1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine (KVM) Hypervisor
4   *
5   * Copyright (C) 2006 Qumranet, Inc.
6   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7   *
8   * Authors:
9   *   Avi Kivity   <avi@qumranet.com>
10   *   Yaniv Kamay  <yaniv@qumranet.com>
11   */
12  
13  #include <kvm/iodev.h>
14  
15  #include <linux/kvm_host.h>
16  #include <linux/kvm.h>
17  #include <linux/module.h>
18  #include <linux/errno.h>
19  #include <linux/percpu.h>
20  #include <linux/mm.h>
21  #include <linux/miscdevice.h>
22  #include <linux/vmalloc.h>
23  #include <linux/reboot.h>
24  #include <linux/debugfs.h>
25  #include <linux/highmem.h>
26  #include <linux/file.h>
27  #include <linux/syscore_ops.h>
28  #include <linux/cpu.h>
29  #include <linux/sched/signal.h>
30  #include <linux/sched/mm.h>
31  #include <linux/sched/stat.h>
32  #include <linux/cpumask.h>
33  #include <linux/smp.h>
34  #include <linux/anon_inodes.h>
35  #include <linux/profile.h>
36  #include <linux/kvm_para.h>
37  #include <linux/pagemap.h>
38  #include <linux/mman.h>
39  #include <linux/swap.h>
40  #include <linux/bitops.h>
41  #include <linux/spinlock.h>
42  #include <linux/compat.h>
43  #include <linux/srcu.h>
44  #include <linux/hugetlb.h>
45  #include <linux/slab.h>
46  #include <linux/sort.h>
47  #include <linux/bsearch.h>
48  #include <linux/io.h>
49  #include <linux/lockdep.h>
50  #include <linux/kthread.h>
51  #include <linux/suspend.h>
52  
53  #include <asm/processor.h>
54  #include <asm/ioctl.h>
55  #include <linux/uaccess.h>
56  
57  #include "coalesced_mmio.h"
58  #include "async_pf.h"
59  #include "kvm_mm.h"
60  #include "vfio.h"
61  
62  #include <trace/events/ipi.h>
63  
64  #define CREATE_TRACE_POINTS
65  #include <trace/events/kvm.h>
66  
67  #include <linux/kvm_dirty_ring.h>
68  
69  
70  /* Worst case buffer size needed for holding an integer. */
71  #define ITOA_MAX_LEN 12
72  
73  MODULE_AUTHOR("Qumranet");
74  MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75  MODULE_LICENSE("GPL");
76  
77  /* Architectures should define their poll value according to the halt latency */
78  unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79  module_param(halt_poll_ns, uint, 0644);
80  EXPORT_SYMBOL_GPL(halt_poll_ns);
81  
82  /* Default doubles per-vcpu halt_poll_ns. */
83  unsigned int halt_poll_ns_grow = 2;
84  module_param(halt_poll_ns_grow, uint, 0644);
85  EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86  
87  /* The start value to grow halt_poll_ns from */
88  unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89  module_param(halt_poll_ns_grow_start, uint, 0644);
90  EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91  
92  /* Default halves per-vcpu halt_poll_ns. */
93  unsigned int halt_poll_ns_shrink = 2;
94  module_param(halt_poll_ns_shrink, uint, 0644);
95  EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96  
97  /*
98   * Ordering of locks:
99   *
100   *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
101   */
102  
103  DEFINE_MUTEX(kvm_lock);
104  LIST_HEAD(vm_list);
105  
106  static struct kmem_cache *kvm_vcpu_cache;
107  
108  static __read_mostly struct preempt_ops kvm_preempt_ops;
109  static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110  
111  static struct dentry *kvm_debugfs_dir;
112  
113  static const struct file_operations stat_fops_per_vm;
114  
115  static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116  			   unsigned long arg);
117  #ifdef CONFIG_KVM_COMPAT
118  static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119  				  unsigned long arg);
120  #define KVM_COMPAT(c)	.compat_ioctl	= (c)
121  #else
122  /*
123   * For architectures that don't implement a compat infrastructure,
124   * adopt a double line of defense:
125   * - Prevent a compat task from opening /dev/kvm
126   * - If the open has been done by a 64bit task, and the KVM fd
127   *   passed to a compat task, let the ioctls fail.
128   */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)129  static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
130  				unsigned long arg) { return -EINVAL; }
131  
kvm_no_compat_open(struct inode * inode,struct file * file)132  static int kvm_no_compat_open(struct inode *inode, struct file *file)
133  {
134  	return is_compat_task() ? -ENODEV : 0;
135  }
136  #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
137  			.open		= kvm_no_compat_open
138  #endif
139  static int kvm_enable_virtualization(void);
140  static void kvm_disable_virtualization(void);
141  
142  static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
143  
144  #define KVM_EVENT_CREATE_VM 0
145  #define KVM_EVENT_DESTROY_VM 1
146  static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
147  static unsigned long long kvm_createvm_count;
148  static unsigned long long kvm_active_vms;
149  
150  static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
151  
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)152  __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
153  {
154  }
155  
kvm_is_zone_device_page(struct page * page)156  bool kvm_is_zone_device_page(struct page *page)
157  {
158  	/*
159  	 * The metadata used by is_zone_device_page() to determine whether or
160  	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
161  	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
162  	 * page_count() is zero to help detect bad usage of this helper.
163  	 */
164  	if (WARN_ON_ONCE(!page_count(page)))
165  		return false;
166  
167  	return is_zone_device_page(page);
168  }
169  
170  /*
171   * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
172   * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
173   * is likely incomplete, it has been compiled purely through people wanting to
174   * back guest with a certain type of memory and encountering issues.
175   */
kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)176  struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
177  {
178  	struct page *page;
179  
180  	if (!pfn_valid(pfn))
181  		return NULL;
182  
183  	page = pfn_to_page(pfn);
184  	if (!PageReserved(page))
185  		return page;
186  
187  	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
188  	if (is_zero_pfn(pfn))
189  		return page;
190  
191  	/*
192  	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
193  	 * perspective they are "normal" pages, albeit with slightly different
194  	 * usage rules.
195  	 */
196  	if (kvm_is_zone_device_page(page))
197  		return page;
198  
199  	return NULL;
200  }
201  
202  /*
203   * Switches to specified vcpu, until a matching vcpu_put()
204   */
vcpu_load(struct kvm_vcpu * vcpu)205  void vcpu_load(struct kvm_vcpu *vcpu)
206  {
207  	int cpu = get_cpu();
208  
209  	__this_cpu_write(kvm_running_vcpu, vcpu);
210  	preempt_notifier_register(&vcpu->preempt_notifier);
211  	kvm_arch_vcpu_load(vcpu, cpu);
212  	put_cpu();
213  }
214  EXPORT_SYMBOL_GPL(vcpu_load);
215  
vcpu_put(struct kvm_vcpu * vcpu)216  void vcpu_put(struct kvm_vcpu *vcpu)
217  {
218  	preempt_disable();
219  	kvm_arch_vcpu_put(vcpu);
220  	preempt_notifier_unregister(&vcpu->preempt_notifier);
221  	__this_cpu_write(kvm_running_vcpu, NULL);
222  	preempt_enable();
223  }
224  EXPORT_SYMBOL_GPL(vcpu_put);
225  
226  /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)227  static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228  {
229  	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230  
231  	/*
232  	 * We need to wait for the VCPU to reenable interrupts and get out of
233  	 * READING_SHADOW_PAGE_TABLES mode.
234  	 */
235  	if (req & KVM_REQUEST_WAIT)
236  		return mode != OUTSIDE_GUEST_MODE;
237  
238  	/*
239  	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240  	 */
241  	return mode == IN_GUEST_MODE;
242  }
243  
ack_kick(void * _completed)244  static void ack_kick(void *_completed)
245  {
246  }
247  
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)248  static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
249  {
250  	if (cpumask_empty(cpus))
251  		return false;
252  
253  	smp_call_function_many(cpus, ack_kick, NULL, wait);
254  	return true;
255  }
256  
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)257  static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
258  				  struct cpumask *tmp, int current_cpu)
259  {
260  	int cpu;
261  
262  	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
263  		__kvm_make_request(req, vcpu);
264  
265  	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266  		return;
267  
268  	/*
269  	 * Note, the vCPU could get migrated to a different pCPU at any point
270  	 * after kvm_request_needs_ipi(), which could result in sending an IPI
271  	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
272  	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
273  	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
274  	 * after this point is also OK, as the requirement is only that KVM wait
275  	 * for vCPUs that were reading SPTEs _before_ any changes were
276  	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
277  	 */
278  	if (kvm_request_needs_ipi(vcpu, req)) {
279  		cpu = READ_ONCE(vcpu->cpu);
280  		if (cpu != -1 && cpu != current_cpu)
281  			__cpumask_set_cpu(cpu, tmp);
282  	}
283  }
284  
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)285  bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
286  				 unsigned long *vcpu_bitmap)
287  {
288  	struct kvm_vcpu *vcpu;
289  	struct cpumask *cpus;
290  	int i, me;
291  	bool called;
292  
293  	me = get_cpu();
294  
295  	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
296  	cpumask_clear(cpus);
297  
298  	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
299  		vcpu = kvm_get_vcpu(kvm, i);
300  		if (!vcpu)
301  			continue;
302  		kvm_make_vcpu_request(vcpu, req, cpus, me);
303  	}
304  
305  	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
306  	put_cpu();
307  
308  	return called;
309  }
310  
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)311  bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
312  {
313  	struct kvm_vcpu *vcpu;
314  	struct cpumask *cpus;
315  	unsigned long i;
316  	bool called;
317  	int me;
318  
319  	me = get_cpu();
320  
321  	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
322  	cpumask_clear(cpus);
323  
324  	kvm_for_each_vcpu(i, vcpu, kvm)
325  		kvm_make_vcpu_request(vcpu, req, cpus, me);
326  
327  	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
328  	put_cpu();
329  
330  	return called;
331  }
332  EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333  
kvm_flush_remote_tlbs(struct kvm * kvm)334  void kvm_flush_remote_tlbs(struct kvm *kvm)
335  {
336  	++kvm->stat.generic.remote_tlb_flush_requests;
337  
338  	/*
339  	 * We want to publish modifications to the page tables before reading
340  	 * mode. Pairs with a memory barrier in arch-specific code.
341  	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
342  	 * and smp_mb in walk_shadow_page_lockless_begin/end.
343  	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
344  	 *
345  	 * There is already an smp_mb__after_atomic() before
346  	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
347  	 * barrier here.
348  	 */
349  	if (!kvm_arch_flush_remote_tlbs(kvm)
350  	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
351  		++kvm->stat.generic.remote_tlb_flush;
352  }
353  EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
354  
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)355  void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
356  {
357  	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
358  		return;
359  
360  	/*
361  	 * Fall back to a flushing entire TLBs if the architecture range-based
362  	 * TLB invalidation is unsupported or can't be performed for whatever
363  	 * reason.
364  	 */
365  	kvm_flush_remote_tlbs(kvm);
366  }
367  
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)368  void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
369  				   const struct kvm_memory_slot *memslot)
370  {
371  	/*
372  	 * All current use cases for flushing the TLBs for a specific memslot
373  	 * are related to dirty logging, and many do the TLB flush out of
374  	 * mmu_lock. The interaction between the various operations on memslot
375  	 * must be serialized by slots_locks to ensure the TLB flush from one
376  	 * operation is observed by any other operation on the same memslot.
377  	 */
378  	lockdep_assert_held(&kvm->slots_lock);
379  	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
380  }
381  
kvm_flush_shadow_all(struct kvm * kvm)382  static void kvm_flush_shadow_all(struct kvm *kvm)
383  {
384  	kvm_arch_flush_shadow_all(kvm);
385  	kvm_arch_guest_memory_reclaimed(kvm);
386  }
387  
388  #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)389  static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
390  					       gfp_t gfp_flags)
391  {
392  	void *page;
393  
394  	gfp_flags |= mc->gfp_zero;
395  
396  	if (mc->kmem_cache)
397  		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
398  
399  	page = (void *)__get_free_page(gfp_flags);
400  	if (page && mc->init_value)
401  		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
402  	return page;
403  }
404  
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)405  int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
406  {
407  	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
408  	void *obj;
409  
410  	if (mc->nobjs >= min)
411  		return 0;
412  
413  	if (unlikely(!mc->objects)) {
414  		if (WARN_ON_ONCE(!capacity))
415  			return -EIO;
416  
417  		/*
418  		 * Custom init values can be used only for page allocations,
419  		 * and obviously conflict with __GFP_ZERO.
420  		 */
421  		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
422  			return -EIO;
423  
424  		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425  		if (!mc->objects)
426  			return -ENOMEM;
427  
428  		mc->capacity = capacity;
429  	}
430  
431  	/* It is illegal to request a different capacity across topups. */
432  	if (WARN_ON_ONCE(mc->capacity != capacity))
433  		return -EIO;
434  
435  	while (mc->nobjs < mc->capacity) {
436  		obj = mmu_memory_cache_alloc_obj(mc, gfp);
437  		if (!obj)
438  			return mc->nobjs >= min ? 0 : -ENOMEM;
439  		mc->objects[mc->nobjs++] = obj;
440  	}
441  	return 0;
442  }
443  
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)444  int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445  {
446  	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447  }
448  
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)449  int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450  {
451  	return mc->nobjs;
452  }
453  
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)454  void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455  {
456  	while (mc->nobjs) {
457  		if (mc->kmem_cache)
458  			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459  		else
460  			free_page((unsigned long)mc->objects[--mc->nobjs]);
461  	}
462  
463  	kvfree(mc->objects);
464  
465  	mc->objects = NULL;
466  	mc->capacity = 0;
467  }
468  
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)469  void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470  {
471  	void *p;
472  
473  	if (WARN_ON(!mc->nobjs))
474  		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475  	else
476  		p = mc->objects[--mc->nobjs];
477  	BUG_ON(!p);
478  	return p;
479  }
480  #endif
481  
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)482  static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483  {
484  	mutex_init(&vcpu->mutex);
485  	vcpu->cpu = -1;
486  	vcpu->kvm = kvm;
487  	vcpu->vcpu_id = id;
488  	vcpu->pid = NULL;
489  #ifndef __KVM_HAVE_ARCH_WQP
490  	rcuwait_init(&vcpu->wait);
491  #endif
492  	kvm_async_pf_vcpu_init(vcpu);
493  
494  	kvm_vcpu_set_in_spin_loop(vcpu, false);
495  	kvm_vcpu_set_dy_eligible(vcpu, false);
496  	vcpu->preempted = false;
497  	vcpu->ready = false;
498  	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499  	vcpu->last_used_slot = NULL;
500  
501  	/* Fill the stats id string for the vcpu */
502  	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503  		 task_pid_nr(current), id);
504  }
505  
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)506  static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507  {
508  	kvm_arch_vcpu_destroy(vcpu);
509  	kvm_dirty_ring_free(&vcpu->dirty_ring);
510  
511  	/*
512  	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513  	 * the vcpu->pid pointer, and at destruction time all file descriptors
514  	 * are already gone.
515  	 */
516  	put_pid(rcu_dereference_protected(vcpu->pid, 1));
517  
518  	free_page((unsigned long)vcpu->run);
519  	kmem_cache_free(kvm_vcpu_cache, vcpu);
520  }
521  
kvm_destroy_vcpus(struct kvm * kvm)522  void kvm_destroy_vcpus(struct kvm *kvm)
523  {
524  	unsigned long i;
525  	struct kvm_vcpu *vcpu;
526  
527  	kvm_for_each_vcpu(i, vcpu, kvm) {
528  		kvm_vcpu_destroy(vcpu);
529  		xa_erase(&kvm->vcpu_array, i);
530  	}
531  
532  	atomic_set(&kvm->online_vcpus, 0);
533  }
534  EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535  
536  #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_notifier_to_kvm(struct mmu_notifier * mn)537  static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538  {
539  	return container_of(mn, struct kvm, mmu_notifier);
540  }
541  
542  typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543  
544  typedef void (*on_lock_fn_t)(struct kvm *kvm);
545  
546  struct kvm_mmu_notifier_range {
547  	/*
548  	 * 64-bit addresses, as KVM notifiers can operate on host virtual
549  	 * addresses (unsigned long) and guest physical addresses (64-bit).
550  	 */
551  	u64 start;
552  	u64 end;
553  	union kvm_mmu_notifier_arg arg;
554  	gfn_handler_t handler;
555  	on_lock_fn_t on_lock;
556  	bool flush_on_ret;
557  	bool may_block;
558  };
559  
560  /*
561   * The inner-most helper returns a tuple containing the return value from the
562   * arch- and action-specific handler, plus a flag indicating whether or not at
563   * least one memslot was found, i.e. if the handler found guest memory.
564   *
565   * Note, most notifiers are averse to booleans, so even though KVM tracks the
566   * return from arch code as a bool, outer helpers will cast it to an int. :-(
567   */
568  typedef struct kvm_mmu_notifier_return {
569  	bool ret;
570  	bool found_memslot;
571  } kvm_mn_ret_t;
572  
573  /*
574   * Use a dedicated stub instead of NULL to indicate that there is no callback
575   * function/handler.  The compiler technically can't guarantee that a real
576   * function will have a non-zero address, and so it will generate code to
577   * check for !NULL, whereas comparing against a stub will be elided at compile
578   * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579   */
kvm_null_fn(void)580  static void kvm_null_fn(void)
581  {
582  
583  }
584  #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585  
586  /* Iterate over each memslot intersecting [start, last] (inclusive) range */
587  #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
588  	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
589  	     node;							     \
590  	     node = interval_tree_iter_next(node, start, last))	     \
591  
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_mmu_notifier_range * range)592  static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
593  							   const struct kvm_mmu_notifier_range *range)
594  {
595  	struct kvm_mmu_notifier_return r = {
596  		.ret = false,
597  		.found_memslot = false,
598  	};
599  	struct kvm_gfn_range gfn_range;
600  	struct kvm_memory_slot *slot;
601  	struct kvm_memslots *slots;
602  	int i, idx;
603  
604  	if (WARN_ON_ONCE(range->end <= range->start))
605  		return r;
606  
607  	/* A null handler is allowed if and only if on_lock() is provided. */
608  	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
609  			 IS_KVM_NULL_FN(range->handler)))
610  		return r;
611  
612  	idx = srcu_read_lock(&kvm->srcu);
613  
614  	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
615  		struct interval_tree_node *node;
616  
617  		slots = __kvm_memslots(kvm, i);
618  		kvm_for_each_memslot_in_hva_range(node, slots,
619  						  range->start, range->end - 1) {
620  			unsigned long hva_start, hva_end;
621  
622  			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
623  			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
624  			hva_end = min_t(unsigned long, range->end,
625  					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
626  
627  			/*
628  			 * To optimize for the likely case where the address
629  			 * range is covered by zero or one memslots, don't
630  			 * bother making these conditional (to avoid writes on
631  			 * the second or later invocation of the handler).
632  			 */
633  			gfn_range.arg = range->arg;
634  			gfn_range.may_block = range->may_block;
635  
636  			/*
637  			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
638  			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
639  			 */
640  			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
641  			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
642  			gfn_range.slot = slot;
643  
644  			if (!r.found_memslot) {
645  				r.found_memslot = true;
646  				KVM_MMU_LOCK(kvm);
647  				if (!IS_KVM_NULL_FN(range->on_lock))
648  					range->on_lock(kvm);
649  
650  				if (IS_KVM_NULL_FN(range->handler))
651  					goto mmu_unlock;
652  			}
653  			r.ret |= range->handler(kvm, &gfn_range);
654  		}
655  	}
656  
657  	if (range->flush_on_ret && r.ret)
658  		kvm_flush_remote_tlbs(kvm);
659  
660  mmu_unlock:
661  	if (r.found_memslot)
662  		KVM_MMU_UNLOCK(kvm);
663  
664  	srcu_read_unlock(&kvm->srcu, idx);
665  
666  	return r;
667  }
668  
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)669  static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
670  						unsigned long start,
671  						unsigned long end,
672  						gfn_handler_t handler)
673  {
674  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
675  	const struct kvm_mmu_notifier_range range = {
676  		.start		= start,
677  		.end		= end,
678  		.handler	= handler,
679  		.on_lock	= (void *)kvm_null_fn,
680  		.flush_on_ret	= true,
681  		.may_block	= false,
682  	};
683  
684  	return __kvm_handle_hva_range(kvm, &range).ret;
685  }
686  
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,gfn_handler_t handler)687  static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
688  							 unsigned long start,
689  							 unsigned long end,
690  							 gfn_handler_t handler)
691  {
692  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
693  	const struct kvm_mmu_notifier_range range = {
694  		.start		= start,
695  		.end		= end,
696  		.handler	= handler,
697  		.on_lock	= (void *)kvm_null_fn,
698  		.flush_on_ret	= false,
699  		.may_block	= false,
700  	};
701  
702  	return __kvm_handle_hva_range(kvm, &range).ret;
703  }
704  
kvm_mmu_invalidate_begin(struct kvm * kvm)705  void kvm_mmu_invalidate_begin(struct kvm *kvm)
706  {
707  	lockdep_assert_held_write(&kvm->mmu_lock);
708  	/*
709  	 * The count increase must become visible at unlock time as no
710  	 * spte can be established without taking the mmu_lock and
711  	 * count is also read inside the mmu_lock critical section.
712  	 */
713  	kvm->mmu_invalidate_in_progress++;
714  
715  	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
716  		kvm->mmu_invalidate_range_start = INVALID_GPA;
717  		kvm->mmu_invalidate_range_end = INVALID_GPA;
718  	}
719  }
720  
kvm_mmu_invalidate_range_add(struct kvm * kvm,gfn_t start,gfn_t end)721  void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
722  {
723  	lockdep_assert_held_write(&kvm->mmu_lock);
724  
725  	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
726  
727  	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
728  		kvm->mmu_invalidate_range_start = start;
729  		kvm->mmu_invalidate_range_end = end;
730  	} else {
731  		/*
732  		 * Fully tracking multiple concurrent ranges has diminishing
733  		 * returns. Keep things simple and just find the minimal range
734  		 * which includes the current and new ranges. As there won't be
735  		 * enough information to subtract a range after its invalidate
736  		 * completes, any ranges invalidated concurrently will
737  		 * accumulate and persist until all outstanding invalidates
738  		 * complete.
739  		 */
740  		kvm->mmu_invalidate_range_start =
741  			min(kvm->mmu_invalidate_range_start, start);
742  		kvm->mmu_invalidate_range_end =
743  			max(kvm->mmu_invalidate_range_end, end);
744  	}
745  }
746  
kvm_mmu_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)747  bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
748  {
749  	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
750  	return kvm_unmap_gfn_range(kvm, range);
751  }
752  
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)753  static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
754  					const struct mmu_notifier_range *range)
755  {
756  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
757  	const struct kvm_mmu_notifier_range hva_range = {
758  		.start		= range->start,
759  		.end		= range->end,
760  		.handler	= kvm_mmu_unmap_gfn_range,
761  		.on_lock	= kvm_mmu_invalidate_begin,
762  		.flush_on_ret	= true,
763  		.may_block	= mmu_notifier_range_blockable(range),
764  	};
765  
766  	trace_kvm_unmap_hva_range(range->start, range->end);
767  
768  	/*
769  	 * Prevent memslot modification between range_start() and range_end()
770  	 * so that conditionally locking provides the same result in both
771  	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
772  	 * adjustments will be imbalanced.
773  	 *
774  	 * Pairs with the decrement in range_end().
775  	 */
776  	spin_lock(&kvm->mn_invalidate_lock);
777  	kvm->mn_active_invalidate_count++;
778  	spin_unlock(&kvm->mn_invalidate_lock);
779  
780  	/*
781  	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
782  	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
783  	 * each cache's lock.  There are relatively few caches in existence at
784  	 * any given time, and the caches themselves can check for hva overlap,
785  	 * i.e. don't need to rely on memslot overlap checks for performance.
786  	 * Because this runs without holding mmu_lock, the pfn caches must use
787  	 * mn_active_invalidate_count (see above) instead of
788  	 * mmu_invalidate_in_progress.
789  	 */
790  	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
791  
792  	/*
793  	 * If one or more memslots were found and thus zapped, notify arch code
794  	 * that guest memory has been reclaimed.  This needs to be done *after*
795  	 * dropping mmu_lock, as x86's reclaim path is slooooow.
796  	 */
797  	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
798  		kvm_arch_guest_memory_reclaimed(kvm);
799  
800  	return 0;
801  }
802  
kvm_mmu_invalidate_end(struct kvm * kvm)803  void kvm_mmu_invalidate_end(struct kvm *kvm)
804  {
805  	lockdep_assert_held_write(&kvm->mmu_lock);
806  
807  	/*
808  	 * This sequence increase will notify the kvm page fault that
809  	 * the page that is going to be mapped in the spte could have
810  	 * been freed.
811  	 */
812  	kvm->mmu_invalidate_seq++;
813  	smp_wmb();
814  	/*
815  	 * The above sequence increase must be visible before the
816  	 * below count decrease, which is ensured by the smp_wmb above
817  	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
818  	 */
819  	kvm->mmu_invalidate_in_progress--;
820  	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
821  
822  	/*
823  	 * Assert that at least one range was added between start() and end().
824  	 * Not adding a range isn't fatal, but it is a KVM bug.
