1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Wireless utility functions
4   *
5   * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6   * Copyright 2013-2014  Intel Mobile Communications GmbH
7   * Copyright 2017	Intel Deutschland GmbH
8   * Copyright (C) 2018-2023 Intel Corporation
9   */
10  #include <linux/export.h>
11  #include <linux/bitops.h>
12  #include <linux/etherdevice.h>
13  #include <linux/slab.h>
14  #include <linux/ieee80211.h>
15  #include <net/cfg80211.h>
16  #include <net/ip.h>
17  #include <net/dsfield.h>
18  #include <linux/if_vlan.h>
19  #include <linux/mpls.h>
20  #include <linux/gcd.h>
21  #include <linux/bitfield.h>
22  #include <linux/nospec.h>
23  #include "core.h"
24  #include "rdev-ops.h"
25  
26  
27  const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28  ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29  			    u32 basic_rates, int bitrate)
30  {
31  	struct ieee80211_rate *result = &sband->bitrates[0];
32  	int i;
33  
34  	for (i = 0; i < sband->n_bitrates; i++) {
35  		if (!(basic_rates & BIT(i)))
36  			continue;
37  		if (sband->bitrates[i].bitrate > bitrate)
38  			continue;
39  		result = &sband->bitrates[i];
40  	}
41  
42  	return result;
43  }
44  EXPORT_SYMBOL(ieee80211_get_response_rate);
45  
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband)46  u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47  {
48  	struct ieee80211_rate *bitrates;
49  	u32 mandatory_rates = 0;
50  	enum ieee80211_rate_flags mandatory_flag;
51  	int i;
52  
53  	if (WARN_ON(!sband))
54  		return 1;
55  
56  	if (sband->band == NL80211_BAND_2GHZ)
57  		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58  	else
59  		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60  
61  	bitrates = sband->bitrates;
62  	for (i = 0; i < sband->n_bitrates; i++)
63  		if (bitrates[i].flags & mandatory_flag)
64  			mandatory_rates |= BIT(i);
65  	return mandatory_rates;
66  }
67  EXPORT_SYMBOL(ieee80211_mandatory_rates);
68  
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)69  u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70  {
71  	/* see 802.11 17.3.8.3.2 and Annex J
72  	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73  	if (chan <= 0)
74  		return 0; /* not supported */
75  	switch (band) {
76  	case NL80211_BAND_2GHZ:
77  	case NL80211_BAND_LC:
78  		if (chan == 14)
79  			return MHZ_TO_KHZ(2484);
80  		else if (chan < 14)
81  			return MHZ_TO_KHZ(2407 + chan * 5);
82  		break;
83  	case NL80211_BAND_5GHZ:
84  		if (chan >= 182 && chan <= 196)
85  			return MHZ_TO_KHZ(4000 + chan * 5);
86  		else
87  			return MHZ_TO_KHZ(5000 + chan * 5);
88  		break;
89  	case NL80211_BAND_6GHZ:
90  		/* see 802.11ax D6.1 27.3.23.2 */
91  		if (chan == 2)
92  			return MHZ_TO_KHZ(5935);
93  		if (chan <= 233)
94  			return MHZ_TO_KHZ(5950 + chan * 5);
95  		break;
96  	case NL80211_BAND_60GHZ:
97  		if (chan < 7)
98  			return MHZ_TO_KHZ(56160 + chan * 2160);
99  		break;
100  	case NL80211_BAND_S1GHZ:
101  		return 902000 + chan * 500;
102  	default:
103  		;
104  	}
105  	return 0; /* not supported */
106  }
107  EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108  
109  enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)110  ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111  {
112  	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113  		return NL80211_CHAN_WIDTH_20_NOHT;
114  
115  	/*S1G defines a single allowed channel width per channel.
116  	 * Extract that width here.
117  	 */
118  	if (chan->flags & IEEE80211_CHAN_1MHZ)
119  		return NL80211_CHAN_WIDTH_1;
120  	else if (chan->flags & IEEE80211_CHAN_2MHZ)
121  		return NL80211_CHAN_WIDTH_2;
122  	else if (chan->flags & IEEE80211_CHAN_4MHZ)
123  		return NL80211_CHAN_WIDTH_4;
124  	else if (chan->flags & IEEE80211_CHAN_8MHZ)
125  		return NL80211_CHAN_WIDTH_8;
126  	else if (chan->flags & IEEE80211_CHAN_16MHZ)
127  		return NL80211_CHAN_WIDTH_16;
128  
129  	pr_err("unknown channel width for channel at %dKHz?\n",
130  	       ieee80211_channel_to_khz(chan));
131  
132  	return NL80211_CHAN_WIDTH_1;
133  }
134  EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135  
ieee80211_freq_khz_to_channel(u32 freq)136  int ieee80211_freq_khz_to_channel(u32 freq)
137  {
138  	/* TODO: just handle MHz for now */
139  	freq = KHZ_TO_MHZ(freq);
140  
141  	/* see 802.11 17.3.8.3.2 and Annex J */
142  	if (freq == 2484)
143  		return 14;
144  	else if (freq < 2484)
145  		return (freq - 2407) / 5;
146  	else if (freq >= 4910 && freq <= 4980)
147  		return (freq - 4000) / 5;
148  	else if (freq < 5925)
149  		return (freq - 5000) / 5;
150  	else if (freq == 5935)
151  		return 2;
152  	else if (freq <= 45000) /* DMG band lower limit */
153  		/* see 802.11ax D6.1 27.3.22.2 */
154  		return (freq - 5950) / 5;
155  	else if (freq >= 58320 && freq <= 70200)
156  		return (freq - 56160) / 2160;
157  	else
158  		return 0;
159  }
160  EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161  
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)162  struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163  						    u32 freq)
164  {
165  	enum nl80211_band band;
166  	struct ieee80211_supported_band *sband;
167  	int i;
168  
169  	for (band = 0; band < NUM_NL80211_BANDS; band++) {
170  		sband = wiphy->bands[band];
171  
172  		if (!sband)
173  			continue;
174  
175  		for (i = 0; i < sband->n_channels; i++) {
176  			struct ieee80211_channel *chan = &sband->channels[i];
177  
178  			if (ieee80211_channel_to_khz(chan) == freq)
179  				return chan;
180  		}
181  	}
182  
183  	return NULL;
184  }
185  EXPORT_SYMBOL(ieee80211_get_channel_khz);
186  
set_mandatory_flags_band(struct ieee80211_supported_band * sband)187  static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188  {
189  	int i, want;
190  
191  	switch (sband->band) {
192  	case NL80211_BAND_5GHZ:
193  	case NL80211_BAND_6GHZ:
194  		want = 3;
195  		for (i = 0; i < sband->n_bitrates; i++) {
196  			if (sband->bitrates[i].bitrate == 60 ||
197  			    sband->bitrates[i].bitrate == 120 ||
198  			    sband->bitrates[i].bitrate == 240) {
199  				sband->bitrates[i].flags |=
200  					IEEE80211_RATE_MANDATORY_A;
201  				want--;
202  			}
203  		}
204  		WARN_ON(want);
205  		break;
206  	case NL80211_BAND_2GHZ:
207  	case NL80211_BAND_LC:
208  		want = 7;
209  		for (i = 0; i < sband->n_bitrates; i++) {
210  			switch (sband->bitrates[i].bitrate) {
211  			case 10:
212  			case 20:
213  			case 55:
214  			case 110:
215  				sband->bitrates[i].flags |=
216  					IEEE80211_RATE_MANDATORY_B |
217  					IEEE80211_RATE_MANDATORY_G;
218  				want--;
219  				break;
220  			case 60:
221  			case 120:
222  			case 240:
223  				sband->bitrates[i].flags |=
224  					IEEE80211_RATE_MANDATORY_G;
225  				want--;
226  				fallthrough;
227  			default:
228  				sband->bitrates[i].flags |=
229  					IEEE80211_RATE_ERP_G;
230  				break;
231  			}
232  		}
233  		WARN_ON(want != 0 && want != 3);
234  		break;
235  	case NL80211_BAND_60GHZ:
236  		/* check for mandatory HT MCS 1..4 */
237  		WARN_ON(!sband->ht_cap.ht_supported);
238  		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239  		break;
240  	case NL80211_BAND_S1GHZ:
241  		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242  		 * mandatory is ok.
243  		 */
244  		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245  		break;
246  	case NUM_NL80211_BANDS:
247  	default:
248  		WARN_ON(1);
249  		break;
250  	}
251  }
252  
ieee80211_set_bitrate_flags(struct wiphy * wiphy)253  void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254  {
255  	enum nl80211_band band;
256  
257  	for (band = 0; band < NUM_NL80211_BANDS; band++)
258  		if (wiphy->bands[band])
259  			set_mandatory_flags_band(wiphy->bands[band]);
260  }
261  
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)262  bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263  {
264  	int i;
265  	for (i = 0; i < wiphy->n_cipher_suites; i++)
266  		if (cipher == wiphy->cipher_suites[i])
267  			return true;
268  	return false;
269  }
270  
271  static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)272  cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273  {
274  	struct wiphy *wiphy = &rdev->wiphy;
275  	int i;
276  
277  	for (i = 0; i < wiphy->n_cipher_suites; i++) {
278  		switch (wiphy->cipher_suites[i]) {
279  		case WLAN_CIPHER_SUITE_AES_CMAC:
280  		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281  		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282  		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283  			return true;
284  		}
285  	}
286  
287  	return false;
288  }
289  
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)290  bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291  			    int key_idx, bool pairwise)
292  {
293  	int max_key_idx;
294  
295  	if (pairwise)
296  		max_key_idx = 3;
297  	else if (wiphy_ext_feature_isset(&rdev->wiphy,
298  					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299  		 wiphy_ext_feature_isset(&rdev->wiphy,
300  					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301  		max_key_idx = 7;
302  	else if (cfg80211_igtk_cipher_supported(rdev))
303  		max_key_idx = 5;
304  	else
305  		max_key_idx = 3;
306  
307  	if (key_idx < 0 || key_idx > max_key_idx)
308  		return false;
309  
310  	return true;
311  }
312  
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)313  int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314  				   struct key_params *params, int key_idx,
315  				   bool pairwise, const u8 *mac_addr)
316  {
317  	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318  		return -EINVAL;
319  
320  	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321  		return -EINVAL;
322  
323  	if (pairwise && !mac_addr)
324  		return -EINVAL;
325  
326  	switch (params->cipher) {
327  	case WLAN_CIPHER_SUITE_TKIP:
328  		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
329  		if ((pairwise && key_idx) ||
330  		    params->mode != NL80211_KEY_RX_TX)
331  			return -EINVAL;
332  		break;
333  	case WLAN_CIPHER_SUITE_CCMP:
334  	case WLAN_CIPHER_SUITE_CCMP_256:
335  	case WLAN_CIPHER_SUITE_GCMP:
336  	case WLAN_CIPHER_SUITE_GCMP_256:
337  		/* IEEE802.11-2016 allows only 0 and - when supporting
338  		 * Extended Key ID - 1 as index for pairwise keys.
339  		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340  		 * the driver supports Extended Key ID.
341  		 * @NL80211_KEY_SET_TX can't be set when installing and
342  		 * validating a key.
