1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *	Routines having to do with the 'struct sk_buff' memory handlers.
4   *
5   *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6   *			Florian La Roche <rzsfl@rz.uni-sb.de>
7   *
8   *	Fixes:
9   *		Alan Cox	:	Fixed the worst of the load
10   *					balancer bugs.
11   *		Dave Platt	:	Interrupt stacking fix.
12   *	Richard Kooijman	:	Timestamp fixes.
13   *		Alan Cox	:	Changed buffer format.
14   *		Alan Cox	:	destructor hook for AF_UNIX etc.
15   *		Linus Torvalds	:	Better skb_clone.
16   *		Alan Cox	:	Added skb_copy.
17   *		Alan Cox	:	Added all the changed routines Linus
18   *					only put in the headers
19   *		Ray VanTassle	:	Fixed --skb->lock in free
20   *		Alan Cox	:	skb_copy copy arp field
21   *		Andi Kleen	:	slabified it.
22   *		Robert Olsson	:	Removed skb_head_pool
23   *
24   *	NOTE:
25   *		The __skb_ routines should be called with interrupts
26   *	disabled, or you better be *real* sure that the operation is atomic
27   *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28   *	or via disabling bottom half handlers, etc).
29   */
30  
31  /*
32   *	The functions in this file will not compile correctly with gcc 2.4.x
33   */
34  
35  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36  
37  #include <linux/module.h>
38  #include <linux/types.h>
39  #include <linux/kernel.h>
40  #include <linux/mm.h>
41  #include <linux/interrupt.h>
42  #include <linux/in.h>
43  #include <linux/inet.h>
44  #include <linux/slab.h>
45  #include <linux/tcp.h>
46  #include <linux/udp.h>
47  #include <linux/sctp.h>
48  #include <linux/netdevice.h>
49  #ifdef CONFIG_NET_CLS_ACT
50  #include <net/pkt_sched.h>
51  #endif
52  #include <linux/string.h>
53  #include <linux/skbuff.h>
54  #include <linux/skbuff_ref.h>
55  #include <linux/splice.h>
56  #include <linux/cache.h>
57  #include <linux/rtnetlink.h>
58  #include <linux/init.h>
59  #include <linux/scatterlist.h>
60  #include <linux/errqueue.h>
61  #include <linux/prefetch.h>
62  #include <linux/bitfield.h>
63  #include <linux/if_vlan.h>
64  #include <linux/mpls.h>
65  #include <linux/kcov.h>
66  #include <linux/iov_iter.h>
67  
68  #include <net/protocol.h>
69  #include <net/dst.h>
70  #include <net/sock.h>
71  #include <net/checksum.h>
72  #include <net/gso.h>
73  #include <net/hotdata.h>
74  #include <net/ip6_checksum.h>
75  #include <net/xfrm.h>
76  #include <net/mpls.h>
77  #include <net/mptcp.h>
78  #include <net/mctp.h>
79  #include <net/page_pool/helpers.h>
80  #include <net/dropreason.h>
81  
82  #include <linux/uaccess.h>
83  #include <trace/events/skb.h>
84  #include <linux/highmem.h>
85  #include <linux/capability.h>
86  #include <linux/user_namespace.h>
87  #include <linux/indirect_call_wrapper.h>
88  #include <linux/textsearch.h>
89  
90  #include "dev.h"
91  #include "netmem_priv.h"
92  #include "sock_destructor.h"
93  
94  #ifdef CONFIG_SKB_EXTENSIONS
95  static struct kmem_cache *skbuff_ext_cache __ro_after_init;
96  #endif
97  
98  #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
99  
100  /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
101   * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
102   * size, and we can differentiate heads from skb_small_head_cache
103   * vs system slabs by looking at their size (skb_end_offset()).
104   */
105  #define SKB_SMALL_HEAD_CACHE_SIZE					\
106  	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
107  		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
108  		SKB_SMALL_HEAD_SIZE)
109  
110  #define SKB_SMALL_HEAD_HEADROOM						\
111  	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
112  
113  /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
114   * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
115   * netmem is a page.
116   */
117  static_assert(offsetof(struct bio_vec, bv_page) ==
118  	      offsetof(skb_frag_t, netmem));
119  static_assert(sizeof_field(struct bio_vec, bv_page) ==
120  	      sizeof_field(skb_frag_t, netmem));
121  
122  static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
123  static_assert(sizeof_field(struct bio_vec, bv_len) ==
124  	      sizeof_field(skb_frag_t, len));
125  
126  static_assert(offsetof(struct bio_vec, bv_offset) ==
127  	      offsetof(skb_frag_t, offset));
128  static_assert(sizeof_field(struct bio_vec, bv_offset) ==
129  	      sizeof_field(skb_frag_t, offset));
130  
131  #undef FN
132  #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
133  static const char * const drop_reasons[] = {
134  	[SKB_CONSUMED] = "CONSUMED",
135  	DEFINE_DROP_REASON(FN, FN)
136  };
137  
138  static const struct drop_reason_list drop_reasons_core = {
139  	.reasons = drop_reasons,
140  	.n_reasons = ARRAY_SIZE(drop_reasons),
141  };
142  
143  const struct drop_reason_list __rcu *
144  drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
145  	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
146  };
147  EXPORT_SYMBOL(drop_reasons_by_subsys);
148  
149  /**
150   * drop_reasons_register_subsys - register another drop reason subsystem
151   * @subsys: the subsystem to register, must not be the core
152   * @list: the list of drop reasons within the subsystem, must point to
153   *	a statically initialized list
154   */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)155  void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
156  				  const struct drop_reason_list *list)
157  {
158  	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
159  		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
160  		 "invalid subsystem %d\n", subsys))
161  		return;
162  
163  	/* must point to statically allocated memory, so INIT is OK */
164  	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
165  }
166  EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
167  
168  /**
169   * drop_reasons_unregister_subsys - unregister a drop reason subsystem
170   * @subsys: the subsystem to remove, must not be the core
171   *
172   * Note: This will synchronize_rcu() to ensure no users when it returns.
173   */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)174  void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
175  {
176  	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
177  		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
178  		 "invalid subsystem %d\n", subsys))
179  		return;
180  
181  	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
182  
183  	synchronize_rcu();
184  }
185  EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
186  
187  /**
188   *	skb_panic - private function for out-of-line support
189   *	@skb:	buffer
190   *	@sz:	size
191   *	@addr:	address
192   *	@msg:	skb_over_panic or skb_under_panic
193   *
194   *	Out-of-line support for skb_put() and skb_push().
195   *	Called via the wrapper skb_over_panic() or skb_under_panic().
196   *	Keep out of line to prevent kernel bloat.
197   *	__builtin_return_address is not used because it is not always reliable.
198   */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])199  static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
200  		      const char msg[])
201  {
202  	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
203  		 msg, addr, skb->len, sz, skb->head, skb->data,
204  		 (unsigned long)skb->tail, (unsigned long)skb->end,
205  		 skb->dev ? skb->dev->name : "<NULL>");
206  	BUG();
207  }
208  
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)209  static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
210  {
211  	skb_panic(skb, sz, addr, __func__);
212  }
213  
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)214  static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
215  {
216  	skb_panic(skb, sz, addr, __func__);
217  }
218  
219  #define NAPI_SKB_CACHE_SIZE	64
220  #define NAPI_SKB_CACHE_BULK	16
221  #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
222  
223  #if PAGE_SIZE == SZ_4K
224  
225  #define NAPI_HAS_SMALL_PAGE_FRAG	1
226  #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
227  
228  /* specialized page frag allocator using a single order 0 page
229   * and slicing it into 1K sized fragment. Constrained to systems
230   * with a very limited amount of 1K fragments fitting a single
231   * page - to avoid excessive truesize underestimation
232   */
233  
234  struct page_frag_1k {
235  	void *va;
236  	u16 offset;
237  	bool pfmemalloc;
238  };
239  
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp)240  static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
241  {
242  	struct page *page;
243  	int offset;
244  
245  	offset = nc->offset - SZ_1K;
246  	if (likely(offset >= 0))
247  		goto use_frag;
248  
249  	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
250  	if (!page)
251  		return NULL;
252  
253  	nc->va = page_address(page);
254  	nc->pfmemalloc = page_is_pfmemalloc(page);
255  	offset = PAGE_SIZE - SZ_1K;
256  	page_ref_add(page, offset / SZ_1K);
257  
258  use_frag:
259  	nc->offset = offset;
260  	return nc->va + offset;
261  }
262  #else
263  
264  /* the small page is actually unused in this build; add dummy helpers
265   * to please the compiler and avoid later preprocessor's conditionals
266   */
267  #define NAPI_HAS_SMALL_PAGE_FRAG	0
268  #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
269  
270  struct page_frag_1k {
271  };
272  
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp_mask)273  static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
274  {
275  	return NULL;
276  }
277  
278  #endif
279  
280  struct napi_alloc_cache {
281  	local_lock_t bh_lock;
282  	struct page_frag_cache page;
283  	struct page_frag_1k page_small;
284  	unsigned int skb_count;
285  	void *skb_cache[NAPI_SKB_CACHE_SIZE];
286  };
287  
288  static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
289  static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
290  	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
291  };
292  
293  /* Double check that napi_get_frags() allocates skbs with
294   * skb->head being backed by slab, not a page fragment.
295   * This is to make sure bug fixed in 3226b158e67c
296   * ("net: avoid 32 x truesize under-estimation for tiny skbs")
297   * does not accidentally come back.
298   */
napi_get_frags_check(struct napi_struct * napi)299  void napi_get_frags_check(struct napi_struct *napi)
300  {
301  	struct sk_buff *skb;
302  
303  	local_bh_disable();
304  	skb = napi_get_frags(napi);
305  	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
306  	napi_free_frags(napi);
307  	local_bh_enable();
308  }
309  
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)310  void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
311  {
312  	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
313  	void *data;
314  
315  	fragsz = SKB_DATA_ALIGN(fragsz);
316  
317  	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
318  	data = __page_frag_alloc_align(&nc->page, fragsz,
319  				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
320  	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
321  	return data;
322  
323  }
324  EXPORT_SYMBOL(__napi_alloc_frag_align);
325  
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)326  void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
327  {
328  	void *data;
329  
330  	if (in_hardirq() || irqs_disabled()) {
331  		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
332  
333  		fragsz = SKB_DATA_ALIGN(fragsz);
334  		data = __page_frag_alloc_align(nc, fragsz,
335  					       GFP_ATOMIC | __GFP_NOWARN,
336  					       align_mask);
337  	} else {
338  		local_bh_disable();
339  		data = __napi_alloc_frag_align(fragsz, align_mask);
340  		local_bh_enable();
341  	}
342  	return data;
343  }
344  EXPORT_SYMBOL(__netdev_alloc_frag_align);
345  
napi_skb_cache_get(void)346  static struct sk_buff *napi_skb_cache_get(void)
347  {
348  	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
349  	struct sk_buff *skb;
350  
351  	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
352  	if (unlikely(!nc->skb_count)) {
353  		nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
354  						      GFP_ATOMIC | __GFP_NOWARN,
355  						      NAPI_SKB_CACHE_BULK,
356  						      nc->skb_cache);
357  		if (unlikely(!nc->skb_count)) {
358  			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
359  			return NULL;
360  		}
361  	}
362  
363  	skb = nc->skb_cache[--nc->skb_count];
364  	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
365  	kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
366  
367  	return skb;
368  }
369  
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)370  static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
371  					 unsigned int size)
372  {
373  	struct skb_shared_info *shinfo;
374  
375  	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
376  
377  	/* Assumes caller memset cleared SKB */
378  	skb->truesize = SKB_TRUESIZE(size);
379  	refcount_set(&skb->users, 1);
380  	skb->head = data;
381  	skb->data = data;
382  	skb_reset_tail_pointer(skb);
383  	skb_set_end_offset(skb, size);
384  	skb->mac_header = (typeof(skb->mac_header))~0U;
385  	skb->transport_header = (typeof(skb->transport_header))~0U;
386  	skb->alloc_cpu = raw_smp_processor_id();
387  	/* make sure we initialize shinfo sequentially */
388  	shinfo = skb_shinfo(skb);
389  	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
390  	atomic_set(&shinfo->dataref, 1);
391  
392  	skb_set_kcov_handle(skb, kcov_common_handle());
393  }
394  
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)395  static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
396  				     unsigned int *size)
397  {
398  	void *resized;
399  
400  	/* Must find the allocation size (and grow it to match). */
401  	*size = ksize(data);
402  	/* krealloc() will immediately return "data" when
403  	 * "ksize(data)" is requested: it is the existing upper
404  	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
405  	 * that this "new" pointer needs to be passed back to the
406  	 * caller for use so the __alloc_size hinting will be
407  	 * tracked correctly.
408  	 */
409  	resized = krealloc(data, *size, GFP_ATOMIC);
410  	WARN_ON_ONCE(resized != data);
411  	return resized;
412  }
413  
414  /* build_skb() variant which can operate on slab buffers.
415   * Note that this should be used sparingly as slab buffers
416   * cannot be combined efficiently by GRO!
417   */
slab_build_skb(void * data)418  struct sk_buff *slab_build_skb(void *data)
419  {
420  	struct sk_buff *skb;
421  	unsigned int size;
422  
423  	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
424  			       GFP_ATOMIC | __GFP_NOWARN);
425  	if (unlikely(!skb))
426  		return NULL;
427  
428  	memset(skb, 0, offsetof(struct sk_buff, tail));
429  	data = __slab_build_skb(skb, data, &size);
430  	__finalize_skb_around(skb, data, size);
431  
432  	return skb;
433  }
434  EXPORT_SYMBOL(slab_build_skb);
435  
436  /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)437  static void __build_skb_around(struct sk_buff *skb, void *data,
438  			       unsigned int frag_size)
439  {
440  	unsigned int size = frag_size;
441  
442  	/* frag_size == 0 is considered deprecated now. Callers
443  	 * using slab buffer should use slab_build_skb() instead.
444  	 */
445  	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
446  		data = __slab_build_skb(skb, data, &size);
447  
448  	__finalize_skb_around(skb, data, size);
449  }
450  
451  /**
452   * __build_skb - build a network buffer
453   * @data: data buffer provided by caller
454   * @frag_size: size of data (must not be 0)
455   *
456   * Allocate a new &sk_buff. Caller provides space holding head and
457   * skb_shared_info. @data must have been allocated from the page
458   * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
459   * allocation is deprecated, and callers should use slab_build_skb()
460   * instead.)
461   * The return is the new skb buffer.
462   * On a failure the return is %NULL, and @data is not freed.
463   * Notes :
464   *  Before IO, driver allocates only data buffer where NIC put incoming frame
465   *  Driver should add room at head (NET_SKB_PAD) and
466   *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
467   *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
468   *  before giving packet to stack.
469   *  RX rings only contains data buffers, not full skbs.
470   */
__build_skb(void * data,unsigned int frag_size)471  struct sk_buff *__build_skb(void *data, unsigned int frag_size)
472  {
473  	struct sk_buff *skb;
474  
475  	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
476  			       GFP_ATOMIC | __GFP_NOWARN);
477  	if (unlikely(!skb))
478  		return NULL;
479  
480  	memset(skb, 0, offsetof(struct sk_buff, tail));
481  	__build_skb_around(skb, data, frag_size);
482  
483  	return skb;
484  }
485  
486  /* build_skb() is wrapper over __build_skb(), that specifically
487   * takes care of skb->head and skb->pfmemalloc
488   */
build_skb(void * data,unsigned int frag_size)489  struct sk_buff *build_skb(void *data, unsigned int frag_size)
490  {
491  	struct sk_buff *skb = __build_skb(data, frag_size);
492  
493  	if (likely(skb && frag_size)) {
494  		skb->head_frag = 1;
495  		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
496  	}
497  	return skb;
498  }
499  EXPORT_SYMBOL(build_skb);
500  
501  /**
502   * build_skb_around - build a network buffer around provided skb
503   * @skb: sk_buff provide by caller, must be memset cleared
504   * @data: data buffer provided by caller
505   * @frag_size: size of data
506   */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)507  struct sk_buff *build_skb_around(struct sk_buff *skb,
508  				 void *data, unsigned int frag_size)
509  {
510  	if (unlikely(!skb))
511  		return NULL;
512  
513  	__build_skb_around(skb, data, frag_size);
514  
515  	if (frag_size) {
516  		skb->head_frag = 1;
517  		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
518  	}
519  	return skb;
520  }
521  EXPORT_SYMBOL(build_skb_around);
522  
523  /**
524   * __napi_build_skb - build a network buffer
525   * @data: data buffer provided by caller
526   * @frag_size: size of data
527   *
528   * Version of __build_skb() that uses NAPI percpu caches to obtain
529   * skbuff_head instead of inplace allocation.
530   *
531   * Returns a new &sk_buff on success, %NULL on allocation failure.
532   */
__napi_build_skb(void * data,unsigned int frag_size)533  static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
534  {
535  	struct sk_buff *skb;
536  
537  	skb = napi_skb_cache_get();
538  	if (unlikely(!skb))
539  		return NULL;
540  
541  	memset(skb, 0, offsetof(struct sk_buff, tail));
542  	__build_skb_around(skb, data, frag_size);
543  
544  	return skb;
545  }
546  
547  /**
548   * napi_build_skb - build a network buffer
549   * @data: data buffer provided by caller
550   * @frag_size: size of data
551   *
552   * Version of __napi_build_skb() that takes care of skb->head_frag
553   * and skb->pfmemalloc when the data is a page or page fragment.
554   *
555   * Returns a new &sk_buff on success, %NULL on allocation failure.
556   */
napi_build_skb(void * data,unsigned int frag_size)557  struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
558  {
559  	struct sk_buff *skb = __napi_build_skb(data, frag_size);
560  
561  	if (likely(skb) && frag_size) {
562  		skb->head_frag = 1;
563  		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
564  	}
565  
566  	return skb;
567  }
568  EXPORT_SYMBOL(napi_build_skb);
569  
570  /*
571   * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
572   * the caller if emergency pfmemalloc reserves are being used. If it is and
573   * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
574   * may be used. Otherwise, the packet data may be discarded until enough
575   * memory is free
576   */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)577  static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
578  			     bool *pfmemalloc)
579  {
580  	bool ret_pfmemalloc = false;
581  	size_t obj_size;
582  	void *obj;
583  
584  	obj_size = SKB_HEAD_ALIGN(*size);
585  	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
586  	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
587  		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
588  				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
589  				node);
590  		*size = SKB_SMALL_HEAD_CACHE_SIZE;
591  		if (obj || !(gfp_pfmemalloc_allowed(flags)))
592  			goto out;
593  		/* Try again but now we are using pfmemalloc reserves */
594  		ret_pfmemalloc = true;
595  		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
596  		goto out;
597  	}
598  
599  	obj_size = kmalloc_size_roundup(obj_size);
600  	/* The following cast might truncate high-order bits of obj_size, this
601  	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
602  	 */
603  	*size = (unsigned int)obj_size;
604  
605  	/*
606  	 * Try a regular allocation, when that fails and we're not entitled
607  	 * to the reserves, fail.
608  	 */
609  	obj = kmalloc_node_track_caller(obj_size,
610  					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
611  					node);
612  	if (obj || !(gfp_pfmemalloc_allowed(flags)))
613  		goto out;
614  
615  	/* Try again but now we are using pfmemalloc reserves */
616  	ret_pfmemalloc = true;
617  	obj = kmalloc_node_track_caller(obj_size, flags, node);
618  
619  out:
620  	if (pfmemalloc)
621  		*pfmemalloc = ret_pfmemalloc;
622  
623  	return obj;
624  }
625  
626  /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
627   *	'private' fields and also do memory statistics to find all the
628   *	[BEEP] leaks.
629   *
630   */
631  
632  /**
633   *	__alloc_skb	-	allocate a network buffer
634   *	@size: size to allocate
635   *	@gfp_mask: allocation mask
636   *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
637   *		instead of head cache and allocate a cloned (child) skb.
638   *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
639   *		allocations in case the data is required for writeback
640   *	@node: numa node to allocate memory on
641   *
642   *	Allocate a new &sk_buff. The returned buffer has no headroom and a
643   *	tail room of at least size bytes. The object has a reference count
644   *	of one. The return is the buffer. On a failure the return is %NULL.
645   *
646   *	Buffers may only be allocated from interrupts using a @gfp_mask of
647   *	%GFP_ATOMIC.
648   */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)649  struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
650  			    int flags, int node)
651  {
652  	struct kmem_cache *cache;
653  	struct sk_buff *skb;
654  	bool pfmemalloc;
655  	u8 *data;
656  
657  	cache = (flags & SKB_ALLOC_FCLONE)
658  		? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
659  
660  	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
661  		gfp_mask |= __GFP_MEMALLOC;
662  
663  	/* Get the HEAD */
664  	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
665  	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
666  		skb = napi_skb_cache_get();
667  	else
668  		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
669  	if (unlikely(!skb))
670  		return NULL;
671  	prefetchw(skb);
672  
673  	/* We do our best to align skb_shared_info on a separate cache
674  	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
675  	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
676  	 * Both skb->head and skb_shared_info are cache line aligned.
677  	 */
678  	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
679  	if (unlikely(!data))
680  		goto nodata;
681  	/* kmalloc_size_roundup() might give us more room than requested.
682  	 * Put skb_shared_info exactly at the end of allocated zone,
683  	 * to allow max possible filling before reallocation.
684  	 */
685  	prefetchw(data + SKB_WITH_OVERHEAD(size));
686  
687  	/*
688  	 * Only clear those fields we need to clear, not those that we will
689  	 * actually initialise below. Hence, don't put any more fields after
690  	 * the tail pointer in struct sk_buff!
691  	 */
692  	memset(skb, 0, offsetof(struct sk_buff, tail));
693  	__build_skb_around(skb, data, size);
694  	skb->pfmemalloc = pfmemalloc;
695  
696  	if (flags & SKB_ALLOC_FCLONE) {
697  		struct sk_buff_fclones *fclones;
698  
699  		fclones = container_of(skb, struct sk_buff_fclones, skb1);
700  
701  		skb->fclone = SKB_FCLONE_ORIG;
702  		refcount_set(&fclones->fclone_ref, 1);
703  	}
704  
705  	return skb;
706  
707  nodata:
708  	kmem_cache_free(cache, skb);
709  	return NULL;
710  }
711  EXPORT_SYMBOL(__alloc_skb);
712  
713  /**
714   *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
715   *	@dev: network device to receive on
716   *	@len: length to allocate
717   *	@gfp_mask: get_free_pages mask, passed to alloc_skb
718   *
719   *	Allocate a new &sk_buff and assign it a usage count of one. The
720   *	buffer has NET_SKB_PAD headroom built in. Users should allocate
721   *	the headroom they think they need without accounting for the
722   *	built in space. The built in space is used for optimisations.
723   *
724   *	%NULL is returned if there is no free memory.
725   */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)726  struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
727  				   gfp_t gfp_mask)
728  {
729  	struct page_frag_cache *nc;
730  	struct sk_buff *skb;
731  	bool pfmemalloc;
732  	void *data;
733  
734  	len += NET_SKB_PAD;
735  
736  	/* If requested length is either too small or too big,
737  	 * we use kmalloc() for skb->head allocation.
738  	 */
739  	if (len <= SKB_WITH_OVERHEAD(1024) ||
740  	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
741  	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
742  		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
743  		if (!skb)
744  			goto skb_fail;
745  		goto skb_success;
746  	}
747  
748  	len = SKB_HEAD_ALIGN(len);
749  
750  	if (sk_memalloc_socks())
751  		gfp_mask |= __GFP_MEMALLOC;
752  
753  	if (in_hardirq() || irqs_disabled()) {
754  		nc = this_cpu_ptr(&netdev_alloc_cache);
755  		data = page_frag_alloc(nc, len, gfp_mask);
756  		pfmemalloc = nc->pfmemalloc;
757  	} else {
758  		local_bh_disable();
759  		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
760  
761  		nc = this_cpu_ptr(&napi_alloc_cache.page);
762  		data = page_frag_alloc(nc, len, gfp_mask);
763  		pfmemalloc = nc->pfmemalloc;
764  
765  		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
766  		local_bh_enable();
767  	}
768  
769  	if (unlikely(!data))
770  		return NULL;
771  
772  	skb = __build_skb(data, len);
773  	if (unlikely(!skb)) {
774  		skb_free_frag(data);
775  		return NULL;
776  	}
777  
778  	if (pfmemalloc)
779  		skb->pfmemalloc = 1;
780  	skb->head_frag = 1;
781  
782  skb_success:
783  	skb_reserve(skb, NET_SKB_PAD);
784  	skb->dev = dev;
785  
786  skb_fail:
787  	return skb;
788  }
789  EXPORT_SYMBOL(__netdev_alloc_skb);
790  
791  /**
792   *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
793   *	@napi: napi instance this buffer was allocated for
794   *	@len: length to allocate
795   *
796   *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
797   *	attempt to allocate the head from a special reserved region used
798   *	only for NAPI Rx allocation.  By doing this we can save several
799   *	CPU cycles by avoiding having to disable and re-enable IRQs.
800   *
801   *	%NULL is returned if there is no free memory.
802   */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)803  struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
804  {
805  	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
806  	struct napi_alloc_cache *nc;
807  	struct sk_buff *skb;
808  	bool pfmemalloc;
809  	void *data;
810  
811  	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
812  	len += NET_SKB_PAD + NET_IP_ALIGN;
813  
814  	/* If requested length is either too small or too big,
815  	 * we use kmalloc() for skb->head allocation.
816  	 * When the small frag allocator is available, prefer it over kmalloc
817  	 * for small fragments
818  	 */
819  	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
820  	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
821  	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
822  		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
823  				  NUMA_NO_NODE);
824  		if (!skb)
825  			goto skb_fail;
826  		goto skb_success;
827  	}
828  
829  	if (sk_memalloc_socks())
830  		gfp_mask |= __GFP_MEMALLOC;
831  
832  	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
833  	nc = this_cpu_ptr(&napi_alloc_cache);
834  	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
835  		/* we are artificially inflating the allocation size, but
836  		 * that is not as bad as it may look like, as:
837  		 * - 'len' less than GRO_MAX_HEAD makes little sense
838  		 * - On most systems, larger 'len' values lead to fragment
839  		 *   size above 512 bytes
840  		 * - kmalloc would use the kmalloc-1k slab for such values
841  		 * - Builds with smaller GRO_MAX_HEAD will very likely do
842  		 *   little networking, as that implies no WiFi and no
843  		 *   tunnels support, and 32 bits arches.
844  		 */
845  		len = SZ_1K;
846  
847  		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
848  		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
849  	} else {
850  		len = SKB_HEAD_ALIGN(len);
851  
852  		data = page_frag_alloc(&nc->page, len, gfp_mask);
853  		pfmemalloc = nc->page.pfmemalloc;
854  	}
855  	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
856  
857  	if (unlikely(!data))
858  		return NULL;
859  
860  	skb = __napi_build_skb(data, len);
861  	if (unlikely(!skb)) {
862  		skb_free_frag(data);
863  		return NULL;
864  	}
865  
866  	if (pfmemalloc)
867  		skb->pfmemalloc = 1;
868  	skb->head_frag = 1;
869  
870  skb_success:
871  	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
872  	skb->dev = napi->dev;
873  
874  skb_fail:
875  	return skb;
876  }
877  EXPORT_SYMBOL(napi_alloc_skb);
878  
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)879  void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
880  			    int off, int size, unsigned int truesize)
881  {
882  	DEBUG_NET_WARN_ON_ONCE(size > truesize);
883  
884  	skb_fill_netmem_desc(skb, i, netmem, off, size);
885  	skb->len += size;
886  	skb->data_len += size;
887  	skb->truesize += truesize;
888  }
889  EXPORT_SYMBOL(skb_add_rx_frag_netmem);
890  
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)891  void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
892  			  unsigned int truesize)
893  {
894  	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
895  
896  	DEBUG_NET_WARN_ON_ONCE(size > truesize);
897  
898  	skb_frag_size_add(frag, size);
899  	skb->len += size;
900  	skb->data_len += size;
901  	skb->truesize += truesize;
902  }
903  EXPORT_SYMBOL(skb_coalesce_rx_frag);
904  
skb_drop_list(struct sk_buff ** listp)905  static void skb_drop_list(struct sk_buff **listp)
906  {
907  	kfree_skb_list(*listp);
908  	*listp = NULL;
909  }
910  
skb_drop_fraglist(struct sk_buff * skb)911  static inline void skb_drop_fraglist(struct sk_buff *skb)
912  {
913  	skb_drop_list(&skb_shinfo(skb)->frag_list);
914  }
915  
skb_clone_fraglist(struct sk_buff * skb)916  static void skb_clone_fraglist(struct sk_buff *skb)
917  {
918  	struct sk_buff *list;
919  
920  	skb_walk_frags(skb, list)
921  		skb_get(list);
922  }
923  
is_pp_netmem(netmem_ref netmem)924  static bool is_pp_netmem(netmem_ref netmem)
925  {
926  	return (netmem_get_pp_magic(netmem) & ~0x3UL) == PP_SIGNATURE;
927  }
928  
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)929  int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
930  		    unsigned int headroom)
931  {
932  #if IS_ENABLED(CONFIG_PAGE_POOL)
933  	u32 size, truesize, len, max_head_size, off;
934  	struct sk_buff *skb = *pskb, *nskb;
935  	int err, i, head_off;
936  	void *data;
937  
938  	/* XDP does not support fraglist so we need to linearize
939  	 * the skb.
