1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * mm/percpu-vm.c - vmalloc area based chunk allocation
4   *
5   * Copyright (C) 2010		SUSE Linux Products GmbH
6   * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
7   *
8   * Chunks are mapped into vmalloc areas and populated page by page.
9   * This is the default chunk allocator.
10   */
11  #include "internal.h"
12  
pcpu_chunk_page(struct pcpu_chunk * chunk,unsigned int cpu,int page_idx)13  static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14  				    unsigned int cpu, int page_idx)
15  {
16  	/* must not be used on pre-mapped chunk */
17  	WARN_ON(chunk->immutable);
18  
19  	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20  }
21  
22  /**
23   * pcpu_get_pages - get temp pages array
24   *
25   * Returns pointer to array of pointers to struct page which can be indexed
26   * with pcpu_page_idx().  Note that there is only one array and accesses
27   * should be serialized by pcpu_alloc_mutex.
28   *
29   * RETURNS:
30   * Pointer to temp pages array on success.
31   */
pcpu_get_pages(void)32  static struct page **pcpu_get_pages(void)
33  {
34  	static struct page **pages;
35  	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
36  
37  	lockdep_assert_held(&pcpu_alloc_mutex);
38  
39  	if (!pages)
40  		pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
41  	return pages;
42  }
43  
44  /**
45   * pcpu_free_pages - free pages which were allocated for @chunk
46   * @chunk: chunk pages were allocated for
47   * @pages: array of pages to be freed, indexed by pcpu_page_idx()
48   * @page_start: page index of the first page to be freed
49   * @page_end: page index of the last page to be freed + 1
50   *
51   * Free pages [@page_start and @page_end) in @pages for all units.
52   * The pages were allocated for @chunk.
53   */
pcpu_free_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end)54  static void pcpu_free_pages(struct pcpu_chunk *chunk,
55  			    struct page **pages, int page_start, int page_end)
56  {
57  	unsigned int cpu;
58  	int i;
59  
60  	for_each_possible_cpu(cpu) {
61  		for (i = page_start; i < page_end; i++) {
62  			struct page *page = pages[pcpu_page_idx(cpu, i)];
63  
64  			if (page)
65  				__free_page(page);
66  		}
67  	}
68  }
69  
70  /**
71   * pcpu_alloc_pages - allocates pages for @chunk
72   * @chunk: target chunk
73   * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
74   * @page_start: page index of the first page to be allocated
75   * @page_end: page index of the last page to be allocated + 1
76   * @gfp: allocation flags passed to the underlying allocator
77   *
78   * Allocate pages [@page_start,@page_end) into @pages for all units.
79   * The allocation is for @chunk.  Percpu core doesn't care about the
80   * content of @pages and will pass it verbatim to pcpu_map_pages().
81   */
pcpu_alloc_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end,gfp_t gfp)82  static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
83  			    struct page **pages, int page_start, int page_end,
84  			    gfp_t gfp)
85  {
86  	unsigned int cpu, tcpu;
87  	int i;
88  
89  	gfp |= __GFP_HIGHMEM;
90  
91  	for_each_possible_cpu(cpu) {
92  		for (i = page_start; i < page_end; i++) {
93  			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
94  
95  			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
96  			if (!*pagep)
97  				goto err;
98  		}
99  	}
100  	return 0;
101  
102  err:
103  	while (--i >= page_start)
104  		__free_page(pages[pcpu_page_idx(cpu, i)]);
105  
106  	for_each_possible_cpu(tcpu) {
107  		if (tcpu == cpu)
108  			break;
109  		for (i = page_start; i < page_end; i++)
110  			__free_page(pages[pcpu_page_idx(tcpu, i)]);
111  	}
112  	return -ENOMEM;
113  }
114  
115  /**
116   * pcpu_pre_unmap_flush - flush cache prior to unmapping
117   * @chunk: chunk the regions to be flushed belongs to
118   * @page_start: page index of the first page to be flushed
119   * @page_end: page index of the last page to be flushed + 1
120   *
121   * Pages in [@page_start,@page_end) of @chunk are about to be
122   * unmapped.  Flush cache.  As each flushing trial can be very
123   * expensive, issue flush on the whole region at once rather than
124   * doing it for each cpu.  This could be an overkill but is more
125   * scalable.
