1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *	linux/mm/filemap.c
4   *
5   * Copyright (C) 1994-1999  Linus Torvalds
6   */
7  
8  /*
9   * This file handles the generic file mmap semantics used by
10   * most "normal" filesystems (but you don't /have/ to use this:
11   * the NFS filesystem used to do this differently, for example)
12   */
13  #include <linux/export.h>
14  #include <linux/compiler.h>
15  #include <linux/dax.h>
16  #include <linux/fs.h>
17  #include <linux/sched/signal.h>
18  #include <linux/uaccess.h>
19  #include <linux/capability.h>
20  #include <linux/kernel_stat.h>
21  #include <linux/gfp.h>
22  #include <linux/mm.h>
23  #include <linux/swap.h>
24  #include <linux/swapops.h>
25  #include <linux/syscalls.h>
26  #include <linux/mman.h>
27  #include <linux/pagemap.h>
28  #include <linux/file.h>
29  #include <linux/uio.h>
30  #include <linux/error-injection.h>
31  #include <linux/hash.h>
32  #include <linux/writeback.h>
33  #include <linux/backing-dev.h>
34  #include <linux/pagevec.h>
35  #include <linux/security.h>
36  #include <linux/cpuset.h>
37  #include <linux/hugetlb.h>
38  #include <linux/memcontrol.h>
39  #include <linux/shmem_fs.h>
40  #include <linux/rmap.h>
41  #include <linux/delayacct.h>
42  #include <linux/psi.h>
43  #include <linux/ramfs.h>
44  #include <linux/page_idle.h>
45  #include <linux/migrate.h>
46  #include <linux/pipe_fs_i.h>
47  #include <linux/splice.h>
48  #include <linux/rcupdate_wait.h>
49  #include <linux/sched/mm.h>
50  #include <asm/pgalloc.h>
51  #include <asm/tlbflush.h>
52  #include "internal.h"
53  
54  #define CREATE_TRACE_POINTS
55  #include <trace/events/filemap.h>
56  
57  /*
58   * FIXME: remove all knowledge of the buffer layer from the core VM
59   */
60  #include <linux/buffer_head.h> /* for try_to_free_buffers */
61  
62  #include <asm/mman.h>
63  
64  #include "swap.h"
65  
66  /*
67   * Shared mappings implemented 30.11.1994. It's not fully working yet,
68   * though.
69   *
70   * Shared mappings now work. 15.8.1995  Bruno.
71   *
72   * finished 'unifying' the page and buffer cache and SMP-threaded the
73   * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74   *
75   * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76   */
77  
78  /*
79   * Lock ordering:
80   *
81   *  ->i_mmap_rwsem		(truncate_pagecache)
82   *    ->private_lock		(__free_pte->block_dirty_folio)
83   *      ->swap_lock		(exclusive_swap_page, others)
84   *        ->i_pages lock
85   *
86   *  ->i_rwsem
87   *    ->invalidate_lock		(acquired by fs in truncate path)
88   *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
89   *
90   *  ->mmap_lock
91   *    ->i_mmap_rwsem
92   *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
93   *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
94   *
95   *  ->mmap_lock
96   *    ->invalidate_lock		(filemap_fault)
97   *      ->lock_page		(filemap_fault, access_process_vm)
98   *
99   *  ->i_rwsem			(generic_perform_write)
100   *    ->mmap_lock		(fault_in_readable->do_page_fault)
101   *
102   *  bdi->wb.list_lock
103   *    sb_lock			(fs/fs-writeback.c)
104   *    ->i_pages lock		(__sync_single_inode)
105   *
106   *  ->i_mmap_rwsem
107   *    ->anon_vma.lock		(vma_merge)
108   *
109   *  ->anon_vma.lock
110   *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
111   *
112   *  ->page_table_lock or pte_lock
113   *    ->swap_lock		(try_to_unmap_one)
114   *    ->private_lock		(try_to_unmap_one)
115   *    ->i_pages lock		(try_to_unmap_one)
116   *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
117   *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
118   *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
119   *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
120   *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
121   *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
122   *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
123   *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
124   *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
125   *    ->private_lock		(zap_pte_range->block_dirty_folio)
126   */
127  
mapping_set_update(struct xa_state * xas,struct address_space * mapping)128  static void mapping_set_update(struct xa_state *xas,
129  		struct address_space *mapping)
130  {
131  	if (dax_mapping(mapping) || shmem_mapping(mapping))
132  		return;
133  	xas_set_update(xas, workingset_update_node);
134  	xas_set_lru(xas, &shadow_nodes);
135  }
136  
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)137  static void page_cache_delete(struct address_space *mapping,
138  				   struct folio *folio, void *shadow)
139  {
140  	XA_STATE(xas, &mapping->i_pages, folio->index);
141  	long nr = 1;
142  
143  	mapping_set_update(&xas, mapping);
144  
145  	xas_set_order(&xas, folio->index, folio_order(folio));
146  	nr = folio_nr_pages(folio);
147  
148  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
149  
150  	xas_store(&xas, shadow);
151  	xas_init_marks(&xas);
152  
153  	folio->mapping = NULL;
154  	/* Leave page->index set: truncation lookup relies upon it */
155  	mapping->nrpages -= nr;
156  }
157  
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)158  static void filemap_unaccount_folio(struct address_space *mapping,
159  		struct folio *folio)
160  {
161  	long nr;
162  
163  	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
164  	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
165  		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
166  			 current->comm, folio_pfn(folio));
167  		dump_page(&folio->page, "still mapped when deleted");
168  		dump_stack();
169  		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
170  
171  		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
172  			int mapcount = folio_mapcount(folio);
173  
174  			if (folio_ref_count(folio) >= mapcount + 2) {
175  				/*
176  				 * All vmas have already been torn down, so it's
177  				 * a good bet that actually the page is unmapped
178  				 * and we'd rather not leak it: if we're wrong,
179  				 * another bad page check should catch it later.
180  				 */
181  				atomic_set(&folio->_mapcount, -1);
182  				folio_ref_sub(folio, mapcount);
183  			}
184  		}
185  	}
186  
187  	/* hugetlb folios do not participate in page cache accounting. */
188  	if (folio_test_hugetlb(folio))
189  		return;
190  
191  	nr = folio_nr_pages(folio);
192  
193  	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
194  	if (folio_test_swapbacked(folio)) {
195  		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
196  		if (folio_test_pmd_mappable(folio))
197  			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
198  	} else if (folio_test_pmd_mappable(folio)) {
199  		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
200  		filemap_nr_thps_dec(mapping);
201  	}
202  
203  	/*
204  	 * At this point folio must be either written or cleaned by
205  	 * truncate.  Dirty folio here signals a bug and loss of
206  	 * unwritten data - on ordinary filesystems.
207  	 *
208  	 * But it's harmless on in-memory filesystems like tmpfs; and can
209  	 * occur when a driver which did get_user_pages() sets page dirty
210  	 * before putting it, while the inode is being finally evicted.
211  	 *
212  	 * Below fixes dirty accounting after removing the folio entirely
213  	 * but leaves the dirty flag set: it has no effect for truncated
214  	 * folio and anyway will be cleared before returning folio to
215  	 * buddy allocator.
216  	 */
217  	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
218  			 mapping_can_writeback(mapping)))
219  		folio_account_cleaned(folio, inode_to_wb(mapping->host));
220  }
221  
222  /*
223   * Delete a page from the page cache and free it. Caller has to make
224   * sure the page is locked and that nobody else uses it - or that usage
225   * is safe.  The caller must hold the i_pages lock.
226   */
__filemap_remove_folio(struct folio * folio,void * shadow)227  void __filemap_remove_folio(struct folio *folio, void *shadow)
228  {
229  	struct address_space *mapping = folio->mapping;
230  
231  	trace_mm_filemap_delete_from_page_cache(folio);
232  	filemap_unaccount_folio(mapping, folio);
233  	page_cache_delete(mapping, folio, shadow);
234  }
235  
filemap_free_folio(struct address_space * mapping,struct folio * folio)236  void filemap_free_folio(struct address_space *mapping, struct folio *folio)
237  {
238  	void (*free_folio)(struct folio *);
239  	int refs = 1;
240  
241  	free_folio = mapping->a_ops->free_folio;
242  	if (free_folio)
243  		free_folio(folio);
244  
245  	if (folio_test_large(folio))
246  		refs = folio_nr_pages(folio);
247  	folio_put_refs(folio, refs);
248  }
249  
250  /**
251   * filemap_remove_folio - Remove folio from page cache.
252   * @folio: The folio.
253   *
254   * This must be called only on folios that are locked and have been
255   * verified to be in the page cache.  It will never put the folio into
256   * the free list because the caller has a reference on the page.
257   */
filemap_remove_folio(struct folio * folio)258  void filemap_remove_folio(struct folio *folio)
259  {
260  	struct address_space *mapping = folio->mapping;
261  
262  	BUG_ON(!folio_test_locked(folio));
263  	spin_lock(&mapping->host->i_lock);
264  	xa_lock_irq(&mapping->i_pages);
265  	__filemap_remove_folio(folio, NULL);
266  	xa_unlock_irq(&mapping->i_pages);
267  	if (mapping_shrinkable(mapping))
268  		inode_add_lru(mapping->host);
269  	spin_unlock(&mapping->host->i_lock);
270  
271  	filemap_free_folio(mapping, folio);
272  }
273  
274  /*
275   * page_cache_delete_batch - delete several folios from page cache
276   * @mapping: the mapping to which folios belong
277   * @fbatch: batch of folios to delete
278   *
279   * The function walks over mapping->i_pages and removes folios passed in
280   * @fbatch from the mapping. The function expects @fbatch to be sorted
281   * by page index and is optimised for it to be dense.
282   * It tolerates holes in @fbatch (mapping entries at those indices are not
283   * modified).
284   *
285   * The function expects the i_pages lock to be held.
286   */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)287  static void page_cache_delete_batch(struct address_space *mapping,
288  			     struct folio_batch *fbatch)
289  {
290  	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
291  	long total_pages = 0;
292  	int i = 0;
293  	struct folio *folio;
294  
295  	mapping_set_update(&xas, mapping);
296  	xas_for_each(&xas, folio, ULONG_MAX) {
297  		if (i >= folio_batch_count(fbatch))
298  			break;
299  
300  		/* A swap/dax/shadow entry got inserted? Skip it. */
301  		if (xa_is_value(folio))
302  			continue;
303  		/*
304  		 * A page got inserted in our range? Skip it. We have our
305  		 * pages locked so they are protected from being removed.
306  		 * If we see a page whose index is higher than ours, it
307  		 * means our page has been removed, which shouldn't be
308  		 * possible because we're holding the PageLock.
309  		 */
310  		if (folio != fbatch->folios[i]) {
311  			VM_BUG_ON_FOLIO(folio->index >
312  					fbatch->folios[i]->index, folio);
313  			continue;
314  		}
315  
316  		WARN_ON_ONCE(!folio_test_locked(folio));
317  
318  		folio->mapping = NULL;
319  		/* Leave folio->index set: truncation lookup relies on it */
320  
321  		i++;
322  		xas_store(&xas, NULL);
323  		total_pages += folio_nr_pages(folio);
324  	}
325  	mapping->nrpages -= total_pages;
326  }
327  
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)328  void delete_from_page_cache_batch(struct address_space *mapping,
329  				  struct folio_batch *fbatch)
330  {
331  	int i;
332  
333  	if (!folio_batch_count(fbatch))
334  		return;
335  
336  	spin_lock(&mapping->host->i_lock);
337  	xa_lock_irq(&mapping->i_pages);
338  	for (i = 0; i < folio_batch_count(fbatch); i++) {
339  		struct folio *folio = fbatch->folios[i];
340  
341  		trace_mm_filemap_delete_from_page_cache(folio);
342  		filemap_unaccount_folio(mapping, folio);
343  	}
344  	page_cache_delete_batch(mapping, fbatch);
345  	xa_unlock_irq(&mapping->i_pages);
346  	if (mapping_shrinkable(mapping))
347  		inode_add_lru(mapping->host);
348  	spin_unlock(&mapping->host->i_lock);
349  
350  	for (i = 0; i < folio_batch_count(fbatch); i++)
351  		filemap_free_folio(mapping, fbatch->folios[i]);
352  }
353  
filemap_check_errors(struct address_space * mapping)354  int filemap_check_errors(struct address_space *mapping)
355  {
356  	int ret = 0;
357  	/* Check for outstanding write errors */
358  	if (test_bit(AS_ENOSPC, &mapping->flags) &&
359  	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
360  		ret = -ENOSPC;
361  	if (test_bit(AS_EIO, &mapping->flags) &&
362  	    test_and_clear_bit(AS_EIO, &mapping->flags))
363  		ret = -EIO;
364  	return ret;
365  }
366  EXPORT_SYMBOL(filemap_check_errors);
367  
filemap_check_and_keep_errors(struct address_space * mapping)368  static int filemap_check_and_keep_errors(struct address_space *mapping)
369  {
370  	/* Check for outstanding write errors */
371  	if (test_bit(AS_EIO, &mapping->flags))
372  		return -EIO;
373  	if (test_bit(AS_ENOSPC, &mapping->flags))
374  		return -ENOSPC;
375  	return 0;
376  }
377  
378  /**
379   * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
380   * @mapping:	address space structure to write
381   * @wbc:	the writeback_control controlling the writeout
382   *
383   * Call writepages on the mapping using the provided wbc to control the
384   * writeout.
385   *
386   * Return: %0 on success, negative error code otherwise.
387   */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)388  int filemap_fdatawrite_wbc(struct address_space *mapping,
389  			   struct writeback_control *wbc)
390  {
391  	int ret;
392  
393  	if (!mapping_can_writeback(mapping) ||
394  	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
395  		return 0;
396  
397  	wbc_attach_fdatawrite_inode(wbc, mapping->host);
398  	ret = do_writepages(mapping, wbc);
399  	wbc_detach_inode(wbc);
400  	return ret;
401  }
402  EXPORT_SYMBOL(filemap_fdatawrite_wbc);
403  
404  /**
405   * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
406   * @mapping:	address space structure to write
407   * @start:	offset in bytes where the range starts
408   * @end:	offset in bytes where the range ends (inclusive)
409   * @sync_mode:	enable synchronous operation
410   *
411   * Start writeback against all of a mapping's dirty pages that lie
412   * within the byte offsets <start, end> inclusive.
413   *
414   * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
415   * opposed to a regular memory cleansing writeback.  The difference between
416   * these two operations is that if a dirty page/buffer is encountered, it must
417   * be waited upon, and not just skipped over.
418   *
419   * Return: %0 on success, negative error code otherwise.
420   */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)421  int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
422  				loff_t end, int sync_mode)
423  {
424  	struct writeback_control wbc = {
425  		.sync_mode = sync_mode,
426  		.nr_to_write = LONG_MAX,
427  		.range_start = start,
428  		.range_end = end,
429  	};
430  
431  	return filemap_fdatawrite_wbc(mapping, &wbc);
432  }
433  
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)434  static inline int __filemap_fdatawrite(struct address_space *mapping,
435  	int sync_mode)
436  {
437  	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
438  }
439  
filemap_fdatawrite(struct address_space * mapping)440  int filemap_fdatawrite(struct address_space *mapping)
441  {
442  	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
443  }
444  EXPORT_SYMBOL(filemap_fdatawrite);
445  
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)446  int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
447  				loff_t end)
448  {
449  	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
450  }
451  EXPORT_SYMBOL(filemap_fdatawrite_range);
452  
453  /**
454   * filemap_flush - mostly a non-blocking flush
455   * @mapping:	target address_space
456   *
457   * This is a mostly non-blocking flush.  Not suitable for data-integrity
458   * purposes - I/O may not be started against all dirty pages.
459   *
460   * Return: %0 on success, negative error code otherwise.
461   */
filemap_flush(struct address_space * mapping)462  int filemap_flush(struct address_space *mapping)
463  {
464  	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
465  }
466  EXPORT_SYMBOL(filemap_flush);
467  
468  /**
469   * filemap_range_has_page - check if a page exists in range.
470   * @mapping:           address space within which to check
471   * @start_byte:        offset in bytes where the range starts
472   * @end_byte:          offset in bytes where the range ends (inclusive)
473   *
474   * Find at least one page in the range supplied, usually used to check if
475   * direct writing in this range will trigger a writeback.
476   *
477   * Return: %true if at least one page exists in the specified range,
478   * %false otherwise.
479   */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)480  bool filemap_range_has_page(struct address_space *mapping,
481  			   loff_t start_byte, loff_t end_byte)
482  {
483  	struct folio *folio;
484  	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
485  	pgoff_t max = end_byte >> PAGE_SHIFT;
486  
487  	if (end_byte < start_byte)
488  		return false;
489  
490  	rcu_read_lock();
491  	for (;;) {
492  		folio = xas_find(&xas, max);
493  		if (xas_retry(&xas, folio))
494  			continue;
495  		/* Shadow entries don't count */
496  		if (xa_is_value(folio))
497  			continue;
498  		/*
499  		 * We don't need to try to pin this page; we're about to
500  		 * release the RCU lock anyway.  It is enough to know that
501  		 * there was a page here recently.
502  		 */
503  		break;
504  	}
505  	rcu_read_unlock();
506  
507  	return folio != NULL;
508  }
509  EXPORT_SYMBOL(filemap_range_has_page);
510  
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)511  static void __filemap_fdatawait_range(struct address_space *mapping,
512  				     loff_t start_byte, loff_t end_byte)
513  {
514  	pgoff_t index = start_byte >> PAGE_SHIFT;
515  	pgoff_t end = end_byte >> PAGE_SHIFT;
516  	struct folio_batch fbatch;
517  	unsigned nr_folios;
518  
519  	folio_batch_init(&fbatch);
520  
521  	while (index <= end) {
522  		unsigned i;
523  
524  		nr_folios = filemap_get_folios_tag(mapping, &index, end,
525  				PAGECACHE_TAG_WRITEBACK, &fbatch);
526  
527  		if (!nr_folios)
528  			break;
529  
530  		for (i = 0; i < nr_folios; i++) {
531  			struct folio *folio = fbatch.folios[i];
532  
533  			folio_wait_writeback(folio);
534  		}
535  		folio_batch_release(&fbatch);
536  		cond_resched();
537  	}
538  }
539  
540  /**
541   * filemap_fdatawait_range - wait for writeback to complete
542   * @mapping:		address space structure to wait for
543   * @start_byte:		offset in bytes where the range starts
544   * @end_byte:		offset in bytes where the range ends (inclusive)
545   *
546   * Walk the list of under-writeback pages of the given address space
547   * in the given range and wait for all of them.  Check error status of
548   * the address space and return it.
549   *
550   * Since the error status of the address space is cleared by this function,
551   * callers are responsible for checking the return value and handling and/or
552   * reporting the error.
553   *
554   * Return: error status of the address space.
