1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  Kernel timekeeping code and accessor functions. Based on code from
4   *  timer.c, moved in commit 8524070b7982.
5   */
6  #include <linux/timekeeper_internal.h>
7  #include <linux/module.h>
8  #include <linux/interrupt.h>
9  #include <linux/percpu.h>
10  #include <linux/init.h>
11  #include <linux/mm.h>
12  #include <linux/nmi.h>
13  #include <linux/sched.h>
14  #include <linux/sched/loadavg.h>
15  #include <linux/sched/clock.h>
16  #include <linux/syscore_ops.h>
17  #include <linux/clocksource.h>
18  #include <linux/jiffies.h>
19  #include <linux/time.h>
20  #include <linux/timex.h>
21  #include <linux/tick.h>
22  #include <linux/stop_machine.h>
23  #include <linux/pvclock_gtod.h>
24  #include <linux/compiler.h>
25  #include <linux/audit.h>
26  #include <linux/random.h>
27  
28  #include "tick-internal.h"
29  #include "ntp_internal.h"
30  #include "timekeeping_internal.h"
31  
32  #define TK_CLEAR_NTP		(1 << 0)
33  #define TK_MIRROR		(1 << 1)
34  #define TK_CLOCK_WAS_SET	(1 << 2)
35  
36  enum timekeeping_adv_mode {
37  	/* Update timekeeper when a tick has passed */
38  	TK_ADV_TICK,
39  
40  	/* Update timekeeper on a direct frequency change */
41  	TK_ADV_FREQ
42  };
43  
44  DEFINE_RAW_SPINLOCK(timekeeper_lock);
45  
46  /*
47   * The most important data for readout fits into a single 64 byte
48   * cache line.
49   */
50  static struct {
51  	seqcount_raw_spinlock_t	seq;
52  	struct timekeeper	timekeeper;
53  } tk_core ____cacheline_aligned = {
54  	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
55  };
56  
57  static struct timekeeper shadow_timekeeper;
58  
59  /* flag for if timekeeping is suspended */
60  int __read_mostly timekeeping_suspended;
61  
62  /**
63   * struct tk_fast - NMI safe timekeeper
64   * @seq:	Sequence counter for protecting updates. The lowest bit
65   *		is the index for the tk_read_base array
66   * @base:	tk_read_base array. Access is indexed by the lowest bit of
67   *		@seq.
68   *
69   * See @update_fast_timekeeper() below.
70   */
71  struct tk_fast {
72  	seqcount_latch_t	seq;
73  	struct tk_read_base	base[2];
74  };
75  
76  /* Suspend-time cycles value for halted fast timekeeper. */
77  static u64 cycles_at_suspend;
78  
dummy_clock_read(struct clocksource * cs)79  static u64 dummy_clock_read(struct clocksource *cs)
80  {
81  	if (timekeeping_suspended)
82  		return cycles_at_suspend;
83  	return local_clock();
84  }
85  
86  static struct clocksource dummy_clock = {
87  	.read = dummy_clock_read,
88  };
89  
90  /*
91   * Boot time initialization which allows local_clock() to be utilized
92   * during early boot when clocksources are not available. local_clock()
93   * returns nanoseconds already so no conversion is required, hence mult=1
94   * and shift=0. When the first proper clocksource is installed then
95   * the fast time keepers are updated with the correct values.
96   */
97  #define FAST_TK_INIT						\
98  	{							\
99  		.clock		= &dummy_clock,			\
100  		.mask		= CLOCKSOURCE_MASK(64),		\
101  		.mult		= 1,				\
102  		.shift		= 0,				\
103  	}
104  
105  static struct tk_fast tk_fast_mono ____cacheline_aligned = {
106  	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
107  	.base[0] = FAST_TK_INIT,
108  	.base[1] = FAST_TK_INIT,
109  };
110  
111  static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
112  	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
113  	.base[0] = FAST_TK_INIT,
114  	.base[1] = FAST_TK_INIT,
115  };
116  
tk_normalize_xtime(struct timekeeper * tk)117  static inline void tk_normalize_xtime(struct timekeeper *tk)
118  {
119  	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
120  		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
121  		tk->xtime_sec++;
122  	}
123  	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
124  		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
125  		tk->raw_sec++;
126  	}
127  }
128  
tk_xtime(const struct timekeeper * tk)129  static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
130  {
131  	struct timespec64 ts;
132  
133  	ts.tv_sec = tk->xtime_sec;
134  	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
135  	return ts;
136  }
137  
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)138  static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
139  {
140  	tk->xtime_sec = ts->tv_sec;
141  	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
142  }
143  
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)144  static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
145  {
146  	tk->xtime_sec += ts->tv_sec;
147  	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
148  	tk_normalize_xtime(tk);
149  }
150  
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)151  static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
152  {
153  	struct timespec64 tmp;
154  
155  	/*
156  	 * Verify consistency of: offset_real = -wall_to_monotonic
157  	 * before modifying anything
158  	 */
159  	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
160  					-tk->wall_to_monotonic.tv_nsec);
161  	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
162  	tk->wall_to_monotonic = wtm;
163  	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
164  	tk->offs_real = timespec64_to_ktime(tmp);
165  	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
166  }
167  
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)168  static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
169  {
170  	tk->offs_boot = ktime_add(tk->offs_boot, delta);
171  	/*
172  	 * Timespec representation for VDSO update to avoid 64bit division
173  	 * on every update.
174  	 */
175  	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
176  }
177  
178  /*
179   * tk_clock_read - atomic clocksource read() helper
180   *
181   * This helper is necessary to use in the read paths because, while the
182   * seqcount ensures we don't return a bad value while structures are updated,
183   * it doesn't protect from potential crashes. There is the possibility that
184   * the tkr's clocksource may change between the read reference, and the
185   * clock reference passed to the read function.  This can cause crashes if
186   * the wrong clocksource is passed to the wrong read function.
187   * This isn't necessary to use when holding the timekeeper_lock or doing
188   * a read of the fast-timekeeper tkrs (which is protected by its own locking
189   * and update logic).
190   */
tk_clock_read(const struct tk_read_base * tkr)191  static inline u64 tk_clock_read(const struct tk_read_base *tkr)
192  {
193  	struct clocksource *clock = READ_ONCE(tkr->clock);
194  
195  	return clock->read(clock);
196  }
197  
198  #ifdef CONFIG_DEBUG_TIMEKEEPING
199  #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
200  
timekeeping_check_update(struct timekeeper * tk,u64 offset)201  static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
202  {
203  
204  	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
205  	const char *name = tk->tkr_mono.clock->name;
206  
207  	if (offset > max_cycles) {
208  		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
209  				offset, name, max_cycles);
210  		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
211  	} else {
212  		if (offset > (max_cycles >> 1)) {
213  			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
214  					offset, name, max_cycles >> 1);
215  			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
216  		}
217  	}
218  
219  	if (tk->underflow_seen) {
220  		if (jiffies - tk->last_warning > WARNING_FREQ) {
221  			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
222  			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
223  			printk_deferred("         Your kernel is probably still fine.\n");
224  			tk->last_warning = jiffies;
225  		}
226  		tk->underflow_seen = 0;
227  	}
228  
229  	if (tk->overflow_seen) {
230  		if (jiffies - tk->last_warning > WARNING_FREQ) {
231  			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
232  			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
233  			printk_deferred("         Your kernel is probably still fine.\n");
234  			tk->last_warning = jiffies;
235  		}
236  		tk->overflow_seen = 0;
237  	}
238  }
239  
240  static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles);
241  
timekeeping_debug_get_ns(const struct tk_read_base * tkr)242  static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
243  {
244  	struct timekeeper *tk = &tk_core.timekeeper;
245  	u64 now, last, mask, max, delta;
246  	unsigned int seq;
247  
248  	/*
249  	 * Since we're called holding a seqcount, the data may shift
250  	 * under us while we're doing the calculation. This can cause
251  	 * false positives, since we'd note a problem but throw the
252  	 * results away. So nest another seqcount here to atomically
253  	 * grab the points we are checking with.
254  	 */
255  	do {
256  		seq = read_seqcount_begin(&tk_core.seq);
257  		now = tk_clock_read(tkr);
258  		last = tkr->cycle_last;
259  		mask = tkr->mask;
260  		max = tkr->clock->max_cycles;
261  	} while (read_seqcount_retry(&tk_core.seq, seq));
262  
263  	delta = clocksource_delta(now, last, mask);
264  
265  	/*
266  	 * Try to catch underflows by checking if we are seeing small
267  	 * mask-relative negative values.
268  	 */
269  	if (unlikely((~delta & mask) < (mask >> 3)))
270  		tk->underflow_seen = 1;
271  
272  	/* Check for multiplication overflows */
273  	if (unlikely(delta > max))
274  		tk->overflow_seen = 1;
275  
276  	/* timekeeping_cycles_to_ns() handles both under and overflow */
277  	return timekeeping_cycles_to_ns(tkr, now);
278  }
279  #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)280  static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
281  {
282  }
timekeeping_debug_get_ns(const struct tk_read_base * tkr)283  static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
284  {
285  	BUG();
286  }
287  #endif
288  
289  /**
290   * tk_setup_internals - Set up internals to use clocksource clock.
291   *
292   * @tk:		The target timekeeper to setup.
293   * @clock:		Pointer to clocksource.
294   *
295   * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
296   * pair and interval request.
297   *
298   * Unless you're the timekeeping code, you should not be using this!