825  	 */
826  	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
827  }
828  
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)829  static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
830  					const struct mmu_notifier_range *range)
831  {
832  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
833  	const struct kvm_mmu_notifier_range hva_range = {
834  		.start		= range->start,
835  		.end		= range->end,
836  		.handler	= (void *)kvm_null_fn,
837  		.on_lock	= kvm_mmu_invalidate_end,
838  		.flush_on_ret	= false,
839  		.may_block	= mmu_notifier_range_blockable(range),
840  	};
841  	bool wake;
842  
843  	__kvm_handle_hva_range(kvm, &hva_range);
844  
845  	/* Pairs with the increment in range_start(). */
846  	spin_lock(&kvm->mn_invalidate_lock);
847  	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
848  		--kvm->mn_active_invalidate_count;
849  	wake = !kvm->mn_active_invalidate_count;
850  	spin_unlock(&kvm->mn_invalidate_lock);
851  
852  	/*
853  	 * There can only be one waiter, since the wait happens under
854  	 * slots_lock.
855  	 */
856  	if (wake)
857  		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
858  }
859  
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)860  static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
861  					      struct mm_struct *mm,
862  					      unsigned long start,
863  					      unsigned long end)
864  {
865  	trace_kvm_age_hva(start, end);
866  
867  	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn);
868  }
869  
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)870  static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
871  					struct mm_struct *mm,
872  					unsigned long start,
873  					unsigned long end)
874  {
875  	trace_kvm_age_hva(start, end);
876  
877  	/*
878  	 * Even though we do not flush TLB, this will still adversely
879  	 * affect performance on pre-Haswell Intel EPT, where there is
880  	 * no EPT Access Bit to clear so that we have to tear down EPT
881  	 * tables instead. If we find this unacceptable, we can always
882  	 * add a parameter to kvm_age_hva so that it effectively doesn't
883  	 * do anything on clear_young.
884  	 *
885  	 * Also note that currently we never issue secondary TLB flushes
886  	 * from clear_young, leaving this job up to the regular system
887  	 * cadence. If we find this inaccurate, we might come up with a
888  	 * more sophisticated heuristic later.
889  	 */
890  	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
891  }
892  
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)893  static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
894  				       struct mm_struct *mm,
895  				       unsigned long address)
896  {
897  	trace_kvm_test_age_hva(address);
898  
899  	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
900  					     kvm_test_age_gfn);
901  }
902  
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)903  static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
904  				     struct mm_struct *mm)
905  {
906  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
907  	int idx;
908  
909  	idx = srcu_read_lock(&kvm->srcu);
910  	kvm_flush_shadow_all(kvm);
911  	srcu_read_unlock(&kvm->srcu, idx);
912  }
913  
914  static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
915  	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
916  	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
917  	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
918  	.clear_young		= kvm_mmu_notifier_clear_young,
919  	.test_young		= kvm_mmu_notifier_test_young,
920  	.release		= kvm_mmu_notifier_release,
921  };
922  
kvm_init_mmu_notifier(struct kvm * kvm)923  static int kvm_init_mmu_notifier(struct kvm *kvm)
924  {
925  	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
926  	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
927  }
928  
929  #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
930  
kvm_init_mmu_notifier(struct kvm * kvm)931  static int kvm_init_mmu_notifier(struct kvm *kvm)
932  {
933  	return 0;
934  }
935  
936  #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
937  
938  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)939  static int kvm_pm_notifier_call(struct notifier_block *bl,
940  				unsigned long state,
941  				void *unused)
942  {
943  	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
944  
945  	return kvm_arch_pm_notifier(kvm, state);
946  }
947  
kvm_init_pm_notifier(struct kvm * kvm)948  static void kvm_init_pm_notifier(struct kvm *kvm)
949  {
950  	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
951  	/* Suspend KVM before we suspend ftrace, RCU, etc. */
952  	kvm->pm_notifier.priority = INT_MAX;
953  	register_pm_notifier(&kvm->pm_notifier);
954  }
955  
kvm_destroy_pm_notifier(struct kvm * kvm)956  static void kvm_destroy_pm_notifier(struct kvm *kvm)
957  {
958  	unregister_pm_notifier(&kvm->pm_notifier);
959  }
960  #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)961  static void kvm_init_pm_notifier(struct kvm *kvm)
962  {
963  }
964  
kvm_destroy_pm_notifier(struct kvm * kvm)965  static void kvm_destroy_pm_notifier(struct kvm *kvm)
966  {
967  }
968  #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
969  
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)970  static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
971  {
972  	if (!memslot->dirty_bitmap)
973  		return;
974  
975  	vfree(memslot->dirty_bitmap);
976  	memslot->dirty_bitmap = NULL;
977  }
978  
979  /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)980  static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
981  {
982  	if (slot->flags & KVM_MEM_GUEST_MEMFD)
983  		kvm_gmem_unbind(slot);
984  
985  	kvm_destroy_dirty_bitmap(slot);
986  
987  	kvm_arch_free_memslot(kvm, slot);
988  
989  	kfree(slot);
990  }
991  
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)992  static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
993  {
994  	struct hlist_node *idnode;
995  	struct kvm_memory_slot *memslot;
996  	int bkt;
997  
998  	/*
999  	 * The same memslot objects live in both active and inactive sets,
1000  	 * arbitrarily free using index '1' so the second invocation of this
1001  	 * function isn't operating over a structure with dangling pointers
1002  	 * (even though this function isn't actually touching them).
1003  	 */
1004  	if (!slots->node_idx)
1005  		return;
1006  
1007  	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1008  		kvm_free_memslot(kvm, memslot);
1009  }
1010  
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)1011  static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1012  {
1013  	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1014  	case KVM_STATS_TYPE_INSTANT:
1015  		return 0444;
1016  	case KVM_STATS_TYPE_CUMULATIVE:
1017  	case KVM_STATS_TYPE_PEAK:
1018  	default:
1019  		return 0644;
1020  	}
1021  }
1022  
1023  
kvm_destroy_vm_debugfs(struct kvm * kvm)1024  static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1025  {
1026  	int i;
1027  	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1028  				      kvm_vcpu_stats_header.num_desc;
1029  
1030  	if (IS_ERR(kvm->debugfs_dentry))
1031  		return;
1032  
1033  	debugfs_remove_recursive(kvm->debugfs_dentry);
1034  
1035  	if (kvm->debugfs_stat_data) {
1036  		for (i = 0; i < kvm_debugfs_num_entries; i++)
1037  			kfree(kvm->debugfs_stat_data[i]);
1038  		kfree(kvm->debugfs_stat_data);
1039  	}
1040  }
1041  
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1042  static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1043  {
1044  	static DEFINE_MUTEX(kvm_debugfs_lock);
1045  	struct dentry *dent;
1046  	char dir_name[ITOA_MAX_LEN * 2];
1047  	struct kvm_stat_data *stat_data;
1048  	const struct _kvm_stats_desc *pdesc;
1049  	int i, ret = -ENOMEM;
1050  	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1051  				      kvm_vcpu_stats_header.num_desc;
1052  
1053  	if (!debugfs_initialized())
1054  		return 0;
1055  
1056  	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1057  	mutex_lock(&kvm_debugfs_lock);
1058  	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1059  	if (dent) {
1060  		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1061  		dput(dent);
1062  		mutex_unlock(&kvm_debugfs_lock);
1063  		return 0;
1064  	}
1065  	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1066  	mutex_unlock(&kvm_debugfs_lock);
1067  	if (IS_ERR(dent))
1068  		return 0;
1069  
1070  	kvm->debugfs_dentry = dent;
1071  	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1072  					 sizeof(*kvm->debugfs_stat_data),
1073  					 GFP_KERNEL_ACCOUNT);
1074  	if (!kvm->debugfs_stat_data)
1075  		goto out_err;
1076  
1077  	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1078  		pdesc = &kvm_vm_stats_desc[i];
1079  		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1080  		if (!stat_data)
1081  			goto out_err;
1082  
1083  		stat_data->kvm = kvm;
1084  		stat_data->desc = pdesc;
1085  		stat_data->kind = KVM_STAT_VM;
1086  		kvm->debugfs_stat_data[i] = stat_data;
1087  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1088  				    kvm->debugfs_dentry, stat_data,
1089  				    &stat_fops_per_vm);
1090  	}
1091  
1092  	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1093  		pdesc = &kvm_vcpu_stats_desc[i];
1094  		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1095  		if (!stat_data)
1096  			goto out_err;
1097  
1098  		stat_data->kvm = kvm;
1099  		stat_data->desc = pdesc;
1100  		stat_data->kind = KVM_STAT_VCPU;
1101  		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1102  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1103  				    kvm->debugfs_dentry, stat_data,
1104  				    &stat_fops_per_vm);
1105  	}
1106  
1107  	kvm_arch_create_vm_debugfs(kvm);
1108  	return 0;
1109  out_err:
1110  	kvm_destroy_vm_debugfs(kvm);
1111  	return ret;
1112  }
1113  
1114  /*
1115   * Called after the VM is otherwise initialized, but just before adding it to
1116   * the vm_list.
1117   */
kvm_arch_post_init_vm(struct kvm * kvm)1118  int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1119  {
1120  	return 0;
1121  }
1122  
1123  /*
1124   * Called just after removing the VM from the vm_list, but before doing any
1125   * other destruction.
1126   */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1127  void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1128  {
1129  }
1130  
1131  /*
1132   * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1133   * be setup already, so we can create arch-specific debugfs entries under it.
1134   * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1135   * a per-arch destroy interface is not needed.
1136   */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1137  void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1138  {
1139  }
1140  
kvm_create_vm(unsigned long type,const char * fdname)1141  static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1142  {
1143  	struct kvm *kvm = kvm_arch_alloc_vm();
1144  	struct kvm_memslots *slots;
1145  	int r, i, j;
1146  
1147  	if (!kvm)
1148  		return ERR_PTR(-ENOMEM);
1149  
1150  	KVM_MMU_LOCK_INIT(kvm);
1151  	mmgrab(current->mm);
1152  	kvm->mm = current->mm;
1153  	kvm_eventfd_init(kvm);
1154  	mutex_init(&kvm->lock);
1155  	mutex_init(&kvm->irq_lock);
1156  	mutex_init(&kvm->slots_lock);
1157  	mutex_init(&kvm->slots_arch_lock);
1158  	spin_lock_init(&kvm->mn_invalidate_lock);
1159  	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1160  	xa_init(&kvm->vcpu_array);
1161  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1162  	xa_init(&kvm->mem_attr_array);
1163  #endif
1164  
1165  	INIT_LIST_HEAD(&kvm->gpc_list);
1166  	spin_lock_init(&kvm->gpc_lock);
1167  
1168  	INIT_LIST_HEAD(&kvm->devices);
1169  	kvm->max_vcpus = KVM_MAX_VCPUS;
1170  
1171  	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1172  
1173  	/*
1174  	 * Force subsequent debugfs file creations to fail if the VM directory
1175  	 * is not created (by kvm_create_vm_debugfs()).
1176  	 */
1177  	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1178  
1179  	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1180  		 task_pid_nr(current));
1181  
1182  	r = -ENOMEM;
1183  	if (init_srcu_struct(&kvm->srcu))
1184  		goto out_err_no_srcu;
1185  	if (init_srcu_struct(&kvm->irq_srcu))
1186  		goto out_err_no_irq_srcu;
1187  
1188  	r = kvm_init_irq_routing(kvm);
1189  	if (r)
1190  		goto out_err_no_irq_routing;
1191  
1192  	refcount_set(&kvm->users_count, 1);
1193  
1194  	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1195  		for (j = 0; j < 2; j++) {
1196  			slots = &kvm->__memslots[i][j];
1197  
1198  			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1199  			slots->hva_tree = RB_ROOT_CACHED;
1200  			slots->gfn_tree = RB_ROOT;
1201  			hash_init(slots->id_hash);
1202  			slots->node_idx = j;
1203  
1204  			/* Generations must be different for each address space. */
1205  			slots->generation = i;
1206  		}
1207  
1208  		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1209  	}
1210  
1211  	r = -ENOMEM;
1212  	for (i = 0; i < KVM_NR_BUSES; i++) {
1213  		rcu_assign_pointer(kvm->buses[i],
1214  			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1215  		if (!kvm->buses[i])
1216  			goto out_err_no_arch_destroy_vm;
1217  	}
1218  
1219  	r = kvm_arch_init_vm(kvm, type);
1220  	if (r)
1221  		goto out_err_no_arch_destroy_vm;
1222  
1223  	r = kvm_enable_virtualization();
1224  	if (r)
1225  		goto out_err_no_disable;
1226  
1227  #ifdef CONFIG_HAVE_KVM_IRQCHIP
1228  	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1229  #endif
1230  
1231  	r = kvm_init_mmu_notifier(kvm);
1232  	if (r)
1233  		goto out_err_no_mmu_notifier;
1234  
1235  	r = kvm_coalesced_mmio_init(kvm);
1236  	if (r < 0)
1237  		goto out_no_coalesced_mmio;
1238  
1239  	r = kvm_create_vm_debugfs(kvm, fdname);
1240  	if (r)
1241  		goto out_err_no_debugfs;
1242  
1243  	r = kvm_arch_post_init_vm(kvm);
1244  	if (r)
1245  		goto out_err;
1246  
1247  	mutex_lock(&kvm_lock);
1248  	list_add(&kvm->vm_list, &vm_list);
1249  	mutex_unlock(&kvm_lock);
1250  
1251  	preempt_notifier_inc();
1252  	kvm_init_pm_notifier(kvm);
1253  
1254  	return kvm;
1255  
1256  out_err:
1257  	kvm_destroy_vm_debugfs(kvm);
1258  out_err_no_debugfs:
1259  	kvm_coalesced_mmio_free(kvm);
1260  out_no_coalesced_mmio:
1261  #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1262  	if (kvm->mmu_notifier.ops)
1263  		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1264  #endif
1265  out_err_no_mmu_notifier:
1266  	kvm_disable_virtualization();
1267  out_err_no_disable:
1268  	kvm_arch_destroy_vm(kvm);
1269  out_err_no_arch_destroy_vm:
1270  	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1271  	for (i = 0; i < KVM_NR_BUSES; i++)
1272  		kfree(kvm_get_bus(kvm, i));
1273  	kvm_free_irq_routing(kvm);
1274  out_err_no_irq_routing:
1275  	cleanup_srcu_struct(&kvm->irq_srcu);
1276  out_err_no_irq_srcu:
1277  	cleanup_srcu_struct(&kvm->srcu);
1278  out_err_no_srcu:
1279  	kvm_arch_free_vm(kvm);
1280  	mmdrop(current->mm);
1281  	return ERR_PTR(r);
1282  }
1283  
kvm_destroy_devices(struct kvm * kvm)1284  static void kvm_destroy_devices(struct kvm *kvm)
1285  {
1286  	struct kvm_device *dev, *tmp;
1287  
1288  	/*
1289  	 * We do not need to take the kvm->lock here, because nobody else
1290  	 * has a reference to the struct kvm at this point and therefore
1291  	 * cannot access the devices list anyhow.
1292  	 *
1293  	 * The device list is generally managed as an rculist, but list_del()
1294  	 * is used intentionally here. If a bug in KVM introduced a reader that
1295  	 * was not backed by a reference on the kvm struct, the hope is that
1296  	 * it'd consume the poisoned forward pointer instead of suffering a
1297  	 * use-after-free, even though this cannot be guaranteed.
1298  	 */
1299  	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1300  		list_del(&dev->vm_node);
1301  		dev->ops->destroy(dev);
1302  	}
1303  }
1304  
kvm_destroy_vm(struct kvm * kvm)1305  static void kvm_destroy_vm(struct kvm *kvm)
1306  {
1307  	int i;
1308  	struct mm_struct *mm = kvm->mm;
1309  
1310  	kvm_destroy_pm_notifier(kvm);
1311  	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1312  	kvm_destroy_vm_debugfs(kvm);
1313  	kvm_arch_sync_events(kvm);
1314  	mutex_lock(&kvm_lock);
1315  	list_del(&kvm->vm_list);
1316  	mutex_unlock(&kvm_lock);
1317  	kvm_arch_pre_destroy_vm(kvm);
1318  
1319  	kvm_free_irq_routing(kvm);
1320  	for (i = 0; i < KVM_NR_BUSES; i++) {
1321  		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1322  
1323  		if (bus)
1324  			kvm_io_bus_destroy(bus);
1325  		kvm->buses[i] = NULL;
1326  	}
1327  	kvm_coalesced_mmio_free(kvm);
1328  #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1329  	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1330  	/*
1331  	 * At this point, pending calls to invalidate_range_start()
1332  	 * have completed but no more MMU notifiers will run, so
1333  	 * mn_active_invalidate_count may remain unbalanced.
1334  	 * No threads can be waiting in kvm_swap_active_memslots() as the
1335  	 * last reference on KVM has been dropped, but freeing
1336  	 * memslots would deadlock without this manual intervention.
1337  	 *
1338  	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1339  	 * notifier between a start() and end(), then there shouldn't be any
1340  	 * in-progress invalidations.
1341  	 */
1342  	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1343  	if (kvm->mn_active_invalidate_count)
1344  		kvm->mn_active_invalidate_count = 0;
1345  	else
1346  		WARN_ON(kvm->mmu_invalidate_in_progress);
1347  #else
1348  	kvm_flush_shadow_all(kvm);
1349  #endif
1350  	kvm_arch_destroy_vm(kvm);
1351  	kvm_destroy_devices(kvm);
1352  	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1353  		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1354  		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1355  	}
1356  	cleanup_srcu_struct(&kvm->irq_srcu);
1357  	cleanup_srcu_struct(&kvm->srcu);
1358  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1359  	xa_destroy(&kvm->mem_attr_array);
1360  #endif
1361  	kvm_arch_free_vm(kvm);
1362  	preempt_notifier_dec();
1363  	kvm_disable_virtualization();
1364  	mmdrop(mm);
1365  }
1366  
kvm_get_kvm(struct kvm * kvm)1367  void kvm_get_kvm(struct kvm *kvm)
1368  {
1369  	refcount_inc(&kvm->users_count);
1370  }
1371  EXPORT_SYMBOL_GPL(kvm_get_kvm);
1372  
1373  /*
1374   * Make sure the vm is not during destruction, which is a safe version of
1375   * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1376   */
kvm_get_kvm_safe(struct kvm * kvm)1377  bool kvm_get_kvm_safe(struct kvm *kvm)
1378  {
1379  	return refcount_inc_not_zero(&kvm->users_count);
1380  }
1381  EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1382  
kvm_put_kvm(struct kvm * kvm)1383  void kvm_put_kvm(struct kvm *kvm)
1384  {
1385  	if (refcount_dec_and_test(&kvm->users_count))
1386  		kvm_destroy_vm(kvm);
1387  }
1388  EXPORT_SYMBOL_GPL(kvm_put_kvm);
1389  
1390  /*
1391   * Used to put a reference that was taken on behalf of an object associated
1392   * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1393   * of the new file descriptor fails and the reference cannot be transferred to
1394   * its final owner.  In such cases, the caller is still actively using @kvm and
1395   * will fail miserably if the refcount unexpectedly hits zero.
1396   */
kvm_put_kvm_no_destroy(struct kvm * kvm)1397  void kvm_put_kvm_no_destroy(struct kvm *kvm)
1398  {
1399  	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1400  }
1401  EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1402  
kvm_vm_release(struct inode * inode,struct file * filp)1403  static int kvm_vm_release(struct inode *inode, struct file *filp)
1404  {
1405  	struct kvm *kvm = filp->private_data;
1406  
1407  	kvm_irqfd_release(kvm);
1408  
1409  	kvm_put_kvm(kvm);
1410  	return 0;
1411  }
1412  
1413  /*
1414   * Allocation size is twice as large as the actual dirty bitmap size.
1415   * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1416   */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1417  static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1418  {
1419  	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1420  
1421  	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1422  	if (!memslot->dirty_bitmap)
1423  		return -ENOMEM;
1424  
1425  	return 0;
1426  }
1427  
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1428  static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1429  {
1430  	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1431  	int node_idx_inactive = active->node_idx ^ 1;
1432  
1433  	return &kvm->__memslots[as_id][node_idx_inactive];
1434  }
1435  
1436  /*
1437   * Helper to get the address space ID when one of memslot pointers may be NULL.
1438   * This also serves as a sanity that at least one of the pointers is non-NULL,
1439   * and that their address space IDs don't diverge.
1440   */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1441  static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1442  				  struct kvm_memory_slot *b)
1443  {
1444  	if (WARN_ON_ONCE(!a && !b))
1445  		return 0;
1446  
1447  	if (!a)
1448  		return b->as_id;
1449  	if (!b)
1450  		return a->as_id;
1451  
1452  	WARN_ON_ONCE(a->as_id != b->as_id);
1453  	return a->as_id;
1454  }
1455  
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1456  static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1457  				struct kvm_memory_slot *slot)
1458  {
1459  	struct rb_root *gfn_tree = &slots->gfn_tree;
1460  	struct rb_node **node, *parent;
1461  	int idx = slots->node_idx;
1462  
1463  	parent = NULL;
1464  	for (node = &gfn_tree->rb_node; *node; ) {
1465  		struct kvm_memory_slot *tmp;
1466  
1467  		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1468  		parent = *node;
1469  		if (slot->base_gfn < tmp->base_gfn)
1470  			node = &(*node)->rb_left;
1471  		else if (slot->base_gfn > tmp->base_gfn)
1472  			node = &(*node)->rb_right;
1473  		else
1474  			BUG();
1475  	}
1476  
1477  	rb_link_node(&slot->gfn_node[idx], parent, node);
1478  	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1479  }
1480  
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1481  static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1482  			       struct kvm_memory_slot *slot)
1483  {
1484  	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1485  }
1486  
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1487  static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1488  				 struct kvm_memory_slot *old,
1489  				 struct kvm_memory_slot *new)
1490  {
1491  	int idx = slots->node_idx;
1492  
1493  	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1494  
1495  	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1496  			&slots->gfn_tree);
1497  }
1498  
1499  /*
1500   * Replace @old with @new in the inactive memslots.
1501   *
1502   * With NULL @old this simply adds @new.
1503   * With NULL @new this simply removes @old.
1504   *
1505   * If @new is non-NULL its hva_node[slots_idx] range has to be set
1506   * appropriately.
1507   */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1508  static void kvm_replace_memslot(struct kvm *kvm,
1509  				struct kvm_memory_slot *old,
1510  				struct kvm_memory_slot *new)
1511  {
1512  	int as_id = kvm_memslots_get_as_id(old, new);
1513  	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1514  	int idx = slots->node_idx;
1515  
1516  	if (old) {
1517  		hash_del(&old->id_node[idx]);
1518  		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1519  
1520  		if ((long)old == atomic_long_read(&slots->last_used_slot))
1521  			atomic_long_set(&slots->last_used_slot, (long)new);
1522  
1523  		if (!new) {
1524  			kvm_erase_gfn_node(slots, old);
1525  			return;
1526  		}
1527  	}
1528  
1529  	/*
1530  	 * Initialize @new's hva range.  Do this even when replacing an @old
1531  	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1532  	 */
1533  	new->hva_node[idx].start = new->userspace_addr;
1534  	new->hva_node[idx].last = new->userspace_addr +
1535  				  (new->npages << PAGE_SHIFT) - 1;
1536  
1537  	/*
1538  	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1539  	 * hva_node needs to be swapped with remove+insert even though hva can't
1540  	 * change when replacing an existing slot.
1541  	 */
1542  	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1543  	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1544  
1545  	/*
1546  	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1547  	 * switch the node in the gfn tree instead of removing the old and
1548  	 * inserting the new as two separate operations. Replacement is a
1549  	 * single O(1) operation versus two O(log(n)) operations for
1550  	 * remove+insert.
1551  	 */
1552  	if (old && old->base_gfn == new->base_gfn) {
1553  		kvm_replace_gfn_node(slots, old, new);
1554  	} else {
1555  		if (old)
1556  			kvm_erase_gfn_node(slots, old);
1557  		kvm_insert_gfn_node(slots, new);
1558  	}
1559  }
1560  
1561  /*
1562   * Flags that do not access any of the extra space of struct
1563   * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1564   * only allows these.
1565   */
1566  #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1567  	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1568  
check_memory_region_flags(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1569  static int check_memory_region_flags(struct kvm *kvm,
1570  				     const struct kvm_userspace_memory_region2 *mem)
1571  {
1572  	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1573  
1574  	if (kvm_arch_has_private_mem(kvm))
1575  		valid_flags |= KVM_MEM_GUEST_MEMFD;
1576  
1577  	/* Dirty logging private memory is not currently supported. */
1578  	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1579  		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1580  
1581  	/*
1582  	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1583  	 * read-only memslots have emulated MMIO, not page fault, semantics,
1584  	 * and KVM doesn't allow emulated MMIO for private memory.
1585  	 */
1586  	if (kvm_arch_has_readonly_mem(kvm) &&
1587  	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1588  		valid_flags |= KVM_MEM_READONLY;
1589  
1590  	if (mem->flags & ~valid_flags)
1591  		return -EINVAL;
1592  
1593  	return 0;
1594  }
1595  
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1596  static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1597  {
1598  	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1599  
1600  	/* Grab the generation from the activate memslots. */
1601  	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1602  
1603  	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1604  	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1605  
1606  	/*
1607  	 * Do not store the new memslots while there are invalidations in
1608  	 * progress, otherwise the locking in invalidate_range_start and
1609  	 * invalidate_range_end will be unbalanced.
1610  	 */
1611  	spin_lock(&kvm->mn_invalidate_lock);
1612  	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1613  	while (kvm->mn_active_invalidate_count) {
1614  		set_current_state(TASK_UNINTERRUPTIBLE);
1615  		spin_unlock(&kvm->mn_invalidate_lock);
1616  		schedule();
1617  		spin_lock(&kvm->mn_invalidate_lock);
1618  	}
1619  	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1620  	rcu_assign_pointer(kvm->memslots[as_id], slots);
1621  	spin_unlock(&kvm->mn_invalidate_lock);
1622  
1623  	/*
1624  	 * Acquired in kvm_set_memslot. Must be released before synchronize
1625  	 * SRCU below in order to avoid deadlock with another thread
1626  	 * acquiring the slots_arch_lock in an srcu critical section.