555   */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)556  int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557  			    loff_t end_byte)
558  {
559  	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560  	return filemap_check_errors(mapping);
561  }
562  EXPORT_SYMBOL(filemap_fdatawait_range);
563  
564  /**
565   * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566   * @mapping:		address space structure to wait for
567   * @start_byte:		offset in bytes where the range starts
568   * @end_byte:		offset in bytes where the range ends (inclusive)
569   *
570   * Walk the list of under-writeback pages of the given address space in the
571   * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
572   * this function does not clear error status of the address space.
573   *
574   * Use this function if callers don't handle errors themselves.  Expected
575   * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576   * fsfreeze(8)
577   */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)578  int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579  		loff_t start_byte, loff_t end_byte)
580  {
581  	__filemap_fdatawait_range(mapping, start_byte, end_byte);
582  	return filemap_check_and_keep_errors(mapping);
583  }
584  EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585  
586  /**
587   * file_fdatawait_range - wait for writeback to complete
588   * @file:		file pointing to address space structure to wait for
589   * @start_byte:		offset in bytes where the range starts
590   * @end_byte:		offset in bytes where the range ends (inclusive)
591   *
592   * Walk the list of under-writeback pages of the address space that file
593   * refers to, in the given range and wait for all of them.  Check error
594   * status of the address space vs. the file->f_wb_err cursor and return it.
595   *
596   * Since the error status of the file is advanced by this function,
597   * callers are responsible for checking the return value and handling and/or
598   * reporting the error.
599   *
600   * Return: error status of the address space vs. the file->f_wb_err cursor.
601   */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)602  int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603  {
604  	struct address_space *mapping = file->f_mapping;
605  
606  	__filemap_fdatawait_range(mapping, start_byte, end_byte);
607  	return file_check_and_advance_wb_err(file);
608  }
609  EXPORT_SYMBOL(file_fdatawait_range);
610  
611  /**
612   * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613   * @mapping: address space structure to wait for
614   *
615   * Walk the list of under-writeback pages of the given address space
616   * and wait for all of them.  Unlike filemap_fdatawait(), this function
617   * does not clear error status of the address space.
618   *
619   * Use this function if callers don't handle errors themselves.  Expected
620   * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621   * fsfreeze(8)
622   *
623   * Return: error status of the address space.
624   */
filemap_fdatawait_keep_errors(struct address_space * mapping)625  int filemap_fdatawait_keep_errors(struct address_space *mapping)
626  {
627  	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628  	return filemap_check_and_keep_errors(mapping);
629  }
630  EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631  
632  /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)633  static bool mapping_needs_writeback(struct address_space *mapping)
634  {
635  	return mapping->nrpages;
636  }
637  
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)638  bool filemap_range_has_writeback(struct address_space *mapping,
639  				 loff_t start_byte, loff_t end_byte)
640  {
641  	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642  	pgoff_t max = end_byte >> PAGE_SHIFT;
643  	struct folio *folio;
644  
645  	if (end_byte < start_byte)
646  		return false;
647  
648  	rcu_read_lock();
649  	xas_for_each(&xas, folio, max) {
650  		if (xas_retry(&xas, folio))
651  			continue;
652  		if (xa_is_value(folio))
653  			continue;
654  		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655  				folio_test_writeback(folio))
656  			break;
657  	}
658  	rcu_read_unlock();
659  	return folio != NULL;
660  }
661  EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662  
663  /**
664   * filemap_write_and_wait_range - write out & wait on a file range
665   * @mapping:	the address_space for the pages
666   * @lstart:	offset in bytes where the range starts
667   * @lend:	offset in bytes where the range ends (inclusive)
668   *
669   * Write out and wait upon file offsets lstart->lend, inclusive.
670   *
671   * Note that @lend is inclusive (describes the last byte to be written) so
672   * that this function can be used to write to the very end-of-file (end = -1).
673   *
674   * Return: error status of the address space.
675   */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)676  int filemap_write_and_wait_range(struct address_space *mapping,
677  				 loff_t lstart, loff_t lend)
678  {
679  	int err = 0, err2;
680  
681  	if (lend < lstart)
682  		return 0;
683  
684  	if (mapping_needs_writeback(mapping)) {
685  		err = __filemap_fdatawrite_range(mapping, lstart, lend,
686  						 WB_SYNC_ALL);
687  		/*
688  		 * Even if the above returned error, the pages may be
689  		 * written partially (e.g. -ENOSPC), so we wait for it.
690  		 * But the -EIO is special case, it may indicate the worst
691  		 * thing (e.g. bug) happened, so we avoid waiting for it.
692  		 */
693  		if (err != -EIO)
694  			__filemap_fdatawait_range(mapping, lstart, lend);
695  	}
696  	err2 = filemap_check_errors(mapping);
697  	if (!err)
698  		err = err2;
699  	return err;
700  }
701  EXPORT_SYMBOL(filemap_write_and_wait_range);
702  
__filemap_set_wb_err(struct address_space * mapping,int err)703  void __filemap_set_wb_err(struct address_space *mapping, int err)
704  {
705  	errseq_t eseq = errseq_set(&mapping->wb_err, err);
706  
707  	trace_filemap_set_wb_err(mapping, eseq);
708  }
709  EXPORT_SYMBOL(__filemap_set_wb_err);
710  
711  /**
712   * file_check_and_advance_wb_err - report wb error (if any) that was previously
713   * 				   and advance wb_err to current one
714   * @file: struct file on which the error is being reported
715   *
716   * When userland calls fsync (or something like nfsd does the equivalent), we
717   * want to report any writeback errors that occurred since the last fsync (or
718   * since the file was opened if there haven't been any).
719   *
720   * Grab the wb_err from the mapping. If it matches what we have in the file,
721   * then just quickly return 0. The file is all caught up.
722   *
723   * If it doesn't match, then take the mapping value, set the "seen" flag in
724   * it and try to swap it into place. If it works, or another task beat us
725   * to it with the new value, then update the f_wb_err and return the error
726   * portion. The error at this point must be reported via proper channels
727   * (a'la fsync, or NFS COMMIT operation, etc.).
728   *
729   * While we handle mapping->wb_err with atomic operations, the f_wb_err
730   * value is protected by the f_lock since we must ensure that it reflects
731   * the latest value swapped in for this file descriptor.
732   *
733   * Return: %0 on success, negative error code otherwise.
734   */
file_check_and_advance_wb_err(struct file * file)735  int file_check_and_advance_wb_err(struct file *file)
736  {
737  	int err = 0;
738  	errseq_t old = READ_ONCE(file->f_wb_err);
739  	struct address_space *mapping = file->f_mapping;
740  
741  	/* Locklessly handle the common case where nothing has changed */
742  	if (errseq_check(&mapping->wb_err, old)) {
743  		/* Something changed, must use slow path */
744  		spin_lock(&file->f_lock);
745  		old = file->f_wb_err;
746  		err = errseq_check_and_advance(&mapping->wb_err,
747  						&file->f_wb_err);
748  		trace_file_check_and_advance_wb_err(file, old);
749  		spin_unlock(&file->f_lock);
750  	}
751  
752  	/*
753  	 * We're mostly using this function as a drop in replacement for
754  	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755  	 * that the legacy code would have had on these flags.
756  	 */
757  	clear_bit(AS_EIO, &mapping->flags);
758  	clear_bit(AS_ENOSPC, &mapping->flags);
759  	return err;
760  }
761  EXPORT_SYMBOL(file_check_and_advance_wb_err);
762  
763  /**
764   * file_write_and_wait_range - write out & wait on a file range
765   * @file:	file pointing to address_space with pages
766   * @lstart:	offset in bytes where the range starts
767   * @lend:	offset in bytes where the range ends (inclusive)
768   *
769   * Write out and wait upon file offsets lstart->lend, inclusive.
770   *
771   * Note that @lend is inclusive (describes the last byte to be written) so
772   * that this function can be used to write to the very end-of-file (end = -1).
773   *
774   * After writing out and waiting on the data, we check and advance the
775   * f_wb_err cursor to the latest value, and return any errors detected there.
776   *
777   * Return: %0 on success, negative error code otherwise.
778   */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)779  int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780  {
781  	int err = 0, err2;
782  	struct address_space *mapping = file->f_mapping;
783  
784  	if (lend < lstart)
785  		return 0;
786  
787  	if (mapping_needs_writeback(mapping)) {
788  		err = __filemap_fdatawrite_range(mapping, lstart, lend,
789  						 WB_SYNC_ALL);
790  		/* See comment of filemap_write_and_wait() */
791  		if (err != -EIO)
792  			__filemap_fdatawait_range(mapping, lstart, lend);
793  	}
794  	err2 = file_check_and_advance_wb_err(file);
795  	if (!err)
796  		err = err2;
797  	return err;
798  }
799  EXPORT_SYMBOL(file_write_and_wait_range);
800  
801  /**
802   * replace_page_cache_folio - replace a pagecache folio with a new one
803   * @old:	folio to be replaced
804   * @new:	folio to replace with
805   *
806   * This function replaces a folio in the pagecache with a new one.  On
807   * success it acquires the pagecache reference for the new folio and
808   * drops it for the old folio.  Both the old and new folios must be
809   * locked.  This function does not add the new folio to the LRU, the
810   * caller must do that.
811   *
812   * The remove + add is atomic.  This function cannot fail.
813   */
replace_page_cache_folio(struct folio * old,struct folio * new)814  void replace_page_cache_folio(struct folio *old, struct folio *new)
815  {
816  	struct address_space *mapping = old->mapping;
817  	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818  	pgoff_t offset = old->index;
819  	XA_STATE(xas, &mapping->i_pages, offset);
820  
821  	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822  	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823  	VM_BUG_ON_FOLIO(new->mapping, new);
824  
825  	folio_get(new);
826  	new->mapping = mapping;
827  	new->index = offset;
828  
829  	mem_cgroup_replace_folio(old, new);
830  
831  	xas_lock_irq(&xas);
832  	xas_store(&xas, new);
833  
834  	old->mapping = NULL;
835  	/* hugetlb pages do not participate in page cache accounting. */
836  	if (!folio_test_hugetlb(old))
837  		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838  	if (!folio_test_hugetlb(new))
839  		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
840  	if (folio_test_swapbacked(old))
841  		__lruvec_stat_sub_folio(old, NR_SHMEM);
842  	if (folio_test_swapbacked(new))
843  		__lruvec_stat_add_folio(new, NR_SHMEM);
844  	xas_unlock_irq(&xas);
845  	if (free_folio)
846  		free_folio(old);
847  	folio_put(old);
848  }
849  EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850  
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)851  noinline int __filemap_add_folio(struct address_space *mapping,
852  		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853  {
854  	XA_STATE(xas, &mapping->i_pages, index);
855  	void *alloced_shadow = NULL;
856  	int alloced_order = 0;
857  	bool huge;
858  	long nr;
859  
860  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
861  	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
862  	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
863  			folio);
864  	mapping_set_update(&xas, mapping);
865  
866  	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
867  	xas_set_order(&xas, index, folio_order(folio));
868  	huge = folio_test_hugetlb(folio);
869  	nr = folio_nr_pages(folio);
870  
871  	gfp &= GFP_RECLAIM_MASK;
872  	folio_ref_add(folio, nr);
873  	folio->mapping = mapping;
874  	folio->index = xas.xa_index;
875  
876  	for (;;) {
877  		int order = -1, split_order = 0;
878  		void *entry, *old = NULL;
879  
880  		xas_lock_irq(&xas);
881  		xas_for_each_conflict(&xas, entry) {
882  			old = entry;
883  			if (!xa_is_value(entry)) {
884  				xas_set_err(&xas, -EEXIST);
885  				goto unlock;
886  			}
887  			/*
888  			 * If a larger entry exists,
889  			 * it will be the first and only entry iterated.
890  			 */
891  			if (order == -1)
892  				order = xas_get_order(&xas);
893  		}
894  
895  		/* entry may have changed before we re-acquire the lock */
896  		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
897  			xas_destroy(&xas);
898  			alloced_order = 0;
899  		}
900  
901  		if (old) {
902  			if (order > 0 && order > folio_order(folio)) {
903  				/* How to handle large swap entries? */
904  				BUG_ON(shmem_mapping(mapping));
905  				if (!alloced_order) {
906  					split_order = order;
907  					goto unlock;
908  				}
909  				xas_split(&xas, old, order);
910  				xas_reset(&xas);
911  			}
912  			if (shadowp)
913  				*shadowp = old;
914  		}
915  
916  		xas_store(&xas, folio);
917  		if (xas_error(&xas))
918  			goto unlock;
919  
920  		mapping->nrpages += nr;
921  
922  		/* hugetlb pages do not participate in page cache accounting */
923  		if (!huge) {
924  			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
925  			if (folio_test_pmd_mappable(folio))
926  				__lruvec_stat_mod_folio(folio,
927  						NR_FILE_THPS, nr);
928  		}
929  
930  unlock:
931  		xas_unlock_irq(&xas);
932  
933  		/* split needed, alloc here and retry. */
934  		if (split_order) {
935  			xas_split_alloc(&xas, old, split_order, gfp);
936  			if (xas_error(&xas))
937  				goto error;
938  			alloced_shadow = old;
939  			alloced_order = split_order;
940  			xas_reset(&xas);
941  			continue;
942  		}
943  
944  		if (!xas_nomem(&xas, gfp))
945  			break;
946  	}
947  
948  	if (xas_error(&xas))
949  		goto error;
950  
951  	trace_mm_filemap_add_to_page_cache(folio);
952  	return 0;
953  error:
954  	folio->mapping = NULL;
955  	/* Leave page->index set: truncation relies upon it */
956  	folio_put_refs(folio, nr);
957  	return xas_error(&xas);
958  }
959  ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
960  
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)961  int filemap_add_folio(struct address_space *mapping, struct folio *folio,
962  				pgoff_t index, gfp_t gfp)
963  {
964  	void *shadow = NULL;
965  	int ret;
966  
967  	ret = mem_cgroup_charge(folio, NULL, gfp);
968  	if (ret)
969  		return ret;
970  
971  	__folio_set_locked(folio);
972  	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
973  	if (unlikely(ret)) {
974  		mem_cgroup_uncharge(folio);
975  		__folio_clear_locked(folio);
976  	} else {
977  		/*
978  		 * The folio might have been evicted from cache only
979  		 * recently, in which case it should be activated like
980  		 * any other repeatedly accessed folio.
981  		 * The exception is folios getting rewritten; evicting other
982  		 * data from the working set, only to cache data that will
983  		 * get overwritten with something else, is a waste of memory.
984  		 */
985  		WARN_ON_ONCE(folio_test_active(folio));
986  		if (!(gfp & __GFP_WRITE) && shadow)
987  			workingset_refault(folio, shadow);
988  		folio_add_lru(folio);
989  	}
990  	return ret;
991  }
992  EXPORT_SYMBOL_GPL(filemap_add_folio);
993  
994  #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)995  struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
996  {
997  	int n;
998  	struct folio *folio;
999  
1000  	if (cpuset_do_page_mem_spread()) {
1001  		unsigned int cpuset_mems_cookie;
1002  		do {
1003  			cpuset_mems_cookie = read_mems_allowed_begin();
1004  			n = cpuset_mem_spread_node();
1005  			folio = __folio_alloc_node_noprof(gfp, order, n);
1006  		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1007  
1008  		return folio;
1009  	}
1010  	return folio_alloc_noprof(gfp, order);
1011  }
1012  EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1013  #endif
1014  
1015  /*
1016   * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1017   *
1018   * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1019   *
1020   * @mapping1: the first mapping to lock
1021   * @mapping2: the second mapping to lock
1022   */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1023  void filemap_invalidate_lock_two(struct address_space *mapping1,
1024  				 struct address_space *mapping2)
1025  {
1026  	if (mapping1 > mapping2)
1027  		swap(mapping1, mapping2);
1028  	if (mapping1)
1029  		down_write(&mapping1->invalidate_lock);
1030  	if (mapping2 && mapping1 != mapping2)
1031  		down_write_nested(&mapping2->invalidate_lock, 1);
1032  }
1033  EXPORT_SYMBOL(filemap_invalidate_lock_two);
1034  
1035  /*
1036   * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1037   *
1038   * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1039   *
1040   * @mapping1: the first mapping to unlock
1041   * @mapping2: the second mapping to unlock
1042   */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1043  void filemap_invalidate_unlock_two(struct address_space *mapping1,
1044  				   struct address_space *mapping2)
1045  {
1046  	if (mapping1)
1047  		up_write(&mapping1->invalidate_lock);
1048  	if (mapping2 && mapping1 != mapping2)
1049  		up_write(&mapping2->invalidate_lock);
1050  }
1051  EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1052  
1053  /*
1054   * In order to wait for pages to become available there must be
1055   * waitqueues associated with pages. By using a hash table of
1056   * waitqueues where the bucket discipline is to maintain all
1057   * waiters on the same queue and wake all when any of the pages
1058   * become available, and for the woken contexts to check to be
1059   * sure the appropriate page became available, this saves space
1060   * at a cost of "thundering herd" phenomena during rare hash
1061   * collisions.
1062   */
1063  #define PAGE_WAIT_TABLE_BITS 8
1064  #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1065  static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1066  
folio_waitqueue(struct folio * folio)1067  static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1068  {
1069  	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1070  }
1071  
pagecache_init(void)1072  void __init pagecache_init(void)
1073  {
1074  	int i;
1075  
1076  	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1077  		init_waitqueue_head(&folio_wait_table[i]);
1078  
1079  	page_writeback_init();
1080  }
1081  
1082  /*
1083   * The page wait code treats the "wait->flags" somewhat unusually, because
1084   * we have multiple different kinds of waits, not just the usual "exclusive"
1085   * one.
1086   *
1087   * We have:
1088   *
1089   *  (a) no special bits set:
1090   *
1091   *	We're just waiting for the bit to be released, and when a waker
1092   *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1093   *	and remove it from the wait queue.
1094   *
1095   *	Simple and straightforward.
1096   *
1097   *  (b) WQ_FLAG_EXCLUSIVE:
1098   *
1099   *	The waiter is waiting to get the lock, and only one waiter should
1100   *	be woken up to avoid any thundering herd behavior. We'll set the
1101   *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1102   *
1103   *	This is the traditional exclusive wait.
1104   *
1105   *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1106   *
1107   *	The waiter is waiting to get the bit, and additionally wants the
1108   *	lock to be transferred to it for fair lock behavior. If the lock
1109   *	cannot be taken, we stop walking the wait queue without waking
1110   *	the waiter.
1111   *
1112   *	This is the "fair lock handoff" case, and in addition to setting
1113   *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1114   *	that it now has the lock.
1115   */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1116  static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1117  {
1118  	unsigned int flags;
1119  	struct wait_page_key *key = arg;
1120  	struct wait_page_queue *wait_page
1121  		= container_of(wait, struct wait_page_queue, wait);
1122  
1123  	if (!wake_page_match(wait_page, key))
1124  		return 0;
1125  
1126  	/*
1127  	 * If it's a lock handoff wait, we get the bit for it, and
1128  	 * stop walking (and do not wake it up) if we can't.