299   */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)300  static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
301  {
302  	u64 interval;
303  	u64 tmp, ntpinterval;
304  	struct clocksource *old_clock;
305  
306  	++tk->cs_was_changed_seq;
307  	old_clock = tk->tkr_mono.clock;
308  	tk->tkr_mono.clock = clock;
309  	tk->tkr_mono.mask = clock->mask;
310  	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
311  
312  	tk->tkr_raw.clock = clock;
313  	tk->tkr_raw.mask = clock->mask;
314  	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
315  
316  	/* Do the ns -> cycle conversion first, using original mult */
317  	tmp = NTP_INTERVAL_LENGTH;
318  	tmp <<= clock->shift;
319  	ntpinterval = tmp;
320  	tmp += clock->mult/2;
321  	do_div(tmp, clock->mult);
322  	if (tmp == 0)
323  		tmp = 1;
324  
325  	interval = (u64) tmp;
326  	tk->cycle_interval = interval;
327  
328  	/* Go back from cycles -> shifted ns */
329  	tk->xtime_interval = interval * clock->mult;
330  	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
331  	tk->raw_interval = interval * clock->mult;
332  
333  	 /* if changing clocks, convert xtime_nsec shift units */
334  	if (old_clock) {
335  		int shift_change = clock->shift - old_clock->shift;
336  		if (shift_change < 0) {
337  			tk->tkr_mono.xtime_nsec >>= -shift_change;
338  			tk->tkr_raw.xtime_nsec >>= -shift_change;
339  		} else {
340  			tk->tkr_mono.xtime_nsec <<= shift_change;
341  			tk->tkr_raw.xtime_nsec <<= shift_change;
342  		}
343  	}
344  
345  	tk->tkr_mono.shift = clock->shift;
346  	tk->tkr_raw.shift = clock->shift;
347  
348  	tk->ntp_error = 0;
349  	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
350  	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
351  
352  	/*
353  	 * The timekeeper keeps its own mult values for the currently
354  	 * active clocksource. These value will be adjusted via NTP
355  	 * to counteract clock drifting.
356  	 */
357  	tk->tkr_mono.mult = clock->mult;
358  	tk->tkr_raw.mult = clock->mult;
359  	tk->ntp_err_mult = 0;
360  	tk->skip_second_overflow = 0;
361  }
362  
363  /* Timekeeper helper functions. */
delta_to_ns_safe(const struct tk_read_base * tkr,u64 delta)364  static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
365  {
366  	return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
367  }
368  
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)369  static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
370  {
371  	/* Calculate the delta since the last update_wall_time() */
372  	u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
373  
374  	/*
375  	 * This detects both negative motion and the case where the delta
376  	 * overflows the multiplication with tkr->mult.
377  	 */
378  	if (unlikely(delta > tkr->clock->max_cycles)) {
379  		/*
380  		 * Handle clocksource inconsistency between CPUs to prevent
381  		 * time from going backwards by checking for the MSB of the
382  		 * mask being set in the delta.
383  		 */
384  		if (delta & ~(mask >> 1))
385  			return tkr->xtime_nsec >> tkr->shift;
386  
387  		return delta_to_ns_safe(tkr, delta);
388  	}
389  
390  	return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
391  }
392  
__timekeeping_get_ns(const struct tk_read_base * tkr)393  static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr)
394  {
395  	return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
396  }
397  
timekeeping_get_ns(const struct tk_read_base * tkr)398  static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
399  {
400  	if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING))
401  		return timekeeping_debug_get_ns(tkr);
402  
403  	return __timekeeping_get_ns(tkr);
404  }
405  
406  /**
407   * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
408   * @tkr: Timekeeping readout base from which we take the update
409   * @tkf: Pointer to NMI safe timekeeper
410   *
411   * We want to use this from any context including NMI and tracing /
412   * instrumenting the timekeeping code itself.
413   *
414   * Employ the latch technique; see @raw_write_seqcount_latch.
415   *
416   * So if a NMI hits the update of base[0] then it will use base[1]
417   * which is still consistent. In the worst case this can result is a
418   * slightly wrong timestamp (a few nanoseconds). See
419   * @ktime_get_mono_fast_ns.
420   */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)421  static void update_fast_timekeeper(const struct tk_read_base *tkr,
422  				   struct tk_fast *tkf)
423  {
424  	struct tk_read_base *base = tkf->base;
425  
426  	/* Force readers off to base[1] */
427  	raw_write_seqcount_latch(&tkf->seq);
428  
429  	/* Update base[0] */
430  	memcpy(base, tkr, sizeof(*base));
431  
432  	/* Force readers back to base[0] */
433  	raw_write_seqcount_latch(&tkf->seq);
434  
435  	/* Update base[1] */
436  	memcpy(base + 1, base, sizeof(*base));
437  }
438  
__ktime_get_fast_ns(struct tk_fast * tkf)439  static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
440  {
441  	struct tk_read_base *tkr;
442  	unsigned int seq;
443  	u64 now;
444  
445  	do {
446  		seq = raw_read_seqcount_latch(&tkf->seq);
447  		tkr = tkf->base + (seq & 0x01);
448  		now = ktime_to_ns(tkr->base);
449  		now += __timekeeping_get_ns(tkr);
450  	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
451  
452  	return now;
453  }
454  
455  /**
456   * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
457   *
458   * This timestamp is not guaranteed to be monotonic across an update.
459   * The timestamp is calculated by:
460   *
461   *	now = base_mono + clock_delta * slope
462   *
463   * So if the update lowers the slope, readers who are forced to the
464   * not yet updated second array are still using the old steeper slope.
465   *
466   * tmono
467   * ^
468   * |    o  n
469   * |   o n
470   * |  u
471   * | o
472   * |o
473   * |12345678---> reader order
474   *
475   * o = old slope
476   * u = update
477   * n = new slope
478   *
479   * So reader 6 will observe time going backwards versus reader 5.
480   *
481   * While other CPUs are likely to be able to observe that, the only way
482   * for a CPU local observation is when an NMI hits in the middle of
483   * the update. Timestamps taken from that NMI context might be ahead
484   * of the following timestamps. Callers need to be aware of that and
485   * deal with it.
486   */
ktime_get_mono_fast_ns(void)487  u64 notrace ktime_get_mono_fast_ns(void)
488  {
489  	return __ktime_get_fast_ns(&tk_fast_mono);
490  }
491  EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
492  
493  /**
494   * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
495   *
496   * Contrary to ktime_get_mono_fast_ns() this is always correct because the
497   * conversion factor is not affected by NTP/PTP correction.
498   */
ktime_get_raw_fast_ns(void)499  u64 notrace ktime_get_raw_fast_ns(void)
500  {
501  	return __ktime_get_fast_ns(&tk_fast_raw);
502  }
503  EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
504  
505  /**
506   * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
507   *
508   * To keep it NMI safe since we're accessing from tracing, we're not using a
509   * separate timekeeper with updates to monotonic clock and boot offset
510   * protected with seqcounts. This has the following minor side effects:
511   *
512   * (1) Its possible that a timestamp be taken after the boot offset is updated
513   * but before the timekeeper is updated. If this happens, the new boot offset
514   * is added to the old timekeeping making the clock appear to update slightly
515   * earlier:
516   *    CPU 0                                        CPU 1
517   *    timekeeping_inject_sleeptime64()
518   *    __timekeeping_inject_sleeptime(tk, delta);
519   *                                                 timestamp();
520   *    timekeeping_update(tk, TK_CLEAR_NTP...);
521   *
522   * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
523   * partially updated.  Since the tk->offs_boot update is a rare event, this
524   * should be a rare occurrence which postprocessing should be able to handle.
525   *
526   * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
527   * apply as well.
528   */
ktime_get_boot_fast_ns(void)529  u64 notrace ktime_get_boot_fast_ns(void)
530  {
531  	struct timekeeper *tk = &tk_core.timekeeper;
532  
533  	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
534  }
535  EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
536  
537  /**
538   * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
539   *
540   * The same limitations as described for ktime_get_boot_fast_ns() apply. The
541   * mono time and the TAI offset are not read atomically which may yield wrong
542   * readouts. However, an update of the TAI offset is an rare event e.g., caused
543   * by settime or adjtimex with an offset. The user of this function has to deal
544   * with the possibility of wrong timestamps in post processing.
545   */
ktime_get_tai_fast_ns(void)546  u64 notrace ktime_get_tai_fast_ns(void)
547  {
548  	struct timekeeper *tk = &tk_core.timekeeper;
549  
550  	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
551  }
552  EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
553  
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)554  static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
555  {
556  	struct tk_read_base *tkr;
557  	u64 basem, baser, delta;
558  	unsigned int seq;
559  
560  	do {
561  		seq = raw_read_seqcount_latch(&tkf->seq);
562  		tkr = tkf->base + (seq & 0x01);
563  		basem = ktime_to_ns(tkr->base);
564  		baser = ktime_to_ns(tkr->base_real);
565  		delta = __timekeeping_get_ns(tkr);
566  	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
567  
568  	if (mono)
569  		*mono = basem + delta;
570  	return baser + delta;
571  }
572  
573  /**
574   * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
575   *
576   * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
577   */
ktime_get_real_fast_ns(void)578  u64 ktime_get_real_fast_ns(void)
579  {
580  	return __ktime_get_real_fast(&tk_fast_mono, NULL);
581  }
582  EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
583  
584  /**
585   * ktime_get_fast_timestamps: - NMI safe timestamps
586   * @snapshot:	Pointer to timestamp storage
587   *
588   * Stores clock monotonic, boottime and realtime timestamps.
