1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Virtual Memory Map support
4   *
5   * (C) 2007 sgi. Christoph Lameter.
6   *
7   * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8   * virt_to_page, page_address() to be implemented as a base offset
9   * calculation without memory access.
10   *
11   * However, virtual mappings need a page table and TLBs. Many Linux
12   * architectures already map their physical space using 1-1 mappings
13   * via TLBs. For those arches the virtual memory map is essentially
14   * for free if we use the same page size as the 1-1 mappings. In that
15   * case the overhead consists of a few additional pages that are
16   * allocated to create a view of memory for vmemmap.
17   *
18   * The architecture is expected to provide a vmemmap_populate() function
19   * to instantiate the mapping.
20   */
21  #include <linux/mm.h>
22  #include <linux/mmzone.h>
23  #include <linux/memblock.h>
24  #include <linux/memremap.h>
25  #include <linux/highmem.h>
26  #include <linux/slab.h>
27  #include <linux/spinlock.h>
28  #include <linux/vmalloc.h>
29  #include <linux/sched.h>
30  
31  #include <asm/dma.h>
32  #include <asm/pgalloc.h>
33  
34  /*
35   * Allocate a block of memory to be used to back the virtual memory map
36   * or to back the page tables that are used to create the mapping.
37   * Uses the main allocators if they are available, else bootmem.
38   */
39  
__earlyonly_bootmem_alloc(int node,unsigned long size,unsigned long align,unsigned long goal)40  static void * __ref __earlyonly_bootmem_alloc(int node,
41  				unsigned long size,
42  				unsigned long align,
43  				unsigned long goal)
44  {
45  	return memblock_alloc_try_nid_raw(size, align, goal,
46  					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
47  }
48  
vmemmap_alloc_block(unsigned long size,int node)49  void * __meminit vmemmap_alloc_block(unsigned long size, int node)
50  {
51  	/* If the main allocator is up use that, fallback to bootmem. */
52  	if (slab_is_available()) {
53  		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
54  		int order = get_order(size);
55  		static bool warned;
56  		struct page *page;
57  
58  		page = alloc_pages_node(node, gfp_mask, order);
59  		if (page)
60  			return page_address(page);
61  
62  		if (!warned) {
63  			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
64  				   "vmemmap alloc failure: order:%u", order);
65  			warned = true;
66  		}
67  		return NULL;
68  	} else
69  		return __earlyonly_bootmem_alloc(node, size, size,
70  				__pa(MAX_DMA_ADDRESS));
71  }
72  
73  static void * __meminit altmap_alloc_block_buf(unsigned long size,
74  					       struct vmem_altmap *altmap);
75  
76  /* need to make sure size is all the same during early stage */
vmemmap_alloc_block_buf(unsigned long size,int node,struct vmem_altmap * altmap)77  void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
78  					 struct vmem_altmap *altmap)
79  {
80  	void *ptr;
81  
82  	if (altmap)
83  		return altmap_alloc_block_buf(size, altmap);
84  
85  	ptr = sparse_buffer_alloc(size);
86  	if (!ptr)
87  		ptr = vmemmap_alloc_block(size, node);
88  	return ptr;
89  }
90  
vmem_altmap_next_pfn(struct vmem_altmap * altmap)91  static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
92  {
93  	return altmap->base_pfn + altmap->reserve + altmap->alloc
94  		+ altmap->align;
95  }
96  
vmem_altmap_nr_free(struct vmem_altmap * altmap)97  static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
98  {
99  	unsigned long allocated = altmap->alloc + altmap->align;
100  
101  	if (altmap->free > allocated)
102  		return altmap->free - allocated;
103  	return 0;
104  }
105  
altmap_alloc_block_buf(unsigned long size,struct vmem_altmap * altmap)106  static void * __meminit altmap_alloc_block_buf(unsigned long size,
107  					       struct vmem_altmap *altmap)
108  {
109  	unsigned long pfn, nr_pfns, nr_align;
110  
