1  /*
2   * Resizable virtual memory filesystem for Linux.
3   *
4   * Copyright (C) 2000 Linus Torvalds.
5   *		 2000 Transmeta Corp.
6   *		 2000-2001 Christoph Rohland
7   *		 2000-2001 SAP AG
8   *		 2002 Red Hat Inc.
9   * Copyright (C) 2002-2011 Hugh Dickins.
10   * Copyright (C) 2011 Google Inc.
11   * Copyright (C) 2002-2005 VERITAS Software Corporation.
12   * Copyright (C) 2004 Andi Kleen, SuSE Labs
13   *
14   * Extended attribute support for tmpfs:
15   * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16   * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17   *
18   * tiny-shmem:
19   * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20   *
21   * This file is released under the GPL.
22   */
23  
24  #include <linux/fs.h>
25  #include <linux/init.h>
26  #include <linux/vfs.h>
27  #include <linux/mount.h>
28  #include <linux/ramfs.h>
29  #include <linux/pagemap.h>
30  #include <linux/file.h>
31  #include <linux/fileattr.h>
32  #include <linux/mm.h>
33  #include <linux/random.h>
34  #include <linux/sched/signal.h>
35  #include <linux/export.h>
36  #include <linux/shmem_fs.h>
37  #include <linux/swap.h>
38  #include <linux/uio.h>
39  #include <linux/hugetlb.h>
40  #include <linux/fs_parser.h>
41  #include <linux/swapfile.h>
42  #include <linux/iversion.h>
43  #include "swap.h"
44  
45  static struct vfsmount *shm_mnt __ro_after_init;
46  
47  #ifdef CONFIG_SHMEM
48  /*
49   * This virtual memory filesystem is heavily based on the ramfs. It
50   * extends ramfs by the ability to use swap and honor resource limits
51   * which makes it a completely usable filesystem.
52   */
53  
54  #include <linux/xattr.h>
55  #include <linux/exportfs.h>
56  #include <linux/posix_acl.h>
57  #include <linux/posix_acl_xattr.h>
58  #include <linux/mman.h>
59  #include <linux/string.h>
60  #include <linux/slab.h>
61  #include <linux/backing-dev.h>
62  #include <linux/writeback.h>
63  #include <linux/pagevec.h>
64  #include <linux/percpu_counter.h>
65  #include <linux/falloc.h>
66  #include <linux/splice.h>
67  #include <linux/security.h>
68  #include <linux/swapops.h>
69  #include <linux/mempolicy.h>
70  #include <linux/namei.h>
71  #include <linux/ctype.h>
72  #include <linux/migrate.h>
73  #include <linux/highmem.h>
74  #include <linux/seq_file.h>
75  #include <linux/magic.h>
76  #include <linux/syscalls.h>
77  #include <linux/fcntl.h>
78  #include <uapi/linux/memfd.h>
79  #include <linux/rmap.h>
80  #include <linux/uuid.h>
81  #include <linux/quotaops.h>
82  #include <linux/rcupdate_wait.h>
83  
84  #include <linux/uaccess.h>
85  
86  #include "internal.h"
87  
88  #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89  #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90  
91  /* Pretend that each entry is of this size in directory's i_size */
92  #define BOGO_DIRENT_SIZE 20
93  
94  /* Pretend that one inode + its dentry occupy this much memory */
95  #define BOGO_INODE_SIZE 1024
96  
97  /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98  #define SHORT_SYMLINK_LEN 128
99  
100  /*
101   * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102   * inode->i_private (with i_rwsem making sure that it has only one user at
103   * a time): we would prefer not to enlarge the shmem inode just for that.
104   */
105  struct shmem_falloc {
106  	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107  	pgoff_t start;		/* start of range currently being fallocated */
108  	pgoff_t next;		/* the next page offset to be fallocated */
109  	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110  	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111  };
112  
113  struct shmem_options {
114  	unsigned long long blocks;
115  	unsigned long long inodes;
116  	struct mempolicy *mpol;
117  	kuid_t uid;
118  	kgid_t gid;
119  	umode_t mode;
120  	bool full_inums;
121  	int huge;
122  	int seen;
123  	bool noswap;
124  	unsigned short quota_types;
125  	struct shmem_quota_limits qlimits;
126  #define SHMEM_SEEN_BLOCKS 1
127  #define SHMEM_SEEN_INODES 2
128  #define SHMEM_SEEN_HUGE 4
129  #define SHMEM_SEEN_INUMS 8
130  #define SHMEM_SEEN_NOSWAP 16
131  #define SHMEM_SEEN_QUOTA 32
132  };
133  
134  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135  static unsigned long huge_shmem_orders_always __read_mostly;
136  static unsigned long huge_shmem_orders_madvise __read_mostly;
137  static unsigned long huge_shmem_orders_inherit __read_mostly;
138  static unsigned long huge_shmem_orders_within_size __read_mostly;
139  #endif
140  
141  #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)142  static unsigned long shmem_default_max_blocks(void)
143  {
144  	return totalram_pages() / 2;
145  }
146  
shmem_default_max_inodes(void)147  static unsigned long shmem_default_max_inodes(void)
148  {
149  	unsigned long nr_pages = totalram_pages();
150  
151  	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152  			ULONG_MAX / BOGO_INODE_SIZE);
153  }
154  #endif
155  
156  static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157  			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158  			struct vm_area_struct *vma, vm_fault_t *fault_type);
159  
SHMEM_SB(struct super_block * sb)160  static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161  {
162  	return sb->s_fs_info;
163  }
164  
165  /*
166   * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167   * for shared memory and for shared anonymous (/dev/zero) mappings
168   * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169   * consistent with the pre-accounting of private mappings ...
170   */
shmem_acct_size(unsigned long flags,loff_t size)171  static inline int shmem_acct_size(unsigned long flags, loff_t size)
172  {
173  	return (flags & VM_NORESERVE) ?
174  		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175  }
176  
shmem_unacct_size(unsigned long flags,loff_t size)177  static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178  {
179  	if (!(flags & VM_NORESERVE))
180  		vm_unacct_memory(VM_ACCT(size));
181  }
182  
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)183  static inline int shmem_reacct_size(unsigned long flags,
184  		loff_t oldsize, loff_t newsize)
185  {
186  	if (!(flags & VM_NORESERVE)) {
187  		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188  			return security_vm_enough_memory_mm(current->mm,
189  					VM_ACCT(newsize) - VM_ACCT(oldsize));
190  		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191  			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192  	}
193  	return 0;
194  }
195  
196  /*
197   * ... whereas tmpfs objects are accounted incrementally as
198   * pages are allocated, in order to allow large sparse files.
199   * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200   * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201   */
shmem_acct_blocks(unsigned long flags,long pages)202  static inline int shmem_acct_blocks(unsigned long flags, long pages)
203  {
204  	if (!(flags & VM_NORESERVE))
205  		return 0;
206  
207  	return security_vm_enough_memory_mm(current->mm,
208  			pages * VM_ACCT(PAGE_SIZE));
209  }
210  
shmem_unacct_blocks(unsigned long flags,long pages)211  static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212  {
213  	if (flags & VM_NORESERVE)
214  		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215  }
216  
shmem_inode_acct_blocks(struct inode * inode,long pages)217  static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218  {
219  	struct shmem_inode_info *info = SHMEM_I(inode);
220  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221  	int err = -ENOSPC;
222  
223  	if (shmem_acct_blocks(info->flags, pages))
224  		return err;
225  
226  	might_sleep();	/* when quotas */
227  	if (sbinfo->max_blocks) {
228  		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229  						sbinfo->max_blocks, pages))
230  			goto unacct;
231  
232  		err = dquot_alloc_block_nodirty(inode, pages);
233  		if (err) {
234  			percpu_counter_sub(&sbinfo->used_blocks, pages);
235  			goto unacct;
236  		}
237  	} else {
238  		err = dquot_alloc_block_nodirty(inode, pages);
239  		if (err)
240  			goto unacct;
241  	}
242  
243  	return 0;
244  
245  unacct:
246  	shmem_unacct_blocks(info->flags, pages);
247  	return err;
248  }
249  
shmem_inode_unacct_blocks(struct inode * inode,long pages)250  static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251  {
252  	struct shmem_inode_info *info = SHMEM_I(inode);
253  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254  
255  	might_sleep();	/* when quotas */
256  	dquot_free_block_nodirty(inode, pages);
257  
258  	if (sbinfo->max_blocks)
259  		percpu_counter_sub(&sbinfo->used_blocks, pages);
260  	shmem_unacct_blocks(info->flags, pages);
261  }
262  
263  static const struct super_operations shmem_ops;
264  static const struct address_space_operations shmem_aops;
265  static const struct file_operations shmem_file_operations;
266  static const struct inode_operations shmem_inode_operations;
267  static const struct inode_operations shmem_dir_inode_operations;
268  static const struct inode_operations shmem_special_inode_operations;
269  static const struct vm_operations_struct shmem_vm_ops;
270  static const struct vm_operations_struct shmem_anon_vm_ops;
271  static struct file_system_type shmem_fs_type;
272  
shmem_mapping(struct address_space * mapping)273  bool shmem_mapping(struct address_space *mapping)
274  {
275  	return mapping->a_ops == &shmem_aops;
276  }
277  EXPORT_SYMBOL_GPL(shmem_mapping);
278  
vma_is_anon_shmem(struct vm_area_struct * vma)279  bool vma_is_anon_shmem(struct vm_area_struct *vma)
280  {
281  	return vma->vm_ops == &shmem_anon_vm_ops;
282  }
283  
vma_is_shmem(struct vm_area_struct * vma)284  bool vma_is_shmem(struct vm_area_struct *vma)
285  {
286  	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287  }
288  
289  static LIST_HEAD(shmem_swaplist);
290  static DEFINE_MUTEX(shmem_swaplist_mutex);
291  
292  #ifdef CONFIG_TMPFS_QUOTA
293  
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)294  static int shmem_enable_quotas(struct super_block *sb,
295  			       unsigned short quota_types)
296  {
297  	int type, err = 0;
298  
299  	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300  	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301  		if (!(quota_types & (1 << type)))
302  			continue;
303  		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304  					  DQUOT_USAGE_ENABLED |
305  					  DQUOT_LIMITS_ENABLED);
306  		if (err)
307  			goto out_err;
308  	}
309  	return 0;
310  
311  out_err:
312  	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313  		type, err);
314  	for (type--; type >= 0; type--)
315  		dquot_quota_off(sb, type);
316  	return err;
317  }
318  
shmem_disable_quotas(struct super_block * sb)319  static void shmem_disable_quotas(struct super_block *sb)
320  {
321  	int type;
322  
323  	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324  		dquot_quota_off(sb, type);
325  }
326  
shmem_get_dquots(struct inode * inode)327  static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328  {
329  	return SHMEM_I(inode)->i_dquot;
330  }
331  #endif /* CONFIG_TMPFS_QUOTA */
332  
333  /*
334   * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335   * produces a novel ino for the newly allocated inode.
336   *
337   * It may also be called when making a hard link to permit the space needed by
338   * each dentry. However, in that case, no new inode number is needed since that
339   * internally draws from another pool of inode numbers (currently global
340   * get_next_ino()). This case is indicated by passing NULL as inop.
341   */
342  #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)343  static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344  {
345  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346  	ino_t ino;
347  
348  	if (!(sb->s_flags & SB_KERNMOUNT)) {
349  		raw_spin_lock(&sbinfo->stat_lock);
350  		if (sbinfo->max_inodes) {
351  			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352  				raw_spin_unlock(&sbinfo->stat_lock);
353  				return -ENOSPC;
354  			}
355  			sbinfo->free_ispace -= BOGO_INODE_SIZE;
356  		}
357  		if (inop) {
358  			ino = sbinfo->next_ino++;
359  			if (unlikely(is_zero_ino(ino)))
360  				ino = sbinfo->next_ino++;
361  			if (unlikely(!sbinfo->full_inums &&
362  				     ino > UINT_MAX)) {
363  				/*
364  				 * Emulate get_next_ino uint wraparound for
365  				 * compatibility
366  				 */
367  				if (IS_ENABLED(CONFIG_64BIT))
368  					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369  						__func__, MINOR(sb->s_dev));
370  				sbinfo->next_ino = 1;
371  				ino = sbinfo->next_ino++;
372  			}
373  			*inop = ino;
374  		}
375  		raw_spin_unlock(&sbinfo->stat_lock);
376  	} else if (inop) {
377  		/*
378  		 * __shmem_file_setup, one of our callers, is lock-free: it
379  		 * doesn't hold stat_lock in shmem_reserve_inode since
380  		 * max_inodes is always 0, and is called from potentially
381  		 * unknown contexts. As such, use a per-cpu batched allocator
382  		 * which doesn't require the per-sb stat_lock unless we are at
383  		 * the batch boundary.
384  		 *
385  		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386  		 * shmem mounts are not exposed to userspace, so we don't need
387  		 * to worry about things like glibc compatibility.
388  		 */
389  		ino_t *next_ino;
390  
391  		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392  		ino = *next_ino;
393  		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394  			raw_spin_lock(&sbinfo->stat_lock);
395  			ino = sbinfo->next_ino;
396  			sbinfo->next_ino += SHMEM_INO_BATCH;
397  			raw_spin_unlock(&sbinfo->stat_lock);
398  			if (unlikely(is_zero_ino(ino)))
399  				ino++;
400  		}
401  		*inop = ino;
402  		*next_ino = ++ino;
403  		put_cpu();
404  	}
405  
406  	return 0;
407  }
408  
shmem_free_inode(struct super_block * sb,size_t freed_ispace)409  static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410  {
411  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412  	if (sbinfo->max_inodes) {
413  		raw_spin_lock(&sbinfo->stat_lock);
414  		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415  		raw_spin_unlock(&sbinfo->stat_lock);
416  	}
417  }
418  
419  /**
420   * shmem_recalc_inode - recalculate the block usage of an inode
421   * @inode: inode to recalc
422   * @alloced: the change in number of pages allocated to inode
423   * @swapped: the change in number of pages swapped from inode
424   *
425   * We have to calculate the free blocks since the mm can drop
426   * undirtied hole pages behind our back.
427   *
428   * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
429   * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430   */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)431  static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432  {
433  	struct shmem_inode_info *info = SHMEM_I(inode);
434  	long freed;
435  
436  	spin_lock(&info->lock);
437  	info->alloced += alloced;
438  	info->swapped += swapped;
439  	freed = info->alloced - info->swapped -
440  		READ_ONCE(inode->i_mapping->nrpages);
441  	/*
442  	 * Special case: whereas normally shmem_recalc_inode() is called
443  	 * after i_mapping->nrpages has already been adjusted (up or down),
444  	 * shmem_writepage() has to raise swapped before nrpages is lowered -
445  	 * to stop a racing shmem_recalc_inode() from thinking that a page has
446  	 * been freed.  Compensate here, to avoid the need for a followup call.
447  	 */
448  	if (swapped > 0)
449  		freed += swapped;
450  	if (freed > 0)
451  		info->alloced -= freed;
452  	spin_unlock(&info->lock);
453  
454  	/* The quota case may block */
455  	if (freed > 0)
456  		shmem_inode_unacct_blocks(inode, freed);
457  }
458  
shmem_charge(struct inode * inode,long pages)459  bool shmem_charge(struct inode *inode, long pages)
460  {
461  	struct address_space *mapping = inode->i_mapping;
462  
463  	if (shmem_inode_acct_blocks(inode, pages))
464  		return false;
465  
466  	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467  	xa_lock_irq(&mapping->i_pages);
468  	mapping->nrpages += pages;
469  	xa_unlock_irq(&mapping->i_pages);
470  
471  	shmem_recalc_inode(inode, pages, 0);
472  	return true;
473  }
474  
shmem_uncharge(struct inode * inode,long pages)475  void shmem_uncharge(struct inode *inode, long pages)
476  {
477  	/* pages argument is currently unused: keep it to help debugging */
478  	/* nrpages adjustment done by __filemap_remove_folio() or caller */
479  
480  	shmem_recalc_inode(inode, 0, 0);
481  }
482  
483  /*
484   * Replace item expected in xarray by a new item, while holding xa_lock.
485   */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)486  static int shmem_replace_entry(struct address_space *mapping,
487  			pgoff_t index, void *expected, void *replacement)
488  {
489  	XA_STATE(xas, &mapping->i_pages, index);
490  	void *item;
491  
492  	VM_BUG_ON(!expected);
493  	VM_BUG_ON(!replacement);
494  	item = xas_load(&xas);
495  	if (item != expected)
496  		return -ENOENT;
497  	xas_store(&xas, replacement);
498  	return 0;
499  }
500  
501  /*
502   * Sometimes, before we decide whether to proceed or to fail, we must check
503   * that an entry was not already brought back from swap by a racing thread.
504   *
505   * Checking folio is not enough: by the time a swapcache folio is locked, it
506   * might be reused, and again be swapcache, using the same swap as before.
507   */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)508  static bool shmem_confirm_swap(struct address_space *mapping,
509  			       pgoff_t index, swp_entry_t swap)
510  {
511  	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512  }
513  
514  /*
515   * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516   *
517   * SHMEM_HUGE_NEVER:
518   *	disables huge pages for the mount;
519   * SHMEM_HUGE_ALWAYS:
520   *	enables huge pages for the mount;
521   * SHMEM_HUGE_WITHIN_SIZE:
522   *	only allocate huge pages if the page will be fully within i_size,
523   *	also respect fadvise()/madvise() hints;
524   * SHMEM_HUGE_ADVISE:
525   *	only allocate huge pages if requested with fadvise()/madvise();
526   */
527  
528  #define SHMEM_HUGE_NEVER	0
529  #define SHMEM_HUGE_ALWAYS	1
530  #define SHMEM_HUGE_WITHIN_SIZE	2
531  #define SHMEM_HUGE_ADVISE	3
532  
533  /*
534   * Special values.
535   * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536   *
537   * SHMEM_HUGE_DENY:
538   *	disables huge on shm_mnt and all mounts, for emergency use;
539   * SHMEM_HUGE_FORCE:
540   *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541   *
542   */
543  #define SHMEM_HUGE_DENY		(-1)
544  #define SHMEM_HUGE_FORCE	(-2)
545  
546  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547  /* ifdef here to avoid bloating shmem.o when not necessary */
548  
549  static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550  
__shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)551  static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
552  					loff_t write_end, bool shmem_huge_force,
553  					struct vm_area_struct *vma,
554  					unsigned long vm_flags)
555  {
556  	struct mm_struct *mm = vma ? vma->vm_mm : NULL;
557  	loff_t i_size;
558  
559  	if (!S_ISREG(inode->i_mode))
560  		return false;
561  	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
562  		return false;
563  	if (shmem_huge == SHMEM_HUGE_DENY)
564  		return false;
565  	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
566  		return true;
567  
568  	switch (SHMEM_SB(inode->i_sb)->huge) {
569  	case SHMEM_HUGE_ALWAYS:
570  		return true;
571  	case SHMEM_HUGE_WITHIN_SIZE:
572  		index = round_up(index + 1, HPAGE_PMD_NR);
573  		i_size = max(write_end, i_size_read(inode));
574  		i_size = round_up(i_size, PAGE_SIZE);
575  		if (i_size >> PAGE_SHIFT >= index)
576  			return true;
577  		fallthrough;
578  	case SHMEM_HUGE_ADVISE:
579  		if (mm && (vm_flags & VM_HUGEPAGE))
580  			return true;
581  		fallthrough;
582  	default:
583  		return false;
584  	}
585  }
586  
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)587  static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
588  		   loff_t write_end, bool shmem_huge_force,
589  		   struct vm_area_struct *vma, unsigned long vm_flags)
590  {
591  	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
592  		return false;
593  
594  	return __shmem_huge_global_enabled(inode, index, write_end,
595  					   shmem_huge_force, vma, vm_flags);
596  }
597  
598  #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)599  static int shmem_parse_huge(const char *str)
600  {
601  	if (!strcmp(str, "never"))
602  		return SHMEM_HUGE_NEVER;
603  	if (!strcmp(str, "always"))
604  		return SHMEM_HUGE_ALWAYS;
605  	if (!strcmp(str, "within_size"))
606  		return SHMEM_HUGE_WITHIN_SIZE;
607  	if (!strcmp(str, "advise"))
608  		return SHMEM_HUGE_ADVISE;
609  	if (!strcmp(str, "deny"))
610  		return SHMEM_HUGE_DENY;
611  	if (!strcmp(str, "force"))
612  		return SHMEM_HUGE_FORCE;
613  	return -EINVAL;
614  }
615  #endif
616  
617  #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)618  static const char *shmem_format_huge(int huge)
619  {
620  	switch (huge) {
621  	case SHMEM_HUGE_NEVER:
622  		return "never";
623  	case SHMEM_HUGE_ALWAYS:
624  		return "always";
625  	case SHMEM_HUGE_WITHIN_SIZE:
626  		return "within_size";
627  	case SHMEM_HUGE_ADVISE:
628  		return "advise";
629  	case SHMEM_HUGE_DENY:
630  		return "deny";
631  	case SHMEM_HUGE_FORCE:
632  		return "force";
633  	default:
634  		VM_BUG_ON(1);
635  		return "bad_val";
636  	}
637  }
638  #endif
639  
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)640  static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
641  		struct shrink_control *sc, unsigned long nr_to_free)
642  {
643  	LIST_HEAD(list), *pos, *next;
644  	struct inode *inode;
645  	struct shmem_inode_info *info;
646  	struct folio *folio;
647  	unsigned long batch = sc ? sc->nr_to_scan : 128;
648  	unsigned long split = 0, freed = 0;
649  
650  	if (list_empty(&sbinfo->shrinklist))
651  		return SHRINK_STOP;
652  
653  	spin_lock(&sbinfo->shrinklist_lock);
654  	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
655  		info = list_entry(pos, struct shmem_inode_info, shrinklist);
656  
657  		/* pin the inode */
658  		inode = igrab(&info->vfs_inode);
659  
660  		/* inode is about to be evicted */
661  		if (!inode) {
662  			list_del_init(&info->shrinklist);
663  			goto next;
664  		}
665  
666  		list_move(&info->shrinklist, &list);
667  next:
668  		sbinfo->shrinklist_len--;
669  		if (!--batch)
670  			break;
671  	}
672  	spin_unlock(&sbinfo->shrinklist_lock);
673  
674  	list_for_each_safe(pos, next, &list) {
675  		pgoff_t next, end;
676  		loff_t i_size;
677  		int ret;
678  
679  		info = list_entry(pos, struct shmem_inode_info, shrinklist);
680  		inode = &info->vfs_inode;
681  
682  		if (nr_to_free && freed >= nr_to_free)
683  			goto move_back;
684  
685  		i_size = i_size_read(inode);
686  		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
687  		if (!folio || xa_is_value(folio))
688  			goto drop;
689  
690  		/* No large folio at the end of the file: nothing to split */
691  		if (!folio_test_large(folio)) {
692  			folio_put(folio);
693  			goto drop;
694  		}
695  
696  		/* Check if there is anything to gain from splitting */
697  		next = folio_next_index(folio);
698  		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
699  		if (end <= folio->index || end >= next) {
700  			folio_put(folio);
701  			goto drop;
702  		}
703  
704  		/*
705  		 * Move the inode on the list back to shrinklist if we failed
706  		 * to lock the page at this time.