343  		 */
344  		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345  		    params->mode == NL80211_KEY_SET_TX)
346  			return -EINVAL;
347  		if (wiphy_ext_feature_isset(&rdev->wiphy,
348  					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349  			if (pairwise && (key_idx < 0 || key_idx > 1))
350  				return -EINVAL;
351  		} else if (pairwise && key_idx) {
352  			return -EINVAL;
353  		}
354  		break;
355  	case WLAN_CIPHER_SUITE_AES_CMAC:
356  	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357  	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358  	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359  		/* Disallow BIP (group-only) cipher as pairwise cipher */
360  		if (pairwise)
361  			return -EINVAL;
362  		if (key_idx < 4)
363  			return -EINVAL;
364  		break;
365  	case WLAN_CIPHER_SUITE_WEP40:
366  	case WLAN_CIPHER_SUITE_WEP104:
367  		if (key_idx > 3)
368  			return -EINVAL;
369  		break;
370  	default:
371  		break;
372  	}
373  
374  	switch (params->cipher) {
375  	case WLAN_CIPHER_SUITE_WEP40:
376  		if (params->key_len != WLAN_KEY_LEN_WEP40)
377  			return -EINVAL;
378  		break;
379  	case WLAN_CIPHER_SUITE_TKIP:
380  		if (params->key_len != WLAN_KEY_LEN_TKIP)
381  			return -EINVAL;
382  		break;
383  	case WLAN_CIPHER_SUITE_CCMP:
384  		if (params->key_len != WLAN_KEY_LEN_CCMP)
385  			return -EINVAL;
386  		break;
387  	case WLAN_CIPHER_SUITE_CCMP_256:
388  		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389  			return -EINVAL;
390  		break;
391  	case WLAN_CIPHER_SUITE_GCMP:
392  		if (params->key_len != WLAN_KEY_LEN_GCMP)
393  			return -EINVAL;
394  		break;
395  	case WLAN_CIPHER_SUITE_GCMP_256:
396  		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397  			return -EINVAL;
398  		break;
399  	case WLAN_CIPHER_SUITE_WEP104:
400  		if (params->key_len != WLAN_KEY_LEN_WEP104)
401  			return -EINVAL;
402  		break;
403  	case WLAN_CIPHER_SUITE_AES_CMAC:
404  		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405  			return -EINVAL;
406  		break;
407  	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408  		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409  			return -EINVAL;
410  		break;
411  	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412  		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413  			return -EINVAL;
414  		break;
415  	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416  		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417  			return -EINVAL;
418  		break;
419  	default:
420  		/*
421  		 * We don't know anything about this algorithm,
422  		 * allow using it -- but the driver must check
423  		 * all parameters! We still check below whether
424  		 * or not the driver supports this algorithm,
425  		 * of course.
426  		 */
427  		break;
428  	}
429  
430  	if (params->seq) {
431  		switch (params->cipher) {
432  		case WLAN_CIPHER_SUITE_WEP40:
433  		case WLAN_CIPHER_SUITE_WEP104:
434  			/* These ciphers do not use key sequence */
435  			return -EINVAL;
436  		case WLAN_CIPHER_SUITE_TKIP:
437  		case WLAN_CIPHER_SUITE_CCMP:
438  		case WLAN_CIPHER_SUITE_CCMP_256:
439  		case WLAN_CIPHER_SUITE_GCMP:
440  		case WLAN_CIPHER_SUITE_GCMP_256:
441  		case WLAN_CIPHER_SUITE_AES_CMAC:
442  		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443  		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444  		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445  			if (params->seq_len != 6)
446  				return -EINVAL;
447  			break;
448  		}
449  	}
450  
451  	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452  		return -EINVAL;
453  
454  	return 0;
455  }
456  
ieee80211_hdrlen(__le16 fc)457  unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458  {
459  	unsigned int hdrlen = 24;
460  
461  	if (ieee80211_is_ext(fc)) {
462  		hdrlen = 4;
463  		goto out;
464  	}
465  
466  	if (ieee80211_is_data(fc)) {
467  		if (ieee80211_has_a4(fc))
468  			hdrlen = 30;
469  		if (ieee80211_is_data_qos(fc)) {
470  			hdrlen += IEEE80211_QOS_CTL_LEN;
471  			if (ieee80211_has_order(fc))
472  				hdrlen += IEEE80211_HT_CTL_LEN;
473  		}
474  		goto out;
475  	}
476  
477  	if (ieee80211_is_mgmt(fc)) {
478  		if (ieee80211_has_order(fc))
479  			hdrlen += IEEE80211_HT_CTL_LEN;
480  		goto out;
481  	}
482  
483  	if (ieee80211_is_ctl(fc)) {
484  		/*
485  		 * ACK and CTS are 10 bytes, all others 16. To see how
486  		 * to get this condition consider
487  		 *   subtype mask:   0b0000000011110000 (0x00F0)
488  		 *   ACK subtype:    0b0000000011010000 (0x00D0)
489  		 *   CTS subtype:    0b0000000011000000 (0x00C0)
490  		 *   bits that matter:         ^^^      (0x00E0)
491  		 *   value of those: 0b0000000011000000 (0x00C0)
492  		 */
493  		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494  			hdrlen = 10;
495  		else
496  			hdrlen = 16;
497  	}
498  out:
499  	return hdrlen;
500  }
501  EXPORT_SYMBOL(ieee80211_hdrlen);
502  
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)503  unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504  {
505  	const struct ieee80211_hdr *hdr =
506  			(const struct ieee80211_hdr *)skb->data;
507  	unsigned int hdrlen;
508  
509  	if (unlikely(skb->len < 10))
510  		return 0;
511  	hdrlen = ieee80211_hdrlen(hdr->frame_control);
512  	if (unlikely(hdrlen > skb->len))
513  		return 0;
514  	return hdrlen;
515  }
516  EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517  
__ieee80211_get_mesh_hdrlen(u8 flags)518  static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519  {
520  	int ae = flags & MESH_FLAGS_AE;
521  	/* 802.11-2012, 8.2.4.7.3 */
522  	switch (ae) {
523  	default:
524  	case 0:
525  		return 6;
526  	case MESH_FLAGS_AE_A4:
527  		return 12;
528  	case MESH_FLAGS_AE_A5_A6:
529  		return 18;
530  	}
531  }
532  
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)533  unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534  {
535  	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536  }
537  EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538  
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)539  bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540  {
541  	const __be16 *hdr_proto = hdr + ETH_ALEN;
542  
543  	if (!(ether_addr_equal(hdr, rfc1042_header) &&
544  	      *hdr_proto != htons(ETH_P_AARP) &&
545  	      *hdr_proto != htons(ETH_P_IPX)) &&
546  	    !ether_addr_equal(hdr, bridge_tunnel_header))
547  		return false;
548  
549  	*proto = *hdr_proto;
550  
551  	return true;
552  }
553  EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554  
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)555  int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556  {
557  	const void *mesh_addr;
558  	struct {
559  		struct ethhdr eth;
560  		u8 flags;
561  	} payload;
562  	int hdrlen;
563  	int ret;
564  
565  	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566  	if (ret)
567  		return ret;
568  
569  	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570  
571  	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572  		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573  						   &payload.eth.h_proto)))
574  		hdrlen += ETH_ALEN + 2;
575  	else if (!pskb_may_pull(skb, hdrlen))
576  		return -EINVAL;
577  	else
578  		payload.eth.h_proto = htons(skb->len - hdrlen);
579  
580  	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581  	switch (payload.flags & MESH_FLAGS_AE) {
582  	case MESH_FLAGS_AE_A4:
583  		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584  		break;
585  	case MESH_FLAGS_AE_A5_A6:
586  		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587  		break;
588  	default:
589  		break;
590  	}
591  
592  	pskb_pull(skb, hdrlen - sizeof(payload.eth));
593  	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594  
595  	return 0;
596  }
597  EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598  
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)599  int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600  				  const u8 *addr, enum nl80211_iftype iftype,
601  				  u8 data_offset, bool is_amsdu)
602  {
603  	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604  	struct {
605  		u8 hdr[ETH_ALEN] __aligned(2);
606  		__be16 proto;
607  	} payload;
608  	struct ethhdr tmp;
609  	u16 hdrlen;
610  
611  	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612  		return -1;
613  
614  	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615  	if (skb->len < hdrlen)
616  		return -1;
617  
618  	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
619  	 * header
620  	 * IEEE 802.11 address fields:
621  	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622  	 *   0     0   DA    SA    BSSID n/a
623  	 *   0     1   DA    BSSID SA    n/a
624  	 *   1     0   BSSID SA    DA    n/a
625  	 *   1     1   RA    TA    DA    SA
626  	 */
627  	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628  	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629  
630  	switch (hdr->frame_control &
631  		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632  	case cpu_to_le16(IEEE80211_FCTL_TODS):
633  		if (unlikely(iftype != NL80211_IFTYPE_AP &&
634  			     iftype != NL80211_IFTYPE_AP_VLAN &&
635  			     iftype != NL80211_IFTYPE_P2P_GO))
636  			return -1;
637  		break;
638  	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639  		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640  			     iftype != NL80211_IFTYPE_AP_VLAN &&
641  			     iftype != NL80211_IFTYPE_STATION))
642  			return -1;
643  		break;
644  	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645  		if ((iftype != NL80211_IFTYPE_STATION &&
646  		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
647  		     iftype != NL80211_IFTYPE_MESH_POINT) ||
648  		    (is_multicast_ether_addr(tmp.h_dest) &&
649  		     ether_addr_equal(tmp.h_source, addr)))
650  			return -1;
651  		break;
652  	case cpu_to_le16(0):
653  		if (iftype != NL80211_IFTYPE_ADHOC &&
654  		    iftype != NL80211_IFTYPE_STATION &&
655  		    iftype != NL80211_IFTYPE_OCB)
656  				return -1;
657  		break;
658  	}
659  
660  	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661  		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662  		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663  		/* remove RFC1042 or Bridge-Tunnel encapsulation */
664  		hdrlen += ETH_ALEN + 2;
665  		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666  	} else {
667  		tmp.h_proto = htons(skb->len - hdrlen);
668  	}
669  
670  	pskb_pull(skb, hdrlen);
671  
672  	if (!ehdr)
673  		ehdr = skb_push(skb, sizeof(struct ethhdr));
674  	memcpy(ehdr, &tmp, sizeof(tmp));
675  
676  	return 0;
677  }
678  EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679  
680  static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)681  __frame_add_frag(struct sk_buff *skb, struct page *page,
682  		 void *ptr, int len, int size)
683  {
684  	struct skb_shared_info *sh = skb_shinfo(skb);
685  	int page_offset;
686  
687  	get_page(page);
688  	page_offset = ptr - page_address(page);
689  	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690  }
691  
692  static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)693  __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694  			    int offset, int len)
695  {
696  	struct skb_shared_info *sh = skb_shinfo(skb);
697  	const skb_frag_t *frag = &sh->frags[0];
698  	struct page *frag_page;
699  	void *frag_ptr;
700  	int frag_len, frag_size;
701  	int head_size = skb->len - skb->data_len;
702  	int cur_len;
703  
704  	frag_page = virt_to_head_page(skb->head);
705  	frag_ptr = skb->data;
706  	frag_size = head_size;
707  
708  	while (offset >= frag_size) {
709  		offset -= frag_size;
710  		frag_page = skb_frag_page(frag);
711  		frag_ptr = skb_frag_address(frag);
712  		frag_size = skb_frag_size(frag);
713  		frag++;
714  	}
715  
716  	frag_ptr += offset;
717  	frag_len = frag_size - offset;
718  
719  	cur_len = min(len, frag_len);
720  
721  	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722  	len -= cur_len;
723  
724  	while (len > 0) {
725  		frag_len = skb_frag_size(frag);
726  		cur_len = min(len, frag_len);
727  		__frame_add_frag(frame, skb_frag_page(frag),
728  				 skb_frag_address(frag), cur_len, frag_len);
729  		len -= cur_len;
730  		frag++;
731  	}
732  }
733  
734  static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)735  __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736  		       int offset, int len, bool reuse_frag,
737  		       int min_len)
738  {
739  	struct sk_buff *frame;
740  	int cur_len = len;
741  
742  	if (skb->len - offset < len)
743  		return NULL;
744  
745  	/*
746  	 * When reusing framents, copy some data to the head to simplify
747  	 * ethernet header handling and speed up protocol header processing
748  	 * in the stack later.