589   *
590   * Boot time is a racy access on 32bit systems if the sleep time injection
591   * happens late during resume and not in timekeeping_resume(). That could
592   * be avoided by expanding struct tk_read_base with boot offset for 32bit
593   * and adding more overhead to the update. As this is a hard to observe
594   * once per resume event which can be filtered with reasonable effort using
595   * the accurate mono/real timestamps, it's probably not worth the trouble.
596   *
597   * Aside of that it might be possible on 32 and 64 bit to observe the
598   * following when the sleep time injection happens late:
599   *
600   * CPU 0				CPU 1
601   * timekeeping_resume()
602   * ktime_get_fast_timestamps()
603   *	mono, real = __ktime_get_real_fast()
604   *					inject_sleep_time()
605   *					   update boot offset
606   *	boot = mono + bootoffset;
607   *
608   * That means that boot time already has the sleep time adjustment, but
609   * real time does not. On the next readout both are in sync again.
610   *
611   * Preventing this for 64bit is not really feasible without destroying the
612   * careful cache layout of the timekeeper because the sequence count and
613   * struct tk_read_base would then need two cache lines instead of one.
614   *
615   * Access to the time keeper clock source is disabled across the innermost
616   * steps of suspend/resume. The accessors still work, but the timestamps
617   * are frozen until time keeping is resumed which happens very early.
618   *
619   * For regular suspend/resume there is no observable difference vs. sched
620   * clock, but it might affect some of the nasty low level debug printks.
621   *
622   * OTOH, access to sched clock is not guaranteed across suspend/resume on
623   * all systems either so it depends on the hardware in use.
624   *
625   * If that turns out to be a real problem then this could be mitigated by
626   * using sched clock in a similar way as during early boot. But it's not as
627   * trivial as on early boot because it needs some careful protection
628   * against the clock monotonic timestamp jumping backwards on resume.
629   */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)630  void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
631  {
632  	struct timekeeper *tk = &tk_core.timekeeper;
633  
634  	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
635  	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
636  }
637  
638  /**
639   * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
640   * @tk: Timekeeper to snapshot.
641   *
642   * It generally is unsafe to access the clocksource after timekeeping has been
643   * suspended, so take a snapshot of the readout base of @tk and use it as the
644   * fast timekeeper's readout base while suspended.  It will return the same
645   * number of cycles every time until timekeeping is resumed at which time the
646   * proper readout base for the fast timekeeper will be restored automatically.
647   */
halt_fast_timekeeper(const struct timekeeper * tk)648  static void halt_fast_timekeeper(const struct timekeeper *tk)
649  {
650  	static struct tk_read_base tkr_dummy;
651  	const struct tk_read_base *tkr = &tk->tkr_mono;
652  
653  	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
654  	cycles_at_suspend = tk_clock_read(tkr);
655  	tkr_dummy.clock = &dummy_clock;
656  	tkr_dummy.base_real = tkr->base + tk->offs_real;
657  	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
658  
659  	tkr = &tk->tkr_raw;
660  	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
661  	tkr_dummy.clock = &dummy_clock;
662  	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
663  }
664  
665  static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
666  
update_pvclock_gtod(struct timekeeper * tk,bool was_set)667  static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
668  {
669  	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
670  }
671  
672  /**
673   * pvclock_gtod_register_notifier - register a pvclock timedata update listener
674   * @nb: Pointer to the notifier block to register
675   */
pvclock_gtod_register_notifier(struct notifier_block * nb)676  int pvclock_gtod_register_notifier(struct notifier_block *nb)
677  {
678  	struct timekeeper *tk = &tk_core.timekeeper;
679  	unsigned long flags;
680  	int ret;
681  
682  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
683  	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
684  	update_pvclock_gtod(tk, true);
685  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
686  
687  	return ret;
688  }
689  EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
690  
691  /**
692   * pvclock_gtod_unregister_notifier - unregister a pvclock
693   * timedata update listener
694   * @nb: Pointer to the notifier block to unregister
695   */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)696  int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
697  {
698  	unsigned long flags;
699  	int ret;
700  
701  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
702  	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
703  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
704  
705  	return ret;
706  }
707  EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
708  
709  /*
710   * tk_update_leap_state - helper to update the next_leap_ktime
711   */
tk_update_leap_state(struct timekeeper * tk)712  static inline void tk_update_leap_state(struct timekeeper *tk)
713  {
714  	tk->next_leap_ktime = ntp_get_next_leap();
715  	if (tk->next_leap_ktime != KTIME_MAX)
716  		/* Convert to monotonic time */
717  		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
718  }
719  
720  /*
721   * Update the ktime_t based scalar nsec members of the timekeeper
722   */
tk_update_ktime_data(struct timekeeper * tk)723  static inline void tk_update_ktime_data(struct timekeeper *tk)
724  {
725  	u64 seconds;
726  	u32 nsec;
727  
728  	/*
729  	 * The xtime based monotonic readout is:
730  	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
731  	 * The ktime based monotonic readout is:
732  	 *	nsec = base_mono + now();
733  	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
734  	 */
735  	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
736  	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
737  	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
738  
739  	/*
740  	 * The sum of the nanoseconds portions of xtime and
741  	 * wall_to_monotonic can be greater/equal one second. Take
742  	 * this into account before updating tk->ktime_sec.
743  	 */
744  	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
745  	if (nsec >= NSEC_PER_SEC)
746  		seconds++;
747  	tk->ktime_sec = seconds;
748  
749  	/* Update the monotonic raw base */
750  	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
751  }
752  
753  /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)754  static void timekeeping_update(struct timekeeper *tk, unsigned int action)
755  {
756  	if (action & TK_CLEAR_NTP) {
757  		tk->ntp_error = 0;
758  		ntp_clear();
759  	}
760  
761  	tk_update_leap_state(tk);
762  	tk_update_ktime_data(tk);
763  
764  	update_vsyscall(tk);
765  	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
766  
767  	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
768  	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
769  	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
770  
771  	if (action & TK_CLOCK_WAS_SET)
772  		tk->clock_was_set_seq++;
773  	/*
774  	 * The mirroring of the data to the shadow-timekeeper needs
775  	 * to happen last here to ensure we don't over-write the
776  	 * timekeeper structure on the next update with stale data
777  	 */
778  	if (action & TK_MIRROR)
779  		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
780  		       sizeof(tk_core.timekeeper));
781  }
782  
783  /**
784   * timekeeping_forward_now - update clock to the current time
785   * @tk:		Pointer to the timekeeper to update
786   *
787   * Forward the current clock to update its state since the last call to
788   * update_wall_time(). This is useful before significant clock changes,
789   * as it avoids having to deal with this time offset explicitly.
790   */
timekeeping_forward_now(struct timekeeper * tk)791  static void timekeeping_forward_now(struct timekeeper *tk)
792  {
793  	u64 cycle_now, delta;
794  
795  	cycle_now = tk_clock_read(&tk->tkr_mono);
796  	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
797  	tk->tkr_mono.cycle_last = cycle_now;
798  	tk->tkr_raw.cycle_last  = cycle_now;
799  
800  	while (delta > 0) {
801  		u64 max = tk->tkr_mono.clock->max_cycles;
802  		u64 incr = delta < max ? delta : max;
803  
804  		tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
805  		tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
806  		tk_normalize_xtime(tk);
807  		delta -= incr;
808  	}
809  }
810  
811  /**
812   * ktime_get_real_ts64 - Returns the time of day in a timespec64.
813   * @ts:		pointer to the timespec to be set
814   *
815   * Returns the time of day in a timespec64 (WARN if suspended).
816   */
ktime_get_real_ts64(struct timespec64 * ts)817  void ktime_get_real_ts64(struct timespec64 *ts)
818  {
819  	struct timekeeper *tk = &tk_core.timekeeper;
820  	unsigned int seq;
821  	u64 nsecs;
822  
823  	WARN_ON(timekeeping_suspended);
824  
825  	do {
826  		seq = read_seqcount_begin(&tk_core.seq);
827  
828  		ts->tv_sec = tk->xtime_sec;
829  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
830  
831  	} while (read_seqcount_retry(&tk_core.seq, seq));
832  
833  	ts->tv_nsec = 0;
834  	timespec64_add_ns(ts, nsecs);
835  }
836  EXPORT_SYMBOL(ktime_get_real_ts64);
837  
ktime_get(void)838  ktime_t ktime_get(void)
839  {
840  	struct timekeeper *tk = &tk_core.timekeeper;
841  	unsigned int seq;
842  	ktime_t base;
843  	u64 nsecs;
844  
845  	WARN_ON(timekeeping_suspended);
846  
847  	do {
848  		seq = read_seqcount_begin(&tk_core.seq);
849  		base = tk->tkr_mono.base;
850  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
851  
852  	} while (read_seqcount_retry(&tk_core.seq, seq));
853  
854  	return ktime_add_ns(base, nsecs);
855  }
856  EXPORT_SYMBOL_GPL(ktime_get);
857  
ktime_get_resolution_ns(void)858  u32 ktime_get_resolution_ns(void)
859  {
860  	struct timekeeper *tk = &tk_core.timekeeper;
861  	unsigned int seq;
862  	u32 nsecs;
863  
864  	WARN_ON(timekeeping_suspended);
865  
866  	do {
867  		seq = read_seqcount_begin(&tk_core.seq);
868  		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
869  	} while (read_seqcount_retry(&tk_core.seq, seq));
870  
871  	return nsecs;
872  }
873  EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
874  
875  static ktime_t *offsets[TK_OFFS_MAX] = {
876  	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
877  	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
878  	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
879  };
880  
ktime_get_with_offset(enum tk_offsets offs)881  ktime_t ktime_get_with_offset(enum tk_offsets offs)
882  {
883  	struct timekeeper *tk = &tk_core.timekeeper;
884  	unsigned int seq;
885  	ktime_t base, *offset = offsets[offs];
886  	u64 nsecs;
887  
888  	WARN_ON(timekeeping_suspended);
889  
890  	do {
891  		seq = read_seqcount_begin(&tk_core.seq);
892  		base = ktime_add(tk->tkr_mono.base, *offset);
893  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
894  
895  	} while (read_seqcount_retry(&tk_core.seq, seq));
896  
897  	return ktime_add_ns(base, nsecs);
898  
899  }
900  EXPORT_SYMBOL_GPL(ktime_get_with_offset);
901  
ktime_get_coarse_with_offset(enum tk_offsets offs)902  ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
903  {
904  	struct timekeeper *tk = &tk_core.timekeeper;
905  	unsigned int seq;
906  	ktime_t base, *offset = offsets[offs];
907  	u64 nsecs;
908  
909  	WARN_ON(timekeeping_suspended);
910  
911  	do {
912  		seq = read_seqcount_begin(&tk_core.seq);
913  		base = ktime_add(tk->tkr_mono.base, *offset);
914  		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
915  
916  	} while (read_seqcount_retry(&tk_core.seq, seq));
917  
918  	return ktime_add_ns(base, nsecs);
919  }
920  EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
921  
922  /**
923   * ktime_mono_to_any() - convert monotonic time to any other time
924   * @tmono:	time to convert.
