
2802 	return 0;
2803 }
2804 
2805 static inline void
2806 dp_hif_update_pipe_callback(struct dp_soc *dp_soc, void *cb_context,
2807 			    QDF_STATUS (*callback)(void *, qdf_nbuf_t, uint8_t),
2808 			    uint8_t pipe_id)
2809 {
2810 }
2811 #endif /* CONFIG_WIN */
2812 
2813 #ifdef VDEV_PEER_PROTOCOL_COUNT
2814 /**
2815  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2816  * @vdev: VDEV DP object
2817  * @nbuf: data packet
2818  * @peer: DP TXRX Peer object
2819  * @is_egress: whether egress or ingress
2820  * @is_rx: whether rx or tx
2821  *
2822  * This function updates the per-peer protocol counters
2823  * Return: void
2824  */
2825 void dp_vdev_peer_stats_update_protocol_cnt(struct dp_vdev *vdev,
2826 					    qdf_nbuf_t nbuf,
2827 					    struct dp_txrx_peer *txrx_peer,
2828 					    bool is_egress,
2829 					    bool is_rx);
2830 
2831 /**
2832  * dp_vdev_peer_stats_update_protocol_cnt() - update per-peer protocol counters
2833  * @soc: SOC DP object
2834  * @vdev_id: vdev_id
2835  * @nbuf: data packet
2836  * @is_egress: whether egress or ingress
2837  * @is_rx: whether rx or tx
2838  *
2839  * This function updates the per-peer protocol counters
2840  * Return: void
2841  */
2842 
2843 void dp_peer_stats_update_protocol_cnt(struct cdp_soc_t *soc,
2844 				       int8_t vdev_id,
2845 				       qdf_nbuf_t nbuf,
2846 				       bool is_egress,
2847 				       bool is_rx);
2848 
2849 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2850 					       qdf_nbuf_t nbuf);
2851 
2852 #else
2853 #define dp_vdev_peer_stats_update_protocol_cnt(vdev, nbuf, txrx_peer, \
2854 					       is_egress, is_rx)
2855 
2856 static inline
2857 void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
2858 					       qdf_nbuf_t nbuf)
2859 {
2860 }
2861 
2862 #endif
2863 
2864 #ifdef QCA_LL_TX_FLOW_CONTROL_V2
2865 void dp_tx_dump_flow_pool_info(struct cdp_soc_t *soc_hdl);
2866 
2867 /**
2868  * dp_tx_dump_flow_pool_info_compact() - dump flow pool info
2869  * @soc: DP soc context
2870  *
2871  * Return: none
2872  */
2873 void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc);
2874 int dp_tx_delete_flow_pool(struct dp_soc *soc, struct dp_tx_desc_pool_s *pool,
2875 	bool force);
2876 #else
2877 static inline void dp_tx_dump_flow_pool_info_compact(struct dp_soc *soc)
2878 {
2879 }
2880 #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
2881 
2882 #ifdef QCA_OL_DP_SRNG_LOCK_LESS_ACCESS
2883 static inline int
2884 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2885 {
2886 	return hal_srng_access_start_unlocked(soc, hal_ring_hdl);
2887 }
2888 
2889 static inline void
2890 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2891 {
2892 	hal_srng_access_end_unlocked(soc, hal_ring_hdl);
2893 }
2894 
2895 #else
2896 static inline int
2897 dp_hal_srng_access_start(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2898 {
2899 	return hal_srng_access_start(soc, hal_ring_hdl);
2900 }
2901 
2902 static inline void
2903 dp_hal_srng_access_end(hal_soc_handle_t soc, hal_ring_handle_t hal_ring_hdl)
2904 {
2905 	hal_srng_access_end(soc, hal_ring_hdl);
2906 }
2907 #endif
2908 
2909 #ifdef WLAN_FEATURE_DP_EVENT_HISTORY
2910 /**
2911  * dp_srng_access_start() - Wrapper function to log access start of a hal ring
2912  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2913  * @soc: DP Soc handle
2914  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2915  *
2916  * Return: 0 on success; error on failure
2917  */
2918 int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2919 			 hal_ring_handle_t hal_ring_hdl);
2920 
2921 /**
2922  * dp_srng_access_end() - Wrapper function to log access end of a hal ring
2923  * @int_ctx: pointer to DP interrupt context. This should not be NULL
2924  * @soc: DP Soc handle
2925  * @hal_ring: opaque pointer to the HAL Rx Error Ring, which will be serviced
2926  *
2927  * Return: void
2928  */
2929 void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
2930 			hal_ring_handle_t hal_ring_hdl);
2931 
2932 #else
2933 static inline int dp_srng_access_start(struct dp_intr *int_ctx,
2934 				       struct dp_soc *dp_soc,
2935 				       hal_ring_handle_t hal_ring_hdl)
2936 {
2937 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2938 
2939 	return dp_hal_srng_access_start(hal_soc, hal_ring_hdl);
2940 }
2941 
2942 static inline void dp_srng_access_end(struct dp_intr *int_ctx,
2943 				      struct dp_soc *dp_soc,
2944 				      hal_ring_handle_t hal_ring_hdl)
2945 {
2946 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2947 
2948 	return dp_hal_srng_access_end(hal_soc, hal_ring_hdl);
2949 }
2950 #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
2951 
2952 #ifdef QCA_CACHED_RING_DESC
2953 /**
2954  * dp_srng_dst_get_next() - Wrapper function to get next ring desc
2955  * @dp_socsoc: DP Soc handle
2956  * @hal_ring: opaque pointer to the HAL Destination Ring
2957  *
2958  * Return: HAL ring descriptor
2959  */
2960 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
2961 					 hal_ring_handle_t hal_ring_hdl)
2962 {
2963 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2964 
2965 	return hal_srng_dst_get_next_cached(hal_soc, hal_ring_hdl);
2966 }
2967 
2968 /**
2969  * dp_srng_dst_inv_cached_descs() - Wrapper function to invalidate cached