707  		 *
708  		 * Waiting for the lock may lead to deadlock in the
709  		 * reclaim path.
710  		 */
711  		if (!folio_trylock(folio)) {
712  			folio_put(folio);
713  			goto move_back;
714  		}
715  
716  		ret = split_folio(folio);
717  		folio_unlock(folio);
718  		folio_put(folio);
719  
720  		/* If split failed move the inode on the list back to shrinklist */
721  		if (ret)
722  			goto move_back;
723  
724  		freed += next - end;
725  		split++;
726  drop:
727  		list_del_init(&info->shrinklist);
728  		goto put;
729  move_back:
730  		/*
731  		 * Make sure the inode is either on the global list or deleted
732  		 * from any local list before iput() since it could be deleted
733  		 * in another thread once we put the inode (then the local list
734  		 * is corrupted).
735  		 */
736  		spin_lock(&sbinfo->shrinklist_lock);
737  		list_move(&info->shrinklist, &sbinfo->shrinklist);
738  		sbinfo->shrinklist_len++;
739  		spin_unlock(&sbinfo->shrinklist_lock);
740  put:
741  		iput(inode);
742  	}
743  
744  	return split;
745  }
746  
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)747  static long shmem_unused_huge_scan(struct super_block *sb,
748  		struct shrink_control *sc)
749  {
750  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
751  
752  	if (!READ_ONCE(sbinfo->shrinklist_len))
753  		return SHRINK_STOP;
754  
755  	return shmem_unused_huge_shrink(sbinfo, sc, 0);
756  }
757  
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)758  static long shmem_unused_huge_count(struct super_block *sb,
759  		struct shrink_control *sc)
760  {
761  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
762  	return READ_ONCE(sbinfo->shrinklist_len);
763  }
764  #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
765  
766  #define shmem_huge SHMEM_HUGE_DENY
767  
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)768  static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
769  		struct shrink_control *sc, unsigned long nr_to_free)
770  {
771  	return 0;
772  }
773  
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)774  static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
775  		loff_t write_end, bool shmem_huge_force,
776  		struct vm_area_struct *vma, unsigned long vm_flags)
777  {
778  	return false;
779  }
780  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
781  
782  /*
783   * Somewhat like filemap_add_folio, but error if expected item has gone.
784   */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)785  static int shmem_add_to_page_cache(struct folio *folio,
786  				   struct address_space *mapping,
787  				   pgoff_t index, void *expected, gfp_t gfp)
788  {
789  	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
790  	long nr = folio_nr_pages(folio);
791  
792  	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
793  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
794  	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
795  
796  	folio_ref_add(folio, nr);
797  	folio->mapping = mapping;
798  	folio->index = index;
799  
800  	gfp &= GFP_RECLAIM_MASK;
801  	folio_throttle_swaprate(folio, gfp);
802  
803  	do {
804  		xas_lock_irq(&xas);
805  		if (expected != xas_find_conflict(&xas)) {
806  			xas_set_err(&xas, -EEXIST);
807  			goto unlock;
808  		}
809  		if (expected && xas_find_conflict(&xas)) {
810  			xas_set_err(&xas, -EEXIST);
811  			goto unlock;
812  		}
813  		xas_store(&xas, folio);
814  		if (xas_error(&xas))
815  			goto unlock;
816  		if (folio_test_pmd_mappable(folio))
817  			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
818  		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
819  		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
820  		mapping->nrpages += nr;
821  unlock:
822  		xas_unlock_irq(&xas);
823  	} while (xas_nomem(&xas, gfp));
824  
825  	if (xas_error(&xas)) {
826  		folio->mapping = NULL;
827  		folio_ref_sub(folio, nr);
828  		return xas_error(&xas);
829  	}
830  
831  	return 0;
832  }
833  
834  /*
835   * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
836   */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)837  static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
838  {
839  	struct address_space *mapping = folio->mapping;
840  	long nr = folio_nr_pages(folio);
841  	int error;
842  
843  	xa_lock_irq(&mapping->i_pages);
844  	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
845  	folio->mapping = NULL;
846  	mapping->nrpages -= nr;
847  	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
848  	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
849  	xa_unlock_irq(&mapping->i_pages);
850  	folio_put_refs(folio, nr);
851  	BUG_ON(error);
852  }
853  
854  /*
855   * Remove swap entry from page cache, free the swap and its page cache. Returns
856   * the number of pages being freed. 0 means entry not found in XArray (0 pages
857   * being freed).
858   */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)859  static long shmem_free_swap(struct address_space *mapping,
860  			    pgoff_t index, void *radswap)
861  {
862  	int order = xa_get_order(&mapping->i_pages, index);
863  	void *old;
864  
865  	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
866  	if (old != radswap)
867  		return 0;
868  	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
869  
870  	return 1 << order;
871  }
872  
873  /*
874   * Determine (in bytes) how many of the shmem object's pages mapped by the
875   * given offsets are swapped out.
876   *
877   * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
878   * as long as the inode doesn't go away and racy results are not a problem.
879   */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)880  unsigned long shmem_partial_swap_usage(struct address_space *mapping,
881  						pgoff_t start, pgoff_t end)
882  {
883  	XA_STATE(xas, &mapping->i_pages, start);
884  	struct page *page;
885  	unsigned long swapped = 0;
886  	unsigned long max = end - 1;
887  
888  	rcu_read_lock();
889  	xas_for_each(&xas, page, max) {
890  		if (xas_retry(&xas, page))
891  			continue;
892  		if (xa_is_value(page))
893  			swapped += 1 << xas_get_order(&xas);
894  		if (xas.xa_index == max)
895  			break;
896  		if (need_resched()) {
897  			xas_pause(&xas);
898  			cond_resched_rcu();
899  		}
900  	}
901  	rcu_read_unlock();
902  
903  	return swapped << PAGE_SHIFT;
904  }
905  
906  /*
907   * Determine (in bytes) how many of the shmem object's pages mapped by the
908   * given vma is swapped out.
909   *
910   * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
911   * as long as the inode doesn't go away and racy results are not a problem.
912   */
shmem_swap_usage(struct vm_area_struct * vma)913  unsigned long shmem_swap_usage(struct vm_area_struct *vma)
914  {
915  	struct inode *inode = file_inode(vma->vm_file);
916  	struct shmem_inode_info *info = SHMEM_I(inode);
917  	struct address_space *mapping = inode->i_mapping;
918  	unsigned long swapped;
919  
920  	/* Be careful as we don't hold info->lock */
921  	swapped = READ_ONCE(info->swapped);
922  
923  	/*
924  	 * The easier cases are when the shmem object has nothing in swap, or
925  	 * the vma maps it whole. Then we can simply use the stats that we
926  	 * already track.
927  	 */
928  	if (!swapped)
929  		return 0;
930  
931  	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
932  		return swapped << PAGE_SHIFT;
933  
934  	/* Here comes the more involved part */
935  	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
936  					vma->vm_pgoff + vma_pages(vma));
937  }
938  
939  /*
940   * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
941   */
shmem_unlock_mapping(struct address_space * mapping)942  void shmem_unlock_mapping(struct address_space *mapping)
943  {
944  	struct folio_batch fbatch;
945  	pgoff_t index = 0;
946  
947  	folio_batch_init(&fbatch);
948  	/*
949  	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
950  	 */
951  	while (!mapping_unevictable(mapping) &&
952  	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
953  		check_move_unevictable_folios(&fbatch);
954  		folio_batch_release(&fbatch);
955  		cond_resched();
956  	}
957  }
958  
shmem_get_partial_folio(struct inode * inode,pgoff_t index)959  static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
960  {
961  	struct folio *folio;
962  
963  	/*
964  	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
965  	 * beyond i_size, and reports fallocated folios as holes.
966  	 */
967  	folio = filemap_get_entry(inode->i_mapping, index);
968  	if (!folio)
969  		return folio;
970  	if (!xa_is_value(folio)) {
971  		folio_lock(folio);
972  		if (folio->mapping == inode->i_mapping)
973  			return folio;
974  		/* The folio has been swapped out */
975  		folio_unlock(folio);
976  		folio_put(folio);
977  	}
978  	/*
979  	 * But read a folio back from swap if any of it is within i_size
980  	 * (although in some cases this is just a waste of time).
981  	 */
982  	folio = NULL;
983  	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
984  	return folio;
985  }
986  
987  /*
988   * Remove range of pages and swap entries from page cache, and free them.
989   * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
990   */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)991  static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
992  								 bool unfalloc)
993  {
994  	struct address_space *mapping = inode->i_mapping;
995  	struct shmem_inode_info *info = SHMEM_I(inode);
996  	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
997  	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
998  	struct folio_batch fbatch;
999  	pgoff_t indices[PAGEVEC_SIZE];
1000  	struct folio *folio;
1001  	bool same_folio;
1002  	long nr_swaps_freed = 0;
1003  	pgoff_t index;
1004  	int i;
1005  
1006  	if (lend == -1)
1007  		end = -1;	/* unsigned, so actually very big */
1008  
1009  	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1010  		info->fallocend = start;
1011  
1012  	folio_batch_init(&fbatch);
1013  	index = start;
1014  	while (index < end && find_lock_entries(mapping, &index, end - 1,
1015  			&fbatch, indices)) {
1016  		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1017  			folio = fbatch.folios[i];
1018  
1019  			if (xa_is_value(folio)) {
1020  				if (unfalloc)
1021  					continue;
1022  				nr_swaps_freed += shmem_free_swap(mapping,
1023  							indices[i], folio);
1024  				continue;
1025  			}
1026  
1027  			if (!unfalloc || !folio_test_uptodate(folio))
1028  				truncate_inode_folio(mapping, folio);
1029  			folio_unlock(folio);
1030  		}
1031  		folio_batch_remove_exceptionals(&fbatch);
1032  		folio_batch_release(&fbatch);
1033  		cond_resched();
1034  	}
1035  
1036  	/*
1037  	 * When undoing a failed fallocate, we want none of the partial folio
1038  	 * zeroing and splitting below, but shall want to truncate the whole
1039  	 * folio when !uptodate indicates that it was added by this fallocate,
1040  	 * even when [lstart, lend] covers only a part of the folio.
1041  	 */
1042  	if (unfalloc)
1043  		goto whole_folios;
1044  
1045  	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1046  	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1047  	if (folio) {
1048  		same_folio = lend < folio_pos(folio) + folio_size(folio);
1049  		folio_mark_dirty(folio);
1050  		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1051  			start = folio_next_index(folio);
1052  			if (same_folio)
1053  				end = folio->index;
1054  		}
1055  		folio_unlock(folio);
1056  		folio_put(folio);
1057  		folio = NULL;
1058  	}
1059  
1060  	if (!same_folio)
1061  		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1062  	if (folio) {
1063  		folio_mark_dirty(folio);
1064  		if (!truncate_inode_partial_folio(folio, lstart, lend))
1065  			end = folio->index;
1066  		folio_unlock(folio);
1067  		folio_put(folio);
1068  	}
1069  
1070  whole_folios:
1071  
1072  	index = start;
1073  	while (index < end) {
1074  		cond_resched();
1075  
1076  		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1077  				indices)) {
1078  			/* If all gone or hole-punch or unfalloc, we're done */
1079  			if (index == start || end != -1)
1080  				break;
1081  			/* But if truncating, restart to make sure all gone */
1082  			index = start;
1083  			continue;
1084  		}
1085  		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1086  			folio = fbatch.folios[i];
1087  
1088  			if (xa_is_value(folio)) {
1089  				long swaps_freed;
1090  
1091  				if (unfalloc)
1092  					continue;
1093  				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1094  				if (!swaps_freed) {
1095  					/* Swap was replaced by page: retry */
1096  					index = indices[i];
1097  					break;
1098  				}
1099  				nr_swaps_freed += swaps_freed;
1100  				continue;
1101  			}
1102  
1103  			folio_lock(folio);
1104  
1105  			if (!unfalloc || !folio_test_uptodate(folio)) {
1106  				if (folio_mapping(folio) != mapping) {
1107  					/* Page was replaced by swap: retry */
1108  					folio_unlock(folio);
1109  					index = indices[i];
1110  					break;
1111  				}
1112  				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1113  						folio);
1114  
1115  				if (!folio_test_large(folio)) {
1116  					truncate_inode_folio(mapping, folio);
1117  				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1118  					/*
1119  					 * If we split a page, reset the loop so
1120  					 * that we pick up the new sub pages.
1121  					 * Otherwise the THP was entirely
1122  					 * dropped or the target range was
1123  					 * zeroed, so just continue the loop as
1124  					 * is.
1125  					 */
1126  					if (!folio_test_large(folio)) {
1127  						folio_unlock(folio);
1128  						index = start;
1129  						break;
1130  					}
1131  				}
1132  			}
1133  			folio_unlock(folio);
1134  		}
1135  		folio_batch_remove_exceptionals(&fbatch);
1136  		folio_batch_release(&fbatch);
1137  	}
1138  
1139  	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1140  }
1141  
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1142  void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1143  {
1144  	shmem_undo_range(inode, lstart, lend, false);
1145  	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1146  	inode_inc_iversion(inode);
1147  }
1148  EXPORT_SYMBOL_GPL(shmem_truncate_range);
1149  
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1150  static int shmem_getattr(struct mnt_idmap *idmap,
1151  			 const struct path *path, struct kstat *stat,
1152  			 u32 request_mask, unsigned int query_flags)
1153  {
1154  	struct inode *inode = path->dentry->d_inode;
1155  	struct shmem_inode_info *info = SHMEM_I(inode);
1156  
1157  	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1158  		shmem_recalc_inode(inode, 0, 0);
1159  
1160  	if (info->fsflags & FS_APPEND_FL)
1161  		stat->attributes |= STATX_ATTR_APPEND;
1162  	if (info->fsflags & FS_IMMUTABLE_FL)
1163  		stat->attributes |= STATX_ATTR_IMMUTABLE;
1164  	if (info->fsflags & FS_NODUMP_FL)
1165  		stat->attributes |= STATX_ATTR_NODUMP;
1166  	stat->attributes_mask |= (STATX_ATTR_APPEND |
1167  			STATX_ATTR_IMMUTABLE |
1168  			STATX_ATTR_NODUMP);
1169  	generic_fillattr(idmap, request_mask, inode, stat);
1170  
1171  	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1172  		stat->blksize = HPAGE_PMD_SIZE;
1173  
1174  	if (request_mask & STATX_BTIME) {
1175  		stat->result_mask |= STATX_BTIME;
1176  		stat->btime.tv_sec = info->i_crtime.tv_sec;
1177  		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1178  	}
1179  
1180  	return 0;
1181  }
1182  
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1183  static int shmem_setattr(struct mnt_idmap *idmap,
1184  			 struct dentry *dentry, struct iattr *attr)
1185  {
1186  	struct inode *inode = d_inode(dentry);
1187  	struct shmem_inode_info *info = SHMEM_I(inode);
1188  	int error;
1189  	bool update_mtime = false;
1190  	bool update_ctime = true;
1191  
1192  	error = setattr_prepare(idmap, dentry, attr);
1193  	if (error)
1194  		return error;
1195  
1196  	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1197  		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1198  			return -EPERM;
1199  		}
1200  	}
1201  
1202  	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1203  		loff_t oldsize = inode->i_size;
1204  		loff_t newsize = attr->ia_size;
1205  
1206  		/* protected by i_rwsem */
1207  		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1208  		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1209  			return -EPERM;
1210  
1211  		if (newsize != oldsize) {
1212  			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1213  					oldsize, newsize);
1214  			if (error)
1215  				return error;
1216  			i_size_write(inode, newsize);
1217  			update_mtime = true;
1218  		} else {
1219  			update_ctime = false;
1220  		}
1221  		if (newsize <= oldsize) {
1222  			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1223  			if (oldsize > holebegin)
1224  				unmap_mapping_range(inode->i_mapping,
1225  							holebegin, 0, 1);
1226  			if (info->alloced)
1227  				shmem_truncate_range(inode,
1228  							newsize, (loff_t)-1);
1229  			/* unmap again to remove racily COWed private pages */
1230  			if (oldsize > holebegin)
1231  				unmap_mapping_range(inode->i_mapping,
1232  							holebegin, 0, 1);
1233  		}
1234  	}
1235  
1236  	if (is_quota_modification(idmap, inode, attr)) {
1237  		error = dquot_initialize(inode);
1238  		if (error)
1239  			return error;
1240  	}
1241  
1242  	/* Transfer quota accounting */
1243  	if (i_uid_needs_update(idmap, attr, inode) ||
1244  	    i_gid_needs_update(idmap, attr, inode)) {
1245  		error = dquot_transfer(idmap, inode, attr);
1246  		if (error)
1247  			return error;
1248  	}
1249  
1250  	setattr_copy(idmap, inode, attr);
1251  	if (attr->ia_valid & ATTR_MODE)
1252  		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1253  	if (!error && update_ctime) {
1254  		inode_set_ctime_current(inode);
1255  		if (update_mtime)
1256  			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1257  		inode_inc_iversion(inode);
1258  	}
1259  	return error;
1260  }
1261  
shmem_evict_inode(struct inode * inode)1262  static void shmem_evict_inode(struct inode *inode)
1263  {
1264  	struct shmem_inode_info *info = SHMEM_I(inode);
1265  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1266  	size_t freed = 0;
1267  
1268  	if (shmem_mapping(inode->i_mapping)) {
1269  		shmem_unacct_size(info->flags, inode->i_size);
1270  		inode->i_size = 0;
1271  		mapping_set_exiting(inode->i_mapping);
1272  		shmem_truncate_range(inode, 0, (loff_t)-1);
1273  		if (!list_empty(&info->shrinklist)) {
1274  			spin_lock(&sbinfo->shrinklist_lock);
1275  			if (!list_empty(&info->shrinklist)) {
1276  				list_del_init(&info->shrinklist);
1277  				sbinfo->shrinklist_len--;
1278  			}
1279  			spin_unlock(&sbinfo->shrinklist_lock);
1280  		}
1281  		while (!list_empty(&info->swaplist)) {
1282  			/* Wait while shmem_unuse() is scanning this inode... */
1283  			wait_var_event(&info->stop_eviction,
1284  				       !atomic_read(&info->stop_eviction));
1285  			mutex_lock(&shmem_swaplist_mutex);
1286  			/* ...but beware of the race if we peeked too early */
1287  			if (!atomic_read(&info->stop_eviction))
1288  				list_del_init(&info->swaplist);
1289  			mutex_unlock(&shmem_swaplist_mutex);
1290  		}
1291  	}
1292  
1293  	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1294  	shmem_free_inode(inode->i_sb, freed);
1295  	WARN_ON(inode->i_blocks);
1296  	clear_inode(inode);
1297  #ifdef CONFIG_TMPFS_QUOTA
1298  	dquot_free_inode(inode);
1299  	dquot_drop(inode);
1300  #endif
1301  }
1302  
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1303  static int shmem_find_swap_entries(struct address_space *mapping,
1304  				   pgoff_t start, struct folio_batch *fbatch,
1305  				   pgoff_t *indices, unsigned int type)
1306  {
1307  	XA_STATE(xas, &mapping->i_pages, start);
1308  	struct folio *folio;
1309  	swp_entry_t entry;
1310  
1311  	rcu_read_lock();
1312  	xas_for_each(&xas, folio, ULONG_MAX) {
1313  		if (xas_retry(&xas, folio))
1314  			continue;
1315  
1316  		if (!xa_is_value(folio))
1317  			continue;
1318  
1319  		entry = radix_to_swp_entry(folio);
1320  		/*
1321  		 * swapin error entries can be found in the mapping. But they're
1322  		 * deliberately ignored here as we've done everything we can do.
1323  		 */
1324  		if (swp_type(entry) != type)
1325  			continue;
1326  
1327  		indices[folio_batch_count(fbatch)] = xas.xa_index;
1328  		if (!folio_batch_add(fbatch, folio))
1329  			break;
1330  
1331  		if (need_resched()) {
1332  			xas_pause(&xas);
1333  			cond_resched_rcu();
1334  		}
1335  	}
1336  	rcu_read_unlock();
1337  
1338  	return xas.xa_index;
1339  }
1340  
1341  /*
1342   * Move the swapped pages for an inode to page cache. Returns the count
1343   * of pages swapped in, or the error in case of failure.
1344   */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1345  static int shmem_unuse_swap_entries(struct inode *inode,
1346  		struct folio_batch *fbatch, pgoff_t *indices)
1347  {
1348  	int i = 0;
1349  	int ret = 0;
1350  	int error = 0;
1351  	struct address_space *mapping = inode->i_mapping;
1352  
1353  	for (i = 0; i < folio_batch_count(fbatch); i++) {
1354  		struct folio *folio = fbatch->folios[i];
1355  
1356  		if (!xa_is_value(folio))
1357  			continue;
1358  		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1359  					mapping_gfp_mask(mapping), NULL, NULL);
1360  		if (error == 0) {
1361  			folio_unlock(folio);
1362  			folio_put(folio);
1363  			ret++;
1364  		}
1365  		if (error == -ENOMEM)
1366  			break;
1367  		error = 0;
1368  	}
1369  	return error ? error : ret;
1370  }
1371  
1372  /*
1373   * If swap found in inode, free it and move page from swapcache to filecache.
