xref: /wlan-dirver/qca-wifi-host-cmn/dp/wifi3.0/be/dp_be.c (revision 2888b71da71bce103343119fa1b31f4a0cee07c8)
1 /*
2  * Copyright (c) 2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <wlan_utility.h>
21 #include <dp_internal.h>
22 #include <dp_htt.h>
23 #include "dp_be.h"
24 #include "dp_be_tx.h"
25 #include "dp_be_rx.h"
26 #ifdef WIFI_MONITOR_SUPPORT
27 #if !defined(DISABLE_MON_CONFIG) && defined(QCA_MONITOR_2_0_SUPPORT)
28 #include "dp_mon_2.0.h"
29 #endif
30 #include "dp_mon.h"
31 #endif
32 #include <hal_be_api.h>
33 
34 /* Generic AST entry aging timer value */
35 #define DP_AST_AGING_TIMER_DEFAULT_MS	5000
36 
37 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
38 #define DP_TX_VDEV_ID_CHECK_ENABLE 0
39 
40 static struct wlan_cfg_tcl_wbm_ring_num_map g_tcl_wbm_map_array[MAX_TCL_DATA_RINGS] = {
41 	{.tcl_ring_num = 0, .wbm_ring_num = 0, .wbm_rbm_id = HAL_BE_WBM_SW0_BM_ID, .for_ipa = 0},
42 	{1, 4, HAL_BE_WBM_SW4_BM_ID, 0},
43 	{2, 2, HAL_BE_WBM_SW2_BM_ID, 0},
44 #ifdef QCA_WIFI_KIWI_V2
45 	{3, 5, HAL_BE_WBM_SW5_BM_ID, 0},
46 	{4, 6, HAL_BE_WBM_SW6_BM_ID, 0}
47 #else
48 	{3, 6, HAL_BE_WBM_SW5_BM_ID, 0},
49 	{4, 7, HAL_BE_WBM_SW6_BM_ID, 0}
50 #endif
51 };
52 #else
53 #define DP_TX_VDEV_ID_CHECK_ENABLE 1
54 
55 static struct wlan_cfg_tcl_wbm_ring_num_map g_tcl_wbm_map_array[MAX_TCL_DATA_RINGS] = {
56 	{.tcl_ring_num = 0, .wbm_ring_num = 0, .wbm_rbm_id = HAL_BE_WBM_SW0_BM_ID, .for_ipa = 0},
57 	{1, 1, HAL_BE_WBM_SW1_BM_ID, 0},
58 	{2, 2, HAL_BE_WBM_SW2_BM_ID, 0},
59 	{3, 3, HAL_BE_WBM_SW3_BM_ID, 0},
60 	{4, 4, HAL_BE_WBM_SW4_BM_ID, 0}
61 };
62 #endif
63 
64 static void dp_soc_cfg_attach_be(struct dp_soc *soc)
65 {
66 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx;
67 
68 	wlan_cfg_set_rx_rel_ring_id(soc_cfg_ctx, WBM2SW_REL_ERR_RING_NUM);
69 
70 	soc->wlan_cfg_ctx->tcl_wbm_map_array = g_tcl_wbm_map_array;
71 
72 	/* this is used only when dmac mode is enabled */
73 	soc->num_rx_refill_buf_rings = 1;
74 
75 	soc->wlan_cfg_ctx->notify_frame_support =
76 				DP_MARK_NOTIFY_FRAME_SUPPORT;
77 }
78 
79 qdf_size_t dp_get_context_size_be(enum dp_context_type context_type)
80 {
81 	switch (context_type) {
82 	case DP_CONTEXT_TYPE_SOC:
83 		return sizeof(struct dp_soc_be);
84 	case DP_CONTEXT_TYPE_PDEV:
85 		return sizeof(struct dp_pdev_be);
86 	case DP_CONTEXT_TYPE_VDEV:
87 		return sizeof(struct dp_vdev_be);
88 	case DP_CONTEXT_TYPE_PEER:
89 		return sizeof(struct dp_peer_be);
90 	default:
91 		return 0;
92 	}
93 }
94 
95 #ifdef DP_FEATURE_HW_COOKIE_CONVERSION
96 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
97 /**
98  * dp_cc_wbm_sw_en_cfg() - configure HW cookie conversion enablement
99 			   per wbm2sw ring
100  * @cc_cfg: HAL HW cookie conversion configuration structure pointer
101  *
102  * Return: None
103  */
104 static inline
105 void dp_cc_wbm_sw_en_cfg(struct hal_hw_cc_config *cc_cfg)
106 {
107 	cc_cfg->wbm2sw6_cc_en = 1;
108 	cc_cfg->wbm2sw5_cc_en = 1;
109 	cc_cfg->wbm2sw4_cc_en = 1;
110 	cc_cfg->wbm2sw3_cc_en = 1;
111 	cc_cfg->wbm2sw2_cc_en = 1;
112 	/* disable wbm2sw1 hw cc as it's for FW */
113 	cc_cfg->wbm2sw1_cc_en = 0;
114 	cc_cfg->wbm2sw0_cc_en = 1;
115 	cc_cfg->wbm2fw_cc_en = 0;
116 }
117 #else
118 static inline
119 void dp_cc_wbm_sw_en_cfg(struct hal_hw_cc_config *cc_cfg)
120 {
121 	cc_cfg->wbm2sw6_cc_en = 1;
122 	cc_cfg->wbm2sw5_cc_en = 1;
123 	cc_cfg->wbm2sw4_cc_en = 1;
124 	cc_cfg->wbm2sw3_cc_en = 1;
125 	cc_cfg->wbm2sw2_cc_en = 1;
126 	cc_cfg->wbm2sw1_cc_en = 1;
127 	cc_cfg->wbm2sw0_cc_en = 1;
128 	cc_cfg->wbm2fw_cc_en = 0;
129 }
130 #endif
131 
132 #if defined(WLAN_SUPPORT_RX_FISA)
133 static QDF_STATUS dp_fisa_fst_cmem_addr_init(struct dp_soc *soc)
134 {
135 	dp_info("cmem base 0x%llx, total size 0x%llx avail_size 0x%llx",
136 		soc->cmem_base, soc->cmem_total_size, soc->cmem_avail_size);
137 	/* get CMEM for cookie conversion */
138 	if (soc->cmem_avail_size < DP_CMEM_FST_SIZE) {
139 		dp_err("cmem_size 0x%llx bytes < 16K", soc->cmem_avail_size);
140 		return QDF_STATUS_E_NOMEM;
141 	}
142 
143 	soc->fst_cmem_size = DP_CMEM_FST_SIZE;
144 
145 	soc->fst_cmem_base = soc->cmem_base +
146 			     (soc->cmem_total_size - soc->cmem_avail_size);
147 	soc->cmem_avail_size -= soc->fst_cmem_size;
148 
149 	dp_info("fst_cmem_base 0x%llx, fst_cmem_size 0x%llx",
150 		soc->fst_cmem_base, soc->fst_cmem_size);
151 
152 	return QDF_STATUS_SUCCESS;
153 }
154 #else /* !WLAN_SUPPORT_RX_FISA */
155 static QDF_STATUS dp_fisa_fst_cmem_addr_init(struct dp_soc *soc)
156 {
157 	return QDF_STATUS_SUCCESS;
158 }
159 #endif
160 
161 /**
162  * dp_cc_reg_cfg_init() - initialize and configure HW cookie
163 			  conversion register
164  * @soc: SOC handle
165  * @is_4k_align: page address 4k alignd
166  *
167  * Return: None
168  */
169 static void dp_cc_reg_cfg_init(struct dp_soc *soc,
170 			       bool is_4k_align)
171 {
172 	struct hal_hw_cc_config cc_cfg = { 0 };
173 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
174 
175 	if (soc->cdp_soc.ol_ops->get_con_mode &&
176 	    soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_FTM_MODE)
177 		return;
178 
179 	if (!soc->wlan_cfg_ctx->hw_cc_enabled) {
180 		dp_info("INI skip HW CC register setting");
181 		return;
182 	}
183 
184 	cc_cfg.lut_base_addr_31_0 = be_soc->cc_cmem_base;
185 	cc_cfg.cc_global_en = true;
186 	cc_cfg.page_4k_align = is_4k_align;
187 	cc_cfg.cookie_offset_msb = DP_CC_DESC_ID_SPT_VA_OS_MSB;
188 	cc_cfg.cookie_page_msb = DP_CC_DESC_ID_PPT_PAGE_OS_MSB;
189 	/* 36th bit should be 1 then HW know this is CMEM address */
190 	cc_cfg.lut_base_addr_39_32 = 0x10;
191 
192 	cc_cfg.error_path_cookie_conv_en = true;
193 	cc_cfg.release_path_cookie_conv_en = true;
194 	dp_cc_wbm_sw_en_cfg(&cc_cfg);
195 
196 	hal_cookie_conversion_reg_cfg_be(soc->hal_soc, &cc_cfg);
197 }
198 
199 /**
200  * dp_hw_cc_cmem_write() - DP wrapper function for CMEM buffer writing
201  * @hal_soc_hdl: HAL SOC handle
202  * @offset: CMEM address
203  * @value: value to write
204  *
205  * Return: None.