1627  	 */
1628  	mutex_unlock(&kvm->slots_arch_lock);
1629  
1630  	synchronize_srcu_expedited(&kvm->srcu);
1631  
1632  	/*
1633  	 * Increment the new memslot generation a second time, dropping the
1634  	 * update in-progress flag and incrementing the generation based on
1635  	 * the number of address spaces.  This provides a unique and easily
1636  	 * identifiable generation number while the memslots are in flux.
1637  	 */
1638  	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1639  
1640  	/*
1641  	 * Generations must be unique even across address spaces.  We do not need
1642  	 * a global counter for that, instead the generation space is evenly split
1643  	 * across address spaces.  For example, with two address spaces, address
1644  	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1645  	 * use generations 1, 3, 5, ...
1646  	 */
1647  	gen += kvm_arch_nr_memslot_as_ids(kvm);
1648  
1649  	kvm_arch_memslots_updated(kvm, gen);
1650  
1651  	slots->generation = gen;
1652  }
1653  
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1654  static int kvm_prepare_memory_region(struct kvm *kvm,
1655  				     const struct kvm_memory_slot *old,
1656  				     struct kvm_memory_slot *new,
1657  				     enum kvm_mr_change change)
1658  {
1659  	int r;
1660  
1661  	/*
1662  	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1663  	 * will be freed on "commit".  If logging is enabled in both old and
1664  	 * new, reuse the existing bitmap.  If logging is enabled only in the
1665  	 * new and KVM isn't using a ring buffer, allocate and initialize a
1666  	 * new bitmap.
1667  	 */
1668  	if (change != KVM_MR_DELETE) {
1669  		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1670  			new->dirty_bitmap = NULL;
1671  		else if (old && old->dirty_bitmap)
1672  			new->dirty_bitmap = old->dirty_bitmap;
1673  		else if (kvm_use_dirty_bitmap(kvm)) {
1674  			r = kvm_alloc_dirty_bitmap(new);
1675  			if (r)
1676  				return r;
1677  
1678  			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1679  				bitmap_set(new->dirty_bitmap, 0, new->npages);
1680  		}
1681  	}
1682  
1683  	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1684  
1685  	/* Free the bitmap on failure if it was allocated above. */
1686  	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1687  		kvm_destroy_dirty_bitmap(new);
1688  
1689  	return r;
1690  }
1691  
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1692  static void kvm_commit_memory_region(struct kvm *kvm,
1693  				     struct kvm_memory_slot *old,
1694  				     const struct kvm_memory_slot *new,
1695  				     enum kvm_mr_change change)
1696  {
1697  	int old_flags = old ? old->flags : 0;
1698  	int new_flags = new ? new->flags : 0;
1699  	/*
1700  	 * Update the total number of memslot pages before calling the arch
1701  	 * hook so that architectures can consume the result directly.
1702  	 */
1703  	if (change == KVM_MR_DELETE)
1704  		kvm->nr_memslot_pages -= old->npages;
1705  	else if (change == KVM_MR_CREATE)
1706  		kvm->nr_memslot_pages += new->npages;
1707  
1708  	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1709  		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1710  		atomic_set(&kvm->nr_memslots_dirty_logging,
1711  			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1712  	}
1713  
1714  	kvm_arch_commit_memory_region(kvm, old, new, change);
1715  
1716  	switch (change) {
1717  	case KVM_MR_CREATE:
1718  		/* Nothing more to do. */
1719  		break;
1720  	case KVM_MR_DELETE:
1721  		/* Free the old memslot and all its metadata. */
1722  		kvm_free_memslot(kvm, old);
1723  		break;
1724  	case KVM_MR_MOVE:
1725  	case KVM_MR_FLAGS_ONLY:
1726  		/*
1727  		 * Free the dirty bitmap as needed; the below check encompasses
1728  		 * both the flags and whether a ring buffer is being used)
1729  		 */
1730  		if (old->dirty_bitmap && !new->dirty_bitmap)
1731  			kvm_destroy_dirty_bitmap(old);
1732  
1733  		/*
1734  		 * The final quirk.  Free the detached, old slot, but only its
1735  		 * memory, not any metadata.  Metadata, including arch specific
1736  		 * data, may be reused by @new.
1737  		 */
1738  		kfree(old);
1739  		break;
1740  	default:
1741  		BUG();
1742  	}
1743  }
1744  
1745  /*
1746   * Activate @new, which must be installed in the inactive slots by the caller,
1747   * by swapping the active slots and then propagating @new to @old once @old is
1748   * unreachable and can be safely modified.
1749   *
1750   * With NULL @old this simply adds @new to @active (while swapping the sets).
1751   * With NULL @new this simply removes @old from @active and frees it
1752   * (while also swapping the sets).
1753   */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1754  static void kvm_activate_memslot(struct kvm *kvm,
1755  				 struct kvm_memory_slot *old,
1756  				 struct kvm_memory_slot *new)
1757  {
1758  	int as_id = kvm_memslots_get_as_id(old, new);
1759  
1760  	kvm_swap_active_memslots(kvm, as_id);
1761  
1762  	/* Propagate the new memslot to the now inactive memslots. */
1763  	kvm_replace_memslot(kvm, old, new);
1764  }
1765  
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1766  static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1767  			     const struct kvm_memory_slot *src)
1768  {
1769  	dest->base_gfn = src->base_gfn;
1770  	dest->npages = src->npages;
1771  	dest->dirty_bitmap = src->dirty_bitmap;
1772  	dest->arch = src->arch;
1773  	dest->userspace_addr = src->userspace_addr;
1774  	dest->flags = src->flags;
1775  	dest->id = src->id;
1776  	dest->as_id = src->as_id;
1777  }
1778  
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1779  static void kvm_invalidate_memslot(struct kvm *kvm,
1780  				   struct kvm_memory_slot *old,
1781  				   struct kvm_memory_slot *invalid_slot)
1782  {
1783  	/*
1784  	 * Mark the current slot INVALID.  As with all memslot modifications,
1785  	 * this must be done on an unreachable slot to avoid modifying the
1786  	 * current slot in the active tree.
1787  	 */
1788  	kvm_copy_memslot(invalid_slot, old);
1789  	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1790  	kvm_replace_memslot(kvm, old, invalid_slot);
1791  
1792  	/*
1793  	 * Activate the slot that is now marked INVALID, but don't propagate
1794  	 * the slot to the now inactive slots. The slot is either going to be
1795  	 * deleted or recreated as a new slot.
1796  	 */
1797  	kvm_swap_active_memslots(kvm, old->as_id);
1798  
1799  	/*
1800  	 * From this point no new shadow pages pointing to a deleted, or moved,
1801  	 * memslot will be created.  Validation of sp->gfn happens in:
1802  	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1803  	 *	- kvm_is_visible_gfn (mmu_check_root)
1804  	 */
1805  	kvm_arch_flush_shadow_memslot(kvm, old);
1806  	kvm_arch_guest_memory_reclaimed(kvm);
1807  
1808  	/* Was released by kvm_swap_active_memslots(), reacquire. */
1809  	mutex_lock(&kvm->slots_arch_lock);
1810  
1811  	/*
1812  	 * Copy the arch-specific field of the newly-installed slot back to the
1813  	 * old slot as the arch data could have changed between releasing
1814  	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1815  	 * above.  Writers are required to retrieve memslots *after* acquiring
1816  	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1817  	 */
1818  	old->arch = invalid_slot->arch;
1819  }
1820  
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1821  static void kvm_create_memslot(struct kvm *kvm,
1822  			       struct kvm_memory_slot *new)
1823  {
1824  	/* Add the new memslot to the inactive set and activate. */
1825  	kvm_replace_memslot(kvm, NULL, new);
1826  	kvm_activate_memslot(kvm, NULL, new);
1827  }
1828  
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1829  static void kvm_delete_memslot(struct kvm *kvm,
1830  			       struct kvm_memory_slot *old,
1831  			       struct kvm_memory_slot *invalid_slot)
1832  {
1833  	/*
1834  	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1835  	 * the "new" slot, and for the invalid version in the active slots.
1836  	 */
1837  	kvm_replace_memslot(kvm, old, NULL);
1838  	kvm_activate_memslot(kvm, invalid_slot, NULL);
1839  }
1840  
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1841  static void kvm_move_memslot(struct kvm *kvm,
1842  			     struct kvm_memory_slot *old,
1843  			     struct kvm_memory_slot *new,
1844  			     struct kvm_memory_slot *invalid_slot)
1845  {
1846  	/*
1847  	 * Replace the old memslot in the inactive slots, and then swap slots
1848  	 * and replace the current INVALID with the new as well.
1849  	 */
1850  	kvm_replace_memslot(kvm, old, new);
1851  	kvm_activate_memslot(kvm, invalid_slot, new);
1852  }
1853  
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1854  static void kvm_update_flags_memslot(struct kvm *kvm,
1855  				     struct kvm_memory_slot *old,
1856  				     struct kvm_memory_slot *new)
1857  {
1858  	/*
1859  	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1860  	 * an intermediate step. Instead, the old memslot is simply replaced
1861  	 * with a new, updated copy in both memslot sets.
1862  	 */
1863  	kvm_replace_memslot(kvm, old, new);
1864  	kvm_activate_memslot(kvm, old, new);
1865  }
1866  
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1867  static int kvm_set_memslot(struct kvm *kvm,
1868  			   struct kvm_memory_slot *old,
1869  			   struct kvm_memory_slot *new,
1870  			   enum kvm_mr_change change)
1871  {
1872  	struct kvm_memory_slot *invalid_slot;
1873  	int r;
1874  
1875  	/*
1876  	 * Released in kvm_swap_active_memslots().
1877  	 *
1878  	 * Must be held from before the current memslots are copied until after
1879  	 * the new memslots are installed with rcu_assign_pointer, then
1880  	 * released before the synchronize srcu in kvm_swap_active_memslots().
1881  	 *
1882  	 * When modifying memslots outside of the slots_lock, must be held
1883  	 * before reading the pointer to the current memslots until after all
1884  	 * changes to those memslots are complete.
1885  	 *
1886  	 * These rules ensure that installing new memslots does not lose
1887  	 * changes made to the previous memslots.
1888  	 */
1889  	mutex_lock(&kvm->slots_arch_lock);
1890  
1891  	/*
1892  	 * Invalidate the old slot if it's being deleted or moved.  This is
1893  	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1894  	 * continue running by ensuring there are no mappings or shadow pages
1895  	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1896  	 * (and without a lock), a window would exist between effecting the
1897  	 * delete/move and committing the changes in arch code where KVM or a
1898  	 * guest could access a non-existent memslot.
1899  	 *
1900  	 * Modifications are done on a temporary, unreachable slot.  The old
1901  	 * slot needs to be preserved in case a later step fails and the
1902  	 * invalidation needs to be reverted.
1903  	 */
1904  	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1905  		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1906  		if (!invalid_slot) {
1907  			mutex_unlock(&kvm->slots_arch_lock);
1908  			return -ENOMEM;
1909  		}
1910  		kvm_invalidate_memslot(kvm, old, invalid_slot);
1911  	}
1912  
1913  	r = kvm_prepare_memory_region(kvm, old, new, change);
1914  	if (r) {
1915  		/*
1916  		 * For DELETE/MOVE, revert the above INVALID change.  No
1917  		 * modifications required since the original slot was preserved
1918  		 * in the inactive slots.  Changing the active memslots also
1919  		 * release slots_arch_lock.
1920  		 */
1921  		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1922  			kvm_activate_memslot(kvm, invalid_slot, old);
1923  			kfree(invalid_slot);
1924  		} else {
1925  			mutex_unlock(&kvm->slots_arch_lock);
1926  		}
1927  		return r;
1928  	}
1929  
1930  	/*
1931  	 * For DELETE and MOVE, the working slot is now active as the INVALID
1932  	 * version of the old slot.  MOVE is particularly special as it reuses
1933  	 * the old slot and returns a copy of the old slot (in working_slot).
1934  	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1935  	 * old slot is detached but otherwise preserved.
1936  	 */
1937  	if (change == KVM_MR_CREATE)
1938  		kvm_create_memslot(kvm, new);
1939  	else if (change == KVM_MR_DELETE)
1940  		kvm_delete_memslot(kvm, old, invalid_slot);
1941  	else if (change == KVM_MR_MOVE)
1942  		kvm_move_memslot(kvm, old, new, invalid_slot);
1943  	else if (change == KVM_MR_FLAGS_ONLY)
1944  		kvm_update_flags_memslot(kvm, old, new);
1945  	else
1946  		BUG();
1947  
1948  	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1949  	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1950  		kfree(invalid_slot);
1951  
1952  	/*
1953  	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1954  	 * will directly hit the final, active memslot.  Architectures are
1955  	 * responsible for knowing that new->arch may be stale.
1956  	 */
1957  	kvm_commit_memory_region(kvm, old, new, change);
1958  
1959  	return 0;
1960  }
1961  
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1962  static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1963  				      gfn_t start, gfn_t end)
1964  {
1965  	struct kvm_memslot_iter iter;
1966  
1967  	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1968  		if (iter.slot->id != id)
1969  			return true;
1970  	}
1971  
1972  	return false;
1973  }
1974  
1975  /*
1976   * Allocate some memory and give it an address in the guest physical address
1977   * space.
1978   *
1979   * Discontiguous memory is allowed, mostly for framebuffers.
1980   *
1981   * Must be called holding kvm->slots_lock for write.
1982   */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)1983  int __kvm_set_memory_region(struct kvm *kvm,
1984  			    const struct kvm_userspace_memory_region2 *mem)
1985  {
1986  	struct kvm_memory_slot *old, *new;
1987  	struct kvm_memslots *slots;
1988  	enum kvm_mr_change change;
1989  	unsigned long npages;
1990  	gfn_t base_gfn;
1991  	int as_id, id;
1992  	int r;
1993  
1994  	r = check_memory_region_flags(kvm, mem);
1995  	if (r)
1996  		return r;
1997  
1998  	as_id = mem->slot >> 16;
1999  	id = (u16)mem->slot;
2000  
2001  	/* General sanity checks */
2002  	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2003  	    (mem->memory_size != (unsigned long)mem->memory_size))
2004  		return -EINVAL;
2005  	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2006  		return -EINVAL;
2007  	/* We can read the guest memory with __xxx_user() later on. */
2008  	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2009  	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2010  	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2011  			mem->memory_size))
2012  		return -EINVAL;
2013  	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2014  	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2015  	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2016  		return -EINVAL;
2017  	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2018  		return -EINVAL;
2019  	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2020  		return -EINVAL;
2021  	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2022  		return -EINVAL;
2023  
2024  	slots = __kvm_memslots(kvm, as_id);
2025  
2026  	/*
2027  	 * Note, the old memslot (and the pointer itself!) may be invalidated
2028  	 * and/or destroyed by kvm_set_memslot().
2029  	 */
2030  	old = id_to_memslot(slots, id);
2031  
2032  	if (!mem->memory_size) {
2033  		if (!old || !old->npages)
2034  			return -EINVAL;
2035  
2036  		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2037  			return -EIO;
2038  
2039  		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2040  	}
2041  
2042  	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2043  	npages = (mem->memory_size >> PAGE_SHIFT);
2044  
2045  	if (!old || !old->npages) {
2046  		change = KVM_MR_CREATE;
2047  
2048  		/*
2049  		 * To simplify KVM internals, the total number of pages across
2050  		 * all memslots must fit in an unsigned long.
2051  		 */
2052  		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2053  			return -EINVAL;
2054  	} else { /* Modify an existing slot. */
2055  		/* Private memslots are immutable, they can only be deleted. */
2056  		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2057  			return -EINVAL;
2058  		if ((mem->userspace_addr != old->userspace_addr) ||
2059  		    (npages != old->npages) ||
2060  		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2061  			return -EINVAL;
2062  
2063  		if (base_gfn != old->base_gfn)
2064  			change = KVM_MR_MOVE;
2065  		else if (mem->flags != old->flags)
2066  			change = KVM_MR_FLAGS_ONLY;
2067  		else /* Nothing to change. */
2068  			return 0;
2069  	}
2070  
2071  	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2072  	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2073  		return -EEXIST;
2074  
2075  	/* Allocate a slot that will persist in the memslot. */
2076  	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2077  	if (!new)
2078  		return -ENOMEM;
2079  
2080  	new->as_id = as_id;
2081  	new->id = id;
2082  	new->base_gfn = base_gfn;
2083  	new->npages = npages;
2084  	new->flags = mem->flags;
2085  	new->userspace_addr = mem->userspace_addr;
2086  	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2087  		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2088  		if (r)
2089  			goto out;
2090  	}
2091  
2092  	r = kvm_set_memslot(kvm, old, new, change);
2093  	if (r)
2094  		goto out_unbind;
2095  
2096  	return 0;
2097  
2098  out_unbind:
2099  	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2100  		kvm_gmem_unbind(new);
2101  out:
2102  	kfree(new);
2103  	return r;
2104  }
2105  EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2106  
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region2 * mem)2107  int kvm_set_memory_region(struct kvm *kvm,
2108  			  const struct kvm_userspace_memory_region2 *mem)
2109  {
2110  	int r;
2111  
2112  	mutex_lock(&kvm->slots_lock);
2113  	r = __kvm_set_memory_region(kvm, mem);
2114  	mutex_unlock(&kvm->slots_lock);
2115  	return r;
2116  }
2117  EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2118  
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region2 * mem)2119  static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2120  					  struct kvm_userspace_memory_region2 *mem)
2121  {
2122  	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2123  		return -EINVAL;
2124  
2125  	return kvm_set_memory_region(kvm, mem);
2126  }
2127  
2128  #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2129  /**
2130   * kvm_get_dirty_log - get a snapshot of dirty pages
2131   * @kvm:	pointer to kvm instance
2132   * @log:	slot id and address to which we copy the log
2133   * @is_dirty:	set to '1' if any dirty pages were found
2134   * @memslot:	set to the associated memslot, always valid on success
2135   */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2136  int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2137  		      int *is_dirty, struct kvm_memory_slot **memslot)
2138  {
2139  	struct kvm_memslots *slots;
2140  	int i, as_id, id;
2141  	unsigned long n;
2142  	unsigned long any = 0;
2143  
2144  	/* Dirty ring tracking may be exclusive to dirty log tracking */
2145  	if (!kvm_use_dirty_bitmap(kvm))
2146  		return -ENXIO;
2147  
2148  	*memslot = NULL;
2149  	*is_dirty = 0;
2150  
2151  	as_id = log->slot >> 16;
2152  	id = (u16)log->slot;
2153  	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2154  		return -EINVAL;
2155  
2156  	slots = __kvm_memslots(kvm, as_id);
2157  	*memslot = id_to_memslot(slots, id);
2158  	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2159  		return -ENOENT;
2160  
2161  	kvm_arch_sync_dirty_log(kvm, *memslot);
2162  
2163  	n = kvm_dirty_bitmap_bytes(*memslot);
2164  
2165  	for (i = 0; !any && i < n/sizeof(long); ++i)
2166  		any = (*memslot)->dirty_bitmap[i];
2167  
2168  	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2169  		return -EFAULT;
2170  
2171  	if (any)
2172  		*is_dirty = 1;
2173  	return 0;
2174  }
2175  EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2176  
2177  #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2178  /**
2179   * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2180   *	and reenable dirty page tracking for the corresponding pages.
2181   * @kvm:	pointer to kvm instance
2182   * @log:	slot id and address to which we copy the log
2183   *
2184   * We need to keep it in mind that VCPU threads can write to the bitmap
2185   * concurrently. So, to avoid losing track of dirty pages we keep the
2186   * following order:
2187   *
2188   *    1. Take a snapshot of the bit and clear it if needed.
2189   *    2. Write protect the corresponding page.
2190   *    3. Copy the snapshot to the userspace.
2191   *    4. Upon return caller flushes TLB's if needed.
2192   *
2193   * Between 2 and 4, the guest may write to the page using the remaining TLB
2194   * entry.  This is not a problem because the page is reported dirty using
2195   * the snapshot taken before and step 4 ensures that writes done after
2196   * exiting to userspace will be logged for the next call.
2197   *
2198   */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2199  static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2200  {
2201  	struct kvm_memslots *slots;
2202  	struct kvm_memory_slot *memslot;
2203  	int i, as_id, id;
2204  	unsigned long n;
2205  	unsigned long *dirty_bitmap;
2206  	unsigned long *dirty_bitmap_buffer;
2207  	bool flush;
2208  
2209  	/* Dirty ring tracking may be exclusive to dirty log tracking */
2210  	if (!kvm_use_dirty_bitmap(kvm))
2211  		return -ENXIO;
2212  
2213  	as_id = log->slot >> 16;
2214  	id = (u16)log->slot;
2215  	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2216  		return -EINVAL;
2217  
2218  	slots = __kvm_memslots(kvm, as_id);
2219  	memslot = id_to_memslot(slots, id);
2220  	if (!memslot || !memslot->dirty_bitmap)
2221  		return -ENOENT;
2222  
2223  	dirty_bitmap = memslot->dirty_bitmap;
2224  
2225  	kvm_arch_sync_dirty_log(kvm, memslot);
2226  
2227  	n = kvm_dirty_bitmap_bytes(memslot);
2228  	flush = false;
2229  	if (kvm->manual_dirty_log_protect) {
2230  		/*
2231  		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2232  		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2233  		 * is some code duplication between this function and
2234  		 * kvm_get_dirty_log, but hopefully all architecture
2235  		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2236  		 * can be eliminated.
2237  		 */
2238  		dirty_bitmap_buffer = dirty_bitmap;
2239  	} else {
2240  		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2241  		memset(dirty_bitmap_buffer, 0, n);
2242  
2243  		KVM_MMU_LOCK(kvm);
2244  		for (i = 0; i < n / sizeof(long); i++) {
2245  			unsigned long mask;
2246  			gfn_t offset;
2247  
2248  			if (!dirty_bitmap[i])
2249  				continue;
2250  
2251  			flush = true;
2252  			mask = xchg(&dirty_bitmap[i], 0);
2253  			dirty_bitmap_buffer[i] = mask;
2254  
2255  			offset = i * BITS_PER_LONG;
2256  			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2257  								offset, mask);
2258  		}
2259  		KVM_MMU_UNLOCK(kvm);
2260  	}
2261  
2262  	if (flush)
2263  		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2264  
2265  	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2266  		return -EFAULT;
2267  	return 0;
2268  }
2269  
2270  
2271  /**
2272   * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2273   * @kvm: kvm instance
2274   * @log: slot id and address to which we copy the log
2275   *
2276   * Steps 1-4 below provide general overview of dirty page logging. See
2277   * kvm_get_dirty_log_protect() function description for additional details.
2278   *
2279   * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2280   * always flush the TLB (step 4) even if previous step failed  and the dirty
2281   * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2282   * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2283   * writes will be marked dirty for next log read.
2284   *
2285   *   1. Take a snapshot of the bit and clear it if needed.
2286   *   2. Write protect the corresponding page.
2287   *   3. Copy the snapshot to the userspace.
2288   *   4. Flush TLB's if needed.
2289   */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2290  static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2291  				      struct kvm_dirty_log *log)
2292  {
2293  	int r;
2294  
2295  	mutex_lock(&kvm->slots_lock);
2296  
2297  	r = kvm_get_dirty_log_protect(kvm, log);
2298  
2299  	mutex_unlock(&kvm->slots_lock);
2300  	return r;
2301  }
2302  
2303  /**
2304   * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2305   *	and reenable dirty page tracking for the corresponding pages.
2306   * @kvm:	pointer to kvm instance
2307   * @log:	slot id and address from which to fetch the bitmap of dirty pages
2308   */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2309  static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2310  				       struct kvm_clear_dirty_log *log)
2311  {
2312  	struct kvm_memslots *slots;
2313  	struct kvm_memory_slot *memslot;
2314  	int as_id, id;
2315  	gfn_t offset;
2316  	unsigned long i, n;
2317  	unsigned long *dirty_bitmap;
2318  	unsigned long *dirty_bitmap_buffer;
2319  	bool flush;
2320  
2321  	/* Dirty ring tracking may be exclusive to dirty log tracking */
2322  	if (!kvm_use_dirty_bitmap(kvm))
2323  		return -ENXIO;
2324  
2325  	as_id = log->slot >> 16;
2326  	id = (u16)log->slot;
2327  	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2328  		return -EINVAL;
2329  
2330  	if (log->first_page & 63)
2331  		return -EINVAL;
2332  
2333  	slots = __kvm_memslots(kvm, as_id);
2334  	memslot = id_to_memslot(slots, id);
2335  	if (!memslot || !memslot->dirty_bitmap)
2336  		return -ENOENT;
2337  
2338  	dirty_bitmap = memslot->dirty_bitmap;
2339  
2340  	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2341  
2342  	if (log->first_page > memslot->npages ||
2343  	    log->num_pages > memslot->npages - log->first_page ||
2344  	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2345  	    return -EINVAL;
2346  
2347  	kvm_arch_sync_dirty_log(kvm, memslot);
2348  
2349  	flush = false;
2350  	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2351  	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2352  		return -EFAULT;
2353  
2354  	KVM_MMU_LOCK(kvm);
2355  	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2356  		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2357  	     i++, offset += BITS_PER_LONG) {
2358  		unsigned long mask = *dirty_bitmap_buffer++;
2359  		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2360  		if (!mask)
2361  			continue;
2362  
2363  		mask &= atomic_long_fetch_andnot(mask, p);
2364  
2365  		/*
2366  		 * mask contains the bits that really have been cleared.  This
2367  		 * never includes any bits beyond the length of the memslot (if
2368  		 * the length is not aligned to 64 pages), therefore it is not
2369  		 * a problem if userspace sets them in log->dirty_bitmap.
