1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Ethernet-type device handling.
8   *
9   * Version:	@(#)eth.c	1.0.7	05/25/93
10   *
11   * Authors:	Ross Biro
12   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13   *		Mark Evans, <evansmp@uhura.aston.ac.uk>
14   *		Florian  La Roche, <rzsfl@rz.uni-sb.de>
15   *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16   *
17   * Fixes:
18   *		Mr Linux	: Arp problems
19   *		Alan Cox	: Generic queue tidyup (very tiny here)
20   *		Alan Cox	: eth_header ntohs should be htons
21   *		Alan Cox	: eth_rebuild_header missing an htons and
22   *				  minor other things.
23   *		Tegge		: Arp bug fixes.
24   *		Florian		: Removed many unnecessary functions, code cleanup
25   *				  and changes for new arp and skbuff.
26   *		Alan Cox	: Redid header building to reflect new format.
27   *		Alan Cox	: ARP only when compiled with CONFIG_INET
28   *		Greg Page	: 802.2 and SNAP stuff.
29   *		Alan Cox	: MAC layer pointers/new format.
30   *		Paul Gortmaker	: eth_copy_and_sum shouldn't csum padding.
31   *		Alan Cox	: Protect against forwarding explosions with
32   *				  older network drivers and IFF_ALLMULTI.
33   *	Christer Weinigel	: Better rebuild header message.
34   *             Andrew Morton    : 26Feb01: kill ether_setup() - use netdev_boot_setup().
35   */
36  #include <linux/module.h>
37  #include <linux/types.h>
38  #include <linux/kernel.h>
39  #include <linux/string.h>
40  #include <linux/mm.h>
41  #include <linux/socket.h>
42  #include <linux/in.h>
43  #include <linux/inet.h>
44  #include <linux/ip.h>
45  #include <linux/netdevice.h>
46  #include <linux/nvmem-consumer.h>
47  #include <linux/etherdevice.h>
48  #include <linux/skbuff.h>
49  #include <linux/errno.h>
50  #include <linux/init.h>
51  #include <linux/if_ether.h>
52  #include <linux/of_net.h>
53  #include <linux/pci.h>
54  #include <linux/property.h>
55  #include <net/dst.h>
56  #include <net/arp.h>
57  #include <net/sock.h>
58  #include <net/ipv6.h>
59  #include <net/ip.h>
60  #include <net/dsa.h>
61  #include <net/flow_dissector.h>
62  #include <net/gro.h>
63  #include <linux/uaccess.h>
64  #include <net/pkt_sched.h>
65  
66  /**
67   * eth_header - create the Ethernet header
68   * @skb:	buffer to alter
69   * @dev:	source device
70   * @type:	Ethernet type field
71   * @daddr: destination address (NULL leave destination address)
72   * @saddr: source address (NULL use device source address)
73   * @len:   packet length (<= skb->len)
74   *
75   *
76   * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length
77   * in here instead.
78   */
eth_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)79  int eth_header(struct sk_buff *skb, struct net_device *dev,
80  	       unsigned short type,
81  	       const void *daddr, const void *saddr, unsigned int len)
82  {
83  	struct ethhdr *eth = skb_push(skb, ETH_HLEN);
84  
85  	if (type != ETH_P_802_3 && type != ETH_P_802_2)
86  		eth->h_proto = htons(type);
87  	else
88  		eth->h_proto = htons(len);
89  
90  	/*
91  	 *      Set the source hardware address.
92  	 */
93  
94  	if (!saddr)
95  		saddr = dev->dev_addr;
96  	memcpy(eth->h_source, saddr, ETH_ALEN);
97  
98  	if (daddr) {
99  		memcpy(eth->h_dest, daddr, ETH_ALEN);
100  		return ETH_HLEN;
101  	}
102  
103  	/*
104  	 *      Anyway, the loopback-device should never use this function...