1374   */
shmem_unuse_inode(struct inode * inode,unsigned int type)1375  static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1376  {
1377  	struct address_space *mapping = inode->i_mapping;
1378  	pgoff_t start = 0;
1379  	struct folio_batch fbatch;
1380  	pgoff_t indices[PAGEVEC_SIZE];
1381  	int ret = 0;
1382  
1383  	do {
1384  		folio_batch_init(&fbatch);
1385  		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1386  		if (folio_batch_count(&fbatch) == 0) {
1387  			ret = 0;
1388  			break;
1389  		}
1390  
1391  		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1392  		if (ret < 0)
1393  			break;
1394  
1395  		start = indices[folio_batch_count(&fbatch) - 1];
1396  	} while (true);
1397  
1398  	return ret;
1399  }
1400  
1401  /*
1402   * Read all the shared memory data that resides in the swap
1403   * device 'type' back into memory, so the swap device can be
1404   * unused.
1405   */
shmem_unuse(unsigned int type)1406  int shmem_unuse(unsigned int type)
1407  {
1408  	struct shmem_inode_info *info, *next;
1409  	int error = 0;
1410  
1411  	if (list_empty(&shmem_swaplist))
1412  		return 0;
1413  
1414  	mutex_lock(&shmem_swaplist_mutex);
1415  	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1416  		if (!info->swapped) {
1417  			list_del_init(&info->swaplist);
1418  			continue;
1419  		}
1420  		/*
1421  		 * Drop the swaplist mutex while searching the inode for swap;
1422  		 * but before doing so, make sure shmem_evict_inode() will not
1423  		 * remove placeholder inode from swaplist, nor let it be freed
1424  		 * (igrab() would protect from unlink, but not from unmount).
1425  		 */
1426  		atomic_inc(&info->stop_eviction);
1427  		mutex_unlock(&shmem_swaplist_mutex);
1428  
1429  		error = shmem_unuse_inode(&info->vfs_inode, type);
1430  		cond_resched();
1431  
1432  		mutex_lock(&shmem_swaplist_mutex);
1433  		next = list_next_entry(info, swaplist);
1434  		if (!info->swapped)
1435  			list_del_init(&info->swaplist);
1436  		if (atomic_dec_and_test(&info->stop_eviction))
1437  			wake_up_var(&info->stop_eviction);
1438  		if (error)
1439  			break;
1440  	}
1441  	mutex_unlock(&shmem_swaplist_mutex);
1442  
1443  	return error;
1444  }
1445  
1446  /*
1447   * Move the page from the page cache to the swap cache.
1448   */
shmem_writepage(struct page * page,struct writeback_control * wbc)1449  static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1450  {
1451  	struct folio *folio = page_folio(page);
1452  	struct address_space *mapping = folio->mapping;
1453  	struct inode *inode = mapping->host;
1454  	struct shmem_inode_info *info = SHMEM_I(inode);
1455  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1456  	swp_entry_t swap;
1457  	pgoff_t index;
1458  	int nr_pages;
1459  	bool split = false;
1460  
1461  	/*
1462  	 * Our capabilities prevent regular writeback or sync from ever calling
1463  	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1464  	 * its underlying filesystem, in which case tmpfs should write out to
1465  	 * swap only in response to memory pressure, and not for the writeback
1466  	 * threads or sync.
1467  	 */
1468  	if (WARN_ON_ONCE(!wbc->for_reclaim))
1469  		goto redirty;
1470  
1471  	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1472  		goto redirty;
1473  
1474  	if (!total_swap_pages)
1475  		goto redirty;
1476  
1477  	/*
1478  	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1479  	 * split when swapping.
1480  	 *
1481  	 * And shrinkage of pages beyond i_size does not split swap, so
1482  	 * swapout of a large folio crossing i_size needs to split too
1483  	 * (unless fallocate has been used to preallocate beyond EOF).
1484  	 */
1485  	if (folio_test_large(folio)) {
1486  		index = shmem_fallocend(inode,
1487  			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1488  		if ((index > folio->index && index < folio_next_index(folio)) ||
1489  		    !IS_ENABLED(CONFIG_THP_SWAP))
1490  			split = true;
1491  	}
1492  
1493  	if (split) {
1494  try_split:
1495  		/* Ensure the subpages are still dirty */
1496  		folio_test_set_dirty(folio);
1497  		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1498  			goto redirty;
1499  		folio = page_folio(page);
1500  		folio_clear_dirty(folio);
1501  	}
1502  
1503  	index = folio->index;
1504  	nr_pages = folio_nr_pages(folio);
1505  
1506  	/*
1507  	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1508  	 * value into swapfile.c, the only way we can correctly account for a
1509  	 * fallocated folio arriving here is now to initialize it and write it.
1510  	 *
1511  	 * That's okay for a folio already fallocated earlier, but if we have
1512  	 * not yet completed the fallocation, then (a) we want to keep track
1513  	 * of this folio in case we have to undo it, and (b) it may not be a
1514  	 * good idea to continue anyway, once we're pushing into swap.  So
1515  	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1516  	 */
1517  	if (!folio_test_uptodate(folio)) {
1518  		if (inode->i_private) {
1519  			struct shmem_falloc *shmem_falloc;
1520  			spin_lock(&inode->i_lock);
1521  			shmem_falloc = inode->i_private;
1522  			if (shmem_falloc &&
1523  			    !shmem_falloc->waitq &&
1524  			    index >= shmem_falloc->start &&
1525  			    index < shmem_falloc->next)
1526  				shmem_falloc->nr_unswapped++;
1527  			else
1528  				shmem_falloc = NULL;
1529  			spin_unlock(&inode->i_lock);
1530  			if (shmem_falloc)
1531  				goto redirty;
1532  		}
1533  		folio_zero_range(folio, 0, folio_size(folio));
1534  		flush_dcache_folio(folio);
1535  		folio_mark_uptodate(folio);
1536  	}
1537  
1538  	swap = folio_alloc_swap(folio);
1539  	if (!swap.val) {
1540  		if (nr_pages > 1)
1541  			goto try_split;
1542  
1543  		goto redirty;
1544  	}
1545  
1546  	/*
1547  	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1548  	 * if it's not already there.  Do it now before the folio is
1549  	 * moved to swap cache, when its pagelock no longer protects
1550  	 * the inode from eviction.  But don't unlock the mutex until
1551  	 * we've incremented swapped, because shmem_unuse_inode() will
1552  	 * prune a !swapped inode from the swaplist under this mutex.
1553  	 */
1554  	mutex_lock(&shmem_swaplist_mutex);
1555  	if (list_empty(&info->swaplist))
1556  		list_add(&info->swaplist, &shmem_swaplist);
1557  
1558  	if (add_to_swap_cache(folio, swap,
1559  			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1560  			NULL) == 0) {
1561  		shmem_recalc_inode(inode, 0, nr_pages);
1562  		swap_shmem_alloc(swap, nr_pages);
1563  		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1564  
1565  		mutex_unlock(&shmem_swaplist_mutex);
1566  		BUG_ON(folio_mapped(folio));
1567  		return swap_writepage(&folio->page, wbc);
1568  	}
1569  
1570  	mutex_unlock(&shmem_swaplist_mutex);
1571  	put_swap_folio(folio, swap);
1572  redirty:
1573  	folio_mark_dirty(folio);
1574  	if (wbc->for_reclaim)
1575  		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1576  	folio_unlock(folio);
1577  	return 0;
1578  }
1579  
1580  #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1581  static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1582  {
1583  	char buffer[64];
1584  
1585  	if (!mpol || mpol->mode == MPOL_DEFAULT)
1586  		return;		/* show nothing */
1587  
1588  	mpol_to_str(buffer, sizeof(buffer), mpol);
1589  
1590  	seq_printf(seq, ",mpol=%s", buffer);
1591  }
1592  
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1593  static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1594  {
1595  	struct mempolicy *mpol = NULL;
1596  	if (sbinfo->mpol) {
1597  		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1598  		mpol = sbinfo->mpol;
1599  		mpol_get(mpol);
1600  		raw_spin_unlock(&sbinfo->stat_lock);
1601  	}
1602  	return mpol;
1603  }
1604  #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1605  static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1606  {
1607  }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1608  static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1609  {
1610  	return NULL;
1611  }
1612  #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1613  
1614  static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1615  			pgoff_t index, unsigned int order, pgoff_t *ilx);
1616  
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1617  static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1618  			struct shmem_inode_info *info, pgoff_t index)
1619  {
1620  	struct mempolicy *mpol;
1621  	pgoff_t ilx;
1622  	struct folio *folio;
1623  
1624  	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1625  	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1626  	mpol_cond_put(mpol);
1627  
1628  	return folio;
1629  }
1630  
1631  /*
1632   * Make sure huge_gfp is always more limited than limit_gfp.
1633   * Some of the flags set permissions, while others set limitations.
1634   */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1635  static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1636  {
1637  	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1638  	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1639  	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1640  	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1641  
1642  	/* Allow allocations only from the originally specified zones. */
1643  	result |= zoneflags;
1644  
1645  	/*
1646  	 * Minimize the result gfp by taking the union with the deny flags,
1647  	 * and the intersection of the allow flags.
1648  	 */
1649  	result |= (limit_gfp & denyflags);
1650  	result |= (huge_gfp & limit_gfp) & allowflags;
1651  
1652  	return result;
1653  }
1654  
1655  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1656  unsigned long shmem_allowable_huge_orders(struct inode *inode,
1657  				struct vm_area_struct *vma, pgoff_t index,
1658  				loff_t write_end, bool shmem_huge_force)
1659  {
1660  	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1661  	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1662  	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1663  	bool global_huge;
1664  	loff_t i_size;
1665  	int order;
1666  
1667  	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1668  		return 0;
1669  
1670  	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1671  					shmem_huge_force, vma, vm_flags);
1672  	if (!vma || !vma_is_anon_shmem(vma)) {
1673  		/*
1674  		 * For tmpfs, we now only support PMD sized THP if huge page
1675  		 * is enabled, otherwise fallback to order 0.
1676  		 */
1677  		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1678  	}
1679  
1680  	/*
1681  	 * Following the 'deny' semantics of the top level, force the huge
1682  	 * option off from all mounts.
1683  	 */
1684  	if (shmem_huge == SHMEM_HUGE_DENY)
1685  		return 0;
1686  
1687  	/*
1688  	 * Only allow inherit orders if the top-level value is 'force', which
1689  	 * means non-PMD sized THP can not override 'huge' mount option now.
1690  	 */
1691  	if (shmem_huge == SHMEM_HUGE_FORCE)
1692  		return READ_ONCE(huge_shmem_orders_inherit);
1693  
1694  	/* Allow mTHP that will be fully within i_size. */
1695  	order = highest_order(within_size_orders);
1696  	while (within_size_orders) {
1697  		index = round_up(index + 1, order);
1698  		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1699  		if (i_size >> PAGE_SHIFT >= index) {
1700  			mask |= within_size_orders;
1701  			break;
1702  		}
1703  
1704  		order = next_order(&within_size_orders, order);
1705  	}
1706  
1707  	if (vm_flags & VM_HUGEPAGE)
1708  		mask |= READ_ONCE(huge_shmem_orders_madvise);
1709  
1710  	if (global_huge)
1711  		mask |= READ_ONCE(huge_shmem_orders_inherit);
1712  
1713  	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1714  }
1715  
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1716  static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1717  					   struct address_space *mapping, pgoff_t index,
1718  					   unsigned long orders)
1719  {
1720  	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1721  	pgoff_t aligned_index;
1722  	unsigned long pages;
1723  	int order;
1724  
1725  	if (vma) {
1726  		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1727  		if (!orders)
1728  			return 0;
1729  	}
1730  
1731  	/* Find the highest order that can add into the page cache */
1732  	order = highest_order(orders);
1733  	while (orders) {
1734  		pages = 1UL << order;
1735  		aligned_index = round_down(index, pages);
1736  		/*
1737  		 * Check for conflict before waiting on a huge allocation.
1738  		 * Conflict might be that a huge page has just been allocated
1739  		 * and added to page cache by a racing thread, or that there
1740  		 * is already at least one small page in the huge extent.
1741  		 * Be careful to retry when appropriate, but not forever!
1742  		 * Elsewhere -EEXIST would be the right code, but not here.
1743  		 */
1744  		if (!xa_find(&mapping->i_pages, &aligned_index,
1745  			     aligned_index + pages - 1, XA_PRESENT))
1746  			break;
1747  		order = next_order(&orders, order);
1748  	}
1749  
1750  	return orders;
1751  }
1752  #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1753  static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1754  					   struct address_space *mapping, pgoff_t index,
1755  					   unsigned long orders)
1756  {
1757  	return 0;
1758  }
1759  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1760  
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1761  static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1762  		struct shmem_inode_info *info, pgoff_t index)
1763  {
1764  	struct mempolicy *mpol;
1765  	pgoff_t ilx;
1766  	struct folio *folio;
1767  
1768  	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1769  	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1770  	mpol_cond_put(mpol);
1771  
1772  	return folio;
1773  }
1774  
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1775  static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1776  		gfp_t gfp, struct inode *inode, pgoff_t index,
1777  		struct mm_struct *fault_mm, unsigned long orders)
1778  {
1779  	struct address_space *mapping = inode->i_mapping;
1780  	struct shmem_inode_info *info = SHMEM_I(inode);
1781  	unsigned long suitable_orders = 0;
1782  	struct folio *folio = NULL;
1783  	long pages;
1784  	int error, order;
1785  
1786  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1787  		orders = 0;
1788  
1789  	if (orders > 0) {
1790  		suitable_orders = shmem_suitable_orders(inode, vmf,
1791  							mapping, index, orders);
1792  
1793  		order = highest_order(suitable_orders);
1794  		while (suitable_orders) {
1795  			pages = 1UL << order;
1796  			index = round_down(index, pages);
1797  			folio = shmem_alloc_folio(gfp, order, info, index);
1798  			if (folio)
1799  				goto allocated;
1800  
1801  			if (pages == HPAGE_PMD_NR)
1802  				count_vm_event(THP_FILE_FALLBACK);
1803  			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1804  			order = next_order(&suitable_orders, order);
1805  		}
1806  	} else {
1807  		pages = 1;
1808  		folio = shmem_alloc_folio(gfp, 0, info, index);
1809  	}
1810  	if (!folio)
1811  		return ERR_PTR(-ENOMEM);
1812  
1813  allocated:
1814  	__folio_set_locked(folio);
1815  	__folio_set_swapbacked(folio);
1816  
1817  	gfp &= GFP_RECLAIM_MASK;
1818  	error = mem_cgroup_charge(folio, fault_mm, gfp);
1819  	if (error) {
1820  		if (xa_find(&mapping->i_pages, &index,
1821  				index + pages - 1, XA_PRESENT)) {
1822  			error = -EEXIST;
1823  		} else if (pages > 1) {
1824  			if (pages == HPAGE_PMD_NR) {
1825  				count_vm_event(THP_FILE_FALLBACK);
1826  				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1827  			}
1828  			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1829  			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1830  		}
1831  		goto unlock;
1832  	}
1833  
1834  	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1835  	if (error)
1836  		goto unlock;
1837  
1838  	error = shmem_inode_acct_blocks(inode, pages);
1839  	if (error) {
1840  		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1841  		long freed;
1842  		/*
1843  		 * Try to reclaim some space by splitting a few
1844  		 * large folios beyond i_size on the filesystem.
1845  		 */
1846  		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1847  		/*
1848  		 * And do a shmem_recalc_inode() to account for freed pages:
1849  		 * except our folio is there in cache, so not quite balanced.
1850  		 */
1851  		spin_lock(&info->lock);
1852  		freed = pages + info->alloced - info->swapped -
1853  			READ_ONCE(mapping->nrpages);
1854  		if (freed > 0)
1855  			info->alloced -= freed;
1856  		spin_unlock(&info->lock);
1857  		if (freed > 0)
1858  			shmem_inode_unacct_blocks(inode, freed);
1859  		error = shmem_inode_acct_blocks(inode, pages);
1860  		if (error) {
1861  			filemap_remove_folio(folio);
1862  			goto unlock;
1863  		}
1864  	}
1865  
1866  	shmem_recalc_inode(inode, pages, 0);
1867  	folio_add_lru(folio);
1868  	return folio;
1869  
1870  unlock:
1871  	folio_unlock(folio);
1872  	folio_put(folio);
1873  	return ERR_PTR(error);
1874  }
1875  
1876  /*
1877   * When a page is moved from swapcache to shmem filecache (either by the
1878   * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1879   * shmem_unuse_inode()), it may have been read in earlier from swap, in
1880   * ignorance of the mapping it belongs to.  If that mapping has special
1881   * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1882   * we may need to copy to a suitable page before moving to filecache.
1883   *
1884   * In a future release, this may well be extended to respect cpuset and
1885   * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1886   * but for now it is a simple matter of zone.
1887   */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1888  static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1889  {
1890  	return folio_zonenum(folio) > gfp_zone(gfp);
1891  }
1892  
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)1893  static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1894  				struct shmem_inode_info *info, pgoff_t index,
1895  				struct vm_area_struct *vma)
1896  {
1897  	struct folio *new, *old = *foliop;
1898  	swp_entry_t entry = old->swap;
1899  	struct address_space *swap_mapping = swap_address_space(entry);
1900  	pgoff_t swap_index = swap_cache_index(entry);
1901  	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1902  	int nr_pages = folio_nr_pages(old);
1903  	int error = 0, i;
1904  
1905  	/*
1906  	 * We have arrived here because our zones are constrained, so don't
1907  	 * limit chance of success by further cpuset and node constraints.
1908  	 */
1909  	gfp &= ~GFP_CONSTRAINT_MASK;
1910  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1911  	if (nr_pages > 1) {
1912  		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1913  
1914  		gfp = limit_gfp_mask(huge_gfp, gfp);
1915  	}
1916  #endif
1917  
1918  	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1919  	if (!new)
1920  		return -ENOMEM;
1921  
1922  	folio_ref_add(new, nr_pages);
1923  	folio_copy(new, old);
1924  	flush_dcache_folio(new);
1925  
1926  	__folio_set_locked(new);
1927  	__folio_set_swapbacked(new);
1928  	folio_mark_uptodate(new);
1929  	new->swap = entry;
1930  	folio_set_swapcache(new);
1931  
1932  	/* Swap cache still stores N entries instead of a high-order entry */
1933  	xa_lock_irq(&swap_mapping->i_pages);
1934  	for (i = 0; i < nr_pages; i++) {
1935  		void *item = xas_load(&xas);
1936  
1937  		if (item != old) {
1938  			error = -ENOENT;
1939  			break;
1940  		}
1941  
1942  		xas_store(&xas, new);
1943  		xas_next(&xas);
1944  	}
1945  	if (!error) {
1946  		mem_cgroup_replace_folio(old, new);
1947  		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
1948  		__lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
1949  		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
1950  		__lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
1951  	}
1952  	xa_unlock_irq(&swap_mapping->i_pages);
1953  
1954  	if (unlikely(error)) {
1955  		/*
1956  		 * Is this possible?  I think not, now that our callers
1957  		 * check both the swapcache flag and folio->private
1958  		 * after getting the folio lock; but be defensive.
1959  		 * Reverse old to newpage for clear and free.
1960  		 */
1961  		old = new;
1962  	} else {
1963  		folio_add_lru(new);
1964  		*foliop = new;
1965  	}
1966  
1967  	folio_clear_swapcache(old);
1968  	old->private = NULL;
1969  
1970  	folio_unlock(old);
1971  	/*
1972  	 * The old folio are removed from swap cache, drop the 'nr_pages'
1973  	 * reference, as well as one temporary reference getting from swap
1974  	 * cache.
1975  	 */
1976  	folio_put_refs(old, nr_pages + 1);
1977  	return error;
1978  }
1979  
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1980  static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1981  					 struct folio *folio, swp_entry_t swap)
1982  {
1983  	struct address_space *mapping = inode->i_mapping;
1984  	swp_entry_t swapin_error;
1985  	void *old;
1986  	int nr_pages;
1987  
1988  	swapin_error = make_poisoned_swp_entry();
1989  	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1990  			     swp_to_radix_entry(swap),
1991  			     swp_to_radix_entry(swapin_error), 0);
1992  	if (old != swp_to_radix_entry(swap))
1993  		return;
1994  
1995  	nr_pages = folio_nr_pages(folio);
1996  	folio_wait_writeback(folio);
1997  	delete_from_swap_cache(folio);
1998  	/*
1999  	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2000  	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2001  	 * in shmem_evict_inode().
2002  	 */
2003  	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2004  	swap_free_nr(swap, nr_pages);
2005  }
2006  
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2007  static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2008  				   swp_entry_t swap, gfp_t gfp)
2009  {
2010  	struct address_space *mapping = inode->i_mapping;
2011  	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2012  	void *alloced_shadow = NULL;
2013  	int alloced_order = 0, i;
2014  
2015  	/* Convert user data gfp flags to xarray node gfp flags */
2016  	gfp &= GFP_RECLAIM_MASK;
2017  
2018  	for (;;) {
2019  		int order = -1, split_order = 0;
2020  		void *old = NULL;
2021  
2022  		xas_lock_irq(&xas);
2023  		old = xas_load(&xas);
2024  		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2025  			xas_set_err(&xas, -EEXIST);
2026  			goto unlock;
2027  		}
2028  
2029  		order = xas_get_order(&xas);
2030  
2031  		/* Swap entry may have changed before we re-acquire the lock */
2032  		if (alloced_order &&
2033  		    (old != alloced_shadow || order != alloced_order)) {
2034  			xas_destroy(&xas);
2035  			alloced_order = 0;
2036  		}
2037  
2038  		/* Try to split large swap entry in pagecache */
2039  		if (order > 0) {
2040  			if (!alloced_order) {
2041  				split_order = order;
2042  				goto unlock;
2043  			}
2044  			xas_split(&xas, old, order);
2045  
2046  			/*
2047  			 * Re-set the swap entry after splitting, and the swap
2048  			 * offset of the original large entry must be continuous.
2049  			 */
2050  			for (i = 0; i < 1 << order; i++) {
2051  				pgoff_t aligned_index = round_down(index, 1 << order);
2052  				swp_entry_t tmp;
2053  
2054  				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2055  				__xa_store(&mapping->i_pages, aligned_index + i,
2056  					   swp_to_radix_entry(tmp), 0);
2057  			}
2058  		}
2059  
2060  unlock:
2061  		xas_unlock_irq(&xas);
2062  
2063  		/* split needed, alloc here and retry. */
2064  		if (split_order) {
2065  			xas_split_alloc(&xas, old, split_order, gfp);
2066  			if (xas_error(&xas))
2067  				goto error;
2068  			alloced_shadow = old;
2069  			alloced_order = split_order;
2070  			xas_reset(&xas);
2071  			continue;
2072  		}
2073  
2074  		if (!xas_nomem(&xas, gfp))
2075  			break;
2076  	}
2077  
2078  error:
2079  	if (xas_error(&xas))
2080  		return xas_error(&xas);
2081  
2082  	return alloced_order;
2083  }
2084  
2085  /*
2086   * Swap in the folio pointed to by *foliop.