940  	 */
941  	if (skb_has_frag_list(skb))
942  		return -EOPNOTSUPP;
943  
944  	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
945  	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
946  		return -ENOMEM;
947  
948  	size = min_t(u32, skb->len, max_head_size);
949  	truesize = SKB_HEAD_ALIGN(size) + headroom;
950  	data = page_pool_dev_alloc_va(pool, &truesize);
951  	if (!data)
952  		return -ENOMEM;
953  
954  	nskb = napi_build_skb(data, truesize);
955  	if (!nskb) {
956  		page_pool_free_va(pool, data, true);
957  		return -ENOMEM;
958  	}
959  
960  	skb_reserve(nskb, headroom);
961  	skb_copy_header(nskb, skb);
962  	skb_mark_for_recycle(nskb);
963  
964  	err = skb_copy_bits(skb, 0, nskb->data, size);
965  	if (err) {
966  		consume_skb(nskb);
967  		return err;
968  	}
969  	skb_put(nskb, size);
970  
971  	head_off = skb_headroom(nskb) - skb_headroom(skb);
972  	skb_headers_offset_update(nskb, head_off);
973  
974  	off = size;
975  	len = skb->len - off;
976  	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
977  		struct page *page;
978  		u32 page_off;
979  
980  		size = min_t(u32, len, PAGE_SIZE);
981  		truesize = size;
982  
983  		page = page_pool_dev_alloc(pool, &page_off, &truesize);
984  		if (!page) {
985  			consume_skb(nskb);
986  			return -ENOMEM;
987  		}
988  
989  		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
990  		err = skb_copy_bits(skb, off, page_address(page) + page_off,
991  				    size);
992  		if (err) {
993  			consume_skb(nskb);
994  			return err;
995  		}
996  
997  		len -= size;
998  		off += size;
999  	}
1000  
1001  	consume_skb(skb);
1002  	*pskb = nskb;
1003  
1004  	return 0;
1005  #else
1006  	return -EOPNOTSUPP;
1007  #endif
1008  }
1009  EXPORT_SYMBOL(skb_pp_cow_data);
1010  
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,struct bpf_prog * prog)1011  int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
1012  			 struct bpf_prog *prog)
1013  {
1014  	if (!prog->aux->xdp_has_frags)
1015  		return -EINVAL;
1016  
1017  	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1018  }
1019  EXPORT_SYMBOL(skb_cow_data_for_xdp);
1020  
1021  #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)1022  bool napi_pp_put_page(netmem_ref netmem)
1023  {
1024  	netmem = netmem_compound_head(netmem);
1025  
1026  	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1027  	 * in order to preserve any existing bits, such as bit 0 for the
1028  	 * head page of compound page and bit 1 for pfmemalloc page, so
1029  	 * mask those bits for freeing side when doing below checking,
1030  	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1031  	 * to avoid recycling the pfmemalloc page.
1032  	 */
1033  	if (unlikely(!is_pp_netmem(netmem)))
1034  		return false;
1035  
1036  	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
1037  
1038  	return true;
1039  }
1040  EXPORT_SYMBOL(napi_pp_put_page);
1041  #endif
1042  
skb_pp_recycle(struct sk_buff * skb,void * data)1043  static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1044  {
1045  	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1046  		return false;
1047  	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1048  }
1049  
1050  /**
1051   * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1052   * @skb:	page pool aware skb
1053   *
1054   * Increase the fragment reference count (pp_ref_count) of a skb. This is
1055   * intended to gain fragment references only for page pool aware skbs,
1056   * i.e. when skb->pp_recycle is true, and not for fragments in a
1057   * non-pp-recycling skb. It has a fallback to increase references on normal
1058   * pages, as page pool aware skbs may also have normal page fragments.
1059   */
skb_pp_frag_ref(struct sk_buff * skb)1060  static int skb_pp_frag_ref(struct sk_buff *skb)
1061  {
1062  	struct skb_shared_info *shinfo;
1063  	netmem_ref head_netmem;
1064  	int i;
1065  
1066  	if (!skb->pp_recycle)
1067  		return -EINVAL;
1068  
1069  	shinfo = skb_shinfo(skb);
1070  
1071  	for (i = 0; i < shinfo->nr_frags; i++) {
1072  		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1073  		if (likely(is_pp_netmem(head_netmem)))
1074  			page_pool_ref_netmem(head_netmem);
1075  		else
1076  			page_ref_inc(netmem_to_page(head_netmem));
1077  	}
1078  	return 0;
1079  }
1080  
skb_kfree_head(void * head,unsigned int end_offset)1081  static void skb_kfree_head(void *head, unsigned int end_offset)
1082  {
1083  	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1084  		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1085  	else
1086  		kfree(head);
1087  }
1088  
skb_free_head(struct sk_buff * skb)1089  static void skb_free_head(struct sk_buff *skb)
1090  {
1091  	unsigned char *head = skb->head;
1092  
1093  	if (skb->head_frag) {
1094  		if (skb_pp_recycle(skb, head))
1095  			return;
1096  		skb_free_frag(head);
1097  	} else {
1098  		skb_kfree_head(head, skb_end_offset(skb));
1099  	}
1100  }
1101  
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1102  static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1103  {
1104  	struct skb_shared_info *shinfo = skb_shinfo(skb);
1105  	int i;
1106  
1107  	if (!skb_data_unref(skb, shinfo))
1108  		goto exit;
1109  
1110  	if (skb_zcopy(skb)) {
1111  		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1112  
1113  		skb_zcopy_clear(skb, true);
1114  		if (skip_unref)
1115  			goto free_head;
1116  	}
1117  
1118  	for (i = 0; i < shinfo->nr_frags; i++)
1119  		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1120  
1121  free_head:
1122  	if (shinfo->frag_list)
1123  		kfree_skb_list_reason(shinfo->frag_list, reason);
1124  
1125  	skb_free_head(skb);
1126  exit:
1127  	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1128  	 * bit is only set on the head though, so in order to avoid races
1129  	 * while trying to recycle fragments on __skb_frag_unref() we need
1130  	 * to make one SKB responsible for triggering the recycle path.
1131  	 * So disable the recycling bit if an SKB is cloned and we have
1132  	 * additional references to the fragmented part of the SKB.
1133  	 * Eventually the last SKB will have the recycling bit set and it's
1134  	 * dataref set to 0, which will trigger the recycling
1135  	 */
1136  	skb->pp_recycle = 0;
1137  }
1138  
1139  /*
1140   *	Free an skbuff by memory without cleaning the state.
1141   */
kfree_skbmem(struct sk_buff * skb)1142  static void kfree_skbmem(struct sk_buff *skb)
1143  {
1144  	struct sk_buff_fclones *fclones;
1145  
1146  	switch (skb->fclone) {
1147  	case SKB_FCLONE_UNAVAILABLE:
1148  		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1149  		return;
1150  
1151  	case SKB_FCLONE_ORIG:
1152  		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1153  
1154  		/* We usually free the clone (TX completion) before original skb
1155  		 * This test would have no chance to be true for the clone,
1156  		 * while here, branch prediction will be good.
1157  		 */
1158  		if (refcount_read(&fclones->fclone_ref) == 1)
1159  			goto fastpath;
1160  		break;
1161  
1162  	default: /* SKB_FCLONE_CLONE */
1163  		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1164  		break;
1165  	}
1166  	if (!refcount_dec_and_test(&fclones->fclone_ref))
1167  		return;
1168  fastpath:
1169  	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1170  }
1171  
skb_release_head_state(struct sk_buff * skb)1172  void skb_release_head_state(struct sk_buff *skb)
1173  {
1174  	skb_dst_drop(skb);
1175  	if (skb->destructor) {
1176  		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1177  		skb->destructor(skb);
1178  	}
1179  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1180  	nf_conntrack_put(skb_nfct(skb));
1181  #endif
1182  	skb_ext_put(skb);
1183  }
1184  
1185  /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1186  static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1187  {
1188  	skb_release_head_state(skb);
1189  	if (likely(skb->head))
1190  		skb_release_data(skb, reason);
1191  }
1192  
1193  /**
1194   *	__kfree_skb - private function
1195   *	@skb: buffer
1196   *
1197   *	Free an sk_buff. Release anything attached to the buffer.
1198   *	Clean the state. This is an internal helper function. Users should
1199   *	always call kfree_skb
1200   */
1201  
__kfree_skb(struct sk_buff * skb)1202  void __kfree_skb(struct sk_buff *skb)
1203  {
1204  	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1205  	kfree_skbmem(skb);
1206  }
1207  EXPORT_SYMBOL(__kfree_skb);
1208  
1209  static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1210  bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1211  			  enum skb_drop_reason reason)
1212  {
1213  	if (unlikely(!skb_unref(skb)))
1214  		return false;
1215  
1216  	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1217  			       u32_get_bits(reason,
1218  					    SKB_DROP_REASON_SUBSYS_MASK) >=
1219  				SKB_DROP_REASON_SUBSYS_NUM);
1220  
1221  	if (reason == SKB_CONSUMED)
1222  		trace_consume_skb(skb, __builtin_return_address(0));
1223  	else
1224  		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1225  	return true;
1226  }
1227  
1228  /**
1229   *	sk_skb_reason_drop - free an sk_buff with special reason
1230   *	@sk: the socket to receive @skb, or NULL if not applicable
1231   *	@skb: buffer to free
1232   *	@reason: reason why this skb is dropped
1233   *
1234   *	Drop a reference to the buffer and free it if the usage count has hit
1235   *	zero. Meanwhile, pass the receiving socket and drop reason to
1236   *	'kfree_skb' tracepoint.
1237   */
1238  void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1239  sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1240  {
1241  	if (__sk_skb_reason_drop(sk, skb, reason))
1242  		__kfree_skb(skb);
1243  }
1244  EXPORT_SYMBOL(sk_skb_reason_drop);
1245  
1246  #define KFREE_SKB_BULK_SIZE	16
1247  
1248  struct skb_free_array {
1249  	unsigned int skb_count;
1250  	void *skb_array[KFREE_SKB_BULK_SIZE];
1251  };
1252  
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1253  static void kfree_skb_add_bulk(struct sk_buff *skb,
1254  			       struct skb_free_array *sa,
1255  			       enum skb_drop_reason reason)
1256  {
1257  	/* if SKB is a clone, don't handle this case */
1258  	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1259  		__kfree_skb(skb);
1260  		return;
1261  	}
1262  
1263  	skb_release_all(skb, reason);
1264  	sa->skb_array[sa->skb_count++] = skb;
1265  
1266  	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1267  		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1268  				     sa->skb_array);
1269  		sa->skb_count = 0;
1270  	}
1271  }
1272  
1273  void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1274  kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1275  {
1276  	struct skb_free_array sa;
1277  
1278  	sa.skb_count = 0;
1279  
1280  	while (segs) {
1281  		struct sk_buff *next = segs->next;
1282  
1283  		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1284  			skb_poison_list(segs);
1285  			kfree_skb_add_bulk(segs, &sa, reason);
1286  		}
1287  
1288  		segs = next;
1289  	}
1290  
1291  	if (sa.skb_count)
1292  		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1293  }
1294  EXPORT_SYMBOL(kfree_skb_list_reason);
1295  
1296  /* Dump skb information and contents.
1297   *
1298   * Must only be called from net_ratelimit()-ed paths.
1299   *
1300   * Dumps whole packets if full_pkt, only headers otherwise.
1301   */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1302  void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1303  {
1304  	struct skb_shared_info *sh = skb_shinfo(skb);
1305  	struct net_device *dev = skb->dev;
1306  	struct sock *sk = skb->sk;
1307  	struct sk_buff *list_skb;
1308  	bool has_mac, has_trans;
1309  	int headroom, tailroom;
1310  	int i, len, seg_len;
1311  
1312  	if (full_pkt)
1313  		len = skb->len;
1314  	else
1315  		len = min_t(int, skb->len, MAX_HEADER + 128);
1316  
1317  	headroom = skb_headroom(skb);
1318  	tailroom = skb_tailroom(skb);
1319  
1320  	has_mac = skb_mac_header_was_set(skb);
1321  	has_trans = skb_transport_header_was_set(skb);
1322  
1323  	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1324  	       "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1325  	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1326  	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1327  	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1328  	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1329  	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1330  	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1331  	       has_mac ? skb->mac_header : -1,
1332  	       has_mac ? skb_mac_header_len(skb) : -1,
1333  	       skb->mac_len,
1334  	       skb->network_header,
1335  	       has_trans ? skb_network_header_len(skb) : -1,
1336  	       has_trans ? skb->transport_header : -1,
1337  	       sh->tx_flags, sh->nr_frags,
1338  	       sh->gso_size, sh->gso_type, sh->gso_segs,
1339  	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1340  	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1341  	       skb->hash, skb->sw_hash, skb->l4_hash,
1342  	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1343  	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1344  	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1345  	       skb->inner_network_header, skb->inner_transport_header);
1346  
1347  	if (dev)
1348  		printk("%sdev name=%s feat=%pNF\n",
1349  		       level, dev->name, &dev->features);
1350  	if (sk)
1351  		printk("%ssk family=%hu type=%u proto=%u\n",
1352  		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1353  
1354  	if (full_pkt && headroom)
1355  		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1356  			       16, 1, skb->head, headroom, false);
1357  
1358  	seg_len = min_t(int, skb_headlen(skb), len);
1359  	if (seg_len)
1360  		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1361  			       16, 1, skb->data, seg_len, false);
1362  	len -= seg_len;
1363  
1364  	if (full_pkt && tailroom)
1365  		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1366  			       16, 1, skb_tail_pointer(skb), tailroom, false);
1367  
1368  	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1369  		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1370  		u32 p_off, p_len, copied;
1371  		struct page *p;
1372  		u8 *vaddr;
1373  
1374  		if (skb_frag_is_net_iov(frag)) {
1375  			printk("%sskb frag %d: not readable\n", level, i);
1376  			len -= skb_frag_size(frag);
1377  			if (!len)
1378  				break;
1379  			continue;
1380  		}
1381  
1382  		skb_frag_foreach_page(frag, skb_frag_off(frag),
1383  				      skb_frag_size(frag), p, p_off, p_len,
1384  				      copied) {
1385  			seg_len = min_t(int, p_len, len);
1386  			vaddr = kmap_atomic(p);
1387  			print_hex_dump(level, "skb frag:     ",
1388  				       DUMP_PREFIX_OFFSET,
1389  				       16, 1, vaddr + p_off, seg_len, false);
1390  			kunmap_atomic(vaddr);
1391  			len -= seg_len;
1392  			if (!len)
1393  				break;
1394  		}
1395  	}
1396  
1397  	if (full_pkt && skb_has_frag_list(skb)) {
1398  		printk("skb fraglist:\n");
1399  		skb_walk_frags(skb, list_skb)
1400  			skb_dump(level, list_skb, true);
1401  	}
1402  }
1403  EXPORT_SYMBOL(skb_dump);
1404  
1405  /**
1406   *	skb_tx_error - report an sk_buff xmit error
1407   *	@skb: buffer that triggered an error
1408   *
1409   *	Report xmit error if a device callback is tracking this skb.
1410   *	skb must be freed afterwards.
1411   */
skb_tx_error(struct sk_buff * skb)1412  void skb_tx_error(struct sk_buff *skb)
1413  {
1414  	if (skb) {
1415  		skb_zcopy_downgrade_managed(skb);
1416  		skb_zcopy_clear(skb, true);
1417  	}
1418  }
1419  EXPORT_SYMBOL(skb_tx_error);
1420  
1421  #ifdef CONFIG_TRACEPOINTS
1422  /**
1423   *	consume_skb - free an skbuff
1424   *	@skb: buffer to free
1425   *
1426   *	Drop a ref to the buffer and free it if the usage count has hit zero
1427   *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1428   *	is being dropped after a failure and notes that
1429   */
consume_skb(struct sk_buff * skb)1430  void consume_skb(struct sk_buff *skb)
1431  {
1432  	if (!skb_unref(skb))
1433  		return;
1434  
1435  	trace_consume_skb(skb, __builtin_return_address(0));
1436  	__kfree_skb(skb);
1437  }
1438  EXPORT_SYMBOL(consume_skb);
1439  #endif
1440  
1441  /**
1442   *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1443   *	@skb: buffer to free
1444   *
1445   *	Alike consume_skb(), but this variant assumes that this is the last
1446   *	skb reference and all the head states have been already dropped
1447   */
__consume_stateless_skb(struct sk_buff * skb)1448  void __consume_stateless_skb(struct sk_buff *skb)
1449  {
1450  	trace_consume_skb(skb, __builtin_return_address(0));
1451  	skb_release_data(skb, SKB_CONSUMED);
1452  	kfree_skbmem(skb);
1453  }
1454  
napi_skb_cache_put(struct sk_buff * skb)1455  static void napi_skb_cache_put(struct sk_buff *skb)
1456  {
1457  	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1458  	u32 i;
1459  
1460  	if (!kasan_mempool_poison_object(skb))
1461  		return;
1462  
1463  	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1464  	nc->skb_cache[nc->skb_count++] = skb;
1465  
1466  	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1467  		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1468  			kasan_mempool_unpoison_object(nc->skb_cache[i],
1469  						kmem_cache_size(net_hotdata.skbuff_cache));
1470  
1471  		kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1472  				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1473  		nc->skb_count = NAPI_SKB_CACHE_HALF;
1474  	}
1475  	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1476  }
1477  
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1478  void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1479  {
1480  	skb_release_all(skb, reason);
1481  	napi_skb_cache_put(skb);
1482  }
1483  
napi_skb_free_stolen_head(struct sk_buff * skb)1484  void napi_skb_free_stolen_head(struct sk_buff *skb)
1485  {
1486  	if (unlikely(skb->slow_gro)) {
1487  		nf_reset_ct(skb);
1488  		skb_dst_drop(skb);
1489  		skb_ext_put(skb);
1490  		skb_orphan(skb);
1491  		skb->slow_gro = 0;
1492  	}
1493  	napi_skb_cache_put(skb);
1494  }
1495  
napi_consume_skb(struct sk_buff * skb,int budget)1496  void napi_consume_skb(struct sk_buff *skb, int budget)
1497  {
1498  	/* Zero budget indicate non-NAPI context called us, like netpoll */
1499  	if (unlikely(!budget)) {
1500  		dev_consume_skb_any(skb);
1501  		return;
1502  	}
1503  
1504  	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1505  
1506  	if (!skb_unref(skb))
1507  		return;
1508  
1509  	/* if reaching here SKB is ready to free */
1510  	trace_consume_skb(skb, __builtin_return_address(0));
1511  
1512  	/* if SKB is a clone, don't handle this case */
1513  	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1514  		__kfree_skb(skb);
1515  		return;
1516  	}
1517  
1518  	skb_release_all(skb, SKB_CONSUMED);
1519  	napi_skb_cache_put(skb);
1520  }
1521  EXPORT_SYMBOL(napi_consume_skb);
1522  
1523  /* Make sure a field is contained by headers group */
1524  #define CHECK_SKB_FIELD(field) \
1525  	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1526  		     offsetof(struct sk_buff, headers.field));	\
1527  
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1528  static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1529  {
1530  	new->tstamp		= old->tstamp;
1531  	/* We do not copy old->sk */
1532  	new->dev		= old->dev;
1533  	memcpy(new->cb, old->cb, sizeof(old->cb));
1534  	skb_dst_copy(new, old);
1535  	__skb_ext_copy(new, old);
1536  	__nf_copy(new, old, false);
1537  
1538  	/* Note : this field could be in the headers group.
1539  	 * It is not yet because we do not want to have a 16 bit hole
1540  	 */
1541  	new->queue_mapping = old->queue_mapping;
1542  
1543  	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1544  	CHECK_SKB_FIELD(protocol);
1545  	CHECK_SKB_FIELD(csum);
1546  	CHECK_SKB_FIELD(hash);
1547  	CHECK_SKB_FIELD(priority);
1548  	CHECK_SKB_FIELD(skb_iif);
1549  	CHECK_SKB_FIELD(vlan_proto);
1550  	CHECK_SKB_FIELD(vlan_tci);
1551  	CHECK_SKB_FIELD(transport_header);
1552  	CHECK_SKB_FIELD(network_header);
1553  	CHECK_SKB_FIELD(mac_header);
1554  	CHECK_SKB_FIELD(inner_protocol);
1555  	CHECK_SKB_FIELD(inner_transport_header);
1556  	CHECK_SKB_FIELD(inner_network_header);
1557  	CHECK_SKB_FIELD(inner_mac_header);
1558  	CHECK_SKB_FIELD(mark);
1559  #ifdef CONFIG_NETWORK_SECMARK
1560  	CHECK_SKB_FIELD(secmark);
1561  #endif
1562  #ifdef CONFIG_NET_RX_BUSY_POLL
1563  	CHECK_SKB_FIELD(napi_id);
1564  #endif
1565  	CHECK_SKB_FIELD(alloc_cpu);
1566  #ifdef CONFIG_XPS
1567  	CHECK_SKB_FIELD(sender_cpu);
1568  #endif
1569  #ifdef CONFIG_NET_SCHED
1570  	CHECK_SKB_FIELD(tc_index);
1571  #endif
1572  
1573  }
1574  
1575  /*
1576   * You should not add any new code to this function.  Add it to
1577   * __copy_skb_header above instead.
1578   */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1579  static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1580  {
1581  #define C(x) n->x = skb->x
1582  
1583  	n->next = n->prev = NULL;
1584  	n->sk = NULL;
1585  	__copy_skb_header(n, skb);
1586  
1587  	C(len);
1588  	C(data_len);
1589  	C(mac_len);
1590  	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1591  	n->cloned = 1;
1592  	n->nohdr = 0;
1593  	n->peeked = 0;
1594  	C(pfmemalloc);
1595  	C(pp_recycle);
1596  	n->destructor = NULL;
1597  	C(tail);
1598  	C(end);
1599  	C(head);
1600  	C(head_frag);
1601  	C(data);
1602  	C(truesize);
1603  	refcount_set(&n->users, 1);
1604  
1605  	atomic_inc(&(skb_shinfo(skb)->dataref));
1606  	skb->cloned = 1;
1607  
1608  	return n;
1609  #undef C
1610  }
1611  
1612  /**
1613   * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1614   * @first: first sk_buff of the msg
1615   */
alloc_skb_for_msg(struct sk_buff * first)1616  struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1617  {
1618  	struct sk_buff *n;
1619  
1620  	n = alloc_skb(0, GFP_ATOMIC);
1621  	if (!n)
1622  		return NULL;
1623  
1624  	n->len = first->len;
1625  	n->data_len = first->len;
1626  	n->truesize = first->truesize;
1627  
1628  	skb_shinfo(n)->frag_list = first;
1629  
1630  	__copy_skb_header(n, first);
1631  	n->destructor = NULL;
1632  
1633  	return n;
1634  }
1635  EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1636  
1637  /**
1638   *	skb_morph	-	morph one skb into another
1639   *	@dst: the skb to receive the contents
1640   *	@src: the skb to supply the contents
1641   *
1642   *	This is identical to skb_clone except that the target skb is
1643   *	supplied by the user.
1644   *
1645   *	The target skb is returned upon exit.
1646   */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1647  struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1648  {
1649  	skb_release_all(dst, SKB_CONSUMED);
1650  	return __skb_clone(dst, src);
1651  }
1652  EXPORT_SYMBOL_GPL(skb_morph);
1653  
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1654  int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1655  {
1656  	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1657  	struct user_struct *user;
1658  
1659  	if (capable(CAP_IPC_LOCK) || !size)
1660  		return 0;
1661  
1662  	rlim = rlimit(RLIMIT_MEMLOCK);
1663  	if (rlim == RLIM_INFINITY)
1664  		return 0;
1665  
1666  	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1667  	max_pg = rlim >> PAGE_SHIFT;
1668  	user = mmp->user ? : current_user();
1669  
1670  	old_pg = atomic_long_read(&user->locked_vm);
1671  	do {
1672  		new_pg = old_pg + num_pg;
1673  		if (new_pg > max_pg)
1674  			return -ENOBUFS;
1675  	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1676  
1677  	if (!mmp->user) {
1678  		mmp->user = get_uid(user);
1679  		mmp->num_pg = num_pg;
1680  	} else {
1681  		mmp->num_pg += num_pg;
1682  	}
1683  
1684  	return 0;
1685  }
1686  EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1687  
mm_unaccount_pinned_pages(struct mmpin * mmp)1688  void mm_unaccount_pinned_pages(struct mmpin *mmp)
1689  {
1690  	if (mmp->user) {
1691  		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1692  		free_uid(mmp->user);
1693  	}
1694  }
1695  EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1696  
msg_zerocopy_alloc(struct sock * sk,size_t size)1697  static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1698  {
1699  	struct ubuf_info_msgzc *uarg;
1700  	struct sk_buff *skb;
1701  
1702  	WARN_ON_ONCE(!in_task());
1703  
1704  	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1705  	if (!skb)
1706  		return NULL;
1707  
1708  	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1709  	uarg = (void *)skb->cb;
1710  	uarg->mmp.user = NULL;
1711  
1712  	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1713  		kfree_skb(skb);
1714  		return NULL;
1715  	}
1716  
1717  	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1718  	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1719  	uarg->len = 1;
1720  	uarg->bytelen = size;
1721  	uarg->zerocopy = 1;
1722  	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1723  	refcount_set(&uarg->ubuf.refcnt, 1);
1724  	sock_hold(sk);
1725  
1726  	return &uarg->ubuf;
1727  }
1728  
skb_from_uarg(struct ubuf_info_msgzc * uarg)1729  static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1730  {
1731  	return container_of((void *)uarg, struct sk_buff, cb);
1732  }
1733  
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1734  struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1735  				       struct ubuf_info *uarg)
1736  {
1737  	if (uarg) {
1738  		struct ubuf_info_msgzc *uarg_zc;
1739  		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1740  		u32 bytelen, next;
1741  
1742  		/* there might be non MSG_ZEROCOPY users */
1743  		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1744  			return NULL;
1745  
1746  		/* realloc only when socket is locked (TCP, UDP cork),
1747  		 * so uarg->len and sk_zckey access is serialized
1748  		 */
1749  		if (!sock_owned_by_user(sk)) {
1750  			WARN_ON_ONCE(1);
1751  			return NULL;
1752  		}
1753  
1754  		uarg_zc = uarg_to_msgzc(uarg);
1755  		bytelen = uarg_zc->bytelen + size;
1756  		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1757  			/* TCP can create new skb to attach new uarg */
1758  			if (sk->sk_type == SOCK_STREAM)
1759  				goto new_alloc;
1760  			return NULL;
1761  		}
1762  
1763  		next = (u32)atomic_read(&sk->sk_zckey);
1764  		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1765  			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1766  				return NULL;
1767  			uarg_zc->len++;
1768  			uarg_zc->bytelen = bytelen;
1769  			atomic_set(&sk->sk_zckey, ++next);
1770  
1771  			/* no extra ref when appending to datagram (MSG_MORE) */
1772  			if (sk->sk_type == SOCK_STREAM)
1773  				net_zcopy_get(uarg);
1774  
1775  			return uarg;
1776  		}
1777  	}
1778  
1779  new_alloc:
1780  	return msg_zerocopy_alloc(sk, size);
1781  }
1782  EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1783  
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1784  static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1785  {
1786  	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1787  	u32 old_lo, old_hi;
1788  	u64 sum_len;
1789  
1790  	old_lo = serr->ee.ee_info;
1791  	old_hi = serr->ee.ee_data;
1792  	sum_len = old_hi - old_lo + 1ULL + len;
1793  
1794  	if (sum_len >= (1ULL << 32))
1795  		return false;
1796  
1797  	if (lo != old_hi + 1)
1798  		return false;
1799  
1800  	serr->ee.ee_data += len;
1801  	return true;
1802  }
1803  
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1804  static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1805  {
1806  	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1807  	struct sock_exterr_skb *serr;
1808  	struct sock *sk = skb->sk;
1809  	struct sk_buff_head *q;
1810  	unsigned long flags;
1811  	bool is_zerocopy;
1812  	u32 lo, hi;
1813  	u16 len;
1814  
1815  	mm_unaccount_pinned_pages(&uarg->mmp);
1816  
1817  	/* if !len, there was only 1 call, and it was aborted
1818  	 * so do not queue a completion notification
1819  	 */
1820  	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1821  		goto release;
1822  
1823  	len = uarg->len;
1824  	lo = uarg->id;
1825  	hi = uarg->id + len - 1;
1826  	is_zerocopy = uarg->zerocopy;
1827  
1828  	serr = SKB_EXT_ERR(skb);
1829  	memset(serr, 0, sizeof(*serr));
1830  	serr->ee.ee_errno = 0;
1831  	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1832  	serr->ee.ee_data = hi;
1833  	serr->ee.ee_info = lo;
1834  	if (!is_zerocopy)
1835  		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1836  
1837  	q = &sk->sk_error_queue;
1838  	spin_lock_irqsave(&q->lock, flags);
1839  	tail = skb_peek_tail(q);
1840  	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1841  	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1842  		__skb_queue_tail(q, skb);
1843  		skb = NULL;
1844  	}
1845  	spin_unlock_irqrestore(&q->lock, flags);
1846  
1847  	sk_error_report(sk);
1848  
1849  release:
1850  	consume_skb(skb);
1851  	sock_put(sk);
1852  }
1853  
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1854  static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1855  				  bool success)
1856  {
1857  	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1858  
1859  	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1860  
1861  	if (refcount_dec_and_test(&uarg->refcnt))
1862  		__msg_zerocopy_callback(uarg_zc);
1863  }
1864  
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1865  void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1866  {
1867  	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1868  
1869  	atomic_dec(&sk->sk_zckey);
1870  	uarg_to_msgzc(uarg)->len--;
1871  
1872  	if (have_uref)
1873  		msg_zerocopy_complete(NULL, uarg, true);
1874  }
1875  EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1876  
1877  const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1878  	.complete = msg_zerocopy_complete,
1879  };
1880  EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1881  
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1882  int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1883  			     struct msghdr *msg, int len,
1884  			     struct ubuf_info *uarg)
1885  {
1886  	int err, orig_len = skb->len;
1887  
1888  	if (uarg->ops->link_skb) {
1889  		err = uarg->ops->link_skb(skb, uarg);
1890  		if (err)
1891  			return err;
1892  	} else {
1893  		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1894  
1895  		/* An skb can only point to one uarg. This edge case happens
1896  		 * when TCP appends to an skb, but zerocopy_realloc triggered
1897  		 * a new alloc.