206  */
207 static inline void dp_hw_cc_cmem_write(hal_soc_handle_t hal_soc_hdl,
208 				       uint32_t offset,
209 				       uint32_t value)
210 {
211 	hal_cmem_write(hal_soc_hdl, offset, value);
212 }
213 
214 /**
215  * dp_hw_cc_cmem_addr_init() - Check and initialize CMEM base address for
216 			       HW cookie conversion
217  * @soc: SOC handle
218  * @cc_ctx: cookie conversion context pointer
219  *
220  * Return: 0 in case of success, else error value
221  */
222 static inline QDF_STATUS dp_hw_cc_cmem_addr_init(struct dp_soc *soc)
223 {
224 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
225 
226 	dp_info("cmem base 0x%llx, total size 0x%llx avail_size 0x%llx",
227 		soc->cmem_base, soc->cmem_total_size, soc->cmem_avail_size);
228 	/* get CMEM for cookie conversion */
229 	if (soc->cmem_avail_size < DP_CC_PPT_MEM_SIZE) {
230 		dp_err("cmem_size 0x%llx bytes < 4K", soc->cmem_avail_size);
231 		return QDF_STATUS_E_RESOURCES;
232 	}
233 	be_soc->cc_cmem_base = (uint32_t)(soc->cmem_base +
234 					  DP_CC_MEM_OFFSET_IN_CMEM);
235 
236 	soc->cmem_avail_size -= DP_CC_PPT_MEM_SIZE;
237 
238 	dp_info("cc_cmem_base 0x%x, cmem_avail_size 0x%llx",
239 		be_soc->cc_cmem_base, soc->cmem_avail_size);
240 	return QDF_STATUS_SUCCESS;
241 }
242 
243 static QDF_STATUS dp_get_cmem_allocation(struct dp_soc *soc,
244 					 uint8_t for_feature)
245 {
246 	QDF_STATUS status = QDF_STATUS_E_NOMEM;
247 
248 	switch (for_feature) {
249 	case COOKIE_CONVERSION:
250 		status = dp_hw_cc_cmem_addr_init(soc);
251 		break;
252 	case FISA_FST:
253 		status = dp_fisa_fst_cmem_addr_init(soc);
254 		break;
255 	default:
256 		dp_err("Invalid CMEM request");
257 	}
258 
259 	return status;
260 }
261 
262 #else
263 
264 static inline void dp_cc_reg_cfg_init(struct dp_soc *soc,
265 				      bool is_4k_align) {}
266 
267 static inline void dp_hw_cc_cmem_write(hal_soc_handle_t hal_soc_hdl,
268 				       uint32_t offset,
269 				       uint32_t value)
270 { }
271 
272 static inline QDF_STATUS dp_hw_cc_cmem_addr_init(struct dp_soc *soc)
273 {
274 	return QDF_STATUS_SUCCESS;
275 }
276 
277 static QDF_STATUS dp_get_cmem_allocation(struct dp_soc *soc,
278 					 uint8_t for_feature)
279 {
280 	return QDF_STATUS_SUCCESS;
281 }
282 
283 #endif
284 
285 QDF_STATUS
286 dp_hw_cookie_conversion_attach(struct dp_soc_be *be_soc,
287 			       struct dp_hw_cookie_conversion_t *cc_ctx,
288 			       uint32_t num_descs,
289 			       enum dp_desc_type desc_type,
290 			       uint8_t desc_pool_id)
291 {
292 	struct dp_soc *soc = DP_SOC_BE_GET_SOC(be_soc);
293 	uint32_t num_spt_pages, i = 0;
294 	struct dp_spt_page_desc *spt_desc;
295 	struct qdf_mem_dma_page_t *dma_page;
296 	uint8_t chip_id;
297 
298 	/* estimate how many SPT DDR pages needed */
299 	num_spt_pages = num_descs / DP_CC_SPT_PAGE_MAX_ENTRIES;
300 	num_spt_pages = num_spt_pages <= DP_CC_PPT_MAX_ENTRIES ?
301 					num_spt_pages : DP_CC_PPT_MAX_ENTRIES;
302 	dp_info("num_spt_pages needed %d", num_spt_pages);
303 
304 	dp_desc_multi_pages_mem_alloc(soc, DP_HW_CC_SPT_PAGE_TYPE,
305 				      &cc_ctx->page_pool, qdf_page_size,
306 				      num_spt_pages, 0, false);
307 	if (!cc_ctx->page_pool.dma_pages) {
308 		dp_err("spt ddr pages allocation failed");
309 		return QDF_STATUS_E_RESOURCES;
310 	}
311 	cc_ctx->page_desc_base = qdf_mem_malloc(
312 			num_spt_pages * sizeof(struct dp_spt_page_desc));
313 	if (!cc_ctx->page_desc_base) {
314 		dp_err("spt page descs allocation failed");
315 		goto fail_0;
316 	}
317 
318 	chip_id = dp_mlo_get_chip_id(soc);
319 	cc_ctx->cmem_offset = dp_desc_pool_get_cmem_base(chip_id, desc_pool_id,
320 							 desc_type);
321 
322 	/* initial page desc */
323 	spt_desc = cc_ctx->page_desc_base;
324 	dma_page = cc_ctx->page_pool.dma_pages;
325 	while (i < num_spt_pages) {
326 		/* check if page address 4K aligned */
327 		if (qdf_unlikely(dma_page[i].page_p_addr & 0xFFF)) {
328 			dp_err("non-4k aligned pages addr %pK",
329 			       (void *)dma_page[i].page_p_addr);
330 			goto fail_1;
331 		}
332 
333 		spt_desc[i].page_v_addr =
334 					dma_page[i].page_v_addr_start;
335 		spt_desc[i].page_p_addr =
336 					dma_page[i].page_p_addr;
337 		i++;
338 	}
339 
340 	cc_ctx->total_page_num = num_spt_pages;
341 	qdf_spinlock_create(&cc_ctx->cc_lock);
342 
343 	return QDF_STATUS_SUCCESS;
344 fail_1:
345 	qdf_mem_free(cc_ctx->page_desc_base);
346 fail_0:
347 	dp_desc_multi_pages_mem_free(soc, DP_HW_CC_SPT_PAGE_TYPE,
348 				     &cc_ctx->page_pool, 0, false);
349 
350 	return QDF_STATUS_E_FAILURE;
351 }
352 
353 QDF_STATUS
354 dp_hw_cookie_conversion_detach(struct dp_soc_be *be_soc,
355 			       struct dp_hw_cookie_conversion_t *cc_ctx)
356 {
357 	struct dp_soc *soc = DP_SOC_BE_GET_SOC(be_soc);
358 
359 	qdf_mem_free(cc_ctx->page_desc_base);
360 	dp_desc_multi_pages_mem_free(soc, DP_HW_CC_SPT_PAGE_TYPE,
361 				     &cc_ctx->page_pool, 0, false);
362 	qdf_spinlock_destroy(&cc_ctx->cc_lock);
363 
364 	return QDF_STATUS_SUCCESS;
365 }
366 
367 QDF_STATUS
368 dp_hw_cookie_conversion_init(struct dp_soc_be *be_soc,
369 			     struct dp_hw_cookie_conversion_t *cc_ctx)
370 {
371 	struct dp_soc *soc = DP_SOC_BE_GET_SOC(be_soc);
372 	uint32_t i = 0;
373 	struct dp_spt_page_desc *spt_desc;
374 	uint32_t ppt_index;
375 	uint32_t ppt_id_start;
376 
377 	if (!cc_ctx->total_page_num) {
378 		dp_err("total page num is 0");
379 		return QDF_STATUS_E_INVAL;
380 	}
381 
382 	ppt_id_start = DP_CMEM_OFFSET_TO_PPT_ID(cc_ctx->cmem_offset);
383 	spt_desc = cc_ctx->page_desc_base;
384 	while (i < cc_ctx->total_page_num) {
385 		/* write page PA to CMEM */
386 		dp_hw_cc_cmem_write(soc->hal_soc,
387 				    (cc_ctx->cmem_offset + be_soc->cc_cmem_base
388 				     + (i * DP_CC_PPT_ENTRY_SIZE_4K_ALIGNED)),
389 				    (spt_desc[i].page_p_addr >>
390 				     DP_CC_PPT_ENTRY_HW_APEND_BITS_4K_ALIGNED));
391 
392 		ppt_index = ppt_id_start + i;
393 
394 		if (ppt_index >= DP_CC_PPT_MAX_ENTRIES)
395 			qdf_assert_always(0);
396 
397 		spt_desc[i].ppt_index = ppt_index;
398 
399 		be_soc->page_desc_base[ppt_index].page_v_addr =
400 				spt_desc[i].page_v_addr;
401 		i++;
402 	}
403 	return QDF_STATUS_SUCCESS;
404 }
405 
406 #if defined(WLAN_MAX_PDEVS) && (WLAN_MAX_PDEVS == 1)
407 QDF_STATUS
408 dp_hw_cookie_conversion_deinit(struct dp_soc_be *be_soc,
409 			       struct dp_hw_cookie_conversion_t *cc_ctx)
410 {
411 	uint32_t ppt_index;
412 	struct dp_spt_page_desc *spt_desc;
413 	int i = 0;
414 
415 	spt_desc = cc_ctx->page_desc_base;
416 	while (i < cc_ctx->total_page_num) {
417 		ppt_index = spt_desc[i].ppt_index;
418 		be_soc->page_desc_base[ppt_index].page_v_addr = NULL;
419 		i++;
420 	}
421 	return QDF_STATUS_SUCCESS;
422 }
423 #else
424 QDF_STATUS
425 dp_hw_cookie_conversion_deinit(struct dp_soc_be *be_soc,
426 			       struct dp_hw_cookie_conversion_t *cc_ctx)
427 {
428 	struct dp_soc *soc = DP_SOC_BE_GET_SOC(be_soc);
429 	uint32_t ppt_index;
430 	struct dp_spt_page_desc *spt_desc;
431 	int i = 0;
432 
433 	spt_desc = cc_ctx->page_desc_base;
434 	while (i < cc_ctx->total_page_num) {
435 		/* reset PA in CMEM to NULL */
436 		dp_hw_cc_cmem_write(soc->hal_soc,
437 				    (cc_ctx->cmem_offset + be_soc->cc_cmem_base
438 				     + (i * DP_CC_PPT_ENTRY_SIZE_4K_ALIGNED)),
439 				    0);
440 
441 		ppt_index = spt_desc[i].ppt_index;
442 		be_soc->page_desc_base[ppt_index].page_v_addr = NULL;
443 		i++;
444 	}
445 	return QDF_STATUS_SUCCESS;
446 }
447 #endif
448 
449 static QDF_STATUS dp_soc_detach_be(struct dp_soc *soc)
450 {
451 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
452 	int i = 0;
453 
454 
455 	for (i = 0; i < MAX_TXDESC_POOLS; i++)
456 		dp_hw_cookie_conversion_detach(be_soc,
457 					       &be_soc->tx_cc_ctx[i]);
458 
459 	for (i = 0; i < MAX_RXDESC_POOLS; i++)
460 		dp_hw_cookie_conversion_detach(be_soc,
461 					       &be_soc->rx_cc_ctx[i]);
462 
463 	qdf_mem_free(be_soc->page_desc_base);
464 	be_soc->page_desc_base = NULL;
465 
466 	return QDF_STATUS_SUCCESS;
467 }
468 
469 #ifdef WLAN_MLO_MULTI_CHIP
470 #ifdef WLAN_MCAST_MLO
471 static inline void
472 dp_mlo_mcast_init(struct dp_soc *soc, struct dp_vdev *vdev)
473 {
474 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
475 
476 	be_vdev->mcast_primary = false;
477 	be_vdev->seq_num = 0;
478 	dp_tx_mcast_mlo_reinject_routing_set(soc,
479 					     (void *)&be_vdev->mcast_primary);
480 	if (vdev->opmode == wlan_op_mode_ap) {
481 		if (vdev->mlo_vdev)
482 			hal_tx_vdev_mcast_ctrl_set(vdev->pdev->soc->hal_soc,
483 						   vdev->vdev_id,
484 						   HAL_TX_MCAST_CTRL_DROP);
485 		else
486 			hal_tx_vdev_mcast_ctrl_set(vdev->pdev->soc->hal_soc,
487 						   vdev->vdev_id,
488 						   HAL_TX_MCAST_CTRL_FW_EXCEPTION);
489 	}
490 }
491 
492 static inline void
493 dp_mlo_mcast_deinit(struct dp_soc *soc, struct dp_vdev *vdev)
494 {
495 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
496 
497 	be_vdev->seq_num = 0;
498 	be_vdev->mcast_primary = false;
499 	vdev->mlo_vdev = false;
500 }
501 #else
502 static inline void
503 dp_mlo_mcast_init(struct dp_soc *soc, struct dp_vdev *vdev)
504 {
505 }
506 
507 static inline void
508 dp_mlo_mcast_deinit(struct dp_soc *soc, struct dp_vdev *vdev)
509 {
510 }
511 #endif
512 static void dp_mlo_init_ptnr_list(struct dp_vdev *vdev)
513 {
514 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
515 
516 	qdf_mem_set(be_vdev->partner_vdev_list,
517 		    WLAN_MAX_MLO_CHIPS * WLAN_MAX_MLO_LINKS_PER_SOC,
518 		    CDP_INVALID_VDEV_ID);
519 }
520 
521 static void dp_get_rx_hash_key_be(struct dp_soc *soc,
522 				  struct cdp_lro_hash_config *lro_hash)
523 {
524 	dp_mlo_get_rx_hash_key(soc, lro_hash);
525 }
526 #else
527 static inline void
528 dp_mlo_mcast_init(struct dp_soc *soc, struct dp_vdev *vdev)
529 {
530 }
531 
532 static inline void
533 dp_mlo_mcast_deinit(struct dp_soc *soc, struct dp_vdev *vdev)
534 {
535 }
536 
537 static void dp_mlo_init_ptnr_list(struct dp_vdev *vdev)
538 {
539 }
540 
541 static void dp_get_rx_hash_key_be(struct dp_soc *soc,
542 				  struct cdp_lro_hash_config *lro_hash)
543 {
544 	dp_get_rx_hash_key_bytes(lro_hash);
545 }
546 #endif
547 
548 static QDF_STATUS dp_soc_attach_be(struct dp_soc *soc,
549 				   struct cdp_soc_attach_params *params)
550 {
551 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
552 	QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
553 	uint32_t max_tx_rx_desc_num, num_spt_pages;
554 	uint32_t num_entries;
555 	int i = 0;
556 
557 	max_tx_rx_desc_num = WLAN_CFG_NUM_TX_DESC_MAX * MAX_TXDESC_POOLS +
558 		WLAN_CFG_RX_SW_DESC_NUM_SIZE_MAX * MAX_RXDESC_POOLS;
559 	/* estimate how many SPT DDR pages needed */
560 	num_spt_pages = max_tx_rx_desc_num / DP_CC_SPT_PAGE_MAX_ENTRIES;
561 	num_spt_pages = num_spt_pages <= DP_CC_PPT_MAX_ENTRIES ?