2087   * Caller has to make sure that *foliop contains a valid swapped folio.
2088   * Returns 0 and the folio in foliop if success. On failure, returns the
2089   * error code and NULL in *foliop.
2090   */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2091  static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2092  			     struct folio **foliop, enum sgp_type sgp,
2093  			     gfp_t gfp, struct vm_area_struct *vma,
2094  			     vm_fault_t *fault_type)
2095  {
2096  	struct address_space *mapping = inode->i_mapping;
2097  	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2098  	struct shmem_inode_info *info = SHMEM_I(inode);
2099  	struct swap_info_struct *si;
2100  	struct folio *folio = NULL;
2101  	swp_entry_t swap;
2102  	int error, nr_pages;
2103  
2104  	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2105  	swap = radix_to_swp_entry(*foliop);
2106  	*foliop = NULL;
2107  
2108  	if (is_poisoned_swp_entry(swap))
2109  		return -EIO;
2110  
2111  	si = get_swap_device(swap);
2112  	if (!si) {
2113  		if (!shmem_confirm_swap(mapping, index, swap))
2114  			return -EEXIST;
2115  		else
2116  			return -EINVAL;
2117  	}
2118  
2119  	/* Look it up and read it in.. */
2120  	folio = swap_cache_get_folio(swap, NULL, 0);
2121  	if (!folio) {
2122  		int split_order;
2123  
2124  		/* Or update major stats only when swapin succeeds?? */
2125  		if (fault_type) {
2126  			*fault_type |= VM_FAULT_MAJOR;
2127  			count_vm_event(PGMAJFAULT);
2128  			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2129  		}
2130  
2131  		/*
2132  		 * Now swap device can only swap in order 0 folio, then we
2133  		 * should split the large swap entry stored in the pagecache
2134  		 * if necessary.
2135  		 */
2136  		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2137  		if (split_order < 0) {
2138  			error = split_order;
2139  			goto failed;
2140  		}
2141  
2142  		/*
2143  		 * If the large swap entry has already been split, it is
2144  		 * necessary to recalculate the new swap entry based on
2145  		 * the old order alignment.
2146  		 */
2147  		if (split_order > 0) {
2148  			pgoff_t offset = index - round_down(index, 1 << split_order);
2149  
2150  			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2151  		}
2152  
2153  		/* Here we actually start the io */
2154  		folio = shmem_swapin_cluster(swap, gfp, info, index);
2155  		if (!folio) {
2156  			error = -ENOMEM;
2157  			goto failed;
2158  		}
2159  	}
2160  
2161  	/* We have to do this with folio locked to prevent races */
2162  	folio_lock(folio);
2163  	if (!folio_test_swapcache(folio) ||
2164  	    folio->swap.val != swap.val ||
2165  	    !shmem_confirm_swap(mapping, index, swap)) {
2166  		error = -EEXIST;
2167  		goto unlock;
2168  	}
2169  	if (!folio_test_uptodate(folio)) {
2170  		error = -EIO;
2171  		goto failed;
2172  	}
2173  	folio_wait_writeback(folio);
2174  	nr_pages = folio_nr_pages(folio);
2175  
2176  	/*
2177  	 * Some architectures may have to restore extra metadata to the
2178  	 * folio after reading from swap.
2179  	 */
2180  	arch_swap_restore(folio_swap(swap, folio), folio);
2181  
2182  	if (shmem_should_replace_folio(folio, gfp)) {
2183  		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2184  		if (error)
2185  			goto failed;
2186  	}
2187  
2188  	error = shmem_add_to_page_cache(folio, mapping,
2189  					round_down(index, nr_pages),
2190  					swp_to_radix_entry(swap), gfp);
2191  	if (error)
2192  		goto failed;
2193  
2194  	shmem_recalc_inode(inode, 0, -nr_pages);
2195  
2196  	if (sgp == SGP_WRITE)
2197  		folio_mark_accessed(folio);
2198  
2199  	delete_from_swap_cache(folio);
2200  	folio_mark_dirty(folio);
2201  	swap_free_nr(swap, nr_pages);
2202  	put_swap_device(si);
2203  
2204  	*foliop = folio;
2205  	return 0;
2206  failed:
2207  	if (!shmem_confirm_swap(mapping, index, swap))
2208  		error = -EEXIST;
2209  	if (error == -EIO)
2210  		shmem_set_folio_swapin_error(inode, index, folio, swap);
2211  unlock:
2212  	if (folio) {
2213  		folio_unlock(folio);
2214  		folio_put(folio);
2215  	}
2216  	put_swap_device(si);
2217  
2218  	return error;
2219  }
2220  
2221  /*
2222   * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2223   *
2224   * If we allocate a new one we do not mark it dirty. That's up to the
2225   * vm. If we swap it in we mark it dirty since we also free the swap
2226   * entry since a page cannot live in both the swap and page cache.
2227   *
2228   * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2229   */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2230  static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2231  		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2232  		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2233  {
2234  	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2235  	struct mm_struct *fault_mm;
2236  	struct folio *folio;
2237  	int error;
2238  	bool alloced;
2239  	unsigned long orders = 0;
2240  
2241  	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2242  		return -EINVAL;
2243  
2244  	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2245  		return -EFBIG;
2246  repeat:
2247  	if (sgp <= SGP_CACHE &&
2248  	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2249  		return -EINVAL;
2250  
2251  	alloced = false;
2252  	fault_mm = vma ? vma->vm_mm : NULL;
2253  
2254  	folio = filemap_get_entry(inode->i_mapping, index);
2255  	if (folio && vma && userfaultfd_minor(vma)) {
2256  		if (!xa_is_value(folio))
2257  			folio_put(folio);
2258  		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2259  		return 0;
2260  	}
2261  
2262  	if (xa_is_value(folio)) {
2263  		error = shmem_swapin_folio(inode, index, &folio,
2264  					   sgp, gfp, vma, fault_type);
2265  		if (error == -EEXIST)
2266  			goto repeat;
2267  
2268  		*foliop = folio;
2269  		return error;
2270  	}
2271  
2272  	if (folio) {
2273  		folio_lock(folio);
2274  
2275  		/* Has the folio been truncated or swapped out? */
2276  		if (unlikely(folio->mapping != inode->i_mapping)) {
2277  			folio_unlock(folio);
2278  			folio_put(folio);
2279  			goto repeat;
2280  		}
2281  		if (sgp == SGP_WRITE)
2282  			folio_mark_accessed(folio);
2283  		if (folio_test_uptodate(folio))
2284  			goto out;
2285  		/* fallocated folio */
2286  		if (sgp != SGP_READ)
2287  			goto clear;
2288  		folio_unlock(folio);
2289  		folio_put(folio);
2290  	}
2291  
2292  	/*
2293  	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2294  	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2295  	 */
2296  	*foliop = NULL;
2297  	if (sgp == SGP_READ)
2298  		return 0;
2299  	if (sgp == SGP_NOALLOC)
2300  		return -ENOENT;
2301  
2302  	/*
2303  	 * Fast cache lookup and swap lookup did not find it: allocate.
2304  	 */
2305  
2306  	if (vma && userfaultfd_missing(vma)) {
2307  		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2308  		return 0;
2309  	}
2310  
2311  	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2312  	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2313  	if (orders > 0) {
2314  		gfp_t huge_gfp;
2315  
2316  		huge_gfp = vma_thp_gfp_mask(vma);
2317  		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2318  		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2319  				inode, index, fault_mm, orders);
2320  		if (!IS_ERR(folio)) {
2321  			if (folio_test_pmd_mappable(folio))
2322  				count_vm_event(THP_FILE_ALLOC);
2323  			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2324  			goto alloced;
2325  		}
2326  		if (PTR_ERR(folio) == -EEXIST)
2327  			goto repeat;
2328  	}
2329  
2330  	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2331  	if (IS_ERR(folio)) {
2332  		error = PTR_ERR(folio);
2333  		if (error == -EEXIST)
2334  			goto repeat;
2335  		folio = NULL;
2336  		goto unlock;
2337  	}
2338  
2339  alloced:
2340  	alloced = true;
2341  	if (folio_test_large(folio) &&
2342  	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2343  					folio_next_index(folio)) {
2344  		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2345  		struct shmem_inode_info *info = SHMEM_I(inode);
2346  		/*
2347  		 * Part of the large folio is beyond i_size: subject
2348  		 * to shrink under memory pressure.
2349  		 */
2350  		spin_lock(&sbinfo->shrinklist_lock);
2351  		/*
2352  		 * _careful to defend against unlocked access to
2353  		 * ->shrink_list in shmem_unused_huge_shrink()
2354  		 */
2355  		if (list_empty_careful(&info->shrinklist)) {
2356  			list_add_tail(&info->shrinklist,
2357  				      &sbinfo->shrinklist);
2358  			sbinfo->shrinklist_len++;
2359  		}
2360  		spin_unlock(&sbinfo->shrinklist_lock);
2361  	}
2362  
2363  	if (sgp == SGP_WRITE)
2364  		folio_set_referenced(folio);
2365  	/*
2366  	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2367  	 */
2368  	if (sgp == SGP_FALLOC)
2369  		sgp = SGP_WRITE;
2370  clear:
2371  	/*
2372  	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2373  	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2374  	 * it now, lest undo on failure cancel our earlier guarantee.
2375  	 */
2376  	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2377  		long i, n = folio_nr_pages(folio);
2378  
2379  		for (i = 0; i < n; i++)
2380  			clear_highpage(folio_page(folio, i));
2381  		flush_dcache_folio(folio);
2382  		folio_mark_uptodate(folio);
2383  	}
2384  
2385  	/* Perhaps the file has been truncated since we checked */
2386  	if (sgp <= SGP_CACHE &&
2387  	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2388  		error = -EINVAL;
2389  		goto unlock;
2390  	}
2391  out:
2392  	*foliop = folio;
2393  	return 0;
2394  
2395  	/*
2396  	 * Error recovery.
2397  	 */
2398  unlock:
2399  	if (alloced)
2400  		filemap_remove_folio(folio);
2401  	shmem_recalc_inode(inode, 0, 0);
2402  	if (folio) {
2403  		folio_unlock(folio);
2404  		folio_put(folio);
2405  	}
2406  	return error;
2407  }
2408  
2409  /**
2410   * shmem_get_folio - find, and lock a shmem folio.
2411   * @inode:	inode to search
2412   * @index:	the page index.
2413   * @write_end:	end of a write, could extend inode size
2414   * @foliop:	pointer to the folio if found
2415   * @sgp:	SGP_* flags to control behavior
2416   *
2417   * Looks up the page cache entry at @inode & @index.  If a folio is
2418   * present, it is returned locked with an increased refcount.
2419   *
2420   * If the caller modifies data in the folio, it must call folio_mark_dirty()
2421   * before unlocking the folio to ensure that the folio is not reclaimed.
2422   * There is no need to reserve space before calling folio_mark_dirty().
2423   *
2424   * When no folio is found, the behavior depends on @sgp:
2425   *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2426   *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2427   *  - for all other flags a new folio is allocated, inserted into the
2428   *    page cache and returned locked in @foliop.
2429   *
2430   * Context: May sleep.
2431   * Return: 0 if successful, else a negative error code.
2432   */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2433  int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2434  		    struct folio **foliop, enum sgp_type sgp)
2435  {
2436  	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2437  			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2438  }
2439  EXPORT_SYMBOL_GPL(shmem_get_folio);
2440  
2441  /*
2442   * This is like autoremove_wake_function, but it removes the wait queue
2443   * entry unconditionally - even if something else had already woken the
2444   * target.
2445   */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2446  static int synchronous_wake_function(wait_queue_entry_t *wait,
2447  			unsigned int mode, int sync, void *key)
2448  {
2449  	int ret = default_wake_function(wait, mode, sync, key);
2450  	list_del_init(&wait->entry);
2451  	return ret;
2452  }
2453  
2454  /*
2455   * Trinity finds that probing a hole which tmpfs is punching can
2456   * prevent the hole-punch from ever completing: which in turn
2457   * locks writers out with its hold on i_rwsem.  So refrain from
2458   * faulting pages into the hole while it's being punched.  Although
2459   * shmem_undo_range() does remove the additions, it may be unable to
2460   * keep up, as each new page needs its own unmap_mapping_range() call,
2461   * and the i_mmap tree grows ever slower to scan if new vmas are added.
2462   *
2463   * It does not matter if we sometimes reach this check just before the
2464   * hole-punch begins, so that one fault then races with the punch:
2465   * we just need to make racing faults a rare case.
2466   *
2467   * The implementation below would be much simpler if we just used a
2468   * standard mutex or completion: but we cannot take i_rwsem in fault,
2469   * and bloating every shmem inode for this unlikely case would be sad.
2470   */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2471  static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2472  {
2473  	struct shmem_falloc *shmem_falloc;
2474  	struct file *fpin = NULL;
2475  	vm_fault_t ret = 0;
2476  
2477  	spin_lock(&inode->i_lock);
2478  	shmem_falloc = inode->i_private;
2479  	if (shmem_falloc &&
2480  	    shmem_falloc->waitq &&
2481  	    vmf->pgoff >= shmem_falloc->start &&
2482  	    vmf->pgoff < shmem_falloc->next) {
2483  		wait_queue_head_t *shmem_falloc_waitq;
2484  		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2485  
2486  		ret = VM_FAULT_NOPAGE;
2487  		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2488  		shmem_falloc_waitq = shmem_falloc->waitq;
2489  		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2490  				TASK_UNINTERRUPTIBLE);
2491  		spin_unlock(&inode->i_lock);
2492  		schedule();
2493  
2494  		/*
2495  		 * shmem_falloc_waitq points into the shmem_fallocate()
2496  		 * stack of the hole-punching task: shmem_falloc_waitq
2497  		 * is usually invalid by the time we reach here, but
2498  		 * finish_wait() does not dereference it in that case;
2499  		 * though i_lock needed lest racing with wake_up_all().
2500  		 */
2501  		spin_lock(&inode->i_lock);
2502  		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2503  	}
2504  	spin_unlock(&inode->i_lock);
2505  	if (fpin) {
2506  		fput(fpin);
2507  		ret = VM_FAULT_RETRY;
2508  	}
2509  	return ret;
2510  }
2511  
shmem_fault(struct vm_fault * vmf)2512  static vm_fault_t shmem_fault(struct vm_fault *vmf)
2513  {
2514  	struct inode *inode = file_inode(vmf->vma->vm_file);
2515  	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2516  	struct folio *folio = NULL;
2517  	vm_fault_t ret = 0;
2518  	int err;
2519  
2520  	/*
2521  	 * Trinity finds that probing a hole which tmpfs is punching can
2522  	 * prevent the hole-punch from ever completing: noted in i_private.
2523  	 */
2524  	if (unlikely(inode->i_private)) {
2525  		ret = shmem_falloc_wait(vmf, inode);
2526  		if (ret)
2527  			return ret;
2528  	}
2529  
2530  	WARN_ON_ONCE(vmf->page != NULL);
2531  	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2532  				  gfp, vmf, &ret);
2533  	if (err)
2534  		return vmf_error(err);
2535  	if (folio) {
2536  		vmf->page = folio_file_page(folio, vmf->pgoff);
2537  		ret |= VM_FAULT_LOCKED;
2538  	}
2539  	return ret;
2540  }
2541  
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2542  unsigned long shmem_get_unmapped_area(struct file *file,
2543  				      unsigned long uaddr, unsigned long len,
2544  				      unsigned long pgoff, unsigned long flags)
2545  {
2546  	unsigned long addr;
2547  	unsigned long offset;
2548  	unsigned long inflated_len;
2549  	unsigned long inflated_addr;
2550  	unsigned long inflated_offset;
2551  	unsigned long hpage_size;
2552  
2553  	if (len > TASK_SIZE)
2554  		return -ENOMEM;
2555  
2556  	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2557  				    flags);
2558  
2559  	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2560  		return addr;
2561  	if (IS_ERR_VALUE(addr))
2562  		return addr;
2563  	if (addr & ~PAGE_MASK)
2564  		return addr;
2565  	if (addr > TASK_SIZE - len)
2566  		return addr;
2567  
2568  	if (shmem_huge == SHMEM_HUGE_DENY)
2569  		return addr;
2570  	if (flags & MAP_FIXED)
2571  		return addr;
2572  	/*
2573  	 * Our priority is to support MAP_SHARED mapped hugely;
2574  	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2575  	 * But if caller specified an address hint and we allocated area there
2576  	 * successfully, respect that as before.
2577  	 */
2578  	if (uaddr == addr)
2579  		return addr;
2580  
2581  	hpage_size = HPAGE_PMD_SIZE;
2582  	if (shmem_huge != SHMEM_HUGE_FORCE) {
2583  		struct super_block *sb;
2584  		unsigned long __maybe_unused hpage_orders;
2585  		int order = 0;
2586  
2587  		if (file) {
2588  			VM_BUG_ON(file->f_op != &shmem_file_operations);
2589  			sb = file_inode(file)->i_sb;
2590  		} else {
2591  			/*
2592  			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2593  			 * for "/dev/zero", to create a shared anonymous object.
2594  			 */
2595  			if (IS_ERR(shm_mnt))
2596  				return addr;
2597  			sb = shm_mnt->mnt_sb;
2598  
2599  			/*
2600  			 * Find the highest mTHP order used for anonymous shmem to
2601  			 * provide a suitable alignment address.
2602  			 */
2603  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2604  			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2605  			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2606  			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2607  			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2608  				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2609  
2610  			if (hpage_orders > 0) {
2611  				order = highest_order(hpage_orders);
2612  				hpage_size = PAGE_SIZE << order;
2613  			}
2614  #endif
2615  		}
2616  		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2617  			return addr;
2618  	}
2619  
2620  	if (len < hpage_size)
2621  		return addr;
2622  
2623  	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2624  	if (offset && offset + len < 2 * hpage_size)
2625  		return addr;
2626  	if ((addr & (hpage_size - 1)) == offset)
2627  		return addr;
2628  
2629  	inflated_len = len + hpage_size - PAGE_SIZE;
2630  	if (inflated_len > TASK_SIZE)
2631  		return addr;
2632  	if (inflated_len < len)
2633  		return addr;
2634  
2635  	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2636  					     inflated_len, 0, flags);
2637  	if (IS_ERR_VALUE(inflated_addr))
2638  		return addr;
2639  	if (inflated_addr & ~PAGE_MASK)
2640  		return addr;
2641  
2642  	inflated_offset = inflated_addr & (hpage_size - 1);
2643  	inflated_addr += offset - inflated_offset;
2644  	if (inflated_offset > offset)
2645  		inflated_addr += hpage_size;
2646  
2647  	if (inflated_addr > TASK_SIZE - len)
2648  		return addr;
2649  	return inflated_addr;
2650  }
2651  
2652  #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2653  static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2654  {
2655  	struct inode *inode = file_inode(vma->vm_file);
2656  	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2657  }
2658  
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2659  static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2660  					  unsigned long addr, pgoff_t *ilx)
2661  {
2662  	struct inode *inode = file_inode(vma->vm_file);
2663  	pgoff_t index;
2664  
2665  	/*
2666  	 * Bias interleave by inode number to distribute better across nodes;
2667  	 * but this interface is independent of which page order is used, so
2668  	 * supplies only that bias, letting caller apply the offset (adjusted
2669  	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2670  	 */
2671  	*ilx = inode->i_ino;
2672  	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2673  	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2674  }
2675  
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2676  static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2677  			pgoff_t index, unsigned int order, pgoff_t *ilx)
2678  {
2679  	struct mempolicy *mpol;
2680  
2681  	/* Bias interleave by inode number to distribute better across nodes */
2682  	*ilx = info->vfs_inode.i_ino + (index >> order);
2683  
2684  	mpol = mpol_shared_policy_lookup(&info->policy, index);
2685  	return mpol ? mpol : get_task_policy(current);
2686  }
2687  #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2688  static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2689  			pgoff_t index, unsigned int order, pgoff_t *ilx)
2690  {
2691  	*ilx = 0;
2692  	return NULL;
2693  }
2694  #endif /* CONFIG_NUMA */
2695  
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2696  int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2697  {
2698  	struct inode *inode = file_inode(file);
2699  	struct shmem_inode_info *info = SHMEM_I(inode);
2700  	int retval = -ENOMEM;
2701  
2702  	/*
2703  	 * What serializes the accesses to info->flags?
2704  	 * ipc_lock_object() when called from shmctl_do_lock(),
2705  	 * no serialization needed when called from shm_destroy().
2706  	 */
2707  	if (lock && !(info->flags & VM_LOCKED)) {
2708  		if (!user_shm_lock(inode->i_size, ucounts))
2709  			goto out_nomem;
2710  		info->flags |= VM_LOCKED;
2711  		mapping_set_unevictable(file->f_mapping);
2712  	}
2713  	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2714  		user_shm_unlock(inode->i_size, ucounts);
2715  		info->flags &= ~VM_LOCKED;
2716  		mapping_clear_unevictable(file->f_mapping);
2717  	}
2718  	retval = 0;
2719  
2720  out_nomem:
2721  	return retval;
2722  }
2723  
shmem_mmap(struct file * file,struct vm_area_struct * vma)2724  static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2725  {
2726  	struct inode *inode = file_inode(file);
2727  	struct shmem_inode_info *info = SHMEM_I(inode);
2728  	int ret;
2729  
2730  	ret = seal_check_write(info->seals, vma);
2731  	if (ret)
2732  		return ret;
2733  
2734  	file_accessed(file);
2735  	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2736  	if (inode->i_nlink)
2737  		vma->vm_ops = &shmem_vm_ops;
2738  	else
2739  		vma->vm_ops = &shmem_anon_vm_ops;
2740  	return 0;
2741  }
2742  
shmem_file_open(struct inode * inode,struct file * file)2743  static int shmem_file_open(struct inode *inode, struct file *file)
2744  {
2745  	file->f_mode |= FMODE_CAN_ODIRECT;
2746  	return generic_file_open(inode, file);
2747  }
2748  
2749  #ifdef CONFIG_TMPFS_XATTR
2750  static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2751  
2752  /*
2753   * chattr's fsflags are unrelated to extended attributes,
2754   * but tmpfs has chosen to enable them under the same config option.