1898  		 */
1899  		if (orig_uarg && uarg != orig_uarg)
1900  			return -EEXIST;
1901  	}
1902  
1903  	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1904  	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1905  		struct sock *save_sk = skb->sk;
1906  
1907  		/* Streams do not free skb on error. Reset to prev state. */
1908  		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1909  		skb->sk = sk;
1910  		___pskb_trim(skb, orig_len);
1911  		skb->sk = save_sk;
1912  		return err;
1913  	}
1914  
1915  	skb_zcopy_set(skb, uarg, NULL);
1916  	return skb->len - orig_len;
1917  }
1918  EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1919  
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1920  void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1921  {
1922  	int i;
1923  
1924  	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1925  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1926  		skb_frag_ref(skb, i);
1927  }
1928  EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1929  
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1930  static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1931  			      gfp_t gfp_mask)
1932  {
1933  	if (skb_zcopy(orig)) {
1934  		if (skb_zcopy(nskb)) {
1935  			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1936  			if (!gfp_mask) {
1937  				WARN_ON_ONCE(1);
1938  				return -ENOMEM;
1939  			}
1940  			if (skb_uarg(nskb) == skb_uarg(orig))
1941  				return 0;
1942  			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1943  				return -EIO;
1944  		}
1945  		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1946  	}
1947  	return 0;
1948  }
1949  
1950  /**
1951   *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1952   *	@skb: the skb to modify
1953   *	@gfp_mask: allocation priority
1954   *
1955   *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1956   *	It will copy all frags into kernel and drop the reference
1957   *	to userspace pages.
1958   *
1959   *	If this function is called from an interrupt gfp_mask() must be
1960   *	%GFP_ATOMIC.
1961   *
1962   *	Returns 0 on success or a negative error code on failure
1963   *	to allocate kernel memory to copy to.
1964   */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1965  int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1966  {
1967  	int num_frags = skb_shinfo(skb)->nr_frags;
1968  	struct page *page, *head = NULL;
1969  	int i, order, psize, new_frags;
1970  	u32 d_off;
1971  
1972  	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1973  		return -EINVAL;
1974  
1975  	if (!skb_frags_readable(skb))
1976  		return -EFAULT;
1977  
1978  	if (!num_frags)
1979  		goto release;
1980  
1981  	/* We might have to allocate high order pages, so compute what minimum
1982  	 * page order is needed.
1983  	 */
1984  	order = 0;
1985  	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1986  		order++;
1987  	psize = (PAGE_SIZE << order);
1988  
1989  	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1990  	for (i = 0; i < new_frags; i++) {
1991  		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1992  		if (!page) {
1993  			while (head) {
1994  				struct page *next = (struct page *)page_private(head);
1995  				put_page(head);
1996  				head = next;
1997  			}
1998  			return -ENOMEM;
1999  		}
2000  		set_page_private(page, (unsigned long)head);
2001  		head = page;
2002  	}
2003  
2004  	page = head;
2005  	d_off = 0;
2006  	for (i = 0; i < num_frags; i++) {
2007  		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2008  		u32 p_off, p_len, copied;
2009  		struct page *p;
2010  		u8 *vaddr;
2011  
2012  		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2013  				      p, p_off, p_len, copied) {
2014  			u32 copy, done = 0;
2015  			vaddr = kmap_atomic(p);
2016  
2017  			while (done < p_len) {
2018  				if (d_off == psize) {
2019  					d_off = 0;
2020  					page = (struct page *)page_private(page);
2021  				}
2022  				copy = min_t(u32, psize - d_off, p_len - done);
2023  				memcpy(page_address(page) + d_off,
2024  				       vaddr + p_off + done, copy);
2025  				done += copy;
2026  				d_off += copy;
2027  			}
2028  			kunmap_atomic(vaddr);
2029  		}
2030  	}
2031  
2032  	/* skb frags release userspace buffers */
2033  	for (i = 0; i < num_frags; i++)
2034  		skb_frag_unref(skb, i);
2035  
2036  	/* skb frags point to kernel buffers */
2037  	for (i = 0; i < new_frags - 1; i++) {
2038  		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2039  		head = (struct page *)page_private(head);
2040  	}
2041  	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2042  			       d_off);
2043  	skb_shinfo(skb)->nr_frags = new_frags;
2044  
2045  release:
2046  	skb_zcopy_clear(skb, false);
2047  	return 0;
2048  }
2049  EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2050  
2051  /**
2052   *	skb_clone	-	duplicate an sk_buff
2053   *	@skb: buffer to clone
2054   *	@gfp_mask: allocation priority
2055   *
2056   *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2057   *	copies share the same packet data but not structure. The new
2058   *	buffer has a reference count of 1. If the allocation fails the
2059   *	function returns %NULL otherwise the new buffer is returned.
2060   *
2061   *	If this function is called from an interrupt gfp_mask() must be
2062   *	%GFP_ATOMIC.
2063   */
2064  
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)2065  struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2066  {
2067  	struct sk_buff_fclones *fclones = container_of(skb,
2068  						       struct sk_buff_fclones,
2069  						       skb1);
2070  	struct sk_buff *n;
2071  
2072  	if (skb_orphan_frags(skb, gfp_mask))
2073  		return NULL;
2074  
2075  	if (skb->fclone == SKB_FCLONE_ORIG &&
2076  	    refcount_read(&fclones->fclone_ref) == 1) {
2077  		n = &fclones->skb2;
2078  		refcount_set(&fclones->fclone_ref, 2);
2079  		n->fclone = SKB_FCLONE_CLONE;
2080  	} else {
2081  		if (skb_pfmemalloc(skb))
2082  			gfp_mask |= __GFP_MEMALLOC;
2083  
2084  		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2085  		if (!n)
2086  			return NULL;
2087  
2088  		n->fclone = SKB_FCLONE_UNAVAILABLE;
2089  	}
2090  
2091  	return __skb_clone(n, skb);
2092  }
2093  EXPORT_SYMBOL(skb_clone);
2094  
skb_headers_offset_update(struct sk_buff * skb,int off)2095  void skb_headers_offset_update(struct sk_buff *skb, int off)
2096  {
2097  	/* Only adjust this if it actually is csum_start rather than csum */
2098  	if (skb->ip_summed == CHECKSUM_PARTIAL)
2099  		skb->csum_start += off;
2100  	/* {transport,network,mac}_header and tail are relative to skb->head */
2101  	skb->transport_header += off;
2102  	skb->network_header   += off;
2103  	if (skb_mac_header_was_set(skb))
2104  		skb->mac_header += off;
2105  	skb->inner_transport_header += off;
2106  	skb->inner_network_header += off;
2107  	skb->inner_mac_header += off;
2108  }
2109  EXPORT_SYMBOL(skb_headers_offset_update);
2110  
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2111  void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2112  {
2113  	__copy_skb_header(new, old);
2114  
2115  	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2116  	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2117  	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2118  }
2119  EXPORT_SYMBOL(skb_copy_header);
2120  
skb_alloc_rx_flag(const struct sk_buff * skb)2121  static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2122  {
2123  	if (skb_pfmemalloc(skb))
2124  		return SKB_ALLOC_RX;
2125  	return 0;
2126  }
2127  
2128  /**
2129   *	skb_copy	-	create private copy of an sk_buff
2130   *	@skb: buffer to copy
2131   *	@gfp_mask: allocation priority
2132   *
2133   *	Make a copy of both an &sk_buff and its data. This is used when the
2134   *	caller wishes to modify the data and needs a private copy of the
2135   *	data to alter. Returns %NULL on failure or the pointer to the buffer
2136   *	on success. The returned buffer has a reference count of 1.
2137   *
2138   *	As by-product this function converts non-linear &sk_buff to linear
2139   *	one, so that &sk_buff becomes completely private and caller is allowed
2140   *	to modify all the data of returned buffer. This means that this
2141   *	function is not recommended for use in circumstances when only
2142   *	header is going to be modified. Use pskb_copy() instead.
2143   */
2144  
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2145  struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2146  {
2147  	struct sk_buff *n;
2148  	unsigned int size;
2149  	int headerlen;
2150  
2151  	if (!skb_frags_readable(skb))
2152  		return NULL;
2153  
2154  	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2155  		return NULL;
2156  
2157  	headerlen = skb_headroom(skb);
2158  	size = skb_end_offset(skb) + skb->data_len;
2159  	n = __alloc_skb(size, gfp_mask,
2160  			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2161  	if (!n)
2162  		return NULL;
2163  
2164  	/* Set the data pointer */
2165  	skb_reserve(n, headerlen);
2166  	/* Set the tail pointer and length */
2167  	skb_put(n, skb->len);
2168  
2169  	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2170  
2171  	skb_copy_header(n, skb);
2172  	return n;
2173  }
2174  EXPORT_SYMBOL(skb_copy);
2175  
2176  /**
2177   *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2178   *	@skb: buffer to copy
2179   *	@headroom: headroom of new skb
2180   *	@gfp_mask: allocation priority
2181   *	@fclone: if true allocate the copy of the skb from the fclone
2182   *	cache instead of the head cache; it is recommended to set this
2183   *	to true for the cases where the copy will likely be cloned
2184   *
2185   *	Make a copy of both an &sk_buff and part of its data, located
2186   *	in header. Fragmented data remain shared. This is used when
2187   *	the caller wishes to modify only header of &sk_buff and needs
2188   *	private copy of the header to alter. Returns %NULL on failure
2189   *	or the pointer to the buffer on success.
2190   *	The returned buffer has a reference count of 1.
2191   */
2192  
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2193  struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2194  				   gfp_t gfp_mask, bool fclone)
2195  {
2196  	unsigned int size = skb_headlen(skb) + headroom;
2197  	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2198  	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2199  
2200  	if (!n)
2201  		goto out;
2202  
2203  	/* Set the data pointer */
2204  	skb_reserve(n, headroom);
2205  	/* Set the tail pointer and length */
2206  	skb_put(n, skb_headlen(skb));
2207  	/* Copy the bytes */
2208  	skb_copy_from_linear_data(skb, n->data, n->len);
2209  
2210  	n->truesize += skb->data_len;
2211  	n->data_len  = skb->data_len;
2212  	n->len	     = skb->len;
2213  
2214  	if (skb_shinfo(skb)->nr_frags) {
2215  		int i;
2216  
2217  		if (skb_orphan_frags(skb, gfp_mask) ||
2218  		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2219  			kfree_skb(n);
2220  			n = NULL;
2221  			goto out;
2222  		}
2223  		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2224  			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2225  			skb_frag_ref(skb, i);
2226  		}
2227  		skb_shinfo(n)->nr_frags = i;
2228  	}
2229  
2230  	if (skb_has_frag_list(skb)) {
2231  		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2232  		skb_clone_fraglist(n);
2233  	}
2234  
2235  	skb_copy_header(n, skb);
2236  out:
2237  	return n;
2238  }
2239  EXPORT_SYMBOL(__pskb_copy_fclone);
2240  
2241  /**
2242   *	pskb_expand_head - reallocate header of &sk_buff
2243   *	@skb: buffer to reallocate
2244   *	@nhead: room to add at head
2245   *	@ntail: room to add at tail
2246   *	@gfp_mask: allocation priority
2247   *
2248   *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2249   *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2250   *	reference count of 1. Returns zero in the case of success or error,
2251   *	if expansion failed. In the last case, &sk_buff is not changed.
2252   *
2253   *	All the pointers pointing into skb header may change and must be
2254   *	reloaded after call to this function.
2255   */
2256  
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2257  int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2258  		     gfp_t gfp_mask)
2259  {
2260  	unsigned int osize = skb_end_offset(skb);
2261  	unsigned int size = osize + nhead + ntail;
2262  	long off;
2263  	u8 *data;
2264  	int i;
2265  
2266  	BUG_ON(nhead < 0);
2267  
2268  	BUG_ON(skb_shared(skb));
2269  
2270  	skb_zcopy_downgrade_managed(skb);
2271  
2272  	if (skb_pfmemalloc(skb))
2273  		gfp_mask |= __GFP_MEMALLOC;
2274  
2275  	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2276  	if (!data)
2277  		goto nodata;
2278  	size = SKB_WITH_OVERHEAD(size);
2279  
2280  	/* Copy only real data... and, alas, header. This should be
2281  	 * optimized for the cases when header is void.
2282  	 */
2283  	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2284  
2285  	memcpy((struct skb_shared_info *)(data + size),
2286  	       skb_shinfo(skb),
2287  	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2288  
2289  	/*
2290  	 * if shinfo is shared we must drop the old head gracefully, but if it
2291  	 * is not we can just drop the old head and let the existing refcount
2292  	 * be since all we did is relocate the values
2293  	 */
2294  	if (skb_cloned(skb)) {
2295  		if (skb_orphan_frags(skb, gfp_mask))
2296  			goto nofrags;
2297  		if (skb_zcopy(skb))
2298  			refcount_inc(&skb_uarg(skb)->refcnt);
2299  		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2300  			skb_frag_ref(skb, i);
2301  
2302  		if (skb_has_frag_list(skb))
2303  			skb_clone_fraglist(skb);
2304  
2305  		skb_release_data(skb, SKB_CONSUMED);
2306  	} else {
2307  		skb_free_head(skb);
2308  	}
2309  	off = (data + nhead) - skb->head;
2310  
2311  	skb->head     = data;
2312  	skb->head_frag = 0;
2313  	skb->data    += off;
2314  
2315  	skb_set_end_offset(skb, size);
2316  #ifdef NET_SKBUFF_DATA_USES_OFFSET
2317  	off           = nhead;
2318  #endif
2319  	skb->tail	      += off;
2320  	skb_headers_offset_update(skb, nhead);
2321  	skb->cloned   = 0;
2322  	skb->hdr_len  = 0;
2323  	skb->nohdr    = 0;
2324  	atomic_set(&skb_shinfo(skb)->dataref, 1);
2325  
2326  	skb_metadata_clear(skb);
2327  
2328  	/* It is not generally safe to change skb->truesize.
2329  	 * For the moment, we really care of rx path, or
2330  	 * when skb is orphaned (not attached to a socket).
2331  	 */
2332  	if (!skb->sk || skb->destructor == sock_edemux)
2333  		skb->truesize += size - osize;
2334  
2335  	return 0;
2336  
2337  nofrags:
2338  	skb_kfree_head(data, size);
2339  nodata:
2340  	return -ENOMEM;
2341  }
2342  EXPORT_SYMBOL(pskb_expand_head);
2343  
2344  /* Make private copy of skb with writable head and some headroom */
2345  
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2346  struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2347  {
2348  	struct sk_buff *skb2;
2349  	int delta = headroom - skb_headroom(skb);
2350  
2351  	if (delta <= 0)
2352  		skb2 = pskb_copy(skb, GFP_ATOMIC);
2353  	else {
2354  		skb2 = skb_clone(skb, GFP_ATOMIC);
2355  		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2356  					     GFP_ATOMIC)) {
2357  			kfree_skb(skb2);
2358  			skb2 = NULL;
2359  		}
2360  	}
2361  	return skb2;
2362  }
2363  EXPORT_SYMBOL(skb_realloc_headroom);
2364  
2365  /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2366  int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2367  {
2368  	unsigned int saved_end_offset, saved_truesize;
2369  	struct skb_shared_info *shinfo;
2370  	int res;
2371  
2372  	saved_end_offset = skb_end_offset(skb);
2373  	saved_truesize = skb->truesize;
2374  
2375  	res = pskb_expand_head(skb, 0, 0, pri);
2376  	if (res)
2377  		return res;
2378  
2379  	skb->truesize = saved_truesize;
2380  
2381  	if (likely(skb_end_offset(skb) == saved_end_offset))
2382  		return 0;
2383  
2384  	/* We can not change skb->end if the original or new value
2385  	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2386  	 */
2387  	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2388  	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2389  		/* We think this path should not be taken.
2390  		 * Add a temporary trace to warn us just in case.
2391  		 */
2392  		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2393  			    saved_end_offset, skb_end_offset(skb));
2394  		WARN_ON_ONCE(1);
2395  		return 0;
2396  	}
2397  
2398  	shinfo = skb_shinfo(skb);
2399  
2400  	/* We are about to change back skb->end,
2401  	 * we need to move skb_shinfo() to its new location.
2402  	 */
2403  	memmove(skb->head + saved_end_offset,
2404  		shinfo,
2405  		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2406  
2407  	skb_set_end_offset(skb, saved_end_offset);
2408  
2409  	return 0;
2410  }
2411  
2412  /**
2413   *	skb_expand_head - reallocate header of &sk_buff
2414   *	@skb: buffer to reallocate
2415   *	@headroom: needed headroom
2416   *
2417   *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2418   *	if possible; copies skb->sk to new skb as needed
2419   *	and frees original skb in case of failures.
2420   *
2421   *	It expect increased headroom and generates warning otherwise.
2422   */
2423  
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2424  struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2425  {
2426  	int delta = headroom - skb_headroom(skb);
2427  	int osize = skb_end_offset(skb);
2428  	struct sock *sk = skb->sk;
2429  
2430  	if (WARN_ONCE(delta <= 0,
2431  		      "%s is expecting an increase in the headroom", __func__))
2432  		return skb;
2433  
2434  	delta = SKB_DATA_ALIGN(delta);
2435  	/* pskb_expand_head() might crash, if skb is shared. */
2436  	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2437  		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2438  
2439  		if (unlikely(!nskb))
2440  			goto fail;
2441  
2442  		if (sk)
2443  			skb_set_owner_w(nskb, sk);
2444  		consume_skb(skb);
2445  		skb = nskb;
2446  	}
2447  	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2448  		goto fail;
2449  
2450  	if (sk && is_skb_wmem(skb)) {
2451  		delta = skb_end_offset(skb) - osize;
2452  		refcount_add(delta, &sk->sk_wmem_alloc);
2453  		skb->truesize += delta;
2454  	}
2455  	return skb;
2456  
2457  fail:
2458  	kfree_skb(skb);
2459  	return NULL;
2460  }
2461  EXPORT_SYMBOL(skb_expand_head);
2462  
2463  /**
2464   *	skb_copy_expand	-	copy and expand sk_buff
2465   *	@skb: buffer to copy
2466   *	@newheadroom: new free bytes at head
2467   *	@newtailroom: new free bytes at tail
2468   *	@gfp_mask: allocation priority
2469   *
2470   *	Make a copy of both an &sk_buff and its data and while doing so
2471   *	allocate additional space.
2472   *
2473   *	This is used when the caller wishes to modify the data and needs a
2474   *	private copy of the data to alter as well as more space for new fields.
2475   *	Returns %NULL on failure or the pointer to the buffer
2476   *	on success. The returned buffer has a reference count of 1.
2477   *
2478   *	You must pass %GFP_ATOMIC as the allocation priority if this function
2479   *	is called from an interrupt.
2480   */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2481  struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2482  				int newheadroom, int newtailroom,
2483  				gfp_t gfp_mask)
2484  {
2485  	/*
2486  	 *	Allocate the copy buffer
2487  	 */
2488  	int head_copy_len, head_copy_off;
2489  	struct sk_buff *n;
2490  	int oldheadroom;
2491  
2492  	if (!skb_frags_readable(skb))
2493  		return NULL;
2494  
2495  	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2496  		return NULL;
2497  
2498  	oldheadroom = skb_headroom(skb);
2499  	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2500  			gfp_mask, skb_alloc_rx_flag(skb),
2501  			NUMA_NO_NODE);
2502  	if (!n)
2503  		return NULL;
2504  
2505  	skb_reserve(n, newheadroom);
2506  
2507  	/* Set the tail pointer and length */
2508  	skb_put(n, skb->len);
2509  
2510  	head_copy_len = oldheadroom;
2511  	head_copy_off = 0;
2512  	if (newheadroom <= head_copy_len)
2513  		head_copy_len = newheadroom;
2514  	else
2515  		head_copy_off = newheadroom - head_copy_len;
2516  
2517  	/* Copy the linear header and data. */
2518  	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2519  			     skb->len + head_copy_len));
2520  
2521  	skb_copy_header(n, skb);
2522  
2523  	skb_headers_offset_update(n, newheadroom - oldheadroom);
2524  
2525  	return n;
2526  }
2527  EXPORT_SYMBOL(skb_copy_expand);
2528  
2529  /**
2530   *	__skb_pad		-	zero pad the tail of an skb
2531   *	@skb: buffer to pad
2532   *	@pad: space to pad
2533   *	@free_on_error: free buffer on error
2534   *
2535   *	Ensure that a buffer is followed by a padding area that is zero
2536   *	filled. Used by network drivers which may DMA or transfer data
2537   *	beyond the buffer end onto the wire.
2538   *
2539   *	May return error in out of memory cases. The skb is freed on error
2540   *	if @free_on_error is true.
2541   */
2542  
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2543  int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2544  {
2545  	int err;
2546  	int ntail;
2547  
2548  	/* If the skbuff is non linear tailroom is always zero.. */
2549  	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2550  		memset(skb->data+skb->len, 0, pad);
2551  		return 0;
2552  	}
2553  
2554  	ntail = skb->data_len + pad - (skb->end - skb->tail);
2555  	if (likely(skb_cloned(skb) || ntail > 0)) {
2556  		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2557  		if (unlikely(err))
2558  			goto free_skb;
2559  	}
2560  
2561  	/* FIXME: The use of this function with non-linear skb's really needs
2562  	 * to be audited.
2563  	 */
2564  	err = skb_linearize(skb);
2565  	if (unlikely(err))
2566  		goto free_skb;
2567  
2568  	memset(skb->data + skb->len, 0, pad);
2569  	return 0;
2570  
2571  free_skb:
2572  	if (free_on_error)
2573  		kfree_skb(skb);
2574  	return err;
2575  }
2576  EXPORT_SYMBOL(__skb_pad);
2577  
2578  /**
2579   *	pskb_put - add data to the tail of a potentially fragmented buffer
2580   *	@skb: start of the buffer to use
2581   *	@tail: tail fragment of the buffer to use
2582   *	@len: amount of data to add
2583   *
2584   *	This function extends the used data area of the potentially
2585   *	fragmented buffer. @tail must be the last fragment of @skb -- or
2586   *	@skb itself. If this would exceed the total buffer size the kernel
2587   *	will panic. A pointer to the first byte of the extra data is
2588   *	returned.
2589   */
2590  
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2591  void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2592  {
2593  	if (tail != skb) {
2594  		skb->data_len += len;
2595  		skb->len += len;
2596  	}
2597  	return skb_put(tail, len);
2598  }
2599  EXPORT_SYMBOL_GPL(pskb_put);
2600  
2601  /**
2602   *	skb_put - add data to a buffer
2603   *	@skb: buffer to use
2604   *	@len: amount of data to add
2605   *
2606   *	This function extends the used data area of the buffer. If this would
2607   *	exceed the total buffer size the kernel will panic. A pointer to the
2608   *	first byte of the extra data is returned.
2609   */
skb_put(struct sk_buff * skb,unsigned int len)2610  void *skb_put(struct sk_buff *skb, unsigned int len)
2611  {
2612  	void *tmp = skb_tail_pointer(skb);
2613  	SKB_LINEAR_ASSERT(skb);
2614  	skb->tail += len;
2615  	skb->len  += len;
2616  	if (unlikely(skb->tail > skb->end))
2617  		skb_over_panic(skb, len, __builtin_return_address(0));
2618  	return tmp;
2619  }
2620  EXPORT_SYMBOL(skb_put);
2621  
2622  /**
2623   *	skb_push - add data to the start of a buffer
2624   *	@skb: buffer to use
2625   *	@len: amount of data to add
2626   *
2627   *	This function extends the used data area of the buffer at the buffer
2628   *	start. If this would exceed the total buffer headroom the kernel will
2629   *	panic. A pointer to the first byte of the extra data is returned.
2630   */
skb_push(struct sk_buff * skb,unsigned int len)2631  void *skb_push(struct sk_buff *skb, unsigned int len)
2632  {
2633  	skb->data -= len;
2634  	skb->len  += len;
2635  	if (unlikely(skb->data < skb->head))
2636  		skb_under_panic(skb, len, __builtin_return_address(0));
2637  	return skb->data;
2638  }
2639  EXPORT_SYMBOL(skb_push);
2640  
2641  /**
2642   *	skb_pull - remove data from the start of a buffer
2643   *	@skb: buffer to use
2644   *	@len: amount of data to remove
2645   *
2646   *	This function removes data from the start of a buffer, returning
2647   *	the memory to the headroom. A pointer to the next data in the buffer
2648   *	is returned. Once the data has been pulled future pushes will overwrite
2649   *	the old data.
2650   */
skb_pull(struct sk_buff * skb,unsigned int len)2651  void *skb_pull(struct sk_buff *skb, unsigned int len)
2652  {
2653  	return skb_pull_inline(skb, len);
2654  }
2655  EXPORT_SYMBOL(skb_pull);
2656  
2657  /**
2658   *	skb_pull_data - remove data from the start of a buffer returning its
2659   *	original position.
2660   *	@skb: buffer to use
2661   *	@len: amount of data to remove
2662   *
2663   *	This function removes data from the start of a buffer, returning
2664   *	the memory to the headroom. A pointer to the original data in the buffer
2665   *	is returned after checking if there is enough data to pull. Once the
2666   *	data has been pulled future pushes will overwrite the old data.
2667   */
skb_pull_data(struct sk_buff * skb,size_t len)2668  void *skb_pull_data(struct sk_buff *skb, size_t len)
2669  {
2670  	void *data = skb->data;
2671  
2672  	if (skb->len < len)
2673  		return NULL;
2674  
2675  	skb_pull(skb, len);
2676  
2677  	return data;
2678  }
2679  EXPORT_SYMBOL(skb_pull_data);
2680  
2681  /**
2682   *	skb_trim - remove end from a buffer
2683   *	@skb: buffer to alter
2684   *	@len: new length
2685   *
2686   *	Cut the length of a buffer down by removing data from the tail. If
2687   *	the buffer is already under the length specified it is not modified.
2688   *	The skb must be linear.
2689   */
skb_trim(struct sk_buff * skb,unsigned int len)2690  void skb_trim(struct sk_buff *skb, unsigned int len)
2691  {
2692  	if (skb->len > len)
2693  		__skb_trim(skb, len);
2694  }
2695  EXPORT_SYMBOL(skb_trim);
2696  
2697  /* Trims skb to length len. It can change skb pointers.
