xref: /wlan-dirver/platform/cnss_prealloc/cnss_prealloc.c (revision f4e01456554869586c179d4adc72a650f917b006)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012,2014-2017,2019-2021 The Linux Foundation. All rights reserved.
4  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mempool.h>
10 #include <linux/mm.h>
11 #include <linux/err.h>
12 #include <linux/of.h>
13 #include <linux/version.h>
14 #include "cnss_common.h"
15 #ifdef CONFIG_CNSS_OUT_OF_TREE
16 #include "cnss_prealloc.h"
17 #else
18 #include <net/cnss_prealloc.h>
19 #endif
20 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0))
21 /* Ideally header should be from standard include path. So this is not an
22  * ideal way of header inclusion but use of slab struct to derive cache
23  * from a mem ptr helps in avoiding additional tracking and/or adding headroom
24  * of 8 bytes for cache in the beginning of buffer and wasting extra memory,
25  * particulary in the case when size of memory requested falls around the edge
26  * of a page boundary. We also have precedence of minidump_memory.c which
27  * includes mm/slab.h using this style.
28  */
29 #include "../mm/slab.h"
30 #endif
31 
32 MODULE_LICENSE("GPL v2");
33 MODULE_DESCRIPTION("CNSS prealloc driver");
34 
35 /* cnss preallocation scheme is a memory pool that always tries to keep a
36  * list of free memory for use in emergencies. It is implemented on kernel
37  * features: memorypool and kmem cache.
38  */
39 
40 struct cnss_pool {
41 	size_t size;
42 	int min;
43 	const char name[50];
44 	mempool_t *mp;
45 	struct kmem_cache *cache;
46 };
47 
48 /**
49  * Memory pool
50  * -----------
51  *
52  * How to update this table:
53  *
54  *  1. Add a new row with following elements
55  *      size  : Size of one allocation unit in bytes.
56  *      min   : Minimum units to be reserved. Used only if a regular
57  *              allocation fails.
58  *      name  : Name of the cache/pool. Will be displayed in /proc/slabinfo
59  *              if not merged with another pool.
60  *      mp    : A pointer to memory pool. Updated during init.
61  *      cache : A pointer to cache. Updated during init.
62  * 2. Always keep the table in increasing order
63  * 3. Please keep the reserve pool as minimum as possible as it's always
64  *    preallocated.
65  * 4. Always profile with different use cases after updating this table.
66  * 5. A dynamic view of this pool can be viewed at /proc/slabinfo.
67  * 6. Each pool has a sys node at /sys/kernel/slab/<name>
68  *
69  */
70 
71 /* size, min pool reserve, name, memorypool handler, cache handler*/
72 static struct cnss_pool cnss_pools_default[] = {
73 	{8 * 1024, 16, "cnss-pool-8k", NULL, NULL},
74 	{16 * 1024, 16, "cnss-pool-16k", NULL, NULL},
75 	{32 * 1024, 22, "cnss-pool-32k", NULL, NULL},
76 	{64 * 1024, 38, "cnss-pool-64k", NULL, NULL},
77 	{128 * 1024, 10, "cnss-pool-128k", NULL, NULL},
78 };
79 
80 static struct cnss_pool cnss_pools_adrastea[] = {
81 	{8 * 1024, 2, "cnss-pool-8k", NULL, NULL},
82 	{16 * 1024, 10, "cnss-pool-16k", NULL, NULL},
83 	{32 * 1024, 8, "cnss-pool-32k", NULL, NULL},
84 	{64 * 1024, 4, "cnss-pool-64k", NULL, NULL},
85 	{128 * 1024, 2, "cnss-pool-128k", NULL, NULL},
86 };
87 
88 static struct cnss_pool cnss_pools_wcn6750[] = {
89 	{8 * 1024, 2, "cnss-pool-8k", NULL, NULL},
90 	{16 * 1024, 8, "cnss-pool-16k", NULL, NULL},
91 	{32 * 1024, 11, "cnss-pool-32k", NULL, NULL},
92 	{64 * 1024, 15, "cnss-pool-64k", NULL, NULL},
93 	{128 * 1024, 4, "cnss-pool-128k", NULL, NULL},
94 };
95 
96 struct cnss_pool *cnss_pools;
97 unsigned int cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_default);
98 
99 /**
100  * cnss_pool_alloc_threshold() - Allocation threshold
101  *
102  * Minimum memory size to be part of cnss pool.
103  *
104  * Return: Size
105  *
106  */
107 static inline size_t cnss_pool_alloc_threshold(void)
108 {
109 	return cnss_pools[0].size;
110 }
111 
112 /**
113  * cnss_pool_int() - Initialize memory pools.
114  *
115  * Create cnss pools as configured by cnss_pools[]. It is the responsibility of
116  * the caller to invoke cnss_pool_deinit() routine to clean it up. This
117  * function needs to be called at early boot to preallocate minimum buffers in
118  * the pool.