111  	if (size & ~PAGE_MASK) {
112  		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
113  				__func__, size);
114  		return NULL;
115  	}
116  
117  	pfn = vmem_altmap_next_pfn(altmap);
118  	nr_pfns = size >> PAGE_SHIFT;
119  	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
120  	nr_align = ALIGN(pfn, nr_align) - pfn;
121  	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
122  		return NULL;
123  
124  	altmap->alloc += nr_pfns;
125  	altmap->align += nr_align;
126  	pfn += nr_align;
127  
128  	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
129  			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
130  	return __va(__pfn_to_phys(pfn));
131  }
132  
vmemmap_verify(pte_t * pte,int node,unsigned long start,unsigned long end)133  void __meminit vmemmap_verify(pte_t *pte, int node,
134  				unsigned long start, unsigned long end)
135  {
136  	unsigned long pfn = pte_pfn(ptep_get(pte));
137  	int actual_node = early_pfn_to_nid(pfn);
138  
139  	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
140  		pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
141  			start, end - 1);
142  }
143  
vmemmap_pte_populate(pmd_t * pmd,unsigned long addr,int node,struct vmem_altmap * altmap,struct page * reuse)144  pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
145  				       struct vmem_altmap *altmap,
146  				       struct page *reuse)
147  {
148  	pte_t *pte = pte_offset_kernel(pmd, addr);
149  	if (pte_none(ptep_get(pte))) {
150  		pte_t entry;
151  		void *p;
152  
153  		if (!reuse) {
154  			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
155  			if (!p)
156  				return NULL;
157  		} else {
158  			/*
159  			 * When a PTE/PMD entry is freed from the init_mm
160  			 * there's a free_pages() call to this page allocated
161  			 * above. Thus this get_page() is paired with the
162  			 * put_page_testzero() on the freeing path.
163  			 * This can only called by certain ZONE_DEVICE path,
164  			 * and through vmemmap_populate_compound_pages() when
165  			 * slab is available.
166  			 */
167  			get_page(reuse);
168  			p = page_to_virt(reuse);
169  		}
170  		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
171  		set_pte_at(&init_mm, addr, pte, entry);
172  	}
173  	return pte;
174  }
175  
vmemmap_alloc_block_zero(unsigned long size,int node)176  static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
177  {
178  	void *p = vmemmap_alloc_block(size, node);
179  
180  	if (!p)
181  		return NULL;
182  	memset(p, 0, size);
183  
184  	return p;
185  }
186  
kernel_pte_init(void * addr)187  void __weak __meminit kernel_pte_init(void *addr)
188  {
189  }
190  
vmemmap_pmd_populate(pud_t * pud,unsigned long addr,int node)191  pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
192  {
193  	pmd_t *pmd = pmd_offset(pud, addr);
194  	if (pmd_none(*pmd)) {
195  		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
196  		if (!p)
197  			return NULL;
198  		kernel_pte_init(p);
199  		pmd_populate_kernel(&init_mm, pmd, p);
200  	}
201  	return pmd;
202  }
203  
pmd_init(void * addr)204  void __weak __meminit pmd_init(void *addr)
205  {
206  }
207  
vmemmap_pud_populate(p4d_t * p4d,unsigned long addr,int node)208  pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
209  {
210  	pud_t *pud = pud_offset(p4d, addr);
211  	if (pud_none(*pud)) {
212  		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
213  		if (!p)
214  			return NULL;
215  		pmd_init(p);
216  		pud_populate(&init_mm, pud, p);
217  	}
218  	return pud;
219  }
220  
pud_init(void * addr)221  void __weak __meminit pud_init(void *addr)
222  {
223  }
224  
vmemmap_p4d_populate(pgd_t * pgd,unsigned long addr,int node)225  p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
226  {
227  	p4d_t *p4d = p4d_offset(pgd, addr);
228  	if (p4d_none(*p4d)) {
229  		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
230  		if (!p)
231  			return NULL;