2698   */
2699  
___pskb_trim(struct sk_buff * skb,unsigned int len)2700  int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2701  {
2702  	struct sk_buff **fragp;
2703  	struct sk_buff *frag;
2704  	int offset = skb_headlen(skb);
2705  	int nfrags = skb_shinfo(skb)->nr_frags;
2706  	int i;
2707  	int err;
2708  
2709  	if (skb_cloned(skb) &&
2710  	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2711  		return err;
2712  
2713  	i = 0;
2714  	if (offset >= len)
2715  		goto drop_pages;
2716  
2717  	for (; i < nfrags; i++) {
2718  		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2719  
2720  		if (end < len) {
2721  			offset = end;
2722  			continue;
2723  		}
2724  
2725  		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2726  
2727  drop_pages:
2728  		skb_shinfo(skb)->nr_frags = i;
2729  
2730  		for (; i < nfrags; i++)
2731  			skb_frag_unref(skb, i);
2732  
2733  		if (skb_has_frag_list(skb))
2734  			skb_drop_fraglist(skb);
2735  		goto done;
2736  	}
2737  
2738  	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2739  	     fragp = &frag->next) {
2740  		int end = offset + frag->len;
2741  
2742  		if (skb_shared(frag)) {
2743  			struct sk_buff *nfrag;
2744  
2745  			nfrag = skb_clone(frag, GFP_ATOMIC);
2746  			if (unlikely(!nfrag))
2747  				return -ENOMEM;
2748  
2749  			nfrag->next = frag->next;
2750  			consume_skb(frag);
2751  			frag = nfrag;
2752  			*fragp = frag;
2753  		}
2754  
2755  		if (end < len) {
2756  			offset = end;
2757  			continue;
2758  		}
2759  
2760  		if (end > len &&
2761  		    unlikely((err = pskb_trim(frag, len - offset))))
2762  			return err;
2763  
2764  		if (frag->next)
2765  			skb_drop_list(&frag->next);
2766  		break;
2767  	}
2768  
2769  done:
2770  	if (len > skb_headlen(skb)) {
2771  		skb->data_len -= skb->len - len;
2772  		skb->len       = len;
2773  	} else {
2774  		skb->len       = len;
2775  		skb->data_len  = 0;
2776  		skb_set_tail_pointer(skb, len);
2777  	}
2778  
2779  	if (!skb->sk || skb->destructor == sock_edemux)
2780  		skb_condense(skb);
2781  	return 0;
2782  }
2783  EXPORT_SYMBOL(___pskb_trim);
2784  
2785  /* Note : use pskb_trim_rcsum() instead of calling this directly
2786   */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2787  int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2788  {
2789  	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2790  		int delta = skb->len - len;
2791  
2792  		skb->csum = csum_block_sub(skb->csum,
2793  					   skb_checksum(skb, len, delta, 0),
2794  					   len);
2795  	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2796  		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2797  		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2798  
2799  		if (offset + sizeof(__sum16) > hdlen)
2800  			return -EINVAL;
2801  	}
2802  	return __pskb_trim(skb, len);
2803  }
2804  EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2805  
2806  /**
2807   *	__pskb_pull_tail - advance tail of skb header
2808   *	@skb: buffer to reallocate
2809   *	@delta: number of bytes to advance tail
2810   *
2811   *	The function makes a sense only on a fragmented &sk_buff,
2812   *	it expands header moving its tail forward and copying necessary
2813   *	data from fragmented part.
2814   *
2815   *	&sk_buff MUST have reference count of 1.
2816   *
2817   *	Returns %NULL (and &sk_buff does not change) if pull failed
2818   *	or value of new tail of skb in the case of success.
2819   *
2820   *	All the pointers pointing into skb header may change and must be
2821   *	reloaded after call to this function.
2822   */
2823  
2824  /* Moves tail of skb head forward, copying data from fragmented part,
2825   * when it is necessary.
2826   * 1. It may fail due to malloc failure.
2827   * 2. It may change skb pointers.
2828   *
2829   * It is pretty complicated. Luckily, it is called only in exceptional cases.
2830   */
__pskb_pull_tail(struct sk_buff * skb,int delta)2831  void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2832  {
2833  	/* If skb has not enough free space at tail, get new one
2834  	 * plus 128 bytes for future expansions. If we have enough
2835  	 * room at tail, reallocate without expansion only if skb is cloned.
2836  	 */
2837  	int i, k, eat = (skb->tail + delta) - skb->end;
2838  
2839  	if (!skb_frags_readable(skb))
2840  		return NULL;
2841  
2842  	if (eat > 0 || skb_cloned(skb)) {
2843  		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2844  				     GFP_ATOMIC))
2845  			return NULL;
2846  	}
2847  
2848  	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2849  			     skb_tail_pointer(skb), delta));
2850  
2851  	/* Optimization: no fragments, no reasons to preestimate
2852  	 * size of pulled pages. Superb.
2853  	 */
2854  	if (!skb_has_frag_list(skb))
2855  		goto pull_pages;
2856  
2857  	/* Estimate size of pulled pages. */
2858  	eat = delta;
2859  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2860  		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2861  
2862  		if (size >= eat)
2863  			goto pull_pages;
2864  		eat -= size;
2865  	}
2866  
2867  	/* If we need update frag list, we are in troubles.
2868  	 * Certainly, it is possible to add an offset to skb data,
2869  	 * but taking into account that pulling is expected to
2870  	 * be very rare operation, it is worth to fight against
2871  	 * further bloating skb head and crucify ourselves here instead.
2872  	 * Pure masohism, indeed. 8)8)
2873  	 */
2874  	if (eat) {
2875  		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2876  		struct sk_buff *clone = NULL;
2877  		struct sk_buff *insp = NULL;
2878  
2879  		do {
2880  			if (list->len <= eat) {
2881  				/* Eaten as whole. */
2882  				eat -= list->len;
2883  				list = list->next;
2884  				insp = list;
2885  			} else {
2886  				/* Eaten partially. */
2887  				if (skb_is_gso(skb) && !list->head_frag &&
2888  				    skb_headlen(list))
2889  					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2890  
2891  				if (skb_shared(list)) {
2892  					/* Sucks! We need to fork list. :-( */
2893  					clone = skb_clone(list, GFP_ATOMIC);
2894  					if (!clone)
2895  						return NULL;
2896  					insp = list->next;
2897  					list = clone;
2898  				} else {
2899  					/* This may be pulled without
2900  					 * problems. */
2901  					insp = list;
2902  				}
2903  				if (!pskb_pull(list, eat)) {
2904  					kfree_skb(clone);
2905  					return NULL;
2906  				}
2907  				break;
2908  			}
2909  		} while (eat);
2910  
2911  		/* Free pulled out fragments. */
2912  		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2913  			skb_shinfo(skb)->frag_list = list->next;
2914  			consume_skb(list);
2915  		}
2916  		/* And insert new clone at head. */
2917  		if (clone) {
2918  			clone->next = list;
2919  			skb_shinfo(skb)->frag_list = clone;
2920  		}
2921  	}
2922  	/* Success! Now we may commit changes to skb data. */
2923  
2924  pull_pages:
2925  	eat = delta;
2926  	k = 0;
2927  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2928  		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2929  
2930  		if (size <= eat) {
2931  			skb_frag_unref(skb, i);
2932  			eat -= size;
2933  		} else {
2934  			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2935  
2936  			*frag = skb_shinfo(skb)->frags[i];
2937  			if (eat) {
2938  				skb_frag_off_add(frag, eat);
2939  				skb_frag_size_sub(frag, eat);
2940  				if (!i)
2941  					goto end;
2942  				eat = 0;
2943  			}
2944  			k++;
2945  		}
2946  	}
2947  	skb_shinfo(skb)->nr_frags = k;
2948  
2949  end:
2950  	skb->tail     += delta;
2951  	skb->data_len -= delta;
2952  
2953  	if (!skb->data_len)
2954  		skb_zcopy_clear(skb, false);
2955  
2956  	return skb_tail_pointer(skb);
2957  }
2958  EXPORT_SYMBOL(__pskb_pull_tail);
2959  
2960  /**
2961   *	skb_copy_bits - copy bits from skb to kernel buffer
2962   *	@skb: source skb
2963   *	@offset: offset in source
2964   *	@to: destination buffer
2965   *	@len: number of bytes to copy
2966   *
2967   *	Copy the specified number of bytes from the source skb to the
2968   *	destination buffer.
2969   *
2970   *	CAUTION ! :
2971   *		If its prototype is ever changed,
2972   *		check arch/{*}/net/{*}.S files,
2973   *		since it is called from BPF assembly code.
2974   */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2975  int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2976  {
2977  	int start = skb_headlen(skb);
2978  	struct sk_buff *frag_iter;
2979  	int i, copy;
2980  
2981  	if (offset > (int)skb->len - len)
2982  		goto fault;
2983  
2984  	/* Copy header. */
2985  	if ((copy = start - offset) > 0) {
2986  		if (copy > len)
2987  			copy = len;
2988  		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2989  		if ((len -= copy) == 0)
2990  			return 0;
2991  		offset += copy;
2992  		to     += copy;
2993  	}
2994  
2995  	if (!skb_frags_readable(skb))
2996  		goto fault;
2997  
2998  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2999  		int end;
3000  		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
3001  
3002  		WARN_ON(start > offset + len);
3003  
3004  		end = start + skb_frag_size(f);
3005  		if ((copy = end - offset) > 0) {
3006  			u32 p_off, p_len, copied;
3007  			struct page *p;
3008  			u8 *vaddr;
3009  
3010  			if (copy > len)
3011  				copy = len;
3012  
3013  			skb_frag_foreach_page(f,
3014  					      skb_frag_off(f) + offset - start,
3015  					      copy, p, p_off, p_len, copied) {
3016  				vaddr = kmap_atomic(p);
3017  				memcpy(to + copied, vaddr + p_off, p_len);
3018  				kunmap_atomic(vaddr);
3019  			}
3020  
3021  			if ((len -= copy) == 0)
3022  				return 0;
3023  			offset += copy;
3024  			to     += copy;
3025  		}
3026  		start = end;
3027  	}
3028  
3029  	skb_walk_frags(skb, frag_iter) {
3030  		int end;
3031  
3032  		WARN_ON(start > offset + len);
3033  
3034  		end = start + frag_iter->len;
3035  		if ((copy = end - offset) > 0) {
3036  			if (copy > len)
3037  				copy = len;
3038  			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3039  				goto fault;
3040  			if ((len -= copy) == 0)
3041  				return 0;
3042  			offset += copy;
3043  			to     += copy;
3044  		}
3045  		start = end;
3046  	}
3047  
3048  	if (!len)
3049  		return 0;
3050  
3051  fault:
3052  	return -EFAULT;
3053  }
3054  EXPORT_SYMBOL(skb_copy_bits);
3055  
3056  /*
3057   * Callback from splice_to_pipe(), if we need to release some pages
3058   * at the end of the spd in case we error'ed out in filling the pipe.
3059   */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)3060  static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3061  {
3062  	put_page(spd->pages[i]);
3063  }
3064  
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)3065  static struct page *linear_to_page(struct page *page, unsigned int *len,
3066  				   unsigned int *offset,
3067  				   struct sock *sk)
3068  {
3069  	struct page_frag *pfrag = sk_page_frag(sk);
3070  
3071  	if (!sk_page_frag_refill(sk, pfrag))
3072  		return NULL;
3073  
3074  	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3075  
3076  	memcpy(page_address(pfrag->page) + pfrag->offset,
3077  	       page_address(page) + *offset, *len);
3078  	*offset = pfrag->offset;
3079  	pfrag->offset += *len;
3080  
3081  	return pfrag->page;
3082  }
3083  
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)3084  static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3085  			     struct page *page,
3086  			     unsigned int offset)
3087  {
3088  	return	spd->nr_pages &&
3089  		spd->pages[spd->nr_pages - 1] == page &&
3090  		(spd->partial[spd->nr_pages - 1].offset +
3091  		 spd->partial[spd->nr_pages - 1].len == offset);
3092  }
3093  
3094  /*
3095   * Fill page/offset/length into spd, if it can hold more pages.
3096   */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3097  static bool spd_fill_page(struct splice_pipe_desc *spd,
3098  			  struct pipe_inode_info *pipe, struct page *page,
3099  			  unsigned int *len, unsigned int offset,
3100  			  bool linear,
3101  			  struct sock *sk)
3102  {
3103  	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3104  		return true;
3105  
3106  	if (linear) {
3107  		page = linear_to_page(page, len, &offset, sk);
3108  		if (!page)
3109  			return true;
3110  	}
3111  	if (spd_can_coalesce(spd, page, offset)) {
3112  		spd->partial[spd->nr_pages - 1].len += *len;
3113  		return false;
3114  	}
3115  	get_page(page);
3116  	spd->pages[spd->nr_pages] = page;
3117  	spd->partial[spd->nr_pages].len = *len;
3118  	spd->partial[spd->nr_pages].offset = offset;
3119  	spd->nr_pages++;
3120  
3121  	return false;
3122  }
3123  
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)3124  static bool __splice_segment(struct page *page, unsigned int poff,
3125  			     unsigned int plen, unsigned int *off,
3126  			     unsigned int *len,
3127  			     struct splice_pipe_desc *spd, bool linear,
3128  			     struct sock *sk,
3129  			     struct pipe_inode_info *pipe)
3130  {
3131  	if (!*len)
3132  		return true;
3133  
3134  	/* skip this segment if already processed */
3135  	if (*off >= plen) {
3136  		*off -= plen;
3137  		return false;
3138  	}
3139  
3140  	/* ignore any bits we already processed */
3141  	poff += *off;
3142  	plen -= *off;
3143  	*off = 0;
3144  
3145  	do {
3146  		unsigned int flen = min(*len, plen);
3147  
3148  		if (spd_fill_page(spd, pipe, page, &flen, poff,
3149  				  linear, sk))
3150  			return true;
3151  		poff += flen;
3152  		plen -= flen;
3153  		*len -= flen;
3154  	} while (*len && plen);
3155  
3156  	return false;
3157  }
3158  
3159  /*
3160   * Map linear and fragment data from the skb to spd. It reports true if the
3161   * pipe is full or if we already spliced the requested length.
3162   */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3163  static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3164  			      unsigned int *offset, unsigned int *len,
3165  			      struct splice_pipe_desc *spd, struct sock *sk)
3166  {
3167  	int seg;
3168  	struct sk_buff *iter;
3169  
3170  	/* map the linear part :
3171  	 * If skb->head_frag is set, this 'linear' part is backed by a
3172  	 * fragment, and if the head is not shared with any clones then
3173  	 * we can avoid a copy since we own the head portion of this page.
3174  	 */
3175  	if (__splice_segment(virt_to_page(skb->data),
3176  			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3177  			     skb_headlen(skb),
3178  			     offset, len, spd,
3179  			     skb_head_is_locked(skb),
3180  			     sk, pipe))
3181  		return true;
3182  
3183  	/*
3184  	 * then map the fragments
3185  	 */
3186  	if (!skb_frags_readable(skb))
3187  		return false;
3188  
3189  	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3190  		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3191  
3192  		if (WARN_ON_ONCE(!skb_frag_page(f)))
3193  			return false;
3194  
3195  		if (__splice_segment(skb_frag_page(f),
3196  				     skb_frag_off(f), skb_frag_size(f),
3197  				     offset, len, spd, false, sk, pipe))
3198  			return true;
3199  	}
3200  
3201  	skb_walk_frags(skb, iter) {
3202  		if (*offset >= iter->len) {
3203  			*offset -= iter->len;
3204  			continue;
3205  		}
3206  		/* __skb_splice_bits() only fails if the output has no room
3207  		 * left, so no point in going over the frag_list for the error
3208  		 * case.
3209  		 */
3210  		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3211  			return true;
3212  	}
3213  
3214  	return false;
3215  }
3216  
3217  /*
3218   * Map data from the skb to a pipe. Should handle both the linear part,
3219   * the fragments, and the frag list.
3220   */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3221  int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3222  		    struct pipe_inode_info *pipe, unsigned int tlen,
3223  		    unsigned int flags)
3224  {
3225  	struct partial_page partial[MAX_SKB_FRAGS];
3226  	struct page *pages[MAX_SKB_FRAGS];
3227  	struct splice_pipe_desc spd = {
3228  		.pages = pages,
3229  		.partial = partial,
3230  		.nr_pages_max = MAX_SKB_FRAGS,
3231  		.ops = &nosteal_pipe_buf_ops,
3232  		.spd_release = sock_spd_release,
3233  	};
3234  	int ret = 0;
3235  
3236  	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3237  
3238  	if (spd.nr_pages)
3239  		ret = splice_to_pipe(pipe, &spd);
3240  
3241  	return ret;
3242  }
3243  EXPORT_SYMBOL_GPL(skb_splice_bits);
3244  
sendmsg_locked(struct sock * sk,struct msghdr * msg)3245  static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3246  {
3247  	struct socket *sock = sk->sk_socket;
3248  	size_t size = msg_data_left(msg);
3249  
3250  	if (!sock)
3251  		return -EINVAL;
3252  
3253  	if (!sock->ops->sendmsg_locked)
3254  		return sock_no_sendmsg_locked(sk, msg, size);
3255  
3256  	return sock->ops->sendmsg_locked(sk, msg, size);
3257  }
3258  
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3259  static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3260  {
3261  	struct socket *sock = sk->sk_socket;
3262  
3263  	if (!sock)
3264  		return -EINVAL;
3265  	return sock_sendmsg(sock, msg);
3266  }
3267  
3268  typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg)3269  static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3270  			   int len, sendmsg_func sendmsg)
3271  {
3272  	unsigned int orig_len = len;
3273  	struct sk_buff *head = skb;
3274  	unsigned short fragidx;
3275  	int slen, ret;
3276  
3277  do_frag_list:
3278  
3279  	/* Deal with head data */
3280  	while (offset < skb_headlen(skb) && len) {
3281  		struct kvec kv;
3282  		struct msghdr msg;
3283  
3284  		slen = min_t(int, len, skb_headlen(skb) - offset);
3285  		kv.iov_base = skb->data + offset;
3286  		kv.iov_len = slen;
3287  		memset(&msg, 0, sizeof(msg));
3288  		msg.msg_flags = MSG_DONTWAIT;
3289  
3290  		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3291  		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3292  				      sendmsg_unlocked, sk, &msg);
3293  		if (ret <= 0)
3294  			goto error;
3295  
3296  		offset += ret;
3297  		len -= ret;
3298  	}
3299  
3300  	/* All the data was skb head? */
3301  	if (!len)
3302  		goto out;
3303  
3304  	/* Make offset relative to start of frags */
3305  	offset -= skb_headlen(skb);
3306  
3307  	/* Find where we are in frag list */
3308  	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3309  		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3310  
3311  		if (offset < skb_frag_size(frag))
3312  			break;
3313  
3314  		offset -= skb_frag_size(frag);
3315  	}
3316  
3317  	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3318  		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3319  
3320  		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3321  
3322  		while (slen) {
3323  			struct bio_vec bvec;
3324  			struct msghdr msg = {
3325  				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3326  			};
3327  
3328  			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3329  				      skb_frag_off(frag) + offset);
3330  			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3331  				      slen);
3332  
3333  			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3334  					      sendmsg_unlocked, sk, &msg);
3335  			if (ret <= 0)
3336  				goto error;
3337  
3338  			len -= ret;
3339  			offset += ret;
3340  			slen -= ret;
3341  		}
3342  
3343  		offset = 0;
3344  	}
3345  
3346  	if (len) {
3347  		/* Process any frag lists */
3348  
3349  		if (skb == head) {
3350  			if (skb_has_frag_list(skb)) {
3351  				skb = skb_shinfo(skb)->frag_list;
3352  				goto do_frag_list;
3353  			}
3354  		} else if (skb->next) {
3355  			skb = skb->next;
3356  			goto do_frag_list;
3357  		}
3358  	}
3359  
3360  out:
3361  	return orig_len - len;
3362  
3363  error:
3364  	return orig_len == len ? ret : orig_len - len;
3365  }
3366  
3367  /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3368  int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3369  			 int len)
3370  {
3371  	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3372  }
3373  EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3374  
3375  /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3376  int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3377  {
3378  	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3379  }
3380  
3381  /**
3382   *	skb_store_bits - store bits from kernel buffer to skb
3383   *	@skb: destination buffer
3384   *	@offset: offset in destination
3385   *	@from: source buffer
3386   *	@len: number of bytes to copy
3387   *
3388   *	Copy the specified number of bytes from the source buffer to the
3389   *	destination skb.  This function handles all the messy bits of
3390   *	traversing fragment lists and such.
3391   */
3392  
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3393  int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3394  {
3395  	int start = skb_headlen(skb);
3396  	struct sk_buff *frag_iter;
3397  	int i, copy;
3398  
3399  	if (offset > (int)skb->len - len)
3400  		goto fault;
3401  
3402  	if ((copy = start - offset) > 0) {
3403  		if (copy > len)
3404  			copy = len;
3405  		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3406  		if ((len -= copy) == 0)
3407  			return 0;
3408  		offset += copy;
3409  		from += copy;
3410  	}
3411  
3412  	if (!skb_frags_readable(skb))
3413  		goto fault;
3414  
3415  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3416  		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3417  		int end;
3418  
3419  		WARN_ON(start > offset + len);
3420  
3421  		end = start + skb_frag_size(frag);
3422  		if ((copy = end - offset) > 0) {
3423  			u32 p_off, p_len, copied;
3424  			struct page *p;
3425  			u8 *vaddr;
3426  
3427  			if (copy > len)
3428  				copy = len;
3429  
3430  			skb_frag_foreach_page(frag,
3431  					      skb_frag_off(frag) + offset - start,
3432  					      copy, p, p_off, p_len, copied) {
3433  				vaddr = kmap_atomic(p);
3434  				memcpy(vaddr + p_off, from + copied, p_len);
3435  				kunmap_atomic(vaddr);
3436  			}
3437  
3438  			if ((len -= copy) == 0)
3439  				return 0;
3440  			offset += copy;
3441  			from += copy;
3442  		}
3443  		start = end;
3444  	}
3445  
3446  	skb_walk_frags(skb, frag_iter) {
3447  		int end;
3448  
3449  		WARN_ON(start > offset + len);
3450  
3451  		end = start + frag_iter->len;
3452  		if ((copy = end - offset) > 0) {
3453  			if (copy > len)
3454  				copy = len;
3455  			if (skb_store_bits(frag_iter, offset - start,
3456  					   from, copy))
3457  				goto fault;
3458  			if ((len -= copy) == 0)
3459  				return 0;
3460  			offset += copy;
3461  			from += copy;
3462  		}
3463  		start = end;
3464  	}
3465  	if (!len)
3466  		return 0;
3467  
3468  fault:
3469  	return -EFAULT;
3470  }
3471  EXPORT_SYMBOL(skb_store_bits);
3472  
3473  /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)3474  __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3475  		      __wsum csum, const struct skb_checksum_ops *ops)
3476  {
3477  	int start = skb_headlen(skb);
3478  	int i, copy = start - offset;
3479  	struct sk_buff *frag_iter;
3480  	int pos = 0;
3481  
3482  	/* Checksum header. */
3483  	if (copy > 0) {
3484  		if (copy > len)
3485  			copy = len;
3486  		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3487  				       skb->data + offset, copy, csum);
3488  		if ((len -= copy) == 0)
3489  			return csum;
3490  		offset += copy;
3491  		pos	= copy;
3492  	}
3493  
3494  	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3495  		return 0;
3496  
3497  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3498  		int end;
3499  		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3500  
3501  		WARN_ON(start > offset + len);
3502  
3503  		end = start + skb_frag_size(frag);
3504  		if ((copy = end - offset) > 0) {
3505  			u32 p_off, p_len, copied;
3506  			struct page *p;
3507  			__wsum csum2;
3508  			u8 *vaddr;
3509  
3510  			if (copy > len)
3511  				copy = len;
3512  
3513  			skb_frag_foreach_page(frag,
3514  					      skb_frag_off(frag) + offset - start,
3515  					      copy, p, p_off, p_len, copied) {
3516  				vaddr = kmap_atomic(p);
3517  				csum2 = INDIRECT_CALL_1(ops->update,
3518  							csum_partial_ext,
3519  							vaddr + p_off, p_len, 0);
3520  				kunmap_atomic(vaddr);
3521  				csum = INDIRECT_CALL_1(ops->combine,
3522  						       csum_block_add_ext, csum,
3523  						       csum2, pos, p_len);
3524  				pos += p_len;
3525  			}
3526  
3527  			if (!(len -= copy))
3528  				return csum;
3529  			offset += copy;
3530  		}
3531  		start = end;
3532  	}
3533  
3534  	skb_walk_frags(skb, frag_iter) {
3535  		int end;
3536  
3537  		WARN_ON(start > offset + len);
3538  
3539  		end = start + frag_iter->len;
3540  		if ((copy = end - offset) > 0) {
3541  			__wsum csum2;
3542  			if (copy > len)
3543  				copy = len;
3544  			csum2 = __skb_checksum(frag_iter, offset - start,
3545  					       copy, 0, ops);
3546  			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3547  					       csum, csum2, pos, copy);
3548  			if ((len -= copy) == 0)
3549  				return csum;
3550  			offset += copy;
3551  			pos    += copy;
3552  		}
3553  		start = end;
3554  	}
3555  	BUG_ON(len);
3556  
3557  	return csum;
3558  }
3559  EXPORT_SYMBOL(__skb_checksum);
3560  
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3561  __wsum skb_checksum(const struct sk_buff *skb, int offset,
3562  		    int len, __wsum csum)
3563  {
3564  	const struct skb_checksum_ops ops = {
3565  		.update  = csum_partial_ext,
3566  		.combine = csum_block_add_ext,
3567  	};
3568  
3569  	return __skb_checksum(skb, offset, len, csum, &ops);
3570  }
3571  EXPORT_SYMBOL(skb_checksum);
3572  
3573  /* Both of above in one bottle. */
3574  
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3575  __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3576  				    u8 *to, int len)
3577  {
3578  	int start = skb_headlen(skb);
3579  	int i, copy = start - offset;
3580  	struct sk_buff *frag_iter;
3581  	int pos = 0;
3582  	__wsum csum = 0;
3583  
3584  	/* Copy header. */
3585  	if (copy > 0) {
3586  		if (copy > len)
3587  			copy = len;
3588  		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3589  						 copy);
3590  		if ((len -= copy) == 0)
3591  			return csum;
3592  		offset += copy;
3593  		to     += copy;
3594  		pos	= copy;
3595  	}
3596  
3597  	if (!skb_frags_readable(skb))
3598  		return 0;
3599  
3600  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3601  		int end;
3602  
3603  		WARN_ON(start > offset + len);
3604  
3605  		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3606  		if ((copy = end - offset) > 0) {
3607  			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3608  			u32 p_off, p_len, copied;
3609  			struct page *p;
3610  			__wsum csum2;
3611  			u8 *vaddr;
3612  
3613  			if (copy > len)
3614  				copy = len;
3615  
3616  			skb_frag_foreach_page(frag,
3617  					      skb_frag_off(frag) + offset - start,
3618  					      copy, p, p_off, p_len, copied) {
3619  				vaddr = kmap_atomic(p);
3620  				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3621  								  to + copied,
3622  								  p_len);
3623  				kunmap_atomic(vaddr);
3624  				csum = csum_block_add(csum, csum2, pos);
3625  				pos += p_len;
3626  			}
3627  
3628  			if (!(len -= copy))
3629  				return csum;
3630  			offset += copy;
3631  			to     += copy;
3632  		}
3633  		start = end;
3634  	}
3635  
3636  	skb_walk_frags(skb, frag_iter) {
3637  		__wsum csum2;
3638  		int end;
3639  
3640  		WARN_ON(start > offset + len);
3641  
3642  		end = start + frag_iter->len;
3643  		if ((copy = end - offset) > 0) {
3644  			if (copy > len)
3645  				copy = len;
3646  			csum2 = skb_copy_and_csum_bits(frag_iter,
3647  						       offset - start,
3648  						       to, copy);
3649  			csum = csum_block_add(csum, csum2, pos);
3650  			if ((len -= copy) == 0)
3651  				return csum;
3652  			offset += copy;
3653  			to     += copy;
3654  			pos    += copy;
3655  		}
3656  		start = end;
3657  	}
3658  	BUG_ON(len);
3659  	return csum;
3660  }
3661  EXPORT_SYMBOL(skb_copy_and_csum_bits);
3662  
__skb_checksum_complete_head(struct sk_buff * skb,int len)3663  __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3664  {
3665  	__sum16 sum;
3666  
3667  	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3668  	/* See comments in __skb_checksum_complete(). */
3669  	if (likely(!sum)) {
3670  		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3671  		    !skb->csum_complete_sw)
3672  			netdev_rx_csum_fault(skb->dev, skb);
3673  	}
3674  	if (!skb_shared(skb))
3675  		skb->csum_valid = !sum;
3676  	return sum;
3677  }
3678  EXPORT_SYMBOL(__skb_checksum_complete_head);
3679  
3680  /* This function assumes skb->csum already holds pseudo header's checksum,
3681   * which has been changed from the hardware checksum, for example, by
3682   * __skb_checksum_validate_complete(). And, the original skb->csum must
3683   * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3684   *
3685   * It returns non-zero if the recomputed checksum is still invalid, otherwise
3686   * zero. The new checksum is stored back into skb->csum unless the skb is
3687   * shared.
