1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10 
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14 
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17 
18 #include <linux/kvm_para.h>
19 #include <linux/stringify.h>
20 
21 #include "kvm_util.h"
22 #include "ucall_common.h"
23 
24 extern bool host_cpu_is_intel;
25 extern bool host_cpu_is_amd;
26 extern uint64_t guest_tsc_khz;
27 
28 #ifndef MAX_NR_CPUID_ENTRIES
29 #define MAX_NR_CPUID_ENTRIES 100
30 #endif
31 
32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34 
35 #define NMI_VECTOR		0x02
36 
37 #define X86_EFLAGS_FIXED	 (1u << 1)
38 
39 #define X86_CR4_VME		(1ul << 0)
40 #define X86_CR4_PVI		(1ul << 1)
41 #define X86_CR4_TSD		(1ul << 2)
42 #define X86_CR4_DE		(1ul << 3)
43 #define X86_CR4_PSE		(1ul << 4)
44 #define X86_CR4_PAE		(1ul << 5)
45 #define X86_CR4_MCE		(1ul << 6)
46 #define X86_CR4_PGE		(1ul << 7)
47 #define X86_CR4_PCE		(1ul << 8)
48 #define X86_CR4_OSFXSR		(1ul << 9)
49 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
50 #define X86_CR4_UMIP		(1ul << 11)
51 #define X86_CR4_LA57		(1ul << 12)
52 #define X86_CR4_VMXE		(1ul << 13)
53 #define X86_CR4_SMXE		(1ul << 14)
54 #define X86_CR4_FSGSBASE	(1ul << 16)
55 #define X86_CR4_PCIDE		(1ul << 17)
56 #define X86_CR4_OSXSAVE		(1ul << 18)
57 #define X86_CR4_SMEP		(1ul << 20)
58 #define X86_CR4_SMAP		(1ul << 21)
59 #define X86_CR4_PKE		(1ul << 22)
60 
61 struct xstate_header {
62 	u64				xstate_bv;
63 	u64				xcomp_bv;
64 	u64				reserved[6];
65 } __attribute__((packed));
66 
67 struct xstate {
68 	u8				i387[512];
69 	struct xstate_header		header;
70 	u8				extended_state_area[0];
71 } __attribute__ ((packed, aligned (64)));
72 
73 #define XFEATURE_MASK_FP		BIT_ULL(0)
74 #define XFEATURE_MASK_SSE		BIT_ULL(1)
75 #define XFEATURE_MASK_YMM		BIT_ULL(2)
76 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
77 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
78 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
79 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
80 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
81 #define XFEATURE_MASK_PT		BIT_ULL(8)
82 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
83 #define XFEATURE_MASK_PASID		BIT_ULL(10)
84 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
85 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
86 #define XFEATURE_MASK_LBR		BIT_ULL(15)
87 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
88 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
89 
90 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
91 					 XFEATURE_MASK_ZMM_Hi256 | \
92 					 XFEATURE_MASK_Hi16_ZMM)
93 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
94 					 XFEATURE_MASK_XTILE_CFG)
95 
96 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
97 enum cpuid_output_regs {
98 	KVM_CPUID_EAX,
99 	KVM_CPUID_EBX,
100 	KVM_CPUID_ECX,
101 	KVM_CPUID_EDX
102 };
103 
104 /*
105  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106  * passed by value with no overhead.
107  */
108 struct kvm_x86_cpu_feature {
109 	u32	function;
110 	u16	index;
111 	u8	reg;
112 	u8	bit;
113 };
114 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
115 ({										\
116 	struct kvm_x86_cpu_feature feature = {					\
117 		.function = fn,							\
118 		.index = idx,							\
119 		.reg = KVM_CPUID_##gpr,						\
120 		.bit = __bit,							\
121 	};									\
122 										\
123 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
124 			  (fn & 0xc0000000) == 0x40000000 ||			\
125 			  (fn & 0xc0000000) == 0x80000000 ||			\
126 			  (fn & 0xc0000000) == 0xc0000000);			\
127 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
128 	feature;								\
129 })
130 
131 /*
132  * Basic Leafs, a.k.a. Intel defined
133  */
134 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181 
182 /*
183  * Extended Leafs, a.k.a. AMD defined
184  */
185 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
201 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
202 
203 /*
204  * KVM defined paravirt features.
205  */
206 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
207 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
208 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
209 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
210 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
211 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
212 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
213 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
214 /* Bit 8 apparently isn't used?!?! */
215 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
216 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
217 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
218 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
219 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
220 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
221 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
222 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
223 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
224 
225 /*
226  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
227  * value/property as opposed to a single-bit feature.  Again, pack the info
228  * into a 64-bit value to pass by value with no overhead.