749  	 */
750  	if (reuse_frag)
751  		cur_len = min_t(int, len, min_len);
752  
753  	/*
754  	 * Allocate and reserve two bytes more for payload
755  	 * alignment since sizeof(struct ethhdr) is 14.
756  	 */
757  	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758  	if (!frame)
759  		return NULL;
760  
761  	frame->priority = skb->priority;
762  	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763  	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764  
765  	len -= cur_len;
766  	if (!len)
767  		return frame;
768  
769  	offset += cur_len;
770  	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771  
772  	return frame;
773  }
774  
775  static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)776  ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777  {
778  	__le16 *field_le = field;
779  	__be16 *field_be = field;
780  	u16 len;
781  
782  	if (hdr_type >= 2)
783  		len = le16_to_cpu(*field_le);
784  	else
785  		len = be16_to_cpu(*field_be);
786  	if (hdr_type)
787  		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788  
789  	return len;
790  }
791  
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)792  bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793  {
794  	int offset = 0, subframe_len, padding;
795  
796  	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797  		int remaining = skb->len - offset;
798  		struct {
799  		    __be16 len;
800  		    u8 mesh_flags;
801  		} hdr;
802  		u16 len;
803  
804  		if (sizeof(hdr) > remaining)
805  			return false;
806  
807  		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808  			return false;
809  
810  		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811  						      mesh_hdr);
812  		subframe_len = sizeof(struct ethhdr) + len;
813  		padding = (4 - subframe_len) & 0x3;
814  
815  		if (subframe_len > remaining)
816  			return false;
817  	}
818  
819  	return true;
820  }
821  EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822  
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)823  void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
824  			      const u8 *addr, enum nl80211_iftype iftype,
825  			      const unsigned int extra_headroom,
826  			      const u8 *check_da, const u8 *check_sa,
827  			      u8 mesh_control)
828  {
829  	unsigned int hlen = ALIGN(extra_headroom, 4);
830  	struct sk_buff *frame = NULL;
831  	int offset = 0;
832  	struct {
833  		struct ethhdr eth;
834  		uint8_t flags;
835  	} hdr;
836  	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
837  	bool reuse_skb = false;
838  	bool last = false;
839  	int copy_len = sizeof(hdr.eth);
840  
841  	if (iftype == NL80211_IFTYPE_MESH_POINT)
842  		copy_len = sizeof(hdr);
843  
844  	while (!last) {
845  		int remaining = skb->len - offset;
846  		unsigned int subframe_len;
847  		int len, mesh_len = 0;
848  		u8 padding;
849  
850  		if (copy_len > remaining)
851  			goto purge;
852  
853  		skb_copy_bits(skb, offset, &hdr, copy_len);
854  		if (iftype == NL80211_IFTYPE_MESH_POINT)
855  			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
856  		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
857  						      mesh_control);
858  		subframe_len = sizeof(struct ethhdr) + len;
859  		padding = (4 - subframe_len) & 0x3;
860  
861  		/* the last MSDU has no padding */
862  		if (subframe_len > remaining)
863  			goto purge;
864  		/* mitigate A-MSDU aggregation injection attacks */
865  		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866  			goto purge;
867  
868  		offset += sizeof(struct ethhdr);
869  		last = remaining <= subframe_len + padding;
870  
871  		/* FIXME: should we really accept multicast DA? */
872  		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873  		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874  		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875  			offset += len + padding;
876  			continue;
877  		}
878  
879  		/* reuse skb for the last subframe */
880  		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881  			skb_pull(skb, offset);
882  			frame = skb;
883  			reuse_skb = true;
884  		} else {
885  			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886  						       reuse_frag, 32 + mesh_len);
887  			if (!frame)
888  				goto purge;
889  
890  			offset += len + padding;
891  		}
892  
893  		skb_reset_network_header(frame);
894  		frame->dev = skb->dev;
895  		frame->priority = skb->priority;
896  
897  		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898  			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899  			skb_pull(frame, ETH_ALEN + 2);
900  
901  		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902  		__skb_queue_tail(list, frame);
903  	}
904  
905  	if (!reuse_skb)
906  		dev_kfree_skb(skb);
907  
908  	return;
909  
910   purge:
911  	__skb_queue_purge(list);
912  	dev_kfree_skb(skb);
913  }
914  EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915  
916  /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)917  unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918  				    struct cfg80211_qos_map *qos_map)
919  {
920  	unsigned int dscp;
921  	unsigned char vlan_priority;
922  	unsigned int ret;
923  
924  	/* skb->priority values from 256->263 are magic values to
925  	 * directly indicate a specific 802.1d priority.  This is used
926  	 * to allow 802.1d priority to be passed directly in from VLAN
927  	 * tags, etc.
928  	 */
929  	if (skb->priority >= 256 && skb->priority <= 263) {
930  		ret = skb->priority - 256;
931  		goto out;
932  	}
933  
934  	if (skb_vlan_tag_present(skb)) {
935  		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936  			>> VLAN_PRIO_SHIFT;
937  		if (vlan_priority > 0) {
938  			ret = vlan_priority;
939  			goto out;
940  		}
941  	}
942  
943  	switch (skb->protocol) {
944  	case htons(ETH_P_IP):
945  		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946  		break;
947  	case htons(ETH_P_IPV6):
948  		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949  		break;
950  	case htons(ETH_P_MPLS_UC):
951  	case htons(ETH_P_MPLS_MC): {
952  		struct mpls_label mpls_tmp, *mpls;
953  
954  		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955  					  sizeof(*mpls), &mpls_tmp);
956  		if (!mpls)
957  			return 0;
958  
959  		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960  			>> MPLS_LS_TC_SHIFT;
961  		goto out;
962  	}
963  	case htons(ETH_P_80221):
964  		/* 802.21 is always network control traffic */
965  		return 7;
966  	default:
967  		return 0;
968  	}
969  
970  	if (qos_map) {
971  		unsigned int i, tmp_dscp = dscp >> 2;
972  
973  		for (i = 0; i < qos_map->num_des; i++) {
974  			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975  				ret = qos_map->dscp_exception[i].up;
976  				goto out;
977  			}
978  		}
979  
980  		for (i = 0; i < 8; i++) {
981  			if (tmp_dscp >= qos_map->up[i].low &&
982  			    tmp_dscp <= qos_map->up[i].high) {
983  				ret = i;
984  				goto out;
985  			}
986  		}
987  	}
988  
989  	/* The default mapping as defined Section 2.3 in RFC8325: The three
990  	 * Most Significant Bits (MSBs) of the DSCP are used as the
991  	 * corresponding L2 markings.
992  	 */
993  	ret = dscp >> 5;
994  
995  	/* Handle specific DSCP values for which the default mapping (as
996  	 * described above) doesn't adhere to the intended usage of the DSCP
997  	 * value. See section 4 in RFC8325. Specifically, for the following
998  	 * Diffserv Service Classes no update is needed:
999  	 * - Standard: DF
1000  	 * - Low Priority Data: CS1
1001  	 * - Multimedia Conferencing: AF41, AF42, AF43
1002  	 * - Network Control Traffic: CS7
1003  	 * - Real-Time Interactive: CS4
1004  	 * - Signaling: CS5
1005  	 */
1006  	switch (dscp >> 2) {
1007  	case 10:
1008  	case 12:
1009  	case 14:
1010  		/* High throughput data: AF11, AF12, AF13 */
1011  		ret = 0;
1012  		break;
1013  	case 16:
1014  		/* Operations, Administration, and Maintenance and Provisioning:
1015  		 * CS2
1016  		 */
1017  		ret = 0;
1018  		break;
1019  	case 18:
1020  	case 20:
1021  	case 22:
1022  		/* Low latency data: AF21, AF22, AF23 */
1023  		ret = 3;
1024  		break;
1025  	case 24:
1026  		/* Broadcasting video: CS3 */
1027  		ret = 4;
1028  		break;
1029  	case 26:
1030  	case 28:
1031  	case 30:
1032  		/* Multimedia Streaming: AF31, AF32, AF33 */
1033  		ret = 4;
1034  		break;
1035  	case 44:
1036  		/* Voice Admit: VA */
1037  		ret = 6;
1038  		break;
1039  	case 46:
1040  		/* Telephony traffic: EF */
1041  		ret = 6;
1042  		break;
1043  	case 48:
1044  		/* Network Control Traffic: CS6 */
1045  		ret = 7;
1046  		break;
1047  	}
1048  out:
1049  	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1050  }
1051  EXPORT_SYMBOL(cfg80211_classify8021d);
1052  
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)1053  const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1054  {
1055  	const struct cfg80211_bss_ies *ies;
1056  
1057  	ies = rcu_dereference(bss->ies);
1058  	if (!ies)
1059  		return NULL;
1060  
1061  	return cfg80211_find_elem(id, ies->data, ies->len);
1062  }
1063  EXPORT_SYMBOL(ieee80211_bss_get_elem);
1064  
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1065  void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1066  {
1067  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1068  	struct net_device *dev = wdev->netdev;
1069  	int i;
1070  
1071  	if (!wdev->connect_keys)
1072  		return;
1073  
1074  	for (i = 0; i < 4; i++) {
1075  		if (!wdev->connect_keys->params[i].cipher)
1076  			continue;
1077  		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1078  				 &wdev->connect_keys->params[i])) {
1079  			netdev_err(dev, "failed to set key %d\n", i);
1080  			continue;
1081  		}
1082  		if (wdev->connect_keys->def == i &&
1083  		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1084  			netdev_err(dev, "failed to set defkey %d\n", i);
1085  			continue;
1086  		}
1087  	}
1088  
1089  	kfree_sensitive(wdev->connect_keys);
1090  	wdev->connect_keys = NULL;
1091  }
1092  
cfg80211_process_wdev_events(struct wireless_dev * wdev)1093  void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1094  {
1095  	struct cfg80211_event *ev;
1096  	unsigned long flags;
1097  
1098  	spin_lock_irqsave(&wdev->event_lock, flags);
1099  	while (!list_empty(&wdev->event_list)) {
1100  		ev = list_first_entry(&wdev->event_list,
1101  				      struct cfg80211_event, list);
1102  		list_del(&ev->list);
1103  		spin_unlock_irqrestore(&wdev->event_lock, flags);
1104  
1105  		switch (ev->type) {
1106  		case EVENT_CONNECT_RESULT:
1107  			__cfg80211_connect_result(
1108  				wdev->netdev,
1109  				&ev->cr,
1110  				ev->cr.status == WLAN_STATUS_SUCCESS);
1111  			break;
1112  		case EVENT_ROAMED:
1113  			__cfg80211_roamed(wdev, &ev->rm);
1114  			break;
1115  		case EVENT_DISCONNECTED:
1116  			__cfg80211_disconnected(wdev->netdev,
1117  						ev->dc.ie, ev->dc.ie_len,
1118  						ev->dc.reason,
1119  						!ev->dc.locally_generated);
1120  			break;
1121  		case EVENT_IBSS_JOINED:
1122  			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1123  					       ev->ij.channel);
1124  			break;
1125  		case EVENT_STOPPED:
1126  			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1127  			break;
1128  		case EVENT_PORT_AUTHORIZED:
1129  			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1130  						   ev->pa.td_bitmap,
1131  						   ev->pa.td_bitmap_len);
1132  			break;
1133  		}
1134  
1135  		kfree(ev);
1136  
1137  		spin_lock_irqsave(&wdev->event_lock, flags);
1138  	}
1139  	spin_unlock_irqrestore(&wdev->event_lock, flags);
1140  }
1141  
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1142  void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1143  {
1144  	struct wireless_dev *wdev;
1145  
1146  	lockdep_assert_held(&rdev->wiphy.mtx);
1147  
1148  	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1149  		cfg80211_process_wdev_events(wdev);
1150  }
1151  
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1152  int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1153  			  struct net_device *dev, enum nl80211_iftype ntype,
1154  			  struct vif_params *params)
1155  {
1156  	int err;
1157  	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1158  
1159  	lockdep_assert_held(&rdev->wiphy.mtx);
1160  
1161  	/* don't support changing VLANs, you just re-create them */
1162  	if (otype == NL80211_IFTYPE_AP_VLAN)
1163  		return -EOPNOTSUPP;
1164  
1165  	/* cannot change into P2P device or NAN */
1166  	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1167  	    ntype == NL80211_IFTYPE_NAN)
1168  		return -EOPNOTSUPP;
1169  
1170  	if (!rdev->ops->change_virtual_intf ||
1171  	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1172  		return -EOPNOTSUPP;
1173  
1174  	if (ntype != otype) {
1175  		/* if it's part of a bridge, reject changing type to station/ibss */
1176  		if (netif_is_bridge_port(dev) &&
1177  		    (ntype == NL80211_IFTYPE_ADHOC ||
1178  		     ntype == NL80211_IFTYPE_STATION ||
1179  		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1180  			return -EBUSY;
1181  
1182  		dev->ieee80211_ptr->use_4addr = false;
1183  		rdev_set_qos_map(rdev, dev, NULL);
1184  
1185  		switch (otype) {
1186  		case NL80211_IFTYPE_AP:
1187  		case NL80211_IFTYPE_P2P_GO:
1188  			cfg80211_stop_ap(rdev, dev, -1, true);
1189  			break;
1190  		case NL80211_IFTYPE_ADHOC:
1191  			cfg80211_leave_ibss(rdev, dev, false);
1192  			break;
1193  		case NL80211_IFTYPE_STATION:
1194  		case NL80211_IFTYPE_P2P_CLIENT:
1195  			cfg80211_disconnect(rdev, dev,
1196  					    WLAN_REASON_DEAUTH_LEAVING, true);
1197  			break;
1198  		case NL80211_IFTYPE_MESH_POINT:
1199  			/* mesh should be handled? */
1200  			break;
1201  		case NL80211_IFTYPE_OCB:
1202  			cfg80211_leave_ocb(rdev, dev);
1203  			break;
1204  		default:
1205  			break;
1206  		}
1207  
1208  		cfg80211_process_rdev_events(rdev);
1209  		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210  
1211  		memset(&dev->ieee80211_ptr->u, 0,
1212  		       sizeof(dev->ieee80211_ptr->u));
1213  		memset(&dev->ieee80211_ptr->links, 0,
1214  		       sizeof(dev->ieee80211_ptr->links));
1215  	}
1216  
1217  	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218  
1219  	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220  
1221  	if (!err && params && params->use_4addr != -1)
1222  		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223  
1224  	if (!err) {
1225  		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226  		switch (ntype) {
1227  		case NL80211_IFTYPE_STATION:
1228  			if (dev->ieee80211_ptr->use_4addr)
1229  				break;
1230  			fallthrough;
1231  		case NL80211_IFTYPE_OCB:
1232  		case NL80211_IFTYPE_P2P_CLIENT:
1233  		case NL80211_IFTYPE_ADHOC:
1234  			dev->priv_flags |= IFF_DONT_BRIDGE;
1235  			break;
1236  		case NL80211_IFTYPE_P2P_GO:
1237  		case NL80211_IFTYPE_AP:
1238  		case NL80211_IFTYPE_AP_VLAN:
1239  		case NL80211_IFTYPE_MESH_POINT:
1240  			/* bridging OK */
1241  			break;
1242  		case NL80211_IFTYPE_MONITOR:
1243  			/* monitor can't bridge anyway */
1244  			break;
1245  		case NL80211_IFTYPE_UNSPECIFIED:
1246  		case NUM_NL80211_IFTYPES:
1247  			/* not happening */
1248  			break;
1249  		case NL80211_IFTYPE_P2P_DEVICE:
1250  		case NL80211_IFTYPE_WDS:
1251  		case NL80211_IFTYPE_NAN:
1252  			WARN_ON(1);
1253  			break;
1254  		}
1255  	}
1256  
1257  	if (!err && ntype != otype && netif_running(dev)) {
1258  		cfg80211_update_iface_num(rdev, ntype, 1);
1259  		cfg80211_update_iface_num(rdev, otype, -1);
1260  	}
1261  
1262  	return err;
1263  }
1264  
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1265  static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266  {
1267  	int modulation, streams, bitrate;
1268  
1269  	/* the formula below does only work for MCS values smaller than 32 */
1270  	if (WARN_ON_ONCE(rate->mcs >= 32))
1271  		return 0;
1272  
1273  	modulation = rate->mcs & 7;
1274  	streams = (rate->mcs >> 3) + 1;
1275  
1276  	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277  
1278  	if (modulation < 4)
1279  		bitrate *= (modulation + 1);
1280  	else if (modulation == 4)
1281  		bitrate *= (modulation + 2);
1282  	else
1283  		bitrate *= (modulation + 3);
1284  
1285  	bitrate *= streams;
1286  
1287  	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288  		bitrate = (bitrate / 9) * 10;
1289  
1290  	/* do NOT round down here */
1291  	return (bitrate + 50000) / 100000;
1292  }
1293  
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1294  static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295  {
1296  	static const u32 __mcs2bitrate[] = {
1297  		/* control PHY */
1298  		[0] =   275,
1299  		/* SC PHY */
1300  		[1] =  3850,
1301  		[2] =  7700,
1302  		[3] =  9625,
1303  		[4] = 11550,
1304  		[5] = 12512, /* 1251.25 mbps */
1305  		[6] = 15400,
1306  		[7] = 19250,
1307  		[8] = 23100,
1308  		[9] = 25025,
1309  		[10] = 30800,
1310  		[11] = 38500,
1311  		[12] = 46200,
1312  		/* OFDM PHY */
1313  		[13] =  6930,
1314  		[14] =  8662, /* 866.25 mbps */
1315  		[15] = 13860,
1316  		[16] = 17325,
1317  		[17] = 20790,
1318  		[18] = 27720,
1319  		[19] = 34650,
1320  		[20] = 41580,
1321  		[21] = 45045,
1322  		[22] = 51975,
1323  		[23] = 62370,
1324  		[24] = 67568, /* 6756.75 mbps */
1325  		/* LP-SC PHY */
1326  		[25] =  6260,
1327  		[26] =  8340,
1328  		[27] = 11120,
1329  		[28] = 12510,
1330  		[29] = 16680,
1331  		[30] = 22240,
1332  		[31] = 25030,
1333  	};
1334  
1335  	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336  		return 0;
1337  
1338  	return __mcs2bitrate[rate->mcs];
1339  }
1340  
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1341  static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342  {
1343  	static const u32 __mcs2bitrate[] = {
1344  		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345  		[7 - 6] = 50050, /* MCS 12.1 */
1346  		[8 - 6] = 53900,
1347  		[9 - 6] = 57750,
1348  		[10 - 6] = 63900,
1349  		[11 - 6] = 75075,
1350  		[12 - 6] = 80850,
1351  	};
1352  
1353  	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354  	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355  		return 0;
1356  
1357  	return __mcs2bitrate[rate->mcs - 6];
1358  }
1359  
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1360  static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361  {
1362  	static const u32 __mcs2bitrate[] = {
1363  		/* control PHY */
1364  		[0] =   275,
1365  		/* SC PHY */
1366  		[1] =  3850,
1367  		[2] =  7700,
1368  		[3] =  9625,
1369  		[4] = 11550,
1370  		[5] = 12512, /* 1251.25 mbps */
1371  		[6] = 13475,
1372  		[7] = 15400,
1373  		[8] = 19250,
1374  		[9] = 23100,
1375  		[10] = 25025,
1376  		[11] = 26950,
1377  		[12] = 30800,
1378  		[13] = 38500,
1379  		[14] = 46200,
1380  		[15] = 50050,
1381  		[16] = 53900,
1382  		[17] = 57750,
1383  		[18] = 69300,
1384  		[19] = 75075,
1385  		[20] = 80850,
1386  	};
1387  
1388  	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389  		return 0;
1390  
1391  	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392  }
1393  
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1394  static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395  {
1396  	static const u32 base[4][12] = {
1397  		{   6500000,
1398  		   13000000,
1399  		   19500000,
1400  		   26000000,
1401  		   39000000,
1402  		   52000000,
1403  		   58500000,
1404  		   65000000,
1405  		   78000000,
1406  		/* not in the spec, but some devices use this: */
1407  		   86700000,
1408  		   97500000,
1409  		  108300000,
1410  		},
1411  		{  13500000,
1412  		   27000000,
1413  		   40500000,
1414  		   54000000,
1415  		   81000000,
1416  		  108000000,
1417  		  121500000,
1418  		  135000000,
1419  		  162000000,
1420  		  180000000,
1421  		  202500000,
1422  		  225000000,
1423  		},
1424  		{  29300000,
1425  		   58500000,
1426  		   87800000,
1427  		  117000000,
1428  		  175500000,
1429  		  234000000,
1430  		  263300000,
1431  		  292500000,
1432  		  351000000,
1433  		  390000000,
1434  		  438800000,
1435  		  487500000,
1436  		},
1437  		{  58500000,
1438  		  117000000,
1439  		  175500000,
1440  		  234000000,
1441  		  351000000,
1442  		  468000000,
1443  		  526500000,
1444  		  585000000,
1445  		  702000000,
1446  		  780000000,
1447  		  877500000,
1448  		  975000000,
1449  		},
1450  	};
1451  	u32 bitrate;
1452  	int idx;
1453  
1454  	if (rate->mcs > 11)
1455  		goto warn;
1456  
1457  	switch (rate->bw) {
1458  	case RATE_INFO_BW_160:
1459  		idx = 3;
1460  		break;
1461  	case RATE_INFO_BW_80:
1462  		idx = 2;
1463  		break;
1464  	case RATE_INFO_BW_40:
1465  		idx = 1;
1466  		break;
1467  	case RATE_INFO_BW_5:
1468  	case RATE_INFO_BW_10:
1469  	default:
1470  		goto warn;
1471  	case RATE_INFO_BW_20:
1472  		idx = 0;
1473  	}
1474  
1475  	bitrate = base[idx][rate->mcs];
1476  	bitrate *= rate->nss;
1477  
1478  	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479  		bitrate = (bitrate / 9) * 10;
1480  
1481  	/* do NOT round down here */
1482  	return (bitrate + 50000) / 100000;
1483   warn:
1484  	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485  		  rate->bw, rate->mcs, rate->nss);
1486  	return 0;
1487  }
1488  
cfg80211_calculate_bitrate_he(struct rate_info * rate)1489  static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490  {
1491  #define SCALE 6144
1492  	u32 mcs_divisors[14] = {
1493  		102399, /* 16.666666... */
1494  		 51201, /*  8.333333... */