232  		pud_init(p);
233  		p4d_populate(&init_mm, p4d, p);
234  	}
235  	return p4d;
236  }
237  
vmemmap_pgd_populate(unsigned long addr,int node)238  pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
239  {
240  	pgd_t *pgd = pgd_offset_k(addr);
241  	if (pgd_none(*pgd)) {
242  		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
243  		if (!p)
244  			return NULL;
245  		pgd_populate(&init_mm, pgd, p);
246  	}
247  	return pgd;
248  }
249  
vmemmap_populate_address(unsigned long addr,int node,struct vmem_altmap * altmap,struct page * reuse)250  static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
251  					      struct vmem_altmap *altmap,
252  					      struct page *reuse)
253  {
254  	pgd_t *pgd;
255  	p4d_t *p4d;
256  	pud_t *pud;
257  	pmd_t *pmd;
258  	pte_t *pte;
259  
260  	pgd = vmemmap_pgd_populate(addr, node);
261  	if (!pgd)
262  		return NULL;
263  	p4d = vmemmap_p4d_populate(pgd, addr, node);
264  	if (!p4d)
265  		return NULL;
266  	pud = vmemmap_pud_populate(p4d, addr, node);
267  	if (!pud)
268  		return NULL;
269  	pmd = vmemmap_pmd_populate(pud, addr, node);
270  	if (!pmd)
271  		return NULL;
272  	pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
273  	if (!pte)
274  		return NULL;
275  	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
276  
277  	return pte;
278  }
279  
vmemmap_populate_range(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap,struct page * reuse)280  static int __meminit vmemmap_populate_range(unsigned long start,
281  					    unsigned long end, int node,
282  					    struct vmem_altmap *altmap,
283  					    struct page *reuse)
284  {
285  	unsigned long addr = start;
286  	pte_t *pte;
287  
288  	for (; addr < end; addr += PAGE_SIZE) {
289  		pte = vmemmap_populate_address(addr, node, altmap, reuse);
290  		if (!pte)
291  			return -ENOMEM;
292  	}
293  
294  	return 0;
295  }
296  
vmemmap_populate_basepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)297  int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
298  					 int node, struct vmem_altmap *altmap)
299  {
300  	return vmemmap_populate_range(start, end, node, altmap, NULL);
301  }
302  
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)303  void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
304  				      unsigned long addr, unsigned long next)
305  {
306  }
307  
vmemmap_check_pmd(pmd_t * pmd,int node,unsigned long addr,unsigned long next)308  int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
309  				       unsigned long addr, unsigned long next)
310  {
311  	return 0;
312  }
313  
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)314  int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
315  					 int node, struct vmem_altmap *altmap)
316  {
317  	unsigned long addr;
318  	unsigned long next;
319  	pgd_t *pgd;
320  	p4d_t *p4d;
321  	pud_t *pud;
322  	pmd_t *pmd;
323  
324  	for (addr = start; addr < end; addr = next) {
325  		next = pmd_addr_end(addr, end);
326  
327  		pgd = vmemmap_pgd_populate(addr, node);
328  		if (!pgd)
329  			return -ENOMEM;
330  
331  		p4d = vmemmap_p4d_populate(pgd, addr, node);
332  		if (!p4d)
333  			return -ENOMEM;
334  
335  		pud = vmemmap_pud_populate(p4d, addr, node);
336  		if (!pud)
337  			return -ENOMEM;
338  
339  		pmd = pmd_offset(pud, addr);
340  		if (pmd_none(READ_ONCE(*pmd))) {
341  			void *p;
342  
343  			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
344  			if (p) {
345  				vmemmap_set_pmd(pmd, p, node, addr, next);
346  				continue;
347  			} else if (altmap) {
348  				/*
349  				 * No fallback: In any case we care about, the
350  				 * altmap should be reasonably sized and aligned
351  				 * such that vmemmap_alloc_block_buf() will always
352  				 * succeed. For consistency with the PTE case,
353  				 * return an error here as failure could indicate
354  				 * a configuration issue with the size of the altmap.