2970  * descriptors
2971  * @dp_socsoc: DP Soc handle
2972  * @hal_ring: opaque pointer to the HAL Rx Destination ring
2973  * @num_entries: Entry count
2974  *
2975  * Return: None
2976  */
2977 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
2978 						hal_ring_handle_t hal_ring_hdl,
2979 						uint32_t num_entries)
2980 {
2981 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2982 
2983 	hal_srng_dst_inv_cached_descs(hal_soc, hal_ring_hdl, num_entries);
2984 }
2985 #else
2986 static inline void *dp_srng_dst_get_next(struct dp_soc *dp_soc,
2987 					 hal_ring_handle_t hal_ring_hdl)
2988 {
2989 	hal_soc_handle_t hal_soc = dp_soc->hal_soc;
2990 
2991 	return hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
2992 }
2993 
2994 static inline void dp_srng_dst_inv_cached_descs(struct dp_soc *dp_soc,
2995 						hal_ring_handle_t hal_ring_hdl,
2996 						uint32_t num_entries)
2997 {
2998 }
2999 #endif /* QCA_CACHED_RING_DESC */
3000 
3001 #if defined(QCA_CACHED_RING_DESC) && \
3002 	(defined(QCA_DP_RX_HW_SW_NBUF_DESC_PREFETCH) || \
3003 	 defined(QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH))
3004 /**
3005  * dp_srng_dst_prefetch() - Wrapper function to prefetch descs from dest ring
3006  * @hal_soc_hdl: HAL SOC handle
3007  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3008  * @num_entries: Entry count
3009  *
3010  * Return: None
3011  */
3012 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3013 					 hal_ring_handle_t hal_ring_hdl,
3014 					 uint32_t num_entries)
3015 {
3016 	return hal_srng_dst_prefetch(hal_soc, hal_ring_hdl, num_entries);
3017 }
3018 
3019 /**
3020  * dp_srng_dst_prefetch_32_byte_desc() - Wrapper function to prefetch
3021  *					 32 byte descriptor starting at
3022  *					 64 byte offset
3023  * @hal_soc_hdl: HAL SOC handle
3024  * @hal_ring: opaque pointer to the HAL Rx Destination ring
3025  * @num_entries: Entry count
3026  *
3027  * Return: None
3028  */
3029 static inline
3030 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3031 					hal_ring_handle_t hal_ring_hdl,
3032 					uint32_t num_entries)
3033 {
3034 	return hal_srng_dst_prefetch_32_byte_desc(hal_soc, hal_ring_hdl,
3035 						  num_entries);
3036 }
3037 #else
3038 static inline void *dp_srng_dst_prefetch(hal_soc_handle_t hal_soc,
3039 					 hal_ring_handle_t hal_ring_hdl,
3040 					 uint32_t num_entries)
3041 {
3042 	return NULL;
3043 }
3044 
3045 static inline
3046 void *dp_srng_dst_prefetch_32_byte_desc(hal_soc_handle_t hal_soc,
3047 					hal_ring_handle_t hal_ring_hdl,
3048 					uint32_t num_entries)
3049 {
3050 	return NULL;
3051 }
3052 #endif
3053 
3054 #ifdef QCA_ENH_V3_STATS_SUPPORT
3055 /**
3056  * dp_pdev_print_delay_stats(): Print pdev level delay stats
3057  * @pdev: DP_PDEV handle
3058  *
3059  * Return:void
3060  */
3061 void dp_pdev_print_delay_stats(struct dp_pdev *pdev);
3062 
3063 /**
3064  * dp_pdev_print_tid_stats(): Print pdev level tid stats
3065  * @pdev: DP_PDEV handle
3066  *
3067  * Return:void
3068  */
3069 void dp_pdev_print_tid_stats(struct dp_pdev *pdev);
3070 
3071 /**
3072  * dp_pdev_print_rx_error_stats(): Print pdev level rx error stats
3073  * @pdev: DP_PDEV handle
3074  *
3075  * Return:void
3076  */
3077 void dp_pdev_print_rx_error_stats(struct dp_pdev *pdev);
3078 #endif /* QCA_ENH_V3_STATS_SUPPORT */
3079 
3080 /**
3081  * dp_pdev_get_tid_stats(): Get accumulated pdev level tid_stats
3082  * @soc_hdl: soc handle
3083  * @pdev_id: id of dp_pdev handle
3084  * @tid_stats: Pointer for cdp_tid_stats_intf
3085  *
3086  * Return: QDF_STATUS_SUCCESS or QDF_STATUS_E_INVAL
3087  */
3088 QDF_STATUS dp_pdev_get_tid_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3089 				 struct cdp_tid_stats_intf *tid_stats);
3090 
3091 void dp_soc_set_txrx_ring_map(struct dp_soc *soc);
3092 
3093 /**
3094  * dp_vdev_to_cdp_vdev() - typecast dp vdev to cdp vdev
3095  * @vdev: DP vdev handle
3096  *
3097  * Return: struct cdp_vdev pointer
3098  */
3099 static inline
3100 struct cdp_vdev *dp_vdev_to_cdp_vdev(struct dp_vdev *vdev)
3101 {
3102 	return (struct cdp_vdev *)vdev;
3103 }
3104 
3105 /**
3106  * dp_pdev_to_cdp_pdev() - typecast dp pdev to cdp pdev
3107  * @pdev: DP pdev handle
3108  *
3109  * Return: struct cdp_pdev pointer
3110  */
3111 static inline
3112 struct cdp_pdev *dp_pdev_to_cdp_pdev(struct dp_pdev *pdev)
3113 {
3114 	return (struct cdp_pdev *)pdev;
3115 }
3116 
3117 /**
3118  * dp_soc_to_cdp_soc() - typecast dp psoc to cdp psoc
3119  * @psoc: DP psoc handle
3120  *
3121  * Return: struct cdp_soc pointer
3122  */
3123 static inline
3124 struct cdp_soc *dp_soc_to_cdp_soc(struct dp_soc *psoc)
3125 {
3126 	return (struct cdp_soc *)psoc;
3127 }
3128 
3129 /**
3130  * dp_soc_to_cdp_soc_t() - typecast dp psoc to
3131  * ol txrx soc handle
3132  * @psoc: DP psoc handle
3133  *
3134  * Return: struct cdp_soc_t pointer
3135  */
3136 static inline
3137 struct cdp_soc_t *dp_soc_to_cdp_soc_t(struct dp_soc *psoc)
3138 {
3139 	return (struct cdp_soc_t *)psoc;
3140 }
3141 
3142 #if defined(WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)
3143 /**
3144  * dp_rx_flow_update_fse_stats() - Update a flow's statistics
3145  * @pdev: pdev handle
3146  * @flow_id: flow index (truncated hash) in the Rx FST
3147  *
3148  * Return: Success when flow statistcs is updated, error on failure