562 					num_spt_pages : DP_CC_PPT_MAX_ENTRIES;
563 
564 	be_soc->page_desc_base = qdf_mem_malloc(
565 		DP_CC_PPT_MAX_ENTRIES * sizeof(struct dp_spt_page_desc));
566 	if (!be_soc->page_desc_base) {
567 		dp_err("spt page descs allocation failed");
568 		return QDF_STATUS_E_NOMEM;
569 	}
570 
571 	soc->wbm_sw0_bm_id = hal_tx_get_wbm_sw0_bm_id();
572 
573 	qdf_status = dp_get_cmem_allocation(soc, COOKIE_CONVERSION);
574 	if (!QDF_IS_STATUS_SUCCESS(qdf_status))
575 		goto fail;
576 
577 	dp_soc_mlo_fill_params(soc, params);
578 
579 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
580 		num_entries = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
581 		qdf_status =
582 			dp_hw_cookie_conversion_attach(be_soc,
583 						       &be_soc->tx_cc_ctx[i],
584 						       num_entries,
585 						       DP_TX_DESC_TYPE, i);
586 		if (!QDF_IS_STATUS_SUCCESS(qdf_status))
587 			goto fail;
588 	}
589 
590 	qdf_status = dp_get_cmem_allocation(soc, FISA_FST);
591 	if (!QDF_IS_STATUS_SUCCESS(qdf_status))
592 		goto fail;
593 
594 	for (i = 0; i < MAX_RXDESC_POOLS; i++) {
595 		num_entries =
596 			wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
597 		qdf_status =
598 			dp_hw_cookie_conversion_attach(be_soc,
599 						       &be_soc->rx_cc_ctx[i],
600 						       num_entries,
601 						       DP_RX_DESC_BUF_TYPE, i);
602 		if (!QDF_IS_STATUS_SUCCESS(qdf_status))
603 			goto fail;
604 	}
605 
606 	return qdf_status;
607 fail:
608 	dp_soc_detach_be(soc);
609 	return qdf_status;
610 }
611 
612 static QDF_STATUS dp_soc_deinit_be(struct dp_soc *soc)
613 {
614 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
615 	int i = 0;
616 
617 	dp_tx_deinit_bank_profiles(be_soc);
618 	for (i = 0; i < MAX_TXDESC_POOLS; i++)
619 		dp_hw_cookie_conversion_deinit(be_soc,
620 					       &be_soc->tx_cc_ctx[i]);
621 
622 	for (i = 0; i < MAX_RXDESC_POOLS; i++)
623 		dp_hw_cookie_conversion_deinit(be_soc,
624 					       &be_soc->rx_cc_ctx[i]);
625 
626 	return QDF_STATUS_SUCCESS;
627 }
628 
629 static QDF_STATUS dp_soc_init_be(struct dp_soc *soc)
630 {
631 	QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
632 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
633 	int i = 0;
634 
635 	for (i = 0; i < MAX_TXDESC_POOLS; i++) {
636 		qdf_status =
637 			dp_hw_cookie_conversion_init(be_soc,
638 						     &be_soc->tx_cc_ctx[i]);
639 		if (!QDF_IS_STATUS_SUCCESS(qdf_status))
640 			goto fail;
641 	}
642 
643 	for (i = 0; i < MAX_RXDESC_POOLS; i++) {
644 		qdf_status =
645 			dp_hw_cookie_conversion_init(be_soc,
646 						     &be_soc->rx_cc_ctx[i]);
647 		if (!QDF_IS_STATUS_SUCCESS(qdf_status))
648 			goto fail;
649 	}
650 
651 	/* route vdev_id mismatch notification via FW completion */
652 	hal_tx_vdev_mismatch_routing_set(soc->hal_soc,
653 					 HAL_TX_VDEV_MISMATCH_FW_NOTIFY);
654 
655 	qdf_status = dp_tx_init_bank_profiles(be_soc);
656 	if (!QDF_IS_STATUS_SUCCESS(qdf_status))
657 		goto fail;
658 
659 	/* write WBM/REO cookie conversion CFG register */
660 	dp_cc_reg_cfg_init(soc, true);
661 
662 	return qdf_status;
663 fail:
664 	dp_soc_deinit_be(soc);
665 	return qdf_status;
666 }
667 
668 static QDF_STATUS dp_pdev_attach_be(struct dp_pdev *pdev,
669 				    struct cdp_pdev_attach_params *params)
670 {
671 	dp_pdev_mlo_fill_params(pdev, params);
672 	dp_mlo_update_link_to_pdev_map(pdev->soc, pdev);
673 
674 	return QDF_STATUS_SUCCESS;
675 }
676 
677 static QDF_STATUS dp_pdev_detach_be(struct dp_pdev *pdev)
678 {
679 	dp_mlo_update_link_to_pdev_unmap(pdev->soc, pdev);
680 
681 	return QDF_STATUS_SUCCESS;
682 }
683 
684 static QDF_STATUS dp_vdev_attach_be(struct dp_soc *soc, struct dp_vdev *vdev)
685 {
686 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
687 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
688 	struct dp_pdev *pdev = vdev->pdev;
689 
690 	if (vdev->opmode == wlan_op_mode_monitor)
691 		return QDF_STATUS_SUCCESS;
692 
693 	be_vdev->vdev_id_check_en = DP_TX_VDEV_ID_CHECK_ENABLE;
694 
695 	be_vdev->bank_id = dp_tx_get_bank_profile(be_soc, be_vdev);
696 	vdev->bank_id = be_vdev->bank_id;
697 
698 	if (be_vdev->bank_id == DP_BE_INVALID_BANK_ID) {
699 		QDF_BUG(0);
700 		return QDF_STATUS_E_FAULT;
701 	}
702 
703 	if (vdev->opmode == wlan_op_mode_sta) {
704 		if (soc->cdp_soc.ol_ops->set_mec_timer)
705 			soc->cdp_soc.ol_ops->set_mec_timer(
706 					soc->ctrl_psoc,
707 					vdev->vdev_id,
708 					DP_AST_AGING_TIMER_DEFAULT_MS);
709 
710 		if (pdev->isolation)
711 			hal_tx_vdev_mcast_ctrl_set(soc->hal_soc, vdev->vdev_id,
712 						   HAL_TX_MCAST_CTRL_FW_EXCEPTION);
713 		else
714 			hal_tx_vdev_mcast_ctrl_set(soc->hal_soc, vdev->vdev_id,
715 						   HAL_TX_MCAST_CTRL_MEC_NOTIFY);
716 	}
717 
718 	dp_mlo_mcast_init(soc, vdev);
719 	dp_mlo_init_ptnr_list(vdev);
720 
721 	return QDF_STATUS_SUCCESS;
722 }
723 
724 static QDF_STATUS dp_vdev_detach_be(struct dp_soc *soc, struct dp_vdev *vdev)
725 {
726 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
727 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
728 
729 	if (vdev->opmode == wlan_op_mode_monitor)
730 		return QDF_STATUS_SUCCESS;
731 
732 	if (vdev->opmode == wlan_op_mode_ap)
733 		dp_mlo_mcast_deinit(soc, vdev);
734 
735 	dp_tx_put_bank_profile(be_soc, be_vdev);
736 	dp_clr_mlo_ptnr_list(soc, vdev);
737 
738 	return QDF_STATUS_SUCCESS;
739 }
740 
741 qdf_size_t dp_get_soc_context_size_be(void)
742 {
743 	return sizeof(struct dp_soc_be);
744 }
745 
746 #ifdef NO_RX_PKT_HDR_TLV
747 /**
748  * dp_rxdma_ring_sel_cfg_be() - Setup RXDMA ring config
749  * @soc: Common DP soc handle
750  *
751  * Return: QDF_STATUS
752  */
753 static QDF_STATUS
754 dp_rxdma_ring_sel_cfg_be(struct dp_soc *soc)
755 {
756 	int i;
757 	int mac_id;
758 	struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
759 	struct dp_srng *rx_mac_srng;
760 	QDF_STATUS status = QDF_STATUS_SUCCESS;
761 
762 	/*
763 	 * In Beryllium chipset msdu_start, mpdu_end
764 	 * and rx_attn are part of msdu_end/mpdu_start
765 	 */
766 	htt_tlv_filter.msdu_start = 0;
767 	htt_tlv_filter.mpdu_end = 0;
768 	htt_tlv_filter.attention = 0;
769 	htt_tlv_filter.mpdu_start = 1;
770 	htt_tlv_filter.msdu_end = 1;
771 	htt_tlv_filter.packet = 1;
772 	htt_tlv_filter.packet_header = 0;
773 
774 	htt_tlv_filter.ppdu_start = 0;
775 	htt_tlv_filter.ppdu_end = 0;
776 	htt_tlv_filter.ppdu_end_user_stats = 0;
777 	htt_tlv_filter.ppdu_end_user_stats_ext = 0;
778 	htt_tlv_filter.ppdu_end_status_done = 0;
779 	htt_tlv_filter.enable_fp = 1;
780 	htt_tlv_filter.enable_md = 0;
781 	htt_tlv_filter.enable_md = 0;
782 	htt_tlv_filter.enable_mo = 0;
783 
784 	htt_tlv_filter.fp_mgmt_filter = 0;
785 	htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_BA_REQ;
786 	htt_tlv_filter.fp_data_filter = (FILTER_DATA_UCAST |
787 					 FILTER_DATA_MCAST |
788 					 FILTER_DATA_DATA);
789 	htt_tlv_filter.mo_mgmt_filter = 0;
790 	htt_tlv_filter.mo_ctrl_filter = 0;
791 	htt_tlv_filter.mo_data_filter = 0;
792 	htt_tlv_filter.md_data_filter = 0;
793 
794 	htt_tlv_filter.offset_valid = true;
795 
796 	/* Not subscribing to mpdu_end, msdu_start and rx_attn */
797 	htt_tlv_filter.rx_mpdu_end_offset = 0;
798 	htt_tlv_filter.rx_msdu_start_offset = 0;
799 	htt_tlv_filter.rx_attn_offset = 0;
800 
801 	htt_tlv_filter.rx_packet_offset = soc->rx_pkt_tlv_size;
802 	/*Not subscribing rx_pkt_header*/
803 	htt_tlv_filter.rx_header_offset = 0;
804 	htt_tlv_filter.rx_mpdu_start_offset =
805 				hal_rx_mpdu_start_offset_get(soc->hal_soc);
806 	htt_tlv_filter.rx_msdu_end_offset =
807 				hal_rx_msdu_end_offset_get(soc->hal_soc);
808 
809 	for (i = 0; i < MAX_PDEV_CNT; i++) {
810 		struct dp_pdev *pdev = soc->pdev_list[i];
811 
812 		if (!pdev)
813 			continue;
814 
815 		for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
816 			int mac_for_pdev =