3688   */
__skb_checksum_complete(struct sk_buff * skb)3689  __sum16 __skb_checksum_complete(struct sk_buff *skb)
3690  {
3691  	__wsum csum;
3692  	__sum16 sum;
3693  
3694  	csum = skb_checksum(skb, 0, skb->len, 0);
3695  
3696  	sum = csum_fold(csum_add(skb->csum, csum));
3697  	/* This check is inverted, because we already knew the hardware
3698  	 * checksum is invalid before calling this function. So, if the
3699  	 * re-computed checksum is valid instead, then we have a mismatch
3700  	 * between the original skb->csum and skb_checksum(). This means either
3701  	 * the original hardware checksum is incorrect or we screw up skb->csum
3702  	 * when moving skb->data around.
3703  	 */
3704  	if (likely(!sum)) {
3705  		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3706  		    !skb->csum_complete_sw)
3707  			netdev_rx_csum_fault(skb->dev, skb);
3708  	}
3709  
3710  	if (!skb_shared(skb)) {
3711  		/* Save full packet checksum */
3712  		skb->csum = csum;
3713  		skb->ip_summed = CHECKSUM_COMPLETE;
3714  		skb->csum_complete_sw = 1;
3715  		skb->csum_valid = !sum;
3716  	}
3717  
3718  	return sum;
3719  }
3720  EXPORT_SYMBOL(__skb_checksum_complete);
3721  
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3722  static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3723  {
3724  	net_warn_ratelimited(
3725  		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3726  		__func__);
3727  	return 0;
3728  }
3729  
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3730  static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3731  				       int offset, int len)
3732  {
3733  	net_warn_ratelimited(
3734  		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3735  		__func__);
3736  	return 0;
3737  }
3738  
3739  static const struct skb_checksum_ops default_crc32c_ops = {
3740  	.update  = warn_crc32c_csum_update,
3741  	.combine = warn_crc32c_csum_combine,
3742  };
3743  
3744  const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3745  	&default_crc32c_ops;
3746  EXPORT_SYMBOL(crc32c_csum_stub);
3747  
3748   /**
3749   *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3750   *	@from: source buffer
3751   *
3752   *	Calculates the amount of linear headroom needed in the 'to' skb passed
3753   *	into skb_zerocopy().
3754   */
3755  unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3756  skb_zerocopy_headlen(const struct sk_buff *from)
3757  {
3758  	unsigned int hlen = 0;
3759  
3760  	if (!from->head_frag ||
3761  	    skb_headlen(from) < L1_CACHE_BYTES ||
3762  	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3763  		hlen = skb_headlen(from);
3764  		if (!hlen)
3765  			hlen = from->len;
3766  	}
3767  
3768  	if (skb_has_frag_list(from))
3769  		hlen = from->len;
3770  
3771  	return hlen;
3772  }
3773  EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3774  
3775  /**
3776   *	skb_zerocopy - Zero copy skb to skb
3777   *	@to: destination buffer
3778   *	@from: source buffer
3779   *	@len: number of bytes to copy from source buffer
3780   *	@hlen: size of linear headroom in destination buffer
3781   *
3782   *	Copies up to `len` bytes from `from` to `to` by creating references
3783   *	to the frags in the source buffer.
3784   *
3785   *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3786   *	headroom in the `to` buffer.
3787   *
3788   *	Return value:
3789   *	0: everything is OK
3790   *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3791   *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3792   */
3793  int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3794  skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3795  {
3796  	int i, j = 0;
3797  	int plen = 0; /* length of skb->head fragment */
3798  	int ret;
3799  	struct page *page;
3800  	unsigned int offset;
3801  
3802  	BUG_ON(!from->head_frag && !hlen);
3803  
3804  	/* dont bother with small payloads */
3805  	if (len <= skb_tailroom(to))
3806  		return skb_copy_bits(from, 0, skb_put(to, len), len);
3807  
3808  	if (hlen) {
3809  		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3810  		if (unlikely(ret))
3811  			return ret;
3812  		len -= hlen;
3813  	} else {
3814  		plen = min_t(int, skb_headlen(from), len);
3815  		if (plen) {
3816  			page = virt_to_head_page(from->head);
3817  			offset = from->data - (unsigned char *)page_address(page);
3818  			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3819  					       offset, plen);
3820  			get_page(page);
3821  			j = 1;
3822  			len -= plen;
3823  		}
3824  	}
3825  
3826  	skb_len_add(to, len + plen);
3827  
3828  	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3829  		skb_tx_error(from);
3830  		return -ENOMEM;
3831  	}
3832  	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3833  
3834  	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3835  		int size;
3836  
3837  		if (!len)
3838  			break;
3839  		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3840  		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3841  					len);
3842  		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3843  		len -= size;
3844  		skb_frag_ref(to, j);
3845  		j++;
3846  	}
3847  	skb_shinfo(to)->nr_frags = j;
3848  
3849  	return 0;
3850  }
3851  EXPORT_SYMBOL_GPL(skb_zerocopy);
3852  
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3853  void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3854  {
3855  	__wsum csum;
3856  	long csstart;
3857  
3858  	if (skb->ip_summed == CHECKSUM_PARTIAL)
3859  		csstart = skb_checksum_start_offset(skb);
3860  	else
3861  		csstart = skb_headlen(skb);
3862  
3863  	BUG_ON(csstart > skb_headlen(skb));
3864  
3865  	skb_copy_from_linear_data(skb, to, csstart);
3866  
3867  	csum = 0;
3868  	if (csstart != skb->len)
3869  		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3870  					      skb->len - csstart);
3871  
3872  	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3873  		long csstuff = csstart + skb->csum_offset;
3874  
3875  		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3876  	}
3877  }
3878  EXPORT_SYMBOL(skb_copy_and_csum_dev);
3879  
3880  /**
3881   *	skb_dequeue - remove from the head of the queue
3882   *	@list: list to dequeue from
3883   *
3884   *	Remove the head of the list. The list lock is taken so the function
3885   *	may be used safely with other locking list functions. The head item is
3886   *	returned or %NULL if the list is empty.
3887   */
3888  
skb_dequeue(struct sk_buff_head * list)3889  struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3890  {
3891  	unsigned long flags;
3892  	struct sk_buff *result;
3893  
3894  	spin_lock_irqsave(&list->lock, flags);
3895  	result = __skb_dequeue(list);
3896  	spin_unlock_irqrestore(&list->lock, flags);
3897  	return result;
3898  }
3899  EXPORT_SYMBOL(skb_dequeue);
3900  
3901  /**
3902   *	skb_dequeue_tail - remove from the tail of the queue
3903   *	@list: list to dequeue from
3904   *
3905   *	Remove the tail of the list. The list lock is taken so the function
3906   *	may be used safely with other locking list functions. The tail item is
3907   *	returned or %NULL if the list is empty.
3908   */
skb_dequeue_tail(struct sk_buff_head * list)3909  struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3910  {
3911  	unsigned long flags;
3912  	struct sk_buff *result;
3913  
3914  	spin_lock_irqsave(&list->lock, flags);
3915  	result = __skb_dequeue_tail(list);
3916  	spin_unlock_irqrestore(&list->lock, flags);
3917  	return result;
3918  }
3919  EXPORT_SYMBOL(skb_dequeue_tail);
3920  
3921  /**
3922   *	skb_queue_purge_reason - empty a list
3923   *	@list: list to empty
3924   *	@reason: drop reason
3925   *
3926   *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3927   *	the list and one reference dropped. This function takes the list
3928   *	lock and is atomic with respect to other list locking functions.
3929   */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3930  void skb_queue_purge_reason(struct sk_buff_head *list,
3931  			    enum skb_drop_reason reason)
3932  {
3933  	struct sk_buff_head tmp;
3934  	unsigned long flags;
3935  
3936  	if (skb_queue_empty_lockless(list))
3937  		return;
3938  
3939  	__skb_queue_head_init(&tmp);
3940  
3941  	spin_lock_irqsave(&list->lock, flags);
3942  	skb_queue_splice_init(list, &tmp);
3943  	spin_unlock_irqrestore(&list->lock, flags);
3944  
3945  	__skb_queue_purge_reason(&tmp, reason);
3946  }
3947  EXPORT_SYMBOL(skb_queue_purge_reason);
3948  
3949  /**
3950   *	skb_rbtree_purge - empty a skb rbtree
3951   *	@root: root of the rbtree to empty
3952   *	Return value: the sum of truesizes of all purged skbs.
3953   *
3954   *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3955   *	the list and one reference dropped. This function does not take
3956   *	any lock. Synchronization should be handled by the caller (e.g., TCP
3957   *	out-of-order queue is protected by the socket lock).
3958   */
skb_rbtree_purge(struct rb_root * root)3959  unsigned int skb_rbtree_purge(struct rb_root *root)
3960  {
3961  	struct rb_node *p = rb_first(root);
3962  	unsigned int sum = 0;
3963  
3964  	while (p) {
3965  		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3966  
3967  		p = rb_next(p);
3968  		rb_erase(&skb->rbnode, root);
3969  		sum += skb->truesize;
3970  		kfree_skb(skb);
3971  	}
3972  	return sum;
3973  }
3974  
skb_errqueue_purge(struct sk_buff_head * list)3975  void skb_errqueue_purge(struct sk_buff_head *list)
3976  {
3977  	struct sk_buff *skb, *next;
3978  	struct sk_buff_head kill;
3979  	unsigned long flags;
3980  
3981  	__skb_queue_head_init(&kill);
3982  
3983  	spin_lock_irqsave(&list->lock, flags);
3984  	skb_queue_walk_safe(list, skb, next) {
3985  		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3986  		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3987  			continue;
3988  		__skb_unlink(skb, list);
3989  		__skb_queue_tail(&kill, skb);
3990  	}
3991  	spin_unlock_irqrestore(&list->lock, flags);
3992  	__skb_queue_purge(&kill);
3993  }
3994  EXPORT_SYMBOL(skb_errqueue_purge);
3995  
3996  /**
3997   *	skb_queue_head - queue a buffer at the list head
3998   *	@list: list to use
3999   *	@newsk: buffer to queue
4000   *
4001   *	Queue a buffer at the start of the list. This function takes the
4002   *	list lock and can be used safely with other locking &sk_buff functions
4003   *	safely.
4004   *
4005   *	A buffer cannot be placed on two lists at the same time.
4006   */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)4007  void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4008  {
4009  	unsigned long flags;
4010  
4011  	spin_lock_irqsave(&list->lock, flags);
4012  	__skb_queue_head(list, newsk);
4013  	spin_unlock_irqrestore(&list->lock, flags);
4014  }
4015  EXPORT_SYMBOL(skb_queue_head);
4016  
4017  /**
4018   *	skb_queue_tail - queue a buffer at the list tail
4019   *	@list: list to use
4020   *	@newsk: buffer to queue
4021   *
4022   *	Queue a buffer at the tail of the list. This function takes the
4023   *	list lock and can be used safely with other locking &sk_buff functions
4024   *	safely.
4025   *
4026   *	A buffer cannot be placed on two lists at the same time.
4027   */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)4028  void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4029  {
4030  	unsigned long flags;
4031  
4032  	spin_lock_irqsave(&list->lock, flags);
4033  	__skb_queue_tail(list, newsk);
4034  	spin_unlock_irqrestore(&list->lock, flags);
4035  }
4036  EXPORT_SYMBOL(skb_queue_tail);
4037  
4038  /**
4039   *	skb_unlink	-	remove a buffer from a list
4040   *	@skb: buffer to remove
4041   *	@list: list to use
4042   *
4043   *	Remove a packet from a list. The list locks are taken and this
4044   *	function is atomic with respect to other list locked calls
4045   *
4046   *	You must know what list the SKB is on.
4047   */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)4048  void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4049  {
4050  	unsigned long flags;
4051  
4052  	spin_lock_irqsave(&list->lock, flags);
4053  	__skb_unlink(skb, list);
4054  	spin_unlock_irqrestore(&list->lock, flags);
4055  }
4056  EXPORT_SYMBOL(skb_unlink);
4057  
4058  /**
4059   *	skb_append	-	append a buffer
4060   *	@old: buffer to insert after
4061   *	@newsk: buffer to insert
4062   *	@list: list to use
4063   *
4064   *	Place a packet after a given packet in a list. The list locks are taken
4065   *	and this function is atomic with respect to other list locked calls.
4066   *	A buffer cannot be placed on two lists at the same time.
4067   */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)4068  void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4069  {
4070  	unsigned long flags;
4071  
4072  	spin_lock_irqsave(&list->lock, flags);
4073  	__skb_queue_after(list, old, newsk);
4074  	spin_unlock_irqrestore(&list->lock, flags);
4075  }
4076  EXPORT_SYMBOL(skb_append);
4077  
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)4078  static inline void skb_split_inside_header(struct sk_buff *skb,
4079  					   struct sk_buff* skb1,
4080  					   const u32 len, const int pos)
4081  {
4082  	int i;
4083  
4084  	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4085  					 pos - len);
4086  	/* And move data appendix as is. */
4087  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4088  		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4089  
4090  	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4091  	skb1->unreadable	   = skb->unreadable;
4092  	skb_shinfo(skb)->nr_frags  = 0;
4093  	skb1->data_len		   = skb->data_len;
4094  	skb1->len		   += skb1->data_len;
4095  	skb->data_len		   = 0;
4096  	skb->len		   = len;
4097  	skb_set_tail_pointer(skb, len);
4098  }
4099  
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4100  static inline void skb_split_no_header(struct sk_buff *skb,
4101  				       struct sk_buff* skb1,
4102  				       const u32 len, int pos)
4103  {
4104  	int i, k = 0;
4105  	const int nfrags = skb_shinfo(skb)->nr_frags;
4106  
4107  	skb_shinfo(skb)->nr_frags = 0;
4108  	skb1->len		  = skb1->data_len = skb->len - len;
4109  	skb->len		  = len;
4110  	skb->data_len		  = len - pos;
4111  
4112  	for (i = 0; i < nfrags; i++) {
4113  		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4114  
4115  		if (pos + size > len) {
4116  			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4117  
4118  			if (pos < len) {
4119  				/* Split frag.
4120  				 * We have two variants in this case:
4121  				 * 1. Move all the frag to the second
4122  				 *    part, if it is possible. F.e.
4123  				 *    this approach is mandatory for TUX,
4124  				 *    where splitting is expensive.
4125  				 * 2. Split is accurately. We make this.
4126  				 */
4127  				skb_frag_ref(skb, i);
4128  				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4129  				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4130  				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4131  				skb_shinfo(skb)->nr_frags++;
4132  			}
4133  			k++;
4134  		} else
4135  			skb_shinfo(skb)->nr_frags++;
4136  		pos += size;
4137  	}
4138  	skb_shinfo(skb1)->nr_frags = k;
4139  
4140  	skb1->unreadable = skb->unreadable;
4141  }
4142  
4143  /**
4144   * skb_split - Split fragmented skb to two parts at length len.
4145   * @skb: the buffer to split
4146   * @skb1: the buffer to receive the second part
4147   * @len: new length for skb
4148   */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4149  void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4150  {
4151  	int pos = skb_headlen(skb);
4152  	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4153  
4154  	skb_zcopy_downgrade_managed(skb);
4155  
4156  	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4157  	skb_zerocopy_clone(skb1, skb, 0);
4158  	if (len < pos)	/* Split line is inside header. */
4159  		skb_split_inside_header(skb, skb1, len, pos);
4160  	else		/* Second chunk has no header, nothing to copy. */
4161  		skb_split_no_header(skb, skb1, len, pos);
4162  }
4163  EXPORT_SYMBOL(skb_split);
4164  
4165  /* Shifting from/to a cloned skb is a no-go.
4166   *
4167   * Caller cannot keep skb_shinfo related pointers past calling here!
4168   */
skb_prepare_for_shift(struct sk_buff * skb)4169  static int skb_prepare_for_shift(struct sk_buff *skb)
4170  {
4171  	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4172  }
4173  
4174  /**
4175   * skb_shift - Shifts paged data partially from skb to another
4176   * @tgt: buffer into which tail data gets added
4177   * @skb: buffer from which the paged data comes from
4178   * @shiftlen: shift up to this many bytes
4179   *
4180   * Attempts to shift up to shiftlen worth of bytes, which may be less than
4181   * the length of the skb, from skb to tgt. Returns number bytes shifted.
4182   * It's up to caller to free skb if everything was shifted.
4183   *
4184   * If @tgt runs out of frags, the whole operation is aborted.
4185   *
4186   * Skb cannot include anything else but paged data while tgt is allowed
4187   * to have non-paged data as well.
4188   *
4189   * TODO: full sized shift could be optimized but that would need
4190   * specialized skb free'er to handle frags without up-to-date nr_frags.
4191   */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4192  int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4193  {
4194  	int from, to, merge, todo;
4195  	skb_frag_t *fragfrom, *fragto;
4196  
4197  	BUG_ON(shiftlen > skb->len);
4198  
4199  	if (skb_headlen(skb))
4200  		return 0;
4201  	if (skb_zcopy(tgt) || skb_zcopy(skb))
4202  		return 0;
4203  
4204  	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4205  	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4206  
4207  	todo = shiftlen;
4208  	from = 0;
4209  	to = skb_shinfo(tgt)->nr_frags;
4210  	fragfrom = &skb_shinfo(skb)->frags[from];
4211  
4212  	/* Actual merge is delayed until the point when we know we can
4213  	 * commit all, so that we don't have to undo partial changes
4214  	 */
4215  	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4216  			      skb_frag_off(fragfrom))) {
4217  		merge = -1;
4218  	} else {
4219  		merge = to - 1;
4220  
4221  		todo -= skb_frag_size(fragfrom);
4222  		if (todo < 0) {
4223  			if (skb_prepare_for_shift(skb) ||
4224  			    skb_prepare_for_shift(tgt))
4225  				return 0;
4226  
4227  			/* All previous frag pointers might be stale! */
4228  			fragfrom = &skb_shinfo(skb)->frags[from];
4229  			fragto = &skb_shinfo(tgt)->frags[merge];
4230  
4231  			skb_frag_size_add(fragto, shiftlen);
4232  			skb_frag_size_sub(fragfrom, shiftlen);
4233  			skb_frag_off_add(fragfrom, shiftlen);
4234  
4235  			goto onlymerged;
4236  		}
4237  
4238  		from++;
4239  	}
4240  
4241  	/* Skip full, not-fitting skb to avoid expensive operations */
4242  	if ((shiftlen == skb->len) &&
4243  	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4244  		return 0;
4245  
4246  	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4247  		return 0;
4248  
4249  	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4250  		if (to == MAX_SKB_FRAGS)
4251  			return 0;
4252  
4253  		fragfrom = &skb_shinfo(skb)->frags[from];
4254  		fragto = &skb_shinfo(tgt)->frags[to];
4255  
4256  		if (todo >= skb_frag_size(fragfrom)) {
4257  			*fragto = *fragfrom;
4258  			todo -= skb_frag_size(fragfrom);
4259  			from++;
4260  			to++;
4261  
4262  		} else {
4263  			__skb_frag_ref(fragfrom);
4264  			skb_frag_page_copy(fragto, fragfrom);
4265  			skb_frag_off_copy(fragto, fragfrom);
4266  			skb_frag_size_set(fragto, todo);
4267  
4268  			skb_frag_off_add(fragfrom, todo);
4269  			skb_frag_size_sub(fragfrom, todo);
4270  			todo = 0;
4271  
4272  			to++;
4273  			break;
4274  		}
4275  	}
4276  
4277  	/* Ready to "commit" this state change to tgt */
4278  	skb_shinfo(tgt)->nr_frags = to;
4279  
4280  	if (merge >= 0) {
4281  		fragfrom = &skb_shinfo(skb)->frags[0];
4282  		fragto = &skb_shinfo(tgt)->frags[merge];
4283  
4284  		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4285  		__skb_frag_unref(fragfrom, skb->pp_recycle);
4286  	}
4287  
4288  	/* Reposition in the original skb */
4289  	to = 0;
4290  	while (from < skb_shinfo(skb)->nr_frags)
4291  		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4292  	skb_shinfo(skb)->nr_frags = to;
4293  
4294  	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4295  
4296  onlymerged:
4297  	/* Most likely the tgt won't ever need its checksum anymore, skb on
4298  	 * the other hand might need it if it needs to be resent
4299  	 */
4300  	tgt->ip_summed = CHECKSUM_PARTIAL;
4301  	skb->ip_summed = CHECKSUM_PARTIAL;
4302  
4303  	skb_len_add(skb, -shiftlen);
4304  	skb_len_add(tgt, shiftlen);
4305  
4306  	return shiftlen;
4307  }
4308  
4309  /**
4310   * skb_prepare_seq_read - Prepare a sequential read of skb data
4311   * @skb: the buffer to read
4312   * @from: lower offset of data to be read
4313   * @to: upper offset of data to be read
4314   * @st: state variable
4315   *
4316   * Initializes the specified state variable. Must be called before
4317   * invoking skb_seq_read() for the first time.
4318   */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4319  void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4320  			  unsigned int to, struct skb_seq_state *st)
4321  {
4322  	st->lower_offset = from;
4323  	st->upper_offset = to;
4324  	st->root_skb = st->cur_skb = skb;
4325  	st->frag_idx = st->stepped_offset = 0;
4326  	st->frag_data = NULL;
4327  	st->frag_off = 0;
4328  }
4329  EXPORT_SYMBOL(skb_prepare_seq_read);
4330  
4331  /**
4332   * skb_seq_read - Sequentially read skb data
4333   * @consumed: number of bytes consumed by the caller so far
4334   * @data: destination pointer for data to be returned
4335   * @st: state variable
4336   *
4337   * Reads a block of skb data at @consumed relative to the
4338   * lower offset specified to skb_prepare_seq_read(). Assigns
4339   * the head of the data block to @data and returns the length
4340   * of the block or 0 if the end of the skb data or the upper
4341   * offset has been reached.
4342   *
4343   * The caller is not required to consume all of the data
4344   * returned, i.e. @consumed is typically set to the number
4345   * of bytes already consumed and the next call to
4346   * skb_seq_read() will return the remaining part of the block.
4347   *
4348   * Note 1: The size of each block of data returned can be arbitrary,
4349   *       this limitation is the cost for zerocopy sequential
4350   *       reads of potentially non linear data.
4351   *
4352   * Note 2: Fragment lists within fragments are not implemented
4353   *       at the moment, state->root_skb could be replaced with
4354   *       a stack for this purpose.
4355   */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4356  unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4357  			  struct skb_seq_state *st)
4358  {
4359  	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4360  	skb_frag_t *frag;
4361  
4362  	if (unlikely(abs_offset >= st->upper_offset)) {
4363  		if (st->frag_data) {
4364  			kunmap_atomic(st->frag_data);
4365  			st->frag_data = NULL;
4366  		}
4367  		return 0;
4368  	}
4369  
4370  next_skb:
4371  	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4372  
4373  	if (abs_offset < block_limit && !st->frag_data) {
4374  		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4375  		return block_limit - abs_offset;
4376  	}
4377  
4378  	if (!skb_frags_readable(st->cur_skb))
4379  		return 0;
4380  
4381  	if (st->frag_idx == 0 && !st->frag_data)
4382  		st->stepped_offset += skb_headlen(st->cur_skb);
4383  
4384  	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4385  		unsigned int pg_idx, pg_off, pg_sz;
4386  
4387  		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4388  
4389  		pg_idx = 0;
4390  		pg_off = skb_frag_off(frag);
4391  		pg_sz = skb_frag_size(frag);
4392  
4393  		if (skb_frag_must_loop(skb_frag_page(frag))) {
4394  			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4395  			pg_off = offset_in_page(pg_off + st->frag_off);
4396  			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4397  						    PAGE_SIZE - pg_off);
4398  		}
4399  
4400  		block_limit = pg_sz + st->stepped_offset;
4401  		if (abs_offset < block_limit) {
4402  			if (!st->frag_data)
4403  				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4404  
4405  			*data = (u8 *)st->frag_data + pg_off +
4406  				(abs_offset - st->stepped_offset);
4407  
4408  			return block_limit - abs_offset;
4409  		}
4410  
4411  		if (st->frag_data) {
4412  			kunmap_atomic(st->frag_data);
4413  			st->frag_data = NULL;
4414  		}
4415  
4416  		st->stepped_offset += pg_sz;
4417  		st->frag_off += pg_sz;
4418  		if (st->frag_off == skb_frag_size(frag)) {
4419  			st->frag_off = 0;
4420  			st->frag_idx++;
4421  		}
4422  	}
4423  
4424  	if (st->frag_data) {
4425  		kunmap_atomic(st->frag_data);
4426  		st->frag_data = NULL;
4427  	}
4428  
4429  	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4430  		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4431  		st->frag_idx = 0;
4432  		goto next_skb;
4433  	} else if (st->cur_skb->next) {
4434  		st->cur_skb = st->cur_skb->next;
4435  		st->frag_idx = 0;
4436  		goto next_skb;
4437  	}
4438  
4439  	return 0;
4440  }
4441  EXPORT_SYMBOL(skb_seq_read);
4442  
4443  /**
4444   * skb_abort_seq_read - Abort a sequential read of skb data
4445   * @st: state variable
4446   *
4447   * Must be called if skb_seq_read() was not called until it
4448   * returned 0.
4449   */
skb_abort_seq_read(struct skb_seq_state * st)4450  void skb_abort_seq_read(struct skb_seq_state *st)
4451  {
4452  	if (st->frag_data)
4453  		kunmap_atomic(st->frag_data);
4454  }
4455  EXPORT_SYMBOL(skb_abort_seq_read);
4456  
4457  /**
4458   * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4459   * @st: source skb_seq_state
4460   * @offset: offset in source
4461   * @to: destination buffer
4462   * @len: number of bytes to copy
4463   *
4464   * Copy @len bytes from @offset bytes into the source @st to the destination
4465   * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4466   * call to this function. If offset needs to decrease from the previous use `st`
4467   * should be reset first.
4468   *
4469   * Return: 0 on success or -EINVAL if the copy ended early
4470   */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4471  int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4472  {
4473  	const u8 *data;
4474  	u32 sqlen;
4475  
4476  	for (;;) {
4477  		sqlen = skb_seq_read(offset, &data, st);
4478  		if (sqlen == 0)
4479  			return -EINVAL;
4480  		if (sqlen >= len) {
4481  			memcpy(to, data, len);
4482  			return 0;
4483  		}
4484  		memcpy(to, data, sqlen);
4485  		to += sqlen;
4486  		offset += sqlen;
4487  		len -= sqlen;
4488  	}
4489  }
4490  EXPORT_SYMBOL(skb_copy_seq_read);
4491  
4492  #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4493  
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4494  static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4495  					  struct ts_config *conf,
4496  					  struct ts_state *state)
4497  {
4498  	return skb_seq_read(offset, text, TS_SKB_CB(state));
4499  }
4500  
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4501  static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4502  {
4503  	skb_abort_seq_read(TS_SKB_CB(state));
4504  }
4505  
4506  /**
4507   * skb_find_text - Find a text pattern in skb data
4508   * @skb: the buffer to look in
4509   * @from: search offset
4510   * @to: search limit
4511   * @config: textsearch configuration
4512   *
4513   * Finds a pattern in the skb data according to the specified
4514   * textsearch configuration. Use textsearch_next() to retrieve
4515   * subsequent occurrences of the pattern. Returns the offset
4516   * to the first occurrence or UINT_MAX if no match was found.