119  *
120  * Return: 0 - success, otherwise error code.
121  *
122  */
123 static int cnss_pool_init(void)
124 {
125 	int i;
126 
127 	for (i = 0; i < cnss_prealloc_pool_size; i++) {
128 		/* Create the slab cache */
129 		cnss_pools[i].cache =
130 			kmem_cache_create_usercopy(cnss_pools[i].name,
131 						   cnss_pools[i].size, 0,
132 						   SLAB_ACCOUNT, 0,
133 						   cnss_pools[i].size, NULL);
134 		if (!cnss_pools[i].cache) {
135 			pr_err("cnss_prealloc: cache %s failed\n",
136 			       cnss_pools[i].name);
137 			continue;
138 		}
139 
140 		/* Create the pool and associate to slab cache */
141 		cnss_pools[i].mp =
142 		    mempool_create(cnss_pools[i].min, mempool_alloc_slab,
143 				   mempool_free_slab, cnss_pools[i].cache);
144 
145 		if (!cnss_pools[i].mp) {
146 			pr_err("cnss_prealloc: mempool %s failed\n",
147 			       cnss_pools[i].name);
148 			kmem_cache_destroy(cnss_pools[i].cache);
149 			cnss_pools[i].cache = NULL;
150 			continue;
151 		}
152 
153 		pr_info("cnss_prealloc: created mempool %s of min size %d * %zu\n",
154 			cnss_pools[i].name, cnss_pools[i].min,
155 			cnss_pools[i].size);
156 	}
157 
158 	return 0;
159 }
160 
161 /**
162  * cnss_pool_deinit() - Free memory pools.
163  *
164  * Free the memory pools and return resources back to the system. It warns
165  * if there is any pending element in memory pool or cache.
166  *
167  */
168 static void cnss_pool_deinit(void)
169 {
170 	int i;
171 
172 	if (!cnss_pools)
173 		return;
174 
175 	for (i = 0; i < cnss_prealloc_pool_size; i++) {
176 		pr_info("cnss_prealloc: destroy mempool %s\n",
177 			cnss_pools[i].name);
178 		mempool_destroy(cnss_pools[i].mp);
179 		kmem_cache_destroy(cnss_pools[i].cache);
180 		cnss_pools[i].mp = NULL;
181 		cnss_pools[i].cache = NULL;
182 	}
183 }
184 
185 void cnss_assign_prealloc_pool(unsigned long device_id)
186 {
187 	pr_info("cnss_prealloc: assign cnss pool for device id 0x%lx", device_id);
188 
189 	switch (device_id) {
190 	case ADRASTEA_DEVICE_ID:
191 		cnss_pools = cnss_pools_adrastea;
192 		cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_adrastea);
193 		break;
194 	case WCN6750_DEVICE_ID:
195 		cnss_pools = cnss_pools_wcn6750;
196 		cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_wcn6750);
197 		break;
198 	case WCN6450_DEVICE_ID:
199 	case QCA6390_DEVICE_ID:
200 	case QCA6490_DEVICE_ID:
201 	case MANGO_DEVICE_ID:
202 	case PEACH_DEVICE_ID:
203 	case KIWI_DEVICE_ID:
204 	default:
205 		cnss_pools = cnss_pools_default;
206 		cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_default);
207 	}
208 }
209 
210 void cnss_initialize_prealloc_pool(unsigned long device_id)
211 {
212 	cnss_assign_prealloc_pool(device_id);
213 	cnss_pool_init();
214 }
215 EXPORT_SYMBOL(cnss_initialize_prealloc_pool);
216 
217 void cnss_deinitialize_prealloc_pool(void)
218 {
219 	cnss_pool_deinit();
220 }
221 EXPORT_SYMBOL(cnss_deinitialize_prealloc_pool);
222 
223 /**
224  * cnss_pool_get_index() - Get the index of memory pool
225  * @mem: Allocated memory
226  *
227  * Returns the index of the memory pool which fits the reqested memory. The
228  * complexity of this check is O(num of memory pools). Returns a negative
229  * value with error code in case of failure.
