1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * lib/bitmap.c
4   * Helper functions for bitmap.h.
5   */
6  
7  #include <linux/bitmap.h>
8  #include <linux/bitops.h>
9  #include <linux/ctype.h>
10  #include <linux/device.h>
11  #include <linux/export.h>
12  #include <linux/slab.h>
13  
14  /**
15   * DOC: bitmap introduction
16   *
17   * bitmaps provide an array of bits, implemented using an
18   * array of unsigned longs.  The number of valid bits in a
19   * given bitmap does _not_ need to be an exact multiple of
20   * BITS_PER_LONG.
21   *
22   * The possible unused bits in the last, partially used word
23   * of a bitmap are 'don't care'.  The implementation makes
24   * no particular effort to keep them zero.  It ensures that
25   * their value will not affect the results of any operation.
26   * The bitmap operations that return Boolean (bitmap_empty,
27   * for example) or scalar (bitmap_weight, for example) results
28   * carefully filter out these unused bits from impacting their
29   * results.
30   *
31   * The byte ordering of bitmaps is more natural on little
32   * endian architectures.  See the big-endian headers
33   * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
34   * for the best explanations of this ordering.
35   */
36  
__bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)37  bool __bitmap_equal(const unsigned long *bitmap1,
38  		    const unsigned long *bitmap2, unsigned int bits)
39  {
40  	unsigned int k, lim = bits/BITS_PER_LONG;
41  	for (k = 0; k < lim; ++k)
42  		if (bitmap1[k] != bitmap2[k])
43  			return false;
44  
45  	if (bits % BITS_PER_LONG)
46  		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
47  			return false;
48  
49  	return true;
50  }
51  EXPORT_SYMBOL(__bitmap_equal);
52  
__bitmap_or_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,const unsigned long * bitmap3,unsigned int bits)53  bool __bitmap_or_equal(const unsigned long *bitmap1,
54  		       const unsigned long *bitmap2,
55  		       const unsigned long *bitmap3,
56  		       unsigned int bits)
57  {
58  	unsigned int k, lim = bits / BITS_PER_LONG;
59  	unsigned long tmp;
60  
61  	for (k = 0; k < lim; ++k) {
62  		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
63  			return false;
64  	}
65  
66  	if (!(bits % BITS_PER_LONG))
67  		return true;
68  
69  	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
70  	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
71  }
72  
__bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)73  void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
74  {
75  	unsigned int k, lim = BITS_TO_LONGS(bits);
76  	for (k = 0; k < lim; ++k)
77  		dst[k] = ~src[k];
78  }
79  EXPORT_SYMBOL(__bitmap_complement);
80  
81  /**
82   * __bitmap_shift_right - logical right shift of the bits in a bitmap
83   *   @dst : destination bitmap
84   *   @src : source bitmap
85   *   @shift : shift by this many bits
86   *   @nbits : bitmap size, in bits
87   *
88   * Shifting right (dividing) means moving bits in the MS -> LS bit
89   * direction.  Zeros are fed into the vacated MS positions and the
90   * LS bits shifted off the bottom are lost.
91   */
__bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned shift,unsigned nbits)92  void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
93  			unsigned shift, unsigned nbits)
94  {
95  	unsigned k, lim = BITS_TO_LONGS(nbits);
96  	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
97  	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
98  	for (k = 0; off + k < lim; ++k) {
99  		unsigned long upper, lower;
100  
101  		/*
102  		 * If shift is not word aligned, take lower rem bits of
103  		 * word above and make them the top rem bits of result.