817 				dp_get_mac_id_for_pdev(mac_id, pdev->pdev_id);
818 			/*
819 			 * Obtain lmac id from pdev to access the LMAC ring
820 			 * in soc context
821 			 */
822 			int lmac_id =
823 				dp_get_lmac_id_for_pdev_id(soc, mac_id,
824 							   pdev->pdev_id);
825 
826 			rx_mac_srng = dp_get_rxdma_ring(pdev, lmac_id);
827 
828 			if (!rx_mac_srng->hal_srng)
829 				continue;
830 
831 			htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
832 					    rx_mac_srng->hal_srng,
833 					    RXDMA_BUF, RX_DATA_BUFFER_SIZE,
834 					    &htt_tlv_filter);
835 		}
836 	}
837 	return status;
838 }
839 #else
840 /**
841  * dp_rxdma_ring_sel_cfg_be() - Setup RXDMA ring config
842  * @soc: Common DP soc handle
843  *
844  * Return: QDF_STATUS
845  */
846 static QDF_STATUS
847 dp_rxdma_ring_sel_cfg_be(struct dp_soc *soc)
848 {
849 	int i;
850 	int mac_id;
851 	struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
852 	struct dp_srng *rx_mac_srng;
853 	QDF_STATUS status = QDF_STATUS_SUCCESS;
854 
855 	/*
856 	 * In Beryllium chipset msdu_start, mpdu_end
857 	 * and rx_attn are part of msdu_end/mpdu_start
858 	 */
859 	htt_tlv_filter.msdu_start = 0;
860 	htt_tlv_filter.mpdu_end = 0;
861 	htt_tlv_filter.attention = 0;
862 	htt_tlv_filter.mpdu_start = 1;
863 	htt_tlv_filter.msdu_end = 1;
864 	htt_tlv_filter.packet = 1;
865 	htt_tlv_filter.packet_header = 1;
866 
867 	htt_tlv_filter.ppdu_start = 0;
868 	htt_tlv_filter.ppdu_end = 0;
869 	htt_tlv_filter.ppdu_end_user_stats = 0;
870 	htt_tlv_filter.ppdu_end_user_stats_ext = 0;
871 	htt_tlv_filter.ppdu_end_status_done = 0;
872 	htt_tlv_filter.enable_fp = 1;
873 	htt_tlv_filter.enable_md = 0;
874 	htt_tlv_filter.enable_md = 0;
875 	htt_tlv_filter.enable_mo = 0;
876 
877 	htt_tlv_filter.fp_mgmt_filter = 0;
878 	htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_BA_REQ;
879 	htt_tlv_filter.fp_data_filter = (FILTER_DATA_UCAST |
880 					 FILTER_DATA_MCAST |
881 					 FILTER_DATA_DATA);
882 	htt_tlv_filter.mo_mgmt_filter = 0;
883 	htt_tlv_filter.mo_ctrl_filter = 0;
884 	htt_tlv_filter.mo_data_filter = 0;
885 	htt_tlv_filter.md_data_filter = 0;
886 
887 	htt_tlv_filter.offset_valid = true;
888 
889 	/* Not subscribing to mpdu_end, msdu_start and rx_attn */
890 	htt_tlv_filter.rx_mpdu_end_offset = 0;
891 	htt_tlv_filter.rx_msdu_start_offset = 0;
892 	htt_tlv_filter.rx_attn_offset = 0;
893 
894 	htt_tlv_filter.rx_packet_offset = soc->rx_pkt_tlv_size;
895 	htt_tlv_filter.rx_header_offset =
896 				hal_rx_pkt_tlv_offset_get(soc->hal_soc);
897 	htt_tlv_filter.rx_mpdu_start_offset =
898 				hal_rx_mpdu_start_offset_get(soc->hal_soc);
899 	htt_tlv_filter.rx_msdu_end_offset =
900 				hal_rx_msdu_end_offset_get(soc->hal_soc);
901 
902 	dp_info("TLV subscription\n"
903 		"msdu_start %d, mpdu_end %d, attention %d"
904 		"mpdu_start %d, msdu_end %d, pkt_hdr %d, pkt %d\n"
905 		"TLV offsets\n"
906 		"msdu_start %d, mpdu_end %d, attention %d"
907 		"mpdu_start %d, msdu_end %d, pkt_hdr %d, pkt %d\n",
908 		htt_tlv_filter.msdu_start,
909 		htt_tlv_filter.mpdu_end,
910 		htt_tlv_filter.attention,
911 		htt_tlv_filter.mpdu_start,
912 		htt_tlv_filter.msdu_end,
913 		htt_tlv_filter.packet_header,
914 		htt_tlv_filter.packet,
915 		htt_tlv_filter.rx_msdu_start_offset,
916 		htt_tlv_filter.rx_mpdu_end_offset,
917 		htt_tlv_filter.rx_attn_offset,
918 		htt_tlv_filter.rx_mpdu_start_offset,
919 		htt_tlv_filter.rx_msdu_end_offset,
920 		htt_tlv_filter.rx_header_offset,
921 		htt_tlv_filter.rx_packet_offset);
922 
923 	for (i = 0; i < MAX_PDEV_CNT; i++) {
924 		struct dp_pdev *pdev = soc->pdev_list[i];
925 
926 		if (!pdev)
927 			continue;
928 
929 		for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
930 			int mac_for_pdev =
931 				dp_get_mac_id_for_pdev(mac_id, pdev->pdev_id);
932 			/*
933 			 * Obtain lmac id from pdev to access the LMAC ring
934 			 * in soc context
935 			 */
936 			int lmac_id =
937 				dp_get_lmac_id_for_pdev_id(soc, mac_id,
938 							   pdev->pdev_id);
939 
940 			rx_mac_srng = dp_get_rxdma_ring(pdev, lmac_id);
941 
942 			if (!rx_mac_srng->hal_srng)
943 				continue;
944 
945 			htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
946 					    rx_mac_srng->hal_srng,
947 					    RXDMA_BUF, RX_DATA_BUFFER_SIZE,
948 					    &htt_tlv_filter);
949 		}
950 	}
951 	return status;
952 
953 }
954 #endif
955 
956 #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
957 /**
958  * dp_service_near_full_srngs_be() - Main bottom half callback for the
959  *				near-full IRQs.
960  * @soc: Datapath SoC handle
961  * @int_ctx: Interrupt context
962  * @dp_budget: Budget of the work that can be done in the bottom half
963  *
964  * Return: work done in the handler
965  */
966 static uint32_t
967 dp_service_near_full_srngs_be(struct dp_soc *soc, struct dp_intr *int_ctx,
968 			      uint32_t dp_budget)
969 {
970 	int ring = 0;
971 	int budget = dp_budget;
972 	uint32_t work_done  = 0;
973 	uint32_t remaining_quota = dp_budget;
974 	struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
975 	int tx_ring_near_full_mask = int_ctx->tx_ring_near_full_mask;
976 	int rx_near_full_grp_1_mask = int_ctx->rx_near_full_grp_1_mask;
977 	int rx_near_full_grp_2_mask = int_ctx->rx_near_full_grp_2_mask;
978 	int rx_near_full_mask = rx_near_full_grp_1_mask |
979 				rx_near_full_grp_2_mask;
980 
981 	dp_verbose_debug("rx_ring_near_full 0x%x tx_ring_near_full 0x%x",
982 			 rx_near_full_mask,
983 			 tx_ring_near_full_mask);
984 
985 	if (rx_near_full_mask) {
986 		for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
987 			if (!(rx_near_full_mask & (1 << ring)))
988 				continue;
989 
990 			work_done = dp_rx_nf_process(int_ctx,
991 					soc->reo_dest_ring[ring].hal_srng,
992 					ring, remaining_quota);
993 			if (work_done) {
994 				intr_stats->num_rx_ring_near_full_masks[ring]++;
995 				dp_verbose_debug("rx NF mask 0x%x ring %d, work_done %d budget %d",
996 						 rx_near_full_mask, ring,
997 						 work_done,
998 						 budget);
999 				budget -=  work_done;
1000 				if (budget <= 0)
1001 					goto budget_done;
1002 				remaining_quota = budget;
1003 			}
1004 		}
1005 	}
1006 
1007 	if (tx_ring_near_full_mask) {
1008 		for (ring = 0; ring < soc->num_tcl_data_rings; ring++) {
1009 			if (!(tx_ring_near_full_mask & (1 << ring)))
1010 				continue;
1011 
1012 			work_done = dp_tx_comp_nf_handler(int_ctx, soc,
1013 					soc->tx_comp_ring[ring].hal_srng,
1014 					ring, remaining_quota);
1015 			if (work_done) {
1016 				intr_stats->num_tx_comp_ring_near_full_masks[ring]++;
1017 				dp_verbose_debug("tx NF mask 0x%x ring %d, work_done %d budget %d",
1018 						 tx_ring_near_full_mask, ring,
1019 						 work_done, budget);
1020 				budget -=  work_done;
1021 				if (budget <= 0)
1022 					break;
1023 				remaining_quota = budget;
1024 			}
1025 		}
1026 	}
1027 
1028 	intr_stats->num_near_full_masks++;
1029 
1030 budget_done:
1031 	return dp_budget - budget;
1032 }
1033 
1034 /**
1035  * dp_srng_test_and_update_nf_params_be() - Check if the srng is in near full
1036  *				state and set the reap_limit appropriately
1037  *				as per the near full state
1038  * @soc: Datapath soc handle
1039  * @dp_srng: Datapath handle for SRNG
1040  * @max_reap_limit: [Output Buffer] Buffer to set the max reap limit as per
1041  *			the srng near-full state
1042  *
1043  * Return: 1, if the srng is in near-full state
1044  *	   0, if the srng is not in near-full state
1045  */
1046 static int
1047 dp_srng_test_and_update_nf_params_be(struct dp_soc *soc,
1048 				     struct dp_srng *dp_srng,
1049 				     int *max_reap_limit)
1050 {
1051 	return _dp_srng_test_and_update_nf_params(soc, dp_srng, max_reap_limit);
1052 }
1053 
1054 /**
1055  * dp_init_near_full_arch_ops_be() - Initialize the arch ops handler for the
1056  *			near full IRQ handling operations.