2370  		*/
2371  		if (mask) {
2372  			flush = true;
2373  			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2374  								offset, mask);
2375  		}
2376  	}
2377  	KVM_MMU_UNLOCK(kvm);
2378  
2379  	if (flush)
2380  		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2381  
2382  	return 0;
2383  }
2384  
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2385  static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2386  					struct kvm_clear_dirty_log *log)
2387  {
2388  	int r;
2389  
2390  	mutex_lock(&kvm->slots_lock);
2391  
2392  	r = kvm_clear_dirty_log_protect(kvm, log);
2393  
2394  	mutex_unlock(&kvm->slots_lock);
2395  	return r;
2396  }
2397  #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2398  
2399  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_supported_mem_attributes(struct kvm * kvm)2400  static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2401  {
2402  	if (!kvm || kvm_arch_has_private_mem(kvm))
2403  		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2404  
2405  	return 0;
2406  }
2407  
2408  /*
2409   * Returns true if _all_ gfns in the range [@start, @end) have attributes
2410   * such that the bits in @mask match @attrs.
2411   */
kvm_range_has_memory_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long mask,unsigned long attrs)2412  bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2413  				     unsigned long mask, unsigned long attrs)
2414  {
2415  	XA_STATE(xas, &kvm->mem_attr_array, start);
2416  	unsigned long index;
2417  	void *entry;
2418  
2419  	mask &= kvm_supported_mem_attributes(kvm);
2420  	if (attrs & ~mask)
2421  		return false;
2422  
2423  	if (end == start + 1)
2424  		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2425  
2426  	guard(rcu)();
2427  	if (!attrs)
2428  		return !xas_find(&xas, end - 1);
2429  
2430  	for (index = start; index < end; index++) {
2431  		do {
2432  			entry = xas_next(&xas);
2433  		} while (xas_retry(&xas, entry));
2434  
2435  		if (xas.xa_index != index ||
2436  		    (xa_to_value(entry) & mask) != attrs)
2437  			return false;
2438  	}
2439  
2440  	return true;
2441  }
2442  
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_mmu_notifier_range * range)2443  static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2444  						 struct kvm_mmu_notifier_range *range)
2445  {
2446  	struct kvm_gfn_range gfn_range;
2447  	struct kvm_memory_slot *slot;
2448  	struct kvm_memslots *slots;
2449  	struct kvm_memslot_iter iter;
2450  	bool found_memslot = false;
2451  	bool ret = false;
2452  	int i;
2453  
2454  	gfn_range.arg = range->arg;
2455  	gfn_range.may_block = range->may_block;
2456  
2457  	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2458  		slots = __kvm_memslots(kvm, i);
2459  
2460  		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2461  			slot = iter.slot;
2462  			gfn_range.slot = slot;
2463  
2464  			gfn_range.start = max(range->start, slot->base_gfn);
2465  			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2466  			if (gfn_range.start >= gfn_range.end)
2467  				continue;
2468  
2469  			if (!found_memslot) {
2470  				found_memslot = true;
2471  				KVM_MMU_LOCK(kvm);
2472  				if (!IS_KVM_NULL_FN(range->on_lock))
2473  					range->on_lock(kvm);
2474  			}
2475  
2476  			ret |= range->handler(kvm, &gfn_range);
2477  		}
2478  	}
2479  
2480  	if (range->flush_on_ret && ret)
2481  		kvm_flush_remote_tlbs(kvm);
2482  
2483  	if (found_memslot)
2484  		KVM_MMU_UNLOCK(kvm);
2485  }
2486  
kvm_pre_set_memory_attributes(struct kvm * kvm,struct kvm_gfn_range * range)2487  static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2488  					  struct kvm_gfn_range *range)
2489  {
2490  	/*
2491  	 * Unconditionally add the range to the invalidation set, regardless of
2492  	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2493  	 * if KVM supports RWX attributes in the future and the attributes are
2494  	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2495  	 * adding the range allows KVM to require that MMU invalidations add at
2496  	 * least one range between begin() and end(), e.g. allows KVM to detect
2497  	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2498  	 * but it's not obvious that allowing new mappings while the attributes
2499  	 * are in flux is desirable or worth the complexity.
2500  	 */
2501  	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2502  
2503  	return kvm_arch_pre_set_memory_attributes(kvm, range);
2504  }
2505  
2506  /* Set @attributes for the gfn range [@start, @end). */
kvm_vm_set_mem_attributes(struct kvm * kvm,gfn_t start,gfn_t end,unsigned long attributes)2507  static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2508  				     unsigned long attributes)
2509  {
2510  	struct kvm_mmu_notifier_range pre_set_range = {
2511  		.start = start,
2512  		.end = end,
2513  		.handler = kvm_pre_set_memory_attributes,
2514  		.on_lock = kvm_mmu_invalidate_begin,
2515  		.flush_on_ret = true,
2516  		.may_block = true,
2517  	};
2518  	struct kvm_mmu_notifier_range post_set_range = {
2519  		.start = start,
2520  		.end = end,
2521  		.arg.attributes = attributes,
2522  		.handler = kvm_arch_post_set_memory_attributes,
2523  		.on_lock = kvm_mmu_invalidate_end,
2524  		.may_block = true,
2525  	};
2526  	unsigned long i;
2527  	void *entry;
2528  	int r = 0;
2529  
2530  	entry = attributes ? xa_mk_value(attributes) : NULL;
2531  
2532  	mutex_lock(&kvm->slots_lock);
2533  
2534  	/* Nothing to do if the entire range as the desired attributes. */
2535  	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2536  		goto out_unlock;
2537  
2538  	/*
2539  	 * Reserve memory ahead of time to avoid having to deal with failures
2540  	 * partway through setting the new attributes.
2541  	 */
2542  	for (i = start; i < end; i++) {
2543  		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2544  		if (r)
2545  			goto out_unlock;
2546  	}
2547  
2548  	kvm_handle_gfn_range(kvm, &pre_set_range);
2549  
2550  	for (i = start; i < end; i++) {
2551  		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2552  				    GFP_KERNEL_ACCOUNT));
2553  		KVM_BUG_ON(r, kvm);
2554  	}
2555  
2556  	kvm_handle_gfn_range(kvm, &post_set_range);
2557  
2558  out_unlock:
2559  	mutex_unlock(&kvm->slots_lock);
2560  
2561  	return r;
2562  }
kvm_vm_ioctl_set_mem_attributes(struct kvm * kvm,struct kvm_memory_attributes * attrs)2563  static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2564  					   struct kvm_memory_attributes *attrs)
2565  {
2566  	gfn_t start, end;
2567  
2568  	/* flags is currently not used. */
2569  	if (attrs->flags)
2570  		return -EINVAL;
2571  	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2572  		return -EINVAL;
2573  	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2574  		return -EINVAL;
2575  	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2576  		return -EINVAL;
2577  
2578  	start = attrs->address >> PAGE_SHIFT;
2579  	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2580  
2581  	/*
2582  	 * xarray tracks data using "unsigned long", and as a result so does
2583  	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2584  	 * architectures.
2585  	 */
2586  	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2587  
2588  	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2589  }
2590  #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2591  
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2592  struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2593  {
2594  	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2595  }
2596  EXPORT_SYMBOL_GPL(gfn_to_memslot);
2597  
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2598  struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2599  {
2600  	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2601  	u64 gen = slots->generation;
2602  	struct kvm_memory_slot *slot;
2603  
2604  	/*
2605  	 * This also protects against using a memslot from a different address space,
2606  	 * since different address spaces have different generation numbers.
2607  	 */
2608  	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2609  		vcpu->last_used_slot = NULL;
2610  		vcpu->last_used_slot_gen = gen;
2611  	}
2612  
2613  	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2614  	if (slot)
2615  		return slot;
2616  
2617  	/*
2618  	 * Fall back to searching all memslots. We purposely use
2619  	 * search_memslots() instead of __gfn_to_memslot() to avoid
2620  	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2621  	 */
2622  	slot = search_memslots(slots, gfn, false);
2623  	if (slot) {
2624  		vcpu->last_used_slot = slot;
2625  		return slot;
2626  	}
2627  
2628  	return NULL;
2629  }
2630  
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2631  bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2632  {
2633  	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2634  
2635  	return kvm_is_visible_memslot(memslot);
2636  }
2637  EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2638  
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2639  bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2640  {
2641  	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2642  
2643  	return kvm_is_visible_memslot(memslot);
2644  }
2645  EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2646  
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2647  unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2648  {
2649  	struct vm_area_struct *vma;
2650  	unsigned long addr, size;
2651  
2652  	size = PAGE_SIZE;
2653  
2654  	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2655  	if (kvm_is_error_hva(addr))
2656  		return PAGE_SIZE;
2657  
2658  	mmap_read_lock(current->mm);
2659  	vma = find_vma(current->mm, addr);
2660  	if (!vma)
2661  		goto out;
2662  
2663  	size = vma_kernel_pagesize(vma);
2664  
2665  out:
2666  	mmap_read_unlock(current->mm);
2667  
2668  	return size;
2669  }
2670  
memslot_is_readonly(const struct kvm_memory_slot * slot)2671  static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2672  {
2673  	return slot->flags & KVM_MEM_READONLY;
2674  }
2675  
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2676  static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2677  				       gfn_t *nr_pages, bool write)
2678  {
2679  	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2680  		return KVM_HVA_ERR_BAD;
2681  
2682  	if (memslot_is_readonly(slot) && write)
2683  		return KVM_HVA_ERR_RO_BAD;
2684  
2685  	if (nr_pages)
2686  		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2687  
2688  	return __gfn_to_hva_memslot(slot, gfn);
2689  }
2690  
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2691  static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2692  				     gfn_t *nr_pages)
2693  {
2694  	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2695  }
2696  
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2697  unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2698  					gfn_t gfn)
2699  {
2700  	return gfn_to_hva_many(slot, gfn, NULL);
2701  }
2702  EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2703  
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2704  unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2705  {
2706  	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2707  }
2708  EXPORT_SYMBOL_GPL(gfn_to_hva);
2709  
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2710  unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2711  {
2712  	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2713  }
2714  EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2715  
2716  /*
2717   * Return the hva of a @gfn and the R/W attribute if possible.
2718   *
2719   * @slot: the kvm_memory_slot which contains @gfn
2720   * @gfn: the gfn to be translated
2721   * @writable: used to return the read/write attribute of the @slot if the hva
2722   * is valid and @writable is not NULL
2723   */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2724  unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2725  				      gfn_t gfn, bool *writable)
2726  {
2727  	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2728  
2729  	if (!kvm_is_error_hva(hva) && writable)
2730  		*writable = !memslot_is_readonly(slot);
2731  
2732  	return hva;
2733  }
2734  
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2735  unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2736  {
2737  	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2738  
2739  	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2740  }
2741  
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2742  unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2743  {
2744  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2745  
2746  	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2747  }
2748  
check_user_page_hwpoison(unsigned long addr)2749  static inline int check_user_page_hwpoison(unsigned long addr)
2750  {
2751  	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2752  
2753  	rc = get_user_pages(addr, 1, flags, NULL);
2754  	return rc == -EHWPOISON;
2755  }
2756  
2757  /*
2758   * The fast path to get the writable pfn which will be stored in @pfn,
2759   * true indicates success, otherwise false is returned.  It's also the
2760   * only part that runs if we can in atomic context.
2761   */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2762  static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2763  			    bool *writable, kvm_pfn_t *pfn)
2764  {
2765  	struct page *page[1];
2766  
2767  	/*
2768  	 * Fast pin a writable pfn only if it is a write fault request
2769  	 * or the caller allows to map a writable pfn for a read fault
2770  	 * request.
2771  	 */
2772  	if (!(write_fault || writable))
2773  		return false;
2774  
2775  	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2776  		*pfn = page_to_pfn(page[0]);
2777  
2778  		if (writable)
2779  			*writable = true;
2780  		return true;
2781  	}
2782  
2783  	return false;
2784  }
2785  
2786  /*
2787   * The slow path to get the pfn of the specified host virtual address,
2788   * 1 indicates success, -errno is returned if error is detected.
2789   */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool interruptible,bool * writable,kvm_pfn_t * pfn)2790  static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2791  			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2792  {
2793  	/*
2794  	 * When a VCPU accesses a page that is not mapped into the secondary
2795  	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2796  	 * make progress. We always want to honor NUMA hinting faults in that
2797  	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2798  	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2799  	 * mapped into the secondary MMU and gets accessed by a VCPU.
2800  	 *
2801  	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2802  	 * implicitly honor NUMA hinting faults and don't need this flag.
2803  	 */
2804  	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2805  	struct page *page;
2806  	int npages;
2807  
2808  	might_sleep();
2809  
2810  	if (writable)
2811  		*writable = write_fault;
2812  
2813  	if (write_fault)
2814  		flags |= FOLL_WRITE;
2815  	if (async)
2816  		flags |= FOLL_NOWAIT;
2817  	if (interruptible)
2818  		flags |= FOLL_INTERRUPTIBLE;
2819  
2820  	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2821  	if (npages != 1)
2822  		return npages;
2823  
2824  	/* map read fault as writable if possible */
2825  	if (unlikely(!write_fault) && writable) {
2826  		struct page *wpage;
2827  
2828  		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2829  			*writable = true;
2830  			put_page(page);
2831  			page = wpage;
2832  		}
2833  	}
2834  	*pfn = page_to_pfn(page);
2835  	return npages;
2836  }
2837  
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2838  static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2839  {
2840  	if (unlikely(!(vma->vm_flags & VM_READ)))
2841  		return false;
2842  
2843  	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2844  		return false;
2845  
2846  	return true;
2847  }
2848  
kvm_try_get_pfn(kvm_pfn_t pfn)2849  static int kvm_try_get_pfn(kvm_pfn_t pfn)
2850  {
2851  	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2852  
2853  	if (!page)
2854  		return 1;
2855  
2856  	return get_page_unless_zero(page);
2857  }
2858  
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2859  static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2860  			       unsigned long addr, bool write_fault,
2861  			       bool *writable, kvm_pfn_t *p_pfn)
2862  {
2863  	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
2864  	kvm_pfn_t pfn;
2865  	int r;
2866  
2867  	r = follow_pfnmap_start(&args);
2868  	if (r) {
2869  		/*
2870  		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2871  		 * not call the fault handler, so do it here.
2872  		 */
2873  		bool unlocked = false;
2874  		r = fixup_user_fault(current->mm, addr,
2875  				     (write_fault ? FAULT_FLAG_WRITE : 0),
2876  				     &unlocked);
2877  		if (unlocked)
2878  			return -EAGAIN;
2879  		if (r)
2880  			return r;
2881  
2882  		r = follow_pfnmap_start(&args);
2883  		if (r)
2884  			return r;
2885  	}
2886  
2887  	if (write_fault && !args.writable) {
2888  		pfn = KVM_PFN_ERR_RO_FAULT;
2889  		goto out;
2890  	}
2891  
2892  	if (writable)
2893  		*writable = args.writable;
2894  	pfn = args.pfn;
2895  
2896  	/*
2897  	 * Get a reference here because callers of *hva_to_pfn* and
2898  	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2899  	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2900  	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2901  	 * simply do nothing for reserved pfns.
2902  	 *
2903  	 * Whoever called remap_pfn_range is also going to call e.g.
2904  	 * unmap_mapping_range before the underlying pages are freed,
2905  	 * causing a call to our MMU notifier.
2906  	 *
2907  	 * Certain IO or PFNMAP mappings can be backed with valid
2908  	 * struct pages, but be allocated without refcounting e.g.,
2909  	 * tail pages of non-compound higher order allocations, which
2910  	 * would then underflow the refcount when the caller does the
2911  	 * required put_page. Don't allow those pages here.
2912  	 */
2913  	if (!kvm_try_get_pfn(pfn))
2914  		r = -EFAULT;
2915  out:
2916  	follow_pfnmap_end(&args);
2917  	*p_pfn = pfn;
2918  
2919  	return r;
2920  }
2921  
2922  /*
2923   * Pin guest page in memory and return its pfn.
2924   * @addr: host virtual address which maps memory to the guest
2925   * @atomic: whether this function is forbidden from sleeping
2926   * @interruptible: whether the process can be interrupted by non-fatal signals
2927   * @async: whether this function need to wait IO complete if the
2928   *         host page is not in the memory
2929   * @write_fault: whether we should get a writable host page
2930   * @writable: whether it allows to map a writable host page for !@write_fault
2931   *
2932   * The function will map a writable host page for these two cases:
2933   * 1): @write_fault = true
2934   * 2): @write_fault = false && @writable, @writable will tell the caller
2935   *     whether the mapping is writable.
2936   */
hva_to_pfn(unsigned long addr,bool atomic,bool interruptible,bool * async,bool write_fault,bool * writable)2937  kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2938  		     bool *async, bool write_fault, bool *writable)
2939  {
2940  	struct vm_area_struct *vma;
2941  	kvm_pfn_t pfn;
2942  	int npages, r;
2943  
2944  	/* we can do it either atomically or asynchronously, not both */
2945  	BUG_ON(atomic && async);
2946  
2947  	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2948  		return pfn;
2949  
2950  	if (atomic)
2951  		return KVM_PFN_ERR_FAULT;
2952  
2953  	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2954  				 writable, &pfn);
2955  	if (npages == 1)
2956  		return pfn;
2957  	if (npages == -EINTR)
2958  		return KVM_PFN_ERR_SIGPENDING;
2959  
2960  	mmap_read_lock(current->mm);
2961  	if (npages == -EHWPOISON ||
2962  	      (!async && check_user_page_hwpoison(addr))) {
2963  		pfn = KVM_PFN_ERR_HWPOISON;
2964  		goto exit;
2965  	}
2966  
2967  retry:
2968  	vma = vma_lookup(current->mm, addr);
2969  
2970  	if (vma == NULL)
2971  		pfn = KVM_PFN_ERR_FAULT;
2972  	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2973  		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2974  		if (r == -EAGAIN)
2975  			goto retry;
2976  		if (r < 0)
2977  			pfn = KVM_PFN_ERR_FAULT;
2978  	} else {
2979  		if (async && vma_is_valid(vma, write_fault))
2980  			*async = true;
2981  		pfn = KVM_PFN_ERR_FAULT;
2982  	}
2983  exit:
2984  	mmap_read_unlock(current->mm);
2985  	return pfn;
2986  }
2987  
__gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool interruptible,bool * async,bool write_fault,bool * writable,hva_t * hva)2988  kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2989  			       bool atomic, bool interruptible, bool *async,
2990  			       bool write_fault, bool *writable, hva_t *hva)
2991  {
2992  	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2993  
2994  	if (hva)
2995  		*hva = addr;
2996  
2997  	if (kvm_is_error_hva(addr)) {
2998  		if (writable)
2999  			*writable = false;
3000  
3001  		return addr == KVM_HVA_ERR_RO_BAD ? KVM_PFN_ERR_RO_FAULT :
3002  						    KVM_PFN_NOSLOT;
3003  	}
3004  
3005  	/* Do not map writable pfn in the readonly memslot. */
3006  	if (writable && memslot_is_readonly(slot)) {
3007  		*writable = false;
3008  		writable = NULL;
3009  	}
3010  
3011  	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3012  			  writable);
3013  }
3014  EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3015  
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)3016  kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3017  		      bool *writable)
3018  {
3019  	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3020  				    NULL, write_fault, writable, NULL);
3021  }
3022  EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3023  
gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)3024  kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3025  {
3026  	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3027  				    NULL, NULL);
3028  }
3029  EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3030  
gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot * slot,gfn_t gfn)3031  kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3032  {
3033  	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3034  				    NULL, NULL);
3035  }
3036  EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3037  
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)3038  kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3039  {
3040  	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3041  }
3042  EXPORT_SYMBOL_GPL(gfn_to_pfn);
3043  
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)3044  int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3045  			    struct page **pages, int nr_pages)
3046  {
3047  	unsigned long addr;
3048  	gfn_t entry = 0;
3049  
3050  	addr = gfn_to_hva_many(slot, gfn, &entry);
3051  	if (kvm_is_error_hva(addr))
3052  		return -1;
3053  
3054  	if (entry < nr_pages)
3055  		return 0;
3056  
3057  	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3058  }
3059  EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3060  
3061  /*
3062   * Do not use this helper unless you are absolutely certain the gfn _must_ be
3063   * backed by 'struct page'.  A valid example is if the backing memslot is
3064   * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3065   * been elevated by gfn_to_pfn().
3066   */
gfn_to_page(struct kvm * kvm,gfn_t gfn)3067  struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3068  {
3069  	struct page *page;
3070  	kvm_pfn_t pfn;
3071  
3072  	pfn = gfn_to_pfn(kvm, gfn);
3073  
3074  	if (is_error_noslot_pfn(pfn))
3075  		return KVM_ERR_PTR_BAD_PAGE;
3076  
3077  	page = kvm_pfn_to_refcounted_page(pfn);
3078  	if (!page)
3079  		return KVM_ERR_PTR_BAD_PAGE;
3080  
3081  	return page;
3082  }
3083  EXPORT_SYMBOL_GPL(gfn_to_page);
3084  
kvm_release_pfn(kvm_pfn_t pfn,bool dirty)3085  void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3086  {
3087  	if (dirty)
3088  		kvm_release_pfn_dirty(pfn);
3089  	else
3090  		kvm_release_pfn_clean(pfn);
3091  }
3092  
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)3093  int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3094  {
3095  	kvm_pfn_t pfn;
3096  	void *hva = NULL;
3097  	struct page *page = KVM_UNMAPPED_PAGE;
3098  
3099  	if (!map)
3100  		return -EINVAL;
3101  
3102  	pfn = gfn_to_pfn(vcpu->kvm, gfn);
3103  	if (is_error_noslot_pfn(pfn))
3104  		return -EINVAL;
3105  
3106  	if (pfn_valid(pfn)) {
3107  		page = pfn_to_page(pfn);
3108  		hva = kmap(page);
3109  #ifdef CONFIG_HAS_IOMEM
3110  	} else {
3111  		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3112  #endif
3113  	}
3114  
3115  	if (!hva)
3116  		return -EFAULT;
3117  
3118  	map->page = page;
3119  	map->hva = hva;
3120  	map->pfn = pfn;
3121  	map->gfn = gfn;
3122  
3123  	return 0;
3124  }
3125  EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3126  
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)3127  void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3128  {
3129  	if (!map)
3130  		return;
3131  
3132  	if (!map->hva)
3133  		return;
3134  
3135  	if (map->page != KVM_UNMAPPED_PAGE)
3136  		kunmap(map->page);
3137  #ifdef CONFIG_HAS_IOMEM
3138  	else
3139  		memunmap(map->hva);
3140  #endif
3141  
3142  	if (dirty)
3143  		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3144  
3145  	kvm_release_pfn(map->pfn, dirty);
3146  
3147  	map->hva = NULL;
3148  	map->page = NULL;
3149  }
3150  EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3151  
kvm_is_ad_tracked_page(struct page * page)3152  static bool kvm_is_ad_tracked_page(struct page *page)
3153  {
3154  	/*
3155  	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3156  	 * touched (e.g. set dirty) except by its owner".
3157  	 */
3158  	return !PageReserved(page);
3159  }
3160  
kvm_set_page_dirty(struct page * page)3161  static void kvm_set_page_dirty(struct page *page)
3162  {
3163  	if (kvm_is_ad_tracked_page(page))
3164  		SetPageDirty(page);
3165  }
3166  
kvm_set_page_accessed(struct page * page)3167  static void kvm_set_page_accessed(struct page *page)
3168  {
3169  	if (kvm_is_ad_tracked_page(page))
3170  		mark_page_accessed(page);
3171  }
3172  
kvm_release_page_clean(struct page * page)3173  void kvm_release_page_clean(struct page *page)
3174  {
3175  	WARN_ON(is_error_page(page));
3176  
3177  	kvm_set_page_accessed(page);
3178  	put_page(page);
3179  }
3180  EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3181  
kvm_release_pfn_clean(kvm_pfn_t pfn)3182  void kvm_release_pfn_clean(kvm_pfn_t pfn)
3183  {
3184  	struct page *page;
3185  
3186  	if (is_error_noslot_pfn(pfn))
3187  		return;
3188  
3189  	page = kvm_pfn_to_refcounted_page(pfn);
3190  	if (!page)
3191  		return;
3192  
3193  	kvm_release_page_clean(page);
3194  }
3195  EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3196  
kvm_release_page_dirty(struct page * page)3197  void kvm_release_page_dirty(struct page *page)
3198  {
3199  	WARN_ON(is_error_page(page));
3200  
3201  	kvm_set_page_dirty(page);
3202  	kvm_release_page_clean(page);
3203  }
3204  EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3205  
kvm_release_pfn_dirty(kvm_pfn_t pfn)3206  void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3207  {
3208  	struct page *page;
3209  
3210  	if (is_error_noslot_pfn(pfn))
3211  		return;
3212  
3213  	page = kvm_pfn_to_refcounted_page(pfn);
3214  	if (!page)
3215  		return;
3216  
3217  	kvm_release_page_dirty(page);
3218  }
3219  EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3220  
3221  /*
3222   * Note, checking for an error/noslot pfn is the caller's responsibility when
3223   * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3224   * "set" helpers are not to be used when the pfn might point at garbage.