2755   */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2756  static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2757  {
2758  	unsigned int i_flags = 0;
2759  
2760  	if (fsflags & FS_NOATIME_FL)
2761  		i_flags |= S_NOATIME;
2762  	if (fsflags & FS_APPEND_FL)
2763  		i_flags |= S_APPEND;
2764  	if (fsflags & FS_IMMUTABLE_FL)
2765  		i_flags |= S_IMMUTABLE;
2766  	/*
2767  	 * But FS_NODUMP_FL does not require any action in i_flags.
2768  	 */
2769  	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2770  }
2771  #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2772  static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2773  {
2774  }
2775  #define shmem_initxattrs NULL
2776  #endif
2777  
shmem_get_offset_ctx(struct inode * inode)2778  static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2779  {
2780  	return &SHMEM_I(inode)->dir_offsets;
2781  }
2782  
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2783  static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2784  					     struct super_block *sb,
2785  					     struct inode *dir, umode_t mode,
2786  					     dev_t dev, unsigned long flags)
2787  {
2788  	struct inode *inode;
2789  	struct shmem_inode_info *info;
2790  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2791  	ino_t ino;
2792  	int err;
2793  
2794  	err = shmem_reserve_inode(sb, &ino);
2795  	if (err)
2796  		return ERR_PTR(err);
2797  
2798  	inode = new_inode(sb);
2799  	if (!inode) {
2800  		shmem_free_inode(sb, 0);
2801  		return ERR_PTR(-ENOSPC);
2802  	}
2803  
2804  	inode->i_ino = ino;
2805  	inode_init_owner(idmap, inode, dir, mode);
2806  	inode->i_blocks = 0;
2807  	simple_inode_init_ts(inode);
2808  	inode->i_generation = get_random_u32();
2809  	info = SHMEM_I(inode);
2810  	memset(info, 0, (char *)inode - (char *)info);
2811  	spin_lock_init(&info->lock);
2812  	atomic_set(&info->stop_eviction, 0);
2813  	info->seals = F_SEAL_SEAL;
2814  	info->flags = flags & VM_NORESERVE;
2815  	info->i_crtime = inode_get_mtime(inode);
2816  	info->fsflags = (dir == NULL) ? 0 :
2817  		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2818  	if (info->fsflags)
2819  		shmem_set_inode_flags(inode, info->fsflags);
2820  	INIT_LIST_HEAD(&info->shrinklist);
2821  	INIT_LIST_HEAD(&info->swaplist);
2822  	simple_xattrs_init(&info->xattrs);
2823  	cache_no_acl(inode);
2824  	if (sbinfo->noswap)
2825  		mapping_set_unevictable(inode->i_mapping);
2826  	mapping_set_large_folios(inode->i_mapping);
2827  
2828  	switch (mode & S_IFMT) {
2829  	default:
2830  		inode->i_op = &shmem_special_inode_operations;
2831  		init_special_inode(inode, mode, dev);
2832  		break;
2833  	case S_IFREG:
2834  		inode->i_mapping->a_ops = &shmem_aops;
2835  		inode->i_op = &shmem_inode_operations;
2836  		inode->i_fop = &shmem_file_operations;
2837  		mpol_shared_policy_init(&info->policy,
2838  					 shmem_get_sbmpol(sbinfo));
2839  		break;
2840  	case S_IFDIR:
2841  		inc_nlink(inode);
2842  		/* Some things misbehave if size == 0 on a directory */
2843  		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2844  		inode->i_op = &shmem_dir_inode_operations;
2845  		inode->i_fop = &simple_offset_dir_operations;
2846  		simple_offset_init(shmem_get_offset_ctx(inode));
2847  		break;
2848  	case S_IFLNK:
2849  		/*
2850  		 * Must not load anything in the rbtree,
2851  		 * mpol_free_shared_policy will not be called.
2852  		 */
2853  		mpol_shared_policy_init(&info->policy, NULL);
2854  		break;
2855  	}
2856  
2857  	lockdep_annotate_inode_mutex_key(inode);
2858  	return inode;
2859  }
2860  
2861  #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2862  static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2863  				     struct super_block *sb, struct inode *dir,
2864  				     umode_t mode, dev_t dev, unsigned long flags)
2865  {
2866  	int err;
2867  	struct inode *inode;
2868  
2869  	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2870  	if (IS_ERR(inode))
2871  		return inode;
2872  
2873  	err = dquot_initialize(inode);
2874  	if (err)
2875  		goto errout;
2876  
2877  	err = dquot_alloc_inode(inode);
2878  	if (err) {
2879  		dquot_drop(inode);
2880  		goto errout;
2881  	}
2882  	return inode;
2883  
2884  errout:
2885  	inode->i_flags |= S_NOQUOTA;
2886  	iput(inode);
2887  	return ERR_PTR(err);
2888  }
2889  #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2890  static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2891  				     struct super_block *sb, struct inode *dir,
2892  				     umode_t mode, dev_t dev, unsigned long flags)
2893  {
2894  	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2895  }
2896  #endif /* CONFIG_TMPFS_QUOTA */
2897  
2898  #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2899  int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2900  			   struct vm_area_struct *dst_vma,
2901  			   unsigned long dst_addr,
2902  			   unsigned long src_addr,
2903  			   uffd_flags_t flags,
2904  			   struct folio **foliop)
2905  {
2906  	struct inode *inode = file_inode(dst_vma->vm_file);
2907  	struct shmem_inode_info *info = SHMEM_I(inode);
2908  	struct address_space *mapping = inode->i_mapping;
2909  	gfp_t gfp = mapping_gfp_mask(mapping);
2910  	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2911  	void *page_kaddr;
2912  	struct folio *folio;
2913  	int ret;
2914  	pgoff_t max_off;
2915  
2916  	if (shmem_inode_acct_blocks(inode, 1)) {
2917  		/*
2918  		 * We may have got a page, returned -ENOENT triggering a retry,
2919  		 * and now we find ourselves with -ENOMEM. Release the page, to
2920  		 * avoid a BUG_ON in our caller.
2921  		 */
2922  		if (unlikely(*foliop)) {
2923  			folio_put(*foliop);
2924  			*foliop = NULL;
2925  		}
2926  		return -ENOMEM;
2927  	}
2928  
2929  	if (!*foliop) {
2930  		ret = -ENOMEM;
2931  		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2932  		if (!folio)
2933  			goto out_unacct_blocks;
2934  
2935  		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2936  			page_kaddr = kmap_local_folio(folio, 0);
2937  			/*
2938  			 * The read mmap_lock is held here.  Despite the
2939  			 * mmap_lock being read recursive a deadlock is still
2940  			 * possible if a writer has taken a lock.  For example:
2941  			 *
2942  			 * process A thread 1 takes read lock on own mmap_lock
2943  			 * process A thread 2 calls mmap, blocks taking write lock
2944  			 * process B thread 1 takes page fault, read lock on own mmap lock
2945  			 * process B thread 2 calls mmap, blocks taking write lock
2946  			 * process A thread 1 blocks taking read lock on process B
2947  			 * process B thread 1 blocks taking read lock on process A
2948  			 *
2949  			 * Disable page faults to prevent potential deadlock
2950  			 * and retry the copy outside the mmap_lock.
2951  			 */
2952  			pagefault_disable();
2953  			ret = copy_from_user(page_kaddr,
2954  					     (const void __user *)src_addr,
2955  					     PAGE_SIZE);
2956  			pagefault_enable();
2957  			kunmap_local(page_kaddr);
2958  
2959  			/* fallback to copy_from_user outside mmap_lock */
2960  			if (unlikely(ret)) {
2961  				*foliop = folio;
2962  				ret = -ENOENT;
2963  				/* don't free the page */
2964  				goto out_unacct_blocks;
2965  			}
2966  
2967  			flush_dcache_folio(folio);
2968  		} else {		/* ZEROPAGE */
2969  			clear_user_highpage(&folio->page, dst_addr);
2970  		}
2971  	} else {
2972  		folio = *foliop;
2973  		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2974  		*foliop = NULL;
2975  	}
2976  
2977  	VM_BUG_ON(folio_test_locked(folio));
2978  	VM_BUG_ON(folio_test_swapbacked(folio));
2979  	__folio_set_locked(folio);
2980  	__folio_set_swapbacked(folio);
2981  	__folio_mark_uptodate(folio);
2982  
2983  	ret = -EFAULT;
2984  	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2985  	if (unlikely(pgoff >= max_off))
2986  		goto out_release;
2987  
2988  	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2989  	if (ret)
2990  		goto out_release;
2991  	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2992  	if (ret)
2993  		goto out_release;
2994  
2995  	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2996  				       &folio->page, true, flags);
2997  	if (ret)
2998  		goto out_delete_from_cache;
2999  
3000  	shmem_recalc_inode(inode, 1, 0);
3001  	folio_unlock(folio);
3002  	return 0;
3003  out_delete_from_cache:
3004  	filemap_remove_folio(folio);
3005  out_release:
3006  	folio_unlock(folio);
3007  	folio_put(folio);
3008  out_unacct_blocks:
3009  	shmem_inode_unacct_blocks(inode, 1);
3010  	return ret;
3011  }
3012  #endif /* CONFIG_USERFAULTFD */
3013  
3014  #ifdef CONFIG_TMPFS
3015  static const struct inode_operations shmem_symlink_inode_operations;
3016  static const struct inode_operations shmem_short_symlink_operations;
3017  
3018  static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3019  shmem_write_begin(struct file *file, struct address_space *mapping,
3020  			loff_t pos, unsigned len,
3021  			struct folio **foliop, void **fsdata)
3022  {
3023  	struct inode *inode = mapping->host;
3024  	struct shmem_inode_info *info = SHMEM_I(inode);
3025  	pgoff_t index = pos >> PAGE_SHIFT;
3026  	struct folio *folio;
3027  	int ret = 0;
3028  
3029  	/* i_rwsem is held by caller */
3030  	if (unlikely(info->seals & (F_SEAL_GROW |
3031  				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3032  		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3033  			return -EPERM;
3034  		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3035  			return -EPERM;
3036  	}
3037  
3038  	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3039  	if (ret)
3040  		return ret;
3041  
3042  	if (folio_test_hwpoison(folio) ||
3043  	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3044  		folio_unlock(folio);
3045  		folio_put(folio);
3046  		return -EIO;
3047  	}
3048  
3049  	*foliop = folio;
3050  	return 0;
3051  }
3052  
3053  static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3054  shmem_write_end(struct file *file, struct address_space *mapping,
3055  			loff_t pos, unsigned len, unsigned copied,
3056  			struct folio *folio, void *fsdata)
3057  {
3058  	struct inode *inode = mapping->host;
3059  
3060  	if (pos + copied > inode->i_size)
3061  		i_size_write(inode, pos + copied);
3062  
3063  	if (!folio_test_uptodate(folio)) {
3064  		if (copied < folio_size(folio)) {
3065  			size_t from = offset_in_folio(folio, pos);
3066  			folio_zero_segments(folio, 0, from,
3067  					from + copied, folio_size(folio));
3068  		}
3069  		folio_mark_uptodate(folio);
3070  	}
3071  	folio_mark_dirty(folio);
3072  	folio_unlock(folio);
3073  	folio_put(folio);
3074  
3075  	return copied;
3076  }
3077  
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3078  static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3079  {
3080  	struct file *file = iocb->ki_filp;
3081  	struct inode *inode = file_inode(file);
3082  	struct address_space *mapping = inode->i_mapping;
3083  	pgoff_t index;
3084  	unsigned long offset;
3085  	int error = 0;
3086  	ssize_t retval = 0;
3087  	loff_t *ppos = &iocb->ki_pos;
3088  
3089  	index = *ppos >> PAGE_SHIFT;
3090  	offset = *ppos & ~PAGE_MASK;
3091  
3092  	for (;;) {
3093  		struct folio *folio = NULL;
3094  		struct page *page = NULL;
3095  		pgoff_t end_index;
3096  		unsigned long nr, ret;
3097  		loff_t i_size = i_size_read(inode);
3098  
3099  		end_index = i_size >> PAGE_SHIFT;
3100  		if (index > end_index)
3101  			break;
3102  		if (index == end_index) {
3103  			nr = i_size & ~PAGE_MASK;
3104  			if (nr <= offset)
3105  				break;
3106  		}
3107  
3108  		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3109  		if (error) {
3110  			if (error == -EINVAL)
3111  				error = 0;
3112  			break;
3113  		}
3114  		if (folio) {
3115  			folio_unlock(folio);
3116  
3117  			page = folio_file_page(folio, index);
3118  			if (PageHWPoison(page)) {
3119  				folio_put(folio);
3120  				error = -EIO;
3121  				break;
3122  			}
3123  		}
3124  
3125  		/*
3126  		 * We must evaluate after, since reads (unlike writes)
3127  		 * are called without i_rwsem protection against truncate
3128  		 */
3129  		nr = PAGE_SIZE;
3130  		i_size = i_size_read(inode);
3131  		end_index = i_size >> PAGE_SHIFT;
3132  		if (index == end_index) {
3133  			nr = i_size & ~PAGE_MASK;
3134  			if (nr <= offset) {
3135  				if (folio)
3136  					folio_put(folio);
3137  				break;
3138  			}
3139  		}
3140  		nr -= offset;
3141  
3142  		if (folio) {
3143  			/*
3144  			 * If users can be writing to this page using arbitrary
3145  			 * virtual addresses, take care about potential aliasing
3146  			 * before reading the page on the kernel side.
3147  			 */
3148  			if (mapping_writably_mapped(mapping))
3149  				flush_dcache_page(page);
3150  			/*
3151  			 * Mark the page accessed if we read the beginning.
3152  			 */
3153  			if (!offset)
3154  				folio_mark_accessed(folio);
3155  			/*
3156  			 * Ok, we have the page, and it's up-to-date, so
3157  			 * now we can copy it to user space...
3158  			 */
3159  			ret = copy_page_to_iter(page, offset, nr, to);
3160  			folio_put(folio);
3161  
3162  		} else if (user_backed_iter(to)) {
3163  			/*
3164  			 * Copy to user tends to be so well optimized, but
3165  			 * clear_user() not so much, that it is noticeably
3166  			 * faster to copy the zero page instead of clearing.
3167  			 */
3168  			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3169  		} else {
3170  			/*
3171  			 * But submitting the same page twice in a row to
3172  			 * splice() - or others? - can result in confusion:
3173  			 * so don't attempt that optimization on pipes etc.
3174  			 */
3175  			ret = iov_iter_zero(nr, to);
3176  		}
3177  
3178  		retval += ret;
3179  		offset += ret;
3180  		index += offset >> PAGE_SHIFT;
3181  		offset &= ~PAGE_MASK;
3182  
3183  		if (!iov_iter_count(to))
3184  			break;
3185  		if (ret < nr) {
3186  			error = -EFAULT;
3187  			break;
3188  		}
3189  		cond_resched();
3190  	}
3191  
3192  	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3193  	file_accessed(file);
3194  	return retval ? retval : error;
3195  }
3196  
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3197  static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3198  {
3199  	struct file *file = iocb->ki_filp;
3200  	struct inode *inode = file->f_mapping->host;
3201  	ssize_t ret;
3202  
3203  	inode_lock(inode);
3204  	ret = generic_write_checks(iocb, from);
3205  	if (ret <= 0)
3206  		goto unlock;
3207  	ret = file_remove_privs(file);
3208  	if (ret)
3209  		goto unlock;
3210  	ret = file_update_time(file);
3211  	if (ret)
3212  		goto unlock;
3213  	ret = generic_perform_write(iocb, from);
3214  unlock:
3215  	inode_unlock(inode);
3216  	return ret;
3217  }
3218  
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3219  static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3220  			      struct pipe_buffer *buf)
3221  {
3222  	return true;
3223  }
3224  
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3225  static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3226  				  struct pipe_buffer *buf)
3227  {
3228  }
3229  
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3230  static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3231  				    struct pipe_buffer *buf)
3232  {
3233  	return false;
3234  }
3235  
3236  static const struct pipe_buf_operations zero_pipe_buf_ops = {
3237  	.release	= zero_pipe_buf_release,
3238  	.try_steal	= zero_pipe_buf_try_steal,
3239  	.get		= zero_pipe_buf_get,
3240  };
3241  
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3242  static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3243  					loff_t fpos, size_t size)
3244  {
3245  	size_t offset = fpos & ~PAGE_MASK;
3246  
3247  	size = min_t(size_t, size, PAGE_SIZE - offset);
3248  
3249  	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3250  		struct pipe_buffer *buf = pipe_head_buf(pipe);
3251  
3252  		*buf = (struct pipe_buffer) {
3253  			.ops	= &zero_pipe_buf_ops,
3254  			.page	= ZERO_PAGE(0),
3255  			.offset	= offset,
3256  			.len	= size,
3257  		};
3258  		pipe->head++;
3259  	}
3260  
3261  	return size;
3262  }
3263  
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3264  static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3265  				      struct pipe_inode_info *pipe,
3266  				      size_t len, unsigned int flags)
3267  {
3268  	struct inode *inode = file_inode(in);
3269  	struct address_space *mapping = inode->i_mapping;
3270  	struct folio *folio = NULL;
3271  	size_t total_spliced = 0, used, npages, n, part;
3272  	loff_t isize;
3273  	int error = 0;
3274  
3275  	/* Work out how much data we can actually add into the pipe */
3276  	used = pipe_occupancy(pipe->head, pipe->tail);
3277  	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3278  	len = min_t(size_t, len, npages * PAGE_SIZE);
3279  
3280  	do {
3281  		if (*ppos >= i_size_read(inode))
3282  			break;
3283  
3284  		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio,
3285  					SGP_READ);
3286  		if (error) {
3287  			if (error == -EINVAL)
3288  				error = 0;
3289  			break;
3290  		}
3291  		if (folio) {
3292  			folio_unlock(folio);
3293  
3294  			if (folio_test_hwpoison(folio) ||
3295  			    (folio_test_large(folio) &&
3296  			     folio_test_has_hwpoisoned(folio))) {
3297  				error = -EIO;
3298  				break;
3299  			}
3300  		}
3301  
3302  		/*
3303  		 * i_size must be checked after we know the pages are Uptodate.
3304  		 *
3305  		 * Checking i_size after the check allows us to calculate
3306  		 * the correct value for "nr", which means the zero-filled
3307  		 * part of the page is not copied back to userspace (unless
3308  		 * another truncate extends the file - this is desired though).
3309  		 */
3310  		isize = i_size_read(inode);
3311  		if (unlikely(*ppos >= isize))
3312  			break;
3313  		part = min_t(loff_t, isize - *ppos, len);
3314  
3315  		if (folio) {
3316  			/*
3317  			 * If users can be writing to this page using arbitrary
3318  			 * virtual addresses, take care about potential aliasing
3319  			 * before reading the page on the kernel side.
3320  			 */
3321  			if (mapping_writably_mapped(mapping))
3322  				flush_dcache_folio(folio);
3323  			folio_mark_accessed(folio);
3324  			/*
3325  			 * Ok, we have the page, and it's up-to-date, so we can
3326  			 * now splice it into the pipe.
3327  			 */
3328  			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3329  			folio_put(folio);
3330  			folio = NULL;
3331  		} else {
3332  			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3333  		}
3334  
3335  		if (!n)
3336  			break;
3337  		len -= n;
3338  		total_spliced += n;
3339  		*ppos += n;
3340  		in->f_ra.prev_pos = *ppos;
3341  		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3342  			break;
3343  
3344  		cond_resched();
3345  	} while (len);
3346  
3347  	if (folio)
3348  		folio_put(folio);
3349  
3350  	file_accessed(in);
3351  	return total_spliced ? total_spliced : error;
3352  }
3353  
shmem_file_llseek(struct file * file,loff_t offset,int whence)3354  static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3355  {
3356  	struct address_space *mapping = file->f_mapping;
3357  	struct inode *inode = mapping->host;
3358  
3359  	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3360  		return generic_file_llseek_size(file, offset, whence,
3361  					MAX_LFS_FILESIZE, i_size_read(inode));
3362  	if (offset < 0)
3363  		return -ENXIO;
3364  
3365  	inode_lock(inode);
3366  	/* We're holding i_rwsem so we can access i_size directly */
3367  	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3368  	if (offset >= 0)
3369  		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3370  	inode_unlock(inode);
3371  	return offset;
3372  }
3373  
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3374  static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3375  							 loff_t len)
3376  {
3377  	struct inode *inode = file_inode(file);
3378  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3379  	struct shmem_inode_info *info = SHMEM_I(inode);
3380  	struct shmem_falloc shmem_falloc;
3381  	pgoff_t start, index, end, undo_fallocend;
3382  	int error;
3383  
3384  	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3385  		return -EOPNOTSUPP;
3386  
3387  	inode_lock(inode);
3388  
3389  	if (mode & FALLOC_FL_PUNCH_HOLE) {
3390  		struct address_space *mapping = file->f_mapping;
3391  		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3392  		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3393  		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3394  
3395  		/* protected by i_rwsem */
3396  		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3397  			error = -EPERM;
3398  			goto out;
3399  		}
3400  
3401  		shmem_falloc.waitq = &shmem_falloc_waitq;
3402  		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3403  		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3404  		spin_lock(&inode->i_lock);
3405  		inode->i_private = &shmem_falloc;
3406  		spin_unlock(&inode->i_lock);
3407  
3408  		if ((u64)unmap_end > (u64)unmap_start)
3409  			unmap_mapping_range(mapping, unmap_start,
3410  					    1 + unmap_end - unmap_start, 0);
3411  		shmem_truncate_range(inode, offset, offset + len - 1);
3412  		/* No need to unmap again: hole-punching leaves COWed pages */
3413  
3414  		spin_lock(&inode->i_lock);
3415  		inode->i_private = NULL;
3416  		wake_up_all(&shmem_falloc_waitq);
3417  		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3418  		spin_unlock(&inode->i_lock);
3419  		error = 0;
3420  		goto out;
3421  	}
3422  
3423  	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3424  	error = inode_newsize_ok(inode, offset + len);
3425  	if (error)
3426  		goto out;
3427  
3428  	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3429  		error = -EPERM;
3430  		goto out;
3431  	}
3432  
3433  	start = offset >> PAGE_SHIFT;
3434  	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3435  	/* Try to avoid a swapstorm if len is impossible to satisfy */
3436  	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3437  		error = -ENOSPC;
3438  		goto out;
3439  	}
3440  
3441  	shmem_falloc.waitq = NULL;
3442  	shmem_falloc.start = start;
3443  	shmem_falloc.next  = start;
3444  	shmem_falloc.nr_falloced = 0;
3445  	shmem_falloc.nr_unswapped = 0;
3446  	spin_lock(&inode->i_lock);
3447  	inode->i_private = &shmem_falloc;
3448  	spin_unlock(&inode->i_lock);
3449  
3450  	/*
3451  	 * info->fallocend is only relevant when huge pages might be
3452  	 * involved: to prevent split_huge_page() freeing fallocated
3453  	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3454  	 */
3455  	undo_fallocend = info->fallocend;
3456  	if (info->fallocend < end)
3457  		info->fallocend = end;
3458  
3459  	for (index = start; index < end; ) {
3460  		struct folio *folio;
3461  
3462  		/*
3463  		 * Check for fatal signal so that we abort early in OOM
3464  		 * situations. We don't want to abort in case of non-fatal
3465  		 * signals as large fallocate can take noticeable time and
3466  		 * e.g. periodic timers may result in fallocate constantly
3467  		 * restarting.