104  		 */
105  		if (!rem || off + k + 1 >= lim)
106  			upper = 0;
107  		else {
108  			upper = src[off + k + 1];
109  			if (off + k + 1 == lim - 1)
110  				upper &= mask;
111  			upper <<= (BITS_PER_LONG - rem);
112  		}
113  		lower = src[off + k];
114  		if (off + k == lim - 1)
115  			lower &= mask;
116  		lower >>= rem;
117  		dst[k] = lower | upper;
118  	}
119  	if (off)
120  		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121  }
122  EXPORT_SYMBOL(__bitmap_shift_right);
123  
124  
125  /**
126   * __bitmap_shift_left - logical left shift of the bits in a bitmap
127   *   @dst : destination bitmap
128   *   @src : source bitmap
129   *   @shift : shift by this many bits
130   *   @nbits : bitmap size, in bits
131   *
132   * Shifting left (multiplying) means moving bits in the LS -> MS
133   * direction.  Zeros are fed into the vacated LS bit positions
134   * and those MS bits shifted off the top are lost.
135   */
136  
__bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)137  void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138  			unsigned int shift, unsigned int nbits)
139  {
140  	int k;
141  	unsigned int lim = BITS_TO_LONGS(nbits);
142  	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143  	for (k = lim - off - 1; k >= 0; --k) {
144  		unsigned long upper, lower;
145  
146  		/*
147  		 * If shift is not word aligned, take upper rem bits of
148  		 * word below and make them the bottom rem bits of result.
149  		 */
150  		if (rem && k > 0)
151  			lower = src[k - 1] >> (BITS_PER_LONG - rem);
152  		else
153  			lower = 0;
154  		upper = src[k] << rem;
155  		dst[k + off] = lower | upper;
156  	}
157  	if (off)
158  		memset(dst, 0, off*sizeof(unsigned long));
159  }
160  EXPORT_SYMBOL(__bitmap_shift_left);
161  
162  /**
163   * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164   * @dst: destination bitmap, might overlap with src
165   * @src: source bitmap
166   * @first: start bit of region to be removed
167   * @cut: number of bits to remove
168   * @nbits: bitmap size, in bits
169   *
170   * Set the n-th bit of @dst iff the n-th bit of @src is set and
171   * n is less than @first, or the m-th bit of @src is set for any
172   * m such that @first <= n < nbits, and m = n + @cut.
173   *
174   * In pictures, example for a big-endian 32-bit architecture:
175   *
176   * The @src bitmap is::
177   *
178   *   31                                   63
179   *   |                                    |
180   *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181   *                   |  |              |                                    |
182   *                  16  14             0                                   32
183   *
184   * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185   *
186   *   31                                   63
187   *   |                                    |
188   *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189   *                      |              |                                    |
190   *                      14 (bit 17     0                                   32
191   *                          from @src)
192   *
193   * Note that @dst and @src might overlap partially or entirely.
194   *
195   * This is implemented in the obvious way, with a shift and carry
196   * step for each moved bit. Optimisation is left as an exercise
197   * for the compiler.
198   */
bitmap_cut(unsigned long * dst,const unsigned long * src,unsigned int first,unsigned int cut,unsigned int nbits)199  void bitmap_cut(unsigned long *dst, const unsigned long *src,
200  		unsigned int first, unsigned int cut, unsigned int nbits)
201  {
202  	unsigned int len = BITS_TO_LONGS(nbits);
203  	unsigned long keep = 0, carry;
204  	int i;
205  
206  	if (first % BITS_PER_LONG) {
207  		keep = src[first / BITS_PER_LONG] &
208  		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209  	}
210  
211  	memmove(dst, src, len * sizeof(*dst));
212  
213  	while (cut--) {
214  		for (i = first / BITS_PER_LONG; i < len; i++) {
215  			if (i < len - 1)
216  				carry = dst[i + 1] & 1UL;
217  			else
218  				carry = 0;
219  
220  			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221  		}
222  	}
223  