925   * @offs:	which offset to use
926   */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)927  ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
928  {
929  	ktime_t *offset = offsets[offs];
930  	unsigned int seq;
931  	ktime_t tconv;
932  
933  	do {
934  		seq = read_seqcount_begin(&tk_core.seq);
935  		tconv = ktime_add(tmono, *offset);
936  	} while (read_seqcount_retry(&tk_core.seq, seq));
937  
938  	return tconv;
939  }
940  EXPORT_SYMBOL_GPL(ktime_mono_to_any);
941  
942  /**
943   * ktime_get_raw - Returns the raw monotonic time in ktime_t format
944   */
ktime_get_raw(void)945  ktime_t ktime_get_raw(void)
946  {
947  	struct timekeeper *tk = &tk_core.timekeeper;
948  	unsigned int seq;
949  	ktime_t base;
950  	u64 nsecs;
951  
952  	do {
953  		seq = read_seqcount_begin(&tk_core.seq);
954  		base = tk->tkr_raw.base;
955  		nsecs = timekeeping_get_ns(&tk->tkr_raw);
956  
957  	} while (read_seqcount_retry(&tk_core.seq, seq));
958  
959  	return ktime_add_ns(base, nsecs);
960  }
961  EXPORT_SYMBOL_GPL(ktime_get_raw);
962  
963  /**
964   * ktime_get_ts64 - get the monotonic clock in timespec64 format
965   * @ts:		pointer to timespec variable
966   *
967   * The function calculates the monotonic clock from the realtime
968   * clock and the wall_to_monotonic offset and stores the result
969   * in normalized timespec64 format in the variable pointed to by @ts.
970   */
ktime_get_ts64(struct timespec64 * ts)971  void ktime_get_ts64(struct timespec64 *ts)
972  {
973  	struct timekeeper *tk = &tk_core.timekeeper;
974  	struct timespec64 tomono;
975  	unsigned int seq;
976  	u64 nsec;
977  
978  	WARN_ON(timekeeping_suspended);
979  
980  	do {
981  		seq = read_seqcount_begin(&tk_core.seq);
982  		ts->tv_sec = tk->xtime_sec;
983  		nsec = timekeeping_get_ns(&tk->tkr_mono);
984  		tomono = tk->wall_to_monotonic;
985  
986  	} while (read_seqcount_retry(&tk_core.seq, seq));
987  
988  	ts->tv_sec += tomono.tv_sec;
989  	ts->tv_nsec = 0;
990  	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
991  }
992  EXPORT_SYMBOL_GPL(ktime_get_ts64);
993  
994  /**
995   * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
996   *
997   * Returns the seconds portion of CLOCK_MONOTONIC with a single non
998   * serialized read. tk->ktime_sec is of type 'unsigned long' so this
999   * works on both 32 and 64 bit systems. On 32 bit systems the readout
1000   * covers ~136 years of uptime which should be enough to prevent
1001   * premature wrap arounds.
1002   */
ktime_get_seconds(void)1003  time64_t ktime_get_seconds(void)
1004  {
1005  	struct timekeeper *tk = &tk_core.timekeeper;
1006  
1007  	WARN_ON(timekeeping_suspended);
1008  	return tk->ktime_sec;
1009  }
1010  EXPORT_SYMBOL_GPL(ktime_get_seconds);
1011  
1012  /**
1013   * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1014   *
1015   * Returns the wall clock seconds since 1970.
1016   *
1017   * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1018   * 32bit systems the access must be protected with the sequence
1019   * counter to provide "atomic" access to the 64bit tk->xtime_sec
1020   * value.
1021   */
ktime_get_real_seconds(void)1022  time64_t ktime_get_real_seconds(void)
1023  {
1024  	struct timekeeper *tk = &tk_core.timekeeper;
1025  	time64_t seconds;
1026  	unsigned int seq;
1027  
1028  	if (IS_ENABLED(CONFIG_64BIT))
1029  		return tk->xtime_sec;
1030  
1031  	do {
1032  		seq = read_seqcount_begin(&tk_core.seq);
1033  		seconds = tk->xtime_sec;
1034  
1035  	} while (read_seqcount_retry(&tk_core.seq, seq));
1036  
1037  	return seconds;
1038  }
1039  EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1040  
1041  /**
1042   * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1043   * but without the sequence counter protect. This internal function
1044   * is called just when timekeeping lock is already held.
1045   */
__ktime_get_real_seconds(void)1046  noinstr time64_t __ktime_get_real_seconds(void)
1047  {
1048  	struct timekeeper *tk = &tk_core.timekeeper;
1049  
1050  	return tk->xtime_sec;
1051  }
1052  
1053  /**
1054   * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1055   * @systime_snapshot:	pointer to struct receiving the system time snapshot
1056   */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1057  void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1058  {
1059  	struct timekeeper *tk = &tk_core.timekeeper;
1060  	unsigned int seq;
1061  	ktime_t base_raw;
1062  	ktime_t base_real;
1063  	u64 nsec_raw;
1064  	u64 nsec_real;
1065  	u64 now;
1066  
1067  	WARN_ON_ONCE(timekeeping_suspended);
1068  
1069  	do {
1070  		seq = read_seqcount_begin(&tk_core.seq);
1071  		now = tk_clock_read(&tk->tkr_mono);
1072  		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1073  		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1074  		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1075  		base_real = ktime_add(tk->tkr_mono.base,
1076  				      tk_core.timekeeper.offs_real);
1077  		base_raw = tk->tkr_raw.base;
1078  		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1079  		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1080  	} while (read_seqcount_retry(&tk_core.seq, seq));
1081  
1082  	systime_snapshot->cycles = now;
1083  	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1084  	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1085  }
1086  EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1087  
1088  /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1089  static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1090  {
1091  	u64 tmp, rem;
1092  
1093  	tmp = div64_u64_rem(*base, div, &rem);
1094  
1095  	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1096  	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1097  		return -EOVERFLOW;
1098  	tmp *= mult;
1099  
1100  	rem = div64_u64(rem * mult, div);
1101  	*base = tmp + rem;
1102  	return 0;
1103  }
1104  
1105  /**
1106   * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1107   * @history:			Snapshot representing start of history
1108   * @partial_history_cycles:	Cycle offset into history (fractional part)
1109   * @total_history_cycles:	Total history length in cycles
1110   * @discontinuity:		True indicates clock was set on history period
1111   * @ts:				Cross timestamp that should be adjusted using
1112   *	partial/total ratio
1113   *
1114   * Helper function used by get_device_system_crosststamp() to correct the
1115   * crosstimestamp corresponding to the start of the current interval to the
1116   * system counter value (timestamp point) provided by the driver. The
1117   * total_history_* quantities are the total history starting at the provided
1118   * reference point and ending at the start of the current interval. The cycle
1119   * count between the driver timestamp point and the start of the current
1120   * interval is partial_history_cycles.
1121   */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1122  static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1123  					 u64 partial_history_cycles,
1124  					 u64 total_history_cycles,
1125  					 bool discontinuity,
1126  					 struct system_device_crosststamp *ts)
1127  {
1128  	struct timekeeper *tk = &tk_core.timekeeper;
1129  	u64 corr_raw, corr_real;
1130  	bool interp_forward;
1131  	int ret;
1132  
1133  	if (total_history_cycles == 0 || partial_history_cycles == 0)
1134  		return 0;
1135  
1136  	/* Interpolate shortest distance from beginning or end of history */
1137  	interp_forward = partial_history_cycles > total_history_cycles / 2;
1138  	partial_history_cycles = interp_forward ?