3225   */
kvm_set_pfn_dirty(kvm_pfn_t pfn)3226  void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3227  {
3228  	if (WARN_ON(is_error_noslot_pfn(pfn)))
3229  		return;
3230  
3231  	if (pfn_valid(pfn))
3232  		kvm_set_page_dirty(pfn_to_page(pfn));
3233  }
3234  EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3235  
kvm_set_pfn_accessed(kvm_pfn_t pfn)3236  void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3237  {
3238  	if (WARN_ON(is_error_noslot_pfn(pfn)))
3239  		return;
3240  
3241  	if (pfn_valid(pfn))
3242  		kvm_set_page_accessed(pfn_to_page(pfn));
3243  }
3244  EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3245  
next_segment(unsigned long len,int offset)3246  static int next_segment(unsigned long len, int offset)
3247  {
3248  	if (len > PAGE_SIZE - offset)
3249  		return PAGE_SIZE - offset;
3250  	else
3251  		return len;
3252  }
3253  
3254  /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3255  static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3256  				 void *data, int offset, int len)
3257  {
3258  	int r;
3259  	unsigned long addr;
3260  
3261  	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3262  		return -EFAULT;
3263  
3264  	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3265  	if (kvm_is_error_hva(addr))
3266  		return -EFAULT;
3267  	r = __copy_from_user(data, (void __user *)addr + offset, len);
3268  	if (r)
3269  		return -EFAULT;
3270  	return 0;
3271  }
3272  
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3273  int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3274  			int len)
3275  {
3276  	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3277  
3278  	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3279  }
3280  EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3281  
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3282  int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3283  			     int offset, int len)
3284  {
3285  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3286  
3287  	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3288  }
3289  EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3290  
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3291  int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3292  {
3293  	gfn_t gfn = gpa >> PAGE_SHIFT;
3294  	int seg;
3295  	int offset = offset_in_page(gpa);
3296  	int ret;
3297  
3298  	while ((seg = next_segment(len, offset)) != 0) {
3299  		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3300  		if (ret < 0)
3301  			return ret;
3302  		offset = 0;
3303  		len -= seg;
3304  		data += seg;
3305  		++gfn;
3306  	}
3307  	return 0;
3308  }
3309  EXPORT_SYMBOL_GPL(kvm_read_guest);
3310  
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3311  int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3312  {
3313  	gfn_t gfn = gpa >> PAGE_SHIFT;
3314  	int seg;
3315  	int offset = offset_in_page(gpa);
3316  	int ret;
3317  
3318  	while ((seg = next_segment(len, offset)) != 0) {
3319  		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3320  		if (ret < 0)
3321  			return ret;
3322  		offset = 0;
3323  		len -= seg;
3324  		data += seg;
3325  		++gfn;
3326  	}
3327  	return 0;
3328  }
3329  EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3330  
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3331  static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3332  			           void *data, int offset, unsigned long len)
3333  {
3334  	int r;
3335  	unsigned long addr;
3336  
3337  	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3338  		return -EFAULT;
3339  
3340  	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3341  	if (kvm_is_error_hva(addr))
3342  		return -EFAULT;
3343  	pagefault_disable();
3344  	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3345  	pagefault_enable();
3346  	if (r)
3347  		return -EFAULT;
3348  	return 0;
3349  }
3350  
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3351  int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3352  			       void *data, unsigned long len)
3353  {
3354  	gfn_t gfn = gpa >> PAGE_SHIFT;
3355  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3356  	int offset = offset_in_page(gpa);
3357  
3358  	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3359  }
3360  EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3361  
3362  /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3363  static int __kvm_write_guest_page(struct kvm *kvm,
3364  				  struct kvm_memory_slot *memslot, gfn_t gfn,
3365  			          const void *data, int offset, int len)
3366  {
3367  	int r;
3368  	unsigned long addr;
3369  
3370  	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3371  		return -EFAULT;
3372  
3373  	addr = gfn_to_hva_memslot(memslot, gfn);
3374  	if (kvm_is_error_hva(addr))
3375  		return -EFAULT;
3376  	r = __copy_to_user((void __user *)addr + offset, data, len);
3377  	if (r)
3378  		return -EFAULT;
3379  	mark_page_dirty_in_slot(kvm, memslot, gfn);
3380  	return 0;
3381  }
3382  
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3383  int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3384  			 const void *data, int offset, int len)
3385  {
3386  	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3387  
3388  	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3389  }
3390  EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3391  
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3392  int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3393  			      const void *data, int offset, int len)
3394  {
3395  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3396  
3397  	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3398  }
3399  EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3400  
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3401  int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3402  		    unsigned long len)
3403  {
3404  	gfn_t gfn = gpa >> PAGE_SHIFT;
3405  	int seg;
3406  	int offset = offset_in_page(gpa);
3407  	int ret;
3408  
3409  	while ((seg = next_segment(len, offset)) != 0) {
3410  		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3411  		if (ret < 0)
3412  			return ret;
3413  		offset = 0;
3414  		len -= seg;
3415  		data += seg;
3416  		++gfn;
3417  	}
3418  	return 0;
3419  }
3420  EXPORT_SYMBOL_GPL(kvm_write_guest);
3421  
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3422  int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3423  		         unsigned long len)
3424  {
3425  	gfn_t gfn = gpa >> PAGE_SHIFT;
3426  	int seg;
3427  	int offset = offset_in_page(gpa);
3428  	int ret;
3429  
3430  	while ((seg = next_segment(len, offset)) != 0) {
3431  		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3432  		if (ret < 0)
3433  			return ret;
3434  		offset = 0;
3435  		len -= seg;
3436  		data += seg;
3437  		++gfn;
3438  	}
3439  	return 0;
3440  }
3441  EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3442  
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3443  static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3444  				       struct gfn_to_hva_cache *ghc,
3445  				       gpa_t gpa, unsigned long len)
3446  {
3447  	int offset = offset_in_page(gpa);
3448  	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3449  	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3450  	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3451  	gfn_t nr_pages_avail;
3452  
3453  	/* Update ghc->generation before performing any error checks. */
3454  	ghc->generation = slots->generation;
3455  
3456  	if (start_gfn > end_gfn) {
3457  		ghc->hva = KVM_HVA_ERR_BAD;
3458  		return -EINVAL;
3459  	}
3460  
3461  	/*
3462  	 * If the requested region crosses two memslots, we still
3463  	 * verify that the entire region is valid here.
3464  	 */
3465  	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3466  		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3467  		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3468  					   &nr_pages_avail);
3469  		if (kvm_is_error_hva(ghc->hva))
3470  			return -EFAULT;
3471  	}
3472  
3473  	/* Use the slow path for cross page reads and writes. */
3474  	if (nr_pages_needed == 1)
3475  		ghc->hva += offset;
3476  	else
3477  		ghc->memslot = NULL;
3478  
3479  	ghc->gpa = gpa;
3480  	ghc->len = len;
3481  	return 0;
3482  }
3483  
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3484  int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3485  			      gpa_t gpa, unsigned long len)
3486  {
3487  	struct kvm_memslots *slots = kvm_memslots(kvm);
3488  	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3489  }
3490  EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3491  
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3492  int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3493  				  void *data, unsigned int offset,
3494  				  unsigned long len)
3495  {
3496  	struct kvm_memslots *slots = kvm_memslots(kvm);
3497  	int r;
3498  	gpa_t gpa = ghc->gpa + offset;
3499  
3500  	if (WARN_ON_ONCE(len + offset > ghc->len))
3501  		return -EINVAL;
3502  
3503  	if (slots->generation != ghc->generation) {
3504  		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3505  			return -EFAULT;
3506  	}
3507  
3508  	if (kvm_is_error_hva(ghc->hva))
3509  		return -EFAULT;
3510  
3511  	if (unlikely(!ghc->memslot))
3512  		return kvm_write_guest(kvm, gpa, data, len);
3513  
3514  	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3515  	if (r)
3516  		return -EFAULT;
3517  	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3518  
3519  	return 0;
3520  }
3521  EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3522  
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3523  int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3524  			   void *data, unsigned long len)
3525  {
3526  	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3527  }
3528  EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3529  
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3530  int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3531  				 void *data, unsigned int offset,
3532  				 unsigned long len)
3533  {
3534  	struct kvm_memslots *slots = kvm_memslots(kvm);
3535  	int r;
3536  	gpa_t gpa = ghc->gpa + offset;
3537  
3538  	if (WARN_ON_ONCE(len + offset > ghc->len))
3539  		return -EINVAL;
3540  
3541  	if (slots->generation != ghc->generation) {
3542  		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3543  			return -EFAULT;
3544  	}
3545  
3546  	if (kvm_is_error_hva(ghc->hva))
3547  		return -EFAULT;
3548  
3549  	if (unlikely(!ghc->memslot))
3550  		return kvm_read_guest(kvm, gpa, data, len);
3551  
3552  	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3553  	if (r)
3554  		return -EFAULT;
3555  
3556  	return 0;
3557  }
3558  EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3559  
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3560  int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3561  			  void *data, unsigned long len)
3562  {
3563  	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3564  }
3565  EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3566  
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3567  int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3568  {
3569  	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3570  	gfn_t gfn = gpa >> PAGE_SHIFT;
3571  	int seg;
3572  	int offset = offset_in_page(gpa);
3573  	int ret;
3574  
3575  	while ((seg = next_segment(len, offset)) != 0) {
3576  		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3577  		if (ret < 0)
3578  			return ret;
3579  		offset = 0;
3580  		len -= seg;
3581  		++gfn;
3582  	}
3583  	return 0;
3584  }
3585  EXPORT_SYMBOL_GPL(kvm_clear_guest);
3586  
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3587  void mark_page_dirty_in_slot(struct kvm *kvm,
3588  			     const struct kvm_memory_slot *memslot,
3589  		 	     gfn_t gfn)
3590  {
3591  	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3592  
3593  #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3594  	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3595  		return;
3596  
3597  	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3598  #endif
3599  
3600  	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3601  		unsigned long rel_gfn = gfn - memslot->base_gfn;
3602  		u32 slot = (memslot->as_id << 16) | memslot->id;
3603  
3604  		if (kvm->dirty_ring_size && vcpu)
3605  			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3606  		else if (memslot->dirty_bitmap)
3607  			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3608  	}
3609  }
3610  EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3611  
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3612  void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3613  {
3614  	struct kvm_memory_slot *memslot;
3615  
3616  	memslot = gfn_to_memslot(kvm, gfn);
3617  	mark_page_dirty_in_slot(kvm, memslot, gfn);
3618  }
3619  EXPORT_SYMBOL_GPL(mark_page_dirty);
3620  
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3621  void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3622  {
3623  	struct kvm_memory_slot *memslot;
3624  
3625  	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3626  	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3627  }
3628  EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3629  
kvm_sigset_activate(struct kvm_vcpu * vcpu)3630  void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3631  {
3632  	if (!vcpu->sigset_active)
3633  		return;
3634  
3635  	/*
3636  	 * This does a lockless modification of ->real_blocked, which is fine
3637  	 * because, only current can change ->real_blocked and all readers of
3638  	 * ->real_blocked don't care as long ->real_blocked is always a subset
3639  	 * of ->blocked.
3640  	 */
3641  	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3642  }
3643  
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3644  void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3645  {
3646  	if (!vcpu->sigset_active)
3647  		return;
3648  
3649  	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3650  	sigemptyset(&current->real_blocked);
3651  }
3652  
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3653  static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3654  {
3655  	unsigned int old, val, grow, grow_start;
3656  
3657  	old = val = vcpu->halt_poll_ns;
3658  	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3659  	grow = READ_ONCE(halt_poll_ns_grow);
3660  	if (!grow)
3661  		goto out;
3662  
3663  	val *= grow;
3664  	if (val < grow_start)
3665  		val = grow_start;
3666  
3667  	vcpu->halt_poll_ns = val;
3668  out:
3669  	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3670  }
3671  
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3672  static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3673  {
3674  	unsigned int old, val, shrink, grow_start;
3675  
3676  	old = val = vcpu->halt_poll_ns;
3677  	shrink = READ_ONCE(halt_poll_ns_shrink);
3678  	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3679  	if (shrink == 0)
3680  		val = 0;
3681  	else
3682  		val /= shrink;
3683  
3684  	if (val < grow_start)
3685  		val = 0;
3686  
3687  	vcpu->halt_poll_ns = val;
3688  	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3689  }
3690  
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3691  static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3692  {
3693  	int ret = -EINTR;
3694  	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3695  
3696  	if (kvm_arch_vcpu_runnable(vcpu))
3697  		goto out;
3698  	if (kvm_cpu_has_pending_timer(vcpu))
3699  		goto out;
3700  	if (signal_pending(current))
3701  		goto out;
3702  	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3703  		goto out;
3704  
3705  	ret = 0;
3706  out:
3707  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3708  	return ret;
3709  }
3710  
3711  /*
3712   * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3713   * pending.  This is mostly used when halting a vCPU, but may also be used
3714   * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3715   */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3716  bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3717  {
3718  	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3719  	bool waited = false;
3720  
3721  	vcpu->stat.generic.blocking = 1;
3722  
3723  	preempt_disable();
3724  	kvm_arch_vcpu_blocking(vcpu);
3725  	prepare_to_rcuwait(wait);
3726  	preempt_enable();
3727  
3728  	for (;;) {
3729  		set_current_state(TASK_INTERRUPTIBLE);
3730  
3731  		if (kvm_vcpu_check_block(vcpu) < 0)
3732  			break;
3733  
3734  		waited = true;
3735  		schedule();
3736  	}
3737  
3738  	preempt_disable();
3739  	finish_rcuwait(wait);
3740  	kvm_arch_vcpu_unblocking(vcpu);
3741  	preempt_enable();
3742  
3743  	vcpu->stat.generic.blocking = 0;
3744  
3745  	return waited;
3746  }
3747  
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3748  static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3749  					  ktime_t end, bool success)
3750  {
3751  	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3752  	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3753  
3754  	++vcpu->stat.generic.halt_attempted_poll;
3755  
3756  	if (success) {
3757  		++vcpu->stat.generic.halt_successful_poll;
3758  
3759  		if (!vcpu_valid_wakeup(vcpu))
3760  			++vcpu->stat.generic.halt_poll_invalid;
3761  
3762  		stats->halt_poll_success_ns += poll_ns;
3763  		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3764  	} else {
3765  		stats->halt_poll_fail_ns += poll_ns;
3766  		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3767  	}
3768  }
3769  
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3770  static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3771  {
3772  	struct kvm *kvm = vcpu->kvm;
3773  
3774  	if (kvm->override_halt_poll_ns) {
3775  		/*
3776  		 * Ensure kvm->max_halt_poll_ns is not read before
3777  		 * kvm->override_halt_poll_ns.
3778  		 *
3779  		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3780  		 */
3781  		smp_rmb();
3782  		return READ_ONCE(kvm->max_halt_poll_ns);
3783  	}
3784  
3785  	return READ_ONCE(halt_poll_ns);
3786  }
3787  
3788  /*
3789   * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3790   * polling is enabled, busy wait for a short time before blocking to avoid the
3791   * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3792   * is halted.
3793   */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3794  void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3795  {
3796  	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3797  	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3798  	ktime_t start, cur, poll_end;
3799  	bool waited = false;
3800  	bool do_halt_poll;
3801  	u64 halt_ns;
3802  
3803  	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3804  		vcpu->halt_poll_ns = max_halt_poll_ns;
3805  
3806  	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3807  
3808  	start = cur = poll_end = ktime_get();
3809  	if (do_halt_poll) {
3810  		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3811  
3812  		do {
3813  			if (kvm_vcpu_check_block(vcpu) < 0)
3814  				goto out;
3815  			cpu_relax();
3816  			poll_end = cur = ktime_get();
3817  		} while (kvm_vcpu_can_poll(cur, stop));
3818  	}
3819  
3820  	waited = kvm_vcpu_block(vcpu);
3821  
3822  	cur = ktime_get();
3823  	if (waited) {
3824  		vcpu->stat.generic.halt_wait_ns +=
3825  			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3826  		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3827  				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3828  	}
3829  out:
3830  	/* The total time the vCPU was "halted", including polling time. */
3831  	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3832  
3833  	/*
3834  	 * Note, halt-polling is considered successful so long as the vCPU was
3835  	 * never actually scheduled out, i.e. even if the wake event arrived
3836  	 * after of the halt-polling loop itself, but before the full wait.
3837  	 */
3838  	if (do_halt_poll)
3839  		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3840  
3841  	if (halt_poll_allowed) {
3842  		/* Recompute the max halt poll time in case it changed. */
3843  		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3844  
3845  		if (!vcpu_valid_wakeup(vcpu)) {
3846  			shrink_halt_poll_ns(vcpu);
3847  		} else if (max_halt_poll_ns) {
3848  			if (halt_ns <= vcpu->halt_poll_ns)
3849  				;
3850  			/* we had a long block, shrink polling */
3851  			else if (vcpu->halt_poll_ns &&
3852  				 halt_ns > max_halt_poll_ns)
3853  				shrink_halt_poll_ns(vcpu);
3854  			/* we had a short halt and our poll time is too small */
3855  			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3856  				 halt_ns < max_halt_poll_ns)
3857  				grow_halt_poll_ns(vcpu);
3858  		} else {
3859  			vcpu->halt_poll_ns = 0;
3860  		}
3861  	}
3862  
3863  	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3864  }
3865  EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3866  
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3867  bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3868  {
3869  	if (__kvm_vcpu_wake_up(vcpu)) {
3870  		WRITE_ONCE(vcpu->ready, true);
3871  		++vcpu->stat.generic.halt_wakeup;
3872  		return true;
3873  	}
3874  
3875  	return false;
3876  }
3877  EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3878  
3879  #ifndef CONFIG_S390
3880  /*
3881   * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3882   */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3883  void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3884  {
3885  	int me, cpu;
3886  
3887  	if (kvm_vcpu_wake_up(vcpu))
3888  		return;
3889  
3890  	me = get_cpu();
3891  	/*
3892  	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3893  	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3894  	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3895  	 * within the vCPU thread itself.
3896  	 */
3897  	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3898  		if (vcpu->mode == IN_GUEST_MODE)
3899  			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3900  		goto out;
3901  	}
3902  
3903  	/*
3904  	 * Note, the vCPU could get migrated to a different pCPU at any point
3905  	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3906  	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3907  	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3908  	 * vCPU also requires it to leave IN_GUEST_MODE.
3909  	 */
3910  	if (kvm_arch_vcpu_should_kick(vcpu)) {
3911  		cpu = READ_ONCE(vcpu->cpu);
3912  		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3913  			smp_send_reschedule(cpu);
3914  	}
3915  out:
3916  	put_cpu();
3917  }
3918  EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3919  #endif /* !CONFIG_S390 */
3920  
kvm_vcpu_yield_to(struct kvm_vcpu * target)3921  int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3922  {
3923  	struct pid *pid;
3924  	struct task_struct *task = NULL;
3925  	int ret = 0;
3926  
3927  	rcu_read_lock();
3928  	pid = rcu_dereference(target->pid);
3929  	if (pid)
3930  		task = get_pid_task(pid, PIDTYPE_PID);
3931  	rcu_read_unlock();
3932  	if (!task)
3933  		return ret;
3934  	ret = yield_to(task, 1);
3935  	put_task_struct(task);
3936  
3937  	return ret;
3938  }
3939  EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3940  
3941  /*
3942   * Helper that checks whether a VCPU is eligible for directed yield.
3943   * Most eligible candidate to yield is decided by following heuristics:
3944   *
3945   *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3946   *  (preempted lock holder), indicated by @in_spin_loop.
3947   *  Set at the beginning and cleared at the end of interception/PLE handler.
3948   *
3949   *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3950   *  chance last time (mostly it has become eligible now since we have probably
3951   *  yielded to lockholder in last iteration. This is done by toggling
3952   *  @dy_eligible each time a VCPU checked for eligibility.)
3953   *
3954   *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3955   *  to preempted lock-holder could result in wrong VCPU selection and CPU
3956   *  burning. Giving priority for a potential lock-holder increases lock
3957   *  progress.
3958   *
3959   *  Since algorithm is based on heuristics, accessing another VCPU data without
3960   *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3961   *  and continue with next VCPU and so on.
3962   */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3963  static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3964  {
3965  #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3966  	bool eligible;
3967  
3968  	eligible = !vcpu->spin_loop.in_spin_loop ||
3969  		    vcpu->spin_loop.dy_eligible;
3970  
3971  	if (vcpu->spin_loop.in_spin_loop)
3972  		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3973  
3974  	return eligible;
3975  #else
3976  	return true;
3977  #endif
3978  }
3979  
3980  /*
3981   * Unlike kvm_arch_vcpu_runnable, this function is called outside
3982   * a vcpu_load/vcpu_put pair.  However, for most architectures
3983   * kvm_arch_vcpu_runnable does not require vcpu_load.
3984   */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3985  bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3986  {
3987  	return kvm_arch_vcpu_runnable(vcpu);
3988  }
3989  
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3990  static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3991  {
3992  	if (kvm_arch_dy_runnable(vcpu))
3993  		return true;
3994  
3995  #ifdef CONFIG_KVM_ASYNC_PF
3996  	if (!list_empty_careful(&vcpu->async_pf.done))
3997  		return true;
3998  #endif
3999  
4000  	return false;
4001  }
4002  
4003  /*
4004   * By default, simply query the target vCPU's current mode when checking if a
4005   * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4006   * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4007   * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4008   * directly for cross-vCPU checks is functionally correct and accurate.
4009   */
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)4010  bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4011  {
4012  	return kvm_arch_vcpu_in_kernel(vcpu);
4013  }
4014  
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)4015  bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4016  {
4017  	return false;
4018  }
4019  
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)4020  void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4021  {
4022  	struct kvm *kvm = me->kvm;
4023  	struct kvm_vcpu *vcpu;
4024  	int last_boosted_vcpu;
4025  	unsigned long i;
4026  	int yielded = 0;
4027  	int try = 3;
4028  	int pass;
4029  
4030  	last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu);
4031  	kvm_vcpu_set_in_spin_loop(me, true);
4032  	/*
4033  	 * We boost the priority of a VCPU that is runnable but not
4034  	 * currently running, because it got preempted by something
4035  	 * else and called schedule in __vcpu_run.  Hopefully that
4036  	 * VCPU is holding the lock that we need and will release it.
4037  	 * We approximate round-robin by starting at the last boosted VCPU.
4038  	 */
4039  	for (pass = 0; pass < 2 && !yielded && try; pass++) {
4040  		kvm_for_each_vcpu(i, vcpu, kvm) {
4041  			if (!pass && i <= last_boosted_vcpu) {
4042  				i = last_boosted_vcpu;
4043  				continue;
4044  			} else if (pass && i > last_boosted_vcpu)
4045  				break;
4046  			if (!READ_ONCE(vcpu->ready))
4047  				continue;
4048  			if (vcpu == me)
4049  				continue;
4050  			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4051  				continue;
4052  
4053  			/*
4054  			 * Treat the target vCPU as being in-kernel if it has a
4055  			 * pending interrupt, as the vCPU trying to yield may
4056  			 * be spinning waiting on IPI delivery, i.e. the target
4057  			 * vCPU is in-kernel for the purposes of directed yield.
4058  			 */
4059  			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4060  			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4061  			    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4062  				continue;
4063  			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4064  				continue;
4065  
4066  			yielded = kvm_vcpu_yield_to(vcpu);
4067  			if (yielded > 0) {
4068  				WRITE_ONCE(kvm->last_boosted_vcpu, i);
4069  				break;
4070  			} else if (yielded < 0) {
4071  				try--;
4072  				if (!try)
4073  					break;
4074  			}
4075  		}
4076  	}
4077  	kvm_vcpu_set_in_spin_loop(me, false);
4078  
4079  	/* Ensure vcpu is not eligible during next spinloop */
4080  	kvm_vcpu_set_dy_eligible(me, false);
4081  }
4082  EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4083  
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)4084  static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4085  {
4086  #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4087  	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4088  	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4089  	     kvm->dirty_ring_size / PAGE_SIZE);
4090  #else
4091  	return false;
4092  #endif
4093  }
4094  
kvm_vcpu_fault(struct vm_fault * vmf)4095  static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4096  {
4097  	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4098  	struct page *page;
4099  
4100  	if (vmf->pgoff == 0)
4101  		page = virt_to_page(vcpu->run);
4102  #ifdef CONFIG_X86
4103  	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4104  		page = virt_to_page(vcpu->arch.pio_data);
4105  #endif
4106  #ifdef CONFIG_KVM_MMIO
4107  	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4108  		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4109  #endif
4110  	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4111  		page = kvm_dirty_ring_get_page(
4112  		    &vcpu->dirty_ring,
4113  		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4114  	else
4115  		return kvm_arch_vcpu_fault(vcpu, vmf);
4116  	get_page(page);
4117  	vmf->page = page;
4118  	return 0;
4119  }
4120  
4121  static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4122  	.fault = kvm_vcpu_fault,
4123  };
4124  
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)4125  static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4126  {
4127  	struct kvm_vcpu *vcpu = file->private_data;
4128  	unsigned long pages = vma_pages(vma);
4129  
4130  	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4131  	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4132  	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4133  		return -EINVAL;
4134  
4135  	vma->vm_ops = &kvm_vcpu_vm_ops;
4136  	return 0;
4137  }
4138  
kvm_vcpu_release(struct inode * inode,struct file * filp)4139  static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4140  {
4141  	struct kvm_vcpu *vcpu = filp->private_data;
4142  
4143  	kvm_put_kvm(vcpu->kvm);
4144  	return 0;
4145  }
4146  
4147  static struct file_operations kvm_vcpu_fops = {
4148  	.release        = kvm_vcpu_release,
4149  	.unlocked_ioctl = kvm_vcpu_ioctl,
4150  	.mmap           = kvm_vcpu_mmap,
4151  	.llseek		= noop_llseek,
4152  	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4153  };
4154  
4155  /*
4156   * Allocates an inode for the vcpu.