224  	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225  	dst[first / BITS_PER_LONG] |= keep;
226  }
227  EXPORT_SYMBOL(bitmap_cut);
228  
__bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)229  bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230  				const unsigned long *bitmap2, unsigned int bits)
231  {
232  	unsigned int k;
233  	unsigned int lim = bits/BITS_PER_LONG;
234  	unsigned long result = 0;
235  
236  	for (k = 0; k < lim; k++)
237  		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238  	if (bits % BITS_PER_LONG)
239  		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240  			   BITMAP_LAST_WORD_MASK(bits));
241  	return result != 0;
242  }
243  EXPORT_SYMBOL(__bitmap_and);
244  
__bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)245  void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246  				const unsigned long *bitmap2, unsigned int bits)
247  {
248  	unsigned int k;
249  	unsigned int nr = BITS_TO_LONGS(bits);
250  
251  	for (k = 0; k < nr; k++)
252  		dst[k] = bitmap1[k] | bitmap2[k];
253  }
254  EXPORT_SYMBOL(__bitmap_or);
255  
__bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)256  void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257  				const unsigned long *bitmap2, unsigned int bits)
258  {
259  	unsigned int k;
260  	unsigned int nr = BITS_TO_LONGS(bits);
261  
262  	for (k = 0; k < nr; k++)
263  		dst[k] = bitmap1[k] ^ bitmap2[k];
264  }
265  EXPORT_SYMBOL(__bitmap_xor);
266  
__bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)267  bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268  				const unsigned long *bitmap2, unsigned int bits)
269  {
270  	unsigned int k;
271  	unsigned int lim = bits/BITS_PER_LONG;
272  	unsigned long result = 0;
273  
274  	for (k = 0; k < lim; k++)
275  		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276  	if (bits % BITS_PER_LONG)
277  		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278  			   BITMAP_LAST_WORD_MASK(bits));
279  	return result != 0;
280  }
281  EXPORT_SYMBOL(__bitmap_andnot);
282  
__bitmap_replace(unsigned long * dst,const unsigned long * old,const unsigned long * new,const unsigned long * mask,unsigned int nbits)283  void __bitmap_replace(unsigned long *dst,
284  		      const unsigned long *old, const unsigned long *new,
285  		      const unsigned long *mask, unsigned int nbits)
286  {
287  	unsigned int k;
288  	unsigned int nr = BITS_TO_LONGS(nbits);
289  
290  	for (k = 0; k < nr; k++)
291  		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292  }
293  EXPORT_SYMBOL(__bitmap_replace);
294  
__bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)295  bool __bitmap_intersects(const unsigned long *bitmap1,
296  			 const unsigned long *bitmap2, unsigned int bits)
297  {
298  	unsigned int k, lim = bits/BITS_PER_LONG;
299  	for (k = 0; k < lim; ++k)
300  		if (bitmap1[k] & bitmap2[k])
301  			return true;
302  
303  	if (bits % BITS_PER_LONG)
304  		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305  			return true;
306  	return false;
307  }
308  EXPORT_SYMBOL(__bitmap_intersects);
309  
__bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)310  bool __bitmap_subset(const unsigned long *bitmap1,
311  		     const unsigned long *bitmap2, unsigned int bits)
312  {
313  	unsigned int k, lim = bits/BITS_PER_LONG;
314  	for (k = 0; k < lim; ++k)
315  		if (bitmap1[k] & ~bitmap2[k])
316  			return false;
317  
318  	if (bits % BITS_PER_LONG)
319  		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320  			return false;
321  	return true;
322  }
323  EXPORT_SYMBOL(__bitmap_subset);
324  
325  #define BITMAP_WEIGHT(FETCH, bits)	\
326  ({										\
327  	unsigned int __bits = (bits), idx, w = 0;				\
328  										\
329  	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
330  		w += hweight_long(FETCH);					\
331  										\
332  	if (__bits % BITS_PER_LONG)						\
333  		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
334  										\
335  	w;									\
336  })
337  
__bitmap_weight(const unsigned long * bitmap,unsigned int bits)338  unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339  {
340  	return BITMAP_WEIGHT(bitmap[idx], bits);
341  }
342  EXPORT_SYMBOL(__bitmap_weight);
343  