1495  		 34134, /*  5.555555... */
1496  		 25599, /*  4.166666... */
1497  		 17067, /*  2.777777... */
1498  		 12801, /*  2.083333... */
1499  		 11377, /*  1.851725... */
1500  		 10239, /*  1.666666... */
1501  		  8532, /*  1.388888... */
1502  		  7680, /*  1.250000... */
1503  		  6828, /*  1.111111... */
1504  		  6144, /*  1.000000... */
1505  		  5690, /*  0.926106... */
1506  		  5120, /*  0.833333... */
1507  	};
1508  	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509  	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1510  	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1511  	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1512  	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1513  	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1514  	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1515  	u64 tmp;
1516  	u32 result;
1517  
1518  	if (WARN_ON_ONCE(rate->mcs > 13))
1519  		return 0;
1520  
1521  	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522  		return 0;
1523  	if (WARN_ON_ONCE(rate->he_ru_alloc >
1524  			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525  		return 0;
1526  	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527  		return 0;
1528  
1529  	if (rate->bw == RATE_INFO_BW_160 ||
1530  	    (rate->bw == RATE_INFO_BW_HE_RU &&
1531  	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532  		result = rates_160M[rate->he_gi];
1533  	else if (rate->bw == RATE_INFO_BW_80 ||
1534  		 (rate->bw == RATE_INFO_BW_HE_RU &&
1535  		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536  		result = rates_996[rate->he_gi];
1537  	else if (rate->bw == RATE_INFO_BW_40 ||
1538  		 (rate->bw == RATE_INFO_BW_HE_RU &&
1539  		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540  		result = rates_484[rate->he_gi];
1541  	else if (rate->bw == RATE_INFO_BW_20 ||
1542  		 (rate->bw == RATE_INFO_BW_HE_RU &&
1543  		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544  		result = rates_242[rate->he_gi];
1545  	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546  		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547  		result = rates_106[rate->he_gi];
1548  	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549  		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550  		result = rates_52[rate->he_gi];
1551  	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552  		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553  		result = rates_26[rate->he_gi];
1554  	else {
1555  		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556  		     rate->bw, rate->he_ru_alloc);
1557  		return 0;
1558  	}
1559  
1560  	/* now scale to the appropriate MCS */
1561  	tmp = result;
1562  	tmp *= SCALE;
1563  	do_div(tmp, mcs_divisors[rate->mcs]);
1564  	result = tmp;
1565  
1566  	/* and take NSS, DCM into account */
1567  	result = (result * rate->nss) / 8;
1568  	if (rate->he_dcm)
1569  		result /= 2;
1570  
1571  	return result / 10000;
1572  }
1573  
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1574  static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1575  {
1576  #define SCALE 6144
1577  	static const u32 mcs_divisors[16] = {
1578  		102399, /* 16.666666... */
1579  		 51201, /*  8.333333... */
1580  		 34134, /*  5.555555... */
1581  		 25599, /*  4.166666... */
1582  		 17067, /*  2.777777... */
1583  		 12801, /*  2.083333... */
1584  		 11377, /*  1.851725... */
1585  		 10239, /*  1.666666... */
1586  		  8532, /*  1.388888... */
1587  		  7680, /*  1.250000... */
1588  		  6828, /*  1.111111... */
1589  		  6144, /*  1.000000... */
1590  		  5690, /*  0.926106... */
1591  		  5120, /*  0.833333... */
1592  		409600, /* 66.666666... */
1593  		204800, /* 33.333333... */
1594  	};
1595  	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1596  	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1597  	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1598  	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1599  	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1600  	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1601  	u64 tmp;
1602  	u32 result;
1603  
1604  	if (WARN_ON_ONCE(rate->mcs > 15))
1605  		return 0;
1606  	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1607  		return 0;
1608  	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1609  			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1610  		return 0;
1611  	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1612  		return 0;
1613  
1614  	/* Bandwidth checks for MCS 14 */
1615  	if (rate->mcs == 14) {
1616  		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1617  		     rate->bw != RATE_INFO_BW_80 &&
1618  		     rate->bw != RATE_INFO_BW_160 &&
1619  		     rate->bw != RATE_INFO_BW_320) ||
1620  		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1621  		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1622  		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1623  		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1624  			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1625  			     rate->bw, rate->eht_ru_alloc);
1626  			return 0;
1627  		}
1628  	}
1629  
1630  	if (rate->bw == RATE_INFO_BW_320 ||
1631  	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1632  	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1633  		result = 4 * rates_996[rate->eht_gi];
1634  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1635  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1636  		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1637  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1639  		result = 3 * rates_996[rate->eht_gi];
1640  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1641  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1642  		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1643  	else if (rate->bw == RATE_INFO_BW_160 ||
1644  		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1645  		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1646  		result = 2 * rates_996[rate->eht_gi];
1647  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1648  		 rate->eht_ru_alloc ==
1649  		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1650  		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1651  			 + rates_242[rate->eht_gi];
1652  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1653  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1654  		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1655  	else if (rate->bw == RATE_INFO_BW_80 ||
1656  		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1657  		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1658  		result = rates_996[rate->eht_gi];
1659  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1660  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1661  		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1662  	else if (rate->bw == RATE_INFO_BW_40 ||
1663  		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1664  		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1665  		result = rates_484[rate->eht_gi];
1666  	else if (rate->bw == RATE_INFO_BW_20 ||
1667  		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1668  		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1669  		result = rates_242[rate->eht_gi];
1670  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1671  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1672  		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1673  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1675  		result = rates_106[rate->eht_gi];
1676  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1677  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1678  		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1679  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1680  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1681  		result = rates_52[rate->eht_gi];
1682  	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683  		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1684  		result = rates_26[rate->eht_gi];
1685  	else {
1686  		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1687  		     rate->bw, rate->eht_ru_alloc);
1688  		return 0;
1689  	}
1690  
1691  	/* now scale to the appropriate MCS */
1692  	tmp = result;
1693  	tmp *= SCALE;
1694  	do_div(tmp, mcs_divisors[rate->mcs]);
1695  
1696  	/* and take NSS */
1697  	tmp *= rate->nss;
1698  	do_div(tmp, 8);
1699  
1700  	result = tmp;
1701  
1702  	return result / 10000;
1703  }
1704  
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1705  static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1706  {
1707  	/* For 1, 2, 4, 8 and 16 MHz channels */
1708  	static const u32 base[5][11] = {
1709  		{  300000,
1710  		   600000,
1711  		   900000,
1712  		  1200000,
1713  		  1800000,
1714  		  2400000,
1715  		  2700000,
1716  		  3000000,
1717  		  3600000,
1718  		  4000000,
1719  		  /* MCS 10 supported in 1 MHz only */
1720  		  150000,
1721  		},
1722  		{  650000,
1723  		  1300000,
1724  		  1950000,
1725  		  2600000,
1726  		  3900000,
1727  		  5200000,
1728  		  5850000,
1729  		  6500000,
1730  		  7800000,
1731  		  /* MCS 9 not valid */
1732  		},
1733  		{  1350000,
1734  		   2700000,
1735  		   4050000,
1736  		   5400000,
1737  		   8100000,
1738  		  10800000,
1739  		  12150000,
1740  		  13500000,
1741  		  16200000,
1742  		  18000000,
1743  		},
1744  		{  2925000,
1745  		   5850000,
1746  		   8775000,
1747  		  11700000,
1748  		  17550000,
1749  		  23400000,
1750  		  26325000,
1751  		  29250000,
1752  		  35100000,
1753  		  39000000,
1754  		},
1755  		{  8580000,
1756  		  11700000,
1757  		  17550000,
1758  		  23400000,
1759  		  35100000,
1760  		  46800000,
1761  		  52650000,
1762  		  58500000,
1763  		  70200000,
1764  		  78000000,
1765  		},
1766  	};
1767  	u32 bitrate;
1768  	/* default is 1 MHz index */
1769  	int idx = 0;
1770  
1771  	if (rate->mcs >= 11)
1772  		goto warn;
1773  
1774  	switch (rate->bw) {
1775  	case RATE_INFO_BW_16:
1776  		idx = 4;
1777  		break;
1778  	case RATE_INFO_BW_8:
1779  		idx = 3;
1780  		break;
1781  	case RATE_INFO_BW_4:
1782  		idx = 2;
1783  		break;
1784  	case RATE_INFO_BW_2:
1785  		idx = 1;
1786  		break;
1787  	case RATE_INFO_BW_1:
1788  		idx = 0;
1789  		break;
1790  	case RATE_INFO_BW_5:
1791  	case RATE_INFO_BW_10:
1792  	case RATE_INFO_BW_20:
1793  	case RATE_INFO_BW_40:
1794  	case RATE_INFO_BW_80:
1795  	case RATE_INFO_BW_160:
1796  	default:
1797  		goto warn;
1798  	}
1799  
1800  	bitrate = base[idx][rate->mcs];
1801  	bitrate *= rate->nss;
1802  
1803  	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1804  		bitrate = (bitrate / 9) * 10;
1805  	/* do NOT round down here */
1806  	return (bitrate + 50000) / 100000;