3149  */
3150 QDF_STATUS dp_rx_flow_get_fse_stats(struct dp_pdev *pdev,
3151 				    struct cdp_rx_flow_info *rx_flow_info,
3152 				    struct cdp_flow_stats *stats);
3153 
3154 /**
3155  * dp_rx_flow_delete_entry() - Delete a flow entry from flow search table
3156  * @pdev: pdev handle
3157  * @rx_flow_info: DP flow parameters
3158  *
3159  * Return: Success when flow is deleted, error on failure
3160  */
3161 QDF_STATUS dp_rx_flow_delete_entry(struct dp_pdev *pdev,
3162 				   struct cdp_rx_flow_info *rx_flow_info);
3163 
3164 /**
3165  * dp_rx_flow_add_entry() - Add a flow entry to flow search table
3166  * @pdev: DP pdev instance
3167  * @rx_flow_info: DP flow paramaters
3168  *
3169  * Return: Success when flow is added, no-memory or already exists on error
3170  */
3171 QDF_STATUS dp_rx_flow_add_entry(struct dp_pdev *pdev,
3172 				struct cdp_rx_flow_info *rx_flow_info);
3173 
3174 /**
3175  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3176  * @soc: SoC handle
3177  * @pdev: Pdev handle
3178  *
3179  * Return: Handle to flow search table entry
3180  */
3181 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev);
3182 
3183 /**
3184  * dp_rx_fst_detach() - De-initialize Rx FST
3185  * @soc: SoC handle
3186  * @pdev: Pdev handle
3187  *
3188  * Return: None
3189  */
3190 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev);
3191 
3192 /**
3193  * dp_rx_flow_send_fst_fw_setup() - Program FST parameters in FW/HW post-attach
3194  * @soc: SoC handle
3195  * @pdev: Pdev handle
3196  *
3197  * Return: Success when fst parameters are programmed in FW, error otherwise
3198  */
3199 QDF_STATUS dp_rx_flow_send_fst_fw_setup(struct dp_soc *soc,
3200 					struct dp_pdev *pdev);
3201 
3202 /** dp_mon_rx_update_rx_flow_tag_stats() - Update a mon flow's statistics
3203  * @pdev: pdev handle
3204  * @flow_id: flow index (truncated hash) in the Rx FST
3205  *
3206  * Return: Success when flow statistcs is updated, error on failure
3207  */
3208 QDF_STATUS
3209 dp_mon_rx_update_rx_flow_tag_stats(struct dp_pdev *pdev, uint32_t flow_id);
3210 
3211 #else /* !((WLAN_SUPPORT_RX_FLOW_TAG) || defined(WLAN_SUPPORT_RX_FISA)) */
3212 
3213 /**
3214  * dp_rx_fst_attach() - Initialize Rx FST and setup necessary parameters
3215  * @soc: SoC handle
3216  * @pdev: Pdev handle
3217  *
3218  * Return: Handle to flow search table entry
3219  */
3220 static inline
3221 QDF_STATUS dp_rx_fst_attach(struct dp_soc *soc, struct dp_pdev *pdev)
3222 {
3223 	return QDF_STATUS_SUCCESS;
3224 }
3225 
3226 /**
3227  * dp_rx_fst_detach() - De-initialize Rx FST
3228  * @soc: SoC handle
3229  * @pdev: Pdev handle
3230  *
3231  * Return: None
3232  */
3233 static inline
3234 void dp_rx_fst_detach(struct dp_soc *soc, struct dp_pdev *pdev)
3235 {
3236 }
3237 #endif
3238 
3239 /**
3240  * dp_vdev_get_ref() - API to take a reference for VDEV object
3241  *
3242  * @soc		: core DP soc context
3243  * @vdev	: DP vdev
3244  * @mod_id	: module id
3245  *
3246  * Return:	QDF_STATUS_SUCCESS if reference held successfully
3247  *		else QDF_STATUS_E_INVAL
3248  */
3249 static inline
3250 QDF_STATUS dp_vdev_get_ref(struct dp_soc *soc, struct dp_vdev *vdev,
3251 			   enum dp_mod_id mod_id)
3252 {
3253 	if (!qdf_atomic_inc_not_zero(&vdev->ref_cnt))
3254 		return QDF_STATUS_E_INVAL;
3255 
3256 	qdf_atomic_inc(&vdev->mod_refs[mod_id]);
3257 
3258 	return QDF_STATUS_SUCCESS;
3259 }
3260 
3261 /**
3262  * dp_vdev_get_ref_by_id() - Returns vdev object given the vdev id
3263  * @soc: core DP soc context
3264  * @vdev_id: vdev id from vdev object can be retrieved
3265  * @mod_id: module id which is requesting the reference
3266  *
3267  * Return: struct dp_vdev*: Pointer to DP vdev object
3268  */
3269 static inline struct dp_vdev *
3270 dp_vdev_get_ref_by_id(struct dp_soc *soc, uint8_t vdev_id,
3271 		      enum dp_mod_id mod_id)
3272 {
3273 	struct dp_vdev *vdev = NULL;
3274 	if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
3275 		return NULL;
3276 
3277 	qdf_spin_lock_bh(&soc->vdev_map_lock);
3278 	vdev = soc->vdev_id_map[vdev_id];
3279 
3280 	if (!vdev || dp_vdev_get_ref(soc, vdev, mod_id) != QDF_STATUS_SUCCESS) {
3281 		qdf_spin_unlock_bh(&soc->vdev_map_lock);
3282 		return NULL;
3283 	}
3284 	qdf_spin_unlock_bh(&soc->vdev_map_lock);
3285 
3286 	return vdev;
3287 }
3288 
3289 /**
3290  * dp_get_pdev_from_soc_pdev_id_wifi3() - Returns pdev object given the pdev id
3291  * @soc: core DP soc context
3292  * @pdev_id: pdev id from pdev object can be retrieved
3293  *
3294  * Return: struct dp_pdev*: Pointer to DP pdev object
3295  */
3296 static inline struct dp_pdev *
3297 dp_get_pdev_from_soc_pdev_id_wifi3(struct dp_soc *soc,
3298 				   uint8_t pdev_id)
3299 {
3300 	if (qdf_unlikely(pdev_id >= MAX_PDEV_CNT))
3301 		return NULL;
3302 
3303 	return soc->pdev_list[pdev_id];
3304 }
3305 
3306 /*
3307  * dp_rx_tid_update_wifi3() – Update receive TID state
3308  * @peer: Datapath peer handle
3309  * @tid: TID
3310  * @ba_window_size: BlockAck window size
3311  * @start_seq: Starting sequence number
3312  * @bar_update: BAR update triggered
3313  *
3314  * Return: QDF_STATUS code
3315  */
3316 QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
3317 					 ba_window_size, uint32_t start_seq,
3318 					 bool bar_update);