__bitmap_weight_and(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)344  unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345  				const unsigned long *bitmap2, unsigned int bits)
346  {
347  	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
348  }
349  EXPORT_SYMBOL(__bitmap_weight_and);
350  
__bitmap_weight_andnot(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)351  unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
352  				const unsigned long *bitmap2, unsigned int bits)
353  {
354  	return BITMAP_WEIGHT(bitmap1[idx] & ~bitmap2[idx], bits);
355  }
356  EXPORT_SYMBOL(__bitmap_weight_andnot);
357  
__bitmap_set(unsigned long * map,unsigned int start,int len)358  void __bitmap_set(unsigned long *map, unsigned int start, int len)
359  {
360  	unsigned long *p = map + BIT_WORD(start);
361  	const unsigned int size = start + len;
362  	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
363  	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
364  
365  	while (len - bits_to_set >= 0) {
366  		*p |= mask_to_set;
367  		len -= bits_to_set;
368  		bits_to_set = BITS_PER_LONG;
369  		mask_to_set = ~0UL;
370  		p++;
371  	}
372  	if (len) {
373  		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
374  		*p |= mask_to_set;
375  	}
376  }
377  EXPORT_SYMBOL(__bitmap_set);
378  
__bitmap_clear(unsigned long * map,unsigned int start,int len)379  void __bitmap_clear(unsigned long *map, unsigned int start, int len)
380  {
381  	unsigned long *p = map + BIT_WORD(start);
382  	const unsigned int size = start + len;
383  	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
384  	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
385  
386  	while (len - bits_to_clear >= 0) {
387  		*p &= ~mask_to_clear;
388  		len -= bits_to_clear;
389  		bits_to_clear = BITS_PER_LONG;
390  		mask_to_clear = ~0UL;
391  		p++;
392  	}
393  	if (len) {
394  		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
395  		*p &= ~mask_to_clear;
396  	}
397  }
398  EXPORT_SYMBOL(__bitmap_clear);
399  
400  /**
401   * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
402   * @map: The address to base the search on
403   * @size: The bitmap size in bits
404   * @start: The bitnumber to start searching at
405   * @nr: The number of zeroed bits we're looking for
406   * @align_mask: Alignment mask for zero area
407   * @align_offset: Alignment offset for zero area.
408   *
409   * The @align_mask should be one less than a power of 2; the effect is that
410   * the bit offset of all zero areas this function finds plus @align_offset
411   * is multiple of that power of 2.
412   */
bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)413  unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
414  					     unsigned long size,
415  					     unsigned long start,
416  					     unsigned int nr,
417  					     unsigned long align_mask,
418  					     unsigned long align_offset)
419  {
420  	unsigned long index, end, i;
421  again:
422  	index = find_next_zero_bit(map, size, start);
423  
424  	/* Align allocation */
425  	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
426  
427  	end = index + nr;
428  	if (end > size)
429  		return end;
430  	i = find_next_bit(map, end, index);
431  	if (i < end) {
432  		start = i + 1;
433  		goto again;
434  	}
435  	return index;
436  }
437  EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
438  
439  /**
440   * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
441   *	@buf: pointer to a bitmap
442   *	@pos: a bit position in @buf (0 <= @pos < @nbits)
443   *	@nbits: number of valid bit positions in @buf
444   *
445   * Map the bit at position @pos in @buf (of length @nbits) to the
446   * ordinal of which set bit it is.  If it is not set or if @pos
447   * is not a valid bit position, map to -1.
448   *
449   * If for example, just bits 4 through 7 are set in @buf, then @pos
450   * values 4 through 7 will get mapped to 0 through 3, respectively,
451   * and other @pos values will get mapped to -1.  When @pos value 7
452   * gets mapped to (returns) @ord value 3 in this example, that means
453   * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
454   *
455   * The bit positions 0 through @bits are valid positions in @buf.