1807  warn:
1808  	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1809  		  rate->bw, rate->mcs, rate->nss);
1810  	return 0;
1811  }
1812  
cfg80211_calculate_bitrate(struct rate_info * rate)1813  u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1814  {
1815  	if (rate->flags & RATE_INFO_FLAGS_MCS)
1816  		return cfg80211_calculate_bitrate_ht(rate);
1817  	if (rate->flags & RATE_INFO_FLAGS_DMG)
1818  		return cfg80211_calculate_bitrate_dmg(rate);
1819  	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1820  		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1821  	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1822  		return cfg80211_calculate_bitrate_edmg(rate);
1823  	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1824  		return cfg80211_calculate_bitrate_vht(rate);
1825  	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1826  		return cfg80211_calculate_bitrate_he(rate);
1827  	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1828  		return cfg80211_calculate_bitrate_eht(rate);
1829  	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1830  		return cfg80211_calculate_bitrate_s1g(rate);
1831  
1832  	return rate->legacy;
1833  }
1834  EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1835  
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1836  int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1837  			  enum ieee80211_p2p_attr_id attr,
1838  			  u8 *buf, unsigned int bufsize)
1839  {
1840  	u8 *out = buf;
1841  	u16 attr_remaining = 0;
1842  	bool desired_attr = false;
1843  	u16 desired_len = 0;
1844  
1845  	while (len > 0) {
1846  		unsigned int iedatalen;
1847  		unsigned int copy;
1848  		const u8 *iedata;
1849  
1850  		if (len < 2)
1851  			return -EILSEQ;
1852  		iedatalen = ies[1];
1853  		if (iedatalen + 2 > len)
1854  			return -EILSEQ;
1855  
1856  		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1857  			goto cont;
1858  
1859  		if (iedatalen < 4)
1860  			goto cont;
1861  
1862  		iedata = ies + 2;
1863  
1864  		/* check WFA OUI, P2P subtype */
1865  		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1866  		    iedata[2] != 0x9a || iedata[3] != 0x09)
1867  			goto cont;
1868  
1869  		iedatalen -= 4;
1870  		iedata += 4;
1871  
1872  		/* check attribute continuation into this IE */
1873  		copy = min_t(unsigned int, attr_remaining, iedatalen);
1874  		if (copy && desired_attr) {
1875  			desired_len += copy;
1876  			if (out) {
1877  				memcpy(out, iedata, min(bufsize, copy));
1878  				out += min(bufsize, copy);
1879  				bufsize -= min(bufsize, copy);
1880  			}
1881  
1882  
1883  			if (copy == attr_remaining)
1884  				return desired_len;
1885  		}
1886  
1887  		attr_remaining -= copy;
1888  		if (attr_remaining)
1889  			goto cont;
1890  
1891  		iedatalen -= copy;
1892  		iedata += copy;
1893  
1894  		while (iedatalen > 0) {
1895  			u16 attr_len;
1896  
1897  			/* P2P attribute ID & size must fit */
1898  			if (iedatalen < 3)
1899  				return -EILSEQ;
1900  			desired_attr = iedata[0] == attr;
1901  			attr_len = get_unaligned_le16(iedata + 1);
1902  			iedatalen -= 3;
1903  			iedata += 3;
1904  
1905  			copy = min_t(unsigned int, attr_len, iedatalen);
1906  
1907  			if (desired_attr) {
1908  				desired_len += copy;
1909  				if (out) {
1910  					memcpy(out, iedata, min(bufsize, copy));
1911  					out += min(bufsize, copy);
1912  					bufsize -= min(bufsize, copy);
1913  				}
1914  
1915  				if (copy == attr_len)
1916  					return desired_len;
1917  			}
1918  
1919  			iedata += copy;
1920  			iedatalen -= copy;
1921  			attr_remaining = attr_len - copy;
1922  		}
1923  
1924   cont:
1925  		len -= ies[1] + 2;
1926  		ies += ies[1] + 2;
1927  	}
1928  
1929  	if (attr_remaining && desired_attr)
1930  		return -EILSEQ;
1931  
1932  	return -ENOENT;
1933  }
1934  EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1935  
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1936  static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1937  {
1938  	int i;
1939  
1940  	/* Make sure array values are legal */
1941  	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1942  		return false;
1943  
1944  	i = 0;
1945  	while (i < n_ids) {
1946  		if (ids[i] == WLAN_EID_EXTENSION) {
1947  			if (id_ext && (ids[i + 1] == id))
1948  				return true;
1949  
1950  			i += 2;
1951  			continue;
1952  		}
1953  
1954  		if (ids[i] == id && !id_ext)
1955  			return true;
1956  
1957  		i++;
1958  	}
1959  	return false;
1960  }
1961  
skip_ie(const u8 * ies,size_t ielen,size_t pos)1962  static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1963  {
1964  	/* we assume a validly formed IEs buffer */
1965  	u8 len = ies[pos + 1];
1966  
1967  	pos += 2 + len;
1968  
1969  	/* the IE itself must have 255 bytes for fragments to follow */
1970  	if (len < 255)
1971  		return pos;
1972  
1973  	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1974  		len = ies[pos + 1];
1975  		pos += 2 + len;
1976  	}
1977  
1978  	return pos;
1979  }
1980  
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1981  size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1982  			      const u8 *ids, int n_ids,
1983  			      const u8 *after_ric, int n_after_ric,
1984  			      size_t offset)
1985  {
1986  	size_t pos = offset;
1987  
1988  	while (pos < ielen) {
1989  		u8 ext = 0;
1990  
1991  		if (ies[pos] == WLAN_EID_EXTENSION)
1992  			ext = 2;
1993  		if ((pos + ext) >= ielen)
1994  			break;
1995  
1996  		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1997  					  ies[pos] == WLAN_EID_EXTENSION))
1998  			break;
1999  
2000  		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2001  			pos = skip_ie(ies, ielen, pos);
2002  
2003  			while (pos < ielen) {
2004  				if (ies[pos] == WLAN_EID_EXTENSION)
2005  					ext = 2;
2006  				else
2007  					ext = 0;
2008  
2009  				if ((pos + ext) >= ielen)
2010  					break;
2011  
2012  				if (!ieee80211_id_in_list(after_ric,
2013  							  n_after_ric,
2014  							  ies[pos + ext],
2015  							  ext == 2))
2016  					pos = skip_ie(ies, ielen, pos);
2017  				else
2018  					break;
2019  			}
2020  		} else {
2021  			pos = skip_ie(ies, ielen, pos);
2022  		}
2023  	}
2024  
2025  	return pos;
2026  }
2027  EXPORT_SYMBOL(ieee80211_ie_split_ric);
2028  
ieee80211_fragment_element(struct sk_buff * skb,u8 * len_pos,u8 frag_id)2029  void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2030  {
2031  	unsigned int elem_len;
2032  
2033  	if (!len_pos)
2034  		return;
2035  
2036  	elem_len = skb->data + skb->len - len_pos - 1;
2037  
2038  	while (elem_len > 255) {
2039  		/* this one is 255 */
2040  		*len_pos = 255;
2041  		/* remaining data gets smaller */
2042  		elem_len -= 255;
2043  		/* make space for the fragment ID/len in SKB */
2044  		skb_put(skb, 2);
2045  		/* shift back the remaining data to place fragment ID/len */
2046  		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2047  		/* place the fragment ID */
2048  		len_pos += 255 + 1;
2049  		*len_pos = frag_id;
2050  		/* and point to fragment length to update later */
2051  		len_pos++;
2052  	}
2053  
2054  	*len_pos = elem_len;
2055  }
2056  EXPORT_SYMBOL(ieee80211_fragment_element);
2057  
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)2058  bool ieee80211_operating_class_to_band(u8 operating_class,
2059  				       enum nl80211_band *band)
2060  {
2061  	switch (operating_class) {
2062  	case 112:
2063  	case 115 ... 127:
2064  	case 128 ... 130:
2065  		*band = NL80211_BAND_5GHZ;
2066  		return true;
2067  	case 131 ... 135:
2068  	case 137:
2069  		*band = NL80211_BAND_6GHZ;
2070  		return true;
2071  	case 81:
2072  	case 82:
2073  	case 83:
2074  	case 84:
2075  		*band = NL80211_BAND_2GHZ;
2076  		return true;
2077  	case 180:
2078  		*band = NL80211_BAND_60GHZ;
2079  		return true;
2080  	}
2081  
2082  	return false;
2083  }
2084  EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2085  
ieee80211_operating_class_to_chandef(u8 operating_class,struct ieee80211_channel * chan,struct cfg80211_chan_def * chandef)2086  bool ieee80211_operating_class_to_chandef(u8 operating_class,
2087  					  struct ieee80211_channel *chan,
2088  					  struct cfg80211_chan_def *chandef)
2089  {
2090  	u32 control_freq, offset = 0;
2091  	enum nl80211_band band;
2092  
2093  	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2094  	    !chan || band != chan->band)
2095  		return false;
2096  
2097  	control_freq = chan->center_freq;
2098  	chandef->chan = chan;
2099  
2100  	if (control_freq >= 5955)
2101  		offset = control_freq - 5955;
2102  	else if (control_freq >= 5745)
2103  		offset = control_freq - 5745;
2104  	else if (control_freq >= 5180)
2105  		offset = control_freq - 5180;
2106  	offset /= 20;
2107  
2108  	switch (operating_class) {
2109  	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2110  	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2111  	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2112  	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2113  	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2114  	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2115  	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2116  	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2117  	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2118  		chandef->center_freq1 = control_freq;
2119  		chandef->width = NL80211_CHAN_WIDTH_20;
2120  		return true;
2121  	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2122  	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2123  	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2124  	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2125  	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2126  		chandef->center_freq1 = control_freq + 10;
2127  		chandef->width = NL80211_CHAN_WIDTH_40;
2128  		return true;
2129  	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2130  	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2131  	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2132  	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2133  	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2134  		chandef->center_freq1 = control_freq - 10;
2135  		chandef->width = NL80211_CHAN_WIDTH_40;
2136  		return true;
2137  	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2138  		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2139  		chandef->width = NL80211_CHAN_WIDTH_40;
2140  		return true;
2141  	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2142  	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2143  		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2144  		chandef->width = NL80211_CHAN_WIDTH_80;
2145  		return true;