1129  	 */
1130  	flags = wait->flags;
1131  	if (flags & WQ_FLAG_EXCLUSIVE) {
1132  		if (test_bit(key->bit_nr, &key->folio->flags))
1133  			return -1;
1134  		if (flags & WQ_FLAG_CUSTOM) {
1135  			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1136  				return -1;
1137  			flags |= WQ_FLAG_DONE;
1138  		}
1139  	}
1140  
1141  	/*
1142  	 * We are holding the wait-queue lock, but the waiter that
1143  	 * is waiting for this will be checking the flags without
1144  	 * any locking.
1145  	 *
1146  	 * So update the flags atomically, and wake up the waiter
1147  	 * afterwards to avoid any races. This store-release pairs
1148  	 * with the load-acquire in folio_wait_bit_common().
1149  	 */
1150  	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1151  	wake_up_state(wait->private, mode);
1152  
1153  	/*
1154  	 * Ok, we have successfully done what we're waiting for,
1155  	 * and we can unconditionally remove the wait entry.
1156  	 *
1157  	 * Note that this pairs with the "finish_wait()" in the
1158  	 * waiter, and has to be the absolute last thing we do.
1159  	 * After this list_del_init(&wait->entry) the wait entry
1160  	 * might be de-allocated and the process might even have
1161  	 * exited.
1162  	 */
1163  	list_del_init_careful(&wait->entry);
1164  	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1165  }
1166  
folio_wake_bit(struct folio * folio,int bit_nr)1167  static void folio_wake_bit(struct folio *folio, int bit_nr)
1168  {
1169  	wait_queue_head_t *q = folio_waitqueue(folio);
1170  	struct wait_page_key key;
1171  	unsigned long flags;
1172  
1173  	key.folio = folio;
1174  	key.bit_nr = bit_nr;
1175  	key.page_match = 0;
1176  
1177  	spin_lock_irqsave(&q->lock, flags);
1178  	__wake_up_locked_key(q, TASK_NORMAL, &key);
1179  
1180  	/*
1181  	 * It's possible to miss clearing waiters here, when we woke our page
1182  	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1183  	 * That's okay, it's a rare case. The next waker will clear it.
1184  	 *
1185  	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1186  	 * other), the flag may be cleared in the course of freeing the page;
1187  	 * but that is not required for correctness.
1188  	 */
1189  	if (!waitqueue_active(q) || !key.page_match)
1190  		folio_clear_waiters(folio);
1191  
1192  	spin_unlock_irqrestore(&q->lock, flags);
1193  }
1194  
1195  /*
1196   * A choice of three behaviors for folio_wait_bit_common():
1197   */
1198  enum behavior {
1199  	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1200  			 * __folio_lock() waiting on then setting PG_locked.
1201  			 */
1202  	SHARED,		/* Hold ref to page and check the bit when woken, like
1203  			 * folio_wait_writeback() waiting on PG_writeback.
1204  			 */
1205  	DROP,		/* Drop ref to page before wait, no check when woken,
1206  			 * like folio_put_wait_locked() on PG_locked.
1207  			 */
1208  };
1209  
1210  /*
1211   * Attempt to check (or get) the folio flag, and mark us done
1212   * if successful.
1213   */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1214  static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1215  					struct wait_queue_entry *wait)
1216  {
1217  	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1218  		if (test_and_set_bit(bit_nr, &folio->flags))
1219  			return false;
1220  	} else if (test_bit(bit_nr, &folio->flags))
1221  		return false;
1222  
1223  	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1224  	return true;
1225  }
1226  
1227  /* How many times do we accept lock stealing from under a waiter? */
1228  int sysctl_page_lock_unfairness = 5;
1229  
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1230  static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1231  		int state, enum behavior behavior)
1232  {
1233  	wait_queue_head_t *q = folio_waitqueue(folio);
1234  	int unfairness = sysctl_page_lock_unfairness;
1235  	struct wait_page_queue wait_page;
1236  	wait_queue_entry_t *wait = &wait_page.wait;
1237  	bool thrashing = false;
1238  	unsigned long pflags;
1239  	bool in_thrashing;
1240  
1241  	if (bit_nr == PG_locked &&
1242  	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1243  		delayacct_thrashing_start(&in_thrashing);
1244  		psi_memstall_enter(&pflags);
1245  		thrashing = true;
1246  	}
1247  
1248  	init_wait(wait);
1249  	wait->func = wake_page_function;
1250  	wait_page.folio = folio;
1251  	wait_page.bit_nr = bit_nr;
1252  
1253  repeat:
1254  	wait->flags = 0;
1255  	if (behavior == EXCLUSIVE) {
1256  		wait->flags = WQ_FLAG_EXCLUSIVE;
1257  		if (--unfairness < 0)
1258  			wait->flags |= WQ_FLAG_CUSTOM;
1259  	}
1260  
1261  	/*
1262  	 * Do one last check whether we can get the
1263  	 * page bit synchronously.
1264  	 *
1265  	 * Do the folio_set_waiters() marking before that
1266  	 * to let any waker we _just_ missed know they
1267  	 * need to wake us up (otherwise they'll never
1268  	 * even go to the slow case that looks at the
1269  	 * page queue), and add ourselves to the wait
1270  	 * queue if we need to sleep.
1271  	 *
1272  	 * This part needs to be done under the queue
1273  	 * lock to avoid races.
1274  	 */
1275  	spin_lock_irq(&q->lock);
1276  	folio_set_waiters(folio);
1277  	if (!folio_trylock_flag(folio, bit_nr, wait))
1278  		__add_wait_queue_entry_tail(q, wait);
1279  	spin_unlock_irq(&q->lock);
1280  
1281  	/*
1282  	 * From now on, all the logic will be based on
1283  	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1284  	 * see whether the page bit testing has already
1285  	 * been done by the wake function.
1286  	 *
1287  	 * We can drop our reference to the folio.
1288  	 */
1289  	if (behavior == DROP)
1290  		folio_put(folio);
1291  
1292  	/*
1293  	 * Note that until the "finish_wait()", or until
1294  	 * we see the WQ_FLAG_WOKEN flag, we need to
1295  	 * be very careful with the 'wait->flags', because
1296  	 * we may race with a waker that sets them.
1297  	 */
1298  	for (;;) {
1299  		unsigned int flags;
1300  
1301  		set_current_state(state);
1302  
1303  		/* Loop until we've been woken or interrupted */
1304  		flags = smp_load_acquire(&wait->flags);
1305  		if (!(flags & WQ_FLAG_WOKEN)) {
1306  			if (signal_pending_state(state, current))
1307  				break;
1308  
1309  			io_schedule();
1310  			continue;
1311  		}
1312  
1313  		/* If we were non-exclusive, we're done */
1314  		if (behavior != EXCLUSIVE)
1315  			break;
1316  
1317  		/* If the waker got the lock for us, we're done */
1318  		if (flags & WQ_FLAG_DONE)
1319  			break;
1320  
1321  		/*
1322  		 * Otherwise, if we're getting the lock, we need to
1323  		 * try to get it ourselves.
1324  		 *
1325  		 * And if that fails, we'll have to retry this all.
1326  		 */
1327  		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1328  			goto repeat;
1329  
1330  		wait->flags |= WQ_FLAG_DONE;
1331  		break;
1332  	}
1333  
1334  	/*
1335  	 * If a signal happened, this 'finish_wait()' may remove the last
1336  	 * waiter from the wait-queues, but the folio waiters bit will remain
1337  	 * set. That's ok. The next wakeup will take care of it, and trying
1338  	 * to do it here would be difficult and prone to races.
1339  	 */
1340  	finish_wait(q, wait);
1341  
1342  	if (thrashing) {
1343  		delayacct_thrashing_end(&in_thrashing);
1344  		psi_memstall_leave(&pflags);
1345  	}
1346  
1347  	/*
1348  	 * NOTE! The wait->flags weren't stable until we've done the
1349  	 * 'finish_wait()', and we could have exited the loop above due
1350  	 * to a signal, and had a wakeup event happen after the signal
1351  	 * test but before the 'finish_wait()'.
1352  	 *
1353  	 * So only after the finish_wait() can we reliably determine
1354  	 * if we got woken up or not, so we can now figure out the final
1355  	 * return value based on that state without races.
1356  	 *
1357  	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1358  	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1359  	 */
1360  	if (behavior == EXCLUSIVE)
1361  		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1362  
1363  	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1364  }
1365  
1366  #ifdef CONFIG_MIGRATION
1367  /**
1368   * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1369   * @entry: migration swap entry.
1370   * @ptl: already locked ptl. This function will drop the lock.
1371   *
1372   * Wait for a migration entry referencing the given page to be removed. This is
1373   * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1374   * this can be called without taking a reference on the page. Instead this
1375   * should be called while holding the ptl for the migration entry referencing
1376   * the page.
1377   *
1378   * Returns after unlocking the ptl.
1379   *
1380   * This follows the same logic as folio_wait_bit_common() so see the comments
1381   * there.
1382   */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1383  void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1384  	__releases(ptl)
1385  {
1386  	struct wait_page_queue wait_page;
1387  	wait_queue_entry_t *wait = &wait_page.wait;
1388  	bool thrashing = false;
1389  	unsigned long pflags;
1390  	bool in_thrashing;
1391  	wait_queue_head_t *q;
1392  	struct folio *folio = pfn_swap_entry_folio(entry);
1393  
1394  	q = folio_waitqueue(folio);
1395  	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1396  		delayacct_thrashing_start(&in_thrashing);
1397  		psi_memstall_enter(&pflags);
1398  		thrashing = true;
1399  	}
1400  
1401  	init_wait(wait);
1402  	wait->func = wake_page_function;
1403  	wait_page.folio = folio;
1404  	wait_page.bit_nr = PG_locked;
1405  	wait->flags = 0;
1406  
1407  	spin_lock_irq(&q->lock);
1408  	folio_set_waiters(folio);
1409  	if (!folio_trylock_flag(folio, PG_locked, wait))
1410  		__add_wait_queue_entry_tail(q, wait);
1411  	spin_unlock_irq(&q->lock);
1412  
1413  	/*
1414  	 * If a migration entry exists for the page the migration path must hold
1415  	 * a valid reference to the page, and it must take the ptl to remove the
1416  	 * migration entry. So the page is valid until the ptl is dropped.
1417  	 */
1418  	spin_unlock(ptl);
1419  
1420  	for (;;) {
1421  		unsigned int flags;
1422  
1423  		set_current_state(TASK_UNINTERRUPTIBLE);
1424  
1425  		/* Loop until we've been woken or interrupted */
1426  		flags = smp_load_acquire(&wait->flags);
1427  		if (!(flags & WQ_FLAG_WOKEN)) {
1428  			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1429  				break;
1430  
1431  			io_schedule();
1432  			continue;
1433  		}
1434  		break;
1435  	}
1436  
1437  	finish_wait(q, wait);
1438  
1439  	if (thrashing) {
1440  		delayacct_thrashing_end(&in_thrashing);
1441  		psi_memstall_leave(&pflags);
1442  	}
1443  }
1444  #endif
1445  
folio_wait_bit(struct folio * folio,int bit_nr)1446  void folio_wait_bit(struct folio *folio, int bit_nr)
1447  {
1448  	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1449  }
1450  EXPORT_SYMBOL(folio_wait_bit);
1451  
folio_wait_bit_killable(struct folio * folio,int bit_nr)1452  int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1453  {
1454  	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1455  }
1456  EXPORT_SYMBOL(folio_wait_bit_killable);
1457  
1458  /**
1459   * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1460   * @folio: The folio to wait for.
1461   * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1462   *
1463   * The caller should hold a reference on @folio.  They expect the page to
1464   * become unlocked relatively soon, but do not wish to hold up migration
1465   * (for example) by holding the reference while waiting for the folio to
1466   * come unlocked.  After this function returns, the caller should not
1467   * dereference @folio.
1468   *
1469   * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1470   */
folio_put_wait_locked(struct folio * folio,int state)1471  static int folio_put_wait_locked(struct folio *folio, int state)
1472  {
1473  	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1474  }
1475  
1476  /**
1477   * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1478   * @folio: Folio defining the wait queue of interest
1479   * @waiter: Waiter to add to the queue
1480   *
1481   * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1482   */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1483  void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1484  {
1485  	wait_queue_head_t *q = folio_waitqueue(folio);
1486  	unsigned long flags;
1487  
1488  	spin_lock_irqsave(&q->lock, flags);
1489  	__add_wait_queue_entry_tail(q, waiter);
1490  	folio_set_waiters(folio);
1491  	spin_unlock_irqrestore(&q->lock, flags);
1492  }
1493  EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1494  
1495  /**
1496   * folio_unlock - Unlock a locked folio.
1497   * @folio: The folio.
1498   *
1499   * Unlocks the folio and wakes up any thread sleeping on the page lock.
1500   *
1501   * Context: May be called from interrupt or process context.  May not be
1502   * called from NMI context.
1503   */
folio_unlock(struct folio * folio)1504  void folio_unlock(struct folio *folio)
1505  {
1506  	/* Bit 7 allows x86 to check the byte's sign bit */
1507  	BUILD_BUG_ON(PG_waiters != 7);
1508  	BUILD_BUG_ON(PG_locked > 7);
1509  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510  	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1511  		folio_wake_bit(folio, PG_locked);
1512  }
1513  EXPORT_SYMBOL(folio_unlock);
1514  
1515  /**
1516   * folio_end_read - End read on a folio.
1517   * @folio: The folio.
1518   * @success: True if all reads completed successfully.
1519   *
1520   * When all reads against a folio have completed, filesystems should
1521   * call this function to let the pagecache know that no more reads
1522   * are outstanding.  This will unlock the folio and wake up any thread
1523   * sleeping on the lock.  The folio will also be marked uptodate if all
1524   * reads succeeded.
1525   *
1526   * Context: May be called from interrupt or process context.  May not be
1527   * called from NMI context.
1528   */
folio_end_read(struct folio * folio,bool success)1529  void folio_end_read(struct folio *folio, bool success)
1530  {
1531  	unsigned long mask = 1 << PG_locked;
1532  
1533  	/* Must be in bottom byte for x86 to work */
1534  	BUILD_BUG_ON(PG_uptodate > 7);
1535  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1536  	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1537  
1538  	if (likely(success))
1539  		mask |= 1 << PG_uptodate;
1540  	if (folio_xor_flags_has_waiters(folio, mask))
1541  		folio_wake_bit(folio, PG_locked);
1542  }
1543  EXPORT_SYMBOL(folio_end_read);
1544  
1545  /**
1546   * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1547   * @folio: The folio.
1548   *
1549   * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1550   * it.  The folio reference held for PG_private_2 being set is released.
1551   *
1552   * This is, for example, used when a netfs folio is being written to a local
1553   * disk cache, thereby allowing writes to the cache for the same folio to be
1554   * serialised.
1555   */
folio_end_private_2(struct folio * folio)1556  void folio_end_private_2(struct folio *folio)
1557  {
1558  	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1559  	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1560  	folio_wake_bit(folio, PG_private_2);
1561  	folio_put(folio);
1562  }
1563  EXPORT_SYMBOL(folio_end_private_2);
1564  
1565  /**
1566   * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1567   * @folio: The folio to wait on.
1568   *
1569   * Wait for PG_private_2 to be cleared on a folio.
1570   */
folio_wait_private_2(struct folio * folio)1571  void folio_wait_private_2(struct folio *folio)
1572  {
1573  	while (folio_test_private_2(folio))
1574  		folio_wait_bit(folio, PG_private_2);
1575  }
1576  EXPORT_SYMBOL(folio_wait_private_2);
1577  
1578  /**
1579   * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1580   * @folio: The folio to wait on.
1581   *
1582   * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1583   * received by the calling task.
1584   *
1585   * Return:
1586   * - 0 if successful.
1587   * - -EINTR if a fatal signal was encountered.
1588   */
folio_wait_private_2_killable(struct folio * folio)1589  int folio_wait_private_2_killable(struct folio *folio)
1590  {
1591  	int ret = 0;
1592  
1593  	while (folio_test_private_2(folio)) {
1594  		ret = folio_wait_bit_killable(folio, PG_private_2);
1595  		if (ret < 0)
1596  			break;
1597  	}
1598  
1599  	return ret;
1600  }
1601  EXPORT_SYMBOL(folio_wait_private_2_killable);
1602  
1603  /**
1604   * folio_end_writeback - End writeback against a folio.
1605   * @folio: The folio.
1606   *
1607   * The folio must actually be under writeback.
1608   *
1609   * Context: May be called from process or interrupt context.
1610   */
folio_end_writeback(struct folio * folio)1611  void folio_end_writeback(struct folio *folio)
1612  {
1613  	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1614  
1615  	/*
1616  	 * folio_test_clear_reclaim() could be used here but it is an
1617  	 * atomic operation and overkill in this particular case. Failing
1618  	 * to shuffle a folio marked for immediate reclaim is too mild
1619  	 * a gain to justify taking an atomic operation penalty at the
1620  	 * end of every folio writeback.
1621  	 */
1622  	if (folio_test_reclaim(folio)) {
1623  		folio_clear_reclaim(folio);
1624  		folio_rotate_reclaimable(folio);
1625  	}
1626  
1627  	/*
1628  	 * Writeback does not hold a folio reference of its own, relying
1629  	 * on truncation to wait for the clearing of PG_writeback.
1630  	 * But here we must make sure that the folio is not freed and
1631  	 * reused before the folio_wake_bit().
1632  	 */
1633  	folio_get(folio);
1634  	if (__folio_end_writeback(folio))
1635  		folio_wake_bit(folio, PG_writeback);
1636  	acct_reclaim_writeback(folio);
1637  	folio_put(folio);
1638  }
1639  EXPORT_SYMBOL(folio_end_writeback);
1640  
1641  /**
1642   * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1643   * @folio: The folio to lock
1644   */
__folio_lock(struct folio * folio)1645  void __folio_lock(struct folio *folio)
1646  {
1647  	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1648  				EXCLUSIVE);
1649  }
1650  EXPORT_SYMBOL(__folio_lock);
1651  
__folio_lock_killable(struct folio * folio)1652  int __folio_lock_killable(struct folio *folio)
1653  {
1654  	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1655  					EXCLUSIVE);
1656  }
1657  EXPORT_SYMBOL_GPL(__folio_lock_killable);
1658  
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1659  static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1660  {
1661  	struct wait_queue_head *q = folio_waitqueue(folio);
1662  	int ret;
1663  
1664  	wait->folio = folio;
1665  	wait->bit_nr = PG_locked;
1666  
1667  	spin_lock_irq(&q->lock);
1668  	__add_wait_queue_entry_tail(q, &wait->wait);
1669  	folio_set_waiters(folio);
1670  	ret = !folio_trylock(folio);
1671  	/*
1672  	 * If we were successful now, we know we're still on the
1673  	 * waitqueue as we're still under the lock. This means it's
1674  	 * safe to remove and return success, we know the callback
1675  	 * isn't going to trigger.