3319 
3320 /**
3321  * dp_get_peer_mac_list(): function to get peer mac list of vdev
3322  * @soc: Datapath soc handle
3323  * @vdev_id: vdev id
3324  * @newmac: Table of the clients mac
3325  * @mac_cnt: No. of MACs required
3326  * @limit: Limit the number of clients
3327  *
3328  * return: no of clients
3329  */
3330 uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id,
3331 			      u_int8_t newmac[][QDF_MAC_ADDR_SIZE],
3332 			      u_int16_t mac_cnt, bool limit);
3333 
3334 /*
3335  * dp_update_num_mac_rings_for_dbs() - Update No of MAC rings based on
3336  *				       DBS check
3337  * @soc: DP SoC context
3338  * @max_mac_rings: Pointer to variable for No of MAC rings
3339  *
3340  * Return: None
3341  */
3342 void dp_update_num_mac_rings_for_dbs(struct dp_soc *soc,
3343 				     int *max_mac_rings);
3344 
3345 
3346 #if defined(WLAN_SUPPORT_RX_FISA)
3347 void dp_rx_dump_fisa_table(struct dp_soc *soc);
3348 
3349 /**
3350  * dp_print_fisa_stats() - Print FISA stats
3351  * @soc: DP soc handle
3352  *
3353  * Return: None
3354  */
3355 void dp_print_fisa_stats(struct dp_soc *soc);
3356 
3357 /*
3358  * dp_rx_fst_update_cmem_params() - Update CMEM FST params
3359  * @soc:		DP SoC context
3360  * @num_entries:	Number of flow search entries
3361  * @cmem_ba_lo:		CMEM base address low
3362  * @cmem_ba_hi:		CMEM base address high
3363  *
3364  * Return: None
3365  */
3366 void dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3367 				  uint32_t cmem_ba_lo, uint32_t cmem_ba_hi);
3368 
3369 void
3370 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended);
3371 #else
3372 static inline void
3373 dp_rx_fst_update_cmem_params(struct dp_soc *soc, uint16_t num_entries,
3374 			     uint32_t cmem_ba_lo, uint32_t cmem_ba_hi)
3375 {
3376 }
3377 
3378 static inline void
3379 dp_rx_fst_update_pm_suspend_status(struct dp_soc *soc, bool suspended)
3380 {
3381 }
3382 
3383 static inline void dp_print_fisa_stats(struct dp_soc *soc)
3384 {
3385 }
3386 #endif /* WLAN_SUPPORT_RX_FISA */
3387 
3388 #ifdef MAX_ALLOC_PAGE_SIZE
3389 /**
3390  * dp_set_page_size() - Set the max page size for hw link desc.
3391  * For MCL the page size is set to OS defined value and for WIN
3392  * the page size is set to the max_alloc_size cfg ini
3393  * param.
3394  * This is to ensure that WIN gets contiguous memory allocations
3395  * as per requirement.
3396  * @pages: link desc page handle
3397  * @max_alloc_size: max_alloc_size
3398  *
3399  * Return: None
3400  */
3401 static inline
3402 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3403 			  uint32_t max_alloc_size)
3404 {
3405 	pages->page_size = qdf_page_size;
3406 }
3407 
3408 #else
3409 static inline
3410 void dp_set_max_page_size(struct qdf_mem_multi_page_t *pages,
3411 			  uint32_t max_alloc_size)
3412 {
3413 	pages->page_size = max_alloc_size;
3414 }
3415 #endif /* MAX_ALLOC_PAGE_SIZE */
3416 
3417 /**
3418  * dp_history_get_next_index() - get the next entry to record an entry
3419  *				 in the history.
3420  * @curr_idx: Current index where the last entry is written.
3421  * @max_entries: Max number of entries in the history
3422  *
3423  * This function assumes that the max number os entries is a power of 2.
3424  *
3425  * Returns: The index where the next entry is to be written.
3426  */
3427 static inline uint32_t dp_history_get_next_index(qdf_atomic_t *curr_idx,
3428 						 uint32_t max_entries)
3429 {
3430 	uint32_t idx = qdf_atomic_inc_return(curr_idx);
3431 
3432 	return idx & (max_entries - 1);
3433 }
3434 
3435 /**
3436  * dp_rx_skip_tlvs() - Skip TLVs len + L2 hdr_offset, save in nbuf->cb
3437  * @nbuf: nbuf cb to be updated
3438  * @l2_hdr_offset: l2_hdr_offset
3439  *
3440  * Return: None
3441  */
3442 void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding);
3443 
3444 #ifndef FEATURE_WDS
3445 static inline void
3446 dp_hmwds_ast_add_notify(struct dp_peer *peer,
3447 			uint8_t *mac_addr,
3448 			enum cdp_txrx_ast_entry_type type,
3449 			QDF_STATUS err,
3450 			bool is_peer_map)
3451 {
3452 }
3453 #endif
3454 
3455 #ifdef HTT_STATS_DEBUGFS_SUPPORT
3456 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3457  * debugfs for HTT stats
3458  * @pdev: dp pdev handle
3459  *
3460  * Return: QDF_STATUS
3461  */
3462 QDF_STATUS dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev);
3463 
3464 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3465  * HTT stats
3466  * @pdev: dp pdev handle
3467  *
3468  * Return: none
3469  */
3470 void dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev);
3471 #else
3472 
3473 /* dp_pdev_htt_stats_dbgfs_init() - Function to allocate memory and initialize
3474  * debugfs for HTT stats
3475  * @pdev: dp pdev handle
3476  *
3477  * Return: QDF_STATUS
3478  */
3479 static inline QDF_STATUS
3480 dp_pdev_htt_stats_dbgfs_init(struct dp_pdev *pdev)
3481 {
3482 	return QDF_STATUS_SUCCESS;
3483 }
3484 
3485 /* dp_pdev_htt_stats_dbgfs_deinit() - Function to remove debugfs entry for
3486  * HTT stats
3487  * @pdev: dp pdev handle
3488  *
3489  * Return: none
3490  */
3491 static inline void
3492 dp_pdev_htt_stats_dbgfs_deinit(struct dp_pdev *pdev)
3493 {
3494 }
3495 #endif /* HTT_STATS_DEBUGFS_SUPPORT */
3496 
3497 #ifndef WLAN_DP_FEATURE_SW_LATENCY_MGR
3498 /**