229  */
230 struct kvm_x86_cpu_property {
231 	u32	function;
232 	u8	index;
233 	u8	reg;
234 	u8	lo_bit;
235 	u8	hi_bit;
236 };
237 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
238 ({										\
239 	struct kvm_x86_cpu_property property = {				\
240 		.function = fn,							\
241 		.index = idx,							\
242 		.reg = KVM_CPUID_##gpr,						\
243 		.lo_bit = low_bit,						\
244 		.hi_bit = high_bit,						\
245 	};									\
246 										\
247 	kvm_static_assert(low_bit < high_bit);					\
248 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
249 			  (fn & 0xc0000000) == 0x40000000 ||			\
250 			  (fn & 0xc0000000) == 0x80000000 ||			\
251 			  (fn & 0xc0000000) == 0xc0000000);			\
252 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
253 	property;								\
254 })
255 
256 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
257 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
258 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
259 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
260 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
261 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
262 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
263 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
264 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
265 
266 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
267 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
268 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
269 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
270 
271 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
272 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
273 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
274 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
275 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
276 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
277 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
278 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
279 
280 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
281 
282 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
283 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
284 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
285 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
286 #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
287 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
288 
289 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
290 
291 /*
292  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
293  * that indicates the feature is _not_ supported, and a property that states
294  * the length of the bit mask of unsupported features.  A feature is supported
295  * if the size of the bit mask is larger than the "unavailable" bit, and said
296  * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
297  * arch events for general purpose counters.  Fixed counters are supported if a
298  * feature flag is set **OR** the total number of fixed counters is greater
299  * than index of the counter.
300  *
301  * Wrap the events for general purpose and fixed counters to simplify checking
302  * whether or not a given architectural event is supported.
303  */
304 struct kvm_x86_pmu_feature {
305 	struct kvm_x86_cpu_feature f;
306 };
307 #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
308 ({									\
309 	struct kvm_x86_pmu_feature feature = {				\
310 		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
311 	};								\
312 									\
313 	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
314 			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
315 	feature;							\
316 })
317 
318 #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
319 #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
320 #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
321 #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
322 #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
323 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
324 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
325 #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
326 
327 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
328 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
329 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
330 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
331 
x86_family(unsigned int eax)332 static inline unsigned int x86_family(unsigned int eax)
333 {
334 	unsigned int x86;
335 
336 	x86 = (eax >> 8) & 0xf;
337 
338 	if (x86 == 0xf)
339 		x86 += (eax >> 20) & 0xff;
340 
341 	return x86;
342 }
343 
x86_model(unsigned int eax)344 static inline unsigned int x86_model(unsigned int eax)
345 {
346 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
347 }
348 
349 /* Page table bitfield declarations */
350 #define PTE_PRESENT_MASK        BIT_ULL(0)
351 #define PTE_WRITABLE_MASK       BIT_ULL(1)
352 #define PTE_USER_MASK           BIT_ULL(2)
353 #define PTE_ACCESSED_MASK       BIT_ULL(5)
354 #define PTE_DIRTY_MASK          BIT_ULL(6)
355 #define PTE_LARGE_MASK          BIT_ULL(7)
356 #define PTE_GLOBAL_MASK         BIT_ULL(8)
357 #define PTE_NX_MASK             BIT_ULL(63)
358 
359 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
360 
361 #define PAGE_SHIFT		12
362 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
363 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
364 