2146  	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2147  	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2148  		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2149  		chandef->width = NL80211_CHAN_WIDTH_160;
2150  		return true;
2151  	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2152  	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2153  		  /* The center_freq2 of 80+80 MHz is unknown */
2154  	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2155  		  /* 320-1 or 320-2 channelization is unknown */
2156  	default:
2157  		return false;
2158  	}
2159  }
2160  EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2161  
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2162  bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2163  					  u8 *op_class)
2164  {
2165  	u8 vht_opclass;
2166  	u32 freq = chandef->center_freq1;
2167  
2168  	if (freq >= 2412 && freq <= 2472) {
2169  		if (chandef->width > NL80211_CHAN_WIDTH_40)
2170  			return false;
2171  
2172  		/* 2.407 GHz, channels 1..13 */
2173  		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2174  			if (freq > chandef->chan->center_freq)
2175  				*op_class = 83; /* HT40+ */
2176  			else
2177  				*op_class = 84; /* HT40- */
2178  		} else {
2179  			*op_class = 81;
2180  		}
2181  
2182  		return true;
2183  	}
2184  
2185  	if (freq == 2484) {
2186  		/* channel 14 is only for IEEE 802.11b */
2187  		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2188  			return false;
2189  
2190  		*op_class = 82; /* channel 14 */
2191  		return true;
2192  	}
2193  
2194  	switch (chandef->width) {
2195  	case NL80211_CHAN_WIDTH_80:
2196  		vht_opclass = 128;
2197  		break;
2198  	case NL80211_CHAN_WIDTH_160:
2199  		vht_opclass = 129;
2200  		break;
2201  	case NL80211_CHAN_WIDTH_80P80:
2202  		vht_opclass = 130;
2203  		break;
2204  	case NL80211_CHAN_WIDTH_10:
2205  	case NL80211_CHAN_WIDTH_5:
2206  		return false; /* unsupported for now */
2207  	default:
2208  		vht_opclass = 0;
2209  		break;
2210  	}
2211  
2212  	/* 5 GHz, channels 36..48 */
2213  	if (freq >= 5180 && freq <= 5240) {
2214  		if (vht_opclass) {
2215  			*op_class = vht_opclass;
2216  		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2217  			if (freq > chandef->chan->center_freq)
2218  				*op_class = 116;
2219  			else
2220  				*op_class = 117;
2221  		} else {
2222  			*op_class = 115;
2223  		}
2224  
2225  		return true;
2226  	}
2227  
2228  	/* 5 GHz, channels 52..64 */
2229  	if (freq >= 5260 && freq <= 5320) {
2230  		if (vht_opclass) {
2231  			*op_class = vht_opclass;
2232  		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2233  			if (freq > chandef->chan->center_freq)
2234  				*op_class = 119;
2235  			else
2236  				*op_class = 120;
2237  		} else {
2238  			*op_class = 118;
2239  		}
2240  
2241  		return true;
2242  	}
2243  
2244  	/* 5 GHz, channels 100..144 */
2245  	if (freq >= 5500 && freq <= 5720) {
2246  		if (vht_opclass) {
2247  			*op_class = vht_opclass;
2248  		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2249  			if (freq > chandef->chan->center_freq)
2250  				*op_class = 122;
2251  			else
2252  				*op_class = 123;
2253  		} else {
2254  			*op_class = 121;
2255  		}
2256  
2257  		return true;
2258  	}
2259  
2260  	/* 5 GHz, channels 149..169 */
2261  	if (freq >= 5745 && freq <= 5845) {
2262  		if (vht_opclass) {
2263  			*op_class = vht_opclass;
2264  		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265  			if (freq > chandef->chan->center_freq)
2266  				*op_class = 126;
2267  			else
2268  				*op_class = 127;
2269  		} else if (freq <= 5805) {
2270  			*op_class = 124;
2271  		} else {
2272  			*op_class = 125;
2273  		}
2274  
2275  		return true;
2276  	}
2277  
2278  	/* 56.16 GHz, channel 1..4 */
2279  	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2280  		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2281  			return false;
2282  
2283  		*op_class = 180;
2284  		return true;
2285  	}
2286  
2287  	/* not supported yet */
2288  	return false;
2289  }
2290  EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2291  
cfg80211_wdev_bi(struct wireless_dev * wdev)2292  static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2293  {
2294  	switch (wdev->iftype) {
2295  	case NL80211_IFTYPE_AP:
2296  	case NL80211_IFTYPE_P2P_GO:
2297  		WARN_ON(wdev->valid_links);
2298  		return wdev->links[0].ap.beacon_interval;
2299  	case NL80211_IFTYPE_MESH_POINT:
2300  		return wdev->u.mesh.beacon_interval;
2301  	case NL80211_IFTYPE_ADHOC:
2302  		return wdev->u.ibss.beacon_interval;
2303  	default:
2304  		break;
2305  	}
2306  
2307  	return 0;
2308  }
2309  
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different,int radio_idx)2310  static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2311  				       u32 *beacon_int_gcd,
2312  				       bool *beacon_int_different,
2313  				       int radio_idx)
2314  {
2315  	struct cfg80211_registered_device *rdev;
2316  	struct wireless_dev *wdev;
2317  
2318  	*beacon_int_gcd = 0;
2319  	*beacon_int_different = false;
2320  
2321  	rdev = wiphy_to_rdev(wiphy);
2322  	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2323  		int wdev_bi;
2324  
2325  		/* this feature isn't supported with MLO */
2326  		if (wdev->valid_links)
2327  			continue;
2328  
2329  		/* skip wdevs not active on the given wiphy radio */
2330  		if (radio_idx >= 0 &&
2331  		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2332  			continue;
2333  
2334  		wdev_bi = cfg80211_wdev_bi(wdev);
2335  
2336  		if (!wdev_bi)
2337  			continue;
2338  
2339  		if (!*beacon_int_gcd) {
2340  			*beacon_int_gcd = wdev_bi;
2341  			continue;
2342  		}
2343  
2344  		if (wdev_bi == *beacon_int_gcd)
2345  			continue;
2346  
2347  		*beacon_int_different = true;
2348  		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2349  	}
2350  
2351  	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2352  		if (*beacon_int_gcd)
2353  			*beacon_int_different = true;
2354  		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2355  	}
2356  }
2357  
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2358  int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2359  				 enum nl80211_iftype iftype, u32 beacon_int)
2360  {
2361  	/*
2362  	 * This is just a basic pre-condition check; if interface combinations
2363  	 * are possible the driver must already be checking those with a call
2364  	 * to cfg80211_check_combinations(), in which case we'll validate more
2365  	 * through the cfg80211_calculate_bi_data() call and code in
2366  	 * cfg80211_iter_combinations().
2367  	 */
2368  
2369  	if (beacon_int < 10 || beacon_int > 10000)
2370  		return -EINVAL;
2371  
2372  	return 0;
2373  }
2374  
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2375  int cfg80211_iter_combinations(struct wiphy *wiphy,
2376  			       struct iface_combination_params *params,
2377  			       void (*iter)(const struct ieee80211_iface_combination *c,
2378  					    void *data),
2379  			       void *data)
2380  {
2381  	const struct wiphy_radio *radio = NULL;
2382  	const struct ieee80211_iface_combination *c, *cs;
2383  	const struct ieee80211_regdomain *regdom;
2384  	enum nl80211_dfs_regions region = 0;
2385  	int i, j, n, iftype;
2386  	int num_interfaces = 0;
2387  	u32 used_iftypes = 0;
2388  	u32 beacon_int_gcd;
2389  	bool beacon_int_different;
2390  
2391  	if (params->radio_idx >= 0)
2392  		radio = &wiphy->radio[params->radio_idx];
2393  
2394  	/*
2395  	 * This is a bit strange, since the iteration used to rely only on
2396  	 * the data given by the driver, but here it now relies on context,
2397  	 * in form of the currently operating interfaces.
2398  	 * This is OK for all current users, and saves us from having to
2399  	 * push the GCD calculations into all the drivers.
2400  	 * In the future, this should probably rely more on data that's in
2401  	 * cfg80211 already - the only thing not would appear to be any new
2402  	 * interfaces (while being brought up) and channel/radar data.
2403  	 */
2404  	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2405  				   &beacon_int_gcd, &beacon_int_different,
2406  				   params->radio_idx);
2407  
2408  	if (params->radar_detect) {
2409  		rcu_read_lock();
2410  		regdom = rcu_dereference(cfg80211_regdomain);
2411  		if (regdom)
2412  			region = regdom->dfs_region;
2413  		rcu_read_unlock();
2414  	}
2415  
2416  	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2417  		num_interfaces += params->iftype_num[iftype];
2418  		if (params->iftype_num[iftype] > 0 &&
2419  		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2420  			used_iftypes |= BIT(iftype);
2421  	}
2422  
2423  	if (radio) {
2424  		cs = radio->iface_combinations;
2425  		n = radio->n_iface_combinations;
2426  	} else {
2427  		cs = wiphy->iface_combinations;
2428  		n = wiphy->n_iface_combinations;
2429  	}
2430  	for (i = 0; i < n; i++) {
2431  		struct ieee80211_iface_limit *limits;
2432  		u32 all_iftypes = 0;
2433  
2434  		c = &cs[i];
2435  		if (num_interfaces > c->max_interfaces)
2436  			continue;
2437  		if (params->num_different_channels > c->num_different_channels)
2438  			continue;
2439  
2440  		limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2441  				       GFP_KERNEL);
2442  		if (!limits)
2443  			return -ENOMEM;
2444  
2445  		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2446  			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2447  				continue;
2448  			for (j = 0; j < c->n_limits; j++) {
2449  				all_iftypes |= limits[j].types;
2450  				if (!(limits[j].types & BIT(iftype)))
2451  					continue;
2452  				if (limits[j].max < params->iftype_num[iftype])
2453  					goto cont;
2454  				limits[j].max -= params->iftype_num[iftype];
2455  			}
2456  		}
2457  
2458  		if (params->radar_detect !=
2459  			(c->radar_detect_widths & params->radar_detect))
2460  			goto cont;
2461  
2462  		if (params->radar_detect && c->radar_detect_regions &&
2463  		    !(c->radar_detect_regions & BIT(region)))
2464  			goto cont;
2465  
2466  		/* Finally check that all iftypes that we're currently
2467  		 * using are actually part of this combination. If they
2468  		 * aren't then we can't use this combination and have
2469  		 * to continue to the next.
2470  		 */
2471  		if ((all_iftypes & used_iftypes) != used_iftypes)
2472  			goto cont;
2473  
2474  		if (beacon_int_gcd) {
2475  			if (c->beacon_int_min_gcd &&
2476  			    beacon_int_gcd < c->beacon_int_min_gcd)
2477  				goto cont;
2478  			if (!c->beacon_int_min_gcd && beacon_int_different)
2479  				goto cont;
2480  		}
2481  
2482  		/* This combination covered all interface types and
2483  		 * supported the requested numbers, so we're good.