1676  	 */
1677  	if (!ret)
1678  		__remove_wait_queue(q, &wait->wait);
1679  	else
1680  		ret = -EIOCBQUEUED;
1681  	spin_unlock_irq(&q->lock);
1682  	return ret;
1683  }
1684  
1685  /*
1686   * Return values:
1687   * 0 - folio is locked.
1688   * non-zero - folio is not locked.
1689   *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1690   *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1691   *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1692   *
1693   * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1694   * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1695   */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1696  vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1697  {
1698  	unsigned int flags = vmf->flags;
1699  
1700  	if (fault_flag_allow_retry_first(flags)) {
1701  		/*
1702  		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1703  		 * released even though returning VM_FAULT_RETRY.
1704  		 */
1705  		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1706  			return VM_FAULT_RETRY;
1707  
1708  		release_fault_lock(vmf);
1709  		if (flags & FAULT_FLAG_KILLABLE)
1710  			folio_wait_locked_killable(folio);
1711  		else
1712  			folio_wait_locked(folio);
1713  		return VM_FAULT_RETRY;
1714  	}
1715  	if (flags & FAULT_FLAG_KILLABLE) {
1716  		bool ret;
1717  
1718  		ret = __folio_lock_killable(folio);
1719  		if (ret) {
1720  			release_fault_lock(vmf);
1721  			return VM_FAULT_RETRY;
1722  		}
1723  	} else {
1724  		__folio_lock(folio);
1725  	}
1726  
1727  	return 0;
1728  }
1729  
1730  /**
1731   * page_cache_next_miss() - Find the next gap in the page cache.
1732   * @mapping: Mapping.
1733   * @index: Index.
1734   * @max_scan: Maximum range to search.
1735   *
1736   * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1737   * gap with the lowest index.
1738   *
1739   * This function may be called under the rcu_read_lock.  However, this will
1740   * not atomically search a snapshot of the cache at a single point in time.
1741   * For example, if a gap is created at index 5, then subsequently a gap is
1742   * created at index 10, page_cache_next_miss covering both indices may
1743   * return 10 if called under the rcu_read_lock.
1744   *
1745   * Return: The index of the gap if found, otherwise an index outside the
1746   * range specified (in which case 'return - index >= max_scan' will be true).
1747   * In the rare case of index wrap-around, 0 will be returned.
1748   */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1749  pgoff_t page_cache_next_miss(struct address_space *mapping,
1750  			     pgoff_t index, unsigned long max_scan)
1751  {
1752  	XA_STATE(xas, &mapping->i_pages, index);
1753  
1754  	while (max_scan--) {
1755  		void *entry = xas_next(&xas);
1756  		if (!entry || xa_is_value(entry))
1757  			return xas.xa_index;
1758  		if (xas.xa_index == 0)
1759  			return 0;
1760  	}
1761  
1762  	return index + max_scan;
1763  }
1764  EXPORT_SYMBOL(page_cache_next_miss);
1765  
1766  /**
1767   * page_cache_prev_miss() - Find the previous gap in the page cache.
1768   * @mapping: Mapping.
1769   * @index: Index.
1770   * @max_scan: Maximum range to search.
1771   *
1772   * Search the range [max(index - max_scan + 1, 0), index] for the
1773   * gap with the highest index.
1774   *
1775   * This function may be called under the rcu_read_lock.  However, this will
1776   * not atomically search a snapshot of the cache at a single point in time.
1777   * For example, if a gap is created at index 10, then subsequently a gap is
1778   * created at index 5, page_cache_prev_miss() covering both indices may
1779   * return 5 if called under the rcu_read_lock.
1780   *
1781   * Return: The index of the gap if found, otherwise an index outside the
1782   * range specified (in which case 'index - return >= max_scan' will be true).
1783   * In the rare case of wrap-around, ULONG_MAX will be returned.
1784   */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1785  pgoff_t page_cache_prev_miss(struct address_space *mapping,
1786  			     pgoff_t index, unsigned long max_scan)
1787  {
1788  	XA_STATE(xas, &mapping->i_pages, index);
1789  
1790  	while (max_scan--) {
1791  		void *entry = xas_prev(&xas);
1792  		if (!entry || xa_is_value(entry))
1793  			break;
1794  		if (xas.xa_index == ULONG_MAX)
1795  			break;
1796  	}
1797  
1798  	return xas.xa_index;
1799  }
1800  EXPORT_SYMBOL(page_cache_prev_miss);
1801  
1802  /*
1803   * Lockless page cache protocol:
1804   * On the lookup side:
1805   * 1. Load the folio from i_pages
1806   * 2. Increment the refcount if it's not zero
1807   * 3. If the folio is not found by xas_reload(), put the refcount and retry
1808   *
1809   * On the removal side:
1810   * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1811   * B. Remove the page from i_pages
1812   * C. Return the page to the page allocator
1813   *
1814   * This means that any page may have its reference count temporarily
1815   * increased by a speculative page cache (or GUP-fast) lookup as it can
1816   * be allocated by another user before the RCU grace period expires.
1817   * Because the refcount temporarily acquired here may end up being the
1818   * last refcount on the page, any page allocation must be freeable by
1819   * folio_put().
1820   */
1821  
1822  /*
1823   * filemap_get_entry - Get a page cache entry.
1824   * @mapping: the address_space to search
1825   * @index: The page cache index.
1826   *
1827   * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1828   * it is returned with an increased refcount.  If it is a shadow entry
1829   * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1830   * it is returned without further action.
1831   *
1832   * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1833   */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1834  void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1835  {
1836  	XA_STATE(xas, &mapping->i_pages, index);
1837  	struct folio *folio;
1838  
1839  	rcu_read_lock();
1840  repeat:
1841  	xas_reset(&xas);
1842  	folio = xas_load(&xas);
1843  	if (xas_retry(&xas, folio))
1844  		goto repeat;
1845  	/*
1846  	 * A shadow entry of a recently evicted page, or a swap entry from
1847  	 * shmem/tmpfs.  Return it without attempting to raise page count.
1848  	 */
1849  	if (!folio || xa_is_value(folio))
1850  		goto out;
1851  
1852  	if (!folio_try_get(folio))
1853  		goto repeat;
1854  
1855  	if (unlikely(folio != xas_reload(&xas))) {
1856  		folio_put(folio);
1857  		goto repeat;
1858  	}
1859  out:
1860  	rcu_read_unlock();
1861  
1862  	return folio;
1863  }
1864  
1865  /**
1866   * __filemap_get_folio - Find and get a reference to a folio.
1867   * @mapping: The address_space to search.
1868   * @index: The page index.
1869   * @fgp_flags: %FGP flags modify how the folio is returned.
1870   * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1871   *
1872   * Looks up the page cache entry at @mapping & @index.
1873   *
1874   * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1875   * if the %GFP flags specified for %FGP_CREAT are atomic.
1876   *
1877   * If this function returns a folio, it is returned with an increased refcount.
1878   *
1879   * Return: The found folio or an ERR_PTR() otherwise.
1880   */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1881  struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1882  		fgf_t fgp_flags, gfp_t gfp)
1883  {
1884  	struct folio *folio;
1885  
1886  repeat:
1887  	folio = filemap_get_entry(mapping, index);
1888  	if (xa_is_value(folio))
1889  		folio = NULL;
1890  	if (!folio)
1891  		goto no_page;
1892  
1893  	if (fgp_flags & FGP_LOCK) {
1894  		if (fgp_flags & FGP_NOWAIT) {
1895  			if (!folio_trylock(folio)) {
1896  				folio_put(folio);
1897  				return ERR_PTR(-EAGAIN);
1898  			}
1899  		} else {
1900  			folio_lock(folio);
1901  		}
1902  
1903  		/* Has the page been truncated? */
1904  		if (unlikely(folio->mapping != mapping)) {
1905  			folio_unlock(folio);
1906  			folio_put(folio);
1907  			goto repeat;
1908  		}
1909  		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1910  	}
1911  
1912  	if (fgp_flags & FGP_ACCESSED)
1913  		folio_mark_accessed(folio);
1914  	else if (fgp_flags & FGP_WRITE) {
1915  		/* Clear idle flag for buffer write */
1916  		if (folio_test_idle(folio))
1917  			folio_clear_idle(folio);
1918  	}
1919  
1920  	if (fgp_flags & FGP_STABLE)
1921  		folio_wait_stable(folio);
1922  no_page:
1923  	if (!folio && (fgp_flags & FGP_CREAT)) {
1924  		unsigned int min_order = mapping_min_folio_order(mapping);
1925  		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1926  		int err;
1927  		index = mapping_align_index(mapping, index);
1928  
1929  		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1930  			gfp |= __GFP_WRITE;
1931  		if (fgp_flags & FGP_NOFS)
1932  			gfp &= ~__GFP_FS;
1933  		if (fgp_flags & FGP_NOWAIT) {
1934  			gfp &= ~GFP_KERNEL;
1935  			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1936  		}
1937  		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1938  			fgp_flags |= FGP_LOCK;
1939  
1940  		if (order > mapping_max_folio_order(mapping))
1941  			order = mapping_max_folio_order(mapping);
1942  		/* If we're not aligned, allocate a smaller folio */
1943  		if (index & ((1UL << order) - 1))
1944  			order = __ffs(index);
1945  
1946  		do {
1947  			gfp_t alloc_gfp = gfp;
1948  
1949  			err = -ENOMEM;
1950  			if (order > min_order)
1951  				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1952  			folio = filemap_alloc_folio(alloc_gfp, order);
1953  			if (!folio)
1954  				continue;
1955  
1956  			/* Init accessed so avoid atomic mark_page_accessed later */
1957  			if (fgp_flags & FGP_ACCESSED)
1958  				__folio_set_referenced(folio);
1959  
1960  			err = filemap_add_folio(mapping, folio, index, gfp);
1961  			if (!err)
1962  				break;
1963  			folio_put(folio);
1964  			folio = NULL;
1965  		} while (order-- > min_order);
1966  
1967  		if (err == -EEXIST)
1968  			goto repeat;
1969  		if (err)
1970  			return ERR_PTR(err);
1971  		/*
1972  		 * filemap_add_folio locks the page, and for mmap
1973  		 * we expect an unlocked page.
1974  		 */
1975  		if (folio && (fgp_flags & FGP_FOR_MMAP))
1976  			folio_unlock(folio);
1977  	}
1978  
1979  	if (!folio)
1980  		return ERR_PTR(-ENOENT);
1981  	return folio;
1982  }
1983  EXPORT_SYMBOL(__filemap_get_folio);
1984  
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)1985  static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1986  		xa_mark_t mark)
1987  {
1988  	struct folio *folio;
1989  
1990  retry:
1991  	if (mark == XA_PRESENT)
1992  		folio = xas_find(xas, max);
1993  	else
1994  		folio = xas_find_marked(xas, max, mark);
1995  
1996  	if (xas_retry(xas, folio))
1997  		goto retry;
1998  	/*
1999  	 * A shadow entry of a recently evicted page, a swap
2000  	 * entry from shmem/tmpfs or a DAX entry.  Return it
2001  	 * without attempting to raise page count.
2002  	 */
2003  	if (!folio || xa_is_value(folio))
2004  		return folio;
2005  
2006  	if (!folio_try_get(folio))
2007  		goto reset;
2008  
2009  	if (unlikely(folio != xas_reload(xas))) {
2010  		folio_put(folio);
2011  		goto reset;
2012  	}
2013  
2014  	return folio;
2015  reset:
2016  	xas_reset(xas);
2017  	goto retry;
2018  }
2019  
2020  /**
2021   * find_get_entries - gang pagecache lookup
2022   * @mapping:	The address_space to search
2023   * @start:	The starting page cache index
2024   * @end:	The final page index (inclusive).
2025   * @fbatch:	Where the resulting entries are placed.
2026   * @indices:	The cache indices corresponding to the entries in @entries
2027   *
2028   * find_get_entries() will search for and return a batch of entries in
2029   * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2030   * takes a reference on any actual folios it returns.
2031   *
2032   * The entries have ascending indexes.  The indices may not be consecutive
2033   * due to not-present entries or large folios.
2034   *
2035   * Any shadow entries of evicted folios, or swap entries from
2036   * shmem/tmpfs, are included in the returned array.
2037   *
2038   * Return: The number of entries which were found.
2039   */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2040  unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2041  		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2042  {
2043  	XA_STATE(xas, &mapping->i_pages, *start);
2044  	struct folio *folio;
2045  
2046  	rcu_read_lock();
2047  	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2048  		indices[fbatch->nr] = xas.xa_index;
2049  		if (!folio_batch_add(fbatch, folio))
2050  			break;
2051  	}
2052  
2053  	if (folio_batch_count(fbatch)) {
2054  		unsigned long nr;
2055  		int idx = folio_batch_count(fbatch) - 1;
2056  
2057  		folio = fbatch->folios[idx];
2058  		if (!xa_is_value(folio))
2059  			nr = folio_nr_pages(folio);
2060  		else
2061  			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2062  		*start = round_down(indices[idx] + nr, nr);
2063  	}
2064  	rcu_read_unlock();
2065  
2066  	return folio_batch_count(fbatch);
2067  }
2068  
2069  /**
2070   * find_lock_entries - Find a batch of pagecache entries.
2071   * @mapping:	The address_space to search.
2072   * @start:	The starting page cache index.
2073   * @end:	The final page index (inclusive).
2074   * @fbatch:	Where the resulting entries are placed.
2075   * @indices:	The cache indices of the entries in @fbatch.
2076   *
2077   * find_lock_entries() will return a batch of entries from @mapping.
2078   * Swap, shadow and DAX entries are included.  Folios are returned
2079   * locked and with an incremented refcount.  Folios which are locked
2080   * by somebody else or under writeback are skipped.  Folios which are
2081   * partially outside the range are not returned.
2082   *
2083   * The entries have ascending indexes.  The indices may not be consecutive
2084   * due to not-present entries, large folios, folios which could not be
2085   * locked or folios under writeback.
2086   *
2087   * Return: The number of entries which were found.
2088   */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2089  unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2090  		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2091  {
2092  	XA_STATE(xas, &mapping->i_pages, *start);
2093  	struct folio *folio;
2094  
2095  	rcu_read_lock();
2096  	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2097  		unsigned long base;
2098  		unsigned long nr;
2099  
2100  		if (!xa_is_value(folio)) {
2101  			nr = folio_nr_pages(folio);
2102  			base = folio->index;
2103  			/* Omit large folio which begins before the start */
2104  			if (base < *start)
2105  				goto put;
2106  			/* Omit large folio which extends beyond the end */
2107  			if (base + nr - 1 > end)
2108  				goto put;
2109  			if (!folio_trylock(folio))
2110  				goto put;
2111  			if (folio->mapping != mapping ||
2112  			    folio_test_writeback(folio))
2113  				goto unlock;
2114  			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2115  					folio);
2116  		} else {
2117  			nr = 1 << xas_get_order(&xas);
2118  			base = xas.xa_index & ~(nr - 1);
2119  			/* Omit order>0 value which begins before the start */
2120  			if (base < *start)
2121  				continue;
2122  			/* Omit order>0 value which extends beyond the end */
2123  			if (base + nr - 1 > end)
2124  				break;
2125  		}
2126  
2127  		/* Update start now so that last update is correct on return */
2128  		*start = base + nr;
2129  		indices[fbatch->nr] = xas.xa_index;
2130  		if (!folio_batch_add(fbatch, folio))
2131  			break;
2132  		continue;
2133  unlock:
2134  		folio_unlock(folio);
2135  put:
2136  		folio_put(folio);
2137  	}
2138  	rcu_read_unlock();
2139  
2140  	return folio_batch_count(fbatch);
2141  }
2142  
2143  /**
2144   * filemap_get_folios - Get a batch of folios
2145   * @mapping:	The address_space to search
2146   * @start:	The starting page index
2147   * @end:	The final page index (inclusive)
2148   * @fbatch:	The batch to fill.
2149   *
2150   * Search for and return a batch of folios in the mapping starting at
2151   * index @start and up to index @end (inclusive).  The folios are returned
2152   * in @fbatch with an elevated reference count.
2153   *
2154   * Return: The number of folios which were found.
2155   * We also update @start to index the next folio for the traversal.
2156   */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2157  unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2158  		pgoff_t end, struct folio_batch *fbatch)
2159  {
2160  	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2161  }
2162  EXPORT_SYMBOL(filemap_get_folios);
2163  
2164  /**
2165   * filemap_get_folios_contig - Get a batch of contiguous folios
2166   * @mapping:	The address_space to search
2167   * @start:	The starting page index
2168   * @end:	The final page index (inclusive)
2169   * @fbatch:	The batch to fill
2170   *
2171   * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2172   * except the returned folios are guaranteed to be contiguous. This may
2173   * not return all contiguous folios if the batch gets filled up.
2174   *
2175   * Return: The number of folios found.
2176   * Also update @start to be positioned for traversal of the next folio.
2177   */
2178  
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2179  unsigned filemap_get_folios_contig(struct address_space *mapping,
2180  		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2181  {
2182  	XA_STATE(xas, &mapping->i_pages, *start);
2183  	unsigned long nr;
2184  	struct folio *folio;
2185  
2186  	rcu_read_lock();
2187  
2188  	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2189  			folio = xas_next(&xas)) {
2190  		if (xas_retry(&xas, folio))
2191  			continue;
2192  		/*
2193  		 * If the entry has been swapped out, we can stop looking.
2194  		 * No current caller is looking for DAX entries.
2195  		 */
2196  		if (xa_is_value(folio))
2197  			goto update_start;
2198  
2199  		/* If we landed in the middle of a THP, continue at its end. */
2200  		if (xa_is_sibling(folio))
2201  			goto update_start;
2202  
2203  		if (!folio_try_get(folio))
2204  			goto retry;
2205  
2206  		if (unlikely(folio != xas_reload(&xas)))
2207  			goto put_folio;
2208  
2209  		if (!folio_batch_add(fbatch, folio)) {
2210  			nr = folio_nr_pages(folio);
2211  			*start = folio->index + nr;
2212  			goto out;
2213  		}
2214  		continue;
2215  put_folio:
2216  		folio_put(folio);
2217  
2218  retry:
2219  		xas_reset(&xas);
2220  	}
2221  
2222  update_start:
2223  	nr = folio_batch_count(fbatch);
2224  
2225  	if (nr) {
2226  		folio = fbatch->folios[nr - 1];
2227  		*start = folio_next_index(folio);
2228  	}
2229  out:
2230  	rcu_read_unlock();
2231  	return folio_batch_count(fbatch);
2232  }
2233  EXPORT_SYMBOL(filemap_get_folios_contig);
2234  
2235  /**
2236   * filemap_get_folios_tag - Get a batch of folios matching @tag
2237   * @mapping:    The address_space to search
2238   * @start:      The starting page index
2239   * @end:        The final page index (inclusive)
2240   * @tag:        The tag index
2241   * @fbatch:     The batch to fill
2242   *
2243   * The first folio may start before @start; if it does, it will contain
2244   * @start.  The final folio may extend beyond @end; if it does, it will
2245   * contain @end.  The folios have ascending indices.  There may be gaps
2246   * between the folios if there are indices which have no folio in the
2247   * page cache.  If folios are added to or removed from the page cache
2248   * while this is running, they may or may not be found by this call.