365 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
366 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
367 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
368 
369 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
370 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
371 
372 /* General Registers in 64-Bit Mode */
373 struct gpr64_regs {
374 	u64 rax;
375 	u64 rcx;
376 	u64 rdx;
377 	u64 rbx;
378 	u64 rsp;
379 	u64 rbp;
380 	u64 rsi;
381 	u64 rdi;
382 	u64 r8;
383 	u64 r9;
384 	u64 r10;
385 	u64 r11;
386 	u64 r12;
387 	u64 r13;
388 	u64 r14;
389 	u64 r15;
390 };
391 
392 struct desc64 {
393 	uint16_t limit0;
394 	uint16_t base0;
395 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
396 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
397 	uint32_t base3;
398 	uint32_t zero1;
399 } __attribute__((packed));
400 
401 struct desc_ptr {
402 	uint16_t size;
403 	uint64_t address;
404 } __attribute__((packed));
405 
406 struct kvm_x86_state {
407 	struct kvm_xsave *xsave;
408 	struct kvm_vcpu_events events;
409 	struct kvm_mp_state mp_state;
410 	struct kvm_regs regs;
411 	struct kvm_xcrs xcrs;
412 	struct kvm_sregs sregs;
413 	struct kvm_debugregs debugregs;
414 	union {
415 		struct kvm_nested_state nested;
416 		char nested_[16384];
417 	};
418 	struct kvm_msrs msrs;
419 };
420 
get_desc64_base(const struct desc64 * desc)421 static inline uint64_t get_desc64_base(const struct desc64 *desc)
422 {
423 	return ((uint64_t)desc->base3 << 32) |
424 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
425 }
426 
rdtsc(void)427 static inline uint64_t rdtsc(void)
428 {
429 	uint32_t eax, edx;
430 	uint64_t tsc_val;
431 	/*
432 	 * The lfence is to wait (on Intel CPUs) until all previous
433 	 * instructions have been executed. If software requires RDTSC to be
434 	 * executed prior to execution of any subsequent instruction, it can
435 	 * execute LFENCE immediately after RDTSC
436 	 */
437 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
438 	tsc_val = ((uint64_t)edx) << 32 | eax;
439 	return tsc_val;
440 }
441 
rdtscp(uint32_t * aux)442 static inline uint64_t rdtscp(uint32_t *aux)
443 {
444 	uint32_t eax, edx;
445 
446 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
447 	return ((uint64_t)edx) << 32 | eax;
448 }
449 
rdmsr(uint32_t msr)450 static inline uint64_t rdmsr(uint32_t msr)
451 {
452 	uint32_t a, d;
453 
454 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
455 
456 	return a | ((uint64_t) d << 32);
457 }
458 
wrmsr(uint32_t msr,uint64_t value)459 static inline void wrmsr(uint32_t msr, uint64_t value)
460 {
461 	uint32_t a = value;
462 	uint32_t d = value >> 32;
463 
464 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
465 }
466 
467 
inw(uint16_t port)468 static inline uint16_t inw(uint16_t port)
469 {
470 	uint16_t tmp;
471 
472 	__asm__ __volatile__("in %%dx, %%ax"
473 		: /* output */ "=a" (tmp)
474 		: /* input */ "d" (port));
475 
476 	return tmp;
477 }
478 
get_es(void)479 static inline uint16_t get_es(void)
480 {
481 	uint16_t es;
482 
483 	__asm__ __volatile__("mov %%es, %[es]"
484 			     : /* output */ [es]"=rm"(es));
485 	return es;
486 }
487 
get_cs(void)488 static inline uint16_t get_cs(void)
489 {
490 	uint16_t cs;
491 
492 	__asm__ __volatile__("mov %%cs, %[cs]"
493 			     : /* output */ [cs]"=rm"(cs));
494 	return cs;
495 }
496 
get_ss(void)497 static inline uint16_t get_ss(void)
498 {
499 	uint16_t ss;
500 
501 	__asm__ __volatile__("mov %%ss, %[ss]"
502 			     : /* output */ [ss]"=rm"(ss));
503 	return ss;
504 }
505 
get_ds(void)506 static inline uint16_t get_ds(void)
507 {
508 	uint16_t ds;
509 
510 	__asm__ __volatile__("mov %%ds, %[ds]"
511 			     : /* output */ [ds]"=rm"(ds));
512 	return ds;
513 }
514 
get_fs(void)515 static inline uint16_t get_fs(void)
516 {
517 	uint16_t fs;
518 
519 	__asm__ __volatile__("mov %%fs, %[fs]"
520 			     : /* output */ [fs]"=rm"(fs));
521 	return fs;
522 }
523 
get_gs(void)524 static inline uint16_t get_gs(void)
525 {
526 	uint16_t gs;
527 
528 	__asm__ __volatile__("mov %%gs, %[gs]"
529 			     : /* output */ [gs]"=rm"(gs));
530 	return gs;
531 }
532 
get_tr(void)533 static inline uint16_t get_tr(void)
534 {
535 	uint16_t tr;
536 
537 	__asm__ __volatile__("str %[tr]"
538 			     : /* output */ [tr]"=rm"(tr));
539 	return tr;
540 }
541 
get_cr0(void)542 static inline uint64_t get_cr0(void)
543 {
544 	uint64_t cr0;
545 
546 	__asm__ __volatile__("mov %%cr0, %[cr0]"
547 			     : /* output */ [cr0]"=r"(cr0));
548 	return cr0;
549 }
550 
get_cr3(void)551 static inline uint64_t get_cr3(void)
552 {
553 	uint64_t cr3;
554 
555 	__asm__ __volatile__("mov %%cr3, %[cr3]"
556 			     : /* output */ [cr3]"=r"(cr3));
557 	return cr3;
558 }
559 
get_cr4(void)560 static inline uint64_t get_cr4(void)
561 {
562 	uint64_t cr4;
563 
564 	__asm__ __volatile__("mov %%cr4, %[cr4]"
565 			     : /* output */ [cr4]"=r"(cr4));
566 	return cr4;
567 }
568 
set_cr4(uint64_t val)569 static inline void set_cr4(uint64_t val)
570 {
571 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
572 }
573 
xgetbv(u32 index)574 static inline u64 xgetbv(u32 index)
575 {
576 	u32 eax, edx;
577 
578 	__asm__ __volatile__("xgetbv;"
579 		     : "=a" (eax), "=d" (edx)
580 		     : "c" (index));
581 	return eax | ((u64)edx << 32);
582 }
583 
xsetbv(u32 index,u64 value)584 static inline void xsetbv(u32 index, u64 value)
585 {
586 	u32 eax = value;
587 	u32 edx = value >> 32;
588 