456   */
bitmap_pos_to_ord(const unsigned long * buf,unsigned int pos,unsigned int nbits)457  static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
458  {
459  	if (pos >= nbits || !test_bit(pos, buf))
460  		return -1;
461  
462  	return bitmap_weight(buf, pos);
463  }
464  
465  /**
466   * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
467   *	@dst: remapped result
468   *	@src: subset to be remapped
469   *	@old: defines domain of map
470   *	@new: defines range of map
471   *	@nbits: number of bits in each of these bitmaps
472   *
473   * Let @old and @new define a mapping of bit positions, such that
474   * whatever position is held by the n-th set bit in @old is mapped
475   * to the n-th set bit in @new.  In the more general case, allowing
476   * for the possibility that the weight 'w' of @new is less than the
477   * weight of @old, map the position of the n-th set bit in @old to
478   * the position of the m-th set bit in @new, where m == n % w.
479   *
480   * If either of the @old and @new bitmaps are empty, or if @src and
481   * @dst point to the same location, then this routine copies @src
482   * to @dst.
483   *
484   * The positions of unset bits in @old are mapped to themselves
485   * (the identity map).
486   *
487   * Apply the above specified mapping to @src, placing the result in
488   * @dst, clearing any bits previously set in @dst.
489   *
490   * For example, lets say that @old has bits 4 through 7 set, and
491   * @new has bits 12 through 15 set.  This defines the mapping of bit
492   * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
493   * bit positions unchanged.  So if say @src comes into this routine
494   * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
495   * 13 and 15 set.
496   */
bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,unsigned int nbits)497  void bitmap_remap(unsigned long *dst, const unsigned long *src,
498  		const unsigned long *old, const unsigned long *new,
499  		unsigned int nbits)
500  {
501  	unsigned int oldbit, w;
502  
503  	if (dst == src)		/* following doesn't handle inplace remaps */
504  		return;
505  	bitmap_zero(dst, nbits);
506  
507  	w = bitmap_weight(new, nbits);
508  	for_each_set_bit(oldbit, src, nbits) {
509  		int n = bitmap_pos_to_ord(old, oldbit, nbits);
510  
511  		if (n < 0 || w == 0)
512  			set_bit(oldbit, dst);	/* identity map */
513  		else
514  			set_bit(find_nth_bit(new, nbits, n % w), dst);
515  	}
516  }
517  EXPORT_SYMBOL(bitmap_remap);
518  
519  /**
520   * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
521   *	@oldbit: bit position to be mapped
522   *	@old: defines domain of map
523   *	@new: defines range of map
524   *	@bits: number of bits in each of these bitmaps
525   *
526   * Let @old and @new define a mapping of bit positions, such that
527   * whatever position is held by the n-th set bit in @old is mapped
528   * to the n-th set bit in @new.  In the more general case, allowing
529   * for the possibility that the weight 'w' of @new is less than the
530   * weight of @old, map the position of the n-th set bit in @old to
531   * the position of the m-th set bit in @new, where m == n % w.
532   *
533   * The positions of unset bits in @old are mapped to themselves
534   * (the identity map).
535   *
536   * Apply the above specified mapping to bit position @oldbit, returning
537   * the new bit position.
538   *
539   * For example, lets say that @old has bits 4 through 7 set, and
540   * @new has bits 12 through 15 set.  This defines the mapping of bit
541   * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
542   * bit positions unchanged.  So if say @oldbit is 5, then this routine
543   * returns 13.
544   */
bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)545  int bitmap_bitremap(int oldbit, const unsigned long *old,
546  				const unsigned long *new, int bits)
547  {
548  	int w = bitmap_weight(new, bits);
549  	int n = bitmap_pos_to_ord(old, oldbit, bits);
550  	if (n < 0 || w == 0)
551  		return oldbit;
552  	else
553  		return find_nth_bit(new, bits, n % w);
554  }
555  EXPORT_SYMBOL(bitmap_bitremap);
556  
557  #ifdef CONFIG_NUMA
558  /**
559   * bitmap_onto - translate one bitmap relative to another
560   *	@dst: resulting translated bitmap
561   * 	@orig: original untranslated bitmap
562   * 	@relmap: bitmap relative to which translated
563   *	@bits: number of bits in each of these bitmaps
564   *
565   * Set the n-th bit of @dst iff there exists some m such that the
566   * n-th bit of @relmap is set, the m-th bit of @orig is set, and
567   * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
568   * (If you understood the previous sentence the first time your
569   * read it, you're overqualified for your current job.)