2249   * Only returns folios that are tagged with @tag.
2250   *
2251   * Return: The number of folios found.
2252   * Also update @start to index the next folio for traversal.
2253   */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2254  unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2255  			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2256  {
2257  	XA_STATE(xas, &mapping->i_pages, *start);
2258  	struct folio *folio;
2259  
2260  	rcu_read_lock();
2261  	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2262  		/*
2263  		 * Shadow entries should never be tagged, but this iteration
2264  		 * is lockless so there is a window for page reclaim to evict
2265  		 * a page we saw tagged. Skip over it.
2266  		 */
2267  		if (xa_is_value(folio))
2268  			continue;
2269  		if (!folio_batch_add(fbatch, folio)) {
2270  			unsigned long nr = folio_nr_pages(folio);
2271  			*start = folio->index + nr;
2272  			goto out;
2273  		}
2274  	}
2275  	/*
2276  	 * We come here when there is no page beyond @end. We take care to not
2277  	 * overflow the index @start as it confuses some of the callers. This
2278  	 * breaks the iteration when there is a page at index -1 but that is
2279  	 * already broke anyway.
2280  	 */
2281  	if (end == (pgoff_t)-1)
2282  		*start = (pgoff_t)-1;
2283  	else
2284  		*start = end + 1;
2285  out:
2286  	rcu_read_unlock();
2287  
2288  	return folio_batch_count(fbatch);
2289  }
2290  EXPORT_SYMBOL(filemap_get_folios_tag);
2291  
2292  /*
2293   * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2294   * a _large_ part of the i/o request. Imagine the worst scenario:
2295   *
2296   *      ---R__________________________________________B__________
2297   *         ^ reading here                             ^ bad block(assume 4k)
2298   *
2299   * read(R) => miss => readahead(R...B) => media error => frustrating retries
2300   * => failing the whole request => read(R) => read(R+1) =>
2301   * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2302   * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2303   * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2304   *
2305   * It is going insane. Fix it by quickly scaling down the readahead size.
2306   */
shrink_readahead_size_eio(struct file_ra_state * ra)2307  static void shrink_readahead_size_eio(struct file_ra_state *ra)
2308  {
2309  	ra->ra_pages /= 4;
2310  }
2311  
2312  /*
2313   * filemap_get_read_batch - Get a batch of folios for read
2314   *
2315   * Get a batch of folios which represent a contiguous range of bytes in
2316   * the file.  No exceptional entries will be returned.  If @index is in
2317   * the middle of a folio, the entire folio will be returned.  The last
2318   * folio in the batch may have the readahead flag set or the uptodate flag
2319   * clear so that the caller can take the appropriate action.
2320   */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2321  static void filemap_get_read_batch(struct address_space *mapping,
2322  		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2323  {
2324  	XA_STATE(xas, &mapping->i_pages, index);
2325  	struct folio *folio;
2326  
2327  	rcu_read_lock();
2328  	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2329  		if (xas_retry(&xas, folio))
2330  			continue;
2331  		if (xas.xa_index > max || xa_is_value(folio))
2332  			break;
2333  		if (xa_is_sibling(folio))
2334  			break;
2335  		if (!folio_try_get(folio))
2336  			goto retry;
2337  
2338  		if (unlikely(folio != xas_reload(&xas)))
2339  			goto put_folio;
2340  
2341  		if (!folio_batch_add(fbatch, folio))
2342  			break;
2343  		if (!folio_test_uptodate(folio))
2344  			break;
2345  		if (folio_test_readahead(folio))
2346  			break;
2347  		xas_advance(&xas, folio_next_index(folio) - 1);
2348  		continue;
2349  put_folio:
2350  		folio_put(folio);
2351  retry:
2352  		xas_reset(&xas);
2353  	}
2354  	rcu_read_unlock();
2355  }
2356  
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2357  static int filemap_read_folio(struct file *file, filler_t filler,
2358  		struct folio *folio)
2359  {
2360  	bool workingset = folio_test_workingset(folio);
2361  	unsigned long pflags;
2362  	int error;
2363  
2364  	/* Start the actual read. The read will unlock the page. */
2365  	if (unlikely(workingset))
2366  		psi_memstall_enter(&pflags);
2367  	error = filler(file, folio);
2368  	if (unlikely(workingset))
2369  		psi_memstall_leave(&pflags);
2370  	if (error)
2371  		return error;
2372  
2373  	error = folio_wait_locked_killable(folio);
2374  	if (error)
2375  		return error;
2376  	if (folio_test_uptodate(folio))
2377  		return 0;
2378  	if (file)
2379  		shrink_readahead_size_eio(&file->f_ra);
2380  	return -EIO;
2381  }
2382  
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2383  static bool filemap_range_uptodate(struct address_space *mapping,
2384  		loff_t pos, size_t count, struct folio *folio,
2385  		bool need_uptodate)
2386  {
2387  	if (folio_test_uptodate(folio))
2388  		return true;
2389  	/* pipes can't handle partially uptodate pages */
2390  	if (need_uptodate)
2391  		return false;
2392  	if (!mapping->a_ops->is_partially_uptodate)
2393  		return false;
2394  	if (mapping->host->i_blkbits >= folio_shift(folio))
2395  		return false;
2396  
2397  	if (folio_pos(folio) > pos) {
2398  		count -= folio_pos(folio) - pos;
2399  		pos = 0;
2400  	} else {
2401  		pos -= folio_pos(folio);
2402  	}
2403  
2404  	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2405  }
2406  
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2407  static int filemap_update_page(struct kiocb *iocb,
2408  		struct address_space *mapping, size_t count,
2409  		struct folio *folio, bool need_uptodate)
2410  {
2411  	int error;
2412  
2413  	if (iocb->ki_flags & IOCB_NOWAIT) {
2414  		if (!filemap_invalidate_trylock_shared(mapping))
2415  			return -EAGAIN;
2416  	} else {
2417  		filemap_invalidate_lock_shared(mapping);
2418  	}
2419  
2420  	if (!folio_trylock(folio)) {
2421  		error = -EAGAIN;
2422  		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2423  			goto unlock_mapping;
2424  		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2425  			filemap_invalidate_unlock_shared(mapping);
2426  			/*
2427  			 * This is where we usually end up waiting for a
2428  			 * previously submitted readahead to finish.
2429  			 */
2430  			folio_put_wait_locked(folio, TASK_KILLABLE);
2431  			return AOP_TRUNCATED_PAGE;
2432  		}
2433  		error = __folio_lock_async(folio, iocb->ki_waitq);
2434  		if (error)
2435  			goto unlock_mapping;
2436  	}
2437  
2438  	error = AOP_TRUNCATED_PAGE;
2439  	if (!folio->mapping)
2440  		goto unlock;
2441  
2442  	error = 0;
2443  	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2444  				   need_uptodate))
2445  		goto unlock;
2446  
2447  	error = -EAGAIN;
2448  	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2449  		goto unlock;
2450  
2451  	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2452  			folio);
2453  	goto unlock_mapping;
2454  unlock:
2455  	folio_unlock(folio);
2456  unlock_mapping:
2457  	filemap_invalidate_unlock_shared(mapping);
2458  	if (error == AOP_TRUNCATED_PAGE)
2459  		folio_put(folio);
2460  	return error;
2461  }
2462  
filemap_create_folio(struct file * file,struct address_space * mapping,loff_t pos,struct folio_batch * fbatch)2463  static int filemap_create_folio(struct file *file,
2464  		struct address_space *mapping, loff_t pos,
2465  		struct folio_batch *fbatch)
2466  {
2467  	struct folio *folio;
2468  	int error;
2469  	unsigned int min_order = mapping_min_folio_order(mapping);
2470  	pgoff_t index;
2471  
2472  	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2473  	if (!folio)
2474  		return -ENOMEM;
2475  
2476  	/*
2477  	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2478  	 * here assures we cannot instantiate and bring uptodate new
2479  	 * pagecache folios after evicting page cache during truncate
2480  	 * and before actually freeing blocks.	Note that we could
2481  	 * release invalidate_lock after inserting the folio into
2482  	 * the page cache as the locked folio would then be enough to
2483  	 * synchronize with hole punching. But there are code paths
2484  	 * such as filemap_update_page() filling in partially uptodate
2485  	 * pages or ->readahead() that need to hold invalidate_lock
2486  	 * while mapping blocks for IO so let's hold the lock here as
2487  	 * well to keep locking rules simple.
2488  	 */
2489  	filemap_invalidate_lock_shared(mapping);
2490  	index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2491  	error = filemap_add_folio(mapping, folio, index,
2492  			mapping_gfp_constraint(mapping, GFP_KERNEL));
2493  	if (error == -EEXIST)
2494  		error = AOP_TRUNCATED_PAGE;
2495  	if (error)
2496  		goto error;
2497  
2498  	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2499  	if (error)
2500  		goto error;
2501  
2502  	filemap_invalidate_unlock_shared(mapping);
2503  	folio_batch_add(fbatch, folio);
2504  	return 0;
2505  error:
2506  	filemap_invalidate_unlock_shared(mapping);
2507  	folio_put(folio);
2508  	return error;
2509  }
2510  
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2511  static int filemap_readahead(struct kiocb *iocb, struct file *file,
2512  		struct address_space *mapping, struct folio *folio,
2513  		pgoff_t last_index)
2514  {
2515  	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2516  
2517  	if (iocb->ki_flags & IOCB_NOIO)
2518  		return -EAGAIN;
2519  	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2520  	return 0;
2521  }
2522  
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2523  static int filemap_get_pages(struct kiocb *iocb, size_t count,
2524  		struct folio_batch *fbatch, bool need_uptodate)
2525  {
2526  	struct file *filp = iocb->ki_filp;
2527  	struct address_space *mapping = filp->f_mapping;
2528  	struct file_ra_state *ra = &filp->f_ra;
2529  	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2530  	pgoff_t last_index;
2531  	struct folio *folio;
2532  	unsigned int flags;
2533  	int err = 0;
2534  
2535  	/* "last_index" is the index of the page beyond the end of the read */
2536  	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2537  retry:
2538  	if (fatal_signal_pending(current))
2539  		return -EINTR;
2540  
2541  	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2542  	if (!folio_batch_count(fbatch)) {
2543  		if (iocb->ki_flags & IOCB_NOIO)
2544  			return -EAGAIN;
2545  		if (iocb->ki_flags & IOCB_NOWAIT)
2546  			flags = memalloc_noio_save();
2547  		page_cache_sync_readahead(mapping, ra, filp, index,
2548  				last_index - index);
2549  		if (iocb->ki_flags & IOCB_NOWAIT)
2550  			memalloc_noio_restore(flags);
2551  		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2552  	}
2553  	if (!folio_batch_count(fbatch)) {
2554  		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2555  			return -EAGAIN;
2556  		err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2557  		if (err == AOP_TRUNCATED_PAGE)
2558  			goto retry;
2559  		return err;
2560  	}
2561  
2562  	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2563  	if (folio_test_readahead(folio)) {
2564  		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2565  		if (err)
2566  			goto err;
2567  	}
2568  	if (!folio_test_uptodate(folio)) {
2569  		if ((iocb->ki_flags & IOCB_WAITQ) &&
2570  		    folio_batch_count(fbatch) > 1)
2571  			iocb->ki_flags |= IOCB_NOWAIT;
2572  		err = filemap_update_page(iocb, mapping, count, folio,
2573  					  need_uptodate);
2574  		if (err)
2575  			goto err;
2576  	}
2577  
2578  	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2579  	return 0;
2580  err:
2581  	if (err < 0)
2582  		folio_put(folio);
2583  	if (likely(--fbatch->nr))
2584  		return 0;
2585  	if (err == AOP_TRUNCATED_PAGE)
2586  		goto retry;
2587  	return err;
2588  }
2589  
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2590  static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2591  {
2592  	unsigned int shift = folio_shift(folio);
2593  
2594  	return (pos1 >> shift == pos2 >> shift);
2595  }
2596  
2597  /**
2598   * filemap_read - Read data from the page cache.
2599   * @iocb: The iocb to read.
2600   * @iter: Destination for the data.
2601   * @already_read: Number of bytes already read by the caller.
2602   *
2603   * Copies data from the page cache.  If the data is not currently present,
2604   * uses the readahead and read_folio address_space operations to fetch it.
2605   *
2606   * Return: Total number of bytes copied, including those already read by
2607   * the caller.  If an error happens before any bytes are copied, returns
2608   * a negative error number.
2609   */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2610  ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2611  		ssize_t already_read)
2612  {
2613  	struct file *filp = iocb->ki_filp;
2614  	struct file_ra_state *ra = &filp->f_ra;
2615  	struct address_space *mapping = filp->f_mapping;
2616  	struct inode *inode = mapping->host;
2617  	struct folio_batch fbatch;
2618  	int i, error = 0;
2619  	bool writably_mapped;
2620  	loff_t isize, end_offset;
2621  	loff_t last_pos = ra->prev_pos;
2622  
2623  	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2624  		return 0;
2625  	if (unlikely(!iov_iter_count(iter)))
2626  		return 0;
2627  
2628  	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2629  	folio_batch_init(&fbatch);
2630  
2631  	do {
2632  		cond_resched();
2633  
2634  		/*
2635  		 * If we've already successfully copied some data, then we
2636  		 * can no longer safely return -EIOCBQUEUED. Hence mark
2637  		 * an async read NOWAIT at that point.
2638  		 */
2639  		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2640  			iocb->ki_flags |= IOCB_NOWAIT;
2641  
2642  		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2643  			break;
2644  
2645  		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2646  		if (error < 0)
2647  			break;
2648  
2649  		/*
2650  		 * i_size must be checked after we know the pages are Uptodate.
2651  		 *
2652  		 * Checking i_size after the check allows us to calculate
2653  		 * the correct value for "nr", which means the zero-filled
2654  		 * part of the page is not copied back to userspace (unless
2655  		 * another truncate extends the file - this is desired though).
2656  		 */
2657  		isize = i_size_read(inode);
2658  		if (unlikely(iocb->ki_pos >= isize))
2659  			goto put_folios;
2660  		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2661  
2662  		/*
2663  		 * Once we start copying data, we don't want to be touching any
2664  		 * cachelines that might be contended:
2665  		 */
2666  		writably_mapped = mapping_writably_mapped(mapping);
2667  
2668  		/*
2669  		 * When a read accesses the same folio several times, only
2670  		 * mark it as accessed the first time.
2671  		 */
2672  		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2673  				    fbatch.folios[0]))
2674  			folio_mark_accessed(fbatch.folios[0]);
2675  
2676  		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2677  			struct folio *folio = fbatch.folios[i];
2678  			size_t fsize = folio_size(folio);
2679  			size_t offset = iocb->ki_pos & (fsize - 1);
2680  			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2681  					     fsize - offset);
2682  			size_t copied;
2683  
2684  			if (end_offset < folio_pos(folio))
2685  				break;
2686  			if (i > 0)
2687  				folio_mark_accessed(folio);
2688  			/*
2689  			 * If users can be writing to this folio using arbitrary
2690  			 * virtual addresses, take care of potential aliasing
2691  			 * before reading the folio on the kernel side.
2692  			 */
2693  			if (writably_mapped)
2694  				flush_dcache_folio(folio);
2695  
2696  			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2697  
2698  			already_read += copied;
2699  			iocb->ki_pos += copied;
2700  			last_pos = iocb->ki_pos;
2701  
2702  			if (copied < bytes) {
2703  				error = -EFAULT;
2704  				break;
2705  			}
2706  		}
2707  put_folios:
2708  		for (i = 0; i < folio_batch_count(&fbatch); i++)
2709  			folio_put(fbatch.folios[i]);
2710  		folio_batch_init(&fbatch);
2711  	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2712  
2713  	file_accessed(filp);
2714  	ra->prev_pos = last_pos;
2715  	return already_read ? already_read : error;
2716  }
2717  EXPORT_SYMBOL_GPL(filemap_read);
2718  
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2719  int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2720  {
2721  	struct address_space *mapping = iocb->ki_filp->f_mapping;
2722  	loff_t pos = iocb->ki_pos;
2723  	loff_t end = pos + count - 1;
2724  
2725  	if (iocb->ki_flags & IOCB_NOWAIT) {
2726  		if (filemap_range_needs_writeback(mapping, pos, end))
2727  			return -EAGAIN;
2728  		return 0;
2729  	}
2730  
2731  	return filemap_write_and_wait_range(mapping, pos, end);
2732  }
2733  EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2734  
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2735  int filemap_invalidate_pages(struct address_space *mapping,
2736  			     loff_t pos, loff_t end, bool nowait)
2737  {
2738  	int ret;
2739  
2740  	if (nowait) {
2741  		/* we could block if there are any pages in the range */
2742  		if (filemap_range_has_page(mapping, pos, end))
2743  			return -EAGAIN;
2744  	} else {
2745  		ret = filemap_write_and_wait_range(mapping, pos, end);
2746  		if (ret)
2747  			return ret;
2748  	}
2749  
2750  	/*
2751  	 * After a write we want buffered reads to be sure to go to disk to get
2752  	 * the new data.  We invalidate clean cached page from the region we're
2753  	 * about to write.  We do this *before* the write so that we can return
2754  	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2755  	 */
2756  	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2757  					     end >> PAGE_SHIFT);
2758  }
2759  
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2760  int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2761  {
2762  	struct address_space *mapping = iocb->ki_filp->f_mapping;
2763  
2764  	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2765  					iocb->ki_pos + count - 1,
2766  					iocb->ki_flags & IOCB_NOWAIT);
2767  }
2768  EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2769  
2770  /**
2771   * generic_file_read_iter - generic filesystem read routine
2772   * @iocb:	kernel I/O control block
2773   * @iter:	destination for the data read
2774   *
2775   * This is the "read_iter()" routine for all filesystems
2776   * that can use the page cache directly.
2777   *
2778   * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2779   * be returned when no data can be read without waiting for I/O requests
2780   * to complete; it doesn't prevent readahead.
2781   *
2782   * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2783   * requests shall be made for the read or for readahead.  When no data
2784   * can be read, -EAGAIN shall be returned.  When readahead would be
2785   * triggered, a partial, possibly empty read shall be returned.