589 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
590 }
591 
wrpkru(u32 pkru)592 static inline void wrpkru(u32 pkru)
593 {
594 	/* Note, ECX and EDX are architecturally required to be '0'. */
595 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
596 		     : : "a" (pkru), "c"(0), "d"(0));
597 }
598 
get_gdt(void)599 static inline struct desc_ptr get_gdt(void)
600 {
601 	struct desc_ptr gdt;
602 	__asm__ __volatile__("sgdt %[gdt]"
603 			     : /* output */ [gdt]"=m"(gdt));
604 	return gdt;
605 }
606 
get_idt(void)607 static inline struct desc_ptr get_idt(void)
608 {
609 	struct desc_ptr idt;
610 	__asm__ __volatile__("sidt %[idt]"
611 			     : /* output */ [idt]"=m"(idt));
612 	return idt;
613 }
614 
outl(uint16_t port,uint32_t value)615 static inline void outl(uint16_t port, uint32_t value)
616 {
617 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
618 }
619 
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)620 static inline void __cpuid(uint32_t function, uint32_t index,
621 			   uint32_t *eax, uint32_t *ebx,
622 			   uint32_t *ecx, uint32_t *edx)
623 {
624 	*eax = function;
625 	*ecx = index;
626 
627 	asm volatile("cpuid"
628 	    : "=a" (*eax),
629 	      "=b" (*ebx),
630 	      "=c" (*ecx),
631 	      "=d" (*edx)
632 	    : "0" (*eax), "2" (*ecx)
633 	    : "memory");
634 }
635 
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)636 static inline void cpuid(uint32_t function,
637 			 uint32_t *eax, uint32_t *ebx,
638 			 uint32_t *ecx, uint32_t *edx)
639 {
640 	return __cpuid(function, 0, eax, ebx, ecx, edx);
641 }
642 
this_cpu_fms(void)643 static inline uint32_t this_cpu_fms(void)
644 {
645 	uint32_t eax, ebx, ecx, edx;
646 
647 	cpuid(1, &eax, &ebx, &ecx, &edx);
648 	return eax;
649 }
650 
this_cpu_family(void)651 static inline uint32_t this_cpu_family(void)
652 {
653 	return x86_family(this_cpu_fms());
654 }
655 
this_cpu_model(void)656 static inline uint32_t this_cpu_model(void)
657 {
658 	return x86_model(this_cpu_fms());
659 }
660 
this_cpu_vendor_string_is(const char * vendor)661 static inline bool this_cpu_vendor_string_is(const char *vendor)
662 {
663 	const uint32_t *chunk = (const uint32_t *)vendor;
664 	uint32_t eax, ebx, ecx, edx;
665 
666 	cpuid(0, &eax, &ebx, &ecx, &edx);
667 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
668 }
669 
this_cpu_is_intel(void)670 static inline bool this_cpu_is_intel(void)
671 {
672 	return this_cpu_vendor_string_is("GenuineIntel");
673 }
674 
675 /*
676  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
677  */
this_cpu_is_amd(void)678 static inline bool this_cpu_is_amd(void)
679 {
680 	return this_cpu_vendor_string_is("AuthenticAMD");
681 }
682 
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)683 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
684 				      uint8_t reg, uint8_t lo, uint8_t hi)
685 {
686 	uint32_t gprs[4];
687 
688 	__cpuid(function, index,
689 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
690 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
691 
692 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
693 }
694 
this_cpu_has(struct kvm_x86_cpu_feature feature)695 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
696 {
697 	return __this_cpu_has(feature.function, feature.index,
698 			      feature.reg, feature.bit, feature.bit);
699 }
700 
this_cpu_property(struct kvm_x86_cpu_property property)701 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
702 {
703 	return __this_cpu_has(property.function, property.index,
704 			      property.reg, property.lo_bit, property.hi_bit);
705 }
706 
this_cpu_has_p(struct kvm_x86_cpu_property property)707 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
708 {
709 	uint32_t max_leaf;
710 
711 	switch (property.function & 0xc0000000) {
712 	case 0:
713 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
714 		break;
715 	case 0x40000000:
716 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
717 		break;
718 	case 0x80000000:
719 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
720 		break;
721 	case 0xc0000000:
722 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
723 	}
724 	return max_leaf >= property.function;
725 }
726 
this_pmu_has(struct kvm_x86_pmu_feature feature)727 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
728 {
729 	uint32_t nr_bits;
730 
731 	if (feature.f.reg == KVM_CPUID_EBX) {
732 		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
733 		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
734 	}
735 
736 	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
737 	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
738 	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
739 }
740 
this_cpu_supported_xcr0(void)741 static __always_inline uint64_t this_cpu_supported_xcr0(void)
742 {
743 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
744 		return 0;
745 
746 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
747 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
748 }
749 
750 typedef u32		__attribute__((vector_size(16))) sse128_t;
751 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
752 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
753 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
754 
read_sse_reg(int reg,sse128_t * data)755 static inline void read_sse_reg(int reg, sse128_t *data)
756 {
757 	switch (reg) {
758 	case 0:
759 		asm("movdqa %%xmm0, %0" : "=m"(*data));
760 		break;
761 	case 1:
762 		asm("movdqa %%xmm1, %0" : "=m"(*data));
763 		break;
764 	case 2:
765 		asm("movdqa %%xmm2, %0" : "=m"(*data));
766 		break;
767 	case 3:
768 		asm("movdqa %%xmm3, %0" : "=m"(*data));
769 		break;
770 	case 4:
771 		asm("movdqa %%xmm4, %0" : "=m"(*data));
772 		break;
773 	case 5:
774 		asm("movdqa %%xmm5, %0" : "=m"(*data));
775 		break;
776 	case 6:
777 		asm("movdqa %%xmm6, %0" : "=m"(*data));
778 		break;
779 	case 7:
780 		asm("movdqa %%xmm7, %0" : "=m"(*data));
781 		break;
782 	default:
783 		BUG();
784 	}
785 }
786 
write_sse_reg(int reg,const sse128_t * data)787 static inline void write_sse_reg(int reg, const sse128_t *data)
788 {
789 	switch (reg) {
790 	case 0:
791 		asm("movdqa %0, %%xmm0" : : "m"(*data));
792 		break;
793 	case 1:
794 		asm("movdqa %0, %%xmm1" : : "m"(*data));
795 		break;
796 	case 2:
797 		asm("movdqa %0, %%xmm2" : : "m"(*data));
798 		break;
799 	case 3:
800 		asm("movdqa %0, %%xmm3" : : "m"(*data));
801 		break;
802 	case 4:
803 		asm("movdqa %0, %%xmm4" : : "m"(*data));
804 		break;
805 	case 5:
806 		asm("movdqa %0, %%xmm5" : : "m"(*data));
807 		break;
808 	case 6:
809 		asm("movdqa %0, %%xmm6" : : "m"(*data));
810 		break;
811 	case 7:
812 		asm("movdqa %0, %%xmm7" : : "m"(*data));
813 		break;
814 	default:
815 		BUG();
816 	}
817 }
818 
cpu_relax(void)819 static inline void cpu_relax(void)
820 {
821 	asm volatile("rep; nop" ::: "memory");
822 }
823 
udelay(unsigned long usec)824 static inline void udelay(unsigned long usec)
825 {
826 	uint64_t start, now, cycles;
827 
828 	GUEST_ASSERT(guest_tsc_khz);
829 	cycles = guest_tsc_khz / 1000 * usec;
830 
831 	/*
832 	 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
833 	 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
834 	 */
835 	start = rdtsc();
836 	do {
837 		now = rdtsc();
838 	} while (now - start < cycles);
839 }
840 
841 #define ud2()			\
842 	__asm__ __volatile__(	\
843 		"ud2\n"	\
844 		)
845 
846 #define hlt()			\
847 	__asm__ __volatile__(	\
848 		"hlt\n"	\
849 		)
850 
851 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
852 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
853 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
854 
855 const struct kvm_msr_list *kvm_get_msr_index_list(void);
856 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
857 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
858 uint64_t kvm_get_feature_msr(uint64_t msr_index);
859 
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)860 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
861 				 struct kvm_msrs *msrs)
862 {
863 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
864 
865 	TEST_ASSERT(r == msrs->nmsrs,
866 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
867 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
868 }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)869 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
870 {
871 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
872 
873 	TEST_ASSERT(r == msrs->nmsrs,
874 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
875 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
876 }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)877 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
878 				      struct kvm_debugregs *debugregs)
879 {
880 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
881 }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)882 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
883 				      struct kvm_debugregs *debugregs)
884 {
885 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
886 }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)887 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
888 				  struct kvm_xsave *xsave)
889 {
890 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
891 }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)892 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
893 				   struct kvm_xsave *xsave)
894 {
895 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
896 }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)897 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
898 				  struct kvm_xsave *xsave)
899 {
900 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
901 }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)902 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
903 				 struct kvm_xcrs *xcrs)
904 {
905 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
906 }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)907 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
908 {
909 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
910 }
911 
912 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
913 					       uint32_t function, uint32_t index);
914 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
915 
kvm_cpu_fms(void)916 static inline uint32_t kvm_cpu_fms(void)
917 {
918 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
919 }
920 
kvm_cpu_family(void)921 static inline uint32_t kvm_cpu_family(void)
922 {
923 	return x86_family(kvm_cpu_fms());
924 }
925 
kvm_cpu_model(void)926 static inline uint32_t kvm_cpu_model(void)
927 {
928 	return x86_model(kvm_cpu_fms());
929 }
930 
931 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
932 		   struct kvm_x86_cpu_feature feature);
933 
kvm_cpu_has(struct kvm_x86_cpu_feature feature)934 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
935 {