570   *
571   * In other words, @orig is mapped onto (surjectively) @dst,
572   * using the map { <n, m> | the n-th bit of @relmap is the
573   * m-th set bit of @relmap }.
574   *
575   * Any set bits in @orig above bit number W, where W is the
576   * weight of (number of set bits in) @relmap are mapped nowhere.
577   * In particular, if for all bits m set in @orig, m >= W, then
578   * @dst will end up empty.  In situations where the possibility
579   * of such an empty result is not desired, one way to avoid it is
580   * to use the bitmap_fold() operator, below, to first fold the
581   * @orig bitmap over itself so that all its set bits x are in the
582   * range 0 <= x < W.  The bitmap_fold() operator does this by
583   * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
584   *
585   * Example [1] for bitmap_onto():
586   *  Let's say @relmap has bits 30-39 set, and @orig has bits
587   *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
588   *  @dst will have bits 31, 33, 35, 37 and 39 set.
589   *
590   *  When bit 0 is set in @orig, it means turn on the bit in
591   *  @dst corresponding to whatever is the first bit (if any)
592   *  that is turned on in @relmap.  Since bit 0 was off in the
593   *  above example, we leave off that bit (bit 30) in @dst.
594   *
595   *  When bit 1 is set in @orig (as in the above example), it
596   *  means turn on the bit in @dst corresponding to whatever
597   *  is the second bit that is turned on in @relmap.  The second
598   *  bit in @relmap that was turned on in the above example was
599   *  bit 31, so we turned on bit 31 in @dst.
600   *
601   *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
602   *  because they were the 4th, 6th, 8th and 10th set bits
603   *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
604   *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
605   *
606   *  When bit 11 is set in @orig, it means turn on the bit in
607   *  @dst corresponding to whatever is the twelfth bit that is
608   *  turned on in @relmap.  In the above example, there were
609   *  only ten bits turned on in @relmap (30..39), so that bit
610   *  11 was set in @orig had no affect on @dst.
611   *
612   * Example [2] for bitmap_fold() + bitmap_onto():
613   *  Let's say @relmap has these ten bits set::
614   *
615   *		40 41 42 43 45 48 53 61 74 95
616   *
617   *  (for the curious, that's 40 plus the first ten terms of the
618   *  Fibonacci sequence.)
619   *
620   *  Further lets say we use the following code, invoking
621   *  bitmap_fold() then bitmap_onto, as suggested above to
622   *  avoid the possibility of an empty @dst result::
623   *
624   *	unsigned long *tmp;	// a temporary bitmap's bits
625   *
626   *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
627   *	bitmap_onto(dst, tmp, relmap, bits);
628   *
629   *  Then this table shows what various values of @dst would be, for
630   *  various @orig's.  I list the zero-based positions of each set bit.
631   *  The tmp column shows the intermediate result, as computed by
632   *  using bitmap_fold() to fold the @orig bitmap modulo ten
633   *  (the weight of @relmap):
634   *
635   *      =============== ============== =================
636   *      @orig           tmp            @dst
637   *      0                0             40
638   *      1                1             41
639   *      9                9             95
640   *      10               0             40 [#f1]_
641   *      1 3 5 7          1 3 5 7       41 43 48 61
642   *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
643   *      0 9 18 27        0 9 8 7       40 61 74 95
644   *      0 10 20 30       0             40
645   *      0 11 22 33       0 1 2 3       40 41 42 43
646   *      0 12 24 36       0 2 4 6       40 42 45 53
647   *      78 102 211       1 2 8         41 42 74 [#f1]_
648   *      =============== ============== =================
649   *
650   * .. [#f1]
651   *
652   *     For these marked lines, if we hadn't first done bitmap_fold()
653   *     into tmp, then the @dst result would have been empty.
654   *
655   * If either of @orig or @relmap is empty (no set bits), then @dst
656   * will be returned empty.