2786   *
2787   * Return:
2788   * * number of bytes copied, even for partial reads
2789   * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2790   */
2791  ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2792  generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2793  {
2794  	size_t count = iov_iter_count(iter);
2795  	ssize_t retval = 0;
2796  
2797  	if (!count)
2798  		return 0; /* skip atime */
2799  
2800  	if (iocb->ki_flags & IOCB_DIRECT) {
2801  		struct file *file = iocb->ki_filp;
2802  		struct address_space *mapping = file->f_mapping;
2803  		struct inode *inode = mapping->host;
2804  
2805  		retval = kiocb_write_and_wait(iocb, count);
2806  		if (retval < 0)
2807  			return retval;
2808  		file_accessed(file);
2809  
2810  		retval = mapping->a_ops->direct_IO(iocb, iter);
2811  		if (retval >= 0) {
2812  			iocb->ki_pos += retval;
2813  			count -= retval;
2814  		}
2815  		if (retval != -EIOCBQUEUED)
2816  			iov_iter_revert(iter, count - iov_iter_count(iter));
2817  
2818  		/*
2819  		 * Btrfs can have a short DIO read if we encounter
2820  		 * compressed extents, so if there was an error, or if
2821  		 * we've already read everything we wanted to, or if
2822  		 * there was a short read because we hit EOF, go ahead
2823  		 * and return.  Otherwise fallthrough to buffered io for
2824  		 * the rest of the read.  Buffered reads will not work for
2825  		 * DAX files, so don't bother trying.
2826  		 */
2827  		if (retval < 0 || !count || IS_DAX(inode))
2828  			return retval;
2829  		if (iocb->ki_pos >= i_size_read(inode))
2830  			return retval;
2831  	}
2832  
2833  	return filemap_read(iocb, iter, retval);
2834  }
2835  EXPORT_SYMBOL(generic_file_read_iter);
2836  
2837  /*
2838   * Splice subpages from a folio into a pipe.
2839   */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2840  size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2841  			      struct folio *folio, loff_t fpos, size_t size)
2842  {
2843  	struct page *page;
2844  	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2845  
2846  	page = folio_page(folio, offset / PAGE_SIZE);
2847  	size = min(size, folio_size(folio) - offset);
2848  	offset %= PAGE_SIZE;
2849  
2850  	while (spliced < size &&
2851  	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2852  		struct pipe_buffer *buf = pipe_head_buf(pipe);
2853  		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2854  
2855  		*buf = (struct pipe_buffer) {
2856  			.ops	= &page_cache_pipe_buf_ops,
2857  			.page	= page,
2858  			.offset	= offset,
2859  			.len	= part,
2860  		};
2861  		folio_get(folio);
2862  		pipe->head++;
2863  		page++;
2864  		spliced += part;
2865  		offset = 0;
2866  	}
2867  
2868  	return spliced;
2869  }
2870  
2871  /**
2872   * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2873   * @in: The file to read from
2874   * @ppos: Pointer to the file position to read from
2875   * @pipe: The pipe to splice into
2876   * @len: The amount to splice
2877   * @flags: The SPLICE_F_* flags
2878   *
2879   * This function gets folios from a file's pagecache and splices them into the
2880   * pipe.  Readahead will be called as necessary to fill more folios.  This may
2881   * be used for blockdevs also.
2882   *
2883   * Return: On success, the number of bytes read will be returned and *@ppos
2884   * will be updated if appropriate; 0 will be returned if there is no more data
2885   * to be read; -EAGAIN will be returned if the pipe had no space, and some
2886   * other negative error code will be returned on error.  A short read may occur
2887   * if the pipe has insufficient space, we reach the end of the data or we hit a
2888   * hole.
2889   */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2890  ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2891  			    struct pipe_inode_info *pipe,
2892  			    size_t len, unsigned int flags)
2893  {
2894  	struct folio_batch fbatch;
2895  	struct kiocb iocb;
2896  	size_t total_spliced = 0, used, npages;
2897  	loff_t isize, end_offset;
2898  	bool writably_mapped;
2899  	int i, error = 0;
2900  
2901  	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2902  		return 0;
2903  
2904  	init_sync_kiocb(&iocb, in);
2905  	iocb.ki_pos = *ppos;
2906  
2907  	/* Work out how much data we can actually add into the pipe */
2908  	used = pipe_occupancy(pipe->head, pipe->tail);
2909  	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2910  	len = min_t(size_t, len, npages * PAGE_SIZE);
2911  
2912  	folio_batch_init(&fbatch);
2913  
2914  	do {
2915  		cond_resched();
2916  
2917  		if (*ppos >= i_size_read(in->f_mapping->host))
2918  			break;
2919  
2920  		iocb.ki_pos = *ppos;
2921  		error = filemap_get_pages(&iocb, len, &fbatch, true);
2922  		if (error < 0)
2923  			break;
2924  
2925  		/*
2926  		 * i_size must be checked after we know the pages are Uptodate.
2927  		 *
2928  		 * Checking i_size after the check allows us to calculate
2929  		 * the correct value for "nr", which means the zero-filled
2930  		 * part of the page is not copied back to userspace (unless
2931  		 * another truncate extends the file - this is desired though).
2932  		 */
2933  		isize = i_size_read(in->f_mapping->host);
2934  		if (unlikely(*ppos >= isize))
2935  			break;
2936  		end_offset = min_t(loff_t, isize, *ppos + len);
2937  
2938  		/*
2939  		 * Once we start copying data, we don't want to be touching any
2940  		 * cachelines that might be contended:
2941  		 */
2942  		writably_mapped = mapping_writably_mapped(in->f_mapping);
2943  
2944  		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2945  			struct folio *folio = fbatch.folios[i];
2946  			size_t n;
2947  
2948  			if (folio_pos(folio) >= end_offset)
2949  				goto out;
2950  			folio_mark_accessed(folio);
2951  
2952  			/*
2953  			 * If users can be writing to this folio using arbitrary
2954  			 * virtual addresses, take care of potential aliasing
2955  			 * before reading the folio on the kernel side.
2956  			 */
2957  			if (writably_mapped)
2958  				flush_dcache_folio(folio);
2959  
2960  			n = min_t(loff_t, len, isize - *ppos);
2961  			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2962  			if (!n)
2963  				goto out;
2964  			len -= n;
2965  			total_spliced += n;
2966  			*ppos += n;
2967  			in->f_ra.prev_pos = *ppos;
2968  			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2969  				goto out;
2970  		}
2971  
2972  		folio_batch_release(&fbatch);
2973  	} while (len);
2974  
2975  out:
2976  	folio_batch_release(&fbatch);
2977  	file_accessed(in);
2978  
2979  	return total_spliced ? total_spliced : error;
2980  }
2981  EXPORT_SYMBOL(filemap_splice_read);
2982  
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)2983  static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2984  		struct address_space *mapping, struct folio *folio,
2985  		loff_t start, loff_t end, bool seek_data)
2986  {
2987  	const struct address_space_operations *ops = mapping->a_ops;
2988  	size_t offset, bsz = i_blocksize(mapping->host);
2989  
2990  	if (xa_is_value(folio) || folio_test_uptodate(folio))
2991  		return seek_data ? start : end;
2992  	if (!ops->is_partially_uptodate)
2993  		return seek_data ? end : start;
2994  
2995  	xas_pause(xas);
2996  	rcu_read_unlock();
2997  	folio_lock(folio);
2998  	if (unlikely(folio->mapping != mapping))
2999  		goto unlock;
3000  
3001  	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3002  
3003  	do {
3004  		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3005  							seek_data)
3006  			break;
3007  		start = (start + bsz) & ~(bsz - 1);
3008  		offset += bsz;
3009  	} while (offset < folio_size(folio));
3010  unlock:
3011  	folio_unlock(folio);
3012  	rcu_read_lock();
3013  	return start;
3014  }
3015  
seek_folio_size(struct xa_state * xas,struct folio * folio)3016  static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3017  {
3018  	if (xa_is_value(folio))
3019  		return PAGE_SIZE << xas_get_order(xas);
3020  	return folio_size(folio);
3021  }
3022  
3023  /**
3024   * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3025   * @mapping: Address space to search.
3026   * @start: First byte to consider.
3027   * @end: Limit of search (exclusive).
3028   * @whence: Either SEEK_HOLE or SEEK_DATA.
3029   *
3030   * If the page cache knows which blocks contain holes and which blocks
3031   * contain data, your filesystem can use this function to implement
3032   * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3033   * entirely memory-based such as tmpfs, and filesystems which support
3034   * unwritten extents.
3035   *
3036   * Return: The requested offset on success, or -ENXIO if @whence specifies
3037   * SEEK_DATA and there is no data after @start.  There is an implicit hole
3038   * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3039   * and @end contain data.
3040   */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3041  loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3042  		loff_t end, int whence)
3043  {
3044  	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3045  	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3046  	bool seek_data = (whence == SEEK_DATA);
3047  	struct folio *folio;
3048  
3049  	if (end <= start)
3050  		return -ENXIO;
3051  
3052  	rcu_read_lock();
3053  	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3054  		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3055  		size_t seek_size;
3056  
3057  		if (start < pos) {
3058  			if (!seek_data)
3059  				goto unlock;
3060  			start = pos;
3061  		}
3062  
3063  		seek_size = seek_folio_size(&xas, folio);
3064  		pos = round_up((u64)pos + 1, seek_size);
3065  		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3066  				seek_data);
3067  		if (start < pos)
3068  			goto unlock;
3069  		if (start >= end)
3070  			break;
3071  		if (seek_size > PAGE_SIZE)
3072  			xas_set(&xas, pos >> PAGE_SHIFT);
3073  		if (!xa_is_value(folio))
3074  			folio_put(folio);
3075  	}
3076  	if (seek_data)
3077  		start = -ENXIO;
3078  unlock:
3079  	rcu_read_unlock();
3080  	if (folio && !xa_is_value(folio))
3081  		folio_put(folio);
3082  	if (start > end)
3083  		return end;
3084  	return start;
3085  }
3086  
3087  #ifdef CONFIG_MMU
3088  #define MMAP_LOTSAMISS  (100)
3089  /*
3090   * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3091   * @vmf - the vm_fault for this fault.
3092   * @folio - the folio to lock.
3093   * @fpin - the pointer to the file we may pin (or is already pinned).
3094   *
3095   * This works similar to lock_folio_or_retry in that it can drop the
3096   * mmap_lock.  It differs in that it actually returns the folio locked
3097   * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3098   * to drop the mmap_lock then fpin will point to the pinned file and
3099   * needs to be fput()'ed at a later point.
3100   */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3101  static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3102  				     struct file **fpin)
3103  {
3104  	if (folio_trylock(folio))
3105  		return 1;
3106  
3107  	/*
3108  	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3109  	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3110  	 * is supposed to work. We have way too many special cases..
3111  	 */
3112  	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3113  		return 0;
3114  
3115  	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3116  	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3117  		if (__folio_lock_killable(folio)) {
3118  			/*
3119  			 * We didn't have the right flags to drop the
3120  			 * fault lock, but all fault_handlers only check
3121  			 * for fatal signals if we return VM_FAULT_RETRY,
3122  			 * so we need to drop the fault lock here and
3123  			 * return 0 if we don't have a fpin.
3124  			 */
3125  			if (*fpin == NULL)
3126  				release_fault_lock(vmf);
3127  			return 0;
3128  		}
3129  	} else
3130  		__folio_lock(folio);
3131  
3132  	return 1;
3133  }
3134  
3135  /*
3136   * Synchronous readahead happens when we don't even find a page in the page
3137   * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3138   * to drop the mmap sem we return the file that was pinned in order for us to do
3139   * that.  If we didn't pin a file then we return NULL.  The file that is
3140   * returned needs to be fput()'ed when we're done with it.
3141   */
do_sync_mmap_readahead(struct vm_fault * vmf)3142  static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3143  {
3144  	struct file *file = vmf->vma->vm_file;
3145  	struct file_ra_state *ra = &file->f_ra;
3146  	struct address_space *mapping = file->f_mapping;
3147  	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3148  	struct file *fpin = NULL;
3149  	unsigned long vm_flags = vmf->vma->vm_flags;
3150  	unsigned int mmap_miss;
3151  
3152  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3153  	/* Use the readahead code, even if readahead is disabled */
3154  	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3155  		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3156  		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3157  		ra->size = HPAGE_PMD_NR;
3158  		/*
3159  		 * Fetch two PMD folios, so we get the chance to actually
3160  		 * readahead, unless we've been told not to.
3161  		 */
3162  		if (!(vm_flags & VM_RAND_READ))
3163  			ra->size *= 2;
3164  		ra->async_size = HPAGE_PMD_NR;
3165  		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3166  		return fpin;
3167  	}
3168  #endif
3169  
3170  	/* If we don't want any read-ahead, don't bother */
3171  	if (vm_flags & VM_RAND_READ)
3172  		return fpin;
3173  	if (!ra->ra_pages)
3174  		return fpin;
3175  
3176  	if (vm_flags & VM_SEQ_READ) {
3177  		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3178  		page_cache_sync_ra(&ractl, ra->ra_pages);
3179  		return fpin;
3180  	}
3181  
3182  	/* Avoid banging the cache line if not needed */
3183  	mmap_miss = READ_ONCE(ra->mmap_miss);
3184  	if (mmap_miss < MMAP_LOTSAMISS * 10)
3185  		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3186  
3187  	/*
3188  	 * Do we miss much more than hit in this file? If so,
3189  	 * stop bothering with read-ahead. It will only hurt.
3190  	 */
3191  	if (mmap_miss > MMAP_LOTSAMISS)
3192  		return fpin;
3193  
3194  	/*
3195  	 * mmap read-around
3196  	 */
3197  	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3198  	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3199  	ra->size = ra->ra_pages;
3200  	ra->async_size = ra->ra_pages / 4;
3201  	ractl._index = ra->start;
3202  	page_cache_ra_order(&ractl, ra, 0);
3203  	return fpin;
3204  }
3205  
3206  /*
3207   * Asynchronous readahead happens when we find the page and PG_readahead,
3208   * so we want to possibly extend the readahead further.  We return the file that
3209   * was pinned if we have to drop the mmap_lock in order to do IO.
3210   */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3211  static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3212  					    struct folio *folio)
3213  {
3214  	struct file *file = vmf->vma->vm_file;
3215  	struct file_ra_state *ra = &file->f_ra;
3216  	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3217  	struct file *fpin = NULL;
3218  	unsigned int mmap_miss;
3219  
3220  	/* If we don't want any read-ahead, don't bother */
3221  	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3222  		return fpin;
3223  
3224  	mmap_miss = READ_ONCE(ra->mmap_miss);
3225  	if (mmap_miss)
3226  		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3227  
3228  	if (folio_test_readahead(folio)) {
3229  		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3230  		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3231  	}
3232  	return fpin;
3233  }
3234  
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3235  static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3236  {
3237  	struct vm_area_struct *vma = vmf->vma;
3238  	vm_fault_t ret = 0;
3239  	pte_t *ptep;
3240  
3241  	/*
3242  	 * We might have COW'ed a pagecache folio and might now have an mlocked
3243  	 * anon folio mapped. The original pagecache folio is not mlocked and
3244  	 * might have been evicted. During a read+clear/modify/write update of
3245  	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3246  	 * temporarily clear the PTE under PT lock and might detect it here as
3247  	 * "none" when not holding the PT lock.
3248  	 *
3249  	 * Not rechecking the PTE under PT lock could result in an unexpected
3250  	 * major fault in an mlock'ed region. Recheck only for this special
3251  	 * scenario while holding the PT lock, to not degrade non-mlocked
3252  	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3253  	 * the number of times we hold PT lock.
3254  	 */
3255  	if (!(vma->vm_flags & VM_LOCKED))
3256  		return 0;
3257  
3258  	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3259  		return 0;
3260  
3261  	ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3262  				     &vmf->ptl);
3263  	if (unlikely(!ptep))
3264  		return VM_FAULT_NOPAGE;
3265  
3266  	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3267  		ret = VM_FAULT_NOPAGE;
3268  	} else {
3269  		spin_lock(vmf->ptl);
3270  		if (unlikely(!pte_none(ptep_get(ptep))))
3271  			ret = VM_FAULT_NOPAGE;
3272  		spin_unlock(vmf->ptl);
3273  	}
3274  	pte_unmap(ptep);
3275  	return ret;
3276  }
3277  
3278  /**
3279   * filemap_fault - read in file data for page fault handling
3280   * @vmf:	struct vm_fault containing details of the fault
3281   *
3282   * filemap_fault() is invoked via the vma operations vector for a
3283   * mapped memory region to read in file data during a page fault.
3284   *
3285   * The goto's are kind of ugly, but this streamlines the normal case of having
3286   * it in the page cache, and handles the special cases reasonably without
3287   * having a lot of duplicated code.
3288   *
3289   * vma->vm_mm->mmap_lock must be held on entry.
3290   *
3291   * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3292   * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3293   *
3294   * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3295   * has not been released.
3296   *
3297   * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3298   *
3299   * Return: bitwise-OR of %VM_FAULT_ codes.
3300   */
filemap_fault(struct vm_fault * vmf)3301  vm_fault_t filemap_fault(struct vm_fault *vmf)
3302  {
3303  	int error;
3304  	struct file *file = vmf->vma->vm_file;
3305  	struct file *fpin = NULL;
3306  	struct address_space *mapping = file->f_mapping;
3307  	struct inode *inode = mapping->host;
3308  	pgoff_t max_idx, index = vmf->pgoff;
3309  	struct folio *folio;
3310  	vm_fault_t ret = 0;
3311  	bool mapping_locked = false;
3312  
3313  	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3314  	if (unlikely(index >= max_idx))
3315  		return VM_FAULT_SIGBUS;
3316  
3317  	trace_mm_filemap_fault(mapping, index);
3318  
3319  	/*
3320  	 * Do we have something in the page cache already?
3321  	 */
3322  	folio = filemap_get_folio(mapping, index);
3323  	if (likely(!IS_ERR(folio))) {
3324  		/*
3325  		 * We found the page, so try async readahead before waiting for
3326  		 * the lock.
3327  		 */
3328  		if (!(vmf->flags & FAULT_FLAG_TRIED))
3329  			fpin = do_async_mmap_readahead(vmf, folio);
3330  		if (unlikely(!folio_test_uptodate(folio))) {
3331  			filemap_invalidate_lock_shared(mapping);
3332  			mapping_locked = true;
3333  		}
3334  	} else {
3335  		ret = filemap_fault_recheck_pte_none(vmf);
3336  		if (unlikely(ret))
3337  			return ret;
3338  
3339  		/* No page in the page cache at all */
3340  		count_vm_event(PGMAJFAULT);
3341  		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3342  		ret = VM_FAULT_MAJOR;
3343  		fpin = do_sync_mmap_readahead(vmf);
3344  retry_find:
3345  		/*
3346  		 * See comment in filemap_create_folio() why we need
3347  		 * invalidate_lock
3348  		 */
3349  		if (!mapping_locked) {
3350  			filemap_invalidate_lock_shared(mapping);
3351  			mapping_locked = true;
3352  		}
3353  		folio = __filemap_get_folio(mapping, index,
3354  					  FGP_CREAT|FGP_FOR_MMAP,
3355  					  vmf->gfp_mask);
3356  		if (IS_ERR(folio)) {
3357  			if (fpin)
3358  				goto out_retry;
3359  			filemap_invalidate_unlock_shared(mapping);
3360  			return VM_FAULT_OOM;
3361  		}
3362  	}
3363  
3364  	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3365  		goto out_retry;
3366  
3367  	/* Did it get truncated? */
3368  	if (unlikely(folio->mapping != mapping)) {
3369  		folio_unlock(folio);
3370  		folio_put(folio);
3371  		goto retry_find;
3372  	}
3373  	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3374  
3375  	/*
3376  	 * We have a locked folio in the page cache, now we need to check
3377  	 * that it's up-to-date. If not, it is going to be due to an error,
3378  	 * or because readahead was otherwise unable to retrieve it.