3468  		 */
3469  		if (fatal_signal_pending(current))
3470  			error = -EINTR;
3471  		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3472  			error = -ENOMEM;
3473  		else
3474  			error = shmem_get_folio(inode, index, offset + len,
3475  						&folio, SGP_FALLOC);
3476  		if (error) {
3477  			info->fallocend = undo_fallocend;
3478  			/* Remove the !uptodate folios we added */
3479  			if (index > start) {
3480  				shmem_undo_range(inode,
3481  				    (loff_t)start << PAGE_SHIFT,
3482  				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3483  			}
3484  			goto undone;
3485  		}
3486  
3487  		/*
3488  		 * Here is a more important optimization than it appears:
3489  		 * a second SGP_FALLOC on the same large folio will clear it,
3490  		 * making it uptodate and un-undoable if we fail later.
3491  		 */
3492  		index = folio_next_index(folio);
3493  		/* Beware 32-bit wraparound */
3494  		if (!index)
3495  			index--;
3496  
3497  		/*
3498  		 * Inform shmem_writepage() how far we have reached.
3499  		 * No need for lock or barrier: we have the page lock.
3500  		 */
3501  		if (!folio_test_uptodate(folio))
3502  			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3503  		shmem_falloc.next = index;
3504  
3505  		/*
3506  		 * If !uptodate, leave it that way so that freeable folios
3507  		 * can be recognized if we need to rollback on error later.
3508  		 * But mark it dirty so that memory pressure will swap rather
3509  		 * than free the folios we are allocating (and SGP_CACHE folios
3510  		 * might still be clean: we now need to mark those dirty too).
3511  		 */
3512  		folio_mark_dirty(folio);
3513  		folio_unlock(folio);
3514  		folio_put(folio);
3515  		cond_resched();
3516  	}
3517  
3518  	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3519  		i_size_write(inode, offset + len);
3520  undone:
3521  	spin_lock(&inode->i_lock);
3522  	inode->i_private = NULL;
3523  	spin_unlock(&inode->i_lock);
3524  out:
3525  	if (!error)
3526  		file_modified(file);
3527  	inode_unlock(inode);
3528  	return error;
3529  }
3530  
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3531  static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3532  {
3533  	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3534  
3535  	buf->f_type = TMPFS_MAGIC;
3536  	buf->f_bsize = PAGE_SIZE;
3537  	buf->f_namelen = NAME_MAX;
3538  	if (sbinfo->max_blocks) {
3539  		buf->f_blocks = sbinfo->max_blocks;
3540  		buf->f_bavail =
3541  		buf->f_bfree  = sbinfo->max_blocks -
3542  				percpu_counter_sum(&sbinfo->used_blocks);
3543  	}
3544  	if (sbinfo->max_inodes) {
3545  		buf->f_files = sbinfo->max_inodes;
3546  		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3547  	}
3548  	/* else leave those fields 0 like simple_statfs */
3549  
3550  	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3551  
3552  	return 0;
3553  }
3554  
3555  /*
3556   * File creation. Allocate an inode, and we're done..
3557   */
3558  static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3559  shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3560  	    struct dentry *dentry, umode_t mode, dev_t dev)
3561  {
3562  	struct inode *inode;
3563  	int error;
3564  
3565  	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3566  	if (IS_ERR(inode))
3567  		return PTR_ERR(inode);
3568  
3569  	error = simple_acl_create(dir, inode);
3570  	if (error)
3571  		goto out_iput;
3572  	error = security_inode_init_security(inode, dir, &dentry->d_name,
3573  					     shmem_initxattrs, NULL);
3574  	if (error && error != -EOPNOTSUPP)
3575  		goto out_iput;
3576  
3577  	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3578  	if (error)
3579  		goto out_iput;
3580  
3581  	dir->i_size += BOGO_DIRENT_SIZE;
3582  	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3583  	inode_inc_iversion(dir);
3584  	d_instantiate(dentry, inode);
3585  	dget(dentry); /* Extra count - pin the dentry in core */
3586  	return error;
3587  
3588  out_iput:
3589  	iput(inode);
3590  	return error;
3591  }
3592  
3593  static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3594  shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3595  	      struct file *file, umode_t mode)
3596  {
3597  	struct inode *inode;
3598  	int error;
3599  
3600  	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3601  	if (IS_ERR(inode)) {
3602  		error = PTR_ERR(inode);
3603  		goto err_out;
3604  	}
3605  	error = security_inode_init_security(inode, dir, NULL,
3606  					     shmem_initxattrs, NULL);
3607  	if (error && error != -EOPNOTSUPP)
3608  		goto out_iput;
3609  	error = simple_acl_create(dir, inode);
3610  	if (error)
3611  		goto out_iput;
3612  	d_tmpfile(file, inode);
3613  
3614  err_out:
3615  	return finish_open_simple(file, error);
3616  out_iput:
3617  	iput(inode);
3618  	return error;
3619  }
3620  
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3621  static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3622  		       struct dentry *dentry, umode_t mode)
3623  {
3624  	int error;
3625  
3626  	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3627  	if (error)
3628  		return error;
3629  	inc_nlink(dir);
3630  	return 0;
3631  }
3632  
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3633  static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3634  			struct dentry *dentry, umode_t mode, bool excl)
3635  {
3636  	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3637  }
3638  
3639  /*
3640   * Link a file..
3641   */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3642  static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3643  		      struct dentry *dentry)
3644  {
3645  	struct inode *inode = d_inode(old_dentry);
3646  	int ret = 0;
3647  
3648  	/*
3649  	 * No ordinary (disk based) filesystem counts links as inodes;
3650  	 * but each new link needs a new dentry, pinning lowmem, and
3651  	 * tmpfs dentries cannot be pruned until they are unlinked.
3652  	 * But if an O_TMPFILE file is linked into the tmpfs, the
3653  	 * first link must skip that, to get the accounting right.
3654  	 */
3655  	if (inode->i_nlink) {
3656  		ret = shmem_reserve_inode(inode->i_sb, NULL);
3657  		if (ret)
3658  			goto out;
3659  	}
3660  
3661  	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3662  	if (ret) {
3663  		if (inode->i_nlink)
3664  			shmem_free_inode(inode->i_sb, 0);
3665  		goto out;
3666  	}
3667  
3668  	dir->i_size += BOGO_DIRENT_SIZE;
3669  	inode_set_mtime_to_ts(dir,
3670  			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3671  	inode_inc_iversion(dir);
3672  	inc_nlink(inode);
3673  	ihold(inode);	/* New dentry reference */
3674  	dget(dentry);	/* Extra pinning count for the created dentry */
3675  	d_instantiate(dentry, inode);
3676  out:
3677  	return ret;
3678  }
3679  
shmem_unlink(struct inode * dir,struct dentry * dentry)3680  static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3681  {
3682  	struct inode *inode = d_inode(dentry);
3683  
3684  	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3685  		shmem_free_inode(inode->i_sb, 0);
3686  
3687  	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3688  
3689  	dir->i_size -= BOGO_DIRENT_SIZE;
3690  	inode_set_mtime_to_ts(dir,
3691  			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3692  	inode_inc_iversion(dir);
3693  	drop_nlink(inode);
3694  	dput(dentry);	/* Undo the count from "create" - does all the work */
3695  	return 0;
3696  }
3697  
shmem_rmdir(struct inode * dir,struct dentry * dentry)3698  static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3699  {
3700  	if (!simple_offset_empty(dentry))
3701  		return -ENOTEMPTY;
3702  
3703  	drop_nlink(d_inode(dentry));
3704  	drop_nlink(dir);
3705  	return shmem_unlink(dir, dentry);
3706  }
3707  
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3708  static int shmem_whiteout(struct mnt_idmap *idmap,
3709  			  struct inode *old_dir, struct dentry *old_dentry)
3710  {
3711  	struct dentry *whiteout;
3712  	int error;
3713  
3714  	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3715  	if (!whiteout)
3716  		return -ENOMEM;
3717  
3718  	error = shmem_mknod(idmap, old_dir, whiteout,
3719  			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3720  	dput(whiteout);
3721  	if (error)
3722  		return error;
3723  
3724  	/*
3725  	 * Cheat and hash the whiteout while the old dentry is still in
3726  	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3727  	 *
3728  	 * d_lookup() will consistently find one of them at this point,
3729  	 * not sure which one, but that isn't even important.
3730  	 */
3731  	d_rehash(whiteout);
3732  	return 0;
3733  }
3734  
3735  /*
3736   * The VFS layer already does all the dentry stuff for rename,
3737   * we just have to decrement the usage count for the target if
3738   * it exists so that the VFS layer correctly free's it when it
3739   * gets overwritten.
3740   */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3741  static int shmem_rename2(struct mnt_idmap *idmap,
3742  			 struct inode *old_dir, struct dentry *old_dentry,
3743  			 struct inode *new_dir, struct dentry *new_dentry,
3744  			 unsigned int flags)
3745  {
3746  	struct inode *inode = d_inode(old_dentry);
3747  	int they_are_dirs = S_ISDIR(inode->i_mode);
3748  	int error;
3749  
3750  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3751  		return -EINVAL;
3752  
3753  	if (flags & RENAME_EXCHANGE)
3754  		return simple_offset_rename_exchange(old_dir, old_dentry,
3755  						     new_dir, new_dentry);
3756  
3757  	if (!simple_offset_empty(new_dentry))
3758  		return -ENOTEMPTY;
3759  
3760  	if (flags & RENAME_WHITEOUT) {
3761  		error = shmem_whiteout(idmap, old_dir, old_dentry);
3762  		if (error)
3763  			return error;
3764  	}
3765  
3766  	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3767  	if (error)
3768  		return error;
3769  
3770  	if (d_really_is_positive(new_dentry)) {
3771  		(void) shmem_unlink(new_dir, new_dentry);
3772  		if (they_are_dirs) {
3773  			drop_nlink(d_inode(new_dentry));
3774  			drop_nlink(old_dir);
3775  		}
3776  	} else if (they_are_dirs) {
3777  		drop_nlink(old_dir);
3778  		inc_nlink(new_dir);
3779  	}
3780  
3781  	old_dir->i_size -= BOGO_DIRENT_SIZE;
3782  	new_dir->i_size += BOGO_DIRENT_SIZE;
3783  	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3784  	inode_inc_iversion(old_dir);
3785  	inode_inc_iversion(new_dir);
3786  	return 0;
3787  }
3788  
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3789  static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3790  			 struct dentry *dentry, const char *symname)
3791  {
3792  	int error;
3793  	int len;
3794  	struct inode *inode;
3795  	struct folio *folio;
3796  
3797  	len = strlen(symname) + 1;
3798  	if (len > PAGE_SIZE)
3799  		return -ENAMETOOLONG;
3800  
3801  	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3802  				VM_NORESERVE);
3803  	if (IS_ERR(inode))
3804  		return PTR_ERR(inode);
3805  
3806  	error = security_inode_init_security(inode, dir, &dentry->d_name,
3807  					     shmem_initxattrs, NULL);
3808  	if (error && error != -EOPNOTSUPP)
3809  		goto out_iput;
3810  
3811  	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3812  	if (error)
3813  		goto out_iput;
3814  
3815  	inode->i_size = len-1;
3816  	if (len <= SHORT_SYMLINK_LEN) {
3817  		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3818  		if (!inode->i_link) {
3819  			error = -ENOMEM;
3820  			goto out_remove_offset;
3821  		}
3822  		inode->i_op = &shmem_short_symlink_operations;
3823  	} else {
3824  		inode_nohighmem(inode);
3825  		inode->i_mapping->a_ops = &shmem_aops;
3826  		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3827  		if (error)
3828  			goto out_remove_offset;
3829  		inode->i_op = &shmem_symlink_inode_operations;
3830  		memcpy(folio_address(folio), symname, len);
3831  		folio_mark_uptodate(folio);
3832  		folio_mark_dirty(folio);
3833  		folio_unlock(folio);
3834  		folio_put(folio);
3835  	}
3836  	dir->i_size += BOGO_DIRENT_SIZE;
3837  	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3838  	inode_inc_iversion(dir);
3839  	d_instantiate(dentry, inode);
3840  	dget(dentry);
3841  	return 0;
3842  
3843  out_remove_offset:
3844  	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3845  out_iput:
3846  	iput(inode);
3847  	return error;
3848  }
3849  
shmem_put_link(void * arg)3850  static void shmem_put_link(void *arg)
3851  {
3852  	folio_mark_accessed(arg);
3853  	folio_put(arg);
3854  }
3855  
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3856  static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3857  				  struct delayed_call *done)
3858  {
3859  	struct folio *folio = NULL;
3860  	int error;
3861  
3862  	if (!dentry) {
3863  		folio = filemap_get_folio(inode->i_mapping, 0);
3864  		if (IS_ERR(folio))
3865  			return ERR_PTR(-ECHILD);
3866  		if (PageHWPoison(folio_page(folio, 0)) ||
3867  		    !folio_test_uptodate(folio)) {
3868  			folio_put(folio);
3869  			return ERR_PTR(-ECHILD);
3870  		}
3871  	} else {
3872  		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3873  		if (error)
3874  			return ERR_PTR(error);
3875  		if (!folio)
3876  			return ERR_PTR(-ECHILD);
3877  		if (PageHWPoison(folio_page(folio, 0))) {
3878  			folio_unlock(folio);
3879  			folio_put(folio);
3880  			return ERR_PTR(-ECHILD);
3881  		}
3882  		folio_unlock(folio);
3883  	}
3884  	set_delayed_call(done, shmem_put_link, folio);
3885  	return folio_address(folio);
3886  }
3887  
3888  #ifdef CONFIG_TMPFS_XATTR
3889  
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3890  static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3891  {
3892  	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3893  
3894  	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3895  
3896  	return 0;
3897  }
3898  
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3899  static int shmem_fileattr_set(struct mnt_idmap *idmap,
3900  			      struct dentry *dentry, struct fileattr *fa)
3901  {
3902  	struct inode *inode = d_inode(dentry);
3903  	struct shmem_inode_info *info = SHMEM_I(inode);
3904  
3905  	if (fileattr_has_fsx(fa))
3906  		return -EOPNOTSUPP;
3907  	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3908  		return -EOPNOTSUPP;
3909  
3910  	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3911  		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3912  
3913  	shmem_set_inode_flags(inode, info->fsflags);
3914  	inode_set_ctime_current(inode);
3915  	inode_inc_iversion(inode);
3916  	return 0;
3917  }
3918  
3919  /*
3920   * Superblocks without xattr inode operations may get some security.* xattr
3921   * support from the LSM "for free". As soon as we have any other xattrs
3922   * like ACLs, we also need to implement the security.* handlers at
3923   * filesystem level, though.
3924   */
3925  
3926  /*
3927   * Callback for security_inode_init_security() for acquiring xattrs.
3928   */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3929  static int shmem_initxattrs(struct inode *inode,
3930  			    const struct xattr *xattr_array, void *fs_info)
3931  {
3932  	struct shmem_inode_info *info = SHMEM_I(inode);
3933  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3934  	const struct xattr *xattr;
3935  	struct simple_xattr *new_xattr;
3936  	size_t ispace = 0;
3937  	size_t len;
3938  
3939  	if (sbinfo->max_inodes) {
3940  		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3941  			ispace += simple_xattr_space(xattr->name,
3942  				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3943  		}
3944  		if (ispace) {
3945  			raw_spin_lock(&sbinfo->stat_lock);
3946  			if (sbinfo->free_ispace < ispace)
3947  				ispace = 0;
3948  			else
3949  				sbinfo->free_ispace -= ispace;
3950  			raw_spin_unlock(&sbinfo->stat_lock);
3951  			if (!ispace)
3952  				return -ENOSPC;
3953  		}
3954  	}
3955  
3956  	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3957  		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3958  		if (!new_xattr)
3959  			break;
3960  
3961  		len = strlen(xattr->name) + 1;
3962  		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3963  					  GFP_KERNEL_ACCOUNT);
3964  		if (!new_xattr->name) {
3965  			kvfree(new_xattr);
3966  			break;
3967  		}
3968  
3969  		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3970  		       XATTR_SECURITY_PREFIX_LEN);
3971  		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3972  		       xattr->name, len);
3973  
3974  		simple_xattr_add(&info->xattrs, new_xattr);
3975  	}
3976  
3977  	if (xattr->name != NULL) {
3978  		if (ispace) {
3979  			raw_spin_lock(&sbinfo->stat_lock);
3980  			sbinfo->free_ispace += ispace;
3981  			raw_spin_unlock(&sbinfo->stat_lock);
3982  		}
3983  		simple_xattrs_free(&info->xattrs, NULL);
3984  		return -ENOMEM;
3985  	}
3986  
3987  	return 0;
3988  }
3989  
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3990  static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3991  				   struct dentry *unused, struct inode *inode,
3992  				   const char *name, void *buffer, size_t size)
3993  {
3994  	struct shmem_inode_info *info = SHMEM_I(inode);
3995  
3996  	name = xattr_full_name(handler, name);
3997  	return simple_xattr_get(&info->xattrs, name, buffer, size);
3998  }
3999  
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4000  static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4001  				   struct mnt_idmap *idmap,
4002  				   struct dentry *unused, struct inode *inode,
4003  				   const char *name, const void *value,
4004  				   size_t size, int flags)
4005  {
4006  	struct shmem_inode_info *info = SHMEM_I(inode);
4007  	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4008  	struct simple_xattr *old_xattr;
4009  	size_t ispace = 0;
4010  
4011  	name = xattr_full_name(handler, name);
4012  	if (value && sbinfo->max_inodes) {
4013  		ispace = simple_xattr_space(name, size);
4014  		raw_spin_lock(&sbinfo->stat_lock);
4015  		if (sbinfo->free_ispace < ispace)
4016  			ispace = 0;
4017  		else
4018  			sbinfo->free_ispace -= ispace;
4019  		raw_spin_unlock(&sbinfo->stat_lock);
4020  		if (!ispace)
4021  			return -ENOSPC;
4022  	}
4023  
4024  	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4025  	if (!IS_ERR(old_xattr)) {
4026  		ispace = 0;
4027  		if (old_xattr && sbinfo->max_inodes)
4028  			ispace = simple_xattr_space(old_xattr->name,
4029  						    old_xattr->size);
4030  		simple_xattr_free(old_xattr);
4031  		old_xattr = NULL;
4032  		inode_set_ctime_current(inode);
4033  		inode_inc_iversion(inode);
4034  	}
4035  	if (ispace) {
4036  		raw_spin_lock(&sbinfo->stat_lock);
4037  		sbinfo->free_ispace += ispace;
4038  		raw_spin_unlock(&sbinfo->stat_lock);
4039  	}
4040  	return PTR_ERR(old_xattr);
4041  }
4042  
4043  static const struct xattr_handler shmem_security_xattr_handler = {
4044  	.prefix = XATTR_SECURITY_PREFIX,
4045  	.get = shmem_xattr_handler_get,
4046  	.set = shmem_xattr_handler_set,
4047  };
4048  
4049  static const struct xattr_handler shmem_trusted_xattr_handler = {
4050  	.prefix = XATTR_TRUSTED_PREFIX,
4051  	.get = shmem_xattr_handler_get,
4052  	.set = shmem_xattr_handler_set,
4053  };
4054  
4055  static const struct xattr_handler shmem_user_xattr_handler = {
4056  	.prefix = XATTR_USER_PREFIX,
4057  	.get = shmem_xattr_handler_get,
4058  	.set = shmem_xattr_handler_set,
4059  };
4060  
4061  static const struct xattr_handler * const shmem_xattr_handlers[] = {
4062  	&shmem_security_xattr_handler,
4063  	&shmem_trusted_xattr_handler,
4064  	&shmem_user_xattr_handler,
4065  	NULL
4066  };
4067  
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4068  static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4069  {
4070  	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4071  	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4072  }
4073  #endif /* CONFIG_TMPFS_XATTR */
4074  
4075  static const struct inode_operations shmem_short_symlink_operations = {
4076  	.getattr	= shmem_getattr,
4077  	.setattr	= shmem_setattr,
4078  	.get_link	= simple_get_link,
4079  #ifdef CONFIG_TMPFS_XATTR
4080  	.listxattr	= shmem_listxattr,
4081  #endif
4082  };
4083  
4084  static const struct inode_operations shmem_symlink_inode_operations = {
4085  	.getattr	= shmem_getattr,
4086  	.setattr	= shmem_setattr,
4087  	.get_link	= shmem_get_link,
4088  #ifdef CONFIG_TMPFS_XATTR
4089  	.listxattr	= shmem_listxattr,
4090  #endif
4091  };
4092  
shmem_get_parent(struct dentry * child)4093  static struct dentry *shmem_get_parent(struct dentry *child)
4094  {
4095  	return ERR_PTR(-ESTALE);
4096  }
4097  
shmem_match(struct inode * ino,void * vfh)4098  static int shmem_match(struct inode *ino, void *vfh)
4099  {
4100  	__u32 *fh = vfh;
4101  	__u64 inum = fh[2];
4102  	inum = (inum << 32) | fh[1];
4103  	return ino->i_ino == inum && fh[0] == ino->i_generation;
4104  }
4105  
4106  /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4107  static struct dentry *shmem_find_alias(struct inode *inode)
4108  {
4109  	struct dentry *alias = d_find_alias(inode);
4110  
4111  	return alias ?: d_find_any_alias(inode);
4112  }
4113  
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4114  static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4115  		struct fid *fid, int fh_len, int fh_type)
4116  {
4117  	struct inode *inode;
4118  	struct dentry *dentry = NULL;
4119  	u64 inum;
4120  
4121  	if (fh_len < 3)
4122  		return NULL;
4123  
4124  	inum = fid->raw[2];
4125  	inum = (inum << 32) | fid->raw[1];
4126  
4127  	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4128  			shmem_match, fid->raw);
4129  	if (inode) {
4130  		dentry = shmem_find_alias(inode);
4131  		iput(inode);
4132  	}
4133  
4134  	return dentry;
4135  }
4136  
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4137  static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4138  				struct inode *parent)
4139  {
4140  	if (*len < 3) {
4141  		*len = 3;
4142  		return FILEID_INVALID;
4143  	}
4144  
4145  	if (inode_unhashed(inode)) {
4146  		/* Unfortunately insert_inode_hash is not idempotent,
4147  		 * so as we hash inodes here rather than at creation
4148  		 * time, we need a lock to ensure we only try
4149  		 * to do it once
4150  		 */
4151  		static DEFINE_SPINLOCK(lock);
4152  		spin_lock(&lock);
4153  		if (inode_unhashed(inode))
4154  			__insert_inode_hash(inode,
4155  					    inode->i_ino + inode->i_generation);
4156  		spin_unlock(&lock);
4157  	}
4158  
4159  	fh[0] = inode->i_generation;
4160  	fh[1] = inode->i_ino;
4161  	fh[2] = ((__u64)inode->i_ino) >> 32;
4162  
4163  	*len = 3;
4164  	return 1;
4165  }
4166  
4167  static const struct export_operations shmem_export_ops = {
4168  	.get_parent     = shmem_get_parent,
4169  	.encode_fh      = shmem_encode_fh,
4170  	.fh_to_dentry	= shmem_fh_to_dentry,
4171  };
4172  
4173  enum shmem_param {
4174  	Opt_gid,
4175  	Opt_huge,
4176  	Opt_mode,
4177  	Opt_mpol,
4178  	Opt_nr_blocks,
4179  	Opt_nr_inodes,
4180  	Opt_size,
4181  	Opt_uid,
4182  	Opt_inode32,
4183  	Opt_inode64,
4184  	Opt_noswap,
4185  	Opt_quota,
4186  	Opt_usrquota,
4187  	Opt_grpquota,
4188  	Opt_usrquota_block_hardlimit,
4189  	Opt_usrquota_inode_hardlimit,
4190  	Opt_grpquota_block_hardlimit,
4191  	Opt_grpquota_inode_hardlimit,
4192  };
4193  
4194  static const struct constant_table shmem_param_enums_huge[] = {
4195  	{"never",	SHMEM_HUGE_NEVER },
4196  	{"always",	SHMEM_HUGE_ALWAYS },
4197  	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4198  	{"advise",	SHMEM_HUGE_ADVISE },
4199  	{}
4200  };
4201  
4202  const struct fs_parameter_spec shmem_fs_parameters[] = {
4203  	fsparam_gid   ("gid",		Opt_gid),
4204  	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4205  	fsparam_u32oct("mode",		Opt_mode),
4206  	fsparam_string("mpol",		Opt_mpol),
4207  	fsparam_string("nr_blocks",	Opt_nr_blocks),
4208  	fsparam_string("nr_inodes",	Opt_nr_inodes),
4209  	fsparam_string("size",		Opt_size),
4210  	fsparam_uid   ("uid",		Opt_uid),
4211  	fsparam_flag  ("inode32",	Opt_inode32),
4212  	fsparam_flag  ("inode64",	Opt_inode64),
4213  	fsparam_flag  ("noswap",	Opt_noswap),
4214  #ifdef CONFIG_TMPFS_QUOTA
4215  	fsparam_flag  ("quota",		Opt_quota),
4216  	fsparam_flag  ("usrquota",	Opt_usrquota),
4217  	fsparam_flag  ("grpquota",	Opt_grpquota),
4218  	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4219  	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4220  	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4221  	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4222  #endif
4223  	{}
4224  };
4225  
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4226  static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4227  {
4228  	struct shmem_options *ctx = fc->fs_private;
4229  	struct fs_parse_result result;
4230  	unsigned long long size;
4231  	char *rest;
4232  	int opt;
4233  	kuid_t kuid;
4234  	kgid_t kgid;
4235  
4236  	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4237  	if (opt < 0)
4238  		return opt;
4239  
4240  	switch (opt) {
4241  	case Opt_size:
4242  		size = memparse(param->string, &rest);
4243  		if (*rest == '%') {
4244  			size <<= PAGE_SHIFT;
4245  			size *= totalram_pages();
4246  			do_div(size, 100);
4247  			rest++;
4248  		}
4249  		if (*rest)
4250  			goto bad_value;
4251  		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4252  		ctx->seen |= SHMEM_SEEN_BLOCKS;
4253  		break;
4254  	case Opt_nr_blocks:
4255  		ctx->blocks = memparse(param->string, &rest);
4256  		if (*rest || ctx->blocks > LONG_MAX)
4257  			goto bad_value;
4258  		ctx->seen |= SHMEM_SEEN_BLOCKS;
4259  		break;
4260  	case Opt_nr_inodes:
4261  		ctx->inodes = memparse(param->string, &rest);
4262  		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4263  			goto bad_value;
4264  		ctx->seen |= SHMEM_SEEN_INODES;
4265  		break;
4266  	case Opt_mode:
4267  		ctx->mode = result.uint_32 & 07777;
4268  		break;
4269  	case Opt_uid:
4270  		kuid = result.uid;
4271  
4272  		/*
4273  		 * The requested uid must be representable in the
4274  		 * filesystem's idmapping.