4157   */
create_vcpu_fd(struct kvm_vcpu * vcpu)4158  static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4159  {
4160  	char name[8 + 1 + ITOA_MAX_LEN + 1];
4161  
4162  	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4163  	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4164  }
4165  
4166  #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)4167  static int vcpu_get_pid(void *data, u64 *val)
4168  {
4169  	struct kvm_vcpu *vcpu = data;
4170  
4171  	rcu_read_lock();
4172  	*val = pid_nr(rcu_dereference(vcpu->pid));
4173  	rcu_read_unlock();
4174  	return 0;
4175  }
4176  
4177  DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4178  
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)4179  static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4180  {
4181  	struct dentry *debugfs_dentry;
4182  	char dir_name[ITOA_MAX_LEN * 2];
4183  
4184  	if (!debugfs_initialized())
4185  		return;
4186  
4187  	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4188  	debugfs_dentry = debugfs_create_dir(dir_name,
4189  					    vcpu->kvm->debugfs_dentry);
4190  	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4191  			    &vcpu_get_pid_fops);
4192  
4193  	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4194  }
4195  #endif
4196  
4197  /*
4198   * Creates some virtual cpus.  Good luck creating more than one.
4199   */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,unsigned long id)4200  static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4201  {
4202  	int r;
4203  	struct kvm_vcpu *vcpu;
4204  	struct page *page;
4205  
4206  	/*
4207  	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4208  	 * too-large values instead of silently truncating.
4209  	 *
4210  	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4211  	 * changing the storage type (at the very least, IDs should be tracked
4212  	 * as unsigned ints).
4213  	 */
4214  	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4215  	if (id >= KVM_MAX_VCPU_IDS)
4216  		return -EINVAL;
4217  
4218  	mutex_lock(&kvm->lock);
4219  	if (kvm->created_vcpus >= kvm->max_vcpus) {
4220  		mutex_unlock(&kvm->lock);
4221  		return -EINVAL;
4222  	}
4223  
4224  	r = kvm_arch_vcpu_precreate(kvm, id);
4225  	if (r) {
4226  		mutex_unlock(&kvm->lock);
4227  		return r;
4228  	}
4229  
4230  	kvm->created_vcpus++;
4231  	mutex_unlock(&kvm->lock);
4232  
4233  	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4234  	if (!vcpu) {
4235  		r = -ENOMEM;
4236  		goto vcpu_decrement;
4237  	}
4238  
4239  	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4240  	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4241  	if (!page) {
4242  		r = -ENOMEM;
4243  		goto vcpu_free;
4244  	}
4245  	vcpu->run = page_address(page);
4246  
4247  	kvm_vcpu_init(vcpu, kvm, id);
4248  
4249  	r = kvm_arch_vcpu_create(vcpu);
4250  	if (r)
4251  		goto vcpu_free_run_page;
4252  
4253  	if (kvm->dirty_ring_size) {
4254  		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4255  					 id, kvm->dirty_ring_size);
4256  		if (r)
4257  			goto arch_vcpu_destroy;
4258  	}
4259  
4260  	mutex_lock(&kvm->lock);
4261  
4262  #ifdef CONFIG_LOCKDEP
4263  	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4264  	mutex_lock(&vcpu->mutex);
4265  	mutex_unlock(&vcpu->mutex);
4266  #endif
4267  
4268  	if (kvm_get_vcpu_by_id(kvm, id)) {
4269  		r = -EEXIST;
4270  		goto unlock_vcpu_destroy;
4271  	}
4272  
4273  	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4274  	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4275  	if (r)
4276  		goto unlock_vcpu_destroy;
4277  
4278  	/* Now it's all set up, let userspace reach it */
4279  	kvm_get_kvm(kvm);
4280  	r = create_vcpu_fd(vcpu);
4281  	if (r < 0)
4282  		goto kvm_put_xa_release;
4283  
4284  	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4285  		r = -EINVAL;
4286  		goto kvm_put_xa_release;
4287  	}
4288  
4289  	/*
4290  	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4291  	 * pointer before kvm->online_vcpu's incremented value.
4292  	 */
4293  	smp_wmb();
4294  	atomic_inc(&kvm->online_vcpus);
4295  
4296  	mutex_unlock(&kvm->lock);
4297  	kvm_arch_vcpu_postcreate(vcpu);
4298  	kvm_create_vcpu_debugfs(vcpu);
4299  	return r;
4300  
4301  kvm_put_xa_release:
4302  	kvm_put_kvm_no_destroy(kvm);
4303  	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4304  unlock_vcpu_destroy:
4305  	mutex_unlock(&kvm->lock);
4306  	kvm_dirty_ring_free(&vcpu->dirty_ring);
4307  arch_vcpu_destroy:
4308  	kvm_arch_vcpu_destroy(vcpu);
4309  vcpu_free_run_page:
4310  	free_page((unsigned long)vcpu->run);
4311  vcpu_free:
4312  	kmem_cache_free(kvm_vcpu_cache, vcpu);
4313  vcpu_decrement:
4314  	mutex_lock(&kvm->lock);
4315  	kvm->created_vcpus--;
4316  	mutex_unlock(&kvm->lock);
4317  	return r;
4318  }
4319  
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4320  static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4321  {
4322  	if (sigset) {
4323  		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4324  		vcpu->sigset_active = 1;
4325  		vcpu->sigset = *sigset;
4326  	} else
4327  		vcpu->sigset_active = 0;
4328  	return 0;
4329  }
4330  
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4331  static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4332  			      size_t size, loff_t *offset)
4333  {
4334  	struct kvm_vcpu *vcpu = file->private_data;
4335  
4336  	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4337  			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4338  			sizeof(vcpu->stat), user_buffer, size, offset);
4339  }
4340  
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4341  static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4342  {
4343  	struct kvm_vcpu *vcpu = file->private_data;
4344  
4345  	kvm_put_kvm(vcpu->kvm);
4346  	return 0;
4347  }
4348  
4349  static const struct file_operations kvm_vcpu_stats_fops = {
4350  	.owner = THIS_MODULE,
4351  	.read = kvm_vcpu_stats_read,
4352  	.release = kvm_vcpu_stats_release,
4353  	.llseek = noop_llseek,
4354  };
4355  
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4356  static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4357  {
4358  	int fd;
4359  	struct file *file;
4360  	char name[15 + ITOA_MAX_LEN + 1];
4361  
4362  	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4363  
4364  	fd = get_unused_fd_flags(O_CLOEXEC);
4365  	if (fd < 0)
4366  		return fd;
4367  
4368  	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4369  	if (IS_ERR(file)) {
4370  		put_unused_fd(fd);
4371  		return PTR_ERR(file);
4372  	}
4373  
4374  	kvm_get_kvm(vcpu->kvm);
4375  
4376  	file->f_mode |= FMODE_PREAD;
4377  	fd_install(fd, file);
4378  
4379  	return fd;
4380  }
4381  
4382  #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
kvm_vcpu_pre_fault_memory(struct kvm_vcpu * vcpu,struct kvm_pre_fault_memory * range)4383  static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4384  				     struct kvm_pre_fault_memory *range)
4385  {
4386  	int idx;
4387  	long r;
4388  	u64 full_size;
4389  
4390  	if (range->flags)
4391  		return -EINVAL;
4392  
4393  	if (!PAGE_ALIGNED(range->gpa) ||
4394  	    !PAGE_ALIGNED(range->size) ||
4395  	    range->gpa + range->size <= range->gpa)
4396  		return -EINVAL;
4397  
4398  	vcpu_load(vcpu);
4399  	idx = srcu_read_lock(&vcpu->kvm->srcu);
4400  
4401  	full_size = range->size;
4402  	do {
4403  		if (signal_pending(current)) {
4404  			r = -EINTR;
4405  			break;
4406  		}
4407  
4408  		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4409  		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4410  			break;
4411  
4412  		if (r < 0)
4413  			break;
4414  
4415  		range->size -= r;
4416  		range->gpa += r;
4417  		cond_resched();
4418  	} while (range->size);
4419  
4420  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4421  	vcpu_put(vcpu);
4422  
4423  	/* Return success if at least one page was mapped successfully.  */
4424  	return full_size == range->size ? r : 0;
4425  }
4426  #endif
4427  
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4428  static long kvm_vcpu_ioctl(struct file *filp,
4429  			   unsigned int ioctl, unsigned long arg)
4430  {
4431  	struct kvm_vcpu *vcpu = filp->private_data;
4432  	void __user *argp = (void __user *)arg;
4433  	int r;
4434  	struct kvm_fpu *fpu = NULL;
4435  	struct kvm_sregs *kvm_sregs = NULL;
4436  
4437  	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4438  		return -EIO;
4439  
4440  	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4441  		return -EINVAL;
4442  
4443  	/*
4444  	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4445  	 * execution; mutex_lock() would break them.
4446  	 */
4447  	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4448  	if (r != -ENOIOCTLCMD)
4449  		return r;
4450  
4451  	if (mutex_lock_killable(&vcpu->mutex))
4452  		return -EINTR;
4453  	switch (ioctl) {
4454  	case KVM_RUN: {
4455  		struct pid *oldpid;
4456  		r = -EINVAL;
4457  		if (arg)
4458  			goto out;
4459  		oldpid = rcu_access_pointer(vcpu->pid);
4460  		if (unlikely(oldpid != task_pid(current))) {
4461  			/* The thread running this VCPU changed. */
4462  			struct pid *newpid;
4463  
4464  			r = kvm_arch_vcpu_run_pid_change(vcpu);
4465  			if (r)
4466  				break;
4467  
4468  			newpid = get_task_pid(current, PIDTYPE_PID);
4469  			rcu_assign_pointer(vcpu->pid, newpid);
4470  			if (oldpid)
4471  				synchronize_rcu();
4472  			put_pid(oldpid);
4473  		}
4474  		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4475  		r = kvm_arch_vcpu_ioctl_run(vcpu);
4476  		vcpu->wants_to_run = false;
4477  
4478  		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4479  		break;
4480  	}
4481  	case KVM_GET_REGS: {
4482  		struct kvm_regs *kvm_regs;
4483  
4484  		r = -ENOMEM;
4485  		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4486  		if (!kvm_regs)
4487  			goto out;
4488  		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4489  		if (r)
4490  			goto out_free1;
4491  		r = -EFAULT;
4492  		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4493  			goto out_free1;
4494  		r = 0;
4495  out_free1:
4496  		kfree(kvm_regs);
4497  		break;
4498  	}
4499  	case KVM_SET_REGS: {
4500  		struct kvm_regs *kvm_regs;
4501  
4502  		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4503  		if (IS_ERR(kvm_regs)) {
4504  			r = PTR_ERR(kvm_regs);
4505  			goto out;
4506  		}
4507  		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4508  		kfree(kvm_regs);
4509  		break;
4510  	}
4511  	case KVM_GET_SREGS: {
4512  		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4513  		r = -ENOMEM;
4514  		if (!kvm_sregs)
4515  			goto out;
4516  		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4517  		if (r)
4518  			goto out;
4519  		r = -EFAULT;
4520  		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4521  			goto out;
4522  		r = 0;
4523  		break;
4524  	}
4525  	case KVM_SET_SREGS: {
4526  		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4527  		if (IS_ERR(kvm_sregs)) {
4528  			r = PTR_ERR(kvm_sregs);
4529  			kvm_sregs = NULL;
4530  			goto out;
4531  		}
4532  		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4533  		break;
4534  	}
4535  	case KVM_GET_MP_STATE: {
4536  		struct kvm_mp_state mp_state;
4537  
4538  		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4539  		if (r)
4540  			goto out;
4541  		r = -EFAULT;
4542  		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4543  			goto out;
4544  		r = 0;
4545  		break;
4546  	}
4547  	case KVM_SET_MP_STATE: {
4548  		struct kvm_mp_state mp_state;
4549  
4550  		r = -EFAULT;
4551  		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4552  			goto out;
4553  		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4554  		break;
4555  	}
4556  	case KVM_TRANSLATE: {
4557  		struct kvm_translation tr;
4558  
4559  		r = -EFAULT;
4560  		if (copy_from_user(&tr, argp, sizeof(tr)))
4561  			goto out;
4562  		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4563  		if (r)
4564  			goto out;
4565  		r = -EFAULT;
4566  		if (copy_to_user(argp, &tr, sizeof(tr)))
4567  			goto out;
4568  		r = 0;
4569  		break;
4570  	}
4571  	case KVM_SET_GUEST_DEBUG: {
4572  		struct kvm_guest_debug dbg;
4573  
4574  		r = -EFAULT;
4575  		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4576  			goto out;
4577  		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4578  		break;
4579  	}
4580  	case KVM_SET_SIGNAL_MASK: {
4581  		struct kvm_signal_mask __user *sigmask_arg = argp;
4582  		struct kvm_signal_mask kvm_sigmask;
4583  		sigset_t sigset, *p;
4584  
4585  		p = NULL;
4586  		if (argp) {
4587  			r = -EFAULT;
4588  			if (copy_from_user(&kvm_sigmask, argp,
4589  					   sizeof(kvm_sigmask)))
4590  				goto out;
4591  			r = -EINVAL;
4592  			if (kvm_sigmask.len != sizeof(sigset))
4593  				goto out;
4594  			r = -EFAULT;
4595  			if (copy_from_user(&sigset, sigmask_arg->sigset,
4596  					   sizeof(sigset)))
4597  				goto out;
4598  			p = &sigset;
4599  		}
4600  		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4601  		break;
4602  	}
4603  	case KVM_GET_FPU: {
4604  		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4605  		r = -ENOMEM;
4606  		if (!fpu)
4607  			goto out;
4608  		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4609  		if (r)
4610  			goto out;
4611  		r = -EFAULT;
4612  		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4613  			goto out;
4614  		r = 0;
4615  		break;
4616  	}
4617  	case KVM_SET_FPU: {
4618  		fpu = memdup_user(argp, sizeof(*fpu));
4619  		if (IS_ERR(fpu)) {
4620  			r = PTR_ERR(fpu);
4621  			fpu = NULL;
4622  			goto out;
4623  		}
4624  		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4625  		break;
4626  	}
4627  	case KVM_GET_STATS_FD: {
4628  		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4629  		break;
4630  	}
4631  #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4632  	case KVM_PRE_FAULT_MEMORY: {
4633  		struct kvm_pre_fault_memory range;
4634  
4635  		r = -EFAULT;
4636  		if (copy_from_user(&range, argp, sizeof(range)))
4637  			break;
4638  		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4639  		/* Pass back leftover range. */
4640  		if (copy_to_user(argp, &range, sizeof(range)))
4641  			r = -EFAULT;
4642  		break;
4643  	}
4644  #endif
4645  	default:
4646  		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4647  	}
4648  out:
4649  	mutex_unlock(&vcpu->mutex);
4650  	kfree(fpu);
4651  	kfree(kvm_sregs);
4652  	return r;
4653  }
4654  
4655  #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4656  static long kvm_vcpu_compat_ioctl(struct file *filp,
4657  				  unsigned int ioctl, unsigned long arg)
4658  {
4659  	struct kvm_vcpu *vcpu = filp->private_data;
4660  	void __user *argp = compat_ptr(arg);
4661  	int r;
4662  
4663  	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4664  		return -EIO;
4665  
4666  	switch (ioctl) {
4667  	case KVM_SET_SIGNAL_MASK: {
4668  		struct kvm_signal_mask __user *sigmask_arg = argp;
4669  		struct kvm_signal_mask kvm_sigmask;
4670  		sigset_t sigset;
4671  
4672  		if (argp) {
4673  			r = -EFAULT;
4674  			if (copy_from_user(&kvm_sigmask, argp,
4675  					   sizeof(kvm_sigmask)))
4676  				goto out;
4677  			r = -EINVAL;
4678  			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4679  				goto out;
4680  			r = -EFAULT;
4681  			if (get_compat_sigset(&sigset,
4682  					      (compat_sigset_t __user *)sigmask_arg->sigset))
4683  				goto out;
4684  			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4685  		} else
4686  			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4687  		break;
4688  	}
4689  	default:
4690  		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4691  	}
4692  
4693  out:
4694  	return r;
4695  }
4696  #endif
4697  
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4698  static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4699  {
4700  	struct kvm_device *dev = filp->private_data;
4701  
4702  	if (dev->ops->mmap)
4703  		return dev->ops->mmap(dev, vma);
4704  
4705  	return -ENODEV;
4706  }
4707  
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4708  static int kvm_device_ioctl_attr(struct kvm_device *dev,
4709  				 int (*accessor)(struct kvm_device *dev,
4710  						 struct kvm_device_attr *attr),
4711  				 unsigned long arg)
4712  {
4713  	struct kvm_device_attr attr;
4714  
4715  	if (!accessor)
4716  		return -EPERM;
4717  
4718  	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4719  		return -EFAULT;
4720  
4721  	return accessor(dev, &attr);
4722  }
4723  
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4724  static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4725  			     unsigned long arg)
4726  {
4727  	struct kvm_device *dev = filp->private_data;
4728  
4729  	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4730  		return -EIO;
4731  
4732  	switch (ioctl) {
4733  	case KVM_SET_DEVICE_ATTR:
4734  		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4735  	case KVM_GET_DEVICE_ATTR:
4736  		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4737  	case KVM_HAS_DEVICE_ATTR:
4738  		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4739  	default:
4740  		if (dev->ops->ioctl)
4741  			return dev->ops->ioctl(dev, ioctl, arg);
4742  
4743  		return -ENOTTY;
4744  	}
4745  }
4746  
kvm_device_release(struct inode * inode,struct file * filp)4747  static int kvm_device_release(struct inode *inode, struct file *filp)
4748  {
4749  	struct kvm_device *dev = filp->private_data;
4750  	struct kvm *kvm = dev->kvm;
4751  
4752  	if (dev->ops->release) {
4753  		mutex_lock(&kvm->lock);
4754  		list_del_rcu(&dev->vm_node);
4755  		synchronize_rcu();
4756  		dev->ops->release(dev);
4757  		mutex_unlock(&kvm->lock);
4758  	}
4759  
4760  	kvm_put_kvm(kvm);
4761  	return 0;
4762  }
4763  
4764  static struct file_operations kvm_device_fops = {
4765  	.unlocked_ioctl = kvm_device_ioctl,
4766  	.release = kvm_device_release,
4767  	KVM_COMPAT(kvm_device_ioctl),
4768  	.mmap = kvm_device_mmap,
4769  };
4770  
kvm_device_from_filp(struct file * filp)4771  struct kvm_device *kvm_device_from_filp(struct file *filp)
4772  {
4773  	if (filp->f_op != &kvm_device_fops)
4774  		return NULL;
4775  
4776  	return filp->private_data;
4777  }
4778  
4779  static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4780  #ifdef CONFIG_KVM_MPIC
4781  	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4782  	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4783  #endif
4784  };
4785  
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4786  int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4787  {
4788  	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4789  		return -ENOSPC;
4790  
4791  	if (kvm_device_ops_table[type] != NULL)
4792  		return -EEXIST;
4793  
4794  	kvm_device_ops_table[type] = ops;
4795  	return 0;
4796  }
4797  
kvm_unregister_device_ops(u32 type)4798  void kvm_unregister_device_ops(u32 type)
4799  {
4800  	if (kvm_device_ops_table[type] != NULL)
4801  		kvm_device_ops_table[type] = NULL;
4802  }
4803  
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4804  static int kvm_ioctl_create_device(struct kvm *kvm,
4805  				   struct kvm_create_device *cd)
4806  {
4807  	const struct kvm_device_ops *ops;
4808  	struct kvm_device *dev;
4809  	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4810  	int type;
4811  	int ret;
4812  
4813  	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4814  		return -ENODEV;
4815  
4816  	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4817  	ops = kvm_device_ops_table[type];
4818  	if (ops == NULL)
4819  		return -ENODEV;
4820  
4821  	if (test)
4822  		return 0;
4823  
4824  	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4825  	if (!dev)
4826  		return -ENOMEM;
4827  
4828  	dev->ops = ops;
4829  	dev->kvm = kvm;
4830  
4831  	mutex_lock(&kvm->lock);
4832  	ret = ops->create(dev, type);
4833  	if (ret < 0) {
4834  		mutex_unlock(&kvm->lock);
4835  		kfree(dev);
4836  		return ret;
4837  	}
4838  	list_add_rcu(&dev->vm_node, &kvm->devices);
4839  	mutex_unlock(&kvm->lock);
4840  
4841  	if (ops->init)
4842  		ops->init(dev);
4843  
4844  	kvm_get_kvm(kvm);
4845  	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4846  	if (ret < 0) {
4847  		kvm_put_kvm_no_destroy(kvm);
4848  		mutex_lock(&kvm->lock);
4849  		list_del_rcu(&dev->vm_node);
4850  		synchronize_rcu();
4851  		if (ops->release)
4852  			ops->release(dev);
4853  		mutex_unlock(&kvm->lock);
4854  		if (ops->destroy)
4855  			ops->destroy(dev);
4856  		return ret;
4857  	}
4858  
4859  	cd->fd = ret;
4860  	return 0;
4861  }
4862  
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4863  static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4864  {
4865  	switch (arg) {
4866  	case KVM_CAP_USER_MEMORY:
4867  	case KVM_CAP_USER_MEMORY2:
4868  	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4869  	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4870  	case KVM_CAP_INTERNAL_ERROR_DATA:
4871  #ifdef CONFIG_HAVE_KVM_MSI
4872  	case KVM_CAP_SIGNAL_MSI:
4873  #endif
4874  #ifdef CONFIG_HAVE_KVM_IRQCHIP
4875  	case KVM_CAP_IRQFD:
4876  #endif
4877  	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4878  	case KVM_CAP_CHECK_EXTENSION_VM:
4879  	case KVM_CAP_ENABLE_CAP_VM:
4880  	case KVM_CAP_HALT_POLL:
4881  		return 1;
4882  #ifdef CONFIG_KVM_MMIO
4883  	case KVM_CAP_COALESCED_MMIO:
4884  		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4885  	case KVM_CAP_COALESCED_PIO:
4886  		return 1;
4887  #endif
4888  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4889  	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4890  		return KVM_DIRTY_LOG_MANUAL_CAPS;
4891  #endif
4892  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4893  	case KVM_CAP_IRQ_ROUTING:
4894  		return KVM_MAX_IRQ_ROUTES;
4895  #endif
4896  #if KVM_MAX_NR_ADDRESS_SPACES > 1
4897  	case KVM_CAP_MULTI_ADDRESS_SPACE:
4898  		if (kvm)
4899  			return kvm_arch_nr_memslot_as_ids(kvm);
4900  		return KVM_MAX_NR_ADDRESS_SPACES;
4901  #endif
4902  	case KVM_CAP_NR_MEMSLOTS:
4903  		return KVM_USER_MEM_SLOTS;
4904  	case KVM_CAP_DIRTY_LOG_RING:
4905  #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4906  		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4907  #else
4908  		return 0;
4909  #endif
4910  	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4911  #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4912  		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4913  #else
4914  		return 0;
4915  #endif
4916  #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4917  	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4918  #endif
4919  	case KVM_CAP_BINARY_STATS_FD:
4920  	case KVM_CAP_SYSTEM_EVENT_DATA:
4921  	case KVM_CAP_DEVICE_CTRL:
4922  		return 1;
4923  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4924  	case KVM_CAP_MEMORY_ATTRIBUTES:
4925  		return kvm_supported_mem_attributes(kvm);
4926  #endif
4927  #ifdef CONFIG_KVM_PRIVATE_MEM
4928  	case KVM_CAP_GUEST_MEMFD:
4929  		return !kvm || kvm_arch_has_private_mem(kvm);
4930  #endif
4931  	default:
4932  		break;
4933  	}
4934  	return kvm_vm_ioctl_check_extension(kvm, arg);
4935  }
4936  
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4937  static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4938  {
4939  	int r;
4940  
4941  	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4942  		return -EINVAL;
4943  
4944  	/* the size should be power of 2 */
4945  	if (!size || (size & (size - 1)))
4946  		return -EINVAL;
4947  
4948  	/* Should be bigger to keep the reserved entries, or a page */
4949  	if (size < kvm_dirty_ring_get_rsvd_entries() *
4950  	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4951  		return -EINVAL;
4952  
4953  	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4954  	    sizeof(struct kvm_dirty_gfn))
4955  		return -E2BIG;
4956  
4957  	/* We only allow it to set once */
4958  	if (kvm->dirty_ring_size)
4959  		return -EINVAL;
4960  
4961  	mutex_lock(&kvm->lock);
4962  
4963  	if (kvm->created_vcpus) {
4964  		/* We don't allow to change this value after vcpu created */
4965  		r = -EINVAL;
4966  	} else {
4967  		kvm->dirty_ring_size = size;
4968  		r = 0;
4969  	}
4970  
4971  	mutex_unlock(&kvm->lock);
4972  	return r;
4973  }
4974  
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4975  static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4976  {
4977  	unsigned long i;
4978  	struct kvm_vcpu *vcpu;
4979  	int cleared = 0;
4980  
4981  	if (!kvm->dirty_ring_size)
4982  		return -EINVAL;
4983  
4984  	mutex_lock(&kvm->slots_lock);
4985  
4986  	kvm_for_each_vcpu(i, vcpu, kvm)
4987  		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4988  
4989  	mutex_unlock(&kvm->slots_lock);
4990  
4991  	if (cleared)
4992  		kvm_flush_remote_tlbs(kvm);
4993  
4994  	return cleared;
4995  }
4996  
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4997  int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4998  						  struct kvm_enable_cap *cap)
4999  {
5000  	return -EINVAL;
5001  }
5002  
kvm_are_all_memslots_empty(struct kvm * kvm)5003  bool kvm_are_all_memslots_empty(struct kvm *kvm)
5004  {
5005  	int i;
5006  
5007  	lockdep_assert_held(&kvm->slots_lock);
5008  
5009  	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5010  		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5011  			return false;
5012  	}
5013  
5014  	return true;
5015  }
5016  EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5017  
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)5018  static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5019  					   struct kvm_enable_cap *cap)
5020  {
5021  	switch (cap->cap) {
5022  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5023  	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5024  		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5025  
5026  		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5027  			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5028  
5029  		if (cap->flags || (cap->args[0] & ~allowed_options))
5030  			return -EINVAL;
5031  		kvm->manual_dirty_log_protect = cap->args[0];
5032  		return 0;
5033  	}
5034  #endif
5035  	case KVM_CAP_HALT_POLL: {
5036  		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5037  			return -EINVAL;
5038  
5039  		kvm->max_halt_poll_ns = cap->args[0];
5040  
5041  		/*
5042  		 * Ensure kvm->override_halt_poll_ns does not become visible
5043  		 * before kvm->max_halt_poll_ns.