2484  		 */
2485  
2486  		(*iter)(c, data);
2487   cont:
2488  		kfree(limits);
2489  	}
2490  
2491  	return 0;
2492  }
2493  EXPORT_SYMBOL(cfg80211_iter_combinations);
2494  
2495  static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2496  cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2497  			  void *data)
2498  {
2499  	int *num = data;
2500  	(*num)++;
2501  }
2502  
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2503  int cfg80211_check_combinations(struct wiphy *wiphy,
2504  				struct iface_combination_params *params)
2505  {
2506  	int err, num = 0;
2507  
2508  	err = cfg80211_iter_combinations(wiphy, params,
2509  					 cfg80211_iter_sum_ifcombs, &num);
2510  	if (err)
2511  		return err;
2512  	if (num == 0)
2513  		return -EBUSY;
2514  
2515  	return 0;
2516  }
2517  EXPORT_SYMBOL(cfg80211_check_combinations);
2518  
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2519  int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2520  			   const u8 *rates, unsigned int n_rates,
2521  			   u32 *mask)
2522  {
2523  	int i, j;
2524  
2525  	if (!sband)
2526  		return -EINVAL;
2527  
2528  	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2529  		return -EINVAL;
2530  
2531  	*mask = 0;
2532  
2533  	for (i = 0; i < n_rates; i++) {
2534  		int rate = (rates[i] & 0x7f) * 5;
2535  		bool found = false;
2536  
2537  		for (j = 0; j < sband->n_bitrates; j++) {
2538  			if (sband->bitrates[j].bitrate == rate) {
2539  				found = true;
2540  				*mask |= BIT(j);
2541  				break;
2542  			}
2543  		}
2544  		if (!found)
2545  			return -EINVAL;
2546  	}
2547  
2548  	/*
2549  	 * mask must have at least one bit set here since we
2550  	 * didn't accept a 0-length rates array nor allowed
2551  	 * entries in the array that didn't exist
2552  	 */
2553  
2554  	return 0;
2555  }
2556  
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2557  unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2558  {
2559  	enum nl80211_band band;
2560  	unsigned int n_channels = 0;
2561  
2562  	for (band = 0; band < NUM_NL80211_BANDS; band++)
2563  		if (wiphy->bands[band])
2564  			n_channels += wiphy->bands[band]->n_channels;
2565  
2566  	return n_channels;
2567  }
2568  EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2569  
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2570  int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2571  			 struct station_info *sinfo)
2572  {
2573  	struct cfg80211_registered_device *rdev;
2574  	struct wireless_dev *wdev;
2575  	int ret;
2576  
2577  	wdev = dev->ieee80211_ptr;
2578  	if (!wdev)
2579  		return -EOPNOTSUPP;
2580  
2581  	rdev = wiphy_to_rdev(wdev->wiphy);
2582  	if (!rdev->ops->get_station)
2583  		return -EOPNOTSUPP;
2584  
2585  	memset(sinfo, 0, sizeof(*sinfo));
2586  
2587  	wiphy_lock(&rdev->wiphy);
2588  	ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2589  	wiphy_unlock(&rdev->wiphy);
2590  
2591  	return ret;
2592  }
2593  EXPORT_SYMBOL(cfg80211_get_station);
2594  
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2595  void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2596  {
2597  	int i;
2598  
2599  	if (!f)
2600  		return;
2601  
2602  	kfree(f->serv_spec_info);
2603  	kfree(f->srf_bf);
2604  	kfree(f->srf_macs);
2605  	for (i = 0; i < f->num_rx_filters; i++)
2606  		kfree(f->rx_filters[i].filter);
2607  
2608  	for (i = 0; i < f->num_tx_filters; i++)
2609  		kfree(f->tx_filters[i].filter);
2610  
2611  	kfree(f->rx_filters);
2612  	kfree(f->tx_filters);
2613  	kfree(f);
2614  }
2615  EXPORT_SYMBOL(cfg80211_free_nan_func);
2616  
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2617  bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2618  				u32 center_freq_khz, u32 bw_khz)
2619  {
2620  	u32 start_freq_khz, end_freq_khz;
2621  
2622  	start_freq_khz = center_freq_khz - (bw_khz / 2);
2623  	end_freq_khz = center_freq_khz + (bw_khz / 2);
2624  
2625  	if (start_freq_khz >= freq_range->start_freq_khz &&
2626  	    end_freq_khz <= freq_range->end_freq_khz)
2627  		return true;
2628  
2629  	return false;
2630  }
2631  
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2632  int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2633  {
2634  	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2635  				sizeof(*(sinfo->pertid)),
2636  				gfp);
2637  	if (!sinfo->pertid)
2638  		return -ENOMEM;
2639  
2640  	return 0;
2641  }
2642  EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2643  
2644  /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2645  /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2646  const unsigned char rfc1042_header[] __aligned(2) =
2647  	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2648  EXPORT_SYMBOL(rfc1042_header);
2649  
2650  /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2651  const unsigned char bridge_tunnel_header[] __aligned(2) =
2652  	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2653  EXPORT_SYMBOL(bridge_tunnel_header);
2654  
2655  /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2656  struct iapp_layer2_update {
2657  	u8 da[ETH_ALEN];	/* broadcast */
2658  	u8 sa[ETH_ALEN];	/* STA addr */
2659  	__be16 len;		/* 6 */
2660  	u8 dsap;		/* 0 */
2661  	u8 ssap;		/* 0 */
2662  	u8 control;
2663  	u8 xid_info[3];
2664  } __packed;
2665  
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2666  void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2667  {
2668  	struct iapp_layer2_update *msg;
2669  	struct sk_buff *skb;
2670  
2671  	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2672  	 * bridge devices */
2673  
2674  	skb = dev_alloc_skb(sizeof(*msg));
2675  	if (!skb)
2676  		return;
2677  	msg = skb_put(skb, sizeof(*msg));
2678  
2679  	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2680  	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2681  
2682  	eth_broadcast_addr(msg->da);
2683  	ether_addr_copy(msg->sa, addr);
2684  	msg->len = htons(6);
2685  	msg->dsap = 0;
2686  	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2687  	msg->control = 0xaf;	/* XID response lsb.1111F101.
2688  				 * F=0 (no poll command; unsolicited frame) */
2689  	msg->xid_info[0] = 0x81;	/* XID format identifier */
2690  	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2691  	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2692  
2693  	skb->dev = dev;
2694  	skb->protocol = eth_type_trans(skb, dev);
2695  	memset(skb->cb, 0, sizeof(skb->cb));
2696  	netif_rx(skb);
2697  }
2698  EXPORT_SYMBOL(cfg80211_send_layer2_update);
2699  
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2700  int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2701  			      enum ieee80211_vht_chanwidth bw,
2702  			      int mcs, bool ext_nss_bw_capable,
2703  			      unsigned int max_vht_nss)
2704  {
2705  	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2706  	int ext_nss_bw;
2707  	int supp_width;
2708  	int i, mcs_encoding;
2709  
2710  	if (map == 0xffff)
2711  		return 0;
2712  
2713  	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2714  		return 0;
2715  	if (mcs <= 7)
2716  		mcs_encoding = 0;
2717  	else if (mcs == 8)
2718  		mcs_encoding = 1;
2719  	else
2720  		mcs_encoding = 2;
2721  
2722  	if (!max_vht_nss) {
2723  		/* find max_vht_nss for the given MCS */
2724  		for (i = 7; i >= 0; i--) {
2725  			int supp = (map >> (2 * i)) & 3;
2726  
2727  			if (supp == 3)
2728  				continue;
2729  
2730  			if (supp >= mcs_encoding) {
2731  				max_vht_nss = i + 1;
2732  				break;
2733  			}
2734  		}
2735  	}
2736  
2737  	if (!(cap->supp_mcs.tx_mcs_map &
2738  			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2739  		return max_vht_nss;
2740  
2741  	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2742  				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2743  	supp_width = le32_get_bits(cap->vht_cap_info,
2744  				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2745  
2746  	/* if not capable, treat ext_nss_bw as 0 */
2747  	if (!ext_nss_bw_capable)
2748  		ext_nss_bw = 0;
2749  
2750  	/* This is invalid */
2751  	if (supp_width == 3)
2752  		return 0;
2753  
2754  	/* This is an invalid combination so pretend nothing is supported */
2755  	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2756  		return 0;
2757  
2758  	/*
2759  	 * Cover all the special cases according to IEEE 802.11-2016
2760  	 * Table 9-250. All other cases are either factor of 1 or not
2761  	 * valid/supported.
2762  	 */
2763  	switch (bw) {
2764  	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2765  	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2766  		if ((supp_width == 1 || supp_width == 2) &&
2767  		    ext_nss_bw == 3)
2768  			return 2 * max_vht_nss;
2769  		break;
2770  	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2771  		if (supp_width == 0 &&
2772  		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2773  			return max_vht_nss / 2;
2774  		if (supp_width == 0 &&
2775  		    ext_nss_bw == 3)
2776  			return (3 * max_vht_nss) / 4;
2777  		if (supp_width == 1 &&
2778  		    ext_nss_bw == 3)
2779  			return 2 * max_vht_nss;
2780  		break;
2781  	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2782  		if (supp_width == 0 && ext_nss_bw == 1)
2783  			return 0; /* not possible */
2784  		if (supp_width == 0 &&
2785  		    ext_nss_bw == 2)
2786  			return max_vht_nss / 2;
2787  		if (supp_width == 0 &&
2788  		    ext_nss_bw == 3)
2789  			return (3 * max_vht_nss) / 4;
2790  		if (supp_width == 1 &&
2791  		    ext_nss_bw == 0)
2792  			return 0; /* not possible */
2793  		if (supp_width == 1 &&
2794  		    ext_nss_bw == 1)
2795  			return max_vht_nss / 2;
2796  		if (supp_width == 1 &&
2797  		    ext_nss_bw == 2)
2798  			return (3 * max_vht_nss) / 4;
2799  		break;
2800  	}
2801  
2802  	/* not covered or invalid combination received */
2803  	return max_vht_nss;
2804  }
2805  EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2806  
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2807  bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2808  			     bool is_4addr, u8 check_swif)
2809  
2810  {
2811  	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2812  
2813  	switch (check_swif) {
2814  	case 0:
2815  		if (is_vlan && is_4addr)
2816  			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2817  		return wiphy->interface_modes & BIT(iftype);
2818  	case 1:
2819  		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2820  			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2821  		return wiphy->software_iftypes & BIT(iftype);
2822  	default:
2823  		break;
2824  	}
2825  
2826  	return false;
2827  }
2828  EXPORT_SYMBOL(cfg80211_iftype_allowed);
2829  
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2830  void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2831  {
2832  	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2833  
2834  	lockdep_assert_wiphy(wdev->wiphy);
2835  
2836  	switch (wdev->iftype) {
2837  	case NL80211_IFTYPE_AP:
2838  	case NL80211_IFTYPE_P2P_GO:
2839  		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2840  		break;
2841  	default:
2842  		/* per-link not relevant */
2843  		break;
2844  	}
2845  
2846  	wdev->valid_links &= ~BIT(link_id);
2847  
2848  	rdev_del_intf_link(rdev, wdev, link_id);
2849  
2850  	eth_zero_addr(wdev->links[link_id].addr);
2851  }
2852  
cfg80211_remove_links(struct wireless_dev * wdev)2853  void cfg80211_remove_links(struct wireless_dev *wdev)
2854  {
2855  	unsigned int link_id;
2856  
2857  	/*
2858  	 * links are controlled by upper layers (userspace/cfg)
2859  	 * only for AP mode, so only remove them here for AP
2860  	 */
2861  	if (wdev->iftype != NL80211_IFTYPE_AP)
2862  		return;
2863  
2864  	if (wdev->valid_links) {
2865  		for_each_valid_link(wdev, link_id)
2866  			cfg80211_remove_link(wdev, link_id);
2867  	}
2868  }
2869  
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2870  int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2871  				 struct wireless_dev *wdev)
2872  {
2873  	cfg80211_remove_links(wdev);
2874  
2875  	return rdev_del_virtual_intf(rdev, wdev);
2876  }
2877  
2878  const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2879  cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2880  {
2881  	int i;
2882  
2883  	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2884  		if (wiphy->iftype_ext_capab[i].iftype == type)
2885  			return &wiphy->iftype_ext_capab[i];
2886  	}
2887  
2888  	return NULL;
2889  }
2890  EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2891  
2892  static bool
ieee80211_radio_freq_range_valid(const struct wiphy_radio * radio,u32 freq,u32 width)2893  ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2894  				 u32 freq, u32 width)
2895  {
2896  	const struct wiphy_radio_freq_range *r;
2897  	int i;
2898  
2899  	for (i = 0; i < radio->n_freq_range; i++) {
2900  		r = &radio->freq_range[i];
2901  		if (freq - width / 2 >= r->start_freq &&
2902  		    freq + width / 2 <= r->end_freq)
2903  			return true;
2904  	}
2905  
2906  	return false;
2907  }
2908  
cfg80211_radio_chandef_valid(const struct wiphy_radio * radio,const struct cfg80211_chan_def * chandef)2909  bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2910  				  const struct cfg80211_chan_def *chandef)
2911  {
2912  	u32 freq, width;
2913  
2914  	freq = ieee80211_chandef_to_khz(chandef);
2915  	width = nl80211_chan_width_to_mhz(chandef->width);
2916  	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2917  		return false;
2918  
2919  	freq = MHZ_TO_KHZ(chandef->center_freq2);
2920  	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2921  		return false;
2922  
2923  	return true;
2924  }
2925  EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2926