1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _TOOLS_LINUX_COMPILER_H_
3 #define _TOOLS_LINUX_COMPILER_H_
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/compiler_types.h>
8 
9 #ifndef __compiletime_error
10 # define __compiletime_error(message)
11 #endif
12 
13 #ifdef __OPTIMIZE__
14 # define __compiletime_assert(condition, msg, prefix, suffix)		\
15 	do {								\
16 		extern void prefix ## suffix(void) __compiletime_error(msg); \
17 		if (!(condition))					\
18 			prefix ## suffix();				\
19 	} while (0)
20 #else
21 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
22 #endif
23 
24 #define _compiletime_assert(condition, msg, prefix, suffix) \
25 	__compiletime_assert(condition, msg, prefix, suffix)
26 
27 /**
28  * compiletime_assert - break build and emit msg if condition is false
29  * @condition: a compile-time constant condition to check
30  * @msg:       a message to emit if condition is false
31  *
32  * In tradition of POSIX assert, this macro will break the build if the
33  * supplied condition is *false*, emitting the supplied error message if the
34  * compiler has support to do so.
35  */
36 #define compiletime_assert(condition, msg) \
37 	_compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
38 
39 /* Optimization barrier */
40 /* The "volatile" is due to gcc bugs */
41 #define barrier() __asm__ __volatile__("": : :"memory")
42 
43 #ifndef __always_inline
44 # define __always_inline	inline __attribute__((always_inline))
45 #endif
46 
47 #ifndef __always_unused
48 #define __always_unused __attribute__((__unused__))
49 #endif
50 
51 #ifndef __noreturn
52 #define __noreturn __attribute__((__noreturn__))
53 #endif
54 
55 #ifndef unreachable
56 #define unreachable() __builtin_unreachable()
57 #endif
58 
59 #ifndef noinline
60 #define noinline
61 #endif
62 
63 #ifndef __nocf_check
64 #define __nocf_check __attribute__((nocf_check))
65 #endif
66 
67 #ifndef __naked
68 #define __naked __attribute__((__naked__))
69 #endif
70 
71 /* Are two types/vars the same type (ignoring qualifiers)? */
72 #ifndef __same_type
73 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
74 #endif
75 
76 /*
77  * This returns a constant expression while determining if an argument is
78  * a constant expression, most importantly without evaluating the argument.
79  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
80  */
81 #define __is_constexpr(x) \
82 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
83 
84 #ifdef __ANDROID__
85 /*
86  * FIXME: Big hammer to get rid of tons of:
87  *   "warning: always_inline function might not be inlinable"
88  *
89  * At least on android-ndk-r12/platforms/android-24/arch-arm
90  */
91 #undef __always_inline
92 #define __always_inline	inline
93 #endif
94 
95 #define __user
96 #define __rcu
97 #define __read_mostly
98 
99 #ifndef __attribute_const__
100 # define __attribute_const__
101 #endif
102 
103 #ifndef __maybe_unused
104 # define __maybe_unused		__attribute__((unused))
105 #endif
106 
107 #ifndef __used
108 # define __used		__attribute__((__unused__))
109 #endif
110 
111 #ifndef __packed
112 # define __packed		__attribute__((__packed__))
113 #endif
114 
115 #ifndef __force
116 # define __force
117 #endif
118 
119 #ifndef __weak
120 # define __weak			__attribute__((weak))
121 #endif
122 
123 #ifndef likely
124 # define likely(x)		__builtin_expect(!!(x), 1)
125 #endif
126 
127 #ifndef unlikely
128 # define unlikely(x)		__builtin_expect(!!(x), 0)
129 #endif
130 
131 #include <linux/types.h>
132 
133 /*
134  * Following functions are taken from kernel sources and
135  * break aliasing rules in their original form.
136  *
137  * While kernel is compiled with -fno-strict-aliasing,
138  * perf uses -Wstrict-aliasing=3 which makes build fail
139  * under gcc 4.4.
140  *
141  * Using extra __may_alias__ type to allow aliasing
142  * in this case.
143  */
144 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
145 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
146 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
147 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
148 
__read_once_size(const volatile void * p,void * res,int size)149 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
150 {
151 	switch (size) {
152 	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
153 	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
154 	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
155 	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
156 	default:
157 		barrier();
158 		__builtin_memcpy((void *)res, (const void *)p, size);
159 		barrier();
160 	}
161 }
162 
__write_once_size(volatile void * p,void * res,int size)163 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
164 {
165 	switch (size) {
166 	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
167 	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
168 	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
169 	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
170 	default:
171 		barrier();
172 		__builtin_memcpy((void *)p, (const void *)res, size);
173 		barrier();
174 	}
175 }
176 
177 /*
178  * Prevent the compiler from merging or refetching reads or writes. The
179  * compiler is also forbidden from reordering successive instances of
180  * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
181  * particular ordering. One way to make the compiler aware of ordering is to
182  * put the two invocations of READ_ONCE or WRITE_ONCE in different C
183  * statements.
184  *
185  * These two macros will also work on aggregate data types like structs or
186  * unions. If the size of the accessed data type exceeds the word size of
187  * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
188  * fall back to memcpy and print a compile-time warning.
189  *
190  * Their two major use cases are: (1) Mediating communication between
191  * process-level code and irq/NMI handlers, all running on the same CPU,
192  * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
193  * mutilate accesses that either do not require ordering or that interact
194  * with an explicit memory barrier or atomic instruction that provides the
195  * required ordering.
196  */
197 
198 #define READ_ONCE(x)					\
199 ({							\
200 	union { typeof(x) __val; char __c[1]; } __u =	\
201 		{ .__c = { 0 } };			\
202 	__read_once_size(&(x), __u.__c, sizeof(x));	\
203 	__u.__val;					\
204 })
205 
206 #define WRITE_ONCE(x, val)				\
207 ({							\
208 	union { typeof(x) __val; char __c[1]; } __u =	\
209 		{ .__val = (val) }; 			\
210 	__write_once_size(&(x), __u.__c, sizeof(x));	\
211 	__u.__val;					\
212 })
213 
214 
215 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
216 #define ___PASTE(a, b) a##b
217 #define __PASTE(a, b) ___PASTE(a, b)
218 
219 #ifndef OPTIMIZER_HIDE_VAR
220 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
221 #define OPTIMIZER_HIDE_VAR(var)						\
222 	__asm__ ("" : "=r" (var) : "0" (var))
223 #endif
224 
225 #endif /* __ASSEMBLY__ */
226 
227 #endif /* _TOOLS_LINUX_COMPILER_H */
228