4275  		 */
4276  		if (!kuid_has_mapping(fc->user_ns, kuid))
4277  			goto bad_value;
4278  
4279  		ctx->uid = kuid;
4280  		break;
4281  	case Opt_gid:
4282  		kgid = result.gid;
4283  
4284  		/*
4285  		 * The requested gid must be representable in the
4286  		 * filesystem's idmapping.
4287  		 */
4288  		if (!kgid_has_mapping(fc->user_ns, kgid))
4289  			goto bad_value;
4290  
4291  		ctx->gid = kgid;
4292  		break;
4293  	case Opt_huge:
4294  		ctx->huge = result.uint_32;
4295  		if (ctx->huge != SHMEM_HUGE_NEVER &&
4296  		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4297  		      has_transparent_hugepage()))
4298  			goto unsupported_parameter;
4299  		ctx->seen |= SHMEM_SEEN_HUGE;
4300  		break;
4301  	case Opt_mpol:
4302  		if (IS_ENABLED(CONFIG_NUMA)) {
4303  			mpol_put(ctx->mpol);
4304  			ctx->mpol = NULL;
4305  			if (mpol_parse_str(param->string, &ctx->mpol))
4306  				goto bad_value;
4307  			break;
4308  		}
4309  		goto unsupported_parameter;
4310  	case Opt_inode32:
4311  		ctx->full_inums = false;
4312  		ctx->seen |= SHMEM_SEEN_INUMS;
4313  		break;
4314  	case Opt_inode64:
4315  		if (sizeof(ino_t) < 8) {
4316  			return invalfc(fc,
4317  				       "Cannot use inode64 with <64bit inums in kernel\n");
4318  		}
4319  		ctx->full_inums = true;
4320  		ctx->seen |= SHMEM_SEEN_INUMS;
4321  		break;
4322  	case Opt_noswap:
4323  		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4324  			return invalfc(fc,
4325  				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4326  		}
4327  		ctx->noswap = true;
4328  		ctx->seen |= SHMEM_SEEN_NOSWAP;
4329  		break;
4330  	case Opt_quota:
4331  		if (fc->user_ns != &init_user_ns)
4332  			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4333  		ctx->seen |= SHMEM_SEEN_QUOTA;
4334  		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4335  		break;
4336  	case Opt_usrquota:
4337  		if (fc->user_ns != &init_user_ns)
4338  			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4339  		ctx->seen |= SHMEM_SEEN_QUOTA;
4340  		ctx->quota_types |= QTYPE_MASK_USR;
4341  		break;
4342  	case Opt_grpquota:
4343  		if (fc->user_ns != &init_user_ns)
4344  			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4345  		ctx->seen |= SHMEM_SEEN_QUOTA;
4346  		ctx->quota_types |= QTYPE_MASK_GRP;
4347  		break;
4348  	case Opt_usrquota_block_hardlimit:
4349  		size = memparse(param->string, &rest);
4350  		if (*rest || !size)
4351  			goto bad_value;
4352  		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4353  			return invalfc(fc,
4354  				       "User quota block hardlimit too large.");
4355  		ctx->qlimits.usrquota_bhardlimit = size;
4356  		break;
4357  	case Opt_grpquota_block_hardlimit:
4358  		size = memparse(param->string, &rest);
4359  		if (*rest || !size)
4360  			goto bad_value;
4361  		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4362  			return invalfc(fc,
4363  				       "Group quota block hardlimit too large.");
4364  		ctx->qlimits.grpquota_bhardlimit = size;
4365  		break;
4366  	case Opt_usrquota_inode_hardlimit:
4367  		size = memparse(param->string, &rest);
4368  		if (*rest || !size)
4369  			goto bad_value;
4370  		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4371  			return invalfc(fc,
4372  				       "User quota inode hardlimit too large.");
4373  		ctx->qlimits.usrquota_ihardlimit = size;
4374  		break;
4375  	case Opt_grpquota_inode_hardlimit:
4376  		size = memparse(param->string, &rest);
4377  		if (*rest || !size)
4378  			goto bad_value;
4379  		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4380  			return invalfc(fc,
4381  				       "Group quota inode hardlimit too large.");
4382  		ctx->qlimits.grpquota_ihardlimit = size;
4383  		break;
4384  	}
4385  	return 0;
4386  
4387  unsupported_parameter:
4388  	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4389  bad_value:
4390  	return invalfc(fc, "Bad value for '%s'", param->key);
4391  }
4392  
shmem_parse_options(struct fs_context * fc,void * data)4393  static int shmem_parse_options(struct fs_context *fc, void *data)
4394  {
4395  	char *options = data;
4396  
4397  	if (options) {
4398  		int err = security_sb_eat_lsm_opts(options, &fc->security);
4399  		if (err)
4400  			return err;
4401  	}
4402  
4403  	while (options != NULL) {
4404  		char *this_char = options;
4405  		for (;;) {
4406  			/*
4407  			 * NUL-terminate this option: unfortunately,
4408  			 * mount options form a comma-separated list,
4409  			 * but mpol's nodelist may also contain commas.
4410  			 */
4411  			options = strchr(options, ',');
4412  			if (options == NULL)
4413  				break;
4414  			options++;
4415  			if (!isdigit(*options)) {
4416  				options[-1] = '\0';
4417  				break;
4418  			}
4419  		}
4420  		if (*this_char) {
4421  			char *value = strchr(this_char, '=');
4422  			size_t len = 0;
4423  			int err;
4424  
4425  			if (value) {
4426  				*value++ = '\0';
4427  				len = strlen(value);
4428  			}
4429  			err = vfs_parse_fs_string(fc, this_char, value, len);
4430  			if (err < 0)
4431  				return err;
4432  		}
4433  	}
4434  	return 0;
4435  }
4436  
4437  /*
4438   * Reconfigure a shmem filesystem.
4439   */
shmem_reconfigure(struct fs_context * fc)4440  static int shmem_reconfigure(struct fs_context *fc)
4441  {
4442  	struct shmem_options *ctx = fc->fs_private;
4443  	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4444  	unsigned long used_isp;
4445  	struct mempolicy *mpol = NULL;
4446  	const char *err;
4447  
4448  	raw_spin_lock(&sbinfo->stat_lock);
4449  	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4450  
4451  	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4452  		if (!sbinfo->max_blocks) {
4453  			err = "Cannot retroactively limit size";
4454  			goto out;
4455  		}
4456  		if (percpu_counter_compare(&sbinfo->used_blocks,
4457  					   ctx->blocks) > 0) {
4458  			err = "Too small a size for current use";
4459  			goto out;
4460  		}
4461  	}
4462  	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4463  		if (!sbinfo->max_inodes) {
4464  			err = "Cannot retroactively limit inodes";
4465  			goto out;
4466  		}
4467  		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4468  			err = "Too few inodes for current use";
4469  			goto out;
4470  		}
4471  	}
4472  
4473  	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4474  	    sbinfo->next_ino > UINT_MAX) {
4475  		err = "Current inum too high to switch to 32-bit inums";
4476  		goto out;
4477  	}
4478  	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4479  		err = "Cannot disable swap on remount";
4480  		goto out;
4481  	}
4482  	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4483  		err = "Cannot enable swap on remount if it was disabled on first mount";
4484  		goto out;
4485  	}
4486  
4487  	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4488  	    !sb_any_quota_loaded(fc->root->d_sb)) {
4489  		err = "Cannot enable quota on remount";
4490  		goto out;
4491  	}
4492  
4493  #ifdef CONFIG_TMPFS_QUOTA
4494  #define CHANGED_LIMIT(name)						\
4495  	(ctx->qlimits.name## hardlimit &&				\
4496  	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4497  
4498  	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4499  	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4500  		err = "Cannot change global quota limit on remount";
4501  		goto out;
4502  	}
4503  #endif /* CONFIG_TMPFS_QUOTA */
4504  
4505  	if (ctx->seen & SHMEM_SEEN_HUGE)
4506  		sbinfo->huge = ctx->huge;
4507  	if (ctx->seen & SHMEM_SEEN_INUMS)
4508  		sbinfo->full_inums = ctx->full_inums;
4509  	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4510  		sbinfo->max_blocks  = ctx->blocks;
4511  	if (ctx->seen & SHMEM_SEEN_INODES) {
4512  		sbinfo->max_inodes  = ctx->inodes;
4513  		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4514  	}
4515  
4516  	/*
4517  	 * Preserve previous mempolicy unless mpol remount option was specified.
4518  	 */
4519  	if (ctx->mpol) {
4520  		mpol = sbinfo->mpol;
4521  		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4522  		ctx->mpol = NULL;
4523  	}
4524  
4525  	if (ctx->noswap)
4526  		sbinfo->noswap = true;
4527  
4528  	raw_spin_unlock(&sbinfo->stat_lock);
4529  	mpol_put(mpol);
4530  	return 0;
4531  out:
4532  	raw_spin_unlock(&sbinfo->stat_lock);
4533  	return invalfc(fc, "%s", err);
4534  }
4535  
shmem_show_options(struct seq_file * seq,struct dentry * root)4536  static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4537  {
4538  	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4539  	struct mempolicy *mpol;
4540  
4541  	if (sbinfo->max_blocks != shmem_default_max_blocks())
4542  		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4543  	if (sbinfo->max_inodes != shmem_default_max_inodes())
4544  		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4545  	if (sbinfo->mode != (0777 | S_ISVTX))
4546  		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4547  	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4548  		seq_printf(seq, ",uid=%u",
4549  				from_kuid_munged(&init_user_ns, sbinfo->uid));
4550  	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4551  		seq_printf(seq, ",gid=%u",
4552  				from_kgid_munged(&init_user_ns, sbinfo->gid));
4553  
4554  	/*
4555  	 * Showing inode{64,32} might be useful even if it's the system default,
4556  	 * since then people don't have to resort to checking both here and
4557  	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4558  	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4559  	 *
4560  	 * We hide it when inode64 isn't the default and we are using 32-bit
4561  	 * inodes, since that probably just means the feature isn't even under
4562  	 * consideration.
4563  	 *
4564  	 * As such:
4565  	 *
4566  	 *                     +-----------------+-----------------+
4567  	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4568  	 *  +------------------+-----------------+-----------------+
4569  	 *  | full_inums=true  | show            | show            |
4570  	 *  | full_inums=false | show            | hide            |
4571  	 *  +------------------+-----------------+-----------------+
4572  	 *
4573  	 */
4574  	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4575  		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4576  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4577  	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4578  	if (sbinfo->huge)
4579  		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4580  #endif
4581  	mpol = shmem_get_sbmpol(sbinfo);
4582  	shmem_show_mpol(seq, mpol);
4583  	mpol_put(mpol);
4584  	if (sbinfo->noswap)
4585  		seq_printf(seq, ",noswap");
4586  #ifdef CONFIG_TMPFS_QUOTA
4587  	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4588  		seq_printf(seq, ",usrquota");
4589  	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4590  		seq_printf(seq, ",grpquota");
4591  	if (sbinfo->qlimits.usrquota_bhardlimit)
4592  		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4593  			   sbinfo->qlimits.usrquota_bhardlimit);
4594  	if (sbinfo->qlimits.grpquota_bhardlimit)
4595  		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4596  			   sbinfo->qlimits.grpquota_bhardlimit);
4597  	if (sbinfo->qlimits.usrquota_ihardlimit)
4598  		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4599  			   sbinfo->qlimits.usrquota_ihardlimit);
4600  	if (sbinfo->qlimits.grpquota_ihardlimit)
4601  		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4602  			   sbinfo->qlimits.grpquota_ihardlimit);
4603  #endif
4604  	return 0;
4605  }
4606  
4607  #endif /* CONFIG_TMPFS */
4608  
shmem_put_super(struct super_block * sb)4609  static void shmem_put_super(struct super_block *sb)
4610  {
4611  	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4612  
4613  #ifdef CONFIG_TMPFS_QUOTA
4614  	shmem_disable_quotas(sb);
4615  #endif
4616  	free_percpu(sbinfo->ino_batch);
4617  	percpu_counter_destroy(&sbinfo->used_blocks);
4618  	mpol_put(sbinfo->mpol);
4619  	kfree(sbinfo);
4620  	sb->s_fs_info = NULL;
4621  }
4622  
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4623  static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4624  {
4625  	struct shmem_options *ctx = fc->fs_private;
4626  	struct inode *inode;
4627  	struct shmem_sb_info *sbinfo;
4628  	int error = -ENOMEM;
4629  
4630  	/* Round up to L1_CACHE_BYTES to resist false sharing */
4631  	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4632  				L1_CACHE_BYTES), GFP_KERNEL);
4633  	if (!sbinfo)
4634  		return error;
4635  
4636  	sb->s_fs_info = sbinfo;
4637  
4638  #ifdef CONFIG_TMPFS
4639  	/*
4640  	 * Per default we only allow half of the physical ram per
4641  	 * tmpfs instance, limiting inodes to one per page of lowmem;
4642  	 * but the internal instance is left unlimited.