3499  * dp_soc_swlm_attach() - attach the software latency manager resources
3500  * @soc: Datapath global soc handle
3501  *
3502  * Returns: QDF_STATUS
3503  */
3504 static inline QDF_STATUS dp_soc_swlm_attach(struct dp_soc *soc)
3505 {
3506 	return QDF_STATUS_SUCCESS;
3507 }
3508 
3509 /**
3510  * dp_soc_swlm_detach() - detach the software latency manager resources
3511  * @soc: Datapath global soc handle
3512  *
3513  * Returns: QDF_STATUS
3514  */
3515 static inline QDF_STATUS dp_soc_swlm_detach(struct dp_soc *soc)
3516 {
3517 	return QDF_STATUS_SUCCESS;
3518 }
3519 #endif /* !WLAN_DP_FEATURE_SW_LATENCY_MGR */
3520 
3521 /**
3522  * dp_get_peer_id(): function to get peer id by mac
3523  * @soc: Datapath soc handle
3524  * @vdev_id: vdev id
3525  * @mac: Peer mac address
3526  *
3527  * return: valid peer id on success
3528  *         HTT_INVALID_PEER on failure
3529  */
3530 uint16_t dp_get_peer_id(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t *mac);
3531 
3532 #ifdef QCA_SUPPORT_WDS_EXTENDED
3533 /**
3534  * dp_wds_ext_set_peer_state(): function to set peer state
3535  * @soc: Datapath soc handle
3536  * @vdev_id: vdev id
3537  * @mac: Peer mac address
3538  * @rx: rx function pointer
3539  *
3540  * return: QDF_STATUS_SUCCESS on success
3541  *         QDF_STATUS_E_INVAL if peer is not found
3542  *         QDF_STATUS_E_ALREADY if rx is already set/unset
3543  */
3544 QDF_STATUS dp_wds_ext_set_peer_rx(ol_txrx_soc_handle soc,
3545 				  uint8_t vdev_id,
3546 				  uint8_t *mac,
3547 				  ol_txrx_rx_fp rx,
3548 				  ol_osif_peer_handle osif_peer);
3549 #endif /* QCA_SUPPORT_WDS_EXTENDED */
3550 
3551 #ifdef DP_MEM_PRE_ALLOC
3552 
3553 /**
3554  * dp_context_alloc_mem() - allocate memory for DP context
3555  * @soc: datapath soc handle
3556  * @ctxt_type: DP context type
3557  * @ctxt_size: DP context size
3558  *
3559  * Return: DP context address
3560  */
3561 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3562 			   size_t ctxt_size);
3563 
3564 /**
3565  * dp_context_free_mem() - Free memory of DP context
3566  * @soc: datapath soc handle
3567  * @ctxt_type: DP context type
3568  * @vaddr: Address of context memory
3569  *
3570  * Return: None
3571  */
3572 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3573 			 void *vaddr);
3574 
3575 /**
3576  * dp_desc_multi_pages_mem_alloc() - alloc memory over multiple pages
3577  * @soc: datapath soc handle
3578  * @desc_type: memory request source type
3579  * @pages: multi page information storage
3580  * @element_size: each element size
3581  * @element_num: total number of elements should be allocated
3582  * @memctxt: memory context
3583  * @cacheable: coherent memory or cacheable memory
3584  *
3585  * This function is a wrapper for memory allocation over multiple
3586  * pages, if dp prealloc method is registered, then will try prealloc
3587  * firstly. if prealloc failed, fall back to regular way over
3588  * qdf_mem_multi_pages_alloc().
3589  *
3590  * Return: None
3591  */
3592 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3593 				   enum dp_desc_type desc_type,
3594 				   struct qdf_mem_multi_page_t *pages,
3595 				   size_t element_size,
3596 				   uint32_t element_num,
3597 				   qdf_dma_context_t memctxt,
3598 				   bool cacheable);
3599 
3600 /**
3601  * dp_desc_multi_pages_mem_free() - free multiple pages memory
3602  * @soc: datapath soc handle
3603  * @desc_type: memory request source type
3604  * @pages: multi page information storage
3605  * @memctxt: memory context
3606  * @cacheable: coherent memory or cacheable memory
3607  *
3608  * This function is a wrapper for multiple pages memory free,
3609  * if memory is got from prealloc pool, put it back to pool.
3610  * otherwise free by qdf_mem_multi_pages_free().
3611  *
3612  * Return: None
3613  */
3614 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3615 				  enum dp_desc_type desc_type,
3616 				  struct qdf_mem_multi_page_t *pages,
3617 				  qdf_dma_context_t memctxt,
3618 				  bool cacheable);
3619 
3620 #else
3621 static inline
3622 void *dp_context_alloc_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3623 			   size_t ctxt_size)
3624 {
3625 	return qdf_mem_malloc(ctxt_size);
3626 }
3627 
3628 static inline
3629 void dp_context_free_mem(struct dp_soc *soc, enum dp_ctxt_type ctxt_type,
3630 			 void *vaddr)
3631 {
3632 	qdf_mem_free(vaddr);
3633 }
3634 
3635 static inline
3636 void dp_desc_multi_pages_mem_alloc(struct dp_soc *soc,
3637 				   enum dp_desc_type desc_type,
3638 				   struct qdf_mem_multi_page_t *pages,
3639 				   size_t element_size,
3640 				   uint32_t element_num,
3641 				   qdf_dma_context_t memctxt,
3642 				   bool cacheable)
3643 {
3644 	qdf_mem_multi_pages_alloc(soc->osdev, pages, element_size,
3645 				  element_num, memctxt, cacheable);
3646 }
3647 
3648 static inline
3649 void dp_desc_multi_pages_mem_free(struct dp_soc *soc,
3650 				  enum dp_desc_type desc_type,
3651 				  struct qdf_mem_multi_page_t *pages,
3652 				  qdf_dma_context_t memctxt,
3653 				  bool cacheable)
3654 {
3655 	qdf_mem_multi_pages_free(soc->osdev, pages,
3656 				 memctxt, cacheable);
3657 }
3658 #endif
3659 
3660 /**
3661  * struct dp_frag_history_opaque_atomic - Opaque struct for adding a fragmented
3662  *					  history.