1139  		total_history_cycles - partial_history_cycles :
1140  		partial_history_cycles;
1141  
1142  	/*
1143  	 * Scale the monotonic raw time delta by:
1144  	 *	partial_history_cycles / total_history_cycles
1145  	 */
1146  	corr_raw = (u64)ktime_to_ns(
1147  		ktime_sub(ts->sys_monoraw, history->raw));
1148  	ret = scale64_check_overflow(partial_history_cycles,
1149  				     total_history_cycles, &corr_raw);
1150  	if (ret)
1151  		return ret;
1152  
1153  	/*
1154  	 * If there is a discontinuity in the history, scale monotonic raw
1155  	 *	correction by:
1156  	 *	mult(real)/mult(raw) yielding the realtime correction
1157  	 * Otherwise, calculate the realtime correction similar to monotonic
1158  	 *	raw calculation
1159  	 */
1160  	if (discontinuity) {
1161  		corr_real = mul_u64_u32_div
1162  			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1163  	} else {
1164  		corr_real = (u64)ktime_to_ns(
1165  			ktime_sub(ts->sys_realtime, history->real));
1166  		ret = scale64_check_overflow(partial_history_cycles,
1167  					     total_history_cycles, &corr_real);
1168  		if (ret)
1169  			return ret;
1170  	}
1171  
1172  	/* Fixup monotonic raw and real time time values */
1173  	if (interp_forward) {
1174  		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1175  		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1176  	} else {
1177  		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1178  		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1179  	}
1180  
1181  	return 0;
1182  }
1183  
1184  /*
1185   * timestamp_in_interval - true if ts is chronologically in [start, end]
1186   *
1187   * True if ts occurs chronologically at or after start, and before or at end.
1188   */
timestamp_in_interval(u64 start,u64 end,u64 ts)1189  static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1190  {
1191  	if (ts >= start && ts <= end)
1192  		return true;
1193  	if (start > end && (ts >= start || ts <= end))
1194  		return true;
1195  	return false;
1196  }
1197  
convert_clock(u64 * val,u32 numerator,u32 denominator)1198  static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1199  {
1200  	u64 rem, res;
1201  
1202  	if (!numerator || !denominator)
1203  		return false;
1204  
1205  	res = div64_u64_rem(*val, denominator, &rem) * numerator;
1206  	*val = res + div_u64(rem * numerator, denominator);
1207  	return true;
1208  }
1209  
convert_base_to_cs(struct system_counterval_t * scv)1210  static bool convert_base_to_cs(struct system_counterval_t *scv)
1211  {
1212  	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1213  	struct clocksource_base *base;
1214  	u32 num, den;
1215  
1216  	/* The timestamp was taken from the time keeper clock source */
1217  	if (cs->id == scv->cs_id)
1218  		return true;
1219  
1220  	/*
1221  	 * Check whether cs_id matches the base clock. Prevent the compiler from
1222  	 * re-evaluating @base as the clocksource might change concurrently.
1223  	 */
1224  	base = READ_ONCE(cs->base);
1225  	if (!base || base->id != scv->cs_id)
1226  		return false;
1227  
1228  	num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1229  	den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1230  
1231  	if (!convert_clock(&scv->cycles, num, den))
1232  		return false;
1233  
1234  	scv->cycles += base->offset;
1235  	return true;
1236  }
1237  
convert_cs_to_base(u64 * cycles,enum clocksource_ids base_id)1238  static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1239  {
1240  	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1241  	struct clocksource_base *base;
1242  
1243  	/*
1244  	 * Check whether base_id matches the base clock. Prevent the compiler from
1245  	 * re-evaluating @base as the clocksource might change concurrently.
1246  	 */
1247  	base = READ_ONCE(cs->base);
1248  	if (!base || base->id != base_id)
1249  		return false;
1250  
1251  	*cycles -= base->offset;
1252  	if (!convert_clock(cycles, base->denominator, base->numerator))
1253  		return false;
1254  	return true;
1255  }
1256  
convert_ns_to_cs(u64 * delta)1257  static bool convert_ns_to_cs(u64 *delta)
1258  {
1259  	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1260  
1261  	if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1262  		return false;
1263  
1264  	*delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1265  	return true;
1266  }
1267  
1268  /**
1269   * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1270   * @treal:	CLOCK_REALTIME timestamp to convert
1271   * @base_id:	base clocksource id
1272   * @cycles:	pointer to store the converted base clock timestamp
1273   *
1274   * Converts a supplied, future realtime clock value to the corresponding base clock value.
1275   *
1276   * Return:  true if the conversion is successful, false otherwise.
1277   */
ktime_real_to_base_clock(ktime_t treal,enum clocksource_ids base_id,u64 * cycles)1278  bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1279  {
1280  	struct timekeeper *tk = &tk_core.timekeeper;
1281  	unsigned int seq;
1282  	u64 delta;
1283  
1284  	do {
1285  		seq = read_seqcount_begin(&tk_core.seq);
1286  		if ((u64)treal < tk->tkr_mono.base_real)
1287  			return false;
1288  		delta = (u64)treal - tk->tkr_mono.base_real;
1289  		if (!convert_ns_to_cs(&delta))
1290  			return false;
1291  		*cycles = tk->tkr_mono.cycle_last + delta;
1292  		if (!convert_cs_to_base(cycles, base_id))
1293  			return false;
1294  	} while (read_seqcount_retry(&tk_core.seq, seq));
1295  
1296  	return true;
1297  }
1298  EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1299  
1300  /**
1301   * get_device_system_crosststamp - Synchronously capture system/device timestamp
1302   * @get_time_fn:	Callback to get simultaneous device time and
1303   *	system counter from the device driver
1304   * @ctx:		Context passed to get_time_fn()
1305   * @history_begin:	Historical reference point used to interpolate system
1306   *	time when counter provided by the driver is before the current interval
1307   * @xtstamp:		Receives simultaneously captured system and device time
1308   *
1309   * Reads a timestamp from a device and correlates it to system time
1310   */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1311  int get_device_system_crosststamp(int (*get_time_fn)
1312  				  (ktime_t *device_time,
1313  				   struct system_counterval_t *sys_counterval,
1314  				   void *ctx),
1315  				  void *ctx,
1316  				  struct system_time_snapshot *history_begin,
1317  				  struct system_device_crosststamp *xtstamp)
1318  {
1319  	struct system_counterval_t system_counterval;
1320  	struct timekeeper *tk = &tk_core.timekeeper;
1321  	u64 cycles, now, interval_start;
1322  	unsigned int clock_was_set_seq = 0;
1323  	ktime_t base_real, base_raw;
1324  	u64 nsec_real, nsec_raw;
1325  	u8 cs_was_changed_seq;
1326  	unsigned int seq;
1327  	bool do_interp;
1328  	int ret;
1329  
1330  	do {
1331  		seq = read_seqcount_begin(&tk_core.seq);
1332  		/*
1333  		 * Try to synchronously capture device time and a system
1334  		 * counter value calling back into the device driver
1335  		 */
1336  		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1337  		if (ret)
1338  			return ret;
1339  
1340  		/*
1341  		 * Verify that the clocksource ID associated with the captured
1342  		 * system counter value is the same as for the currently
1343  		 * installed timekeeper clocksource
1344  		 */
1345  		if (system_counterval.cs_id == CSID_GENERIC ||
1346  		    !convert_base_to_cs(&system_counterval))
1347  			return -ENODEV;
1348  		cycles = system_counterval.cycles;
1349  
1350  		/*
1351  		 * Check whether the system counter value provided by the
1352  		 * device driver is on the current timekeeping interval.
1353  		 */
1354  		now = tk_clock_read(&tk->tkr_mono);
1355  		interval_start = tk->tkr_mono.cycle_last;
1356  		if (!timestamp_in_interval(interval_start, now, cycles)) {
1357  			clock_was_set_seq = tk->clock_was_set_seq;
1358  			cs_was_changed_seq = tk->cs_was_changed_seq;
1359  			cycles = interval_start;
1360  			do_interp = true;
1361  		} else {
1362  			do_interp = false;
1363  		}
1364  
1365  		base_real = ktime_add(tk->tkr_mono.base,
1366  				      tk_core.timekeeper.offs_real);
1367  		base_raw = tk->tkr_raw.base;
1368  
1369  		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1370  		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1371  	} while (read_seqcount_retry(&tk_core.seq, seq));
1372  
1373  	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1374  	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1375  
1376  	/*
1377  	 * Interpolate if necessary, adjusting back from the start of the
1378  	 * current interval
1379  	 */
1380  	if (do_interp) {
1381  		u64 partial_history_cycles, total_history_cycles;
1382  		bool discontinuity;
1383  
1384  		/*
1385  		 * Check that the counter value is not before the provided
1386  		 * history reference and that the history doesn't cross a
1387  		 * clocksource change
1388  		 */
1389  		if (!history_begin ||
1390  		    !timestamp_in_interval(history_begin->cycles,
1391  					   cycles, system_counterval.cycles) ||
1392  		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1393  			return -EINVAL;
1394  		partial_history_cycles = cycles - system_counterval.cycles;
1395  		total_history_cycles = cycles - history_begin->cycles;
1396  		discontinuity =
1397  			history_begin->clock_was_set_seq != clock_was_set_seq;
1398  
1399  		ret = adjust_historical_crosststamp(history_begin,
1400  						    partial_history_cycles,
1401  						    total_history_cycles,
1402  						    discontinuity, xtstamp);
1403  		if (ret)
1404  			return ret;
1405  	}
1406  
1407  	return 0;
1408  }
1409  EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1410  
1411  /**
1412   * timekeeping_clocksource_has_base - Check whether the current clocksource
1413   *				      is based on given a base clock
1414   * @id:		base clocksource ID
1415   *
1416   * Note:	The return value is a snapshot which can become invalid right
1417   *		after the function returns.
1418   *
1419   * Return:	true if the timekeeper clocksource has a base clock with @id,
1420   *		false otherwise
1421   */
timekeeping_clocksource_has_base(enum clocksource_ids id)1422  bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1423  {
1424  	/*
1425  	 * This is a snapshot, so no point in using the sequence
1426  	 * count. Just prevent the compiler from re-evaluating @base as the
1427  	 * clocksource might change concurrently.