4517   */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4518  unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4519  			   unsigned int to, struct ts_config *config)
4520  {
4521  	unsigned int patlen = config->ops->get_pattern_len(config);
4522  	struct ts_state state;
4523  	unsigned int ret;
4524  
4525  	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4526  
4527  	config->get_next_block = skb_ts_get_next_block;
4528  	config->finish = skb_ts_finish;
4529  
4530  	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4531  
4532  	ret = textsearch_find(config, &state);
4533  	return (ret + patlen <= to - from ? ret : UINT_MAX);
4534  }
4535  EXPORT_SYMBOL(skb_find_text);
4536  
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4537  int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4538  			 int offset, size_t size, size_t max_frags)
4539  {
4540  	int i = skb_shinfo(skb)->nr_frags;
4541  
4542  	if (skb_can_coalesce(skb, i, page, offset)) {
4543  		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4544  	} else if (i < max_frags) {
4545  		skb_zcopy_downgrade_managed(skb);
4546  		get_page(page);
4547  		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4548  	} else {
4549  		return -EMSGSIZE;
4550  	}
4551  
4552  	return 0;
4553  }
4554  EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4555  
4556  /**
4557   *	skb_pull_rcsum - pull skb and update receive checksum
4558   *	@skb: buffer to update
4559   *	@len: length of data pulled
4560   *
4561   *	This function performs an skb_pull on the packet and updates
4562   *	the CHECKSUM_COMPLETE checksum.  It should be used on
4563   *	receive path processing instead of skb_pull unless you know
4564   *	that the checksum difference is zero (e.g., a valid IP header)
4565   *	or you are setting ip_summed to CHECKSUM_NONE.
4566   */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4567  void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4568  {
4569  	unsigned char *data = skb->data;
4570  
4571  	BUG_ON(len > skb->len);
4572  	__skb_pull(skb, len);
4573  	skb_postpull_rcsum(skb, data, len);
4574  	return skb->data;
4575  }
4576  EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4577  
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4578  static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4579  {
4580  	skb_frag_t head_frag;
4581  	struct page *page;
4582  
4583  	page = virt_to_head_page(frag_skb->head);
4584  	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4585  				(unsigned char *)page_address(page),
4586  				skb_headlen(frag_skb));
4587  	return head_frag;
4588  }
4589  
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4590  struct sk_buff *skb_segment_list(struct sk_buff *skb,
4591  				 netdev_features_t features,
4592  				 unsigned int offset)
4593  {
4594  	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4595  	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4596  	unsigned int delta_truesize = 0;
4597  	unsigned int delta_len = 0;
4598  	struct sk_buff *tail = NULL;
4599  	struct sk_buff *nskb, *tmp;
4600  	int len_diff, err;
4601  
4602  	skb_push(skb, -skb_network_offset(skb) + offset);
4603  
4604  	/* Ensure the head is writeable before touching the shared info */
4605  	err = skb_unclone(skb, GFP_ATOMIC);
4606  	if (err)
4607  		goto err_linearize;
4608  
4609  	skb_shinfo(skb)->frag_list = NULL;
4610  
4611  	while (list_skb) {
4612  		nskb = list_skb;
4613  		list_skb = list_skb->next;
4614  
4615  		err = 0;
4616  		delta_truesize += nskb->truesize;
4617  		if (skb_shared(nskb)) {
4618  			tmp = skb_clone(nskb, GFP_ATOMIC);
4619  			if (tmp) {
4620  				consume_skb(nskb);
4621  				nskb = tmp;
4622  				err = skb_unclone(nskb, GFP_ATOMIC);
4623  			} else {
4624  				err = -ENOMEM;
4625  			}
4626  		}
4627  
4628  		if (!tail)
4629  			skb->next = nskb;
4630  		else
4631  			tail->next = nskb;
4632  
4633  		if (unlikely(err)) {
4634  			nskb->next = list_skb;
4635  			goto err_linearize;
4636  		}
4637  
4638  		tail = nskb;
4639  
4640  		delta_len += nskb->len;
4641  
4642  		skb_push(nskb, -skb_network_offset(nskb) + offset);
4643  
4644  		skb_release_head_state(nskb);
4645  		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4646  		__copy_skb_header(nskb, skb);
4647  
4648  		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4649  		nskb->transport_header += len_diff;
4650  		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4651  						 nskb->data - tnl_hlen,
4652  						 offset + tnl_hlen);
4653  
4654  		if (skb_needs_linearize(nskb, features) &&
4655  		    __skb_linearize(nskb))
4656  			goto err_linearize;
4657  	}
4658  
4659  	skb->truesize = skb->truesize - delta_truesize;
4660  	skb->data_len = skb->data_len - delta_len;
4661  	skb->len = skb->len - delta_len;
4662  
4663  	skb_gso_reset(skb);
4664  
4665  	skb->prev = tail;
4666  
4667  	if (skb_needs_linearize(skb, features) &&
4668  	    __skb_linearize(skb))
4669  		goto err_linearize;
4670  
4671  	skb_get(skb);
4672  
4673  	return skb;
4674  
4675  err_linearize:
4676  	kfree_skb_list(skb->next);
4677  	skb->next = NULL;
4678  	return ERR_PTR(-ENOMEM);
4679  }
4680  EXPORT_SYMBOL_GPL(skb_segment_list);
4681  
4682  /**
4683   *	skb_segment - Perform protocol segmentation on skb.
4684   *	@head_skb: buffer to segment
4685   *	@features: features for the output path (see dev->features)
4686   *
4687   *	This function performs segmentation on the given skb.  It returns
4688   *	a pointer to the first in a list of new skbs for the segments.
4689   *	In case of error it returns ERR_PTR(err).
4690   */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4691  struct sk_buff *skb_segment(struct sk_buff *head_skb,
4692  			    netdev_features_t features)
4693  {
4694  	struct sk_buff *segs = NULL;
4695  	struct sk_buff *tail = NULL;
4696  	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4697  	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4698  	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4699  	unsigned int offset = doffset;
4700  	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4701  	unsigned int partial_segs = 0;
4702  	unsigned int headroom;
4703  	unsigned int len = head_skb->len;
4704  	struct sk_buff *frag_skb;
4705  	skb_frag_t *frag;
4706  	__be16 proto;
4707  	bool csum, sg;
4708  	int err = -ENOMEM;
4709  	int i = 0;
4710  	int nfrags, pos;
4711  
4712  	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4713  	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4714  		struct sk_buff *check_skb;
4715  
4716  		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4717  			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4718  				/* gso_size is untrusted, and we have a frag_list with
4719  				 * a linear non head_frag item.
4720  				 *
4721  				 * If head_skb's headlen does not fit requested gso_size,
4722  				 * it means that the frag_list members do NOT terminate
4723  				 * on exact gso_size boundaries. Hence we cannot perform
4724  				 * skb_frag_t page sharing. Therefore we must fallback to
4725  				 * copying the frag_list skbs; we do so by disabling SG.
4726  				 */
4727  				features &= ~NETIF_F_SG;
4728  				break;
4729  			}
4730  		}
4731  	}
4732  
4733  	__skb_push(head_skb, doffset);
4734  	proto = skb_network_protocol(head_skb, NULL);
4735  	if (unlikely(!proto))
4736  		return ERR_PTR(-EINVAL);
4737  
4738  	sg = !!(features & NETIF_F_SG);
4739  	csum = !!can_checksum_protocol(features, proto);
4740  
4741  	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4742  		if (!(features & NETIF_F_GSO_PARTIAL)) {
4743  			struct sk_buff *iter;
4744  			unsigned int frag_len;
4745  
4746  			if (!list_skb ||
4747  			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4748  				goto normal;
4749  
4750  			/* If we get here then all the required
4751  			 * GSO features except frag_list are supported.
4752  			 * Try to split the SKB to multiple GSO SKBs
4753  			 * with no frag_list.
4754  			 * Currently we can do that only when the buffers don't
4755  			 * have a linear part and all the buffers except
4756  			 * the last are of the same length.
4757  			 */
4758  			frag_len = list_skb->len;
4759  			skb_walk_frags(head_skb, iter) {
4760  				if (frag_len != iter->len && iter->next)
4761  					goto normal;
4762  				if (skb_headlen(iter) && !iter->head_frag)
4763  					goto normal;
4764  
4765  				len -= iter->len;
4766  			}
4767  
4768  			if (len != frag_len)
4769  				goto normal;
4770  		}
4771  
4772  		/* GSO partial only requires that we trim off any excess that
4773  		 * doesn't fit into an MSS sized block, so take care of that
4774  		 * now.
4775  		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4776  		 */
4777  		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4778  		if (partial_segs > 1)
4779  			mss *= partial_segs;
4780  		else
4781  			partial_segs = 0;
4782  	}
4783  
4784  normal:
4785  	headroom = skb_headroom(head_skb);
4786  	pos = skb_headlen(head_skb);
4787  
4788  	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4789  		return ERR_PTR(-ENOMEM);
4790  
4791  	nfrags = skb_shinfo(head_skb)->nr_frags;
4792  	frag = skb_shinfo(head_skb)->frags;
4793  	frag_skb = head_skb;
4794  
4795  	do {
4796  		struct sk_buff *nskb;
4797  		skb_frag_t *nskb_frag;
4798  		int hsize;
4799  		int size;
4800  
4801  		if (unlikely(mss == GSO_BY_FRAGS)) {
4802  			len = list_skb->len;
4803  		} else {
4804  			len = head_skb->len - offset;
4805  			if (len > mss)
4806  				len = mss;
4807  		}
4808  
4809  		hsize = skb_headlen(head_skb) - offset;
4810  
4811  		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4812  		    (skb_headlen(list_skb) == len || sg)) {
4813  			BUG_ON(skb_headlen(list_skb) > len);
4814  
4815  			nskb = skb_clone(list_skb, GFP_ATOMIC);
4816  			if (unlikely(!nskb))
4817  				goto err;
4818  
4819  			i = 0;
4820  			nfrags = skb_shinfo(list_skb)->nr_frags;
4821  			frag = skb_shinfo(list_skb)->frags;
4822  			frag_skb = list_skb;
4823  			pos += skb_headlen(list_skb);
4824  
4825  			while (pos < offset + len) {
4826  				BUG_ON(i >= nfrags);
4827  
4828  				size = skb_frag_size(frag);
4829  				if (pos + size > offset + len)
4830  					break;
4831  
4832  				i++;
4833  				pos += size;
4834  				frag++;
4835  			}
4836  
4837  			list_skb = list_skb->next;
4838  
4839  			if (unlikely(pskb_trim(nskb, len))) {
4840  				kfree_skb(nskb);
4841  				goto err;
4842  			}
4843  
4844  			hsize = skb_end_offset(nskb);
4845  			if (skb_cow_head(nskb, doffset + headroom)) {
4846  				kfree_skb(nskb);
4847  				goto err;
4848  			}
4849  
4850  			nskb->truesize += skb_end_offset(nskb) - hsize;
4851  			skb_release_head_state(nskb);
4852  			__skb_push(nskb, doffset);
4853  		} else {
4854  			if (hsize < 0)
4855  				hsize = 0;
4856  			if (hsize > len || !sg)
4857  				hsize = len;
4858  
4859  			nskb = __alloc_skb(hsize + doffset + headroom,
4860  					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4861  					   NUMA_NO_NODE);
4862  
4863  			if (unlikely(!nskb))
4864  				goto err;
4865  
4866  			skb_reserve(nskb, headroom);
4867  			__skb_put(nskb, doffset);
4868  		}
4869  
4870  		if (segs)
4871  			tail->next = nskb;
4872  		else
4873  			segs = nskb;
4874  		tail = nskb;
4875  
4876  		__copy_skb_header(nskb, head_skb);
4877  
4878  		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4879  		skb_reset_mac_len(nskb);
4880  
4881  		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4882  						 nskb->data - tnl_hlen,
4883  						 doffset + tnl_hlen);
4884  
4885  		if (nskb->len == len + doffset)
4886  			goto perform_csum_check;
4887  
4888  		if (!sg) {
4889  			if (!csum) {
4890  				if (!nskb->remcsum_offload)
4891  					nskb->ip_summed = CHECKSUM_NONE;
4892  				SKB_GSO_CB(nskb)->csum =
4893  					skb_copy_and_csum_bits(head_skb, offset,
4894  							       skb_put(nskb,
4895  								       len),
4896  							       len);
4897  				SKB_GSO_CB(nskb)->csum_start =
4898  					skb_headroom(nskb) + doffset;
4899  			} else {
4900  				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4901  					goto err;
4902  			}
4903  			continue;
4904  		}
4905  
4906  		nskb_frag = skb_shinfo(nskb)->frags;
4907  
4908  		skb_copy_from_linear_data_offset(head_skb, offset,
4909  						 skb_put(nskb, hsize), hsize);
4910  
4911  		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4912  					   SKBFL_SHARED_FRAG;
4913  
4914  		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4915  			goto err;
4916  
4917  		while (pos < offset + len) {
4918  			if (i >= nfrags) {
4919  				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4920  				    skb_zerocopy_clone(nskb, list_skb,
4921  						       GFP_ATOMIC))
4922  					goto err;
4923  
4924  				i = 0;
4925  				nfrags = skb_shinfo(list_skb)->nr_frags;
4926  				frag = skb_shinfo(list_skb)->frags;
4927  				frag_skb = list_skb;
4928  				if (!skb_headlen(list_skb)) {
4929  					BUG_ON(!nfrags);
4930  				} else {
4931  					BUG_ON(!list_skb->head_frag);
4932  
4933  					/* to make room for head_frag. */
4934  					i--;
4935  					frag--;
4936  				}
4937  
4938  				list_skb = list_skb->next;
4939  			}
4940  
4941  			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4942  				     MAX_SKB_FRAGS)) {
4943  				net_warn_ratelimited(
4944  					"skb_segment: too many frags: %u %u\n",
4945  					pos, mss);
4946  				err = -EINVAL;
4947  				goto err;
4948  			}
4949  
4950  			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4951  			__skb_frag_ref(nskb_frag);
4952  			size = skb_frag_size(nskb_frag);
4953  
4954  			if (pos < offset) {
4955  				skb_frag_off_add(nskb_frag, offset - pos);
4956  				skb_frag_size_sub(nskb_frag, offset - pos);
4957  			}
4958  
4959  			skb_shinfo(nskb)->nr_frags++;
4960  
4961  			if (pos + size <= offset + len) {
4962  				i++;
4963  				frag++;
4964  				pos += size;
4965  			} else {
4966  				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4967  				goto skip_fraglist;
4968  			}
4969  
4970  			nskb_frag++;
4971  		}
4972  
4973  skip_fraglist:
4974  		nskb->data_len = len - hsize;
4975  		nskb->len += nskb->data_len;
4976  		nskb->truesize += nskb->data_len;
4977  
4978  perform_csum_check:
4979  		if (!csum) {
4980  			if (skb_has_shared_frag(nskb) &&
4981  			    __skb_linearize(nskb))
4982  				goto err;
4983  
4984  			if (!nskb->remcsum_offload)
4985  				nskb->ip_summed = CHECKSUM_NONE;
4986  			SKB_GSO_CB(nskb)->csum =
4987  				skb_checksum(nskb, doffset,
4988  					     nskb->len - doffset, 0);
4989  			SKB_GSO_CB(nskb)->csum_start =
4990  				skb_headroom(nskb) + doffset;
4991  		}
4992  	} while ((offset += len) < head_skb->len);
4993  
4994  	/* Some callers want to get the end of the list.
4995  	 * Put it in segs->prev to avoid walking the list.
4996  	 * (see validate_xmit_skb_list() for example)
4997  	 */
4998  	segs->prev = tail;
4999  
5000  	if (partial_segs) {
5001  		struct sk_buff *iter;
5002  		int type = skb_shinfo(head_skb)->gso_type;
5003  		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5004  
5005  		/* Update type to add partial and then remove dodgy if set */
5006  		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5007  		type &= ~SKB_GSO_DODGY;
5008  
5009  		/* Update GSO info and prepare to start updating headers on
5010  		 * our way back down the stack of protocols.
5011  		 */
5012  		for (iter = segs; iter; iter = iter->next) {
5013  			skb_shinfo(iter)->gso_size = gso_size;
5014  			skb_shinfo(iter)->gso_segs = partial_segs;
5015  			skb_shinfo(iter)->gso_type = type;
5016  			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5017  		}
5018  
5019  		if (tail->len - doffset <= gso_size)
5020  			skb_shinfo(tail)->gso_size = 0;
5021  		else if (tail != segs)
5022  			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5023  	}
5024  
5025  	/* Following permits correct backpressure, for protocols
5026  	 * using skb_set_owner_w().
5027  	 * Idea is to tranfert ownership from head_skb to last segment.
5028  	 */
5029  	if (head_skb->destructor == sock_wfree) {
5030  		swap(tail->truesize, head_skb->truesize);
5031  		swap(tail->destructor, head_skb->destructor);
5032  		swap(tail->sk, head_skb->sk);
5033  	}
5034  	return segs;
5035  
5036  err:
5037  	kfree_skb_list(segs);
5038  	return ERR_PTR(err);
5039  }
5040  EXPORT_SYMBOL_GPL(skb_segment);
5041  
5042  #ifdef CONFIG_SKB_EXTENSIONS
5043  #define SKB_EXT_ALIGN_VALUE	8
5044  #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5045  
5046  static const u8 skb_ext_type_len[] = {
5047  #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5048  	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5049  #endif
5050  #ifdef CONFIG_XFRM
5051  	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5052  #endif
5053  #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5054  	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5055  #endif
5056  #if IS_ENABLED(CONFIG_MPTCP)
5057  	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5058  #endif
5059  #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5060  	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5061  #endif
5062  };
5063  
skb_ext_total_length(void)5064  static __always_inline unsigned int skb_ext_total_length(void)
5065  {
5066  	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5067  	int i;
5068  
5069  	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5070  		l += skb_ext_type_len[i];
5071  
5072  	return l;
5073  }
5074  
skb_extensions_init(void)5075  static void skb_extensions_init(void)
5076  {
5077  	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5078  #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5079  	BUILD_BUG_ON(skb_ext_total_length() > 255);
5080  #endif
5081  
5082  	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5083  					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5084  					     0,
5085  					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5086  					     NULL);
5087  }
5088  #else
skb_extensions_init(void)5089  static void skb_extensions_init(void) {}
5090  #endif
5091  
5092  /* The SKB kmem_cache slab is critical for network performance.  Never
5093   * merge/alias the slab with similar sized objects.  This avoids fragmentation
5094   * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5095   */
5096  #ifndef CONFIG_SLUB_TINY
5097  #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5098  #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5099  #define FLAG_SKB_NO_MERGE	0
5100  #endif
5101  
skb_init(void)5102  void __init skb_init(void)
5103  {
5104  	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5105  					      sizeof(struct sk_buff),
5106  					      0,
5107  					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5108  						FLAG_SKB_NO_MERGE,
5109  					      offsetof(struct sk_buff, cb),
5110  					      sizeof_field(struct sk_buff, cb),
5111  					      NULL);
5112  	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5113  						sizeof(struct sk_buff_fclones),
5114  						0,
5115  						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5116  						NULL);
5117  	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5118  	 * struct skb_shared_info is located at the end of skb->head,
5119  	 * and should not be copied to/from user.
5120  	 */
5121  	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5122  						SKB_SMALL_HEAD_CACHE_SIZE,
5123  						0,
5124  						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5125  						0,
5126  						SKB_SMALL_HEAD_HEADROOM,
5127  						NULL);
5128  	skb_extensions_init();
5129  }
5130  
5131  static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5132  __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5133  	       unsigned int recursion_level)
5134  {
5135  	int start = skb_headlen(skb);
5136  	int i, copy = start - offset;
5137  	struct sk_buff *frag_iter;
5138  	int elt = 0;
5139  
5140  	if (unlikely(recursion_level >= 24))
5141  		return -EMSGSIZE;
5142  
5143  	if (copy > 0) {
5144  		if (copy > len)
5145  			copy = len;
5146  		sg_set_buf(sg, skb->data + offset, copy);
5147  		elt++;
5148  		if ((len -= copy) == 0)
5149  			return elt;
5150  		offset += copy;
5151  	}
5152  
5153  	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5154  		int end;
5155  
5156  		WARN_ON(start > offset + len);
5157  
5158  		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5159  		if ((copy = end - offset) > 0) {
5160  			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5161  			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5162  				return -EMSGSIZE;
5163  
5164  			if (copy > len)
5165  				copy = len;
5166  			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5167  				    skb_frag_off(frag) + offset - start);
5168  			elt++;
5169  			if (!(len -= copy))
5170  				return elt;
5171  			offset += copy;
5172  		}
5173  		start = end;
5174  	}
5175  
5176  	skb_walk_frags(skb, frag_iter) {
5177  		int end, ret;
5178  
5179  		WARN_ON(start > offset + len);
5180  
5181  		end = start + frag_iter->len;
5182  		if ((copy = end - offset) > 0) {
5183  			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5184  				return -EMSGSIZE;
5185  
5186  			if (copy > len)
5187  				copy = len;
5188  			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5189  					      copy, recursion_level + 1);
5190  			if (unlikely(ret < 0))
5191  				return ret;
5192  			elt += ret;
5193  			if ((len -= copy) == 0)
5194  				return elt;
5195  			offset += copy;
5196  		}
5197  		start = end;
5198  	}
5199  	BUG_ON(len);
5200  	return elt;
5201  }
5202  
5203  /**
5204   *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5205   *	@skb: Socket buffer containing the buffers to be mapped
5206   *	@sg: The scatter-gather list to map into
5207   *	@offset: The offset into the buffer's contents to start mapping
5208   *	@len: Length of buffer space to be mapped
5209   *
5210   *	Fill the specified scatter-gather list with mappings/pointers into a
5211   *	region of the buffer space attached to a socket buffer. Returns either
5212   *	the number of scatterlist items used, or -EMSGSIZE if the contents
5213   *	could not fit.
5214   */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5215  int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5216  {
5217  	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5218  
5219  	if (nsg <= 0)
5220  		return nsg;
5221  
5222  	sg_mark_end(&sg[nsg - 1]);
5223  
5224  	return nsg;
5225  }
5226  EXPORT_SYMBOL_GPL(skb_to_sgvec);
5227  
5228  /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5229   * sglist without mark the sg which contain last skb data as the end.
5230   * So the caller can mannipulate sg list as will when padding new data after
5231   * the first call without calling sg_unmark_end to expend sg list.
5232   *
5233   * Scenario to use skb_to_sgvec_nomark:
5234   * 1. sg_init_table
5235   * 2. skb_to_sgvec_nomark(payload1)
5236   * 3. skb_to_sgvec_nomark(payload2)
5237   *
5238   * This is equivalent to:
5239   * 1. sg_init_table
5240   * 2. skb_to_sgvec(payload1)
5241   * 3. sg_unmark_end
5242   * 4. skb_to_sgvec(payload2)
5243   *
5244   * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5245   * is more preferable.
5246   */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5247  int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5248  			int offset, int len)
5249  {
5250  	return __skb_to_sgvec(skb, sg, offset, len, 0);
5251  }
5252  EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5253  
5254  
5255  
5256  /**
5257   *	skb_cow_data - Check that a socket buffer's data buffers are writable
5258   *	@skb: The socket buffer to check.
5259   *	@tailbits: Amount of trailing space to be added
5260   *	@trailer: Returned pointer to the skb where the @tailbits space begins
5261   *
5262   *	Make sure that the data buffers attached to a socket buffer are
5263   *	writable. If they are not, private copies are made of the data buffers
5264   *	and the socket buffer is set to use these instead.
5265   *
5266   *	If @tailbits is given, make sure that there is space to write @tailbits
5267   *	bytes of data beyond current end of socket buffer.  @trailer will be
5268   *	set to point to the skb in which this space begins.
5269   *
5270   *	The number of scatterlist elements required to completely map the
5271   *	COW'd and extended socket buffer will be returned.
5272   */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5273  int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5274  {
5275  	int copyflag;
5276  	int elt;
5277  	struct sk_buff *skb1, **skb_p;
5278  
5279  	/* If skb is cloned or its head is paged, reallocate
5280  	 * head pulling out all the pages (pages are considered not writable
5281  	 * at the moment even if they are anonymous).
5282  	 */
5283  	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5284  	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5285  		return -ENOMEM;
5286  
5287  	/* Easy case. Most of packets will go this way. */
5288  	if (!skb_has_frag_list(skb)) {
5289  		/* A little of trouble, not enough of space for trailer.
5290  		 * This should not happen, when stack is tuned to generate
5291  		 * good frames. OK, on miss we reallocate and reserve even more
5292  		 * space, 128 bytes is fair. */
5293  
5294  		if (skb_tailroom(skb) < tailbits &&
5295  		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5296  			return -ENOMEM;
5297  
5298  		/* Voila! */
5299  		*trailer = skb;
5300  		return 1;
5301  	}
5302  
5303  	/* Misery. We are in troubles, going to mincer fragments... */
5304  
5305  	elt = 1;
5306  	skb_p = &skb_shinfo(skb)->frag_list;
5307  	copyflag = 0;
5308  
5309  	while ((skb1 = *skb_p) != NULL) {
5310  		int ntail = 0;
5311  
5312  		/* The fragment is partially pulled by someone,
5313  		 * this can happen on input. Copy it and everything
5314  		 * after it. */
5315  
5316  		if (skb_shared(skb1))
5317  			copyflag = 1;
5318  
5319  		/* If the skb is the last, worry about trailer. */
5320  
5321  		if (skb1->next == NULL && tailbits) {
5322  			if (skb_shinfo(skb1)->nr_frags ||
5323  			    skb_has_frag_list(skb1) ||
5324  			    skb_tailroom(skb1) < tailbits)
5325  				ntail = tailbits + 128;
5326  		}
5327  
5328  		if (copyflag ||
5329  		    skb_cloned(skb1) ||
5330  		    ntail ||
5331  		    skb_shinfo(skb1)->nr_frags ||
5332  		    skb_has_frag_list(skb1)) {
5333  			struct sk_buff *skb2;
5334  
5335  			/* Fuck, we are miserable poor guys... */
5336  			if (ntail == 0)
5337  				skb2 = skb_copy(skb1, GFP_ATOMIC);
5338  			else
5339  				skb2 = skb_copy_expand(skb1,
5340  						       skb_headroom(skb1),
5341  						       ntail,
5342  						       GFP_ATOMIC);
5343  			if (unlikely(skb2 == NULL))
5344  				return -ENOMEM;
5345  
5346  			if (skb1->sk)
5347  				skb_set_owner_w(skb2, skb1->sk);
5348  
5349  			/* Looking around. Are we still alive?
5350  			 * OK, link new skb, drop old one */
5351  
5352  			skb2->next = skb1->next;
5353  			*skb_p = skb2;
5354  			kfree_skb(skb1);
5355  			skb1 = skb2;
5356  		}
5357  		elt++;
5358  		*trailer = skb1;
5359  		skb_p = &skb1->next;
5360  	}
5361  
5362  	return elt;
5363  }
5364  EXPORT_SYMBOL_GPL(skb_cow_data);
5365  
sock_rmem_free(struct sk_buff * skb)5366  static void sock_rmem_free(struct sk_buff *skb)
5367  {
5368  	struct sock *sk = skb->sk;
5369  
5370  	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5371  }
5372  
skb_set_err_queue(struct sk_buff * skb)5373  static void skb_set_err_queue(struct sk_buff *skb)
5374  {
5375  	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5376  	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5377  	 */
5378  	skb->pkt_type = PACKET_OUTGOING;
5379  	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5380  }
5381  
5382  /*
5383   * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5384   */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5385  int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5386  {
5387  	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5388  	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5389  		return -ENOMEM;
5390  
5391  	skb_orphan(skb);
5392  	skb->sk = sk;
5393  	skb->destructor = sock_rmem_free;
5394  	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5395  	skb_set_err_queue(skb);
5396  
5397  	/* before exiting rcu section, make sure dst is refcounted */
5398  	skb_dst_force(skb);
5399  
5400  	skb_queue_tail(&sk->sk_error_queue, skb);
5401  	if (!sock_flag(sk, SOCK_DEAD))
5402  		sk_error_report(sk);
5403  	return 0;
5404  }
5405  EXPORT_SYMBOL(sock_queue_err_skb);
5406  
is_icmp_err_skb(const struct sk_buff * skb)5407  static bool is_icmp_err_skb(const struct sk_buff *skb)
5408  {
5409  	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5410  		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5411  }
5412  
sock_dequeue_err_skb(struct sock * sk)5413  struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5414  {
5415  	struct sk_buff_head *q = &sk->sk_error_queue;
5416  	struct sk_buff *skb, *skb_next = NULL;
5417  	bool icmp_next = false;
5418  	unsigned long flags;
5419  
5420  	if (skb_queue_empty_lockless(q))
5421  		return NULL;
5422  
5423  	spin_lock_irqsave(&q->lock, flags);
5424  	skb = __skb_dequeue(q);
5425  	if (skb && (skb_next = skb_peek(q))) {
5426  		icmp_next = is_icmp_err_skb(skb_next);
5427  		if (icmp_next)
5428  			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5429  	}
5430  	spin_unlock_irqrestore(&q->lock, flags);
5431  
5432  	if (is_icmp_err_skb(skb) && !icmp_next)
5433  		sk->sk_err = 0;
5434  
5435  	if (skb_next)
5436  		sk_error_report(sk);
5437  
5438  	return skb;
5439  }
5440  EXPORT_SYMBOL(sock_dequeue_err_skb);
5441  
5442  /**
5443   * skb_clone_sk - create clone of skb, and take reference to socket
5444   * @skb: the skb to clone
5445   *
5446   * This function creates a clone of a buffer that holds a reference on
5447   * sk_refcnt.  Buffers created via this function are meant to be
5448   * returned using sock_queue_err_skb, or free via kfree_skb.