3379  	 */
3380  	if (unlikely(!folio_test_uptodate(folio))) {
3381  		/*
3382  		 * If the invalidate lock is not held, the folio was in cache
3383  		 * and uptodate and now it is not. Strange but possible since we
3384  		 * didn't hold the page lock all the time. Let's drop
3385  		 * everything, get the invalidate lock and try again.
3386  		 */
3387  		if (!mapping_locked) {
3388  			folio_unlock(folio);
3389  			folio_put(folio);
3390  			goto retry_find;
3391  		}
3392  
3393  		/*
3394  		 * OK, the folio is really not uptodate. This can be because the
3395  		 * VMA has the VM_RAND_READ flag set, or because an error
3396  		 * arose. Let's read it in directly.
3397  		 */
3398  		goto page_not_uptodate;
3399  	}
3400  
3401  	/*
3402  	 * We've made it this far and we had to drop our mmap_lock, now is the
3403  	 * time to return to the upper layer and have it re-find the vma and
3404  	 * redo the fault.
3405  	 */
3406  	if (fpin) {
3407  		folio_unlock(folio);
3408  		goto out_retry;
3409  	}
3410  	if (mapping_locked)
3411  		filemap_invalidate_unlock_shared(mapping);
3412  
3413  	/*
3414  	 * Found the page and have a reference on it.
3415  	 * We must recheck i_size under page lock.
3416  	 */
3417  	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3418  	if (unlikely(index >= max_idx)) {
3419  		folio_unlock(folio);
3420  		folio_put(folio);
3421  		return VM_FAULT_SIGBUS;
3422  	}
3423  
3424  	vmf->page = folio_file_page(folio, index);
3425  	return ret | VM_FAULT_LOCKED;
3426  
3427  page_not_uptodate:
3428  	/*
3429  	 * Umm, take care of errors if the page isn't up-to-date.
3430  	 * Try to re-read it _once_. We do this synchronously,
3431  	 * because there really aren't any performance issues here
3432  	 * and we need to check for errors.
3433  	 */
3434  	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3435  	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3436  	if (fpin)
3437  		goto out_retry;
3438  	folio_put(folio);
3439  
3440  	if (!error || error == AOP_TRUNCATED_PAGE)
3441  		goto retry_find;
3442  	filemap_invalidate_unlock_shared(mapping);
3443  
3444  	return VM_FAULT_SIGBUS;
3445  
3446  out_retry:
3447  	/*
3448  	 * We dropped the mmap_lock, we need to return to the fault handler to
3449  	 * re-find the vma and come back and find our hopefully still populated
3450  	 * page.
3451  	 */
3452  	if (!IS_ERR(folio))
3453  		folio_put(folio);
3454  	if (mapping_locked)
3455  		filemap_invalidate_unlock_shared(mapping);
3456  	if (fpin)
3457  		fput(fpin);
3458  	return ret | VM_FAULT_RETRY;
3459  }
3460  EXPORT_SYMBOL(filemap_fault);
3461  
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3462  static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3463  		pgoff_t start)
3464  {
3465  	struct mm_struct *mm = vmf->vma->vm_mm;
3466  
3467  	/* Huge page is mapped? No need to proceed. */
3468  	if (pmd_trans_huge(*vmf->pmd)) {
3469  		folio_unlock(folio);
3470  		folio_put(folio);
3471  		return true;
3472  	}
3473  
3474  	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3475  		struct page *page = folio_file_page(folio, start);
3476  		vm_fault_t ret = do_set_pmd(vmf, page);
3477  		if (!ret) {
3478  			/* The page is mapped successfully, reference consumed. */
3479  			folio_unlock(folio);
3480  			return true;
3481  		}
3482  	}
3483  
3484  	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3485  		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3486  
3487  	return false;
3488  }
3489  
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3490  static struct folio *next_uptodate_folio(struct xa_state *xas,
3491  		struct address_space *mapping, pgoff_t end_pgoff)
3492  {
3493  	struct folio *folio = xas_next_entry(xas, end_pgoff);
3494  	unsigned long max_idx;
3495  
3496  	do {
3497  		if (!folio)
3498  			return NULL;
3499  		if (xas_retry(xas, folio))
3500  			continue;
3501  		if (xa_is_value(folio))
3502  			continue;
3503  		if (folio_test_locked(folio))
3504  			continue;
3505  		if (!folio_try_get(folio))
3506  			continue;
3507  		/* Has the page moved or been split? */
3508  		if (unlikely(folio != xas_reload(xas)))
3509  			goto skip;
3510  		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3511  			goto skip;
3512  		if (!folio_trylock(folio))
3513  			goto skip;
3514  		if (folio->mapping != mapping)
3515  			goto unlock;
3516  		if (!folio_test_uptodate(folio))
3517  			goto unlock;
3518  		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3519  		if (xas->xa_index >= max_idx)
3520  			goto unlock;
3521  		return folio;
3522  unlock:
3523  		folio_unlock(folio);
3524  skip:
3525  		folio_put(folio);
3526  	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3527  
3528  	return NULL;
3529  }
3530  
3531  /*
3532   * Map page range [start_page, start_page + nr_pages) of folio.
3533   * start_page is gotten from start by folio_page(folio, start)
3534   */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned int * mmap_miss)3535  static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3536  			struct folio *folio, unsigned long start,
3537  			unsigned long addr, unsigned int nr_pages,
3538  			unsigned long *rss, unsigned int *mmap_miss)
3539  {
3540  	vm_fault_t ret = 0;
3541  	struct page *page = folio_page(folio, start);
3542  	unsigned int count = 0;
3543  	pte_t *old_ptep = vmf->pte;
3544  
3545  	do {
3546  		if (PageHWPoison(page + count))
3547  			goto skip;
3548  
3549  		/*
3550  		 * If there are too many folios that are recently evicted
3551  		 * in a file, they will probably continue to be evicted.
3552  		 * In such situation, read-ahead is only a waste of IO.
3553  		 * Don't decrease mmap_miss in this scenario to make sure
3554  		 * we can stop read-ahead.
3555  		 */
3556  		if (!folio_test_workingset(folio))
3557  			(*mmap_miss)++;
3558  
3559  		/*
3560  		 * NOTE: If there're PTE markers, we'll leave them to be
3561  		 * handled in the specific fault path, and it'll prohibit the
3562  		 * fault-around logic.
3563  		 */
3564  		if (!pte_none(ptep_get(&vmf->pte[count])))
3565  			goto skip;
3566  
3567  		count++;
3568  		continue;
3569  skip:
3570  		if (count) {
3571  			set_pte_range(vmf, folio, page, count, addr);
3572  			*rss += count;
3573  			folio_ref_add(folio, count);
3574  			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3575  				ret = VM_FAULT_NOPAGE;
3576  		}
3577  
3578  		count++;
3579  		page += count;
3580  		vmf->pte += count;
3581  		addr += count * PAGE_SIZE;
3582  		count = 0;
3583  	} while (--nr_pages > 0);
3584  
3585  	if (count) {
3586  		set_pte_range(vmf, folio, page, count, addr);
3587  		*rss += count;
3588  		folio_ref_add(folio, count);
3589  		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3590  			ret = VM_FAULT_NOPAGE;
3591  	}
3592  
3593  	vmf->pte = old_ptep;
3594  
3595  	return ret;
3596  }
3597  
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned int * mmap_miss)3598  static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3599  		struct folio *folio, unsigned long addr,
3600  		unsigned long *rss, unsigned int *mmap_miss)
3601  {
3602  	vm_fault_t ret = 0;
3603  	struct page *page = &folio->page;
3604  
3605  	if (PageHWPoison(page))
3606  		return ret;
3607  
3608  	/* See comment of filemap_map_folio_range() */
3609  	if (!folio_test_workingset(folio))
3610  		(*mmap_miss)++;
3611  
3612  	/*
3613  	 * NOTE: If there're PTE markers, we'll leave them to be
3614  	 * handled in the specific fault path, and it'll prohibit
3615  	 * the fault-around logic.
3616  	 */
3617  	if (!pte_none(ptep_get(vmf->pte)))
3618  		return ret;
3619  
3620  	if (vmf->address == addr)
3621  		ret = VM_FAULT_NOPAGE;
3622  
3623  	set_pte_range(vmf, folio, page, 1, addr);
3624  	(*rss)++;
3625  	folio_ref_inc(folio);
3626  
3627  	return ret;
3628  }
3629  
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3630  vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3631  			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3632  {
3633  	struct vm_area_struct *vma = vmf->vma;
3634  	struct file *file = vma->vm_file;
3635  	struct address_space *mapping = file->f_mapping;
3636  	pgoff_t file_end, last_pgoff = start_pgoff;
3637  	unsigned long addr;
3638  	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3639  	struct folio *folio;
3640  	vm_fault_t ret = 0;
3641  	unsigned long rss = 0;
3642  	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3643  
3644  	rcu_read_lock();
3645  	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3646  	if (!folio)
3647  		goto out;
3648  
3649  	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3650  		ret = VM_FAULT_NOPAGE;
3651  		goto out;
3652  	}
3653  
3654  	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3655  	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3656  	if (!vmf->pte) {
3657  		folio_unlock(folio);
3658  		folio_put(folio);
3659  		goto out;
3660  	}
3661  
3662  	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3663  	if (end_pgoff > file_end)
3664  		end_pgoff = file_end;
3665  
3666  	folio_type = mm_counter_file(folio);
3667  	do {
3668  		unsigned long end;
3669  
3670  		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3671  		vmf->pte += xas.xa_index - last_pgoff;
3672  		last_pgoff = xas.xa_index;
3673  		end = folio_next_index(folio) - 1;
3674  		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3675  
3676  		if (!folio_test_large(folio))
3677  			ret |= filemap_map_order0_folio(vmf,
3678  					folio, addr, &rss, &mmap_miss);
3679  		else
3680  			ret |= filemap_map_folio_range(vmf, folio,
3681  					xas.xa_index - folio->index, addr,
3682  					nr_pages, &rss, &mmap_miss);
3683  
3684  		folio_unlock(folio);
3685  		folio_put(folio);
3686  	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3687  	add_mm_counter(vma->vm_mm, folio_type, rss);
3688  	pte_unmap_unlock(vmf->pte, vmf->ptl);
3689  	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3690  out:
3691  	rcu_read_unlock();
3692  
3693  	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3694  	if (mmap_miss >= mmap_miss_saved)
3695  		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3696  	else
3697  		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3698  
3699  	return ret;
3700  }
3701  EXPORT_SYMBOL(filemap_map_pages);
3702  
filemap_page_mkwrite(struct vm_fault * vmf)3703  vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3704  {
3705  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3706  	struct folio *folio = page_folio(vmf->page);
3707  	vm_fault_t ret = VM_FAULT_LOCKED;
3708  
3709  	sb_start_pagefault(mapping->host->i_sb);
3710  	file_update_time(vmf->vma->vm_file);
3711  	folio_lock(folio);
3712  	if (folio->mapping != mapping) {
3713  		folio_unlock(folio);
3714  		ret = VM_FAULT_NOPAGE;
3715  		goto out;
3716  	}
3717  	/*
3718  	 * We mark the folio dirty already here so that when freeze is in
3719  	 * progress, we are guaranteed that writeback during freezing will
3720  	 * see the dirty folio and writeprotect it again.
3721  	 */
3722  	folio_mark_dirty(folio);
3723  	folio_wait_stable(folio);
3724  out:
3725  	sb_end_pagefault(mapping->host->i_sb);
3726  	return ret;
3727  }
3728  
3729  const struct vm_operations_struct generic_file_vm_ops = {
3730  	.fault		= filemap_fault,
3731  	.map_pages	= filemap_map_pages,
3732  	.page_mkwrite	= filemap_page_mkwrite,
3733  };
3734  
3735  /* This is used for a general mmap of a disk file */
3736  
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3737  int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3738  {
3739  	struct address_space *mapping = file->f_mapping;
3740  
3741  	if (!mapping->a_ops->read_folio)
3742  		return -ENOEXEC;
3743  	file_accessed(file);
3744  	vma->vm_ops = &generic_file_vm_ops;
3745  	return 0;
3746  }
3747  
3748  /*
3749   * This is for filesystems which do not implement ->writepage.
3750   */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3751  int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3752  {
3753  	if (vma_is_shared_maywrite(vma))
3754  		return -EINVAL;
3755  	return generic_file_mmap(file, vma);
3756  }
3757  #else
filemap_page_mkwrite(struct vm_fault * vmf)3758  vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3759  {
3760  	return VM_FAULT_SIGBUS;
3761  }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3762  int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3763  {
3764  	return -ENOSYS;
3765  }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3766  int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3767  {
3768  	return -ENOSYS;
3769  }
3770  #endif /* CONFIG_MMU */
3771  
3772  EXPORT_SYMBOL(filemap_page_mkwrite);
3773  EXPORT_SYMBOL(generic_file_mmap);
3774  EXPORT_SYMBOL(generic_file_readonly_mmap);
3775  
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3776  static struct folio *do_read_cache_folio(struct address_space *mapping,
3777  		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3778  {
3779  	struct folio *folio;
3780  	int err;
3781  
3782  	if (!filler)
3783  		filler = mapping->a_ops->read_folio;
3784  repeat:
3785  	folio = filemap_get_folio(mapping, index);
3786  	if (IS_ERR(folio)) {
3787  		folio = filemap_alloc_folio(gfp,
3788  					    mapping_min_folio_order(mapping));
3789  		if (!folio)
3790  			return ERR_PTR(-ENOMEM);
3791  		index = mapping_align_index(mapping, index);
3792  		err = filemap_add_folio(mapping, folio, index, gfp);
3793  		if (unlikely(err)) {
3794  			folio_put(folio);
3795  			if (err == -EEXIST)
3796  				goto repeat;
3797  			/* Presumably ENOMEM for xarray node */
3798  			return ERR_PTR(err);
3799  		}
3800  
3801  		goto filler;
3802  	}
3803  	if (folio_test_uptodate(folio))
3804  		goto out;
3805  
3806  	if (!folio_trylock(folio)) {
3807  		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3808  		goto repeat;
3809  	}
3810  
3811  	/* Folio was truncated from mapping */
3812  	if (!folio->mapping) {
3813  		folio_unlock(folio);
3814  		folio_put(folio);
3815  		goto repeat;
3816  	}
3817  
3818  	/* Someone else locked and filled the page in a very small window */
3819  	if (folio_test_uptodate(folio)) {
3820  		folio_unlock(folio);
3821  		goto out;
3822  	}
3823  
3824  filler:
3825  	err = filemap_read_folio(file, filler, folio);
3826  	if (err) {
3827  		folio_put(folio);
3828  		if (err == AOP_TRUNCATED_PAGE)
3829  			goto repeat;
3830  		return ERR_PTR(err);
3831  	}
3832  
3833  out:
3834  	folio_mark_accessed(folio);
3835  	return folio;
3836  }
3837  
3838  /**
3839   * read_cache_folio - Read into page cache, fill it if needed.
3840   * @mapping: The address_space to read from.
3841   * @index: The index to read.
3842   * @filler: Function to perform the read, or NULL to use aops->read_folio().
3843   * @file: Passed to filler function, may be NULL if not required.
3844   *
3845   * Read one page into the page cache.  If it succeeds, the folio returned
3846   * will contain @index, but it may not be the first page of the folio.
3847   *
3848   * If the filler function returns an error, it will be returned to the
3849   * caller.
3850   *
3851   * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3852   * Return: An uptodate folio on success, ERR_PTR() on failure.
3853   */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3854  struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3855  		filler_t filler, struct file *file)
3856  {
3857  	return do_read_cache_folio(mapping, index, filler, file,
3858  			mapping_gfp_mask(mapping));
3859  }
3860  EXPORT_SYMBOL(read_cache_folio);
3861  
3862  /**
3863   * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3864   * @mapping:	The address_space for the folio.
3865   * @index:	The index that the allocated folio will contain.
3866   * @gfp:	The page allocator flags to use if allocating.
3867   *
3868   * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3869   * any new memory allocations done using the specified allocation flags.
3870   *
3871   * The most likely error from this function is EIO, but ENOMEM is
3872   * possible and so is EINTR.  If ->read_folio returns another error,
3873   * that will be returned to the caller.
3874   *
3875   * The function expects mapping->invalidate_lock to be already held.
3876   *
3877   * Return: Uptodate folio on success, ERR_PTR() on failure.
3878   */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3879  struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3880  		pgoff_t index, gfp_t gfp)
3881  {
3882  	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3883  }
3884  EXPORT_SYMBOL(mapping_read_folio_gfp);
3885  
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3886  static struct page *do_read_cache_page(struct address_space *mapping,
3887  		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3888  {
3889  	struct folio *folio;
3890  
3891  	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3892  	if (IS_ERR(folio))
3893  		return &folio->page;
3894  	return folio_file_page(folio, index);
3895  }
3896  
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3897  struct page *read_cache_page(struct address_space *mapping,
3898  			pgoff_t index, filler_t *filler, struct file *file)
3899  {
3900  	return do_read_cache_page(mapping, index, filler, file,
3901  			mapping_gfp_mask(mapping));
3902  }
3903  EXPORT_SYMBOL(read_cache_page);
3904  
3905  /**
3906   * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3907   * @mapping:	the page's address_space
3908   * @index:	the page index
3909   * @gfp:	the page allocator flags to use if allocating
3910   *
3911   * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3912   * any new page allocations done using the specified allocation flags.
3913   *
3914   * If the page does not get brought uptodate, return -EIO.
3915   *
3916   * The function expects mapping->invalidate_lock to be already held.
3917   *
3918   * Return: up to date page on success, ERR_PTR() on failure.
3919   */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3920  struct page *read_cache_page_gfp(struct address_space *mapping,
3921  				pgoff_t index,
3922  				gfp_t gfp)
3923  {
3924  	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3925  }
3926  EXPORT_SYMBOL(read_cache_page_gfp);
3927  
3928  /*
3929   * Warn about a page cache invalidation failure during a direct I/O write.