105  	 */
106  
107  	if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
108  		eth_zero_addr(eth->h_dest);
109  		return ETH_HLEN;
110  	}
111  
112  	return -ETH_HLEN;
113  }
114  EXPORT_SYMBOL(eth_header);
115  
116  /**
117   * eth_get_headlen - determine the length of header for an ethernet frame
118   * @dev: pointer to network device
119   * @data: pointer to start of frame
120   * @len: total length of frame
121   *
122   * Make a best effort attempt to pull the length for all of the headers for
123   * a given frame in a linear buffer.
124   */
eth_get_headlen(const struct net_device * dev,const void * data,u32 len)125  u32 eth_get_headlen(const struct net_device *dev, const void *data, u32 len)
126  {
127  	const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG;
128  	const struct ethhdr *eth = (const struct ethhdr *)data;
129  	struct flow_keys_basic keys;
130  
131  	/* this should never happen, but better safe than sorry */
132  	if (unlikely(len < sizeof(*eth)))
133  		return len;
134  
135  	/* parse any remaining L2/L3 headers, check for L4 */
136  	if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data,
137  					      eth->h_proto, sizeof(*eth),
138  					      len, flags))
139  		return max_t(u32, keys.control.thoff, sizeof(*eth));
140  
141  	/* parse for any L4 headers */
142  	return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len);
143  }
144  EXPORT_SYMBOL(eth_get_headlen);
145  
146  /**
147   * eth_type_trans - determine the packet's protocol ID.
148   * @skb: received socket data
149   * @dev: receiving network device
150   *
151   * The rule here is that we
152   * assume 802.3 if the type field is short enough to be a length.
153   * This is normal practice and works for any 'now in use' protocol.
154   */
eth_type_trans(struct sk_buff * skb,struct net_device * dev)155  __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev)
156  {
157  	unsigned short _service_access_point;
158  	const unsigned short *sap;
159  	const struct ethhdr *eth;
160  
161  	skb->dev = dev;
162  	skb_reset_mac_header(skb);
163  
164  	eth = eth_skb_pull_mac(skb);
165  	eth_skb_pkt_type(skb, dev);
166  
167  	/*
168  	 * Some variants of DSA tagging don't have an ethertype field
169  	 * at all, so we check here whether one of those tagging
170  	 * variants has been configured on the receiving interface,
171  	 * and if so, set skb->protocol without looking at the packet.
172  	 */
173  	if (unlikely(netdev_uses_dsa(dev)))
174  		return htons(ETH_P_XDSA);
175  
176  	if (likely(eth_proto_is_802_3(eth->h_proto)))
177  		return eth->h_proto;
178  
179  	/*
180  	 *      This is a magic hack to spot IPX packets. Older Novell breaks
181  	 *      the protocol design and runs IPX over 802.3 without an 802.2 LLC
182  	 *      layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
183  	 *      won't work for fault tolerant netware but does for the rest.
184  	 */
185  	sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point);
186  	if (sap && *sap == 0xFFFF)
187  		return htons(ETH_P_802_3);
188  
189  	/*
190  	 *      Real 802.2 LLC
191  	 */
192  	return htons(ETH_P_802_2);
193  }
194  EXPORT_SYMBOL(eth_type_trans);
195  
196  /**
197   * eth_header_parse - extract hardware address from packet
198   * @skb: packet to extract header from
199   * @haddr: destination buffer
200   */
eth_header_parse(const struct sk_buff * skb,unsigned char * haddr)201  int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr)
202  {
203  	const struct ethhdr *eth = eth_hdr(skb);
204  	memcpy(haddr, eth->h_source, ETH_ALEN);
205  	return ETH_ALEN;
206  }
207  EXPORT_SYMBOL(eth_header_parse);
208  
209  /**
210   * eth_header_cache - fill cache entry from neighbour
211   * @neigh: source neighbour
212   * @hh: destination cache entry
213   * @type: Ethernet type field
214   *
215   * Create an Ethernet header template from the neighbour.