936 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
937 }
938 
939 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
940 			    struct kvm_x86_cpu_property property);
941 
kvm_cpu_property(struct kvm_x86_cpu_property property)942 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
943 {
944 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
945 }
946 
kvm_cpu_has_p(struct kvm_x86_cpu_property property)947 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
948 {
949 	uint32_t max_leaf;
950 
951 	switch (property.function & 0xc0000000) {
952 	case 0:
953 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
954 		break;
955 	case 0x40000000:
956 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
957 		break;
958 	case 0x80000000:
959 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
960 		break;
961 	case 0xc0000000:
962 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
963 	}
964 	return max_leaf >= property.function;
965 }
966 
kvm_pmu_has(struct kvm_x86_pmu_feature feature)967 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
968 {
969 	uint32_t nr_bits;
970 
971 	if (feature.f.reg == KVM_CPUID_EBX) {
972 		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
973 		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
974 	}
975 
976 	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
977 	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
978 	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
979 }
980 
kvm_cpu_supported_xcr0(void)981 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
982 {
983 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
984 		return 0;
985 
986 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
987 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
988 }
989 
kvm_cpuid2_size(int nr_entries)990 static inline size_t kvm_cpuid2_size(int nr_entries)
991 {
992 	return sizeof(struct kvm_cpuid2) +
993 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
994 }
995 
996 /*
997  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
998  * entries sized to hold @nr_entries.  The caller is responsible for freeing
999  * the struct.
1000  */
allocate_kvm_cpuid2(int nr_entries)1001 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1002 {
1003 	struct kvm_cpuid2 *cpuid;
1004 
1005 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
1006 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1007 
1008 	cpuid->nent = nr_entries;
1009 
1010 	return cpuid;
1011 }
1012 
1013 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1014 
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)1015 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1016 							      uint32_t function,
1017 							      uint32_t index)
1018 {
1019 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1020 							  function, index);
1021 }
1022 
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)1023 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1024 							    uint32_t function)
1025 {
1026 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1027 }
1028 
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)1029 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1030 {
1031 	int r;
1032 
1033 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1034 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1035 	if (r)
1036 		return r;
1037 
1038 	/* On success, refresh the cache to pick up adjustments made by KVM. */
1039 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1040 	return 0;
1041 }
1042 
vcpu_set_cpuid(struct kvm_vcpu * vcpu)1043 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1044 {
1045 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1046 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1047 
1048 	/* Refresh the cache to pick up adjustments made by KVM. */
1049 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1050 }
1051 
1052 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1053 			     struct kvm_x86_cpu_property property,
1054 			     uint32_t value);
1055 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1056 
1057 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1058 
vcpu_cpuid_has(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1059 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1060 				  struct kvm_x86_cpu_feature feature)
1061 {
1062 	struct kvm_cpuid_entry2 *entry;
1063 
1064 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1065 	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1066 }
1067 
1068 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1069 				     struct kvm_x86_cpu_feature feature,
1070 				     bool set);
1071 
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1072 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1073 					  struct kvm_x86_cpu_feature feature)
1074 {
1075 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1076 
1077 }
1078 
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1079 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1080 					    struct kvm_x86_cpu_feature feature)
1081 {
1082 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1083 }
1084 
1085 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1086 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1087 
1088 /*
1089  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1090  * Note, the caller provides the stringified name so that the name of macro is
1091  * printed, not the value the macro resolves to (due to macro expansion).