1057  * @arch_ops: arch ops handle
1058  *
1059  * Return: none
1060  */
1061 static inline void
1062 dp_init_near_full_arch_ops_be(struct dp_arch_ops *arch_ops)
1063 {
1064 	arch_ops->dp_service_near_full_srngs = dp_service_near_full_srngs_be;
1065 	arch_ops->dp_srng_test_and_update_nf_params =
1066 					dp_srng_test_and_update_nf_params_be;
1067 }
1068 
1069 #else
1070 static inline void
1071 dp_init_near_full_arch_ops_be(struct dp_arch_ops *arch_ops)
1072 {
1073 }
1074 #endif
1075 
1076 #ifdef WLAN_SUPPORT_PPEDS
1077 static void dp_soc_ppe_srng_deinit(struct dp_soc *soc)
1078 {
1079 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1080 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1081 
1082 	soc_cfg_ctx = soc->wlan_cfg_ctx;
1083 
1084 	if (!wlan_cfg_get_dp_soc_is_ppe_enabled(soc_cfg_ctx))
1085 		return;
1086 
1087 	dp_srng_deinit(soc, &be_soc->ppe_release_ring, PPE_RELEASE, 0);
1088 	wlan_minidump_remove(be_soc->ppe_release_ring.base_vaddr_unaligned,
1089 			     be_soc->ppe_release_ring.alloc_size,
1090 			     soc->ctrl_psoc,
1091 			     WLAN_MD_DP_SRNG_PPE_RELEASE,
1092 			     "ppe_release_ring");
1093 
1094 	dp_srng_deinit(soc, &be_soc->ppe2tcl_ring, PPE2TCL, 0);
1095 	wlan_minidump_remove(be_soc->ppe2tcl_ring.base_vaddr_unaligned,
1096 			     be_soc->ppe2tcl_ring.alloc_size,
1097 			     soc->ctrl_psoc,
1098 			     WLAN_MD_DP_SRNG_PPE2TCL,
1099 			     "ppe2tcl_ring");
1100 
1101 	dp_srng_deinit(soc, &be_soc->reo2ppe_ring, REO2PPE, 0);
1102 	wlan_minidump_remove(be_soc->reo2ppe_ring.base_vaddr_unaligned,
1103 			     be_soc->reo2ppe_ring.alloc_size,
1104 			     soc->ctrl_psoc,
1105 			     WLAN_MD_DP_SRNG_REO2PPE,
1106 			     "reo2ppe_ring");
1107 }
1108 
1109 static void dp_soc_ppe_srng_free(struct dp_soc *soc)
1110 {
1111 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1112 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1113 
1114 	soc_cfg_ctx = soc->wlan_cfg_ctx;
1115 
1116 	if (!wlan_cfg_get_dp_soc_is_ppe_enabled(soc_cfg_ctx))
1117 		return;
1118 
1119 	dp_srng_free(soc, &be_soc->ppe_release_ring);
1120 
1121 	dp_srng_free(soc, &be_soc->ppe2tcl_ring);
1122 
1123 	dp_srng_free(soc, &be_soc->reo2ppe_ring);
1124 }
1125 
1126 static QDF_STATUS dp_soc_ppe_srng_alloc(struct dp_soc *soc)
1127 {
1128 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1129 	uint32_t entries;
1130 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1131 
1132 	soc_cfg_ctx = soc->wlan_cfg_ctx;
1133 
1134 	if (!wlan_cfg_get_dp_soc_is_ppe_enabled(soc_cfg_ctx))
1135 		return QDF_STATUS_SUCCESS;
1136 
1137 	entries = wlan_cfg_get_dp_soc_reo2ppe_ring_size(soc_cfg_ctx);
1138 
1139 	if (dp_srng_alloc(soc, &be_soc->reo2ppe_ring, REO2PPE,
1140 			  entries, 0)) {
1141 		dp_err("%pK: dp_srng_alloc failed for reo2ppe", soc);
1142 		goto fail;
1143 	}
1144 
1145 	entries = wlan_cfg_get_dp_soc_ppe2tcl_ring_size(soc_cfg_ctx);
1146 	if (dp_srng_alloc(soc, &be_soc->ppe2tcl_ring, PPE2TCL,
1147 			  entries, 0)) {
1148 		dp_err("%pK: dp_srng_alloc failed for ppe2tcl_ring", soc);
1149 		goto fail;
1150 	}
1151 
1152 	entries = wlan_cfg_get_dp_soc_ppe_release_ring_size(soc_cfg_ctx);
1153 	if (dp_srng_alloc(soc, &be_soc->ppe_release_ring, PPE_RELEASE,
1154 			  entries, 0)) {
1155 		dp_err("%pK: dp_srng_alloc failed for ppe_release_ring", soc);
1156 		goto fail;
1157 	}
1158 
1159 	return QDF_STATUS_SUCCESS;
1160 fail:
1161 	dp_soc_ppe_srng_free(soc);
1162 	return QDF_STATUS_E_NOMEM;
1163 }
1164 
1165 static QDF_STATUS dp_soc_ppe_srng_init(struct dp_soc *soc)
1166 {
1167 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1168 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1169 	hal_soc_handle_t hal_soc = soc->hal_soc;
1170 
1171 	soc_cfg_ctx = soc->wlan_cfg_ctx;
1172 
1173 	if (!wlan_cfg_get_dp_soc_is_ppe_enabled(soc_cfg_ctx))
1174 		return QDF_STATUS_SUCCESS;
1175 
1176 	if (dp_srng_init(soc, &be_soc->reo2ppe_ring, REO2PPE, 0, 0)) {
1177 		dp_err("%pK: dp_srng_init failed for reo2ppe", soc);
1178 		goto fail;
1179 	}
1180 
1181 	wlan_minidump_log(be_soc->reo2ppe_ring.base_vaddr_unaligned,
1182 			  be_soc->reo2ppe_ring.alloc_size,
1183 			  soc->ctrl_psoc,
1184 			  WLAN_MD_DP_SRNG_REO2PPE,
1185 			  "reo2ppe_ring");
1186 
1187 	hal_reo_config_reo2ppe_dest_info(hal_soc);
1188 
1189 	if (dp_srng_init(soc, &be_soc->ppe2tcl_ring, PPE2TCL, 0, 0)) {
1190 		dp_err("%pK: dp_srng_init failed for ppe2tcl_ring", soc);
1191 		goto fail;
1192 	}
1193 
1194 	wlan_minidump_log(be_soc->ppe2tcl_ring.base_vaddr_unaligned,
1195 			  be_soc->ppe2tcl_ring.alloc_size,
1196 			  soc->ctrl_psoc,
1197 			  WLAN_MD_DP_SRNG_PPE2TCL,
1198 			  "ppe2tcl_ring");
1199 
1200 	if (dp_srng_init(soc, &be_soc->ppe_release_ring, PPE_RELEASE, 0, 0)) {
1201 		dp_err("%pK: dp_srng_init failed for ppe_release_ring", soc);
1202 		goto fail;
1203 	}
1204 
1205 	wlan_minidump_log(be_soc->ppe_release_ring.base_vaddr_unaligned,
1206 			  be_soc->ppe_release_ring.alloc_size,
1207 			  soc->ctrl_psoc,
1208 			  WLAN_MD_DP_SRNG_PPE_RELEASE,
1209 			  "ppe_release_ring");
1210 
1211 	return QDF_STATUS_SUCCESS;
1212 fail:
1213 	dp_soc_ppe_srng_deinit(soc);
1214 	return QDF_STATUS_E_NOMEM;
1215 }
1216 #else
1217 static void dp_soc_ppe_srng_deinit(struct dp_soc *soc)
1218 {
1219 }
1220 
1221 static void dp_soc_ppe_srng_free(struct dp_soc *soc)
1222 {
1223 }
1224 
1225 static QDF_STATUS dp_soc_ppe_srng_alloc(struct dp_soc *soc)
1226 {
1227 	return QDF_STATUS_SUCCESS;
1228 }
1229 
1230 static QDF_STATUS dp_soc_ppe_srng_init(struct dp_soc *soc)
1231 {
1232 	return QDF_STATUS_SUCCESS;
1233 }
1234 #endif
1235 
1236 static void dp_soc_srng_deinit_be(struct dp_soc *soc)
1237 {
1238 	uint32_t i;
1239 
1240 	dp_soc_ppe_srng_deinit(soc);
1241 
1242 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1243 		for (i = 0; i < soc->num_rx_refill_buf_rings; i++) {
1244 			dp_srng_deinit(soc, &soc->rx_refill_buf_ring[i],
1245 				       RXDMA_BUF, 0);
1246 		}
1247 	}
1248 }
1249 
1250 static void dp_soc_srng_free_be(struct dp_soc *soc)
1251 {
1252 	uint32_t i;
1253 
1254 	dp_soc_ppe_srng_free(soc);
1255 
1256 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1257 		for (i = 0; i < soc->num_rx_refill_buf_rings; i++)
1258 			dp_srng_free(soc, &soc->rx_refill_buf_ring[i]);
1259 	}
1260 }
1261 
1262 static QDF_STATUS dp_soc_srng_alloc_be(struct dp_soc *soc)
1263 {
1264 	struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
1265 	uint32_t ring_size;
1266 	uint32_t i;
1267 
1268 	soc_cfg_ctx = soc->wlan_cfg_ctx;
1269 
1270 	ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
1271 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1272 		for (i = 0; i < soc->num_rx_refill_buf_rings; i++) {
1273 			if (dp_srng_alloc(soc, &soc->rx_refill_buf_ring[i],
1274 					  RXDMA_BUF, ring_size, 0)) {
1275 				dp_err("%pK: dp_srng_alloc failed refill ring",
1276 				       soc);
1277 				goto fail;
1278 			}
1279 		}
1280 	}
1281 
1282 	if (dp_soc_ppe_srng_alloc(soc)) {
1283 		dp_err("%pK: ppe rings alloc failed",
1284 		       soc);
1285 		goto fail;
1286 	}
1287 
1288 	return QDF_STATUS_SUCCESS;
1289 fail:
1290 	dp_soc_srng_free_be(soc);
1291 	return QDF_STATUS_E_NOMEM;
1292 }
1293 
1294 static QDF_STATUS dp_soc_srng_init_be(struct dp_soc *soc)
1295 {
1296 	int i = 0;
1297 
1298 	if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
1299 		for (i = 0; i < soc->num_rx_refill_buf_rings; i++) {
1300 			if (dp_srng_init(soc, &soc->rx_refill_buf_ring[i],
1301 					 RXDMA_BUF, 0, 0)) {