216   */
eth_header_cache(const struct neighbour * neigh,struct hh_cache * hh,__be16 type)217  int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type)
218  {
219  	struct ethhdr *eth;
220  	const struct net_device *dev = neigh->dev;
221  
222  	eth = (struct ethhdr *)
223  	    (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));
224  
225  	if (type == htons(ETH_P_802_3))
226  		return -1;
227  
228  	eth->h_proto = type;
229  	memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);
230  	memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
231  
232  	/* Pairs with READ_ONCE() in neigh_resolve_output(),
233  	 * neigh_hh_output() and neigh_update_hhs().
234  	 */
235  	smp_store_release(&hh->hh_len, ETH_HLEN);
236  
237  	return 0;
238  }
239  EXPORT_SYMBOL(eth_header_cache);
240  
241  /**
242   * eth_header_cache_update - update cache entry
243   * @hh: destination cache entry
244   * @dev: network device
245   * @haddr: new hardware address
246   *
247   * Called by Address Resolution module to notify changes in address.
248   */
eth_header_cache_update(struct hh_cache * hh,const struct net_device * dev,const unsigned char * haddr)249  void eth_header_cache_update(struct hh_cache *hh,
250  			     const struct net_device *dev,
251  			     const unsigned char *haddr)
252  {
253  	memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
254  	       haddr, ETH_ALEN);
255  }
256  EXPORT_SYMBOL(eth_header_cache_update);
257  
258  /**
259   * eth_header_parse_protocol - extract protocol from L2 header
260   * @skb: packet to extract protocol from
261   */
eth_header_parse_protocol(const struct sk_buff * skb)262  __be16 eth_header_parse_protocol(const struct sk_buff *skb)
263  {
264  	const struct ethhdr *eth = eth_hdr(skb);
265  
266  	return eth->h_proto;
267  }
268  EXPORT_SYMBOL(eth_header_parse_protocol);
269  
270  /**
271   * eth_prepare_mac_addr_change - prepare for mac change
272   * @dev: network device
273   * @p: socket address
274   */
eth_prepare_mac_addr_change(struct net_device * dev,void * p)275  int eth_prepare_mac_addr_change(struct net_device *dev, void *p)
276  {
277  	struct sockaddr *addr = p;
278  
279  	if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev))
280  		return -EBUSY;
281  	if (!is_valid_ether_addr(addr->sa_data))
282  		return -EADDRNOTAVAIL;
283  	return 0;
284  }
285  EXPORT_SYMBOL(eth_prepare_mac_addr_change);
286  
287  /**
288   * eth_commit_mac_addr_change - commit mac change
289   * @dev: network device
290   * @p: socket address
291   */
eth_commit_mac_addr_change(struct net_device * dev,void * p)292  void eth_commit_mac_addr_change(struct net_device *dev, void *p)
293  {
294  	struct sockaddr *addr = p;
295  
296  	eth_hw_addr_set(dev, addr->sa_data);
297  }
298  EXPORT_SYMBOL(eth_commit_mac_addr_change);
299  
300  /**
301   * eth_mac_addr - set new Ethernet hardware address
302   * @dev: network device
303   * @p: socket address
304   *
305   * Change hardware address of device.
306   *
307   * This doesn't change hardware matching, so needs to be overridden
308   * for most real devices.
309   */
eth_mac_addr(struct net_device * dev,void * p)310  int eth_mac_addr(struct net_device *dev, void *p)
311  {
312  	int ret;
313  
314  	ret = eth_prepare_mac_addr_change(dev, p);
315  	if (ret < 0)
316  		return ret;
317  	eth_commit_mac_addr_change(dev, p);
318  	return 0;
319  }
320  EXPORT_SYMBOL(eth_mac_addr);
321  
eth_validate_addr(struct net_device * dev)322  int eth_validate_addr(struct net_device *dev)
323  {
324  	if (!is_valid_ether_addr(dev->dev_addr))
325  		return -EADDRNOTAVAIL;
326  
327  	return 0;
328  }
329  EXPORT_SYMBOL(eth_validate_addr);
330  
331  const struct header_ops eth_header_ops ____cacheline_aligned = {
332  	.create		= eth_header,
333  	.parse		= eth_header_parse,
334  	.cache		= eth_header_cache,
335  	.cache_update	= eth_header_cache_update,
336  	.parse_protocol	= eth_header_parse_protocol,
337  };
338  
339  /**
340   * ether_setup - setup Ethernet network device
341   * @dev: network device
342   *
343   * Fill in the fields of the device structure with Ethernet-generic values.