3663  * @index: atomic index
3664  * @num_entries_per_slot: Number of entries per slot
3665  * @allocated: is allocated or not
3666  * @entry: pointers to array of records
3667  */
3668 struct dp_frag_history_opaque_atomic {
3669 	qdf_atomic_t index;
3670 	uint16_t num_entries_per_slot;
3671 	uint16_t allocated;
3672 	void *entry[0];
3673 };
3674 
3675 static inline QDF_STATUS
3676 dp_soc_frag_history_attach(struct dp_soc *soc, void *history_hdl,
3677 			   uint32_t max_slots, uint32_t max_entries_per_slot,
3678 			   uint32_t entry_size,
3679 			   bool attempt_prealloc, enum dp_ctxt_type ctxt_type)
3680 {
3681 	struct dp_frag_history_opaque_atomic *history =
3682 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3683 	size_t alloc_size = max_entries_per_slot * entry_size;
3684 	int i;
3685 
3686 	for (i = 0; i < max_slots; i++) {
3687 		if (attempt_prealloc)
3688 			history->entry[i] = dp_context_alloc_mem(soc, ctxt_type,
3689 								 alloc_size);
3690 		else
3691 			history->entry[i] = qdf_mem_malloc(alloc_size);
3692 
3693 		if (!history->entry[i])
3694 			goto exit;
3695 	}
3696 
3697 	qdf_atomic_init(&history->index);
3698 	history->allocated = 1;
3699 	history->num_entries_per_slot = max_entries_per_slot;
3700 
3701 	return QDF_STATUS_SUCCESS;
3702 exit:
3703 	for (i = i - 1; i >= 0; i--) {
3704 		if (attempt_prealloc)
3705 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3706 		else
3707 			qdf_mem_free(history->entry[i]);
3708 	}
3709 
3710 	return QDF_STATUS_E_NOMEM;
3711 }
3712 
3713 static inline
3714 void dp_soc_frag_history_detach(struct dp_soc *soc,
3715 				void *history_hdl, uint32_t max_slots,
3716 				bool attempt_prealloc,
3717 				enum dp_ctxt_type ctxt_type)
3718 {
3719 	struct dp_frag_history_opaque_atomic *history =
3720 			(struct dp_frag_history_opaque_atomic *)history_hdl;
3721 	int i;
3722 
3723 	for (i = 0; i < max_slots; i++) {
3724 		if (attempt_prealloc)
3725 			dp_context_free_mem(soc, ctxt_type, history->entry[i]);
3726 		else
3727 			qdf_mem_free(history->entry[i]);
3728 	}
3729 
3730 	history->allocated = 0;
3731 }
3732 
3733 /**
3734  * dp_get_frag_hist_next_atomic_idx() - get the next entry index to record an
3735  *					entry in a fragmented history with
3736  *					index being atomic.
3737  * @curr_idx: address of the current index where the last entry was written
3738  * @next_idx: pointer to update the next index
3739  * @slot: pointer to update the history slot to be selected
3740  * @slot_shift: BITwise shift mask for slot (in index)
3741  * @max_entries_per_slot: Max number of entries in a slot of history
3742  * @max_entries: Total number of entries in the history (sum of all slots)
3743  *
3744  * This function assumes that the "max_entries_per_slot" and "max_entries"
3745  * are a power-of-2.
3746  *
3747  * Return: None
3748  */
3749 static inline void
3750 dp_get_frag_hist_next_atomic_idx(qdf_atomic_t *curr_idx, uint32_t *next_idx,
3751 				 uint16_t *slot, uint32_t slot_shift,
3752 				 uint32_t max_entries_per_slot,
3753 				 uint32_t max_entries)
3754 {
3755 	uint32_t idx;
3756 
3757 	idx = qdf_do_div_rem(qdf_atomic_inc_return(curr_idx), max_entries);
3758 
3759 	*slot = idx >> slot_shift;
3760 	*next_idx = idx & (max_entries_per_slot - 1);
3761 }
3762 
3763 #ifdef FEATURE_RUNTIME_PM
3764 /**
3765  * dp_runtime_get() - Get dp runtime refcount
3766  * @soc: Datapath soc handle
3767  *
3768  * Get dp runtime refcount by increment of an atomic variable, which can block
3769  * dp runtime resume to wait to flush pending tx by runtime suspend.
3770  *
3771  * Return: Current refcount
3772  */
3773 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3774 {
3775 	return qdf_atomic_inc_return(&soc->dp_runtime_refcount);
3776 }
3777 
3778 /**
3779  * dp_runtime_put() - Return dp runtime refcount
3780  * @soc: Datapath soc handle
3781  *
3782  * Return dp runtime refcount by decrement of an atomic variable, allow dp
3783  * runtime resume finish.
3784  *
3785  * Return: Current refcount
3786  */
3787 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3788 {
3789 	return qdf_atomic_dec_return(&soc->dp_runtime_refcount);
3790 }
3791 
3792 /**
3793  * dp_runtime_get_refcount() - Get dp runtime refcount
3794  * @soc: Datapath soc handle
3795  *
3796  * Get dp runtime refcount by returning an atomic variable
3797  *
3798  * Return: Current refcount
3799  */
3800 static inline int32_t dp_runtime_get_refcount(struct dp_soc *soc)
3801 {
3802 	return qdf_atomic_read(&soc->dp_runtime_refcount);
3803 }
3804 
3805 /**
3806  * dp_runtime_init() - Init DP related runtime PM clients and runtime refcount
3807  * @soc: Datapath soc handle
3808  *
3809  * Return: QDF_STATUS
3810  */
3811 static inline void dp_runtime_init(struct dp_soc *soc)
3812 {
3813 	hif_rtpm_register(HIF_RTPM_ID_DP, NULL);
3814 	hif_rtpm_register(HIF_RTPM_ID_DP_RING_STATS, NULL);
3815 	qdf_atomic_init(&soc->dp_runtime_refcount);
3816 }
3817 
3818 /**
3819  * dp_runtime_deinit() - Deinit DP related runtime PM clients
3820  *
3821  * Return: None
3822  */
3823 static inline void dp_runtime_deinit(void)
3824 {
3825 	hif_rtpm_deregister(HIF_RTPM_ID_DP);
3826 	hif_rtpm_deregister(HIF_RTPM_ID_DP_RING_STATS);
3827 }
3828 
3829 /**
3830  * dp_runtime_pm_mark_last_busy() - Mark last busy when rx path in use
3831  * @soc: Datapath soc handle
3832  *
3833  * Return: None
3834  */
3835 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3836 {
3837 	soc->rx_last_busy = qdf_get_log_timestamp_usecs();
3838 
3839 	hif_rtpm_mark_last_busy(HIF_RTPM_ID_DP);
3840 }
3841 #else
3842 static inline int32_t dp_runtime_get(struct dp_soc *soc)