1302 				dp_err("%pK: dp_srng_init failed refill ring",
1303 				       soc);
1304 				goto fail;
1305 			}
1306 		}
1307 	}
1308 
1309 	if (dp_soc_ppe_srng_init(soc)) {
1310 		dp_err("%pK: ppe rings init failed",
1311 		       soc);
1312 		goto fail;
1313 	}
1314 
1315 	return QDF_STATUS_SUCCESS;
1316 fail:
1317 	dp_soc_srng_deinit_be(soc);
1318 	return QDF_STATUS_E_NOMEM;
1319 }
1320 
1321 #ifdef WLAN_FEATURE_11BE_MLO
1322 static inline unsigned
1323 dp_mlo_peer_find_hash_index(dp_mld_peer_hash_obj_t mld_hash_obj,
1324 			    union dp_align_mac_addr *mac_addr)
1325 {
1326 	uint32_t index;
1327 
1328 	index =
1329 		mac_addr->align2.bytes_ab ^
1330 		mac_addr->align2.bytes_cd ^
1331 		mac_addr->align2.bytes_ef;
1332 
1333 	index ^= index >> mld_hash_obj->mld_peer_hash.idx_bits;
1334 	index &= mld_hash_obj->mld_peer_hash.mask;
1335 
1336 	return index;
1337 }
1338 
1339 QDF_STATUS
1340 dp_mlo_peer_find_hash_attach_be(dp_mld_peer_hash_obj_t mld_hash_obj,
1341 				int hash_elems)
1342 {
1343 	int i, log2;
1344 
1345 	if (!mld_hash_obj)
1346 		return QDF_STATUS_E_FAILURE;
1347 
1348 	hash_elems *= DP_PEER_HASH_LOAD_MULT;
1349 	hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
1350 	log2 = dp_log2_ceil(hash_elems);
1351 	hash_elems = 1 << log2;
1352 
1353 	mld_hash_obj->mld_peer_hash.mask = hash_elems - 1;
1354 	mld_hash_obj->mld_peer_hash.idx_bits = log2;
1355 	/* allocate an array of TAILQ peer object lists */
1356 	mld_hash_obj->mld_peer_hash.bins = qdf_mem_malloc(
1357 		hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
1358 	if (!mld_hash_obj->mld_peer_hash.bins)
1359 		return QDF_STATUS_E_NOMEM;
1360 
1361 	for (i = 0; i < hash_elems; i++)
1362 		TAILQ_INIT(&mld_hash_obj->mld_peer_hash.bins[i]);
1363 
1364 	qdf_spinlock_create(&mld_hash_obj->mld_peer_hash_lock);
1365 
1366 	return QDF_STATUS_SUCCESS;
1367 }
1368 
1369 void
1370 dp_mlo_peer_find_hash_detach_be(dp_mld_peer_hash_obj_t mld_hash_obj)
1371 {
1372 	if (!mld_hash_obj)
1373 		return;
1374 
1375 	if (mld_hash_obj->mld_peer_hash.bins) {
1376 		qdf_mem_free(mld_hash_obj->mld_peer_hash.bins);
1377 		mld_hash_obj->mld_peer_hash.bins = NULL;
1378 		qdf_spinlock_destroy(&mld_hash_obj->mld_peer_hash_lock);
1379 	}
1380 }
1381 
1382 #ifdef WLAN_MLO_MULTI_CHIP
1383 static QDF_STATUS dp_mlo_peer_find_hash_attach_wrapper(struct dp_soc *soc)
1384 {
1385 	/* In case of MULTI chip MLO peer hash table when MLO global object
1386 	 * is created, avoid from SOC attach path
1387 	 */
1388 	return QDF_STATUS_SUCCESS;
1389 }
1390 
1391 static void dp_mlo_peer_find_hash_detach_wrapper(struct dp_soc *soc)
1392 {
1393 }
1394 #else
1395 static QDF_STATUS dp_mlo_peer_find_hash_attach_wrapper(struct dp_soc *soc)
1396 {
1397 	dp_mld_peer_hash_obj_t mld_hash_obj;
1398 
1399 	mld_hash_obj = dp_mlo_get_peer_hash_obj(soc);
1400 
1401 	if (!mld_hash_obj)
1402 		return QDF_STATUS_E_FAILURE;
1403 
1404 	return dp_mlo_peer_find_hash_attach_be(mld_hash_obj, soc->max_peers);
1405 }
1406 
1407 static void dp_mlo_peer_find_hash_detach_wrapper(struct dp_soc *soc)
1408 {
1409 	dp_mld_peer_hash_obj_t mld_hash_obj;
1410 
1411 	mld_hash_obj = dp_mlo_get_peer_hash_obj(soc);
1412 
1413 	if (!mld_hash_obj)
1414 		return;
1415 
1416 	return dp_mlo_peer_find_hash_detach_be(mld_hash_obj);
1417 }
1418 #endif
1419 
1420 static struct dp_peer *
1421 dp_mlo_peer_find_hash_find_be(struct dp_soc *soc,
1422 			      uint8_t *peer_mac_addr,
1423 			      int mac_addr_is_aligned,
1424 			      enum dp_mod_id mod_id,
1425 			      uint8_t vdev_id)
1426 {
1427 	union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
1428 	uint32_t index;
1429 	struct dp_peer *peer;
1430 	struct dp_vdev *vdev;
1431 	dp_mld_peer_hash_obj_t mld_hash_obj;
1432 
1433 	mld_hash_obj = dp_mlo_get_peer_hash_obj(soc);
1434 	if (!mld_hash_obj)
1435 		return NULL;
1436 
1437 	if (!mld_hash_obj->mld_peer_hash.bins)
1438 		return NULL;
1439 
1440 	if (mac_addr_is_aligned) {
1441 		mac_addr = (union dp_align_mac_addr *)peer_mac_addr;
1442 	} else {
1443 		qdf_mem_copy(
1444 			&local_mac_addr_aligned.raw[0],
1445 			peer_mac_addr, QDF_MAC_ADDR_SIZE);
1446 		mac_addr = &local_mac_addr_aligned;
1447 	}
1448 
1449 	if (vdev_id != DP_VDEV_ALL) {
1450 		vdev = dp_vdev_get_ref_by_id(soc, vdev_id, mod_id);
1451 		if (!vdev) {
1452 			dp_err("vdev is null\n");
1453 			return NULL;
1454 		}
1455 	} else {
1456 		vdev = NULL;
1457 	}
1458 	/* search mld peer table if no link peer for given mac address */
1459 	index = dp_mlo_peer_find_hash_index(mld_hash_obj, mac_addr);
1460 	qdf_spin_lock_bh(&mld_hash_obj->mld_peer_hash_lock);
1461 	TAILQ_FOREACH(peer, &mld_hash_obj->mld_peer_hash.bins[index],
1462 		      hash_list_elem) {
1463 		if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
1464 			if ((vdev_id == DP_VDEV_ALL) || (
1465 				dp_peer_find_mac_addr_cmp(
1466 						&peer->vdev->mld_mac_addr,
1467 						&vdev->mld_mac_addr) == 0)) {
1468 				/* take peer reference before returning */
1469 				if (dp_peer_get_ref(NULL, peer, mod_id) !=
1470 						QDF_STATUS_SUCCESS)
1471 					peer = NULL;
1472 
1473 				if (vdev)
1474 					dp_vdev_unref_delete(soc, vdev, mod_id);
1475 
1476 				qdf_spin_unlock_bh(
1477 					&mld_hash_obj->mld_peer_hash_lock);
1478 				return peer;
1479 			}
1480 		}
1481 	}
1482 
1483 	if (vdev)
1484 		dp_vdev_unref_delete(soc, vdev, mod_id);
1485 
1486 	qdf_spin_unlock_bh(&mld_hash_obj->mld_peer_hash_lock);
1487 
1488 	return NULL; /* failure */
1489 }
1490 
1491 static void
1492 dp_mlo_peer_find_hash_remove_be(struct dp_soc *soc, struct dp_peer *peer)
1493 {
1494 	uint32_t index;
1495 	struct dp_peer *tmppeer = NULL;
1496 	int found = 0;
1497 	dp_mld_peer_hash_obj_t mld_hash_obj;
1498 
1499 	mld_hash_obj = dp_mlo_get_peer_hash_obj(soc);
1500 
1501 	if (!mld_hash_obj)
1502 		return;
1503 
1504 	index = dp_mlo_peer_find_hash_index(mld_hash_obj, &peer->mac_addr);
1505 	QDF_ASSERT(!TAILQ_EMPTY(&mld_hash_obj->mld_peer_hash.bins[index]));
1506 
1507 	qdf_spin_lock_bh(&mld_hash_obj->mld_peer_hash_lock);
1508 	TAILQ_FOREACH(tmppeer, &mld_hash_obj->mld_peer_hash.bins[index],
1509 		      hash_list_elem) {
1510 		if (tmppeer == peer) {
1511 			found = 1;
1512 			break;
1513 		}
1514 	}
1515 	QDF_ASSERT(found);
1516 	TAILQ_REMOVE(&mld_hash_obj->mld_peer_hash.bins[index], peer,
1517 		     hash_list_elem);
1518 
1519 	dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG);
1520 	qdf_spin_unlock_bh(&mld_hash_obj->mld_peer_hash_lock);
1521 }
1522 
1523 static void
1524 dp_mlo_peer_find_hash_add_be(struct dp_soc *soc, struct dp_peer *peer)
1525 {
1526 	uint32_t index;
1527 	dp_mld_peer_hash_obj_t mld_hash_obj;
1528 
1529 	mld_hash_obj = dp_mlo_get_peer_hash_obj(soc);
1530 
1531 	if (!mld_hash_obj)
1532 		return;
1533 
1534 	index = dp_mlo_peer_find_hash_index(mld_hash_obj, &peer->mac_addr);
1535 
1536 	qdf_spin_lock_bh(&mld_hash_obj->mld_peer_hash_lock);
1537 
1538 	if (QDF_IS_STATUS_ERROR(dp_peer_get_ref(NULL, peer,
1539 						DP_MOD_ID_CONFIG))) {
1540 		dp_err("fail to get peer ref:" QDF_MAC_ADDR_FMT,
1541 		       QDF_MAC_ADDR_REF(peer->mac_addr.raw));
1542 		qdf_spin_unlock_bh(&mld_hash_obj->mld_peer_hash_lock);
1543 		return;
1544 	}
1545 	TAILQ_INSERT_TAIL(&mld_hash_obj->mld_peer_hash.bins[index], peer,
1546 			  hash_list_elem);
1547 	qdf_spin_unlock_bh(&mld_hash_obj->mld_peer_hash_lock);
1548 }
1549 
1550 void dp_print_mlo_ast_stats_be(struct dp_soc *soc)
1551 {
1552 	uint32_t index;
1553 	struct dp_peer *peer;
1554 	dp_mld_peer_hash_obj_t mld_hash_obj;