1092  */
1093 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1094 do {										\
1095 	if (__builtin_constant_p(msr)) {					\
1096 		TEST_ASSERT(cond, fmt, str, args);				\
1097 	} else if (!(cond)) {							\
1098 		char buf[16];							\
1099 										\
1100 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1101 		TEST_ASSERT(cond, fmt, buf, args);				\
1102 	}									\
1103 } while (0)
1104 
1105 /*
1106  * Returns true if KVM should return the last written value when reading an MSR
1107  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1108  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1109  * out MSRs that are not durable _and_ that a selftest wants to write.
1110  */
is_durable_msr(uint32_t msr)1111 static inline bool is_durable_msr(uint32_t msr)
1112 {
1113 	return msr != MSR_IA32_TSC;
1114 }
1115 
1116 #define vcpu_set_msr(vcpu, msr, val)							\
1117 do {											\
1118 	uint64_t r, v = val;								\
1119 											\
1120 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1121 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1122 	if (!is_durable_msr(msr))							\
1123 		break;									\
1124 	r = vcpu_get_msr(vcpu, msr);							\
1125 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1126 } while (0)
1127 
1128 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1129 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1130 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1131 
1132 struct ex_regs {
1133 	uint64_t rax, rcx, rdx, rbx;
1134 	uint64_t rbp, rsi, rdi;
1135 	uint64_t r8, r9, r10, r11;
1136 	uint64_t r12, r13, r14, r15;
1137 	uint64_t vector;
1138 	uint64_t error_code;
1139 	uint64_t rip;
1140 	uint64_t cs;
1141 	uint64_t rflags;
1142 };
1143 
1144 struct idt_entry {
1145 	uint16_t offset0;
1146 	uint16_t selector;
1147 	uint16_t ist : 3;
1148 	uint16_t : 5;
1149 	uint16_t type : 4;
1150 	uint16_t : 1;
1151 	uint16_t dpl : 2;
1152 	uint16_t p : 1;
1153 	uint16_t offset1;
1154 	uint32_t offset2; uint32_t reserved;
1155 };
1156 
1157 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1158 			void (*handler)(struct ex_regs *));
1159 
1160 /* If a toddler were to say "abracadabra". */
1161 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1162 
1163 /*
1164  * KVM selftest exception fixup uses registers to coordinate with the exception
1165  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1166  * per-CPU data.  Using only registers avoids having to map memory into the
1167  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1168  * for recursive faults when accessing memory in the handler.  The downside to
1169  * using registers is that it restricts what registers can be used by the actual
1170  * instruction.  But, selftests are 64-bit only, making register* pressure a
1171  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1172  * by the callee, and except for r11 are not implicit parameters to any
1173  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1174  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1175  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1176  *
1177  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1178  * is guaranteed to be non-zero on fault.