3843 {
3844 	return 0;
3845 }
3846 
3847 static inline int32_t dp_runtime_put(struct dp_soc *soc)
3848 {
3849 	return 0;
3850 }
3851 
3852 static inline QDF_STATUS dp_runtime_init(struct dp_soc *soc)
3853 {
3854 	return QDF_STATUS_SUCCESS;
3855 }
3856 
3857 static inline void dp_runtime_deinit(void)
3858 {
3859 }
3860 
3861 static inline void dp_runtime_pm_mark_last_busy(struct dp_soc *soc)
3862 {
3863 }
3864 #endif
3865 
3866 static inline enum QDF_GLOBAL_MODE dp_soc_get_con_mode(struct dp_soc *soc)
3867 {
3868 	if (soc->cdp_soc.ol_ops->get_con_mode)
3869 		return soc->cdp_soc.ol_ops->get_con_mode();
3870 
3871 	return QDF_GLOBAL_MAX_MODE;
3872 }
3873 
3874 /*
3875  * dp_pdev_bkp_stats_detach() - detach resources for back pressure stats
3876  *				processing
3877  * @pdev: Datapath PDEV handle
3878  *
3879  */
3880 void dp_pdev_bkp_stats_detach(struct dp_pdev *pdev);
3881 
3882 /*
3883  * dp_pdev_bkp_stats_attach() - attach resources for back pressure stats
3884  *				processing
3885  * @pdev: Datapath PDEV handle
3886  *
3887  * Return: QDF_STATUS_SUCCESS: Success
3888  *         QDF_STATUS_E_NOMEM: Error
3889  */
3890 
3891 QDF_STATUS dp_pdev_bkp_stats_attach(struct dp_pdev *pdev);
3892 
3893 /**
3894  * dp_peer_flush_frags() - Flush all fragments for a particular
3895  *  peer
3896  * @soc_hdl - data path soc handle
3897  * @vdev_id - vdev id
3898  * @peer_addr - peer mac address
3899  *
3900  * Return: None
3901  */
3902 void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3903 			 uint8_t *peer_mac);
3904 
3905 /**
3906  * dp_soc_reset_mon_intr_mask() - reset mon intr mask
3907  * @soc: pointer to dp_soc handle
3908  *
3909  * Return:
3910  */
3911 void dp_soc_reset_mon_intr_mask(struct dp_soc *soc);
3912 
3913 /**
3914  * dp_txrx_get_soc_stats() - will return cdp_soc_stats
3915  * @soc_hdl: soc handle
3916  * @soc_stats: buffer to hold the values
3917  *
3918  * Return: QDF_STATUS_SUCCESS: Success
3919  *         QDF_STATUS_E_FAILURE: Error
3920  */
3921 QDF_STATUS dp_txrx_get_soc_stats(struct cdp_soc_t *soc_hdl,
3922 				 struct cdp_soc_stats *soc_stats);
3923 
3924 /**
3925  * dp_txrx_get_peer_delay_stats() - to get peer delay stats per TIDs
3926  * @soc: soc handle
3927  * @vdev_id: id of vdev handle
3928  * @peer_mac: mac of DP_PEER handle
3929  * @delay_stats: pointer to delay stats array
3930  *
3931  * Return: QDF_STATUS_SUCCESS: Success
3932  *         QDF_STATUS_E_FAILURE: Error
3933  */
3934 QDF_STATUS
3935 dp_txrx_get_peer_delay_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
3936 			     uint8_t *peer_mac,
3937 			     struct cdp_delay_tid_stats *delay_stats);
3938 
3939 /**
3940  * dp_txrx_get_peer_jitter_stats() - to get peer jitter stats per TIDs
3941  * @soc: soc handle
3942  * @pdev_id: id of pdev handle
3943  * @vdev_id: id of vdev handle
3944  * @peer_mac: mac of DP_PEER handle
3945  * @tid_stats: pointer to jitter stats array
3946  *
3947  * Return: QDF_STATUS_SUCCESS: Success
3948  *         QDF_STATUS_E_FAILURE: Error
3949  */
3950 QDF_STATUS
3951 dp_txrx_get_peer_jitter_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3952 			      uint8_t vdev_id, uint8_t *peer_mac,
3953 			      struct cdp_peer_tid_stats *tid_stats);
3954 
3955 /* dp_peer_get_tx_capture_stats - to get peer Tx Capture stats
3956  * @soc_hdl: soc handle
3957  * @vdev_id: id of vdev handle
3958  * @peer_mac: mac of DP_PEER handle
3959  * @stats: pointer to peer tx capture stats
3960  *
3961  * Return: QDF_STATUS_SUCCESS: Success
3962  *         QDF_STATUS_E_FAILURE: Error
3963  */
3964 QDF_STATUS
3965 dp_peer_get_tx_capture_stats(struct cdp_soc_t *soc_hdl,
3966 			     uint8_t vdev_id, uint8_t *peer_mac,
3967 			     struct cdp_peer_tx_capture_stats *stats);
3968 
3969 /* dp_pdev_get_tx_capture_stats - to get pdev Tx Capture stats
3970  * @soc_hdl: soc handle
3971  * @pdev_id: id of pdev handle
3972  * @stats: pointer to pdev tx capture stats
3973  *
3974  * Return: QDF_STATUS_SUCCESS: Success
3975  *         QDF_STATUS_E_FAILURE: Error
3976  */
3977 QDF_STATUS
3978 dp_pdev_get_tx_capture_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
3979 			     struct cdp_pdev_tx_capture_stats *stats);
3980 
3981 #ifdef HW_TX_DELAY_STATS_ENABLE
3982 /*
3983  * dp_is_vdev_tx_delay_stats_enabled(): Check if tx delay stats
3984  *  is enabled for vdev
3985  * @vdev: dp vdev
3986  *
3987  * Return: true if tx delay stats is enabled for vdev else false
3988  */
3989 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
3990 {
3991 	return vdev->hw_tx_delay_stats_enabled;
3992 }
3993 
3994 /*
3995  * dp_pdev_print_tx_delay_stats(): Print vdev tx delay stats
3996  *  for pdev
3997  * @soc: dp soc
3998  *
3999  * Return: None
4000  */
4001 void dp_pdev_print_tx_delay_stats(struct dp_soc *soc);
4002 
4003 /**
4004  * dp_pdev_clear_tx_delay_stats() - clear tx delay stats
4005  * @soc: soc handle
4006  *
4007  * Return: None
4008  */
4009 void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc);
4010 #else
4011 static inline uint8_t dp_is_vdev_tx_delay_stats_enabled(struct dp_vdev *vdev)
4012 {
4013 	return 0;
4014 }
4015 
4016 static inline void dp_pdev_print_tx_delay_stats(struct dp_soc *soc)
4017 {
4018 }
4019 
4020 static inline void dp_pdev_clear_tx_delay_stats(struct dp_soc *soc)
4021 {
4022 }
4023 #endif
4024 
4025 static inline void
4026 dp_get_rx_hash_key_bytes(struct cdp_lro_hash_config *lro_hash)
4027 {
4028 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv4,
4029 			     (sizeof(lro_hash->toeplitz_hash_ipv4[0]) *
4030 			      LRO_IPV4_SEED_ARR_SZ));
4031 	qdf_get_random_bytes(lro_hash->toeplitz_hash_ipv6,