5044  		 *
5045  		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5046  		 */
5047  		smp_wmb();
5048  		kvm->override_halt_poll_ns = true;
5049  
5050  		return 0;
5051  	}
5052  	case KVM_CAP_DIRTY_LOG_RING:
5053  	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5054  		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5055  			return -EINVAL;
5056  
5057  		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5058  	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5059  		int r = -EINVAL;
5060  
5061  		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5062  		    !kvm->dirty_ring_size || cap->flags)
5063  			return r;
5064  
5065  		mutex_lock(&kvm->slots_lock);
5066  
5067  		/*
5068  		 * For simplicity, allow enabling ring+bitmap if and only if
5069  		 * there are no memslots, e.g. to ensure all memslots allocate
5070  		 * a bitmap after the capability is enabled.
5071  		 */
5072  		if (kvm_are_all_memslots_empty(kvm)) {
5073  			kvm->dirty_ring_with_bitmap = true;
5074  			r = 0;
5075  		}
5076  
5077  		mutex_unlock(&kvm->slots_lock);
5078  
5079  		return r;
5080  	}
5081  	default:
5082  		return kvm_vm_ioctl_enable_cap(kvm, cap);
5083  	}
5084  }
5085  
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)5086  static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5087  			      size_t size, loff_t *offset)
5088  {
5089  	struct kvm *kvm = file->private_data;
5090  
5091  	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5092  				&kvm_vm_stats_desc[0], &kvm->stat,
5093  				sizeof(kvm->stat), user_buffer, size, offset);
5094  }
5095  
kvm_vm_stats_release(struct inode * inode,struct file * file)5096  static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5097  {
5098  	struct kvm *kvm = file->private_data;
5099  
5100  	kvm_put_kvm(kvm);
5101  	return 0;
5102  }
5103  
5104  static const struct file_operations kvm_vm_stats_fops = {
5105  	.owner = THIS_MODULE,
5106  	.read = kvm_vm_stats_read,
5107  	.release = kvm_vm_stats_release,
5108  	.llseek = noop_llseek,
5109  };
5110  
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)5111  static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5112  {
5113  	int fd;
5114  	struct file *file;
5115  
5116  	fd = get_unused_fd_flags(O_CLOEXEC);
5117  	if (fd < 0)
5118  		return fd;
5119  
5120  	file = anon_inode_getfile("kvm-vm-stats",
5121  			&kvm_vm_stats_fops, kvm, O_RDONLY);
5122  	if (IS_ERR(file)) {
5123  		put_unused_fd(fd);
5124  		return PTR_ERR(file);
5125  	}
5126  
5127  	kvm_get_kvm(kvm);
5128  
5129  	file->f_mode |= FMODE_PREAD;
5130  	fd_install(fd, file);
5131  
5132  	return fd;
5133  }
5134  
5135  #define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5136  do {										\
5137  	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5138  		     offsetof(struct kvm_userspace_memory_region2, field));	\
5139  	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5140  		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5141  } while (0)
5142  
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5143  static long kvm_vm_ioctl(struct file *filp,
5144  			   unsigned int ioctl, unsigned long arg)
5145  {
5146  	struct kvm *kvm = filp->private_data;
5147  	void __user *argp = (void __user *)arg;
5148  	int r;
5149  
5150  	if (kvm->mm != current->mm || kvm->vm_dead)
5151  		return -EIO;
5152  	switch (ioctl) {
5153  	case KVM_CREATE_VCPU:
5154  		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5155  		break;
5156  	case KVM_ENABLE_CAP: {
5157  		struct kvm_enable_cap cap;
5158  
5159  		r = -EFAULT;
5160  		if (copy_from_user(&cap, argp, sizeof(cap)))
5161  			goto out;
5162  		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5163  		break;
5164  	}
5165  	case KVM_SET_USER_MEMORY_REGION2:
5166  	case KVM_SET_USER_MEMORY_REGION: {
5167  		struct kvm_userspace_memory_region2 mem;
5168  		unsigned long size;
5169  
5170  		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5171  			/*
5172  			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5173  			 * accessed, but avoid leaking kernel memory in case of a bug.
5174  			 */
5175  			memset(&mem, 0, sizeof(mem));
5176  			size = sizeof(struct kvm_userspace_memory_region);
5177  		} else {
5178  			size = sizeof(struct kvm_userspace_memory_region2);
5179  		}
5180  
5181  		/* Ensure the common parts of the two structs are identical. */
5182  		SANITY_CHECK_MEM_REGION_FIELD(slot);
5183  		SANITY_CHECK_MEM_REGION_FIELD(flags);
5184  		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5185  		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5186  		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5187  
5188  		r = -EFAULT;
5189  		if (copy_from_user(&mem, argp, size))
5190  			goto out;
5191  
5192  		r = -EINVAL;
5193  		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5194  		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5195  			goto out;
5196  
5197  		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5198  		break;
5199  	}
5200  	case KVM_GET_DIRTY_LOG: {
5201  		struct kvm_dirty_log log;
5202  
5203  		r = -EFAULT;
5204  		if (copy_from_user(&log, argp, sizeof(log)))
5205  			goto out;
5206  		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5207  		break;
5208  	}
5209  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5210  	case KVM_CLEAR_DIRTY_LOG: {
5211  		struct kvm_clear_dirty_log log;
5212  
5213  		r = -EFAULT;
5214  		if (copy_from_user(&log, argp, sizeof(log)))
5215  			goto out;
5216  		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5217  		break;
5218  	}
5219  #endif
5220  #ifdef CONFIG_KVM_MMIO
5221  	case KVM_REGISTER_COALESCED_MMIO: {
5222  		struct kvm_coalesced_mmio_zone zone;
5223  
5224  		r = -EFAULT;
5225  		if (copy_from_user(&zone, argp, sizeof(zone)))
5226  			goto out;
5227  		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5228  		break;
5229  	}
5230  	case KVM_UNREGISTER_COALESCED_MMIO: {
5231  		struct kvm_coalesced_mmio_zone zone;
5232  
5233  		r = -EFAULT;
5234  		if (copy_from_user(&zone, argp, sizeof(zone)))
5235  			goto out;
5236  		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5237  		break;
5238  	}
5239  #endif
5240  	case KVM_IRQFD: {
5241  		struct kvm_irqfd data;
5242  
5243  		r = -EFAULT;
5244  		if (copy_from_user(&data, argp, sizeof(data)))
5245  			goto out;
5246  		r = kvm_irqfd(kvm, &data);
5247  		break;
5248  	}
5249  	case KVM_IOEVENTFD: {
5250  		struct kvm_ioeventfd data;
5251  
5252  		r = -EFAULT;
5253  		if (copy_from_user(&data, argp, sizeof(data)))
5254  			goto out;
5255  		r = kvm_ioeventfd(kvm, &data);
5256  		break;
5257  	}
5258  #ifdef CONFIG_HAVE_KVM_MSI
5259  	case KVM_SIGNAL_MSI: {
5260  		struct kvm_msi msi;
5261  
5262  		r = -EFAULT;
5263  		if (copy_from_user(&msi, argp, sizeof(msi)))
5264  			goto out;
5265  		r = kvm_send_userspace_msi(kvm, &msi);
5266  		break;
5267  	}
5268  #endif
5269  #ifdef __KVM_HAVE_IRQ_LINE
5270  	case KVM_IRQ_LINE_STATUS:
5271  	case KVM_IRQ_LINE: {
5272  		struct kvm_irq_level irq_event;
5273  
5274  		r = -EFAULT;
5275  		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5276  			goto out;
5277  
5278  		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5279  					ioctl == KVM_IRQ_LINE_STATUS);
5280  		if (r)
5281  			goto out;
5282  
5283  		r = -EFAULT;
5284  		if (ioctl == KVM_IRQ_LINE_STATUS) {
5285  			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5286  				goto out;
5287  		}
5288  
5289  		r = 0;
5290  		break;
5291  	}
5292  #endif
5293  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5294  	case KVM_SET_GSI_ROUTING: {
5295  		struct kvm_irq_routing routing;
5296  		struct kvm_irq_routing __user *urouting;
5297  		struct kvm_irq_routing_entry *entries = NULL;
5298  
5299  		r = -EFAULT;
5300  		if (copy_from_user(&routing, argp, sizeof(routing)))
5301  			goto out;
5302  		r = -EINVAL;
5303  		if (!kvm_arch_can_set_irq_routing(kvm))
5304  			goto out;
5305  		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5306  			goto out;
5307  		if (routing.flags)
5308  			goto out;
5309  		if (routing.nr) {
5310  			urouting = argp;
5311  			entries = vmemdup_array_user(urouting->entries,
5312  						     routing.nr, sizeof(*entries));
5313  			if (IS_ERR(entries)) {
5314  				r = PTR_ERR(entries);
5315  				goto out;
5316  			}
5317  		}
5318  		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5319  					routing.flags);
5320  		kvfree(entries);
5321  		break;
5322  	}
5323  #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5324  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5325  	case KVM_SET_MEMORY_ATTRIBUTES: {
5326  		struct kvm_memory_attributes attrs;
5327  
5328  		r = -EFAULT;
5329  		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5330  			goto out;
5331  
5332  		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5333  		break;
5334  	}
5335  #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5336  	case KVM_CREATE_DEVICE: {
5337  		struct kvm_create_device cd;
5338  
5339  		r = -EFAULT;
5340  		if (copy_from_user(&cd, argp, sizeof(cd)))
5341  			goto out;
5342  
5343  		r = kvm_ioctl_create_device(kvm, &cd);
5344  		if (r)
5345  			goto out;
5346  
5347  		r = -EFAULT;
5348  		if (copy_to_user(argp, &cd, sizeof(cd)))
5349  			goto out;
5350  
5351  		r = 0;
5352  		break;
5353  	}
5354  	case KVM_CHECK_EXTENSION:
5355  		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5356  		break;
5357  	case KVM_RESET_DIRTY_RINGS:
5358  		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5359  		break;
5360  	case KVM_GET_STATS_FD:
5361  		r = kvm_vm_ioctl_get_stats_fd(kvm);
5362  		break;
5363  #ifdef CONFIG_KVM_PRIVATE_MEM
5364  	case KVM_CREATE_GUEST_MEMFD: {
5365  		struct kvm_create_guest_memfd guest_memfd;
5366  
5367  		r = -EFAULT;
5368  		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5369  			goto out;
5370  
5371  		r = kvm_gmem_create(kvm, &guest_memfd);
5372  		break;
5373  	}
5374  #endif
5375  	default:
5376  		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5377  	}
5378  out:
5379  	return r;
5380  }
5381  
5382  #ifdef CONFIG_KVM_COMPAT
5383  struct compat_kvm_dirty_log {
5384  	__u32 slot;
5385  	__u32 padding1;
5386  	union {
5387  		compat_uptr_t dirty_bitmap; /* one bit per page */
5388  		__u64 padding2;
5389  	};
5390  };
5391  
5392  struct compat_kvm_clear_dirty_log {
5393  	__u32 slot;
5394  	__u32 num_pages;
5395  	__u64 first_page;
5396  	union {
5397  		compat_uptr_t dirty_bitmap; /* one bit per page */
5398  		__u64 padding2;
5399  	};
5400  };
5401  
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5402  long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5403  				     unsigned long arg)
5404  {
5405  	return -ENOTTY;
5406  }
5407  
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5408  static long kvm_vm_compat_ioctl(struct file *filp,
5409  			   unsigned int ioctl, unsigned long arg)
5410  {
5411  	struct kvm *kvm = filp->private_data;
5412  	int r;
5413  
5414  	if (kvm->mm != current->mm || kvm->vm_dead)
5415  		return -EIO;
5416  
5417  	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5418  	if (r != -ENOTTY)
5419  		return r;
5420  
5421  	switch (ioctl) {
5422  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5423  	case KVM_CLEAR_DIRTY_LOG: {
5424  		struct compat_kvm_clear_dirty_log compat_log;
5425  		struct kvm_clear_dirty_log log;
5426  
5427  		if (copy_from_user(&compat_log, (void __user *)arg,
5428  				   sizeof(compat_log)))
5429  			return -EFAULT;
5430  		log.slot	 = compat_log.slot;
5431  		log.num_pages	 = compat_log.num_pages;
5432  		log.first_page	 = compat_log.first_page;
5433  		log.padding2	 = compat_log.padding2;
5434  		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5435  
5436  		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5437  		break;
5438  	}
5439  #endif
5440  	case KVM_GET_DIRTY_LOG: {
5441  		struct compat_kvm_dirty_log compat_log;
5442  		struct kvm_dirty_log log;
5443  
5444  		if (copy_from_user(&compat_log, (void __user *)arg,
5445  				   sizeof(compat_log)))
5446  			return -EFAULT;
5447  		log.slot	 = compat_log.slot;
5448  		log.padding1	 = compat_log.padding1;
5449  		log.padding2	 = compat_log.padding2;
5450  		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5451  
5452  		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5453  		break;
5454  	}
5455  	default:
5456  		r = kvm_vm_ioctl(filp, ioctl, arg);
5457  	}
5458  	return r;
5459  }
5460  #endif
5461  
5462  static struct file_operations kvm_vm_fops = {
5463  	.release        = kvm_vm_release,
5464  	.unlocked_ioctl = kvm_vm_ioctl,
5465  	.llseek		= noop_llseek,
5466  	KVM_COMPAT(kvm_vm_compat_ioctl),
5467  };
5468  
file_is_kvm(struct file * file)5469  bool file_is_kvm(struct file *file)
5470  {
5471  	return file && file->f_op == &kvm_vm_fops;
5472  }
5473  EXPORT_SYMBOL_GPL(file_is_kvm);
5474  
kvm_dev_ioctl_create_vm(unsigned long type)5475  static int kvm_dev_ioctl_create_vm(unsigned long type)
5476  {
5477  	char fdname[ITOA_MAX_LEN + 1];
5478  	int r, fd;
5479  	struct kvm *kvm;
5480  	struct file *file;
5481  
5482  	fd = get_unused_fd_flags(O_CLOEXEC);
5483  	if (fd < 0)
5484  		return fd;
5485  
5486  	snprintf(fdname, sizeof(fdname), "%d", fd);
5487  
5488  	kvm = kvm_create_vm(type, fdname);
5489  	if (IS_ERR(kvm)) {
5490  		r = PTR_ERR(kvm);
5491  		goto put_fd;
5492  	}
5493  
5494  	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5495  	if (IS_ERR(file)) {
5496  		r = PTR_ERR(file);
5497  		goto put_kvm;
5498  	}
5499  
5500  	/*
5501  	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5502  	 * already set, with ->release() being kvm_vm_release().  In error
5503  	 * cases it will be called by the final fput(file) and will take
5504  	 * care of doing kvm_put_kvm(kvm).
5505  	 */
5506  	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5507  
5508  	fd_install(fd, file);
5509  	return fd;
5510  
5511  put_kvm:
5512  	kvm_put_kvm(kvm);
5513  put_fd:
5514  	put_unused_fd(fd);
5515  	return r;
5516  }
5517  
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5518  static long kvm_dev_ioctl(struct file *filp,
5519  			  unsigned int ioctl, unsigned long arg)
5520  {
5521  	int r = -EINVAL;
5522  
5523  	switch (ioctl) {
5524  	case KVM_GET_API_VERSION:
5525  		if (arg)
5526  			goto out;
5527  		r = KVM_API_VERSION;
5528  		break;
5529  	case KVM_CREATE_VM:
5530  		r = kvm_dev_ioctl_create_vm(arg);
5531  		break;
5532  	case KVM_CHECK_EXTENSION:
5533  		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5534  		break;
5535  	case KVM_GET_VCPU_MMAP_SIZE:
5536  		if (arg)
5537  			goto out;
5538  		r = PAGE_SIZE;     /* struct kvm_run */
5539  #ifdef CONFIG_X86
5540  		r += PAGE_SIZE;    /* pio data page */
5541  #endif
5542  #ifdef CONFIG_KVM_MMIO
5543  		r += PAGE_SIZE;    /* coalesced mmio ring page */
5544  #endif
5545  		break;
5546  	default:
5547  		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5548  	}
5549  out:
5550  	return r;
5551  }
5552  
5553  static struct file_operations kvm_chardev_ops = {
5554  	.unlocked_ioctl = kvm_dev_ioctl,
5555  	.llseek		= noop_llseek,
5556  	KVM_COMPAT(kvm_dev_ioctl),
5557  };
5558  
5559  static struct miscdevice kvm_dev = {
5560  	KVM_MINOR,
5561  	"kvm",
5562  	&kvm_chardev_ops,
5563  };
5564  
5565  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5566  static bool enable_virt_at_load = true;
5567  module_param(enable_virt_at_load, bool, 0444);
5568  
5569  __visible bool kvm_rebooting;
5570  EXPORT_SYMBOL_GPL(kvm_rebooting);
5571  
5572  static DEFINE_PER_CPU(bool, virtualization_enabled);
5573  static DEFINE_MUTEX(kvm_usage_lock);
5574  static int kvm_usage_count;
5575  
kvm_arch_enable_virtualization(void)5576  __weak void kvm_arch_enable_virtualization(void)
5577  {
5578  
5579  }
5580  
kvm_arch_disable_virtualization(void)5581  __weak void kvm_arch_disable_virtualization(void)
5582  {
5583  
5584  }
5585  
kvm_enable_virtualization_cpu(void)5586  static int kvm_enable_virtualization_cpu(void)
5587  {
5588  	if (__this_cpu_read(virtualization_enabled))
5589  		return 0;
5590  
5591  	if (kvm_arch_enable_virtualization_cpu()) {
5592  		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5593  			raw_smp_processor_id());
5594  		return -EIO;
5595  	}
5596  
5597  	__this_cpu_write(virtualization_enabled, true);
5598  	return 0;
5599  }
5600  
kvm_online_cpu(unsigned int cpu)5601  static int kvm_online_cpu(unsigned int cpu)
5602  {
5603  	/*
5604  	 * Abort the CPU online process if hardware virtualization cannot
5605  	 * be enabled. Otherwise running VMs would encounter unrecoverable
5606  	 * errors when scheduled to this CPU.
5607  	 */
5608  	return kvm_enable_virtualization_cpu();
5609  }
5610  
kvm_disable_virtualization_cpu(void * ign)5611  static void kvm_disable_virtualization_cpu(void *ign)
5612  {
5613  	if (!__this_cpu_read(virtualization_enabled))
5614  		return;
5615  
5616  	kvm_arch_disable_virtualization_cpu();
5617  
5618  	__this_cpu_write(virtualization_enabled, false);
5619  }
5620  
kvm_offline_cpu(unsigned int cpu)5621  static int kvm_offline_cpu(unsigned int cpu)
5622  {
5623  	kvm_disable_virtualization_cpu(NULL);
5624  	return 0;
5625  }
5626  
kvm_shutdown(void)5627  static void kvm_shutdown(void)
5628  {
5629  	/*
5630  	 * Disable hardware virtualization and set kvm_rebooting to indicate
5631  	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5632  	 * that relevant errors and exceptions aren't entirely unexpected.
5633  	 * Some flavors of hardware virtualization need to be disabled before
5634  	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5635  	 * on x86, virtualization can block INIT interrupts, which are used by
5636  	 * firmware to pull APs back under firmware control.  Note, this path
5637  	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5638  	 * 100% comprehensive.
5639  	 */
5640  	pr_info("kvm: exiting hardware virtualization\n");
5641  	kvm_rebooting = true;
5642  	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5643  }
5644  
kvm_suspend(void)5645  static int kvm_suspend(void)
5646  {
5647  	/*
5648  	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5649  	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5650  	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5651  	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5652  	 * enabling can be preempted, but the task cannot be frozen until it has
5653  	 * dropped all locks (userspace tasks are frozen via a fake signal).
5654  	 */
5655  	lockdep_assert_not_held(&kvm_usage_lock);
5656  	lockdep_assert_irqs_disabled();
5657  
5658  	kvm_disable_virtualization_cpu(NULL);
5659  	return 0;
5660  }
5661  
kvm_resume(void)5662  static void kvm_resume(void)
5663  {
5664  	lockdep_assert_not_held(&kvm_usage_lock);
5665  	lockdep_assert_irqs_disabled();
5666  
5667  	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5668  }
5669  
5670  static struct syscore_ops kvm_syscore_ops = {
5671  	.suspend = kvm_suspend,
5672  	.resume = kvm_resume,
5673  	.shutdown = kvm_shutdown,
5674  };
5675  
kvm_enable_virtualization(void)5676  static int kvm_enable_virtualization(void)
5677  {
5678  	int r;
5679  
5680  	guard(mutex)(&kvm_usage_lock);
5681  
5682  	if (kvm_usage_count++)
5683  		return 0;
5684  
5685  	kvm_arch_enable_virtualization();
5686  
5687  	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5688  			      kvm_online_cpu, kvm_offline_cpu);
5689  	if (r)
5690  		goto err_cpuhp;
5691  
5692  	register_syscore_ops(&kvm_syscore_ops);
5693  
5694  	/*
5695  	 * Undo virtualization enabling and bail if the system is going down.
5696  	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5697  	 * possible for an in-flight operation to enable virtualization after
5698  	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5699  	 * invoked.  Note, this relies on system_state being set _before_
5700  	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5701  	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5702  	 * a syscore ops hook instead of registering a dedicated reboot
5703  	 * notifier (the latter runs before system_state is updated).
5704  	 */
5705  	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5706  	    system_state == SYSTEM_RESTART) {
5707  		r = -EBUSY;
5708  		goto err_rebooting;
5709  	}
5710  
5711  	return 0;
5712  
5713  err_rebooting:
5714  	unregister_syscore_ops(&kvm_syscore_ops);
5715  	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5716  err_cpuhp:
5717  	kvm_arch_disable_virtualization();
5718  	--kvm_usage_count;
5719  	return r;
5720  }
5721  
kvm_disable_virtualization(void)5722  static void kvm_disable_virtualization(void)
5723  {
5724  	guard(mutex)(&kvm_usage_lock);
5725  
5726  	if (--kvm_usage_count)
5727  		return;
5728  
5729  	unregister_syscore_ops(&kvm_syscore_ops);
5730  	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5731  	kvm_arch_disable_virtualization();
5732  }
5733  
kvm_init_virtualization(void)5734  static int kvm_init_virtualization(void)
5735  {
5736  	if (enable_virt_at_load)
5737  		return kvm_enable_virtualization();
5738  
5739  	return 0;
5740  }
5741  
kvm_uninit_virtualization(void)5742  static void kvm_uninit_virtualization(void)
5743  {
5744  	if (enable_virt_at_load)
5745  		kvm_disable_virtualization();
5746  }
5747  #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
kvm_enable_virtualization(void)5748  static int kvm_enable_virtualization(void)
5749  {
5750  	return 0;
5751  }
5752  
kvm_init_virtualization(void)5753  static int kvm_init_virtualization(void)
5754  {
5755  	return 0;
5756  }
5757  
kvm_disable_virtualization(void)5758  static void kvm_disable_virtualization(void)
5759  {
5760  
5761  }
5762  
kvm_uninit_virtualization(void)5763  static void kvm_uninit_virtualization(void)
5764  {
5765  
5766  }
5767  #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5768  
kvm_iodevice_destructor(struct kvm_io_device * dev)5769  static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5770  {
5771  	if (dev->ops->destructor)
5772  		dev->ops->destructor(dev);
5773  }
5774  
kvm_io_bus_destroy(struct kvm_io_bus * bus)5775  static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5776  {
5777  	int i;
5778  
5779  	for (i = 0; i < bus->dev_count; i++) {
5780  		struct kvm_io_device *pos = bus->range[i].dev;
5781  
5782  		kvm_iodevice_destructor(pos);
5783  	}
5784  	kfree(bus);
5785  }
5786  
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5787  static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5788  				 const struct kvm_io_range *r2)
5789  {
5790  	gpa_t addr1 = r1->addr;
5791  	gpa_t addr2 = r2->addr;
5792  
5793  	if (addr1 < addr2)
5794  		return -1;
5795  
5796  	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5797  	 * accept any overlapping write.  Any order is acceptable for
5798  	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5799  	 * we process all of them.