344   */
ether_setup(struct net_device * dev)345  void ether_setup(struct net_device *dev)
346  {
347  	dev->header_ops		= &eth_header_ops;
348  	dev->type		= ARPHRD_ETHER;
349  	dev->hard_header_len 	= ETH_HLEN;
350  	dev->min_header_len	= ETH_HLEN;
351  	dev->mtu		= ETH_DATA_LEN;
352  	dev->min_mtu		= ETH_MIN_MTU;
353  	dev->max_mtu		= ETH_DATA_LEN;
354  	dev->addr_len		= ETH_ALEN;
355  	dev->tx_queue_len	= DEFAULT_TX_QUEUE_LEN;
356  	dev->flags		= IFF_BROADCAST|IFF_MULTICAST;
357  	dev->priv_flags		|= IFF_TX_SKB_SHARING;
358  
359  	eth_broadcast_addr(dev->broadcast);
360  
361  }
362  EXPORT_SYMBOL(ether_setup);
363  
364  /**
365   * alloc_etherdev_mqs - Allocates and sets up an Ethernet device
366   * @sizeof_priv: Size of additional driver-private structure to be allocated
367   *	for this Ethernet device
368   * @txqs: The number of TX queues this device has.
369   * @rxqs: The number of RX queues this device has.
370   *
371   * Fill in the fields of the device structure with Ethernet-generic
372   * values. Basically does everything except registering the device.
373   *
374   * Constructs a new net device, complete with a private data area of
375   * size (sizeof_priv).  A 32-byte (not bit) alignment is enforced for
376   * this private data area.
377   */
378  
alloc_etherdev_mqs(int sizeof_priv,unsigned int txqs,unsigned int rxqs)379  struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs,
380  				      unsigned int rxqs)
381  {
382  	return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_ENUM,
383  				ether_setup, txqs, rxqs);
384  }
385  EXPORT_SYMBOL(alloc_etherdev_mqs);
386  
sysfs_format_mac(char * buf,const unsigned char * addr,int len)387  ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len)
388  {
389  	return sysfs_emit(buf, "%*phC\n", len, addr);
390  }
391  EXPORT_SYMBOL(sysfs_format_mac);
392  
eth_gro_receive(struct list_head * head,struct sk_buff * skb)393  struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb)
394  {
395  	const struct packet_offload *ptype;
396  	unsigned int hlen, off_eth;
397  	struct sk_buff *pp = NULL;
398  	struct ethhdr *eh, *eh2;
399  	struct sk_buff *p;
400  	__be16 type;
401  	int flush = 1;
402  
403  	off_eth = skb_gro_offset(skb);
404  	hlen = off_eth + sizeof(*eh);
405  	eh = skb_gro_header(skb, hlen, off_eth);
406  	if (unlikely(!eh))
407  		goto out;
408  
409  	flush = 0;
410  
411  	list_for_each_entry(p, head, list) {
412  		if (!NAPI_GRO_CB(p)->same_flow)
413  			continue;
414  
415  		eh2 = (struct ethhdr *)(p->data + off_eth);
416  		if (compare_ether_header(eh, eh2)) {
417  			NAPI_GRO_CB(p)->same_flow = 0;
418  			continue;
419  		}
420  	}
421  
422  	type = eh->h_proto;
423  
424  	ptype = gro_find_receive_by_type(type);
425  	if (ptype == NULL) {
426  		flush = 1;
427  		goto out;
428  	}
429  
430  	skb_gro_pull(skb, sizeof(*eh));
431  	skb_gro_postpull_rcsum(skb, eh, sizeof(*eh));
432  
433  	pp = indirect_call_gro_receive_inet(ptype->callbacks.gro_receive,