4643  	 */
4644  	if (!(sb->s_flags & SB_KERNMOUNT)) {
4645  		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4646  			ctx->blocks = shmem_default_max_blocks();
4647  		if (!(ctx->seen & SHMEM_SEEN_INODES))
4648  			ctx->inodes = shmem_default_max_inodes();
4649  		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4650  			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4651  		sbinfo->noswap = ctx->noswap;
4652  	} else {
4653  		sb->s_flags |= SB_NOUSER;
4654  	}
4655  	sb->s_export_op = &shmem_export_ops;
4656  	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4657  #else
4658  	sb->s_flags |= SB_NOUSER;
4659  #endif
4660  	sbinfo->max_blocks = ctx->blocks;
4661  	sbinfo->max_inodes = ctx->inodes;
4662  	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4663  	if (sb->s_flags & SB_KERNMOUNT) {
4664  		sbinfo->ino_batch = alloc_percpu(ino_t);
4665  		if (!sbinfo->ino_batch)
4666  			goto failed;
4667  	}
4668  	sbinfo->uid = ctx->uid;
4669  	sbinfo->gid = ctx->gid;
4670  	sbinfo->full_inums = ctx->full_inums;
4671  	sbinfo->mode = ctx->mode;
4672  	sbinfo->huge = ctx->huge;
4673  	sbinfo->mpol = ctx->mpol;
4674  	ctx->mpol = NULL;
4675  
4676  	raw_spin_lock_init(&sbinfo->stat_lock);
4677  	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4678  		goto failed;
4679  	spin_lock_init(&sbinfo->shrinklist_lock);
4680  	INIT_LIST_HEAD(&sbinfo->shrinklist);
4681  
4682  	sb->s_maxbytes = MAX_LFS_FILESIZE;
4683  	sb->s_blocksize = PAGE_SIZE;
4684  	sb->s_blocksize_bits = PAGE_SHIFT;
4685  	sb->s_magic = TMPFS_MAGIC;
4686  	sb->s_op = &shmem_ops;
4687  	sb->s_time_gran = 1;
4688  #ifdef CONFIG_TMPFS_XATTR
4689  	sb->s_xattr = shmem_xattr_handlers;
4690  #endif
4691  #ifdef CONFIG_TMPFS_POSIX_ACL
4692  	sb->s_flags |= SB_POSIXACL;
4693  #endif
4694  	uuid_t uuid;
4695  	uuid_gen(&uuid);
4696  	super_set_uuid(sb, uuid.b, sizeof(uuid));
4697  
4698  #ifdef CONFIG_TMPFS_QUOTA
4699  	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4700  		sb->dq_op = &shmem_quota_operations;
4701  		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4702  		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4703  
4704  		/* Copy the default limits from ctx into sbinfo */
4705  		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4706  		       sizeof(struct shmem_quota_limits));
4707  
4708  		if (shmem_enable_quotas(sb, ctx->quota_types))
4709  			goto failed;
4710  	}
4711  #endif /* CONFIG_TMPFS_QUOTA */
4712  
4713  	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4714  				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4715  	if (IS_ERR(inode)) {
4716  		error = PTR_ERR(inode);
4717  		goto failed;
4718  	}
4719  	inode->i_uid = sbinfo->uid;
4720  	inode->i_gid = sbinfo->gid;
4721  	sb->s_root = d_make_root(inode);
4722  	if (!sb->s_root)
4723  		goto failed;
4724  	return 0;
4725  
4726  failed:
4727  	shmem_put_super(sb);
4728  	return error;
4729  }
4730  
shmem_get_tree(struct fs_context * fc)4731  static int shmem_get_tree(struct fs_context *fc)
4732  {
4733  	return get_tree_nodev(fc, shmem_fill_super);
4734  }
4735  
shmem_free_fc(struct fs_context * fc)4736  static void shmem_free_fc(struct fs_context *fc)
4737  {
4738  	struct shmem_options *ctx = fc->fs_private;
4739  
4740  	if (ctx) {
4741  		mpol_put(ctx->mpol);
4742  		kfree(ctx);
4743  	}
4744  }
4745  
4746  static const struct fs_context_operations shmem_fs_context_ops = {
4747  	.free			= shmem_free_fc,
4748  	.get_tree		= shmem_get_tree,
4749  #ifdef CONFIG_TMPFS
4750  	.parse_monolithic	= shmem_parse_options,
4751  	.parse_param		= shmem_parse_one,
4752  	.reconfigure		= shmem_reconfigure,
4753  #endif
4754  };
4755  
4756  static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4757  
shmem_alloc_inode(struct super_block * sb)4758  static struct inode *shmem_alloc_inode(struct super_block *sb)
4759  {
4760  	struct shmem_inode_info *info;
4761  	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4762  	if (!info)
4763  		return NULL;
4764  	return &info->vfs_inode;
4765  }
4766  
shmem_free_in_core_inode(struct inode * inode)4767  static void shmem_free_in_core_inode(struct inode *inode)
4768  {
4769  	if (S_ISLNK(inode->i_mode))
4770  		kfree(inode->i_link);
4771  	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4772  }
4773  
shmem_destroy_inode(struct inode * inode)4774  static void shmem_destroy_inode(struct inode *inode)
4775  {
4776  	if (S_ISREG(inode->i_mode))
4777  		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4778  	if (S_ISDIR(inode->i_mode))
4779  		simple_offset_destroy(shmem_get_offset_ctx(inode));
4780  }
4781  
shmem_init_inode(void * foo)4782  static void shmem_init_inode(void *foo)
4783  {
4784  	struct shmem_inode_info *info = foo;
4785  	inode_init_once(&info->vfs_inode);
4786  }
4787  
shmem_init_inodecache(void)4788  static void __init shmem_init_inodecache(void)
4789  {
4790  	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4791  				sizeof(struct shmem_inode_info),
4792  				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4793  }
4794  
shmem_destroy_inodecache(void)4795  static void __init shmem_destroy_inodecache(void)
4796  {
4797  	kmem_cache_destroy(shmem_inode_cachep);
4798  }
4799  
4800  /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)4801  static int shmem_error_remove_folio(struct address_space *mapping,
4802  				   struct folio *folio)
4803  {
4804  	return 0;
4805  }
4806  
4807  static const struct address_space_operations shmem_aops = {
4808  	.writepage	= shmem_writepage,
4809  	.dirty_folio	= noop_dirty_folio,
4810  #ifdef CONFIG_TMPFS
4811  	.write_begin	= shmem_write_begin,
4812  	.write_end	= shmem_write_end,
4813  #endif
4814  #ifdef CONFIG_MIGRATION
4815  	.migrate_folio	= migrate_folio,
4816  #endif
4817  	.error_remove_folio = shmem_error_remove_folio,
4818  };
4819  
4820  static const struct file_operations shmem_file_operations = {
4821  	.mmap		= shmem_mmap,
4822  	.open		= shmem_file_open,
4823  	.get_unmapped_area = shmem_get_unmapped_area,
4824  #ifdef CONFIG_TMPFS
4825  	.llseek		= shmem_file_llseek,
4826  	.read_iter	= shmem_file_read_iter,
4827  	.write_iter	= shmem_file_write_iter,
4828  	.fsync		= noop_fsync,
4829  	.splice_read	= shmem_file_splice_read,
4830  	.splice_write	= iter_file_splice_write,
4831  	.fallocate	= shmem_fallocate,
4832  #endif
4833  };
4834  
4835  static const struct inode_operations shmem_inode_operations = {
4836  	.getattr	= shmem_getattr,
4837  	.setattr	= shmem_setattr,
4838  #ifdef CONFIG_TMPFS_XATTR
4839  	.listxattr	= shmem_listxattr,
4840  	.set_acl	= simple_set_acl,
4841  	.fileattr_get	= shmem_fileattr_get,
4842  	.fileattr_set	= shmem_fileattr_set,
4843  #endif
4844  };
4845  
4846  static const struct inode_operations shmem_dir_inode_operations = {
4847  #ifdef CONFIG_TMPFS
4848  	.getattr	= shmem_getattr,
4849  	.create		= shmem_create,
4850  	.lookup		= simple_lookup,
4851  	.link		= shmem_link,
4852  	.unlink		= shmem_unlink,
4853  	.symlink	= shmem_symlink,
4854  	.mkdir		= shmem_mkdir,
4855  	.rmdir		= shmem_rmdir,
4856  	.mknod		= shmem_mknod,
4857  	.rename		= shmem_rename2,
4858  	.tmpfile	= shmem_tmpfile,
4859  	.get_offset_ctx	= shmem_get_offset_ctx,
4860  #endif
4861  #ifdef CONFIG_TMPFS_XATTR
4862  	.listxattr	= shmem_listxattr,
4863  	.fileattr_get	= shmem_fileattr_get,
4864  	.fileattr_set	= shmem_fileattr_set,
4865  #endif
4866  #ifdef CONFIG_TMPFS_POSIX_ACL
4867  	.setattr	= shmem_setattr,
4868  	.set_acl	= simple_set_acl,
4869  #endif
4870  };
4871  
4872  static const struct inode_operations shmem_special_inode_operations = {
4873  	.getattr	= shmem_getattr,
4874  #ifdef CONFIG_TMPFS_XATTR
4875  	.listxattr	= shmem_listxattr,
4876  #endif
4877  #ifdef CONFIG_TMPFS_POSIX_ACL
4878  	.setattr	= shmem_setattr,
4879  	.set_acl	= simple_set_acl,
4880  #endif
4881  };
4882  
4883  static const struct super_operations shmem_ops = {
4884  	.alloc_inode	= shmem_alloc_inode,
4885  	.free_inode	= shmem_free_in_core_inode,
4886  	.destroy_inode	= shmem_destroy_inode,
4887  #ifdef CONFIG_TMPFS
4888  	.statfs		= shmem_statfs,
4889  	.show_options	= shmem_show_options,
4890  #endif
4891  #ifdef CONFIG_TMPFS_QUOTA
4892  	.get_dquots	= shmem_get_dquots,
4893  #endif
4894  	.evict_inode	= shmem_evict_inode,
4895  	.drop_inode	= generic_delete_inode,
4896  	.put_super	= shmem_put_super,
4897  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4898  	.nr_cached_objects	= shmem_unused_huge_count,
4899  	.free_cached_objects	= shmem_unused_huge_scan,
4900  #endif
4901  };
4902  
4903  static const struct vm_operations_struct shmem_vm_ops = {
4904  	.fault		= shmem_fault,
4905  	.map_pages	= filemap_map_pages,
4906  #ifdef CONFIG_NUMA
4907  	.set_policy     = shmem_set_policy,
4908  	.get_policy     = shmem_get_policy,
4909  #endif
4910  };
4911  
4912  static const struct vm_operations_struct shmem_anon_vm_ops = {
4913  	.fault		= shmem_fault,
4914  	.map_pages	= filemap_map_pages,
4915  #ifdef CONFIG_NUMA
4916  	.set_policy     = shmem_set_policy,
4917  	.get_policy     = shmem_get_policy,
4918  #endif
4919  };
4920  
shmem_init_fs_context(struct fs_context * fc)4921  int shmem_init_fs_context(struct fs_context *fc)
4922  {
4923  	struct shmem_options *ctx;
4924  
4925  	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4926  	if (!ctx)
4927  		return -ENOMEM;
4928  
4929  	ctx->mode = 0777 | S_ISVTX;
4930  	ctx->uid = current_fsuid();
4931  	ctx->gid = current_fsgid();
4932  
4933  	fc->fs_private = ctx;
4934  	fc->ops = &shmem_fs_context_ops;
4935  	return 0;
4936  }
4937  
4938  static struct file_system_type shmem_fs_type = {
4939  	.owner		= THIS_MODULE,
4940  	.name		= "tmpfs",
4941  	.init_fs_context = shmem_init_fs_context,
4942  #ifdef CONFIG_TMPFS
4943  	.parameters	= shmem_fs_parameters,
4944  #endif
4945  	.kill_sb	= kill_litter_super,
4946  	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4947  };
4948  
shmem_init(void)4949  void __init shmem_init(void)
4950  {
4951  	int error;
4952  
4953  	shmem_init_inodecache();
4954  
4955  #ifdef CONFIG_TMPFS_QUOTA
4956  	register_quota_format(&shmem_quota_format);
4957  #endif
4958  
4959  	error = register_filesystem(&shmem_fs_type);
4960  	if (error) {
4961  		pr_err("Could not register tmpfs\n");
4962  		goto out2;
4963  	}
4964  
4965  	shm_mnt = kern_mount(&shmem_fs_type);
4966  	if (IS_ERR(shm_mnt)) {
4967  		error = PTR_ERR(shm_mnt);
4968  		pr_err("Could not kern_mount tmpfs\n");
4969  		goto out1;
4970  	}
4971  
4972  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4973  	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4974  		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4975  	else
4976  		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4977  
4978  	/*
4979  	 * Default to setting PMD-sized THP to inherit the global setting and
4980  	 * disable all other multi-size THPs.
4981  	 */
4982  	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
4983  #endif
4984  	return;
4985  
4986  out1:
4987  	unregister_filesystem(&shmem_fs_type);
4988  out2:
4989  #ifdef CONFIG_TMPFS_QUOTA
4990  	unregister_quota_format(&shmem_quota_format);
4991  #endif
4992  	shmem_destroy_inodecache();
4993  	shm_mnt = ERR_PTR(error);
4994  }
4995  
4996  #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4997  static ssize_t shmem_enabled_show(struct kobject *kobj,
4998  				  struct kobj_attribute *attr, char *buf)
4999  {
5000  	static const int values[] = {
5001  		SHMEM_HUGE_ALWAYS,
5002  		SHMEM_HUGE_WITHIN_SIZE,
5003  		SHMEM_HUGE_ADVISE,
5004  		SHMEM_HUGE_NEVER,
5005  		SHMEM_HUGE_DENY,
5006  		SHMEM_HUGE_FORCE,
5007  	};
5008  	int len = 0;
5009  	int i;
5010  
5011  	for (i = 0; i < ARRAY_SIZE(values); i++) {
5012  		len += sysfs_emit_at(buf, len,
5013  				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5014  				i ? " " : "", shmem_format_huge(values[i]));
5015  	}
5016  	len += sysfs_emit_at(buf, len, "\n");
5017  
5018  	return len;
5019  }
5020  
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5021  static ssize_t shmem_enabled_store(struct kobject *kobj,
5022  		struct kobj_attribute *attr, const char *buf, size_t count)
5023  {
5024  	char tmp[16];
5025  	int huge;
5026  
5027  	if (count + 1 > sizeof(tmp))
5028  		return -EINVAL;
5029  	memcpy(tmp, buf, count);
5030  	tmp[count] = '\0';
5031  	if (count && tmp[count - 1] == '\n')
5032  		tmp[count - 1] = '\0';
5033  
5034  	huge = shmem_parse_huge(tmp);
5035  	if (huge == -EINVAL)
5036  		return -EINVAL;
5037  	if (!has_transparent_hugepage() &&
5038  			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
5039  		return -EINVAL;
5040  
5041  	/* Do not override huge allocation policy with non-PMD sized mTHP */
5042  	if (huge == SHMEM_HUGE_FORCE &&
5043  	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
5044  		return -EINVAL;
5045  
5046  	shmem_huge = huge;
5047  	if (shmem_huge > SHMEM_HUGE_DENY)
5048  		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5049  	return count;
5050  }
5051  
5052  struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5053  static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5054  
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5055  static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5056  					  struct kobj_attribute *attr, char *buf)
5057  {
5058  	int order = to_thpsize(kobj)->order;
5059  	const char *output;
5060  
5061  	if (test_bit(order, &huge_shmem_orders_always))
5062  		output = "[always] inherit within_size advise never";
5063  	else if (test_bit(order, &huge_shmem_orders_inherit))
5064  		output = "always [inherit] within_size advise never";
5065  	else if (test_bit(order, &huge_shmem_orders_within_size))
5066  		output = "always inherit [within_size] advise never";
5067  	else if (test_bit(order, &huge_shmem_orders_madvise))
5068  		output = "always inherit within_size [advise] never";
5069  	else
5070  		output = "always inherit within_size advise [never]";
5071  
5072  	return sysfs_emit(buf, "%s\n", output);
5073  }
5074  
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5075  static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5076  					   struct kobj_attribute *attr,
5077  					   const char *buf, size_t count)
5078  {
5079  	int order = to_thpsize(kobj)->order;
5080  	ssize_t ret = count;
5081  
5082  	if (sysfs_streq(buf, "always")) {
5083  		spin_lock(&huge_shmem_orders_lock);
5084  		clear_bit(order, &huge_shmem_orders_inherit);
5085  		clear_bit(order, &huge_shmem_orders_madvise);
5086  		clear_bit(order, &huge_shmem_orders_within_size);
5087  		set_bit(order, &huge_shmem_orders_always);
5088  		spin_unlock(&huge_shmem_orders_lock);
5089  	} else if (sysfs_streq(buf, "inherit")) {
5090  		/* Do not override huge allocation policy with non-PMD sized mTHP */
5091  		if (shmem_huge == SHMEM_HUGE_FORCE &&
5092  		    order != HPAGE_PMD_ORDER)
5093  			return -EINVAL;
5094  
5095  		spin_lock(&huge_shmem_orders_lock);
5096  		clear_bit(order, &huge_shmem_orders_always);
5097  		clear_bit(order, &huge_shmem_orders_madvise);
5098  		clear_bit(order, &huge_shmem_orders_within_size);
5099  		set_bit(order, &huge_shmem_orders_inherit);
5100  		spin_unlock(&huge_shmem_orders_lock);
5101  	} else if (sysfs_streq(buf, "within_size")) {
5102  		spin_lock(&huge_shmem_orders_lock);
5103  		clear_bit(order, &huge_shmem_orders_always);
5104  		clear_bit(order, &huge_shmem_orders_inherit);
5105  		clear_bit(order, &huge_shmem_orders_madvise);
5106  		set_bit(order, &huge_shmem_orders_within_size);
5107  		spin_unlock(&huge_shmem_orders_lock);
5108  	} else if (sysfs_streq(buf, "advise")) {
5109  		spin_lock(&huge_shmem_orders_lock);
5110  		clear_bit(order, &huge_shmem_orders_always);
5111  		clear_bit(order, &huge_shmem_orders_inherit);
5112  		clear_bit(order, &huge_shmem_orders_within_size);
5113  		set_bit(order, &huge_shmem_orders_madvise);
5114  		spin_unlock(&huge_shmem_orders_lock);
5115  	} else if (sysfs_streq(buf, "never")) {
5116  		spin_lock(&huge_shmem_orders_lock);
5117  		clear_bit(order, &huge_shmem_orders_always);
5118  		clear_bit(order, &huge_shmem_orders_inherit);
5119  		clear_bit(order, &huge_shmem_orders_within_size);
5120  		clear_bit(order, &huge_shmem_orders_madvise);
5121  		spin_unlock(&huge_shmem_orders_lock);
5122  	} else {
5123  		ret = -EINVAL;
5124  	}
5125  
5126  	return ret;
5127  }
5128  
5129  struct kobj_attribute thpsize_shmem_enabled_attr =
5130  	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5131  #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5132  
5133  #else /* !CONFIG_SHMEM */
5134  
5135  /*
5136   * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5137   *
5138   * This is intended for small system where the benefits of the full
5139   * shmem code (swap-backed and resource-limited) are outweighed by
5140   * their complexity. On systems without swap this code should be
5141   * effectively equivalent, but much lighter weight.
5142   */
5143  
5144  static struct file_system_type shmem_fs_type = {
5145  	.name		= "tmpfs",
5146  	.init_fs_context = ramfs_init_fs_context,
5147  	.parameters	= ramfs_fs_parameters,
5148  	.kill_sb	= ramfs_kill_sb,
5149  	.fs_flags	= FS_USERNS_MOUNT,
5150  };
5151  
shmem_init(void)5152  void __init shmem_init(void)
5153  {
5154  	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5155  
5156  	shm_mnt = kern_mount(&shmem_fs_type);
5157  	BUG_ON(IS_ERR(shm_mnt));
5158  }
5159  
shmem_unuse(unsigned int type)5160  int shmem_unuse(unsigned int type)
5161  {
5162  	return 0;
5163  }
5164  
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5165  int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5166  {
5167  	return 0;
5168  }
5169  
shmem_unlock_mapping(struct address_space * mapping)5170  void shmem_unlock_mapping(struct address_space *mapping)
5171  {
5172  }
5173  
5174  #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5175  unsigned long shmem_get_unmapped_area(struct file *file,
5176  				      unsigned long addr, unsigned long len,
5177  				      unsigned long pgoff, unsigned long flags)
5178  {
5179  	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5180  }
5181  #endif
5182  
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5183  void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5184  {
5185  	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5186  }
5187  EXPORT_SYMBOL_GPL(shmem_truncate_range);
5188  
5189  #define shmem_vm_ops				generic_file_vm_ops
5190  #define shmem_anon_vm_ops			generic_file_vm_ops
5191  #define shmem_file_operations			ramfs_file_operations
5192  #define shmem_acct_size(flags, size)		0
5193  #define shmem_unacct_size(flags, size)		do {} while (0)
5194  
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5195  static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5196  				struct super_block *sb, struct inode *dir,
5197  				umode_t mode, dev_t dev, unsigned long flags)
5198  {
5199  	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5200  	return inode ? inode : ERR_PTR(-ENOSPC);
5201  }
5202  
5203  #endif /* CONFIG_SHMEM */
5204  
5205  /* common code */
5206  
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5207  static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5208  			loff_t size, unsigned long flags, unsigned int i_flags)
5209  {
5210  	struct inode *inode;
5211  	struct file *res;
5212  
5213  	if (IS_ERR(mnt))
5214  		return ERR_CAST(mnt);
5215  
5216  	if (size < 0 || size > MAX_LFS_FILESIZE)
5217  		return ERR_PTR(-EINVAL);
5218  
5219  	if (shmem_acct_size(flags, size))
5220  		return ERR_PTR(-ENOMEM);
5221  
5222  	if (is_idmapped_mnt(mnt))
5223  		return ERR_PTR(-EINVAL);
5224  
5225  	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5226  				S_IFREG | S_IRWXUGO, 0, flags);
5227  	if (IS_ERR(inode)) {
5228  		shmem_unacct_size(flags, size);
5229  		return ERR_CAST(inode);
5230  	}
5231  	inode->i_flags |= i_flags;
5232  	inode->i_size = size;
5233  	clear_nlink(inode);	/* It is unlinked */
5234  	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5235  	if (!IS_ERR(res))
5236  		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5237  				&shmem_file_operations);
5238  	if (IS_ERR(res))
5239  		iput(inode);
5240  	return res;
5241  }
5242  
5243  /**
5244   * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5245   * 	kernel internal.  There will be NO LSM permission checks against the
5246   * 	underlying inode.  So users of this interface must do LSM checks at a
5247   *	higher layer.  The users are the big_key and shm implementations.  LSM
5248   *	checks are provided at the key or shm level rather than the inode.
5249   * @name: name for dentry (to be seen in /proc/<pid>/maps
5250   * @size: size to be set for the file
5251   * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5252   */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5253  struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5254  {
5255  	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5256  }
5257  EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5258  
5259  /**
5260   * shmem_file_setup - get an unlinked file living in tmpfs
5261   * @name: name for dentry (to be seen in /proc/<pid>/maps
5262   * @size: size to be set for the file
5263   * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5264   */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5265  struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5266  {
5267  	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5268  }
5269  EXPORT_SYMBOL_GPL(shmem_file_setup);
5270  
5271  /**
5272   * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5273   * @mnt: the tmpfs mount where the file will be created
5274   * @name: name for dentry (to be seen in /proc/<pid>/maps
5275   * @size: size to be set for the file
5276   * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5277   */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5278  struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5279  				       loff_t size, unsigned long flags)
5280  {
5281  	return __shmem_file_setup(mnt, name, size, flags, 0);
5282  }
5283  EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5284  
5285  /**
5286   * shmem_zero_setup - setup a shared anonymous mapping
5287   * @vma: the vma to be mmapped is prepared by do_mmap
5288   */
shmem_zero_setup(struct vm_area_struct * vma)5289  int shmem_zero_setup(struct vm_area_struct *vma)
5290  {
5291  	struct file *file;
5292  	loff_t size = vma->vm_end - vma->vm_start;
5293  
5294  	/*
5295  	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5296  	 * between XFS directory reading and selinux: since this file is only
5297  	 * accessible to the user through its mapping, use S_PRIVATE flag to
5298  	 * bypass file security, in the same way as shmem_kernel_file_setup().
5299  	 */
5300  	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5301  	if (IS_ERR(file))
5302  		return PTR_ERR(file);
5303  
5304  	if (vma->vm_file)
5305  		fput(vma->vm_file);
5306  	vma->vm_file = file;
5307  	vma->vm_ops = &shmem_anon_vm_ops;
5308  
5309  	return 0;
5310  }
5311  
5312  /**
5313   * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5314   * @mapping:	the folio's address_space
5315   * @index:	the folio index
5316   * @gfp:	the page allocator flags to use if allocating
5317   *
5318   * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5319   * with any new page allocations done using the specified allocation flags.
5320   * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5321   * suit tmpfs, since it may have pages in swapcache, and needs to find those
5322   * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5323   *
5324   * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5325   * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5326   */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5327  struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5328  		pgoff_t index, gfp_t gfp)
5329  {
5330  #ifdef CONFIG_SHMEM
5331  	struct inode *inode = mapping->host;
5332  	struct folio *folio;
5333  	int error;
5334  
5335  	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5336  				    gfp, NULL, NULL);
5337  	if (error)
5338  		return ERR_PTR(error);
5339  
5340  	folio_unlock(folio);
5341  	return folio;
5342  #else
5343  	/*
5344  	 * The tiny !SHMEM case uses ramfs without swap
5345  	 */
5346  	return mapping_read_folio_gfp(mapping, index, gfp);
5347  #endif
5348  }
5349  EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5350  
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5351  struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5352  					 pgoff_t index, gfp_t gfp)
5353  {
5354  	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5355  	struct page *page;
5356  
5357  	if (IS_ERR(folio))
5358  		return &folio->page;
5359  
5360  	page = folio_file_page(folio, index);
5361  	if (PageHWPoison(page)) {
5362  		folio_put(folio);
5363  		return ERR_PTR(-EIO);
5364  	}
5365  
5366  	return page;
5367  }
5368  EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5369