1428  	 */
1429  	struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1430  
1431  	return base ? base->id == id : false;
1432  }
1433  EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1434  
1435  /**
1436   * do_settimeofday64 - Sets the time of day.
1437   * @ts:     pointer to the timespec64 variable containing the new time
1438   *
1439   * Sets the time of day to the new time and update NTP and notify hrtimers
1440   */
do_settimeofday64(const struct timespec64 * ts)1441  int do_settimeofday64(const struct timespec64 *ts)
1442  {
1443  	struct timekeeper *tk = &tk_core.timekeeper;
1444  	struct timespec64 ts_delta, xt;
1445  	unsigned long flags;
1446  	int ret = 0;
1447  
1448  	if (!timespec64_valid_settod(ts))
1449  		return -EINVAL;
1450  
1451  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1452  	write_seqcount_begin(&tk_core.seq);
1453  
1454  	timekeeping_forward_now(tk);
1455  
1456  	xt = tk_xtime(tk);
1457  	ts_delta = timespec64_sub(*ts, xt);
1458  
1459  	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1460  		ret = -EINVAL;
1461  		goto out;
1462  	}
1463  
1464  	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1465  
1466  	tk_set_xtime(tk, ts);
1467  out:
1468  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1469  
1470  	write_seqcount_end(&tk_core.seq);
1471  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1472  
1473  	/* Signal hrtimers about time change */
1474  	clock_was_set(CLOCK_SET_WALL);
1475  
1476  	if (!ret) {
1477  		audit_tk_injoffset(ts_delta);
1478  		add_device_randomness(ts, sizeof(*ts));
1479  	}
1480  
1481  	return ret;
1482  }
1483  EXPORT_SYMBOL(do_settimeofday64);
1484  
1485  /**
1486   * timekeeping_inject_offset - Adds or subtracts from the current time.
1487   * @ts:		Pointer to the timespec variable containing the offset
1488   *
1489   * Adds or subtracts an offset value from the current time.
1490   */
timekeeping_inject_offset(const struct timespec64 * ts)1491  static int timekeeping_inject_offset(const struct timespec64 *ts)
1492  {
1493  	struct timekeeper *tk = &tk_core.timekeeper;
1494  	unsigned long flags;
1495  	struct timespec64 tmp;
1496  	int ret = 0;
1497  
1498  	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1499  		return -EINVAL;
1500  
1501  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1502  	write_seqcount_begin(&tk_core.seq);
1503  
1504  	timekeeping_forward_now(tk);
1505  
1506  	/* Make sure the proposed value is valid */
1507  	tmp = timespec64_add(tk_xtime(tk), *ts);
1508  	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1509  	    !timespec64_valid_settod(&tmp)) {
1510  		ret = -EINVAL;
1511  		goto error;
1512  	}
1513  
1514  	tk_xtime_add(tk, ts);
1515  	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1516  
1517  error: /* even if we error out, we forwarded the time, so call update */
1518  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1519  
1520  	write_seqcount_end(&tk_core.seq);
1521  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1522  
1523  	/* Signal hrtimers about time change */
1524  	clock_was_set(CLOCK_SET_WALL);
1525  
1526  	return ret;
1527  }
1528  
1529  /*
1530   * Indicates if there is an offset between the system clock and the hardware
1531   * clock/persistent clock/rtc.
1532   */
1533  int persistent_clock_is_local;
1534  
1535  /*
1536   * Adjust the time obtained from the CMOS to be UTC time instead of
1537   * local time.
1538   *
1539   * This is ugly, but preferable to the alternatives.  Otherwise we
1540   * would either need to write a program to do it in /etc/rc (and risk
1541   * confusion if the program gets run more than once; it would also be
1542   * hard to make the program warp the clock precisely n hours)  or
1543   * compile in the timezone information into the kernel.  Bad, bad....
1544   *
1545   *						- TYT, 1992-01-01
1546   *
1547   * The best thing to do is to keep the CMOS clock in universal time (UTC)
1548   * as real UNIX machines always do it. This avoids all headaches about
1549   * daylight saving times and warping kernel clocks.
1550   */
timekeeping_warp_clock(void)1551  void timekeeping_warp_clock(void)
1552  {
1553  	if (sys_tz.tz_minuteswest != 0) {
1554  		struct timespec64 adjust;
1555  
1556  		persistent_clock_is_local = 1;
1557  		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1558  		adjust.tv_nsec = 0;
1559  		timekeeping_inject_offset(&adjust);
1560  	}
1561  }
1562  
1563  /*
1564   * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1565   */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1566  static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1567  {
1568  	tk->tai_offset = tai_offset;
1569  	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1570  }
1571  
1572  /*
1573   * change_clocksource - Swaps clocksources if a new one is available
1574   *
1575   * Accumulates current time interval and initializes new clocksource
1576   */
change_clocksource(void * data)1577  static int change_clocksource(void *data)
1578  {
1579  	struct timekeeper *tk = &tk_core.timekeeper;
1580  	struct clocksource *new, *old = NULL;
1581  	unsigned long flags;
1582  	bool change = false;
1583  
1584  	new = (struct clocksource *) data;
1585  
1586  	/*
1587  	 * If the cs is in module, get a module reference. Succeeds
1588  	 * for built-in code (owner == NULL) as well.
1589  	 */
1590  	if (try_module_get(new->owner)) {
1591  		if (!new->enable || new->enable(new) == 0)
1592  			change = true;
1593  		else
1594  			module_put(new->owner);
1595  	}
1596  
1597  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1598  	write_seqcount_begin(&tk_core.seq);
1599  
1600  	timekeeping_forward_now(tk);
1601  
1602  	if (change) {
1603  		old = tk->tkr_mono.clock;
1604  		tk_setup_internals(tk, new);
1605  	}
1606  
1607  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1608  
1609  	write_seqcount_end(&tk_core.seq);
1610  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1611  
1612  	if (old) {
1613  		if (old->disable)
1614  			old->disable(old);
1615  
1616  		module_put(old->owner);
1617  	}
1618  
1619  	return 0;
1620  }
1621  
1622  /**
1623   * timekeeping_notify - Install a new clock source
1624   * @clock:		pointer to the clock source
1625   *
1626   * This function is called from clocksource.c after a new, better clock
1627   * source has been registered. The caller holds the clocksource_mutex.
1628   */
timekeeping_notify(struct clocksource * clock)1629  int timekeeping_notify(struct clocksource *clock)
1630  {
1631  	struct timekeeper *tk = &tk_core.timekeeper;
1632  
1633  	if (tk->tkr_mono.clock == clock)
1634  		return 0;
1635  	stop_machine(change_clocksource, clock, NULL);
1636  	tick_clock_notify();
1637  	return tk->tkr_mono.clock == clock ? 0 : -1;
1638  }
1639  
1640  /**
1641   * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1642   * @ts:		pointer to the timespec64 to be set
1643   *
1644   * Returns the raw monotonic time (completely un-modified by ntp)
1645   */
ktime_get_raw_ts64(struct timespec64 * ts)1646  void ktime_get_raw_ts64(struct timespec64 *ts)
1647  {
1648  	struct timekeeper *tk = &tk_core.timekeeper;
1649  	unsigned int seq;
1650  	u64 nsecs;
1651  
1652  	do {
1653  		seq = read_seqcount_begin(&tk_core.seq);
1654  		ts->tv_sec = tk->raw_sec;
1655  		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1656  
1657  	} while (read_seqcount_retry(&tk_core.seq, seq));
1658  
1659  	ts->tv_nsec = 0;
1660  	timespec64_add_ns(ts, nsecs);
1661  }
1662  EXPORT_SYMBOL(ktime_get_raw_ts64);
1663  
1664  
1665  /**
1666   * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1667   */
timekeeping_valid_for_hres(void)1668  int timekeeping_valid_for_hres(void)
1669  {
1670  	struct timekeeper *tk = &tk_core.timekeeper;
1671  	unsigned int seq;
1672  	int ret;
1673  
1674  	do {
1675  		seq = read_seqcount_begin(&tk_core.seq);
1676  
1677  		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1678  
1679  	} while (read_seqcount_retry(&tk_core.seq, seq));
1680  
1681  	return ret;
1682  }
1683  
1684  /**
1685   * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1686   */
timekeeping_max_deferment(void)1687  u64 timekeeping_max_deferment(void)
1688  {
1689  	struct timekeeper *tk = &tk_core.timekeeper;
1690  	unsigned int seq;
1691  	u64 ret;
1692  
1693  	do {
1694  		seq = read_seqcount_begin(&tk_core.seq);
1695  
1696  		ret = tk->tkr_mono.clock->max_idle_ns;
1697  
1698  	} while (read_seqcount_retry(&tk_core.seq, seq));
1699  
1700  	return ret;
1701  }
1702  
1703  /**
1704   * read_persistent_clock64 -  Return time from the persistent clock.
1705   * @ts: Pointer to the storage for the readout value
1706   *
1707   * Weak dummy function for arches that do not yet support it.
1708   * Reads the time from the battery backed persistent clock.
1709   * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1710   *
1711   *  XXX - Do be sure to remove it once all arches implement it.
1712   */
read_persistent_clock64(struct timespec64 * ts)1713  void __weak read_persistent_clock64(struct timespec64 *ts)
1714  {
1715  	ts->tv_sec = 0;
1716  	ts->tv_nsec = 0;
1717  }
1718  
1719  /**
1720   * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1721   *                                        from the boot.
1722   * @wall_time:	  current time as returned by persistent clock
1723   * @boot_offset:  offset that is defined as wall_time - boot_time
1724   *
1725   * Weak dummy function for arches that do not yet support it.