5449   *
5450   * When passing buffers allocated with this function to sock_queue_err_skb
5451   * it is necessary to wrap the call with sock_hold/sock_put in order to
5452   * prevent the socket from being released prior to being enqueued on
5453   * the sk_error_queue.
5454   */
skb_clone_sk(struct sk_buff * skb)5455  struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5456  {
5457  	struct sock *sk = skb->sk;
5458  	struct sk_buff *clone;
5459  
5460  	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5461  		return NULL;
5462  
5463  	clone = skb_clone(skb, GFP_ATOMIC);
5464  	if (!clone) {
5465  		sock_put(sk);
5466  		return NULL;
5467  	}
5468  
5469  	clone->sk = sk;
5470  	clone->destructor = sock_efree;
5471  
5472  	return clone;
5473  }
5474  EXPORT_SYMBOL(skb_clone_sk);
5475  
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5476  static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5477  					struct sock *sk,
5478  					int tstype,
5479  					bool opt_stats)
5480  {
5481  	struct sock_exterr_skb *serr;
5482  	int err;
5483  
5484  	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5485  
5486  	serr = SKB_EXT_ERR(skb);
5487  	memset(serr, 0, sizeof(*serr));
5488  	serr->ee.ee_errno = ENOMSG;
5489  	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5490  	serr->ee.ee_info = tstype;
5491  	serr->opt_stats = opt_stats;
5492  	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5493  	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5494  		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5495  		if (sk_is_tcp(sk))
5496  			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5497  	}
5498  
5499  	err = sock_queue_err_skb(sk, skb);
5500  
5501  	if (err)
5502  		kfree_skb(skb);
5503  }
5504  
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5505  static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5506  {
5507  	bool ret;
5508  
5509  	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5510  		return true;
5511  
5512  	read_lock_bh(&sk->sk_callback_lock);
5513  	ret = sk->sk_socket && sk->sk_socket->file &&
5514  	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5515  	read_unlock_bh(&sk->sk_callback_lock);
5516  	return ret;
5517  }
5518  
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5519  void skb_complete_tx_timestamp(struct sk_buff *skb,
5520  			       struct skb_shared_hwtstamps *hwtstamps)
5521  {
5522  	struct sock *sk = skb->sk;
5523  
5524  	if (!skb_may_tx_timestamp(sk, false))
5525  		goto err;
5526  
5527  	/* Take a reference to prevent skb_orphan() from freeing the socket,
5528  	 * but only if the socket refcount is not zero.
5529  	 */
5530  	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5531  		*skb_hwtstamps(skb) = *hwtstamps;
5532  		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5533  		sock_put(sk);
5534  		return;
5535  	}
5536  
5537  err:
5538  	kfree_skb(skb);
5539  }
5540  EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5541  
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5542  void __skb_tstamp_tx(struct sk_buff *orig_skb,
5543  		     const struct sk_buff *ack_skb,
5544  		     struct skb_shared_hwtstamps *hwtstamps,
5545  		     struct sock *sk, int tstype)
5546  {
5547  	struct sk_buff *skb;
5548  	bool tsonly, opt_stats = false;
5549  	u32 tsflags;
5550  
5551  	if (!sk)
5552  		return;
5553  
5554  	tsflags = READ_ONCE(sk->sk_tsflags);
5555  	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5556  	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5557  		return;
5558  
5559  	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5560  	if (!skb_may_tx_timestamp(sk, tsonly))
5561  		return;
5562  
5563  	if (tsonly) {
5564  #ifdef CONFIG_INET
5565  		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5566  		    sk_is_tcp(sk)) {
5567  			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5568  							     ack_skb);
5569  			opt_stats = true;
5570  		} else
5571  #endif
5572  			skb = alloc_skb(0, GFP_ATOMIC);
5573  	} else {
5574  		skb = skb_clone(orig_skb, GFP_ATOMIC);
5575  
5576  		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5577  			kfree_skb(skb);
5578  			return;
5579  		}
5580  	}
5581  	if (!skb)
5582  		return;
5583  
5584  	if (tsonly) {
5585  		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5586  					     SKBTX_ANY_TSTAMP;
5587  		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5588  	}
5589  
5590  	if (hwtstamps)
5591  		*skb_hwtstamps(skb) = *hwtstamps;
5592  	else
5593  		__net_timestamp(skb);
5594  
5595  	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5596  }
5597  EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5598  
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5599  void skb_tstamp_tx(struct sk_buff *orig_skb,
5600  		   struct skb_shared_hwtstamps *hwtstamps)
5601  {
5602  	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5603  			       SCM_TSTAMP_SND);
5604  }
5605  EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5606  
5607  #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5608  void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5609  {
5610  	struct sock *sk = skb->sk;
5611  	struct sock_exterr_skb *serr;
5612  	int err = 1;
5613  
5614  	skb->wifi_acked_valid = 1;
5615  	skb->wifi_acked = acked;
5616  
5617  	serr = SKB_EXT_ERR(skb);
5618  	memset(serr, 0, sizeof(*serr));
5619  	serr->ee.ee_errno = ENOMSG;
5620  	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5621  
5622  	/* Take a reference to prevent skb_orphan() from freeing the socket,
5623  	 * but only if the socket refcount is not zero.
5624  	 */
5625  	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5626  		err = sock_queue_err_skb(sk, skb);
5627  		sock_put(sk);
5628  	}
5629  	if (err)
5630  		kfree_skb(skb);
5631  }
5632  EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5633  #endif /* CONFIG_WIRELESS */
5634  
5635  /**
5636   * skb_partial_csum_set - set up and verify partial csum values for packet
5637   * @skb: the skb to set
5638   * @start: the number of bytes after skb->data to start checksumming.
5639   * @off: the offset from start to place the checksum.
5640   *
5641   * For untrusted partially-checksummed packets, we need to make sure the values
5642   * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5643   *
5644   * This function checks and sets those values and skb->ip_summed: if this
5645   * returns false you should drop the packet.
5646   */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5647  bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5648  {
5649  	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5650  	u32 csum_start = skb_headroom(skb) + (u32)start;
5651  
5652  	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5653  		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5654  				     start, off, skb_headroom(skb), skb_headlen(skb));
5655  		return false;
5656  	}
5657  	skb->ip_summed = CHECKSUM_PARTIAL;
5658  	skb->csum_start = csum_start;
5659  	skb->csum_offset = off;
5660  	skb->transport_header = csum_start;
5661  	return true;
5662  }
5663  EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5664  
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5665  static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5666  			       unsigned int max)
5667  {
5668  	if (skb_headlen(skb) >= len)
5669  		return 0;
5670  
5671  	/* If we need to pullup then pullup to the max, so we
5672  	 * won't need to do it again.
5673  	 */
5674  	if (max > skb->len)
5675  		max = skb->len;
5676  
5677  	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5678  		return -ENOMEM;
5679  
5680  	if (skb_headlen(skb) < len)
5681  		return -EPROTO;
5682  
5683  	return 0;
5684  }
5685  
5686  #define MAX_TCP_HDR_LEN (15 * 4)
5687  
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5688  static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5689  				      typeof(IPPROTO_IP) proto,
5690  				      unsigned int off)
5691  {
5692  	int err;
5693  
5694  	switch (proto) {
5695  	case IPPROTO_TCP:
5696  		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5697  					  off + MAX_TCP_HDR_LEN);
5698  		if (!err && !skb_partial_csum_set(skb, off,
5699  						  offsetof(struct tcphdr,
5700  							   check)))
5701  			err = -EPROTO;
5702  		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5703  
5704  	case IPPROTO_UDP:
5705  		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5706  					  off + sizeof(struct udphdr));
5707  		if (!err && !skb_partial_csum_set(skb, off,
5708  						  offsetof(struct udphdr,
5709  							   check)))
5710  			err = -EPROTO;
5711  		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5712  	}
5713  
5714  	return ERR_PTR(-EPROTO);
5715  }
5716  
5717  /* This value should be large enough to cover a tagged ethernet header plus
5718   * maximally sized IP and TCP or UDP headers.
5719   */
5720  #define MAX_IP_HDR_LEN 128
5721  
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5722  static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5723  {
5724  	unsigned int off;
5725  	bool fragment;
5726  	__sum16 *csum;
5727  	int err;
5728  
5729  	fragment = false;
5730  
5731  	err = skb_maybe_pull_tail(skb,
5732  				  sizeof(struct iphdr),
5733  				  MAX_IP_HDR_LEN);
5734  	if (err < 0)
5735  		goto out;
5736  
5737  	if (ip_is_fragment(ip_hdr(skb)))
5738  		fragment = true;
5739  
5740  	off = ip_hdrlen(skb);
5741  
5742  	err = -EPROTO;
5743  
5744  	if (fragment)
5745  		goto out;
5746  
5747  	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5748  	if (IS_ERR(csum))
5749  		return PTR_ERR(csum);
5750  
5751  	if (recalculate)
5752  		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5753  					   ip_hdr(skb)->daddr,
5754  					   skb->len - off,
5755  					   ip_hdr(skb)->protocol, 0);
5756  	err = 0;
5757  
5758  out:
5759  	return err;
5760  }
5761  
5762  /* This value should be large enough to cover a tagged ethernet header plus
5763   * an IPv6 header, all options, and a maximal TCP or UDP header.
5764   */
5765  #define MAX_IPV6_HDR_LEN 256
5766  
5767  #define OPT_HDR(type, skb, off) \
5768  	(type *)(skb_network_header(skb) + (off))
5769  
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5770  static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5771  {
5772  	int err;
5773  	u8 nexthdr;
5774  	unsigned int off;
5775  	unsigned int len;
5776  	bool fragment;
5777  	bool done;
5778  	__sum16 *csum;
5779  
5780  	fragment = false;
5781  	done = false;
5782  
5783  	off = sizeof(struct ipv6hdr);
5784  
5785  	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5786  	if (err < 0)
5787  		goto out;
5788  
5789  	nexthdr = ipv6_hdr(skb)->nexthdr;
5790  
5791  	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5792  	while (off <= len && !done) {
5793  		switch (nexthdr) {
5794  		case IPPROTO_DSTOPTS:
5795  		case IPPROTO_HOPOPTS:
5796  		case IPPROTO_ROUTING: {
5797  			struct ipv6_opt_hdr *hp;
5798  
5799  			err = skb_maybe_pull_tail(skb,
5800  						  off +
5801  						  sizeof(struct ipv6_opt_hdr),
5802  						  MAX_IPV6_HDR_LEN);
5803  			if (err < 0)
5804  				goto out;
5805  
5806  			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5807  			nexthdr = hp->nexthdr;
5808  			off += ipv6_optlen(hp);
5809  			break;
5810  		}
5811  		case IPPROTO_AH: {
5812  			struct ip_auth_hdr *hp;
5813  
5814  			err = skb_maybe_pull_tail(skb,
5815  						  off +
5816  						  sizeof(struct ip_auth_hdr),
5817  						  MAX_IPV6_HDR_LEN);
5818  			if (err < 0)
5819  				goto out;
5820  
5821  			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5822  			nexthdr = hp->nexthdr;
5823  			off += ipv6_authlen(hp);
5824  			break;
5825  		}
5826  		case IPPROTO_FRAGMENT: {
5827  			struct frag_hdr *hp;
5828  
5829  			err = skb_maybe_pull_tail(skb,
5830  						  off +
5831  						  sizeof(struct frag_hdr),
5832  						  MAX_IPV6_HDR_LEN);
5833  			if (err < 0)
5834  				goto out;
5835  
5836  			hp = OPT_HDR(struct frag_hdr, skb, off);
5837  
5838  			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5839  				fragment = true;
5840  
5841  			nexthdr = hp->nexthdr;
5842  			off += sizeof(struct frag_hdr);
5843  			break;
5844  		}
5845  		default:
5846  			done = true;
5847  			break;
5848  		}
5849  	}
5850  
5851  	err = -EPROTO;
5852  
5853  	if (!done || fragment)
5854  		goto out;
5855  
5856  	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5857  	if (IS_ERR(csum))
5858  		return PTR_ERR(csum);
5859  
5860  	if (recalculate)
5861  		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5862  					 &ipv6_hdr(skb)->daddr,
5863  					 skb->len - off, nexthdr, 0);
5864  	err = 0;
5865  
5866  out:
5867  	return err;
5868  }
5869  
5870  /**
5871   * skb_checksum_setup - set up partial checksum offset
5872   * @skb: the skb to set up
5873   * @recalculate: if true the pseudo-header checksum will be recalculated
5874   */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5875  int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5876  {
5877  	int err;
5878  
5879  	switch (skb->protocol) {
5880  	case htons(ETH_P_IP):
5881  		err = skb_checksum_setup_ipv4(skb, recalculate);
5882  		break;
5883  
5884  	case htons(ETH_P_IPV6):
5885  		err = skb_checksum_setup_ipv6(skb, recalculate);
5886  		break;
5887  
5888  	default:
5889  		err = -EPROTO;
5890  		break;
5891  	}
5892  
5893  	return err;
5894  }
5895  EXPORT_SYMBOL(skb_checksum_setup);
5896  
5897  /**
5898   * skb_checksum_maybe_trim - maybe trims the given skb
5899   * @skb: the skb to check
5900   * @transport_len: the data length beyond the network header
5901   *
5902   * Checks whether the given skb has data beyond the given transport length.
5903   * If so, returns a cloned skb trimmed to this transport length.
5904   * Otherwise returns the provided skb. Returns NULL in error cases
5905   * (e.g. transport_len exceeds skb length or out-of-memory).
5906   *
5907   * Caller needs to set the skb transport header and free any returned skb if it
5908   * differs from the provided skb.
5909   */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5910  static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5911  					       unsigned int transport_len)
5912  {
5913  	struct sk_buff *skb_chk;
5914  	unsigned int len = skb_transport_offset(skb) + transport_len;
5915  	int ret;
5916  
5917  	if (skb->len < len)
5918  		return NULL;
5919  	else if (skb->len == len)
5920  		return skb;
5921  
5922  	skb_chk = skb_clone(skb, GFP_ATOMIC);
5923  	if (!skb_chk)
5924  		return NULL;
5925  
5926  	ret = pskb_trim_rcsum(skb_chk, len);
5927  	if (ret) {
5928  		kfree_skb(skb_chk);
5929  		return NULL;
5930  	}
5931  
5932  	return skb_chk;
5933  }
5934  
5935  /**
5936   * skb_checksum_trimmed - validate checksum of an skb
5937   * @skb: the skb to check
5938   * @transport_len: the data length beyond the network header
5939   * @skb_chkf: checksum function to use
5940   *
5941   * Applies the given checksum function skb_chkf to the provided skb.
5942   * Returns a checked and maybe trimmed skb. Returns NULL on error.
5943   *
5944   * If the skb has data beyond the given transport length, then a
5945   * trimmed & cloned skb is checked and returned.
5946   *
5947   * Caller needs to set the skb transport header and free any returned skb if it
5948   * differs from the provided skb.
5949   */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5950  struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5951  				     unsigned int transport_len,
5952  				     __sum16(*skb_chkf)(struct sk_buff *skb))
5953  {
5954  	struct sk_buff *skb_chk;
5955  	unsigned int offset = skb_transport_offset(skb);
5956  	__sum16 ret;
5957  
5958  	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5959  	if (!skb_chk)
5960  		goto err;
5961  
5962  	if (!pskb_may_pull(skb_chk, offset))
5963  		goto err;
5964  
5965  	skb_pull_rcsum(skb_chk, offset);
5966  	ret = skb_chkf(skb_chk);
5967  	skb_push_rcsum(skb_chk, offset);
5968  
5969  	if (ret)
5970  		goto err;
5971  
5972  	return skb_chk;
5973  
5974  err:
5975  	if (skb_chk && skb_chk != skb)
5976  		kfree_skb(skb_chk);
5977  
5978  	return NULL;
5979  
5980  }
5981  EXPORT_SYMBOL(skb_checksum_trimmed);
5982  
__skb_warn_lro_forwarding(const struct sk_buff * skb)5983  void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5984  {
5985  	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5986  			     skb->dev->name);
5987  }
5988  EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5989  
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5990  void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5991  {
5992  	if (head_stolen) {
5993  		skb_release_head_state(skb);
5994  		kmem_cache_free(net_hotdata.skbuff_cache, skb);
5995  	} else {
5996  		__kfree_skb(skb);
5997  	}
5998  }
5999  EXPORT_SYMBOL(kfree_skb_partial);
6000  
6001  /**
6002   * skb_try_coalesce - try to merge skb to prior one
6003   * @to: prior buffer
6004   * @from: buffer to add
6005   * @fragstolen: pointer to boolean
6006   * @delta_truesize: how much more was allocated than was requested
6007   */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)6008  bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6009  		      bool *fragstolen, int *delta_truesize)
6010  {
6011  	struct skb_shared_info *to_shinfo, *from_shinfo;
6012  	int i, delta, len = from->len;
6013  
6014  	*fragstolen = false;
6015  
6016  	if (skb_cloned(to))
6017  		return false;
6018  
6019  	/* In general, avoid mixing page_pool and non-page_pool allocated
6020  	 * pages within the same SKB. In theory we could take full
6021  	 * references if @from is cloned and !@to->pp_recycle but its
6022  	 * tricky (due to potential race with the clone disappearing) and
6023  	 * rare, so not worth dealing with.
6024  	 */
6025  	if (to->pp_recycle != from->pp_recycle)
6026  		return false;
6027  
6028  	if (skb_frags_readable(from) != skb_frags_readable(to))
6029  		return false;
6030  
6031  	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6032  		if (len)
6033  			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6034  		*delta_truesize = 0;
6035  		return true;
6036  	}
6037  
6038  	to_shinfo = skb_shinfo(to);
6039  	from_shinfo = skb_shinfo(from);
6040  	if (to_shinfo->frag_list || from_shinfo->frag_list)
6041  		return false;
6042  	if (skb_zcopy(to) || skb_zcopy(from))
6043  		return false;
6044  
6045  	if (skb_headlen(from) != 0) {
6046  		struct page *page;
6047  		unsigned int offset;
6048  
6049  		if (to_shinfo->nr_frags +
6050  		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6051  			return false;
6052  
6053  		if (skb_head_is_locked(from))
6054  			return false;
6055  
6056  		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6057  
6058  		page = virt_to_head_page(from->head);
6059  		offset = from->data - (unsigned char *)page_address(page);
6060  
6061  		skb_fill_page_desc(to, to_shinfo->nr_frags,
6062  				   page, offset, skb_headlen(from));
6063  		*fragstolen = true;
6064  	} else {
6065  		if (to_shinfo->nr_frags +
6066  		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6067  			return false;
6068  
6069  		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6070  	}
6071  
6072  	WARN_ON_ONCE(delta < len);
6073  
6074  	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6075  	       from_shinfo->frags,
6076  	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6077  	to_shinfo->nr_frags += from_shinfo->nr_frags;
6078  
6079  	if (!skb_cloned(from))
6080  		from_shinfo->nr_frags = 0;
6081  
6082  	/* if the skb is not cloned this does nothing
6083  	 * since we set nr_frags to 0.
6084  	 */
6085  	if (skb_pp_frag_ref(from)) {
6086  		for (i = 0; i < from_shinfo->nr_frags; i++)
6087  			__skb_frag_ref(&from_shinfo->frags[i]);
6088  	}
6089  
6090  	to->truesize += delta;
6091  	to->len += len;
6092  	to->data_len += len;
6093  
6094  	*delta_truesize = delta;
6095  	return true;
6096  }
6097  EXPORT_SYMBOL(skb_try_coalesce);
6098  
6099  /**
6100   * skb_scrub_packet - scrub an skb
6101   *
6102   * @skb: buffer to clean
6103   * @xnet: packet is crossing netns
6104   *
6105   * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6106   * into/from a tunnel. Some information have to be cleared during these
6107   * operations.
6108   * skb_scrub_packet can also be used to clean a skb before injecting it in
6109   * another namespace (@xnet == true). We have to clear all information in the
6110   * skb that could impact namespace isolation.
6111   */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6112  void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6113  {
6114  	skb->pkt_type = PACKET_HOST;
6115  	skb->skb_iif = 0;
6116  	skb->ignore_df = 0;
6117  	skb_dst_drop(skb);
6118  	skb_ext_reset(skb);
6119  	nf_reset_ct(skb);
6120  	nf_reset_trace(skb);
6121  
6122  #ifdef CONFIG_NET_SWITCHDEV
6123  	skb->offload_fwd_mark = 0;
6124  	skb->offload_l3_fwd_mark = 0;
6125  #endif
6126  
6127  	if (!xnet)
6128  		return;
6129  
6130  	ipvs_reset(skb);
6131  	skb->mark = 0;
6132  	skb_clear_tstamp(skb);
6133  }
6134  EXPORT_SYMBOL_GPL(skb_scrub_packet);
6135  
skb_reorder_vlan_header(struct sk_buff * skb)6136  static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6137  {
6138  	int mac_len, meta_len;
6139  	void *meta;
6140  
6141  	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6142  		kfree_skb(skb);
6143  		return NULL;
6144  	}
6145  
6146  	mac_len = skb->data - skb_mac_header(skb);
6147  	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6148  		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6149  			mac_len - VLAN_HLEN - ETH_TLEN);
6150  	}
6151  
6152  	meta_len = skb_metadata_len(skb);
6153  	if (meta_len) {
6154  		meta = skb_metadata_end(skb) - meta_len;
6155  		memmove(meta + VLAN_HLEN, meta, meta_len);
6156  	}
6157  
6158  	skb->mac_header += VLAN_HLEN;
6159  	return skb;
6160  }
6161  
skb_vlan_untag(struct sk_buff * skb)6162  struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6163  {
6164  	struct vlan_hdr *vhdr;
6165  	u16 vlan_tci;
6166  
6167  	if (unlikely(skb_vlan_tag_present(skb))) {
6168  		/* vlan_tci is already set-up so leave this for another time */
6169  		return skb;
6170  	}
6171  
6172  	skb = skb_share_check(skb, GFP_ATOMIC);
6173  	if (unlikely(!skb))
6174  		goto err_free;
6175  	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6176  	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6177  		goto err_free;
6178  
6179  	vhdr = (struct vlan_hdr *)skb->data;
6180  	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6181  	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6182  
6183  	skb_pull_rcsum(skb, VLAN_HLEN);
6184  	vlan_set_encap_proto(skb, vhdr);
6185  
6186  	skb = skb_reorder_vlan_header(skb);
6187  	if (unlikely(!skb))
6188  		goto err_free;
6189  
6190  	skb_reset_network_header(skb);
6191  	if (!skb_transport_header_was_set(skb))
6192  		skb_reset_transport_header(skb);
6193  	skb_reset_mac_len(skb);
6194  
6195  	return skb;
6196  
6197  err_free:
6198  	kfree_skb(skb);
6199  	return NULL;
6200  }
6201  EXPORT_SYMBOL(skb_vlan_untag);
6202  
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6203  int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6204  {
6205  	if (!pskb_may_pull(skb, write_len))
6206  		return -ENOMEM;
6207  
6208  	if (!skb_frags_readable(skb))
6209  		return -EFAULT;
6210  
6211  	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6212  		return 0;
6213  
6214  	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6215  }
6216  EXPORT_SYMBOL(skb_ensure_writable);
6217  
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6218  int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6219  {
6220  	int needed_headroom = dev->needed_headroom;
6221  	int needed_tailroom = dev->needed_tailroom;
6222  
6223  	/* For tail taggers, we need to pad short frames ourselves, to ensure
6224  	 * that the tail tag does not fail at its role of being at the end of
6225  	 * the packet, once the conduit interface pads the frame. Account for
6226  	 * that pad length here, and pad later.
6227  	 */
6228  	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6229  		needed_tailroom += ETH_ZLEN - skb->len;
6230  	/* skb_headroom() returns unsigned int... */
6231  	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6232  	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6233  
6234  	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6235  		/* No reallocation needed, yay! */
6236  		return 0;
6237  
6238  	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6239  				GFP_ATOMIC);
6240  }
6241  EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6242  
6243  /* remove VLAN header from packet and update csum accordingly.
6244   * expects a non skb_vlan_tag_present skb with a vlan tag payload
6245   */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6246  int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6247  {
6248  	int offset = skb->data - skb_mac_header(skb);
6249  	int err;
6250  
6251  	if (WARN_ONCE(offset,
6252  		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6253  		      offset)) {
6254  		return -EINVAL;
6255  	}
6256  
6257  	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6258  	if (unlikely(err))
6259  		return err;
6260  
6261  	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6262  
6263  	vlan_remove_tag(skb, vlan_tci);
6264  
6265  	skb->mac_header += VLAN_HLEN;
6266  
6267  	if (skb_network_offset(skb) < ETH_HLEN)
6268  		skb_set_network_header(skb, ETH_HLEN);
6269  
6270  	skb_reset_mac_len(skb);
6271  
6272  	return err;
6273  }
6274  EXPORT_SYMBOL(__skb_vlan_pop);
6275  
6276  /* Pop a vlan tag either from hwaccel or from payload.
6277   * Expects skb->data at mac header.
6278   */
skb_vlan_pop(struct sk_buff * skb)6279  int skb_vlan_pop(struct sk_buff *skb)
6280  {
6281  	u16 vlan_tci;
6282  	__be16 vlan_proto;
6283  	int err;
6284  
6285  	if (likely(skb_vlan_tag_present(skb))) {
6286  		__vlan_hwaccel_clear_tag(skb);
6287  	} else {
6288  		if (unlikely(!eth_type_vlan(skb->protocol)))
6289  			return 0;
6290  
6291  		err = __skb_vlan_pop(skb, &vlan_tci);
6292  		if (err)
6293  			return err;
6294  	}
6295  	/* move next vlan tag to hw accel tag */
6296  	if (likely(!eth_type_vlan(skb->protocol)))
6297  		return 0;
6298  
6299  	vlan_proto = skb->protocol;
6300  	err = __skb_vlan_pop(skb, &vlan_tci);
6301  	if (unlikely(err))
6302  		return err;
6303  
6304  	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6305  	return 0;
6306  }
6307  EXPORT_SYMBOL(skb_vlan_pop);
6308  
6309  /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6310   * Expects skb->data at mac header.
6311   */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6312  int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6313  {
6314  	if (skb_vlan_tag_present(skb)) {
6315  		int offset = skb->data - skb_mac_header(skb);
6316  		int err;
6317  
6318  		if (WARN_ONCE(offset,
6319  			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6320  			      offset)) {
6321  			return -EINVAL;
6322  		}
6323  
6324  		err = __vlan_insert_tag(skb, skb->vlan_proto,
6325  					skb_vlan_tag_get(skb));
6326  		if (err)
6327  			return err;
6328  
6329  		skb->protocol = skb->vlan_proto;
6330  		skb->network_header -= VLAN_HLEN;
6331  
6332  		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6333  	}
6334  	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6335  	return 0;
6336  }
6337  EXPORT_SYMBOL(skb_vlan_push);
6338  
6339  /**
6340   * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6341   *
6342   * @skb: Socket buffer to modify
6343   *
6344   * Drop the Ethernet header of @skb.
6345   *
6346   * Expects that skb->data points to the mac header and that no VLAN tags are
6347   * present.
6348   *
6349   * Returns 0 on success, -errno otherwise.
6350   */
skb_eth_pop(struct sk_buff * skb)6351  int skb_eth_pop(struct sk_buff *skb)
6352  {
6353  	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6354  	    skb_network_offset(skb) < ETH_HLEN)
6355  		return -EPROTO;
6356  
6357  	skb_pull_rcsum(skb, ETH_HLEN);
6358  	skb_reset_mac_header(skb);
6359  	skb_reset_mac_len(skb);
6360  
6361  	return 0;
6362  }
6363  EXPORT_SYMBOL(skb_eth_pop);
6364  
6365  /**
6366   * skb_eth_push() - Add a new Ethernet header at the head of a packet
6367   *
6368   * @skb: Socket buffer to modify
6369   * @dst: Destination MAC address of the new header
6370   * @src: Source MAC address of the new header
6371   *
6372   * Prepend @skb with a new Ethernet header.