1555 
1556 	mld_hash_obj = dp_mlo_get_peer_hash_obj(soc);
1557 
1558 	if (!mld_hash_obj)
1559 		return;
1560 
1561 	qdf_spin_lock_bh(&mld_hash_obj->mld_peer_hash_lock);
1562 	for (index = 0; index < mld_hash_obj->mld_peer_hash.mask; index++) {
1563 		TAILQ_FOREACH(peer, &mld_hash_obj->mld_peer_hash.bins[index],
1564 			      hash_list_elem) {
1565 			dp_print_peer_ast_entries(soc, peer, NULL);
1566 		}
1567 	}
1568 	qdf_spin_unlock_bh(&mld_hash_obj->mld_peer_hash_lock);
1569 }
1570 
1571 #endif
1572 
1573 #if defined(DP_UMAC_HW_HARD_RESET) && defined(DP_UMAC_HW_RESET_SUPPORT)
1574 static void dp_reconfig_tx_vdev_mcast_ctrl_be(struct dp_soc *soc,
1575 					      struct dp_vdev *vdev)
1576 {
1577 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1578 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
1579 	hal_soc_handle_t hal_soc = soc->hal_soc;
1580 	uint8_t vdev_id = vdev->vdev_id;
1581 
1582 	if (vdev->opmode == wlan_op_mode_sta) {
1583 		if (vdev->pdev->isolation)
1584 			hal_tx_vdev_mcast_ctrl_set(hal_soc, vdev_id,
1585 						HAL_TX_MCAST_CTRL_FW_EXCEPTION);
1586 		else
1587 			hal_tx_vdev_mcast_ctrl_set(hal_soc, vdev_id,
1588 						HAL_TX_MCAST_CTRL_MEC_NOTIFY);
1589 	} else if (vdev->opmode == wlan_op_mode_ap) {
1590 		if (vdev->mlo_vdev) {
1591 			if (be_vdev->mcast_primary) {
1592 				hal_tx_vdev_mcast_ctrl_set(hal_soc, vdev_id,
1593 					   HAL_TX_MCAST_CTRL_NO_SPECIAL);
1594 				hal_tx_vdev_mcast_ctrl_set(hal_soc,
1595 						vdev_id + 128,
1596 						HAL_TX_MCAST_CTRL_FW_EXCEPTION);
1597 				dp_mcast_mlo_iter_ptnr_soc(be_soc,
1598 					dp_tx_mcast_mlo_reinject_routing_set,
1599 					(void *)&be_vdev->mcast_primary);
1600 			} else {
1601 				hal_tx_vdev_mcast_ctrl_set(hal_soc, vdev_id,
1602 							HAL_TX_MCAST_CTRL_DROP);
1603 			}
1604 		} else {
1605 			hal_tx_vdev_mcast_ctrl_set(vdev->pdev->soc->hal_soc,
1606 						   vdev_id,
1607 						   HAL_TX_MCAST_CTRL_FW_EXCEPTION);
1608 		}
1609 	}
1610 }
1611 
1612 static void dp_bank_reconfig_be(struct dp_soc *soc, struct dp_vdev *vdev)
1613 {
1614 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1615 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
1616 	union hal_tx_bank_config *bank_config;
1617 
1618 	if (!be_vdev || be_vdev->bank_id == DP_BE_INVALID_BANK_ID)
1619 		return;
1620 
1621 	bank_config = &be_soc->bank_profiles[be_vdev->bank_id].bank_config;
1622 
1623 	hal_tx_populate_bank_register(be_soc->soc.hal_soc, bank_config,
1624 				      be_vdev->bank_id);
1625 }
1626 
1627 #endif
1628 
1629 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
1630 	defined(WLAN_MCAST_MLO)
1631 static void dp_txrx_set_mlo_mcast_primary_vdev_param_be(
1632 					struct dp_vdev_be *be_vdev,
1633 					cdp_config_param_type val)
1634 {
1635 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(
1636 						be_vdev->vdev.pdev->soc);
1637 	hal_soc_handle_t hal_soc = be_vdev->vdev.pdev->soc->hal_soc;
1638 	uint8_t vdev_id = be_vdev->vdev.vdev_id;
1639 
1640 	be_vdev->mcast_primary = val.cdp_vdev_param_mcast_vdev;
1641 
1642 	if (be_vdev->mcast_primary) {
1643 		hal_tx_vdev_mcast_ctrl_set(hal_soc, vdev_id,
1644 					   HAL_TX_MCAST_CTRL_NO_SPECIAL);
1645 		hal_tx_vdev_mcast_ctrl_set(hal_soc, vdev_id + 128,
1646 					   HAL_TX_MCAST_CTRL_FW_EXCEPTION);
1647 		dp_mcast_mlo_iter_ptnr_soc(be_soc,
1648 					   dp_tx_mcast_mlo_reinject_routing_set,
1649 					   (void *)&be_vdev->mcast_primary);
1650 	} else {
1651 		hal_tx_vdev_mcast_ctrl_set(hal_soc, vdev_id,
1652 					   HAL_TX_MCAST_CTRL_DROP);
1653 	}
1654 }
1655 #else
1656 static void dp_txrx_set_mlo_mcast_primary_vdev_param_be(
1657 					struct dp_vdev_be *be_vdev,
1658 					cdp_config_param_type val)
1659 {
1660 }
1661 #endif
1662 
1663 #ifdef DP_TX_IMPLICIT_RBM_MAPPING
1664 static void dp_tx_implicit_rbm_set_be(struct dp_soc *soc,
1665 				      uint8_t tx_ring_id,
1666 				      uint8_t bm_id)
1667 {
1668 	hal_tx_config_rbm_mapping_be(soc->hal_soc,
1669 				     soc->tcl_data_ring[tx_ring_id].hal_srng,
1670 				     bm_id);
1671 }
1672 #else
1673 static void dp_tx_implicit_rbm_set_be(struct dp_soc *soc,
1674 				      uint8_t tx_ring_id,
1675 				      uint8_t bm_id)
1676 {
1677 }
1678 #endif
1679 
1680 QDF_STATUS dp_txrx_set_vdev_param_be(struct dp_soc *soc,
1681 				     struct dp_vdev *vdev,
1682 				     enum cdp_vdev_param_type param,
1683 				     cdp_config_param_type val)
1684 {
1685 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1686 	struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev);
1687 
1688 	switch (param) {
1689 	case CDP_TX_ENCAP_TYPE:
1690 	case CDP_UPDATE_DSCP_TO_TID_MAP:
1691 	case CDP_UPDATE_TDLS_FLAGS:
1692 		dp_tx_update_bank_profile(be_soc, be_vdev);
1693 		break;
1694 	case CDP_ENABLE_CIPHER:
1695 		if (vdev->tx_encap_type == htt_cmn_pkt_type_raw)
1696 			dp_tx_update_bank_profile(be_soc, be_vdev);
1697 		break;
1698 	case CDP_SET_MCAST_VDEV:
1699 		dp_txrx_set_mlo_mcast_primary_vdev_param_be(be_vdev, val);
1700 		break;
1701 	default:
1702 		dp_warn("invalid param %d", param);
1703 		break;
1704 	}
1705 
1706 	return QDF_STATUS_SUCCESS;
1707 }
1708 
1709 #ifdef WLAN_FEATURE_11BE_MLO
1710 #ifdef DP_USE_REDUCED_PEER_ID_FIELD_WIDTH
1711 static inline void
1712 dp_soc_max_peer_id_set(struct dp_soc *soc)
1713 {
1714 	soc->peer_id_shift = dp_log2_ceil(soc->max_peers);
1715 	soc->peer_id_mask = (1 << soc->peer_id_shift) - 1;
1716 	/*
1717 	 * Double the peers since we use ML indication bit
1718 	 * alongwith peer_id to find peers.
1719 	 */
1720 	soc->max_peer_id = 1 << (soc->peer_id_shift + 1);
1721 }
1722 #else
1723 static inline void
1724 dp_soc_max_peer_id_set(struct dp_soc *soc)
1725 {
1726 	soc->max_peer_id =
1727 		(1 << (HTT_RX_PEER_META_DATA_V1_ML_PEER_VALID_S + 1)) - 1;
1728 }
1729 #endif /* DP_USE_REDUCED_PEER_ID_FIELD_WIDTH */
1730 #else
1731 static inline void
1732 dp_soc_max_peer_id_set(struct dp_soc *soc)
1733 {
1734 	soc->max_peer_id = soc->max_peers;
1735 }
1736 #endif /* WLAN_FEATURE_11BE_MLO */
1737 
1738 static void dp_peer_map_detach_be(struct dp_soc *soc)
1739 {
1740 	if (soc->host_ast_db_enable)
1741 		dp_peer_ast_hash_detach(soc);
1742 }
1743 
1744 static QDF_STATUS dp_peer_map_attach_be(struct dp_soc *soc)
1745 {
1746 	QDF_STATUS status;
1747 
1748 	if (soc->host_ast_db_enable) {
1749 		status = dp_peer_ast_hash_attach(soc);
1750 		if (QDF_IS_STATUS_ERROR(status))
1751 			return status;
1752 	}
1753 
1754 	dp_soc_max_peer_id_set(soc);
1755 
1756 	return QDF_STATUS_SUCCESS;
1757 }
1758 
1759 static struct dp_peer *dp_find_peer_by_destmac_be(struct dp_soc *soc,
1760 						  uint8_t *dest_mac,
1761 						  uint8_t vdev_id)
1762 {
1763 	struct dp_peer *peer = NULL;
1764 	struct dp_peer *tgt_peer = NULL;
1765 	struct dp_ast_entry *ast_entry = NULL;
1766 	uint16_t peer_id;
1767 
1768 	qdf_spin_lock_bh(&soc->ast_lock);
1769 	ast_entry = dp_peer_ast_hash_find_soc(soc, dest_mac);
1770 	if (!ast_entry) {
1771 		qdf_spin_unlock_bh(&soc->ast_lock);
1772 		dp_err("NULL ast entry");
1773 		return NULL;
1774 	}
1775 
1776 	peer_id = ast_entry->peer_id;
1777 	qdf_spin_unlock_bh(&soc->ast_lock);
1778 
1779 	if (peer_id == HTT_INVALID_PEER)
1780 		return NULL;
1781 
1782 	peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_SAWF);
1783 	if (!peer) {
1784 		dp_err("NULL peer for peer_id:%d", peer_id);
1785 		return NULL;
1786 	}
1787 
1788 	tgt_peer = dp_get_tgt_peer_from_peer(peer);
1789 
1790 	/*
1791 	 * Once tgt_peer is obtained,
1792 	 * release the ref taken for original peer.