1179  *
1180  * REGISTER INPUTS:
1181  * r9  = MAGIC
1182  * r10 = RIP
1183  * r11 = new RIP on fault
1184  *
1185  * REGISTER OUTPUTS:
1186  * r9  = exception vector (non-zero)
1187  * r10 = error code
1188  */
1189 #define __KVM_ASM_SAFE(insn, fep)				\
1190 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1191 	"lea 1f(%%rip), %%r10\n\t"				\
1192 	"lea 2f(%%rip), %%r11\n\t"				\
1193 	fep "1: " insn "\n\t"					\
1194 	"xor %%r9, %%r9\n\t"					\
1195 	"2:\n\t"						\
1196 	"mov  %%r9b, %[vector]\n\t"				\
1197 	"mov  %%r10, %[error_code]\n\t"
1198 
1199 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1200 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1201 
1202 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1203 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1204 
1205 #define kvm_asm_safe(insn, inputs...)					\
1206 ({									\
1207 	uint64_t ign_error_code;					\
1208 	uint8_t vector;							\
1209 									\
1210 	asm volatile(KVM_ASM_SAFE(insn)					\
1211 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1212 		     : inputs						\
1213 		     : KVM_ASM_SAFE_CLOBBERS);				\
1214 	vector;								\
1215 })
1216 
1217 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1218 ({									\
1219 	uint8_t vector;							\
1220 									\
1221 	asm volatile(KVM_ASM_SAFE(insn)					\
1222 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1223 		     : inputs						\
1224 		     : KVM_ASM_SAFE_CLOBBERS);				\
1225 	vector;								\
1226 })
1227 
1228 #define kvm_asm_safe_fep(insn, inputs...)				\
1229 ({									\
1230 	uint64_t ign_error_code;					\
1231 	uint8_t vector;							\
1232 									\
1233 	asm volatile(KVM_ASM_SAFE(insn)					\
1234 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1235 		     : inputs						\
1236 		     : KVM_ASM_SAFE_CLOBBERS);				\
1237 	vector;								\
1238 })
1239 
1240 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1241 ({									\
1242 	uint8_t vector;							\
1243 									\
1244 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1245 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1246 		     : inputs						\
1247 		     : KVM_ASM_SAFE_CLOBBERS);				\
1248 	vector;								\
1249 })
1250 
1251 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1252 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1253 {									\
1254 	uint64_t error_code;						\
1255 	uint8_t vector;							\
1256 	uint32_t a, d;							\
1257 									\
1258 	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1259 		     : "=a"(a), "=d"(d),				\
1260 		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1261 		     : "c"(idx)						\
1262 		     : KVM_ASM_SAFE_CLOBBERS);				\
1263 									\
1264 	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1265 	return vector;							\
1266 }
1267 
1268 /*
1269  * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1270  * use ECX as in input index, and EDX:EAX as a 64-bit output.
1271  */
1272 #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1273 	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1274 	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1275 
1276 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
BUILD_READ_U64_SAFE_HELPERS(rdpmc)1277 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1278 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1279 
1280 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1281 {
1282 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1283 }
1284 
xsetbv_safe(uint32_t index,uint64_t value)1285 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1286 {
1287 	u32 eax = value;
1288 	u32 edx = value >> 32;
1289 
1290 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1291 }
1292 
1293 bool kvm_is_tdp_enabled(void);
1294 
kvm_is_pmu_enabled(void)1295 static inline bool kvm_is_pmu_enabled(void)
1296 {
1297 	return get_kvm_param_bool("enable_pmu");
1298 }
1299 
kvm_is_forced_emulation_enabled(void)1300 static inline bool kvm_is_forced_emulation_enabled(void)
1301 {
1302 	return !!get_kvm_param_integer("force_emulation_prefix");
1303 }
1304 
1305 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1306 				    int *level);
1307 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1308 
1309 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1310 		       uint64_t a3);
1311 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1312 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1313 
__kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1314 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1315 						     uint64_t size, uint64_t flags)
1316 {
1317 	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1318 }
1319 
kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1320 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1321 					       uint64_t flags)
1322 {
1323 	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1324 
1325 	GUEST_ASSERT(!ret);
1326 }
1327 
1328 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1329 
1330 #define vm_xsave_require_permission(xfeature)	\
1331 	__vm_xsave_require_permission(xfeature, #xfeature)
1332 
1333 enum pg_level {
1334 	PG_LEVEL_NONE,
1335 	PG_LEVEL_4K,
1336 	PG_LEVEL_2M,
1337 	PG_LEVEL_1G,
1338 	PG_LEVEL_512G,
1339 	PG_LEVEL_NUM
1340 };
1341 
1342 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1343 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1344 
1345 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1346 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1347 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1348 
1349 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1350 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1351 		    uint64_t nr_bytes, int level);
1352 
1353 /*
1354  * Basic CPU control in CR0
1355  */
1356 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1357 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1358 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1359 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1360 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1361 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1362 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1363 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1364 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1365 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1366 #define X86_CR0_PG          (1UL<<31) /* Paging */
1367 
1368 #define PFERR_PRESENT_BIT 0
1369 #define PFERR_WRITE_BIT 1
1370 #define PFERR_USER_BIT 2
1371 #define PFERR_RSVD_BIT 3
1372 #define PFERR_FETCH_BIT 4
1373 #define PFERR_PK_BIT 5
1374 #define PFERR_SGX_BIT 15
1375 #define PFERR_GUEST_FINAL_BIT 32
1376 #define PFERR_GUEST_PAGE_BIT 33
1377 #define PFERR_IMPLICIT_ACCESS_BIT 48
1378 
1379 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1380 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1381 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1382 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1383 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1384 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1385 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1386 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1387 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1388 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1389 
1390 bool sys_clocksource_is_based_on_tsc(void);
1391 
1392 #endif /* SELFTEST_KVM_PROCESSOR_H */
1393