5800  	 */
5801  	if (r2->len) {
5802  		addr1 += r1->len;
5803  		addr2 += r2->len;
5804  	}
5805  
5806  	if (addr1 > addr2)
5807  		return 1;
5808  
5809  	return 0;
5810  }
5811  
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5812  static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5813  {
5814  	return kvm_io_bus_cmp(p1, p2);
5815  }
5816  
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5817  static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5818  			     gpa_t addr, int len)
5819  {
5820  	struct kvm_io_range *range, key;
5821  	int off;
5822  
5823  	key = (struct kvm_io_range) {
5824  		.addr = addr,
5825  		.len = len,
5826  	};
5827  
5828  	range = bsearch(&key, bus->range, bus->dev_count,
5829  			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5830  	if (range == NULL)
5831  		return -ENOENT;
5832  
5833  	off = range - bus->range;
5834  
5835  	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5836  		off--;
5837  
5838  	return off;
5839  }
5840  
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5841  static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5842  			      struct kvm_io_range *range, const void *val)
5843  {
5844  	int idx;
5845  
5846  	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5847  	if (idx < 0)
5848  		return -EOPNOTSUPP;
5849  
5850  	while (idx < bus->dev_count &&
5851  		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5852  		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5853  					range->len, val))
5854  			return idx;
5855  		idx++;
5856  	}
5857  
5858  	return -EOPNOTSUPP;
5859  }
5860  
5861  /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5862  int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5863  		     int len, const void *val)
5864  {
5865  	struct kvm_io_bus *bus;
5866  	struct kvm_io_range range;
5867  	int r;
5868  
5869  	range = (struct kvm_io_range) {
5870  		.addr = addr,
5871  		.len = len,
5872  	};
5873  
5874  	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5875  	if (!bus)
5876  		return -ENOMEM;
5877  	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5878  	return r < 0 ? r : 0;
5879  }
5880  EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5881  
5882  /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5883  int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5884  			    gpa_t addr, int len, const void *val, long cookie)
5885  {
5886  	struct kvm_io_bus *bus;
5887  	struct kvm_io_range range;
5888  
5889  	range = (struct kvm_io_range) {
5890  		.addr = addr,
5891  		.len = len,
5892  	};
5893  
5894  	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5895  	if (!bus)
5896  		return -ENOMEM;
5897  
5898  	/* First try the device referenced by cookie. */
5899  	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5900  	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5901  		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5902  					val))
5903  			return cookie;
5904  
5905  	/*
5906  	 * cookie contained garbage; fall back to search and return the
5907  	 * correct cookie value.
5908  	 */
5909  	return __kvm_io_bus_write(vcpu, bus, &range, val);
5910  }
5911  
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5912  static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5913  			     struct kvm_io_range *range, void *val)
5914  {
5915  	int idx;
5916  
5917  	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5918  	if (idx < 0)
5919  		return -EOPNOTSUPP;
5920  
5921  	while (idx < bus->dev_count &&
5922  		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5923  		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5924  				       range->len, val))
5925  			return idx;
5926  		idx++;
5927  	}
5928  
5929  	return -EOPNOTSUPP;
5930  }
5931  
5932  /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5933  int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5934  		    int len, void *val)
5935  {
5936  	struct kvm_io_bus *bus;
5937  	struct kvm_io_range range;
5938  	int r;
5939  
5940  	range = (struct kvm_io_range) {
5941  		.addr = addr,
5942  		.len = len,
5943  	};
5944  
5945  	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5946  	if (!bus)
5947  		return -ENOMEM;
5948  	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5949  	return r < 0 ? r : 0;
5950  }
5951  
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5952  int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5953  			    int len, struct kvm_io_device *dev)
5954  {
5955  	int i;
5956  	struct kvm_io_bus *new_bus, *bus;
5957  	struct kvm_io_range range;
5958  
5959  	lockdep_assert_held(&kvm->slots_lock);
5960  
5961  	bus = kvm_get_bus(kvm, bus_idx);
5962  	if (!bus)
5963  		return -ENOMEM;
5964  
5965  	/* exclude ioeventfd which is limited by maximum fd */
5966  	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5967  		return -ENOSPC;
5968  
5969  	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5970  			  GFP_KERNEL_ACCOUNT);
5971  	if (!new_bus)
5972  		return -ENOMEM;
5973  
5974  	range = (struct kvm_io_range) {
5975  		.addr = addr,
5976  		.len = len,
5977  		.dev = dev,
5978  	};
5979  
5980  	for (i = 0; i < bus->dev_count; i++)
5981  		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5982  			break;
5983  
5984  	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5985  	new_bus->dev_count++;
5986  	new_bus->range[i] = range;
5987  	memcpy(new_bus->range + i + 1, bus->range + i,
5988  		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5989  	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5990  	synchronize_srcu_expedited(&kvm->srcu);
5991  	kfree(bus);
5992  
5993  	return 0;
5994  }
5995  
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5996  int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5997  			      struct kvm_io_device *dev)
5998  {
5999  	int i;
6000  	struct kvm_io_bus *new_bus, *bus;
6001  
6002  	lockdep_assert_held(&kvm->slots_lock);
6003  
6004  	bus = kvm_get_bus(kvm, bus_idx);
6005  	if (!bus)
6006  		return 0;
6007  
6008  	for (i = 0; i < bus->dev_count; i++) {
6009  		if (bus->range[i].dev == dev) {
6010  			break;
6011  		}
6012  	}
6013  
6014  	if (i == bus->dev_count)
6015  		return 0;
6016  
6017  	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6018  			  GFP_KERNEL_ACCOUNT);
6019  	if (new_bus) {
6020  		memcpy(new_bus, bus, struct_size(bus, range, i));
6021  		new_bus->dev_count--;
6022  		memcpy(new_bus->range + i, bus->range + i + 1,
6023  				flex_array_size(new_bus, range, new_bus->dev_count - i));
6024  	}
6025  
6026  	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6027  	synchronize_srcu_expedited(&kvm->srcu);
6028  
6029  	/*
6030  	 * If NULL bus is installed, destroy the old bus, including all the
6031  	 * attached devices. Otherwise, destroy the caller's device only.
6032  	 */
6033  	if (!new_bus) {
6034  		pr_err("kvm: failed to shrink bus, removing it completely\n");
6035  		kvm_io_bus_destroy(bus);
6036  		return -ENOMEM;
6037  	}
6038  
6039  	kvm_iodevice_destructor(dev);
6040  	kfree(bus);
6041  	return 0;
6042  }
6043  
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)6044  struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6045  					 gpa_t addr)
6046  {
6047  	struct kvm_io_bus *bus;
6048  	int dev_idx, srcu_idx;
6049  	struct kvm_io_device *iodev = NULL;
6050  
6051  	srcu_idx = srcu_read_lock(&kvm->srcu);
6052  
6053  	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6054  	if (!bus)
6055  		goto out_unlock;
6056  
6057  	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6058  	if (dev_idx < 0)
6059  		goto out_unlock;
6060  
6061  	iodev = bus->range[dev_idx].dev;
6062  
6063  out_unlock:
6064  	srcu_read_unlock(&kvm->srcu, srcu_idx);
6065  
6066  	return iodev;
6067  }
6068  EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6069  
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)6070  static int kvm_debugfs_open(struct inode *inode, struct file *file,
6071  			   int (*get)(void *, u64 *), int (*set)(void *, u64),
6072  			   const char *fmt)
6073  {
6074  	int ret;
6075  	struct kvm_stat_data *stat_data = inode->i_private;
6076  
6077  	/*
6078  	 * The debugfs files are a reference to the kvm struct which
6079          * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6080          * avoids the race between open and the removal of the debugfs directory.
6081  	 */
6082  	if (!kvm_get_kvm_safe(stat_data->kvm))
6083  		return -ENOENT;
6084  
6085  	ret = simple_attr_open(inode, file, get,
6086  			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
6087  			       ? set : NULL, fmt);
6088  	if (ret)
6089  		kvm_put_kvm(stat_data->kvm);
6090  
6091  	return ret;
6092  }
6093  
kvm_debugfs_release(struct inode * inode,struct file * file)6094  static int kvm_debugfs_release(struct inode *inode, struct file *file)
6095  {
6096  	struct kvm_stat_data *stat_data = inode->i_private;
6097  
6098  	simple_attr_release(inode, file);
6099  	kvm_put_kvm(stat_data->kvm);
6100  
6101  	return 0;
6102  }
6103  
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)6104  static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6105  {
6106  	*val = *(u64 *)((void *)(&kvm->stat) + offset);
6107  
6108  	return 0;
6109  }
6110  
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)6111  static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6112  {
6113  	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6114  
6115  	return 0;
6116  }
6117  
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)6118  static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6119  {
6120  	unsigned long i;
6121  	struct kvm_vcpu *vcpu;
6122  
6123  	*val = 0;
6124  
6125  	kvm_for_each_vcpu(i, vcpu, kvm)
6126  		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6127  
6128  	return 0;
6129  }
6130  
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)6131  static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6132  {
6133  	unsigned long i;
6134  	struct kvm_vcpu *vcpu;
6135  
6136  	kvm_for_each_vcpu(i, vcpu, kvm)
6137  		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6138  
6139  	return 0;
6140  }
6141  
kvm_stat_data_get(void * data,u64 * val)6142  static int kvm_stat_data_get(void *data, u64 *val)
6143  {
6144  	int r = -EFAULT;
6145  	struct kvm_stat_data *stat_data = data;
6146  
6147  	switch (stat_data->kind) {
6148  	case KVM_STAT_VM:
6149  		r = kvm_get_stat_per_vm(stat_data->kvm,
6150  					stat_data->desc->desc.offset, val);
6151  		break;
6152  	case KVM_STAT_VCPU:
6153  		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6154  					  stat_data->desc->desc.offset, val);
6155  		break;
6156  	}
6157  
6158  	return r;
6159  }
6160  
kvm_stat_data_clear(void * data,u64 val)6161  static int kvm_stat_data_clear(void *data, u64 val)
6162  {
6163  	int r = -EFAULT;
6164  	struct kvm_stat_data *stat_data = data;
6165  
6166  	if (val)
6167  		return -EINVAL;
6168  
6169  	switch (stat_data->kind) {
6170  	case KVM_STAT_VM:
6171  		r = kvm_clear_stat_per_vm(stat_data->kvm,
6172  					  stat_data->desc->desc.offset);
6173  		break;
6174  	case KVM_STAT_VCPU:
6175  		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6176  					    stat_data->desc->desc.offset);
6177  		break;
6178  	}
6179  
6180  	return r;
6181  }
6182  
kvm_stat_data_open(struct inode * inode,struct file * file)6183  static int kvm_stat_data_open(struct inode *inode, struct file *file)
6184  {
6185  	__simple_attr_check_format("%llu\n", 0ull);
6186  	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6187  				kvm_stat_data_clear, "%llu\n");
6188  }
6189  
6190  static const struct file_operations stat_fops_per_vm = {
6191  	.owner = THIS_MODULE,
6192  	.open = kvm_stat_data_open,
6193  	.release = kvm_debugfs_release,
6194  	.read = simple_attr_read,
6195  	.write = simple_attr_write,
6196  };
6197  
vm_stat_get(void * _offset,u64 * val)6198  static int vm_stat_get(void *_offset, u64 *val)
6199  {
6200  	unsigned offset = (long)_offset;
6201  	struct kvm *kvm;
6202  	u64 tmp_val;
6203  
6204  	*val = 0;
6205  	mutex_lock(&kvm_lock);
6206  	list_for_each_entry(kvm, &vm_list, vm_list) {
6207  		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6208  		*val += tmp_val;
6209  	}
6210  	mutex_unlock(&kvm_lock);
6211  	return 0;
6212  }
6213  
vm_stat_clear(void * _offset,u64 val)6214  static int vm_stat_clear(void *_offset, u64 val)
6215  {
6216  	unsigned offset = (long)_offset;
6217  	struct kvm *kvm;
6218  
6219  	if (val)
6220  		return -EINVAL;
6221  
6222  	mutex_lock(&kvm_lock);
6223  	list_for_each_entry(kvm, &vm_list, vm_list) {
6224  		kvm_clear_stat_per_vm(kvm, offset);
6225  	}
6226  	mutex_unlock(&kvm_lock);
6227  
6228  	return 0;
6229  }
6230  
6231  DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6232  DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6233  
vcpu_stat_get(void * _offset,u64 * val)6234  static int vcpu_stat_get(void *_offset, u64 *val)
6235  {
6236  	unsigned offset = (long)_offset;
6237  	struct kvm *kvm;
6238  	u64 tmp_val;
6239  
6240  	*val = 0;
6241  	mutex_lock(&kvm_lock);
6242  	list_for_each_entry(kvm, &vm_list, vm_list) {
6243  		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6244  		*val += tmp_val;
6245  	}
6246  	mutex_unlock(&kvm_lock);
6247  	return 0;
6248  }
6249  
vcpu_stat_clear(void * _offset,u64 val)6250  static int vcpu_stat_clear(void *_offset, u64 val)
6251  {
6252  	unsigned offset = (long)_offset;
6253  	struct kvm *kvm;
6254  
6255  	if (val)
6256  		return -EINVAL;
6257  
6258  	mutex_lock(&kvm_lock);
6259  	list_for_each_entry(kvm, &vm_list, vm_list) {
6260  		kvm_clear_stat_per_vcpu(kvm, offset);
6261  	}
6262  	mutex_unlock(&kvm_lock);
6263  
6264  	return 0;
6265  }
6266  
6267  DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6268  			"%llu\n");
6269  DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6270  
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)6271  static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6272  {
6273  	struct kobj_uevent_env *env;
6274  	unsigned long long created, active;
6275  
6276  	if (!kvm_dev.this_device || !kvm)
6277  		return;
6278  
6279  	mutex_lock(&kvm_lock);
6280  	if (type == KVM_EVENT_CREATE_VM) {
6281  		kvm_createvm_count++;
6282  		kvm_active_vms++;
6283  	} else if (type == KVM_EVENT_DESTROY_VM) {
6284  		kvm_active_vms--;
6285  	}
6286  	created = kvm_createvm_count;
6287  	active = kvm_active_vms;
6288  	mutex_unlock(&kvm_lock);
6289  
6290  	env = kzalloc(sizeof(*env), GFP_KERNEL);
6291  	if (!env)
6292  		return;
6293  
6294  	add_uevent_var(env, "CREATED=%llu", created);
6295  	add_uevent_var(env, "COUNT=%llu", active);
6296  
6297  	if (type == KVM_EVENT_CREATE_VM) {
6298  		add_uevent_var(env, "EVENT=create");
6299  		kvm->userspace_pid = task_pid_nr(current);
6300  	} else if (type == KVM_EVENT_DESTROY_VM) {
6301  		add_uevent_var(env, "EVENT=destroy");
6302  	}
6303  	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6304  
6305  	if (!IS_ERR(kvm->debugfs_dentry)) {
6306  		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6307  
6308  		if (p) {
6309  			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6310  			if (!IS_ERR(tmp))
6311  				add_uevent_var(env, "STATS_PATH=%s", tmp);
6312  			kfree(p);
6313  		}
6314  	}
6315  	/* no need for checks, since we are adding at most only 5 keys */
6316  	env->envp[env->envp_idx++] = NULL;
6317  	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6318  	kfree(env);
6319  }
6320  
kvm_init_debug(void)6321  static void kvm_init_debug(void)
6322  {
6323  	const struct file_operations *fops;
6324  	const struct _kvm_stats_desc *pdesc;
6325  	int i;
6326  
6327  	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6328  
6329  	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6330  		pdesc = &kvm_vm_stats_desc[i];
6331  		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6332  			fops = &vm_stat_fops;
6333  		else
6334  			fops = &vm_stat_readonly_fops;
6335  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6336  				kvm_debugfs_dir,
6337  				(void *)(long)pdesc->desc.offset, fops);
6338  	}
6339  
6340  	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6341  		pdesc = &kvm_vcpu_stats_desc[i];
6342  		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6343  			fops = &vcpu_stat_fops;
6344  		else
6345  			fops = &vcpu_stat_readonly_fops;
6346  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6347  				kvm_debugfs_dir,
6348  				(void *)(long)pdesc->desc.offset, fops);
6349  	}
6350  }
6351  
6352  static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)6353  struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6354  {
6355  	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6356  }
6357  
kvm_sched_in(struct preempt_notifier * pn,int cpu)6358  static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6359  {
6360  	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6361  
6362  	WRITE_ONCE(vcpu->preempted, false);
6363  	WRITE_ONCE(vcpu->ready, false);
6364  
6365  	__this_cpu_write(kvm_running_vcpu, vcpu);
6366  	kvm_arch_vcpu_load(vcpu, cpu);
6367  
6368  	WRITE_ONCE(vcpu->scheduled_out, false);
6369  }
6370  
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)6371  static void kvm_sched_out(struct preempt_notifier *pn,
6372  			  struct task_struct *next)
6373  {
6374  	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6375  
6376  	WRITE_ONCE(vcpu->scheduled_out, true);
6377  
6378  	if (task_is_runnable(current) && vcpu->wants_to_run) {
6379  		WRITE_ONCE(vcpu->preempted, true);
6380  		WRITE_ONCE(vcpu->ready, true);
6381  	}
6382  	kvm_arch_vcpu_put(vcpu);
6383  	__this_cpu_write(kvm_running_vcpu, NULL);
6384  }
6385  
6386  /**
6387   * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6388   *
6389   * We can disable preemption locally around accessing the per-CPU variable,
6390   * and use the resolved vcpu pointer after enabling preemption again,
6391   * because even if the current thread is migrated to another CPU, reading
6392   * the per-CPU value later will give us the same value as we update the
6393   * per-CPU variable in the preempt notifier handlers.
6394   */
kvm_get_running_vcpu(void)6395  struct kvm_vcpu *kvm_get_running_vcpu(void)
6396  {
6397  	struct kvm_vcpu *vcpu;
6398  
6399  	preempt_disable();
6400  	vcpu = __this_cpu_read(kvm_running_vcpu);
6401  	preempt_enable();
6402  
6403  	return vcpu;
6404  }
6405  EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6406  
6407  /**
6408   * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6409   */
kvm_get_running_vcpus(void)6410  struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6411  {
6412          return &kvm_running_vcpu;
6413  }
6414  
6415  #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6416  static unsigned int kvm_guest_state(void)
6417  {
6418  	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6419  	unsigned int state;
6420  
6421  	if (!kvm_arch_pmi_in_guest(vcpu))
6422  		return 0;
6423  
6424  	state = PERF_GUEST_ACTIVE;
6425  	if (!kvm_arch_vcpu_in_kernel(vcpu))
6426  		state |= PERF_GUEST_USER;
6427  
6428  	return state;
6429  }
6430  
kvm_guest_get_ip(void)6431  static unsigned long kvm_guest_get_ip(void)
6432  {
6433  	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6434  
6435  	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6436  	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6437  		return 0;
6438  
6439  	return kvm_arch_vcpu_get_ip(vcpu);
6440  }
6441  
6442  static struct perf_guest_info_callbacks kvm_guest_cbs = {
6443  	.state			= kvm_guest_state,
6444  	.get_ip			= kvm_guest_get_ip,
6445  	.handle_intel_pt_intr	= NULL,
6446  };
6447  
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6448  void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6449  {
6450  	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6451  	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6452  }
kvm_unregister_perf_callbacks(void)6453  void kvm_unregister_perf_callbacks(void)
6454  {
6455  	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6456  }
6457  #endif
6458  
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6459  int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6460  {
6461  	int r;
6462  	int cpu;
6463  
6464  	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6465  	if (!vcpu_align)
6466  		vcpu_align = __alignof__(struct kvm_vcpu);
6467  	kvm_vcpu_cache =
6468  		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6469  					   SLAB_ACCOUNT,
6470  					   offsetof(struct kvm_vcpu, arch),
6471  					   offsetofend(struct kvm_vcpu, stats_id)
6472  					   - offsetof(struct kvm_vcpu, arch),
6473  					   NULL);
6474  	if (!kvm_vcpu_cache)
6475  		return -ENOMEM;
6476  
6477  	for_each_possible_cpu(cpu) {
6478  		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6479  					    GFP_KERNEL, cpu_to_node(cpu))) {
6480  			r = -ENOMEM;
6481  			goto err_cpu_kick_mask;
6482  		}
6483  	}
6484  
6485  	r = kvm_irqfd_init();
6486  	if (r)
6487  		goto err_irqfd;
6488  
6489  	r = kvm_async_pf_init();
6490  	if (r)
6491  		goto err_async_pf;
6492  
6493  	kvm_chardev_ops.owner = module;
6494  	kvm_vm_fops.owner = module;
6495  	kvm_vcpu_fops.owner = module;
6496  	kvm_device_fops.owner = module;
6497  
6498  	kvm_preempt_ops.sched_in = kvm_sched_in;
6499  	kvm_preempt_ops.sched_out = kvm_sched_out;
6500  
6501  	kvm_init_debug();
6502  
6503  	r = kvm_vfio_ops_init();
6504  	if (WARN_ON_ONCE(r))
6505  		goto err_vfio;
6506  
6507  	kvm_gmem_init(module);
6508  
6509  	r = kvm_init_virtualization();
6510  	if (r)
6511  		goto err_virt;
6512  
6513  	/*
6514  	 * Registration _must_ be the very last thing done, as this exposes
6515  	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6516  	 */
6517  	r = misc_register(&kvm_dev);
6518  	if (r) {
6519  		pr_err("kvm: misc device register failed\n");
6520  		goto err_register;
6521  	}
6522  
6523  	return 0;
6524  
6525  err_register:
6526  	kvm_uninit_virtualization();
6527  err_virt:
6528  	kvm_vfio_ops_exit();
6529  err_vfio:
6530  	kvm_async_pf_deinit();
6531  err_async_pf:
6532  	kvm_irqfd_exit();
6533  err_irqfd:
6534  err_cpu_kick_mask:
6535  	for_each_possible_cpu(cpu)
6536  		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6537  	kmem_cache_destroy(kvm_vcpu_cache);
6538  	return r;
6539  }
6540  EXPORT_SYMBOL_GPL(kvm_init);
6541  
kvm_exit(void)6542  void kvm_exit(void)
6543  {
6544  	int cpu;
6545  
6546  	/*
6547  	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6548  	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6549  	 * to KVM while the module is being stopped.
6550  	 */
6551  	misc_deregister(&kvm_dev);
6552  
6553  	kvm_uninit_virtualization();
6554  
6555  	debugfs_remove_recursive(kvm_debugfs_dir);
6556  	for_each_possible_cpu(cpu)
6557  		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6558  	kmem_cache_destroy(kvm_vcpu_cache);
6559  	kvm_vfio_ops_exit();
6560  	kvm_async_pf_deinit();
6561  	kvm_irqfd_exit();
6562  }
6563  EXPORT_SYMBOL_GPL(kvm_exit);
6564  
6565  struct kvm_vm_worker_thread_context {
6566  	struct kvm *kvm;
6567  	struct task_struct *parent;
6568  	struct completion init_done;
6569  	kvm_vm_thread_fn_t thread_fn;
6570  	uintptr_t data;
6571  	int err;
6572  };
6573  
kvm_vm_worker_thread(void * context)6574  static int kvm_vm_worker_thread(void *context)
6575  {
6576  	/*
6577  	 * The init_context is allocated on the stack of the parent thread, so
6578  	 * we have to locally copy anything that is needed beyond initialization
6579  	 */
6580  	struct kvm_vm_worker_thread_context *init_context = context;
6581  	struct task_struct *parent;
6582  	struct kvm *kvm = init_context->kvm;
6583  	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6584  	uintptr_t data = init_context->data;
6585  	int err;
6586  
6587  	err = kthread_park(current);
6588  	/* kthread_park(current) is never supposed to return an error */
6589  	WARN_ON(err != 0);
6590  	if (err)
6591  		goto init_complete;
6592  
6593  	err = cgroup_attach_task_all(init_context->parent, current);
6594  	if (err) {
6595  		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6596  			__func__, err);
6597  		goto init_complete;
6598  	}
6599  
6600  	set_user_nice(current, task_nice(init_context->parent));
6601  
6602  init_complete:
6603  	init_context->err = err;
6604  	complete(&init_context->init_done);
6605  	init_context = NULL;
6606  
6607  	if (err)
6608  		goto out;
6609  
6610  	/* Wait to be woken up by the spawner before proceeding. */
6611  	kthread_parkme();
6612  
6613  	if (!kthread_should_stop())
6614  		err = thread_fn(kvm, data);
6615  
6616  out:
6617  	/*
6618  	 * Move kthread back to its original cgroup to prevent it lingering in
6619  	 * the cgroup of the VM process, after the latter finishes its
6620  	 * execution.
6621  	 *
6622  	 * kthread_stop() waits on the 'exited' completion condition which is
6623  	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6624  	 * kthread is removed from the cgroup in the cgroup_exit() which is
6625  	 * called after the exit_mm(). This causes the kthread_stop() to return
6626  	 * before the kthread actually quits the cgroup.
6627  	 */
6628  	rcu_read_lock();
6629  	parent = rcu_dereference(current->real_parent);
6630  	get_task_struct(parent);
6631  	rcu_read_unlock();
6632  	cgroup_attach_task_all(parent, current);
6633  	put_task_struct(parent);
6634  
6635  	return err;
6636  }
6637  
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)6638  int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6639  				uintptr_t data, const char *name,
6640  				struct task_struct **thread_ptr)
6641  {
6642  	struct kvm_vm_worker_thread_context init_context = {};
6643  	struct task_struct *thread;
6644  
6645  	*thread_ptr = NULL;
6646  	init_context.kvm = kvm;
6647  	init_context.parent = current;
6648  	init_context.thread_fn = thread_fn;
6649  	init_context.data = data;
6650  	init_completion(&init_context.init_done);
6651  
6652  	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6653  			     "%s-%d", name, task_pid_nr(current));
6654  	if (IS_ERR(thread))
6655  		return PTR_ERR(thread);
6656  
6657  	/* kthread_run is never supposed to return NULL */
6658  	WARN_ON(thread == NULL);
6659  
6660  	wait_for_completion(&init_context.init_done);
6661  
6662  	if (!init_context.err)
6663  		*thread_ptr = thread;
6664  
6665  	return init_context.err;
6666  }
6667