1726   *
1727   * The default function calculates offset based on the current value of
1728   * local_clock(). This way architectures that support sched_clock() but don't
1729   * support dedicated boot time clock will provide the best estimate of the
1730   * boot time.
1731   */
1732  void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1733  read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1734  				     struct timespec64 *boot_offset)
1735  {
1736  	read_persistent_clock64(wall_time);
1737  	*boot_offset = ns_to_timespec64(local_clock());
1738  }
1739  
1740  /*
1741   * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1742   *
1743   * The flag starts of false and is only set when a suspend reaches
1744   * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1745   * timekeeper clocksource is not stopping across suspend and has been
1746   * used to update sleep time. If the timekeeper clocksource has stopped
1747   * then the flag stays true and is used by the RTC resume code to decide
1748   * whether sleeptime must be injected and if so the flag gets false then.
1749   *
1750   * If a suspend fails before reaching timekeeping_resume() then the flag
1751   * stays false and prevents erroneous sleeptime injection.
1752   */
1753  static bool suspend_timing_needed;
1754  
1755  /* Flag for if there is a persistent clock on this platform */
1756  static bool persistent_clock_exists;
1757  
1758  /*
1759   * timekeeping_init - Initializes the clocksource and common timekeeping values
1760   */
timekeeping_init(void)1761  void __init timekeeping_init(void)
1762  {
1763  	struct timespec64 wall_time, boot_offset, wall_to_mono;
1764  	struct timekeeper *tk = &tk_core.timekeeper;
1765  	struct clocksource *clock;
1766  	unsigned long flags;
1767  
1768  	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1769  	if (timespec64_valid_settod(&wall_time) &&
1770  	    timespec64_to_ns(&wall_time) > 0) {
1771  		persistent_clock_exists = true;
1772  	} else if (timespec64_to_ns(&wall_time) != 0) {
1773  		pr_warn("Persistent clock returned invalid value");
1774  		wall_time = (struct timespec64){0};
1775  	}
1776  
1777  	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1778  		boot_offset = (struct timespec64){0};
1779  
1780  	/*
1781  	 * We want set wall_to_mono, so the following is true:
1782  	 * wall time + wall_to_mono = boot time
1783  	 */
1784  	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1785  
1786  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1787  	write_seqcount_begin(&tk_core.seq);
1788  	ntp_init();
1789  
1790  	clock = clocksource_default_clock();
1791  	if (clock->enable)
1792  		clock->enable(clock);
1793  	tk_setup_internals(tk, clock);
1794  
1795  	tk_set_xtime(tk, &wall_time);
1796  	tk->raw_sec = 0;
1797  
1798  	tk_set_wall_to_mono(tk, wall_to_mono);
1799  
1800  	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1801  
1802  	write_seqcount_end(&tk_core.seq);
1803  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1804  }
1805  
1806  /* time in seconds when suspend began for persistent clock */
1807  static struct timespec64 timekeeping_suspend_time;
1808  
1809  /**
1810   * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1811   * @tk:		Pointer to the timekeeper to be updated
1812   * @delta:	Pointer to the delta value in timespec64 format
1813   *
1814   * Takes a timespec offset measuring a suspend interval and properly
1815   * adds the sleep offset to the timekeeping variables.
1816   */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1817  static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1818  					   const struct timespec64 *delta)
1819  {
1820  	if (!timespec64_valid_strict(delta)) {
1821  		printk_deferred(KERN_WARNING
1822  				"__timekeeping_inject_sleeptime: Invalid "
1823  				"sleep delta value!\n");
1824  		return;
1825  	}
1826  	tk_xtime_add(tk, delta);
1827  	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1828  	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1829  	tk_debug_account_sleep_time(delta);
1830  }
1831  
1832  #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1833  /*
1834   * We have three kinds of time sources to use for sleep time
1835   * injection, the preference order is:
1836   * 1) non-stop clocksource
1837   * 2) persistent clock (ie: RTC accessible when irqs are off)
1838   * 3) RTC
1839   *
1840   * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1841   * If system has neither 1) nor 2), 3) will be used finally.
1842   *
1843   *
1844   * If timekeeping has injected sleeptime via either 1) or 2),
1845   * 3) becomes needless, so in this case we don't need to call
1846   * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1847   * means.
1848   */
timekeeping_rtc_skipresume(void)1849  bool timekeeping_rtc_skipresume(void)
1850  {
1851  	return !suspend_timing_needed;
1852  }
1853  
1854  /*
1855   * 1) can be determined whether to use or not only when doing
1856   * timekeeping_resume() which is invoked after rtc_suspend(),
1857   * so we can't skip rtc_suspend() surely if system has 1).
1858   *
1859   * But if system has 2), 2) will definitely be used, so in this
1860   * case we don't need to call rtc_suspend(), and this is what
1861   * timekeeping_rtc_skipsuspend() means.
1862   */
timekeeping_rtc_skipsuspend(void)1863  bool timekeeping_rtc_skipsuspend(void)
1864  {
1865  	return persistent_clock_exists;
1866  }
1867  
1868  /**
1869   * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1870   * @delta: pointer to a timespec64 delta value
1871   *
1872   * This hook is for architectures that cannot support read_persistent_clock64
1873   * because their RTC/persistent clock is only accessible when irqs are enabled.
1874   * and also don't have an effective nonstop clocksource.
1875   *
1876   * This function should only be called by rtc_resume(), and allows
1877   * a suspend offset to be injected into the timekeeping values.
1878   */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1879  void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1880  {
1881  	struct timekeeper *tk = &tk_core.timekeeper;
1882  	unsigned long flags;
1883  
1884  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1885  	write_seqcount_begin(&tk_core.seq);
1886  
1887  	suspend_timing_needed = false;
1888  
1889  	timekeeping_forward_now(tk);
1890  
1891  	__timekeeping_inject_sleeptime(tk, delta);
1892  
1893  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1894  
1895  	write_seqcount_end(&tk_core.seq);
1896  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1897  
1898  	/* Signal hrtimers about time change */
1899  	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1900  }
1901  #endif
1902  
1903  /**
1904   * timekeeping_resume - Resumes the generic timekeeping subsystem.
1905   */
timekeeping_resume(void)1906  void timekeeping_resume(void)
1907  {
1908  	struct timekeeper *tk = &tk_core.timekeeper;
1909  	struct clocksource *clock = tk->tkr_mono.clock;
1910  	unsigned long flags;
1911  	struct timespec64 ts_new, ts_delta;
1912  	u64 cycle_now, nsec;
1913  	bool inject_sleeptime = false;
1914  
1915  	read_persistent_clock64(&ts_new);
1916  
1917  	clockevents_resume();
1918  	clocksource_resume();
1919  
1920  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1921  	write_seqcount_begin(&tk_core.seq);
1922  
1923  	/*
1924  	 * After system resumes, we need to calculate the suspended time and
1925  	 * compensate it for the OS time. There are 3 sources that could be
1926  	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1927  	 * device.
1928  	 *
1929  	 * One specific platform may have 1 or 2 or all of them, and the
1930  	 * preference will be:
1931  	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1932  	 * The less preferred source will only be tried if there is no better
1933  	 * usable source. The rtc part is handled separately in rtc core code.
1934  	 */
1935  	cycle_now = tk_clock_read(&tk->tkr_mono);
1936  	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1937  	if (nsec > 0) {
1938  		ts_delta = ns_to_timespec64(nsec);
1939  		inject_sleeptime = true;
1940  	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1941  		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1942  		inject_sleeptime = true;
1943  	}
1944  
1945  	if (inject_sleeptime) {
1946  		suspend_timing_needed = false;
1947  		__timekeeping_inject_sleeptime(tk, &ts_delta);
1948  	}
1949  
1950  	/* Re-base the last cycle value */
1951  	tk->tkr_mono.cycle_last = cycle_now;
1952  	tk->tkr_raw.cycle_last  = cycle_now;
1953  
1954  	tk->ntp_error = 0;
1955  	timekeeping_suspended = 0;
1956  	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1957  	write_seqcount_end(&tk_core.seq);
1958  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1959  
1960  	touch_softlockup_watchdog();
1961  
1962  	/* Resume the clockevent device(s) and hrtimers */
1963  	tick_resume();
1964  	/* Notify timerfd as resume is equivalent to clock_was_set() */
1965  	timerfd_resume();
1966  }
1967  
timekeeping_suspend(void)1968  int timekeeping_suspend(void)
1969  {
1970  	struct timekeeper *tk = &tk_core.timekeeper;
1971  	unsigned long flags;
1972  	struct timespec64		delta, delta_delta;
1973  	static struct timespec64	old_delta;
1974  	struct clocksource *curr_clock;
1975  	u64 cycle_now;
1976  
1977  	read_persistent_clock64(&timekeeping_suspend_time);
1978  
1979  	/*
1980  	 * On some systems the persistent_clock can not be detected at
1981  	 * timekeeping_init by its return value, so if we see a valid
1982  	 * value returned, update the persistent_clock_exists flag.
1983  	 */
1984  	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1985  		persistent_clock_exists = true;
1986  
1987  	suspend_timing_needed = true;
1988  
1989  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1990  	write_seqcount_begin(&tk_core.seq);
1991  	timekeeping_forward_now(tk);
1992  	timekeeping_suspended = 1;
1993  
1994  	/*
1995  	 * Since we've called forward_now, cycle_last stores the value
1996  	 * just read from the current clocksource. Save this to potentially
1997  	 * use in suspend timing.