6373   *
6374   * Expects that skb->data points to the mac header, which must be empty.
6375   *
6376   * Returns 0 on success, -errno otherwise.
6377   */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6378  int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6379  		 const unsigned char *src)
6380  {
6381  	struct ethhdr *eth;
6382  	int err;
6383  
6384  	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6385  		return -EPROTO;
6386  
6387  	err = skb_cow_head(skb, sizeof(*eth));
6388  	if (err < 0)
6389  		return err;
6390  
6391  	skb_push(skb, sizeof(*eth));
6392  	skb_reset_mac_header(skb);
6393  	skb_reset_mac_len(skb);
6394  
6395  	eth = eth_hdr(skb);
6396  	ether_addr_copy(eth->h_dest, dst);
6397  	ether_addr_copy(eth->h_source, src);
6398  	eth->h_proto = skb->protocol;
6399  
6400  	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6401  
6402  	return 0;
6403  }
6404  EXPORT_SYMBOL(skb_eth_push);
6405  
6406  /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6407  static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6408  			     __be16 ethertype)
6409  {
6410  	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6411  		__be16 diff[] = { ~hdr->h_proto, ethertype };
6412  
6413  		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6414  	}
6415  
6416  	hdr->h_proto = ethertype;
6417  }
6418  
6419  /**
6420   * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6421   *                   the packet
6422   *
6423   * @skb: buffer
6424   * @mpls_lse: MPLS label stack entry to push
6425   * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6426   * @mac_len: length of the MAC header
6427   * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6428   *            ethernet
6429   *
6430   * Expects skb->data at mac header.
6431   *
6432   * Returns 0 on success, -errno otherwise.
6433   */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6434  int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6435  		  int mac_len, bool ethernet)
6436  {
6437  	struct mpls_shim_hdr *lse;
6438  	int err;
6439  
6440  	if (unlikely(!eth_p_mpls(mpls_proto)))
6441  		return -EINVAL;
6442  
6443  	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6444  	if (skb->encapsulation)
6445  		return -EINVAL;
6446  
6447  	err = skb_cow_head(skb, MPLS_HLEN);
6448  	if (unlikely(err))
6449  		return err;
6450  
6451  	if (!skb->inner_protocol) {
6452  		skb_set_inner_network_header(skb, skb_network_offset(skb));
6453  		skb_set_inner_protocol(skb, skb->protocol);
6454  	}
6455  
6456  	skb_push(skb, MPLS_HLEN);
6457  	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6458  		mac_len);
6459  	skb_reset_mac_header(skb);
6460  	skb_set_network_header(skb, mac_len);
6461  	skb_reset_mac_len(skb);
6462  
6463  	lse = mpls_hdr(skb);
6464  	lse->label_stack_entry = mpls_lse;
6465  	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6466  
6467  	if (ethernet && mac_len >= ETH_HLEN)
6468  		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6469  	skb->protocol = mpls_proto;
6470  
6471  	return 0;
6472  }
6473  EXPORT_SYMBOL_GPL(skb_mpls_push);
6474  
6475  /**
6476   * skb_mpls_pop() - pop the outermost MPLS header
6477   *
6478   * @skb: buffer
6479   * @next_proto: ethertype of header after popped MPLS header
6480   * @mac_len: length of the MAC header
6481   * @ethernet: flag to indicate if the packet is ethernet
6482   *
6483   * Expects skb->data at mac header.
6484   *
6485   * Returns 0 on success, -errno otherwise.
6486   */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6487  int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6488  		 bool ethernet)
6489  {
6490  	int err;
6491  
6492  	if (unlikely(!eth_p_mpls(skb->protocol)))
6493  		return 0;
6494  
6495  	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6496  	if (unlikely(err))
6497  		return err;
6498  
6499  	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6500  	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6501  		mac_len);
6502  
6503  	__skb_pull(skb, MPLS_HLEN);
6504  	skb_reset_mac_header(skb);
6505  	skb_set_network_header(skb, mac_len);
6506  
6507  	if (ethernet && mac_len >= ETH_HLEN) {
6508  		struct ethhdr *hdr;
6509  
6510  		/* use mpls_hdr() to get ethertype to account for VLANs. */
6511  		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6512  		skb_mod_eth_type(skb, hdr, next_proto);
6513  	}
6514  	skb->protocol = next_proto;
6515  
6516  	return 0;
6517  }
6518  EXPORT_SYMBOL_GPL(skb_mpls_pop);
6519  
6520  /**
6521   * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6522   *
6523   * @skb: buffer
6524   * @mpls_lse: new MPLS label stack entry to update to
6525   *
6526   * Expects skb->data at mac header.
6527   *
6528   * Returns 0 on success, -errno otherwise.
6529   */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6530  int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6531  {
6532  	int err;
6533  
6534  	if (unlikely(!eth_p_mpls(skb->protocol)))
6535  		return -EINVAL;
6536  
6537  	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6538  	if (unlikely(err))
6539  		return err;
6540  
6541  	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6542  		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6543  
6544  		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6545  	}
6546  
6547  	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6548  
6549  	return 0;
6550  }
6551  EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6552  
6553  /**
6554   * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6555   *
6556   * @skb: buffer
6557   *
6558   * Expects skb->data at mac header.
6559   *
6560   * Returns 0 on success, -errno otherwise.
6561   */
skb_mpls_dec_ttl(struct sk_buff * skb)6562  int skb_mpls_dec_ttl(struct sk_buff *skb)
6563  {
6564  	u32 lse;
6565  	u8 ttl;
6566  
6567  	if (unlikely(!eth_p_mpls(skb->protocol)))
6568  		return -EINVAL;
6569  
6570  	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6571  		return -ENOMEM;
6572  
6573  	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6574  	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6575  	if (!--ttl)
6576  		return -EINVAL;
6577  
6578  	lse &= ~MPLS_LS_TTL_MASK;
6579  	lse |= ttl << MPLS_LS_TTL_SHIFT;
6580  
6581  	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6582  }
6583  EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6584  
6585  /**
6586   * alloc_skb_with_frags - allocate skb with page frags
6587   *
6588   * @header_len: size of linear part
6589   * @data_len: needed length in frags
6590   * @order: max page order desired.
6591   * @errcode: pointer to error code if any
6592   * @gfp_mask: allocation mask
6593   *
6594   * This can be used to allocate a paged skb, given a maximal order for frags.
6595   */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6596  struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6597  				     unsigned long data_len,
6598  				     int order,
6599  				     int *errcode,
6600  				     gfp_t gfp_mask)
6601  {
6602  	unsigned long chunk;
6603  	struct sk_buff *skb;
6604  	struct page *page;
6605  	int nr_frags = 0;
6606  
6607  	*errcode = -EMSGSIZE;
6608  	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6609  		return NULL;
6610  
6611  	*errcode = -ENOBUFS;
6612  	skb = alloc_skb(header_len, gfp_mask);
6613  	if (!skb)
6614  		return NULL;
6615  
6616  	while (data_len) {
6617  		if (nr_frags == MAX_SKB_FRAGS - 1)
6618  			goto failure;
6619  		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6620  			order--;
6621  
6622  		if (order) {
6623  			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6624  					   __GFP_COMP |
6625  					   __GFP_NOWARN,
6626  					   order);
6627  			if (!page) {
6628  				order--;
6629  				continue;
6630  			}
6631  		} else {
6632  			page = alloc_page(gfp_mask);
6633  			if (!page)
6634  				goto failure;
6635  		}
6636  		chunk = min_t(unsigned long, data_len,
6637  			      PAGE_SIZE << order);
6638  		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6639  		nr_frags++;
6640  		skb->truesize += (PAGE_SIZE << order);
6641  		data_len -= chunk;
6642  	}
6643  	return skb;
6644  
6645  failure:
6646  	kfree_skb(skb);
6647  	return NULL;
6648  }
6649  EXPORT_SYMBOL(alloc_skb_with_frags);
6650  
6651  /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6652  static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6653  				    const int headlen, gfp_t gfp_mask)
6654  {
6655  	int i;
6656  	unsigned int size = skb_end_offset(skb);
6657  	int new_hlen = headlen - off;
6658  	u8 *data;
6659  
6660  	if (skb_pfmemalloc(skb))
6661  		gfp_mask |= __GFP_MEMALLOC;
6662  
6663  	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6664  	if (!data)
6665  		return -ENOMEM;
6666  	size = SKB_WITH_OVERHEAD(size);
6667  
6668  	/* Copy real data, and all frags */
6669  	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6670  	skb->len -= off;
6671  
6672  	memcpy((struct skb_shared_info *)(data + size),
6673  	       skb_shinfo(skb),
6674  	       offsetof(struct skb_shared_info,
6675  			frags[skb_shinfo(skb)->nr_frags]));
6676  	if (skb_cloned(skb)) {
6677  		/* drop the old head gracefully */
6678  		if (skb_orphan_frags(skb, gfp_mask)) {
6679  			skb_kfree_head(data, size);
6680  			return -ENOMEM;
6681  		}
6682  		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6683  			skb_frag_ref(skb, i);
6684  		if (skb_has_frag_list(skb))
6685  			skb_clone_fraglist(skb);
6686  		skb_release_data(skb, SKB_CONSUMED);
6687  	} else {
6688  		/* we can reuse existing recount- all we did was
6689  		 * relocate values
6690  		 */
6691  		skb_free_head(skb);
6692  	}
6693  
6694  	skb->head = data;
6695  	skb->data = data;
6696  	skb->head_frag = 0;
6697  	skb_set_end_offset(skb, size);
6698  	skb_set_tail_pointer(skb, skb_headlen(skb));
6699  	skb_headers_offset_update(skb, 0);
6700  	skb->cloned = 0;
6701  	skb->hdr_len = 0;
6702  	skb->nohdr = 0;
6703  	atomic_set(&skb_shinfo(skb)->dataref, 1);
6704  
6705  	return 0;
6706  }
6707  
6708  static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6709  
6710  /* carve out the first eat bytes from skb's frag_list. May recurse into
6711   * pskb_carve()
6712   */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6713  static int pskb_carve_frag_list(struct sk_buff *skb,
6714  				struct skb_shared_info *shinfo, int eat,
6715  				gfp_t gfp_mask)
6716  {
6717  	struct sk_buff *list = shinfo->frag_list;
6718  	struct sk_buff *clone = NULL;
6719  	struct sk_buff *insp = NULL;
6720  
6721  	do {
6722  		if (!list) {
6723  			pr_err("Not enough bytes to eat. Want %d\n", eat);
6724  			return -EFAULT;
6725  		}
6726  		if (list->len <= eat) {
6727  			/* Eaten as whole. */
6728  			eat -= list->len;
6729  			list = list->next;
6730  			insp = list;
6731  		} else {
6732  			/* Eaten partially. */
6733  			if (skb_shared(list)) {
6734  				clone = skb_clone(list, gfp_mask);
6735  				if (!clone)
6736  					return -ENOMEM;
6737  				insp = list->next;
6738  				list = clone;
6739  			} else {
6740  				/* This may be pulled without problems. */
6741  				insp = list;
6742  			}
6743  			if (pskb_carve(list, eat, gfp_mask) < 0) {
6744  				kfree_skb(clone);
6745  				return -ENOMEM;
6746  			}
6747  			break;
6748  		}
6749  	} while (eat);
6750  
6751  	/* Free pulled out fragments. */
6752  	while ((list = shinfo->frag_list) != insp) {
6753  		shinfo->frag_list = list->next;
6754  		consume_skb(list);
6755  	}
6756  	/* And insert new clone at head. */
6757  	if (clone) {
6758  		clone->next = list;
6759  		shinfo->frag_list = clone;
6760  	}
6761  	return 0;
6762  }
6763  
6764  /* carve off first len bytes from skb. Split line (off) is in the
6765   * non-linear part of skb
6766   */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6767  static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6768  				       int pos, gfp_t gfp_mask)
6769  {
6770  	int i, k = 0;
6771  	unsigned int size = skb_end_offset(skb);
6772  	u8 *data;
6773  	const int nfrags = skb_shinfo(skb)->nr_frags;
6774  	struct skb_shared_info *shinfo;
6775  
6776  	if (skb_pfmemalloc(skb))
6777  		gfp_mask |= __GFP_MEMALLOC;
6778  
6779  	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6780  	if (!data)
6781  		return -ENOMEM;
6782  	size = SKB_WITH_OVERHEAD(size);
6783  
6784  	memcpy((struct skb_shared_info *)(data + size),
6785  	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6786  	if (skb_orphan_frags(skb, gfp_mask)) {
6787  		skb_kfree_head(data, size);
6788  		return -ENOMEM;
6789  	}
6790  	shinfo = (struct skb_shared_info *)(data + size);
6791  	for (i = 0; i < nfrags; i++) {
6792  		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6793  
6794  		if (pos + fsize > off) {
6795  			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6796  
6797  			if (pos < off) {
6798  				/* Split frag.
6799  				 * We have two variants in this case:
6800  				 * 1. Move all the frag to the second
6801  				 *    part, if it is possible. F.e.
6802  				 *    this approach is mandatory for TUX,
6803  				 *    where splitting is expensive.
6804  				 * 2. Split is accurately. We make this.
6805  				 */
6806  				skb_frag_off_add(&shinfo->frags[0], off - pos);
6807  				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6808  			}
6809  			skb_frag_ref(skb, i);
6810  			k++;
6811  		}
6812  		pos += fsize;
6813  	}
6814  	shinfo->nr_frags = k;
6815  	if (skb_has_frag_list(skb))
6816  		skb_clone_fraglist(skb);
6817  
6818  	/* split line is in frag list */
6819  	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6820  		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6821  		if (skb_has_frag_list(skb))
6822  			kfree_skb_list(skb_shinfo(skb)->frag_list);
6823  		skb_kfree_head(data, size);
6824  		return -ENOMEM;
6825  	}
6826  	skb_release_data(skb, SKB_CONSUMED);
6827  
6828  	skb->head = data;
6829  	skb->head_frag = 0;
6830  	skb->data = data;
6831  	skb_set_end_offset(skb, size);
6832  	skb_reset_tail_pointer(skb);
6833  	skb_headers_offset_update(skb, 0);
6834  	skb->cloned   = 0;
6835  	skb->hdr_len  = 0;
6836  	skb->nohdr    = 0;
6837  	skb->len -= off;
6838  	skb->data_len = skb->len;
6839  	atomic_set(&skb_shinfo(skb)->dataref, 1);
6840  	return 0;
6841  }
6842  
6843  /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6844  static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6845  {
6846  	int headlen = skb_headlen(skb);
6847  
6848  	if (len < headlen)
6849  		return pskb_carve_inside_header(skb, len, headlen, gfp);
6850  	else
6851  		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6852  }
6853  
6854  /* Extract to_copy bytes starting at off from skb, and return this in
6855   * a new skb
6856   */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6857  struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6858  			     int to_copy, gfp_t gfp)
6859  {
6860  	struct sk_buff  *clone = skb_clone(skb, gfp);
6861  
6862  	if (!clone)
6863  		return NULL;
6864  
6865  	if (pskb_carve(clone, off, gfp) < 0 ||
6866  	    pskb_trim(clone, to_copy)) {
6867  		kfree_skb(clone);
6868  		return NULL;
6869  	}
6870  	return clone;
6871  }
6872  EXPORT_SYMBOL(pskb_extract);
6873  
6874  /**
6875   * skb_condense - try to get rid of fragments/frag_list if possible
6876   * @skb: buffer
6877   *
6878   * Can be used to save memory before skb is added to a busy queue.
6879   * If packet has bytes in frags and enough tail room in skb->head,
6880   * pull all of them, so that we can free the frags right now and adjust
6881   * truesize.
6882   * Notes:
6883   *	We do not reallocate skb->head thus can not fail.
6884   *	Caller must re-evaluate skb->truesize if needed.
6885   */
skb_condense(struct sk_buff * skb)6886  void skb_condense(struct sk_buff *skb)
6887  {
6888  	if (skb->data_len) {
6889  		if (skb->data_len > skb->end - skb->tail ||
6890  		    skb_cloned(skb) || !skb_frags_readable(skb))
6891  			return;
6892  
6893  		/* Nice, we can free page frag(s) right now */
6894  		__pskb_pull_tail(skb, skb->data_len);
6895  	}
6896  	/* At this point, skb->truesize might be over estimated,
6897  	 * because skb had a fragment, and fragments do not tell
6898  	 * their truesize.
6899  	 * When we pulled its content into skb->head, fragment
6900  	 * was freed, but __pskb_pull_tail() could not possibly
6901  	 * adjust skb->truesize, not knowing the frag truesize.
6902  	 */
6903  	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6904  }
6905  EXPORT_SYMBOL(skb_condense);
6906  
6907  #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6908  static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6909  {
6910  	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6911  }
6912  
6913  /**
6914   * __skb_ext_alloc - allocate a new skb extensions storage
6915   *
6916   * @flags: See kmalloc().
6917   *
6918   * Returns the newly allocated pointer. The pointer can later attached to a
6919   * skb via __skb_ext_set().
6920   * Note: caller must handle the skb_ext as an opaque data.
6921   */
__skb_ext_alloc(gfp_t flags)6922  struct skb_ext *__skb_ext_alloc(gfp_t flags)
6923  {
6924  	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6925  
6926  	if (new) {
6927  		memset(new->offset, 0, sizeof(new->offset));
6928  		refcount_set(&new->refcnt, 1);
6929  	}
6930  
6931  	return new;
6932  }
6933  
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6934  static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6935  					 unsigned int old_active)
6936  {
6937  	struct skb_ext *new;
6938  
6939  	if (refcount_read(&old->refcnt) == 1)
6940  		return old;
6941  
6942  	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6943  	if (!new)
6944  		return NULL;
6945  
6946  	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6947  	refcount_set(&new->refcnt, 1);
6948  
6949  #ifdef CONFIG_XFRM
6950  	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6951  		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6952  		unsigned int i;
6953  
6954  		for (i = 0; i < sp->len; i++)
6955  			xfrm_state_hold(sp->xvec[i]);
6956  	}
6957  #endif
6958  #ifdef CONFIG_MCTP_FLOWS
6959  	if (old_active & (1 << SKB_EXT_MCTP)) {
6960  		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6961  
6962  		if (flow->key)
6963  			refcount_inc(&flow->key->refs);
6964  	}
6965  #endif
6966  	__skb_ext_put(old);
6967  	return new;
6968  }
6969  
6970  /**
6971   * __skb_ext_set - attach the specified extension storage to this skb
6972   * @skb: buffer
6973   * @id: extension id
6974   * @ext: extension storage previously allocated via __skb_ext_alloc()
6975   *
6976   * Existing extensions, if any, are cleared.
6977   *
6978   * Returns the pointer to the extension.
6979   */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6980  void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6981  		    struct skb_ext *ext)
6982  {
6983  	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6984  
6985  	skb_ext_put(skb);
6986  	newlen = newoff + skb_ext_type_len[id];
6987  	ext->chunks = newlen;
6988  	ext->offset[id] = newoff;
6989  	skb->extensions = ext;
6990  	skb->active_extensions = 1 << id;
6991  	return skb_ext_get_ptr(ext, id);
6992  }
6993  
6994  /**
6995   * skb_ext_add - allocate space for given extension, COW if needed
6996   * @skb: buffer
6997   * @id: extension to allocate space for
6998   *
6999   * Allocates enough space for the given extension.
7000   * If the extension is already present, a pointer to that extension
7001   * is returned.
7002   *
7003   * If the skb was cloned, COW applies and the returned memory can be
7004   * modified without changing the extension space of clones buffers.
7005   *
7006   * Returns pointer to the extension or NULL on allocation failure.
7007   */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)7008  void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7009  {
7010  	struct skb_ext *new, *old = NULL;
7011  	unsigned int newlen, newoff;
7012  
7013  	if (skb->active_extensions) {
7014  		old = skb->extensions;
7015  
7016  		new = skb_ext_maybe_cow(old, skb->active_extensions);
7017  		if (!new)
7018  			return NULL;
7019  
7020  		if (__skb_ext_exist(new, id))
7021  			goto set_active;
7022  
7023  		newoff = new->chunks;
7024  	} else {
7025  		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7026  
7027  		new = __skb_ext_alloc(GFP_ATOMIC);
7028  		if (!new)
7029  			return NULL;
7030  	}
7031  
7032  	newlen = newoff + skb_ext_type_len[id];
7033  	new->chunks = newlen;
7034  	new->offset[id] = newoff;
7035  set_active:
7036  	skb->slow_gro = 1;
7037  	skb->extensions = new;
7038  	skb->active_extensions |= 1 << id;
7039  	return skb_ext_get_ptr(new, id);
7040  }
7041  EXPORT_SYMBOL(skb_ext_add);
7042  
7043  #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)7044  static void skb_ext_put_sp(struct sec_path *sp)
7045  {
7046  	unsigned int i;
7047  
7048  	for (i = 0; i < sp->len; i++)
7049  		xfrm_state_put(sp->xvec[i]);
7050  }
7051  #endif
7052  
7053  #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)7054  static void skb_ext_put_mctp(struct mctp_flow *flow)
7055  {
7056  	if (flow->key)
7057  		mctp_key_unref(flow->key);
7058  }
7059  #endif
7060  
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)7061  void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7062  {
7063  	struct skb_ext *ext = skb->extensions;
7064  
7065  	skb->active_extensions &= ~(1 << id);
7066  	if (skb->active_extensions == 0) {
7067  		skb->extensions = NULL;
7068  		__skb_ext_put(ext);
7069  #ifdef CONFIG_XFRM
7070  	} else if (id == SKB_EXT_SEC_PATH &&
7071  		   refcount_read(&ext->refcnt) == 1) {
7072  		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7073  
7074  		skb_ext_put_sp(sp);
7075  		sp->len = 0;
7076  #endif
7077  	}
7078  }
7079  EXPORT_SYMBOL(__skb_ext_del);
7080  
__skb_ext_put(struct skb_ext * ext)7081  void __skb_ext_put(struct skb_ext *ext)
7082  {
7083  	/* If this is last clone, nothing can increment
7084  	 * it after check passes.  Avoids one atomic op.
7085  	 */
7086  	if (refcount_read(&ext->refcnt) == 1)
7087  		goto free_now;
7088  
7089  	if (!refcount_dec_and_test(&ext->refcnt))
7090  		return;
7091  free_now:
7092  #ifdef CONFIG_XFRM
7093  	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7094  		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7095  #endif
7096  #ifdef CONFIG_MCTP_FLOWS
7097  	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7098  		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7099  #endif
7100  
7101  	kmem_cache_free(skbuff_ext_cache, ext);
7102  }
7103  EXPORT_SYMBOL(__skb_ext_put);
7104  #endif /* CONFIG_SKB_EXTENSIONS */
7105  
kfree_skb_napi_cache(struct sk_buff * skb)7106  static void kfree_skb_napi_cache(struct sk_buff *skb)
7107  {
7108  	/* if SKB is a clone, don't handle this case */
7109  	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7110  		__kfree_skb(skb);
7111  		return;
7112  	}
7113  
7114  	local_bh_disable();
7115  	__napi_kfree_skb(skb, SKB_CONSUMED);
7116  	local_bh_enable();
7117  }
7118  
7119  /**
7120   * skb_attempt_defer_free - queue skb for remote freeing
7121   * @skb: buffer
7122   *
7123   * Put @skb in a per-cpu list, using the cpu which
7124   * allocated the skb/pages to reduce false sharing
7125   * and memory zone spinlock contention.
7126   */
skb_attempt_defer_free(struct sk_buff * skb)7127  void skb_attempt_defer_free(struct sk_buff *skb)
7128  {
7129  	int cpu = skb->alloc_cpu;
7130  	struct softnet_data *sd;
7131  	unsigned int defer_max;
7132  	bool kick;
7133  
7134  	if (cpu == raw_smp_processor_id() ||
7135  	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7136  	    !cpu_online(cpu)) {
7137  nodefer:	kfree_skb_napi_cache(skb);
7138  		return;
7139  	}
7140  
7141  	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7142  	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7143  
7144  	sd = &per_cpu(softnet_data, cpu);
7145  	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7146  	if (READ_ONCE(sd->defer_count) >= defer_max)
7147  		goto nodefer;
7148  
7149  	spin_lock_bh(&sd->defer_lock);
7150  	/* Send an IPI every time queue reaches half capacity. */
7151  	kick = sd->defer_count == (defer_max >> 1);
7152  	/* Paired with the READ_ONCE() few lines above */
7153  	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7154  
7155  	skb->next = sd->defer_list;
7156  	/* Paired with READ_ONCE() in skb_defer_free_flush() */
7157  	WRITE_ONCE(sd->defer_list, skb);
7158  	spin_unlock_bh(&sd->defer_lock);
7159  
7160  	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7161  	 * if we are unlucky enough (this seems very unlikely).
7162  	 */
7163  	if (unlikely(kick))
7164  		kick_defer_list_purge(sd, cpu);
7165  }
7166  
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7167  static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7168  				 size_t offset, size_t len)
7169  {
7170  	const char *kaddr;
7171  	__wsum csum;
7172  
7173  	kaddr = kmap_local_page(page);
7174  	csum = csum_partial(kaddr + offset, len, 0);
7175  	kunmap_local(kaddr);
7176  	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7177  }
7178  
7179  /**
7180   * skb_splice_from_iter - Splice (or copy) pages to skbuff
7181   * @skb: The buffer to add pages to
7182   * @iter: Iterator representing the pages to be added
7183   * @maxsize: Maximum amount of pages to be added
7184   * @gfp: Allocation flags
7185   *
7186   * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7187   * extracts pages from an iterator and adds them to the socket buffer if
7188   * possible, copying them to fragments if not possible (such as if they're slab
7189   * pages).
7190   *
7191   * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7192   * insufficient space in the buffer to transfer anything.
7193   */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)7194  ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7195  			     ssize_t maxsize, gfp_t gfp)
7196  {
7197  	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7198  	struct page *pages[8], **ppages = pages;
7199  	ssize_t spliced = 0, ret = 0;
7200  	unsigned int i;
7201  
7202  	while (iter->count > 0) {
7203  		ssize_t space, nr, len;
7204  		size_t off;
7205  
7206  		ret = -EMSGSIZE;
7207  		space = frag_limit - skb_shinfo(skb)->nr_frags;
7208  		if (space < 0)
7209  			break;
7210  
7211  		/* We might be able to coalesce without increasing nr_frags */
7212  		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7213  
7214  		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7215  		if (len <= 0) {
7216  			ret = len ?: -EIO;
7217  			break;
7218  		}
7219  
7220  		i = 0;
7221  		do {
7222  			struct page *page = pages[i++];
7223  			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7224  
7225  			ret = -EIO;
7226  			if (WARN_ON_ONCE(!sendpage_ok(page)))
7227  				goto out;
7228  
7229  			ret = skb_append_pagefrags(skb, page, off, part,
7230  						   frag_limit);
7231  			if (ret < 0) {
7232  				iov_iter_revert(iter, len);
7233  				goto out;
7234  			}
7235  
7236  			if (skb->ip_summed == CHECKSUM_NONE)
7237  				skb_splice_csum_page(skb, page, off, part);
7238  
7239  			off = 0;
7240  			spliced += part;
7241  			maxsize -= part;
7242  			len -= part;
7243  		} while (len > 0);
7244  
7245  		if (maxsize <= 0)
7246  			break;
7247  	}
7248  
7249  out:
7250  	skb_len_add(skb, spliced);
7251  	return spliced ?: ret;
7252  }
7253  EXPORT_SYMBOL(skb_splice_from_iter);
7254  
7255  static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7256  size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7257  			     size_t len, void *to, void *priv2)
7258  {
7259  	__wsum *csum = priv2;
7260  	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7261  
7262  	*csum = csum_block_add(*csum, next, progress);
7263  	return 0;
7264  }
7265  
7266  static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7267  size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7268  				size_t len, void *to, void *priv2)
7269  {
7270  	__wsum next, *csum = priv2;
7271  
7272  	next = csum_and_copy_from_user(iter_from, to + progress, len);
7273  	*csum = csum_block_add(*csum, next, progress);
7274  	return next ? 0 : len;
7275  }
7276  
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7277  bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7278  				  __wsum *csum, struct iov_iter *i)
7279  {
7280  	size_t copied;
7281  
7282  	if (WARN_ON_ONCE(!i->data_source))
7283  		return false;
7284  	copied = iterate_and_advance2(i, bytes, addr, csum,
7285  				      copy_from_user_iter_csum,
7286  				      memcpy_from_iter_csum);
7287  	if (likely(copied == bytes))
7288  		return true;
7289  	iov_iter_revert(i, copied);
7290  	return false;
7291  }
7292  EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7293