434  					    ipv6_gro_receive, inet_gro_receive,
435  					    head, skb);
436  
437  out:
438  	skb_gro_flush_final(skb, pp, flush);
439  
440  	return pp;
441  }
442  EXPORT_SYMBOL(eth_gro_receive);
443  
eth_gro_complete(struct sk_buff * skb,int nhoff)444  int eth_gro_complete(struct sk_buff *skb, int nhoff)
445  {
446  	struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff);
447  	__be16 type = eh->h_proto;
448  	struct packet_offload *ptype;
449  	int err = -ENOSYS;
450  
451  	if (skb->encapsulation)
452  		skb_set_inner_mac_header(skb, nhoff);
453  
454  	ptype = gro_find_complete_by_type(type);
455  	if (ptype != NULL)
456  		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
457  					 ipv6_gro_complete, inet_gro_complete,
458  					 skb, nhoff + sizeof(*eh));
459  
460  	return err;
461  }
462  EXPORT_SYMBOL(eth_gro_complete);
463  
464  static struct packet_offload eth_packet_offload __read_mostly = {
465  	.type = cpu_to_be16(ETH_P_TEB),
466  	.priority = 10,
467  	.callbacks = {
468  		.gro_receive = eth_gro_receive,
469  		.gro_complete = eth_gro_complete,
470  	},
471  };
472  
eth_offload_init(void)473  static int __init eth_offload_init(void)
474  {
475  	dev_add_offload(&eth_packet_offload);
476  
477  	return 0;
478  }
479  
480  fs_initcall(eth_offload_init);
481  
arch_get_platform_mac_address(void)482  unsigned char * __weak arch_get_platform_mac_address(void)
483  {
484  	return NULL;
485  }
486  
eth_platform_get_mac_address(struct device * dev,u8 * mac_addr)487  int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr)
488  {
489  	unsigned char *addr;
490  	int ret;
491  
492  	ret = of_get_mac_address(dev->of_node, mac_addr);
493  	if (!ret)
494  		return 0;
495  
496  	addr = arch_get_platform_mac_address();
497  	if (!addr)
498  		return -ENODEV;
499  
500  	ether_addr_copy(mac_addr, addr);
501  
502  	return 0;
503  }
504  EXPORT_SYMBOL(eth_platform_get_mac_address);
505  
506  /**
507   * platform_get_ethdev_address - Set netdev's MAC address from a given device
508   * @dev:	Pointer to the device
509   * @netdev:	Pointer to netdev to write the address to
510   *
511   * Wrapper around eth_platform_get_mac_address() which writes the address
512   * directly to netdev->dev_addr.
513   */
platform_get_ethdev_address(struct device * dev,struct net_device * netdev)514  int platform_get_ethdev_address(struct device *dev, struct net_device *netdev)
515  {
516  	u8 addr[ETH_ALEN] __aligned(2);
517  	int ret;
518  
519  	ret = eth_platform_get_mac_address(dev, addr);
520  	if (!ret)
521  		eth_hw_addr_set(netdev, addr);
522  	return ret;
523  }
524  EXPORT_SYMBOL(platform_get_ethdev_address);
525  
526  /**
527   * nvmem_get_mac_address - Obtain the MAC address from an nvmem cell named
528   * 'mac-address' associated with given device.
529   *
530   * @dev:	Device with which the mac-address cell is associated.
531   * @addrbuf:	Buffer to which the MAC address will be copied on success.
532   *
533   * Returns 0 on success or a negative error number on failure.