1793 	 */
1794 	dp_peer_get_ref(NULL, tgt_peer, DP_MOD_ID_SAWF);
1795 	dp_peer_unref_delete(peer, DP_MOD_ID_SAWF);
1796 
1797 	return tgt_peer;
1798 }
1799 
1800 #ifdef WLAN_FEATURE_11BE_MLO
1801 #ifdef WLAN_MCAST_MLO
1802 static inline void
1803 dp_initialize_arch_ops_be_mcast_mlo(struct dp_arch_ops *arch_ops)
1804 {
1805 	arch_ops->dp_tx_mcast_handler = dp_tx_mlo_mcast_handler_be;
1806 	arch_ops->dp_rx_mcast_handler = dp_rx_mlo_igmp_handler;
1807 }
1808 #else /* WLAN_MCAST_MLO */
1809 static inline void
1810 dp_initialize_arch_ops_be_mcast_mlo(struct dp_arch_ops *arch_ops)
1811 {
1812 }
1813 #endif /* WLAN_MCAST_MLO */
1814 
1815 #ifdef WLAN_MLO_MULTI_CHIP
1816 static inline void
1817 dp_initialize_arch_ops_be_mlo_ptnr_chip(struct dp_arch_ops *arch_ops)
1818 {
1819 	arch_ops->dp_partner_chips_map = dp_mlo_partner_chips_map;
1820 	arch_ops->dp_partner_chips_unmap = dp_mlo_partner_chips_unmap;
1821 }
1822 #else
1823 static inline void
1824 dp_initialize_arch_ops_be_mlo_ptnr_chip(struct dp_arch_ops *arch_ops)
1825 {
1826 }
1827 #endif
1828 
1829 static inline void
1830 dp_initialize_arch_ops_be_mlo(struct dp_arch_ops *arch_ops)
1831 {
1832 	dp_initialize_arch_ops_be_mcast_mlo(arch_ops);
1833 	dp_initialize_arch_ops_be_mlo_ptnr_chip(arch_ops);
1834 	arch_ops->mlo_peer_find_hash_detach =
1835 	dp_mlo_peer_find_hash_detach_wrapper;
1836 	arch_ops->mlo_peer_find_hash_attach =
1837 	dp_mlo_peer_find_hash_attach_wrapper;
1838 	arch_ops->mlo_peer_find_hash_add = dp_mlo_peer_find_hash_add_be;
1839 	arch_ops->mlo_peer_find_hash_remove = dp_mlo_peer_find_hash_remove_be;
1840 	arch_ops->mlo_peer_find_hash_find = dp_mlo_peer_find_hash_find_be;
1841 }
1842 #else /* WLAN_FEATURE_11BE_MLO */
1843 static inline void
1844 dp_initialize_arch_ops_be_mlo(struct dp_arch_ops *arch_ops)
1845 {
1846 }
1847 #endif /* WLAN_FEATURE_11BE_MLO */
1848 
1849 #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP)
1850 #define DP_LMAC_PEER_ID_MSB_LEGACY 2
1851 #define DP_LMAC_PEER_ID_MSB_MLO 3
1852 
1853 static void dp_peer_get_reo_hash_be(struct dp_vdev *vdev,
1854 				    struct cdp_peer_setup_info *setup_info,
1855 				    enum cdp_host_reo_dest_ring *reo_dest,
1856 				    bool *hash_based,
1857 				    uint8_t *lmac_peer_id_msb)
1858 {
1859 	struct dp_soc *soc = vdev->pdev->soc;
1860 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1861 
1862 	if (!be_soc->mlo_enabled)
1863 		return dp_vdev_get_default_reo_hash(vdev, reo_dest,
1864 						    hash_based);
1865 
1866 	*hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx);
1867 	*reo_dest = vdev->pdev->reo_dest;
1868 
1869 	/* Not a ML link peer use non-mlo */
1870 	if (!setup_info) {
1871 		*lmac_peer_id_msb = DP_LMAC_PEER_ID_MSB_LEGACY;
1872 		return;
1873 	}
1874 
1875 	/* For STA ML VAP we do not have num links info at this point
1876 	 * use MLO case always
1877 	 */
1878 	if (vdev->opmode == wlan_op_mode_sta) {
1879 		*lmac_peer_id_msb = DP_LMAC_PEER_ID_MSB_MLO;
1880 		return;
1881 	}
1882 
1883 	/* For AP ML VAP consider the peer as ML only it associates with
1884 	 * multiple links
1885 	 */
1886 	if (setup_info->num_links == 1) {
1887 		*lmac_peer_id_msb = DP_LMAC_PEER_ID_MSB_LEGACY;
1888 		return;
1889 	}
1890 
1891 	*lmac_peer_id_msb = DP_LMAC_PEER_ID_MSB_MLO;
1892 }
1893 
1894 static bool dp_reo_remap_config_be(struct dp_soc *soc,
1895 				   uint32_t *remap0,
1896 				   uint32_t *remap1,
1897 				   uint32_t *remap2)
1898 {
1899 	struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc);
1900 	uint32_t reo_config = wlan_cfg_get_reo_rings_mapping(soc->wlan_cfg_ctx);
1901 	uint32_t reo_mlo_config =
1902 		wlan_cfg_mlo_rx_ring_map_get(soc->wlan_cfg_ctx);
1903 
1904 	if (!be_soc->mlo_enabled)
1905 		return dp_reo_remap_config(soc, remap0, remap1, remap2);
1906 
1907 	*remap0 = hal_reo_ix_remap_value_get_be(soc->hal_soc, reo_mlo_config);
1908 	*remap1 = hal_reo_ix_remap_value_get_be(soc->hal_soc, reo_config);
1909 	*remap2 = hal_reo_ix_remap_value_get_be(soc->hal_soc, reo_mlo_config);
1910 
1911 	return true;
1912 }
1913 #else
1914 static void dp_peer_get_reo_hash_be(struct dp_vdev *vdev,
1915 				    struct cdp_peer_setup_info *setup_info,
1916 				    enum cdp_host_reo_dest_ring *reo_dest,
1917 				    bool *hash_based,
1918 				    uint8_t *lmac_peer_id_msb)
1919 {
1920 	dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
1921 }
1922 
1923 static bool dp_reo_remap_config_be(struct dp_soc *soc,
1924 				   uint32_t *remap0,
1925 				   uint32_t *remap1,
1926 				   uint32_t *remap2)
1927 {
1928 	return dp_reo_remap_config(soc, remap0, remap1, remap2);
1929 }
1930 #endif
1931 
1932 void dp_initialize_arch_ops_be(struct dp_arch_ops *arch_ops)
1933 {
1934 #ifndef QCA_HOST_MODE_WIFI_DISABLED
1935 	arch_ops->tx_hw_enqueue = dp_tx_hw_enqueue_be;
1936 	arch_ops->dp_rx_process = dp_rx_process_be;
1937 	arch_ops->dp_tx_send_fast = dp_tx_fast_send_be;
1938 	arch_ops->tx_comp_get_params_from_hal_desc =
1939 		dp_tx_comp_get_params_from_hal_desc_be;
1940 	arch_ops->dp_tx_process_htt_completion =
1941 				dp_tx_process_htt_completion_be;
1942 	arch_ops->dp_tx_desc_pool_init = dp_tx_desc_pool_init_be;
1943 	arch_ops->dp_tx_desc_pool_deinit = dp_tx_desc_pool_deinit_be;
1944 	arch_ops->dp_rx_desc_pool_init = dp_rx_desc_pool_init_be;
1945 	arch_ops->dp_rx_desc_pool_deinit = dp_rx_desc_pool_deinit_be;
1946 	arch_ops->dp_wbm_get_rx_desc_from_hal_desc =
1947 				dp_wbm_get_rx_desc_from_hal_desc_be;
1948 	arch_ops->dp_tx_compute_hw_delay = dp_tx_compute_tx_delay_be;
1949 #endif
1950 	arch_ops->txrx_get_context_size = dp_get_context_size_be;
1951 #ifdef WIFI_MONITOR_SUPPORT
1952 	arch_ops->txrx_get_mon_context_size = dp_mon_get_context_size_be;
1953 #endif
1954 	arch_ops->dp_rx_desc_cookie_2_va =
1955 			dp_rx_desc_cookie_2_va_be;
1956 	arch_ops->dp_rx_intrabss_handle_nawds = dp_rx_intrabss_handle_nawds_be;
1957 
1958 	arch_ops->txrx_soc_attach = dp_soc_attach_be;
1959 	arch_ops->txrx_soc_detach = dp_soc_detach_be;
1960 	arch_ops->txrx_soc_init = dp_soc_init_be;
1961 	arch_ops->txrx_soc_deinit = dp_soc_deinit_be;
1962 	arch_ops->txrx_soc_srng_alloc = dp_soc_srng_alloc_be;
1963 	arch_ops->txrx_soc_srng_init = dp_soc_srng_init_be;
1964 	arch_ops->txrx_soc_srng_deinit = dp_soc_srng_deinit_be;
1965 	arch_ops->txrx_soc_srng_free = dp_soc_srng_free_be;
1966 	arch_ops->txrx_pdev_attach = dp_pdev_attach_be;
1967 	arch_ops->txrx_pdev_detach = dp_pdev_detach_be;
1968 	arch_ops->txrx_vdev_attach = dp_vdev_attach_be;
1969 	arch_ops->txrx_vdev_detach = dp_vdev_detach_be;
1970 	arch_ops->txrx_peer_map_attach = dp_peer_map_attach_be;
1971 	arch_ops->txrx_peer_map_detach = dp_peer_map_detach_be;
1972 	arch_ops->dp_rxdma_ring_sel_cfg = dp_rxdma_ring_sel_cfg_be;
1973 	arch_ops->dp_rx_peer_metadata_peer_id_get =
1974 					dp_rx_peer_metadata_peer_id_get_be;
1975 	arch_ops->soc_cfg_attach = dp_soc_cfg_attach_be;
1976 	arch_ops->tx_implicit_rbm_set = dp_tx_implicit_rbm_set_be;
1977 	arch_ops->txrx_set_vdev_param = dp_txrx_set_vdev_param_be;
1978 	dp_initialize_arch_ops_be_mlo(arch_ops);
1979 	arch_ops->dp_peer_rx_reorder_queue_setup =
1980 					dp_peer_rx_reorder_queue_setup_be;
1981 	arch_ops->txrx_print_peer_stats = dp_print_peer_txrx_stats_be;
1982 	arch_ops->dp_find_peer_by_destmac = dp_find_peer_by_destmac_be;
1983 #if defined(DP_UMAC_HW_HARD_RESET) && defined(DP_UMAC_HW_RESET_SUPPORT)
1984 	arch_ops->dp_bank_reconfig = dp_bank_reconfig_be;
1985 	arch_ops->dp_reconfig_tx_vdev_mcast_ctrl =
1986 					dp_reconfig_tx_vdev_mcast_ctrl_be;
1987 	arch_ops->dp_cc_reg_cfg_init = dp_cc_reg_cfg_init;
1988 #endif
1989 	dp_init_near_full_arch_ops_be(arch_ops);
1990 	arch_ops->get_rx_hash_key = dp_get_rx_hash_key_be;
1991 	arch_ops->print_mlo_ast_stats = dp_print_mlo_ast_stats_be;
1992 	arch_ops->peer_get_reo_hash = dp_peer_get_reo_hash_be;
1993 	arch_ops->reo_remap_config = dp_reo_remap_config_be;
1994 }
1995