126   */
pcpu_pre_unmap_flush(struct pcpu_chunk * chunk,int page_start,int page_end)127  static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
128  				 int page_start, int page_end)
129  {
130  	flush_cache_vunmap(
131  		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
132  		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
133  }
134  
__pcpu_unmap_pages(unsigned long addr,int nr_pages)135  static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
136  {
137  	vunmap_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT));
138  }
139  
140  /**
141   * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
142   * @chunk: chunk of interest
143   * @pages: pages array which can be used to pass information to free
144   * @page_start: page index of the first page to unmap
145   * @page_end: page index of the last page to unmap + 1
146   *
147   * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
148   * Corresponding elements in @pages were cleared by the caller and can
149   * be used to carry information to pcpu_free_pages() which will be
150   * called after all unmaps are finished.  The caller should call
151   * proper pre/post flush functions.
152   */
pcpu_unmap_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end)153  static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
154  			     struct page **pages, int page_start, int page_end)
155  {
156  	unsigned int cpu;
157  	int i;
158  
159  	for_each_possible_cpu(cpu) {
160  		for (i = page_start; i < page_end; i++) {
161  			struct page *page;
162  
163  			page = pcpu_chunk_page(chunk, cpu, i);
164  			WARN_ON(!page);
165  			pages[pcpu_page_idx(cpu, i)] = page;
166  		}
167  		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
168  				   page_end - page_start);
169  	}
170  }
171  
172  /**
173   * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
174   * @chunk: pcpu_chunk the regions to be flushed belong to
175   * @page_start: page index of the first page to be flushed
176   * @page_end: page index of the last page to be flushed + 1
177   *
178   * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
179   * TLB for the regions.  This can be skipped if the area is to be
180   * returned to vmalloc as vmalloc will handle TLB flushing lazily.
181   *
182   * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
183   * for the whole region.
184   */
pcpu_post_unmap_tlb_flush(struct pcpu_chunk * chunk,int page_start,int page_end)185  static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
186  				      int page_start, int page_end)
187  {
188  	flush_tlb_kernel_range(
189  		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
190  		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
191  }
192  
__pcpu_map_pages(unsigned long addr,struct page ** pages,int nr_pages)193  static int __pcpu_map_pages(unsigned long addr, struct page **pages,
194  			    int nr_pages)
195  {
196  	return vmap_pages_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT),
197  					PAGE_KERNEL, pages, PAGE_SHIFT);
198  }
199  
200  /**
201   * pcpu_map_pages - map pages into a pcpu_chunk
202   * @chunk: chunk of interest
203   * @pages: pages array containing pages to be mapped
204   * @page_start: page index of the first page to map
205   * @page_end: page index of the last page to map + 1
206   *
207   * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
208   * caller is responsible for calling pcpu_post_map_flush() after all
209   * mappings are complete.
210   *
211   * This function is responsible for setting up whatever is necessary for
212   * reverse lookup (addr -> chunk).
213   */
pcpu_map_pages(struct pcpu_chunk * chunk,struct page ** pages,int page_start,int page_end)214  static int pcpu_map_pages(struct pcpu_chunk *chunk,
215  			  struct page **pages, int page_start, int page_end)
216  {
217  	unsigned int cpu, tcpu;
218  	int i, err;
219  
220  	for_each_possible_cpu(cpu) {
221  		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
222  				       &pages[pcpu_page_idx(cpu, page_start)],
223  				       page_end - page_start);
224  		if (err < 0)
225  			goto err;
226  
227  		for (i = page_start; i < page_end; i++)
228  			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
229  					    chunk);
230  	}
231  	return 0;
232  err:
233  	for_each_possible_cpu(tcpu) {
234  		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
235  				   page_end - page_start);
236  		if (tcpu == cpu)
237  			break;
238  	}
239  	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
240  	return err;
241  }
242  
243  /**
244   * pcpu_post_map_flush - flush cache after mapping
245   * @chunk: pcpu_chunk the regions to be flushed belong to
246   * @page_start: page index of the first page to be flushed
247   * @page_end: page index of the last page to be flushed + 1
248   *
249   * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
250   * cache.
251   *
252   * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
253   * for the whole region.
254   */
pcpu_post_map_flush(struct pcpu_chunk * chunk,int page_start,int page_end)255  static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
256  				int page_start, int page_end)
257  {
258  	flush_cache_vmap(
259  		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
260  		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
261  }
262  
263  /**
264   * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
265   * @chunk: chunk of interest
266   * @page_start: the start page
267   * @page_end: the end page
268   * @gfp: allocation flags passed to the underlying memory allocator
269   *
270   * For each cpu, populate and map pages [@page_start,@page_end) into
271   * @chunk.
272   *
273   * CONTEXT:
274   * pcpu_alloc_mutex, does GFP_KERNEL allocation.