355  				 */
356  				return -ENOMEM;
357  			}
358  		} else if (vmemmap_check_pmd(pmd, node, addr, next))
359  			continue;
360  		if (vmemmap_populate_basepages(addr, next, node, altmap))
361  			return -ENOMEM;
362  	}
363  	return 0;
364  }
365  
366  #ifndef vmemmap_populate_compound_pages
367  /*
368   * For compound pages bigger than section size (e.g. x86 1G compound
369   * pages with 2M subsection size) fill the rest of sections as tail
370   * pages.
371   *
372   * Note that memremap_pages() resets @nr_range value and will increment
373   * it after each range successful onlining. Thus the value or @nr_range
374   * at section memmap populate corresponds to the in-progress range
375   * being onlined here.
376   */
reuse_compound_section(unsigned long start_pfn,struct dev_pagemap * pgmap)377  static bool __meminit reuse_compound_section(unsigned long start_pfn,
378  					     struct dev_pagemap *pgmap)
379  {
380  	unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
381  	unsigned long offset = start_pfn -
382  		PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
383  
384  	return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
385  }
386  
compound_section_tail_page(unsigned long addr)387  static pte_t * __meminit compound_section_tail_page(unsigned long addr)
388  {
389  	pte_t *pte;
390  
391  	addr -= PAGE_SIZE;
392  
393  	/*
394  	 * Assuming sections are populated sequentially, the previous section's
395  	 * page data can be reused.
396  	 */
397  	pte = pte_offset_kernel(pmd_off_k(addr), addr);
398  	if (!pte)
399  		return NULL;
400  
401  	return pte;
402  }
403  
vmemmap_populate_compound_pages(unsigned long start_pfn,unsigned long start,unsigned long end,int node,struct dev_pagemap * pgmap)404  static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
405  						     unsigned long start,
406  						     unsigned long end, int node,
407  						     struct dev_pagemap *pgmap)
408  {
409  	unsigned long size, addr;
410  	pte_t *pte;
411  	int rc;
412  
413  	if (reuse_compound_section(start_pfn, pgmap)) {
414  		pte = compound_section_tail_page(start);
415  		if (!pte)
416  			return -ENOMEM;
417  
418  		/*
419  		 * Reuse the page that was populated in the prior iteration
420  		 * with just tail struct pages.
421  		 */
422  		return vmemmap_populate_range(start, end, node, NULL,
423  					      pte_page(ptep_get(pte)));
424  	}
425  
426  	size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
427  	for (addr = start; addr < end; addr += size) {
428  		unsigned long next, last = addr + size;
429  
430  		/* Populate the head page vmemmap page */
431  		pte = vmemmap_populate_address(addr, node, NULL, NULL);
432  		if (!pte)
433  			return -ENOMEM;
434  
435  		/* Populate the tail pages vmemmap page */
436  		next = addr + PAGE_SIZE;
437  		pte = vmemmap_populate_address(next, node, NULL, NULL);
438  		if (!pte)
439  			return -ENOMEM;
440  
441  		/*
442  		 * Reuse the previous page for the rest of tail pages
443  		 * See layout diagram in Documentation/mm/vmemmap_dedup.rst
444  		 */
445  		next += PAGE_SIZE;
446  		rc = vmemmap_populate_range(next, last, node, NULL,
447  					    pte_page(ptep_get(pte)));
448  		if (rc)
449  			return -ENOMEM;
450  	}
451  
452  	return 0;
453  }
454  
455  #endif
456  
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)457  struct page * __meminit __populate_section_memmap(unsigned long pfn,
458  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
459  		struct dev_pagemap *pgmap)
460  {
461  	unsigned long start = (unsigned long) pfn_to_page(pfn);
462  	unsigned long end = start + nr_pages * sizeof(struct page);
463  	int r;
464  
465  	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
466  		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
467  		return NULL;
468  
469  	if (vmemmap_can_optimize(altmap, pgmap))
470  		r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
471  	else
472  		r = vmemmap_populate(start, end, nid, altmap);
473  
474  	if (r < 0)
475  		return NULL;
476  
477  	if (system_state == SYSTEM_BOOTING)
478  		memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
479  	else
480  		memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
481  
482  	return pfn_to_page(pfn);
483  }
484