657   *
658   * If (as explained above) the only set bits in @orig are in positions
659   * m where m >= W, (where W is the weight of @relmap) then @dst will
660   * once again be returned empty.
661   *
662   * All bits in @dst not set by the above rule are cleared.
663   */
bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,unsigned int bits)664  void bitmap_onto(unsigned long *dst, const unsigned long *orig,
665  			const unsigned long *relmap, unsigned int bits)
666  {
667  	unsigned int n, m;	/* same meaning as in above comment */
668  
669  	if (dst == orig)	/* following doesn't handle inplace mappings */
670  		return;
671  	bitmap_zero(dst, bits);
672  
673  	/*
674  	 * The following code is a more efficient, but less
675  	 * obvious, equivalent to the loop:
676  	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
677  	 *		n = find_nth_bit(orig, bits, m);
678  	 *		if (test_bit(m, orig))
679  	 *			set_bit(n, dst);
680  	 *	}
681  	 */
682  
683  	m = 0;
684  	for_each_set_bit(n, relmap, bits) {
685  		/* m == bitmap_pos_to_ord(relmap, n, bits) */
686  		if (test_bit(m, orig))
687  			set_bit(n, dst);
688  		m++;
689  	}
690  }
691  
692  /**
693   * bitmap_fold - fold larger bitmap into smaller, modulo specified size
694   *	@dst: resulting smaller bitmap
695   *	@orig: original larger bitmap
696   *	@sz: specified size
697   *	@nbits: number of bits in each of these bitmaps
698   *
699   * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
700   * Clear all other bits in @dst.  See further the comment and
701   * Example [2] for bitmap_onto() for why and how to use this.
702   */
bitmap_fold(unsigned long * dst,const unsigned long * orig,unsigned int sz,unsigned int nbits)703  void bitmap_fold(unsigned long *dst, const unsigned long *orig,
704  			unsigned int sz, unsigned int nbits)
705  {
706  	unsigned int oldbit;
707  
708  	if (dst == orig)	/* following doesn't handle inplace mappings */
709  		return;
710  	bitmap_zero(dst, nbits);
711  
712  	for_each_set_bit(oldbit, orig, nbits)
713  		set_bit(oldbit % sz, dst);
714  }
715  #endif /* CONFIG_NUMA */
716  
bitmap_alloc(unsigned int nbits,gfp_t flags)717  unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
718  {
719  	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
720  			     flags);
721  }
722  EXPORT_SYMBOL(bitmap_alloc);
723  
bitmap_zalloc(unsigned int nbits,gfp_t flags)724  unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
725  {
726  	return bitmap_alloc(nbits, flags | __GFP_ZERO);
727  }
728  EXPORT_SYMBOL(bitmap_zalloc);
729  
bitmap_alloc_node(unsigned int nbits,gfp_t flags,int node)730  unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
731  {
732  	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
733  				  flags, node);
734  }
735  EXPORT_SYMBOL(bitmap_alloc_node);
736  
bitmap_zalloc_node(unsigned int nbits,gfp_t flags,int node)737  unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
738  {
739  	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
740  }
741  EXPORT_SYMBOL(bitmap_zalloc_node);
742  
bitmap_free(const unsigned long * bitmap)743  void bitmap_free(const unsigned long *bitmap)
744  {
745  	kfree(bitmap);
746  }
747  EXPORT_SYMBOL(bitmap_free);
748  
devm_bitmap_free(void * data)749  static void devm_bitmap_free(void *data)
750  {
751  	unsigned long *bitmap = data;
752  
753  	bitmap_free(bitmap);
754  }
755  
devm_bitmap_alloc(struct device * dev,unsigned int nbits,gfp_t flags)756  unsigned long *devm_bitmap_alloc(struct device *dev,
757  				 unsigned int nbits, gfp_t flags)
758  {
759  	unsigned long *bitmap;
760  	int ret;
761  
762  	bitmap = bitmap_alloc(nbits, flags);
763  	if (!bitmap)
764  		return NULL;
765  
766  	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
767  	if (ret)
768  		return NULL;
769  
770  	return bitmap;
771  }
772  EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
773  