275   */
pcpu_populate_chunk(struct pcpu_chunk * chunk,int page_start,int page_end,gfp_t gfp)276  static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
277  			       int page_start, int page_end, gfp_t gfp)
278  {
279  	struct page **pages;
280  
281  	pages = pcpu_get_pages();
282  	if (!pages)
283  		return -ENOMEM;
284  
285  	if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
286  		return -ENOMEM;
287  
288  	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
289  		pcpu_free_pages(chunk, pages, page_start, page_end);
290  		return -ENOMEM;
291  	}
292  	pcpu_post_map_flush(chunk, page_start, page_end);
293  
294  	return 0;
295  }
296  
297  /**
298   * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
299   * @chunk: chunk to depopulate
300   * @page_start: the start page
301   * @page_end: the end page
302   *
303   * For each cpu, depopulate and unmap pages [@page_start,@page_end)
304   * from @chunk.
305   *
306   * Caller is required to call pcpu_post_unmap_tlb_flush() if not returning the
307   * region back to vmalloc() which will lazily flush the tlb.
308   *
309   * CONTEXT:
310   * pcpu_alloc_mutex.
311   */
pcpu_depopulate_chunk(struct pcpu_chunk * chunk,int page_start,int page_end)312  static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
313  				  int page_start, int page_end)
314  {
315  	struct page **pages;
316  
317  	/*
318  	 * If control reaches here, there must have been at least one
319  	 * successful population attempt so the temp pages array must
320  	 * be available now.
321  	 */
322  	pages = pcpu_get_pages();
323  	BUG_ON(!pages);
324  
325  	/* unmap and free */
326  	pcpu_pre_unmap_flush(chunk, page_start, page_end);
327  
328  	pcpu_unmap_pages(chunk, pages, page_start, page_end);
329  
330  	pcpu_free_pages(chunk, pages, page_start, page_end);
331  }
332  
pcpu_create_chunk(gfp_t gfp)333  static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp)
334  {
335  	struct pcpu_chunk *chunk;
336  	struct vm_struct **vms;
337  
338  	chunk = pcpu_alloc_chunk(gfp);
339  	if (!chunk)
340  		return NULL;
341  
342  	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
343  				pcpu_nr_groups, pcpu_atom_size);
344  	if (!vms) {
345  		pcpu_free_chunk(chunk);
346  		return NULL;
347  	}
348  
349  	chunk->data = vms;
350  	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
351  
352  	pcpu_stats_chunk_alloc();
353  	trace_percpu_create_chunk(chunk->base_addr);
354  
355  	return chunk;
356  }
357  
pcpu_destroy_chunk(struct pcpu_chunk * chunk)358  static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
359  {
360  	if (!chunk)
361  		return;
362  
363  	pcpu_stats_chunk_dealloc();
364  	trace_percpu_destroy_chunk(chunk->base_addr);
365  
366  	if (chunk->data)
367  		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
368  	pcpu_free_chunk(chunk);
369  }
370  
pcpu_addr_to_page(void * addr)371  static struct page *pcpu_addr_to_page(void *addr)
372  {
373  	return vmalloc_to_page(addr);
374  }
375  
pcpu_verify_alloc_info(const struct pcpu_alloc_info * ai)376  static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
377  {
378  	/* no extra restriction */
379  	return 0;
380  }
381  
382  /**
383   * pcpu_should_reclaim_chunk - determine if a chunk should go into reclaim
384   * @chunk: chunk of interest
385   *
386   * This is the entry point for percpu reclaim.  If a chunk qualifies, it is then
387   * isolated and managed in separate lists at the back of pcpu_slot: sidelined
388   * and to_depopulate respectively.  The to_depopulate list holds chunks slated
389   * for depopulation.  They no longer contribute to pcpu_nr_empty_pop_pages once
390   * they are on this list.  Once depopulated, they are moved onto the sidelined
391   * list which enables them to be pulled back in for allocation if no other chunk
392   * can suffice the allocation.
393   */
pcpu_should_reclaim_chunk(struct pcpu_chunk * chunk)394  static bool pcpu_should_reclaim_chunk(struct pcpu_chunk *chunk)
395  {
396  	/* do not reclaim either the first chunk or reserved chunk */
397  	if (chunk == pcpu_first_chunk || chunk == pcpu_reserved_chunk)
398  		return false;
399  
400  	/*
401  	 * If it is isolated, it may be on the sidelined list so move it back to
402  	 * the to_depopulate list.  If we hit at least 1/4 pages empty pages AND
403  	 * there is no system-wide shortage of empty pages aside from this
404  	 * chunk, move it to the to_depopulate list.
405  	 */
406  	return ((chunk->isolated && chunk->nr_empty_pop_pages) ||
407  		(pcpu_nr_empty_pop_pages >
408  		 (PCPU_EMPTY_POP_PAGES_HIGH + chunk->nr_empty_pop_pages) &&
409  		 chunk->nr_empty_pop_pages >= chunk->nr_pages / 4));
410  }
411