230  *
231  */
232 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0))
233 static int cnss_pool_get_index(void *mem)
234 {
235 	struct slab *slab;
236 	struct kmem_cache *cache;
237 	int i;
238 
239 	if (!virt_addr_valid(mem))
240 		return -EINVAL;
241 
242 	/* mem -> slab -> cache */
243 	slab = virt_to_slab(mem);
244 	if (!slab)
245 		return -ENOENT;
246 
247 	cache = slab->slab_cache;
248 	if (!cache)
249 		return -ENOENT;
250 
251 	/* Check if memory belongs to a pool */
252 	for (i = 0; i < cnss_prealloc_pool_size; i++) {
253 		if (cnss_pools[i].cache == cache)
254 			return i;
255 	}
256 
257 	return -ENOENT;
258 }
259 #else /* (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0)) */
260 static int cnss_pool_get_index(void *mem)
261 {
262 	struct page *page;
263 	struct kmem_cache *cache;
264 	int i;
265 
266 	if (!virt_addr_valid(mem))
267 		return -EINVAL;
268 
269 	/* mem -> page -> cache */
270 	page = virt_to_head_page(mem);
271 	if (!page)
272 		return -ENOENT;
273 
274 	cache = page->slab_cache;
275 	if (!cache)
276 		return -ENOENT;
277 
278 	/* Check if memory belongs to a pool */
279 	for (i = 0; i < cnss_prealloc_pool_size; i++) {
280 		if (cnss_pools[i].cache == cache)
281 			return i;
282 	}
283 
284 	return -ENOENT;
285 }
286 #endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0)) */
287 
288 /**
289  * wcnss_prealloc_get() - Get preallocated memory from a pool
290  * @size: Size to allocate
291  *
292  * Memory pool is chosen based on the size. If memory is not available in a
293  * given pool it goes to next higher sized pool until it succeeds.
294  *
295  * Return: A void pointer to allocated memory
296  */
297 void *wcnss_prealloc_get(size_t size)
298 {
299 
300 	void *mem = NULL;
301 	gfp_t gfp_mask = __GFP_ZERO;
302 	int i;
303 
304 	if (!cnss_pools)
305 		return mem;
306 
307 	if (in_interrupt() || !preemptible() || rcu_preempt_depth())
308 		gfp_mask |= GFP_ATOMIC;
309 	else
310 		gfp_mask |= GFP_KERNEL;
311 
312 	if (size >= cnss_pool_alloc_threshold()) {
313 
314 		for (i = 0; i < cnss_prealloc_pool_size; i++) {
315 			if (cnss_pools[i].size >= size && cnss_pools[i].mp) {
316 				mem = mempool_alloc(cnss_pools[i].mp, gfp_mask);
317 				if (mem)
318 					break;
319 			}
320 		}
321 	}
322 
323 	if (!mem && size >= cnss_pool_alloc_threshold()) {
324 		pr_debug("cnss_prealloc: not available for size %zu, flag %x\n",
325 			 size, gfp_mask);
326 	}
327 
328 	return mem;
329 }
330 EXPORT_SYMBOL(wcnss_prealloc_get);
331 
332 /**
333  * wcnss_prealloc_put() - Relase allocated memory
334  * @mem: Allocated memory
335  *
336  * Free the memory got by wcnss_prealloc_get() to slab or pool reserve if memory
337  * pool doesn't have enough elements.
338  *
339  * Return: 1 - success
340  *         0 - fail
341  */
342 int wcnss_prealloc_put(void *mem)
343 {
344 	int i;
345 
346 	if (!mem || !cnss_pools)
347 		return 0;
348 
349 	i = cnss_pool_get_index(mem);
350 	if (i >= 0 && i < cnss_prealloc_pool_size && cnss_pools[i].mp) {
351 		mempool_free(mem, cnss_pools[i].mp);
352 		return 1;
353 	}
354 
355 	return 0;
356 }
357 EXPORT_SYMBOL(wcnss_prealloc_put);
358 
359 /* Not implemented. Make use of Linux SLAB features. */
360 void wcnss_prealloc_check_memory_leak(void) {}
361 EXPORT_SYMBOL(wcnss_prealloc_check_memory_leak);
362 
363 /* Not implemented. Make use of Linux SLAB features. */
364 int wcnss_pre_alloc_reset(void) { return -EOPNOTSUPP; }
365 EXPORT_SYMBOL(wcnss_pre_alloc_reset);
366 
367 /**
368  * cnss_prealloc_is_valid_dt_node_found - Check if valid device tree node
369  *                                        present
370  *
371  * Valid device tree node means a node with "qcom,wlan" property present
372  * and "status" property not disabled.
373  *
374  * Return: true if valid device tree node found, false if not found
375  */
376 static bool cnss_prealloc_is_valid_dt_node_found(void)
377 {
378 	struct device_node *dn = NULL;
379 
380 	for_each_node_with_property(dn, "qcom,wlan") {
381 		if (of_device_is_available(dn))
382 			break;
383 	}
384 
385 	if (dn)
386 		return true;
387 
388 	return false;
389 }
390 
391 static int __init cnss_prealloc_init(void)
392 {
393 	if (!cnss_prealloc_is_valid_dt_node_found())
394 		return -ENODEV;
395 
396 	return 0;
397 }
398 
399 static void __exit cnss_prealloc_exit(void)
400 {
401 	return;
402 }
403 
404 module_init(cnss_prealloc_init);
405 module_exit(cnss_prealloc_exit);
406 
407