534   */
nvmem_get_mac_address(struct device * dev,void * addrbuf)535  int nvmem_get_mac_address(struct device *dev, void *addrbuf)
536  {
537  	struct nvmem_cell *cell;
538  	const void *mac;
539  	size_t len;
540  
541  	cell = nvmem_cell_get(dev, "mac-address");
542  	if (IS_ERR(cell))
543  		return PTR_ERR(cell);
544  
545  	mac = nvmem_cell_read(cell, &len);
546  	nvmem_cell_put(cell);
547  
548  	if (IS_ERR(mac))
549  		return PTR_ERR(mac);
550  
551  	if (len != ETH_ALEN || !is_valid_ether_addr(mac)) {
552  		kfree(mac);
553  		return -EINVAL;
554  	}
555  
556  	ether_addr_copy(addrbuf, mac);
557  	kfree(mac);
558  
559  	return 0;
560  }
561  
fwnode_get_mac_addr(struct fwnode_handle * fwnode,const char * name,char * addr)562  static int fwnode_get_mac_addr(struct fwnode_handle *fwnode,
563  			       const char *name, char *addr)
564  {
565  	int ret;
566  
567  	ret = fwnode_property_read_u8_array(fwnode, name, addr, ETH_ALEN);
568  	if (ret)
569  		return ret;
570  
571  	if (!is_valid_ether_addr(addr))
572  		return -EINVAL;
573  	return 0;
574  }
575  
576  /**
577   * fwnode_get_mac_address - Get the MAC from the firmware node
578   * @fwnode:	Pointer to the firmware node
579   * @addr:	Address of buffer to store the MAC in
580   *
581   * Search the firmware node for the best MAC address to use.  'mac-address' is
582   * checked first, because that is supposed to contain to "most recent" MAC
583   * address. If that isn't set, then 'local-mac-address' is checked next,
584   * because that is the default address.  If that isn't set, then the obsolete
585   * 'address' is checked, just in case we're using an old device tree.
586   *
587   * Note that the 'address' property is supposed to contain a virtual address of
588   * the register set, but some DTS files have redefined that property to be the
589   * MAC address.
590   *
591   * All-zero MAC addresses are rejected, because those could be properties that
592   * exist in the firmware tables, but were not updated by the firmware.  For
593   * example, the DTS could define 'mac-address' and 'local-mac-address', with
594   * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
595   * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
596   * exists but is all zeros.
597   */
fwnode_get_mac_address(struct fwnode_handle * fwnode,char * addr)598  int fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr)
599  {
600  	if (!fwnode_get_mac_addr(fwnode, "mac-address", addr) ||
601  	    !fwnode_get_mac_addr(fwnode, "local-mac-address", addr) ||
602  	    !fwnode_get_mac_addr(fwnode, "address", addr))
603  		return 0;
604  
605  	return -ENOENT;
606  }
607  EXPORT_SYMBOL(fwnode_get_mac_address);
608  
609  /**
610   * device_get_mac_address - Get the MAC for a given device
611   * @dev:	Pointer to the device
612   * @addr:	Address of buffer to store the MAC in
613   */
device_get_mac_address(struct device * dev,char * addr)614  int device_get_mac_address(struct device *dev, char *addr)
615  {
616  	return fwnode_get_mac_address(dev_fwnode(dev), addr);
617  }
618  EXPORT_SYMBOL(device_get_mac_address);
619  
620  /**
621   * device_get_ethdev_address - Set netdev's MAC address from a given device
622   * @dev:	Pointer to the device
623   * @netdev:	Pointer to netdev to write the address to
624   *
625   * Wrapper around device_get_mac_address() which writes the address
626   * directly to netdev->dev_addr.
627   */
device_get_ethdev_address(struct device * dev,struct net_device * netdev)628  int device_get_ethdev_address(struct device *dev, struct net_device *netdev)
629  {
630  	u8 addr[ETH_ALEN];
631  	int ret;
632  
633  	ret = device_get_mac_address(dev, addr);
634  	if (!ret)
635  		eth_hw_addr_set(netdev, addr);
636  	return ret;
637  }
638  EXPORT_SYMBOL(device_get_ethdev_address);
639