3930   */
dio_warn_stale_pagecache(struct file * filp)3931  static void dio_warn_stale_pagecache(struct file *filp)
3932  {
3933  	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3934  	char pathname[128];
3935  	char *path;
3936  
3937  	errseq_set(&filp->f_mapping->wb_err, -EIO);
3938  	if (__ratelimit(&_rs)) {
3939  		path = file_path(filp, pathname, sizeof(pathname));
3940  		if (IS_ERR(path))
3941  			path = "(unknown)";
3942  		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3943  		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3944  			current->comm);
3945  	}
3946  }
3947  
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)3948  void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3949  {
3950  	struct address_space *mapping = iocb->ki_filp->f_mapping;
3951  
3952  	if (mapping->nrpages &&
3953  	    invalidate_inode_pages2_range(mapping,
3954  			iocb->ki_pos >> PAGE_SHIFT,
3955  			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3956  		dio_warn_stale_pagecache(iocb->ki_filp);
3957  }
3958  
3959  ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3960  generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3961  {
3962  	struct address_space *mapping = iocb->ki_filp->f_mapping;
3963  	size_t write_len = iov_iter_count(from);
3964  	ssize_t written;
3965  
3966  	/*
3967  	 * If a page can not be invalidated, return 0 to fall back
3968  	 * to buffered write.
3969  	 */
3970  	written = kiocb_invalidate_pages(iocb, write_len);
3971  	if (written) {
3972  		if (written == -EBUSY)
3973  			return 0;
3974  		return written;
3975  	}
3976  
3977  	written = mapping->a_ops->direct_IO(iocb, from);
3978  
3979  	/*
3980  	 * Finally, try again to invalidate clean pages which might have been
3981  	 * cached by non-direct readahead, or faulted in by get_user_pages()
3982  	 * if the source of the write was an mmap'ed region of the file
3983  	 * we're writing.  Either one is a pretty crazy thing to do,
3984  	 * so we don't support it 100%.  If this invalidation
3985  	 * fails, tough, the write still worked...
3986  	 *
3987  	 * Most of the time we do not need this since dio_complete() will do
3988  	 * the invalidation for us. However there are some file systems that
3989  	 * do not end up with dio_complete() being called, so let's not break
3990  	 * them by removing it completely.
3991  	 *
3992  	 * Noticeable example is a blkdev_direct_IO().
3993  	 *
3994  	 * Skip invalidation for async writes or if mapping has no pages.
3995  	 */
3996  	if (written > 0) {
3997  		struct inode *inode = mapping->host;
3998  		loff_t pos = iocb->ki_pos;
3999  
4000  		kiocb_invalidate_post_direct_write(iocb, written);
4001  		pos += written;
4002  		write_len -= written;
4003  		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4004  			i_size_write(inode, pos);
4005  			mark_inode_dirty(inode);
4006  		}
4007  		iocb->ki_pos = pos;
4008  	}
4009  	if (written != -EIOCBQUEUED)
4010  		iov_iter_revert(from, write_len - iov_iter_count(from));
4011  	return written;
4012  }
4013  EXPORT_SYMBOL(generic_file_direct_write);
4014  
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4015  ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4016  {
4017  	struct file *file = iocb->ki_filp;
4018  	loff_t pos = iocb->ki_pos;
4019  	struct address_space *mapping = file->f_mapping;
4020  	const struct address_space_operations *a_ops = mapping->a_ops;
4021  	size_t chunk = mapping_max_folio_size(mapping);
4022  	long status = 0;
4023  	ssize_t written = 0;
4024  
4025  	do {
4026  		struct folio *folio;
4027  		size_t offset;		/* Offset into folio */
4028  		size_t bytes;		/* Bytes to write to folio */
4029  		size_t copied;		/* Bytes copied from user */
4030  		void *fsdata = NULL;
4031  
4032  		bytes = iov_iter_count(i);
4033  retry:
4034  		offset = pos & (chunk - 1);
4035  		bytes = min(chunk - offset, bytes);
4036  		balance_dirty_pages_ratelimited(mapping);
4037  
4038  		/*
4039  		 * Bring in the user page that we will copy from _first_.
4040  		 * Otherwise there's a nasty deadlock on copying from the
4041  		 * same page as we're writing to, without it being marked
4042  		 * up-to-date.
4043  		 */
4044  		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4045  			status = -EFAULT;
4046  			break;
4047  		}
4048  
4049  		if (fatal_signal_pending(current)) {
4050  			status = -EINTR;
4051  			break;
4052  		}
4053  
4054  		status = a_ops->write_begin(file, mapping, pos, bytes,
4055  						&folio, &fsdata);
4056  		if (unlikely(status < 0))
4057  			break;
4058  
4059  		offset = offset_in_folio(folio, pos);
4060  		if (bytes > folio_size(folio) - offset)
4061  			bytes = folio_size(folio) - offset;
4062  
4063  		if (mapping_writably_mapped(mapping))
4064  			flush_dcache_folio(folio);
4065  
4066  		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4067  		flush_dcache_folio(folio);
4068  
4069  		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4070  						folio, fsdata);
4071  		if (unlikely(status != copied)) {
4072  			iov_iter_revert(i, copied - max(status, 0L));
4073  			if (unlikely(status < 0))
4074  				break;
4075  		}
4076  		cond_resched();
4077  
4078  		if (unlikely(status == 0)) {
4079  			/*
4080  			 * A short copy made ->write_end() reject the
4081  			 * thing entirely.  Might be memory poisoning
4082  			 * halfway through, might be a race with munmap,
4083  			 * might be severe memory pressure.
4084  			 */
4085  			if (chunk > PAGE_SIZE)
4086  				chunk /= 2;
4087  			if (copied) {
4088  				bytes = copied;
4089  				goto retry;
4090  			}
4091  		} else {
4092  			pos += status;
4093  			written += status;
4094  		}
4095  	} while (iov_iter_count(i));
4096  
4097  	if (!written)
4098  		return status;
4099  	iocb->ki_pos += written;
4100  	return written;
4101  }
4102  EXPORT_SYMBOL(generic_perform_write);
4103  
4104  /**
4105   * __generic_file_write_iter - write data to a file
4106   * @iocb:	IO state structure (file, offset, etc.)
4107   * @from:	iov_iter with data to write
4108   *
4109   * This function does all the work needed for actually writing data to a
4110   * file. It does all basic checks, removes SUID from the file, updates
4111   * modification times and calls proper subroutines depending on whether we
4112   * do direct IO or a standard buffered write.
4113   *
4114   * It expects i_rwsem to be grabbed unless we work on a block device or similar
4115   * object which does not need locking at all.
4116   *
4117   * This function does *not* take care of syncing data in case of O_SYNC write.
4118   * A caller has to handle it. This is mainly due to the fact that we want to
4119   * avoid syncing under i_rwsem.
4120   *
4121   * Return:
4122   * * number of bytes written, even for truncated writes
4123   * * negative error code if no data has been written at all
4124   */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4125  ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4126  {
4127  	struct file *file = iocb->ki_filp;
4128  	struct address_space *mapping = file->f_mapping;
4129  	struct inode *inode = mapping->host;
4130  	ssize_t ret;
4131  
4132  	ret = file_remove_privs(file);
4133  	if (ret)
4134  		return ret;
4135  
4136  	ret = file_update_time(file);
4137  	if (ret)
4138  		return ret;
4139  
4140  	if (iocb->ki_flags & IOCB_DIRECT) {
4141  		ret = generic_file_direct_write(iocb, from);
4142  		/*
4143  		 * If the write stopped short of completing, fall back to
4144  		 * buffered writes.  Some filesystems do this for writes to
4145  		 * holes, for example.  For DAX files, a buffered write will
4146  		 * not succeed (even if it did, DAX does not handle dirty
4147  		 * page-cache pages correctly).
4148  		 */
4149  		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4150  			return ret;
4151  		return direct_write_fallback(iocb, from, ret,
4152  				generic_perform_write(iocb, from));
4153  	}
4154  
4155  	return generic_perform_write(iocb, from);
4156  }
4157  EXPORT_SYMBOL(__generic_file_write_iter);
4158  
4159  /**
4160   * generic_file_write_iter - write data to a file
4161   * @iocb:	IO state structure
4162   * @from:	iov_iter with data to write
4163   *
4164   * This is a wrapper around __generic_file_write_iter() to be used by most
4165   * filesystems. It takes care of syncing the file in case of O_SYNC file
4166   * and acquires i_rwsem as needed.
4167   * Return:
4168   * * negative error code if no data has been written at all of
4169   *   vfs_fsync_range() failed for a synchronous write
4170   * * number of bytes written, even for truncated writes
4171   */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4172  ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4173  {
4174  	struct file *file = iocb->ki_filp;
4175  	struct inode *inode = file->f_mapping->host;
4176  	ssize_t ret;
4177  
4178  	inode_lock(inode);
4179  	ret = generic_write_checks(iocb, from);
4180  	if (ret > 0)
4181  		ret = __generic_file_write_iter(iocb, from);
4182  	inode_unlock(inode);
4183  
4184  	if (ret > 0)
4185  		ret = generic_write_sync(iocb, ret);
4186  	return ret;
4187  }
4188  EXPORT_SYMBOL(generic_file_write_iter);
4189  
4190  /**
4191   * filemap_release_folio() - Release fs-specific metadata on a folio.
4192   * @folio: The folio which the kernel is trying to free.
4193   * @gfp: Memory allocation flags (and I/O mode).
4194   *
4195   * The address_space is trying to release any data attached to a folio
4196   * (presumably at folio->private).
4197   *
4198   * This will also be called if the private_2 flag is set on a page,
4199   * indicating that the folio has other metadata associated with it.
4200   *
4201   * The @gfp argument specifies whether I/O may be performed to release
4202   * this page (__GFP_IO), and whether the call may block
4203   * (__GFP_RECLAIM & __GFP_FS).
4204   *
4205   * Return: %true if the release was successful, otherwise %false.
4206   */
filemap_release_folio(struct folio * folio,gfp_t gfp)4207  bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4208  {
4209  	struct address_space * const mapping = folio->mapping;
4210  
4211  	BUG_ON(!folio_test_locked(folio));
4212  	if (!folio_needs_release(folio))
4213  		return true;
4214  	if (folio_test_writeback(folio))
4215  		return false;
4216  
4217  	if (mapping && mapping->a_ops->release_folio)
4218  		return mapping->a_ops->release_folio(folio, gfp);
4219  	return try_to_free_buffers(folio);
4220  }
4221  EXPORT_SYMBOL(filemap_release_folio);
4222  
4223  /**
4224   * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4225   * @inode: The inode to flush
4226   * @flush: Set to write back rather than simply invalidate.
4227   * @start: First byte to in range.
4228   * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4229   *       onwards.
4230   *
4231   * Invalidate all the folios on an inode that contribute to the specified
4232   * range, possibly writing them back first.  Whilst the operation is
4233   * undertaken, the invalidate lock is held to prevent new folios from being
4234   * installed.
4235   */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4236  int filemap_invalidate_inode(struct inode *inode, bool flush,
4237  			     loff_t start, loff_t end)
4238  {
4239  	struct address_space *mapping = inode->i_mapping;
4240  	pgoff_t first = start >> PAGE_SHIFT;
4241  	pgoff_t last = end >> PAGE_SHIFT;
4242  	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4243  
4244  	if (!mapping || !mapping->nrpages || end < start)
4245  		goto out;
4246  
4247  	/* Prevent new folios from being added to the inode. */
4248  	filemap_invalidate_lock(mapping);
4249  
4250  	if (!mapping->nrpages)
4251  		goto unlock;
4252  
4253  	unmap_mapping_pages(mapping, first, nr, false);
4254  
4255  	/* Write back the data if we're asked to. */
4256  	if (flush) {
4257  		struct writeback_control wbc = {
4258  			.sync_mode	= WB_SYNC_ALL,
4259  			.nr_to_write	= LONG_MAX,
4260  			.range_start	= start,
4261  			.range_end	= end,
4262  		};
4263  
4264  		filemap_fdatawrite_wbc(mapping, &wbc);
4265  	}
4266  
4267  	/* Wait for writeback to complete on all folios and discard. */
4268  	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4269  
4270  unlock:
4271  	filemap_invalidate_unlock(mapping);
4272  out:
4273  	return filemap_check_errors(mapping);
4274  }
4275  EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4276  
4277  #ifdef CONFIG_CACHESTAT_SYSCALL
4278  /**
4279   * filemap_cachestat() - compute the page cache statistics of a mapping
4280   * @mapping:	The mapping to compute the statistics for.
4281   * @first_index:	The starting page cache index.
4282   * @last_index:	The final page index (inclusive).
4283   * @cs:	the cachestat struct to write the result to.
4284   *
4285   * This will query the page cache statistics of a mapping in the
4286   * page range of [first_index, last_index] (inclusive). The statistics
4287   * queried include: number of dirty pages, number of pages marked for
4288   * writeback, and the number of (recently) evicted pages.
4289   */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4290  static void filemap_cachestat(struct address_space *mapping,
4291  		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4292  {
4293  	XA_STATE(xas, &mapping->i_pages, first_index);
4294  	struct folio *folio;
4295  
4296  	/* Flush stats (and potentially sleep) outside the RCU read section. */
4297  	mem_cgroup_flush_stats_ratelimited(NULL);
4298  
4299  	rcu_read_lock();
4300  	xas_for_each(&xas, folio, last_index) {
4301  		int order;
4302  		unsigned long nr_pages;
4303  		pgoff_t folio_first_index, folio_last_index;
4304  
4305  		/*
4306  		 * Don't deref the folio. It is not pinned, and might
4307  		 * get freed (and reused) underneath us.
4308  		 *
4309  		 * We *could* pin it, but that would be expensive for
4310  		 * what should be a fast and lightweight syscall.
4311  		 *
4312  		 * Instead, derive all information of interest from
4313  		 * the rcu-protected xarray.
4314  		 */
4315  
4316  		if (xas_retry(&xas, folio))
4317  			continue;
4318  
4319  		order = xas_get_order(&xas);
4320  		nr_pages = 1 << order;
4321  		folio_first_index = round_down(xas.xa_index, 1 << order);
4322  		folio_last_index = folio_first_index + nr_pages - 1;
4323  
4324  		/* Folios might straddle the range boundaries, only count covered pages */
4325  		if (folio_first_index < first_index)
4326  			nr_pages -= first_index - folio_first_index;
4327  
4328  		if (folio_last_index > last_index)
4329  			nr_pages -= folio_last_index - last_index;
4330  
4331  		if (xa_is_value(folio)) {
4332  			/* page is evicted */
4333  			void *shadow = (void *)folio;
4334  			bool workingset; /* not used */
4335  
4336  			cs->nr_evicted += nr_pages;
4337  
4338  #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4339  			if (shmem_mapping(mapping)) {
4340  				/* shmem file - in swap cache */
4341  				swp_entry_t swp = radix_to_swp_entry(folio);
4342  
4343  				/* swapin error results in poisoned entry */
4344  				if (non_swap_entry(swp))
4345  					goto resched;
4346  
4347  				/*
4348  				 * Getting a swap entry from the shmem
4349  				 * inode means we beat
4350  				 * shmem_unuse(). rcu_read_lock()
4351  				 * ensures swapoff waits for us before
4352  				 * freeing the swapper space. However,
4353  				 * we can race with swapping and
4354  				 * invalidation, so there might not be
4355  				 * a shadow in the swapcache (yet).
4356  				 */
4357  				shadow = get_shadow_from_swap_cache(swp);
4358  				if (!shadow)
4359  					goto resched;
4360  			}
4361  #endif
4362  			if (workingset_test_recent(shadow, true, &workingset, false))
4363  				cs->nr_recently_evicted += nr_pages;
4364  
4365  			goto resched;
4366  		}
4367  
4368  		/* page is in cache */
4369  		cs->nr_cache += nr_pages;
4370  
4371  		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4372  			cs->nr_dirty += nr_pages;
4373  
4374  		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4375  			cs->nr_writeback += nr_pages;
4376  
4377  resched:
4378  		if (need_resched()) {
4379  			xas_pause(&xas);
4380  			cond_resched_rcu();
4381  		}
4382  	}
4383  	rcu_read_unlock();
4384  }
4385  
4386  /*
4387   * The cachestat(2) system call.
4388   *
4389   * cachestat() returns the page cache statistics of a file in the
4390   * bytes range specified by `off` and `len`: number of cached pages,
4391   * number of dirty pages, number of pages marked for writeback,
4392   * number of evicted pages, and number of recently evicted pages.
4393   *
4394   * An evicted page is a page that is previously in the page cache
4395   * but has been evicted since. A page is recently evicted if its last
4396   * eviction was recent enough that its reentry to the cache would
4397   * indicate that it is actively being used by the system, and that
4398   * there is memory pressure on the system.
4399   *
4400   * `off` and `len` must be non-negative integers. If `len` > 0,
4401   * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4402   * we will query in the range from `off` to the end of the file.
4403   *
4404   * The `flags` argument is unused for now, but is included for future
4405   * extensibility. User should pass 0 (i.e no flag specified).
4406   *
4407   * Currently, hugetlbfs is not supported.
4408   *
4409   * Because the status of a page can change after cachestat() checks it
4410   * but before it returns to the application, the returned values may
4411   * contain stale information.
4412   *
4413   * return values:
4414   *  zero        - success
4415   *  -EFAULT     - cstat or cstat_range points to an illegal address
4416   *  -EINVAL     - invalid flags
4417   *  -EBADF      - invalid file descriptor
4418   *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4419   */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4420  SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4421  		struct cachestat_range __user *, cstat_range,
4422  		struct cachestat __user *, cstat, unsigned int, flags)
4423  {
4424  	struct fd f = fdget(fd);
4425  	struct address_space *mapping;
4426  	struct cachestat_range csr;
4427  	struct cachestat cs;
4428  	pgoff_t first_index, last_index;
4429  
4430  	if (!fd_file(f))
4431  		return -EBADF;
4432  
4433  	if (copy_from_user(&csr, cstat_range,
4434  			sizeof(struct cachestat_range))) {
4435  		fdput(f);
4436  		return -EFAULT;
4437  	}
4438  
4439  	/* hugetlbfs is not supported */
4440  	if (is_file_hugepages(fd_file(f))) {
4441  		fdput(f);
4442  		return -EOPNOTSUPP;
4443  	}
4444  
4445  	if (flags != 0) {
4446  		fdput(f);
4447  		return -EINVAL;
4448  	}
4449  
4450  	first_index = csr.off >> PAGE_SHIFT;
4451  	last_index =
4452  		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4453  	memset(&cs, 0, sizeof(struct cachestat));
4454  	mapping = fd_file(f)->f_mapping;
4455  	filemap_cachestat(mapping, first_index, last_index, &cs);
4456  	fdput(f);
4457  
4458  	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4459  		return -EFAULT;
4460  
4461  	return 0;
4462  }
4463  #endif /* CONFIG_CACHESTAT_SYSCALL */
4464