4032 			     (sizeof(lro_hash->toeplitz_hash_ipv6[0]) *
4033 			      LRO_IPV6_SEED_ARR_SZ));
4034 }
4035 
4036 #ifdef WLAN_TELEMETRY_STATS_SUPPORT
4037 /*
4038  * dp_get_pdev_telemetry_stats- API to get pdev telemetry stats
4039  * @soc_hdl: soc handle
4040  * @pdev_id: id of pdev handle
4041  * @stats: pointer to pdev telemetry stats
4042  *
4043  * Return: QDF_STATUS_SUCCESS: Success
4044  *         QDF_STATUS_E_FAILURE: Error
4045  */
4046 QDF_STATUS
4047 dp_get_pdev_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id,
4048 			    struct cdp_pdev_telemetry_stats *stats);
4049 
4050 /*
4051  * dp_get_peer_telemetry_stats- API to get peer telemetry stats
4052  * @soc_hdl: soc handle
4053  * @addr: peer mac
4054  * @stats: pointer to peer telemetry stats
4055  *
4056  * Return: QDF_STATUS_SUCCESS: Success
4057  *         QDF_STATUS_E_FAILURE: Error
4058  */
4059 QDF_STATUS
4060 dp_get_peer_telemetry_stats(struct cdp_soc_t *soc_hdl, uint8_t *addr,
4061 			    struct cdp_peer_telemetry_stats *stats);
4062 #endif /* WLAN_TELEMETRY_STATS_SUPPORT */
4063 
4064 #ifdef CONNECTIVITY_PKTLOG
4065 /*
4066  * dp_tx_send_pktlog() - send tx packet log
4067  * @soc: soc handle
4068  * @pdev: pdev handle
4069  * @tx_desc: TX software descriptor
4070  * @nbuf: nbuf
4071  * @status: status of tx packet
4072  *
4073  * This function is used to send tx packet for logging
4074  *
4075  * Return: None
4076  *
4077  */
4078 static inline
4079 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4080 		       struct dp_tx_desc_s *tx_desc,
4081 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4082 {
4083 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_tx_packetdump_cb;
4084 
4085 	if (qdf_unlikely(packetdump_cb) &&
4086 	    dp_tx_frm_std == tx_desc->frm_type) {
4087 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4088 			      QDF_NBUF_CB_TX_VDEV_CTX(nbuf),
4089 			      nbuf, status, QDF_TX_DATA_PKT);
4090 	}
4091 }
4092 
4093 /*
4094  * dp_rx_send_pktlog() - send rx packet log
4095  * @soc: soc handle
4096  * @pdev: pdev handle
4097  * @nbuf: nbuf
4098  * @status: status of rx packet
4099  *
4100  * This function is used to send rx packet for logging
4101  *
4102  * Return: None
4103  *
4104  */
4105 static inline
4106 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4107 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4108 {
4109 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4110 
4111 	if (qdf_unlikely(packetdump_cb)) {
4112 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4113 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4114 			      nbuf, status, QDF_RX_DATA_PKT);
4115 	}
4116 }
4117 
4118 /*
4119  * dp_rx_err_send_pktlog() - send rx error packet log
4120  * @soc: soc handle
4121  * @pdev: pdev handle
4122  * @mpdu_desc_info: MPDU descriptor info
4123  * @nbuf: nbuf
4124  * @status: status of rx packet
4125  * @set_pktlen: weither to set packet length
4126  *
4127  * This API should only be called when we have not removed
4128  * Rx TLV from head, and head is pointing to rx_tlv
4129  *
4130  * This function is used to send rx packet from erro path
4131  * for logging for which rx packet tlv is not removed.
4132  *
4133  * Return: None
4134  *
4135  */
4136 static inline
4137 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4138 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4139 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4140 			   bool set_pktlen)
4141 {
4142 	ol_txrx_pktdump_cb packetdump_cb = pdev->dp_rx_packetdump_cb;
4143 	qdf_size_t skip_size;
4144 	uint16_t msdu_len, nbuf_len;
4145 	uint8_t *rx_tlv_hdr;
4146 	struct hal_rx_msdu_metadata msdu_metadata;
4147 
4148 	if (qdf_unlikely(packetdump_cb)) {
4149 		rx_tlv_hdr = qdf_nbuf_data(nbuf);
4150 		nbuf_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc,
4151 							  rx_tlv_hdr);
4152 		hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr,
4153 					 &msdu_metadata);
4154 
4155 		if (mpdu_desc_info->bar_frame ||
4156 		    (mpdu_desc_info->mpdu_flags & HAL_MPDU_F_FRAGMENT))
4157 			skip_size = soc->rx_pkt_tlv_size;
4158 		else
4159 			skip_size = soc->rx_pkt_tlv_size +
4160 					msdu_metadata.l3_hdr_pad;
4161 
4162 		if (set_pktlen) {
4163 			msdu_len = nbuf_len + skip_size;
4164 			qdf_nbuf_set_pktlen(nbuf, qdf_min(msdu_len,
4165 					    (uint16_t)RX_DATA_BUFFER_SIZE));
4166 		}
4167 
4168 		qdf_nbuf_pull_head(nbuf, skip_size);
4169 		packetdump_cb((ol_txrx_soc_handle)soc, pdev->pdev_id,
4170 			      QDF_NBUF_CB_RX_VDEV_ID(nbuf),
4171 			      nbuf, status, QDF_RX_DATA_PKT);
4172 		qdf_nbuf_push_head(nbuf, skip_size);
4173 	}
4174 }
4175 
4176 #else
4177 static inline
4178 void dp_tx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4179 		       struct dp_tx_desc_s *tx_desc,
4180 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4181 {
4182 }
4183 
4184 static inline
4185 void dp_rx_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4186 		       qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status)
4187 {
4188 }
4189 
4190 static inline
4191 void dp_rx_err_send_pktlog(struct dp_soc *soc, struct dp_pdev *pdev,
4192 			   struct hal_rx_mpdu_desc_info *mpdu_desc_info,
4193 			   qdf_nbuf_t nbuf, enum qdf_dp_tx_rx_status status,
4194 			   bool set_pktlen)
4195 {
4196 }
4197 #endif
4198 
4199 /*
4200  * dp_pdev_update_fast_rx_flag() - Update Fast rx flag for a PDEV
4201  * @soc  : Data path soc handle
4202  * @pdev : PDEV handle
4203  *
4204  * return: None
4205  */
4206 void dp_pdev_update_fast_rx_flag(struct dp_soc *soc, struct dp_pdev *pdev);
4207 #endif /* #ifndef _DP_INTERNAL_H_ */
4208