devm_bitmap_zalloc(struct device * dev,unsigned int nbits,gfp_t flags)774  unsigned long *devm_bitmap_zalloc(struct device *dev,
775  				  unsigned int nbits, gfp_t flags)
776  {
777  	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
778  }
779  EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
780  
781  #if BITS_PER_LONG == 64
782  /**
783   * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
784   *	@bitmap: array of unsigned longs, the destination bitmap
785   *	@buf: array of u32 (in host byte order), the source bitmap
786   *	@nbits: number of bits in @bitmap
787   */
bitmap_from_arr32(unsigned long * bitmap,const u32 * buf,unsigned int nbits)788  void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
789  {
790  	unsigned int i, halfwords;
791  
792  	halfwords = DIV_ROUND_UP(nbits, 32);
793  	for (i = 0; i < halfwords; i++) {
794  		bitmap[i/2] = (unsigned long) buf[i];
795  		if (++i < halfwords)
796  			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
797  	}
798  
799  	/* Clear tail bits in last word beyond nbits. */
800  	if (nbits % BITS_PER_LONG)
801  		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
802  }
803  EXPORT_SYMBOL(bitmap_from_arr32);
804  
805  /**
806   * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
807   *	@buf: array of u32 (in host byte order), the dest bitmap
808   *	@bitmap: array of unsigned longs, the source bitmap
809   *	@nbits: number of bits in @bitmap
810   */
bitmap_to_arr32(u32 * buf,const unsigned long * bitmap,unsigned int nbits)811  void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
812  {
813  	unsigned int i, halfwords;
814  
815  	halfwords = DIV_ROUND_UP(nbits, 32);
816  	for (i = 0; i < halfwords; i++) {
817  		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
818  		if (++i < halfwords)
819  			buf[i] = (u32) (bitmap[i/2] >> 32);
820  	}
821  
822  	/* Clear tail bits in last element of array beyond nbits. */
823  	if (nbits % BITS_PER_LONG)
824  		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
825  }
826  EXPORT_SYMBOL(bitmap_to_arr32);
827  #endif
828  
829  #if BITS_PER_LONG == 32
830  /**
831   * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
832   *	@bitmap: array of unsigned longs, the destination bitmap
833   *	@buf: array of u64 (in host byte order), the source bitmap
834   *	@nbits: number of bits in @bitmap
835   */
bitmap_from_arr64(unsigned long * bitmap,const u64 * buf,unsigned int nbits)836  void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
837  {
838  	int n;
839  
840  	for (n = nbits; n > 0; n -= 64) {
841  		u64 val = *buf++;
842  
843  		*bitmap++ = val;
844  		if (n > 32)
845  			*bitmap++ = val >> 32;
846  	}
847  
848  	/*
849  	 * Clear tail bits in the last word beyond nbits.
850  	 *
851  	 * Negative index is OK because here we point to the word next
852  	 * to the last word of the bitmap, except for nbits == 0, which
853  	 * is tested implicitly.
854  	 */
855  	if (nbits % BITS_PER_LONG)
856  		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
857  }
858  EXPORT_SYMBOL(bitmap_from_arr64);
859  
860  /**
861   * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
862   *	@buf: array of u64 (in host byte order), the dest bitmap
863   *	@bitmap: array of unsigned longs, the source bitmap
864   *	@nbits: number of bits in @bitmap
865   */
bitmap_to_arr64(u64 * buf,const unsigned long * bitmap,unsigned int nbits)866  void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
867  {
868  	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
869  
870  	while (bitmap < end) {
871  		*buf = *bitmap++;
872  		if (bitmap < end)
873  			*buf |= (u64)(*bitmap++) << 32;
874  		buf++;
875  	}
876  
877  	/* Clear tail bits in the last element of array beyond nbits. */
878  	if (nbits % 64)
879  		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
880  }
881  EXPORT_SYMBOL(bitmap_to_arr64);
882  #endif
883