1998  	 */
1999  	curr_clock = tk->tkr_mono.clock;
2000  	cycle_now = tk->tkr_mono.cycle_last;
2001  	clocksource_start_suspend_timing(curr_clock, cycle_now);
2002  
2003  	if (persistent_clock_exists) {
2004  		/*
2005  		 * To avoid drift caused by repeated suspend/resumes,
2006  		 * which each can add ~1 second drift error,
2007  		 * try to compensate so the difference in system time
2008  		 * and persistent_clock time stays close to constant.
2009  		 */
2010  		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
2011  		delta_delta = timespec64_sub(delta, old_delta);
2012  		if (abs(delta_delta.tv_sec) >= 2) {
2013  			/*
2014  			 * if delta_delta is too large, assume time correction
2015  			 * has occurred and set old_delta to the current delta.
2016  			 */
2017  			old_delta = delta;
2018  		} else {
2019  			/* Otherwise try to adjust old_system to compensate */
2020  			timekeeping_suspend_time =
2021  				timespec64_add(timekeeping_suspend_time, delta_delta);
2022  		}
2023  	}
2024  
2025  	timekeeping_update(tk, TK_MIRROR);
2026  	halt_fast_timekeeper(tk);
2027  	write_seqcount_end(&tk_core.seq);
2028  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2029  
2030  	tick_suspend();
2031  	clocksource_suspend();
2032  	clockevents_suspend();
2033  
2034  	return 0;
2035  }
2036  
2037  /* sysfs resume/suspend bits for timekeeping */
2038  static struct syscore_ops timekeeping_syscore_ops = {
2039  	.resume		= timekeeping_resume,
2040  	.suspend	= timekeeping_suspend,
2041  };
2042  
timekeeping_init_ops(void)2043  static int __init timekeeping_init_ops(void)
2044  {
2045  	register_syscore_ops(&timekeeping_syscore_ops);
2046  	return 0;
2047  }
2048  device_initcall(timekeeping_init_ops);
2049  
2050  /*
2051   * Apply a multiplier adjustment to the timekeeper
2052   */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)2053  static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
2054  							 s64 offset,
2055  							 s32 mult_adj)
2056  {
2057  	s64 interval = tk->cycle_interval;
2058  
2059  	if (mult_adj == 0) {
2060  		return;
2061  	} else if (mult_adj == -1) {
2062  		interval = -interval;
2063  		offset = -offset;
2064  	} else if (mult_adj != 1) {
2065  		interval *= mult_adj;
2066  		offset *= mult_adj;
2067  	}
2068  
2069  	/*
2070  	 * So the following can be confusing.
2071  	 *
2072  	 * To keep things simple, lets assume mult_adj == 1 for now.
2073  	 *
2074  	 * When mult_adj != 1, remember that the interval and offset values
2075  	 * have been appropriately scaled so the math is the same.
2076  	 *
2077  	 * The basic idea here is that we're increasing the multiplier
2078  	 * by one, this causes the xtime_interval to be incremented by
2079  	 * one cycle_interval. This is because:
2080  	 *	xtime_interval = cycle_interval * mult
2081  	 * So if mult is being incremented by one:
2082  	 *	xtime_interval = cycle_interval * (mult + 1)
2083  	 * Its the same as:
2084  	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
2085  	 * Which can be shortened to:
2086  	 *	xtime_interval += cycle_interval
2087  	 *
2088  	 * So offset stores the non-accumulated cycles. Thus the current
2089  	 * time (in shifted nanoseconds) is:
2090  	 *	now = (offset * adj) + xtime_nsec
2091  	 * Now, even though we're adjusting the clock frequency, we have
2092  	 * to keep time consistent. In other words, we can't jump back
2093  	 * in time, and we also want to avoid jumping forward in time.
2094  	 *
2095  	 * So given the same offset value, we need the time to be the same
2096  	 * both before and after the freq adjustment.
2097  	 *	now = (offset * adj_1) + xtime_nsec_1
2098  	 *	now = (offset * adj_2) + xtime_nsec_2
2099  	 * So:
2100  	 *	(offset * adj_1) + xtime_nsec_1 =
2101  	 *		(offset * adj_2) + xtime_nsec_2
2102  	 * And we know:
2103  	 *	adj_2 = adj_1 + 1
2104  	 * So:
2105  	 *	(offset * adj_1) + xtime_nsec_1 =
2106  	 *		(offset * (adj_1+1)) + xtime_nsec_2
2107  	 *	(offset * adj_1) + xtime_nsec_1 =
2108  	 *		(offset * adj_1) + offset + xtime_nsec_2
2109  	 * Canceling the sides:
2110  	 *	xtime_nsec_1 = offset + xtime_nsec_2
2111  	 * Which gives us:
2112  	 *	xtime_nsec_2 = xtime_nsec_1 - offset
2113  	 * Which simplifies to:
2114  	 *	xtime_nsec -= offset
2115  	 */
2116  	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2117  		/* NTP adjustment caused clocksource mult overflow */
2118  		WARN_ON_ONCE(1);
2119  		return;
2120  	}
2121  
2122  	tk->tkr_mono.mult += mult_adj;
2123  	tk->xtime_interval += interval;
2124  	tk->tkr_mono.xtime_nsec -= offset;
2125  }
2126  
2127  /*
2128   * Adjust the timekeeper's multiplier to the correct frequency
2129   * and also to reduce the accumulated error value.
2130   */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2131  static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2132  {
2133  	u32 mult;
2134  
2135  	/*
2136  	 * Determine the multiplier from the current NTP tick length.
2137  	 * Avoid expensive division when the tick length doesn't change.
2138  	 */
2139  	if (likely(tk->ntp_tick == ntp_tick_length())) {
2140  		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2141  	} else {
2142  		tk->ntp_tick = ntp_tick_length();
2143  		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2144  				 tk->xtime_remainder, tk->cycle_interval);
2145  	}
2146  
2147  	/*
2148  	 * If the clock is behind the NTP time, increase the multiplier by 1
2149  	 * to catch up with it. If it's ahead and there was a remainder in the
2150  	 * tick division, the clock will slow down. Otherwise it will stay
2151  	 * ahead until the tick length changes to a non-divisible value.
2152  	 */
2153  	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2154  	mult += tk->ntp_err_mult;
2155  
2156  	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2157  
2158  	if (unlikely(tk->tkr_mono.clock->maxadj &&
2159  		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2160  			> tk->tkr_mono.clock->maxadj))) {
2161  		printk_once(KERN_WARNING
2162  			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2163  			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2164  			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2165  	}
2166  
2167  	/*
2168  	 * It may be possible that when we entered this function, xtime_nsec
2169  	 * was very small.  Further, if we're slightly speeding the clocksource
2170  	 * in the code above, its possible the required corrective factor to
2171  	 * xtime_nsec could cause it to underflow.
2172  	 *
2173  	 * Now, since we have already accumulated the second and the NTP
2174  	 * subsystem has been notified via second_overflow(), we need to skip
2175  	 * the next update.
2176  	 */
2177  	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2178  		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2179  							tk->tkr_mono.shift;
2180  		tk->xtime_sec--;
2181  		tk->skip_second_overflow = 1;
2182  	}
2183  }
2184  
2185  /*
2186   * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2187   *
2188   * Helper function that accumulates the nsecs greater than a second
2189   * from the xtime_nsec field to the xtime_secs field.
2190   * It also calls into the NTP code to handle leapsecond processing.
2191   */
accumulate_nsecs_to_secs(struct timekeeper * tk)2192  static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2193  {
2194  	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2195  	unsigned int clock_set = 0;
2196  
2197  	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2198  		int leap;
2199  
2200  		tk->tkr_mono.xtime_nsec -= nsecps;
2201  		tk->xtime_sec++;
2202  
2203  		/*
2204  		 * Skip NTP update if this second was accumulated before,
2205  		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2206  		 */
2207  		if (unlikely(tk->skip_second_overflow)) {
2208  			tk->skip_second_overflow = 0;
2209  			continue;
2210  		}
2211  
2212  		/* Figure out if its a leap sec and apply if needed */
2213  		leap = second_overflow(tk->xtime_sec);
2214  		if (unlikely(leap)) {
2215  			struct timespec64 ts;
2216  
2217  			tk->xtime_sec += leap;
2218  
2219  			ts.tv_sec = leap;
2220  			ts.tv_nsec = 0;
2221  			tk_set_wall_to_mono(tk,
2222  				timespec64_sub(tk->wall_to_monotonic, ts));
2223  
2224  			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2225  
2226  			clock_set = TK_CLOCK_WAS_SET;
2227  		}
2228  	}
2229  	return clock_set;
2230  }
2231  
2232  /*
2233   * logarithmic_accumulation - shifted accumulation of cycles
2234   *
2235   * This functions accumulates a shifted interval of cycles into
2236   * a shifted interval nanoseconds. Allows for O(log) accumulation
2237   * loop.
2238   *
2239   * Returns the unconsumed cycles.
2240   */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2241  static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2242  				    u32 shift, unsigned int *clock_set)
2243  {
2244  	u64 interval = tk->cycle_interval << shift;
2245  	u64 snsec_per_sec;
2246  
2247  	/* If the offset is smaller than a shifted interval, do nothing */
2248  	if (offset < interval)
2249  		return offset;
2250  
2251  	/* Accumulate one shifted interval */
2252  	offset -= interval;
2253  	tk->tkr_mono.cycle_last += interval;
2254  	tk->tkr_raw.cycle_last  += interval;
2255  
2256  	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2257  	*clock_set |= accumulate_nsecs_to_secs(tk);
2258  
2259  	/* Accumulate raw time */
2260  	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2261  	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2262  	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2263  		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2264  		tk->raw_sec++;
2265  	}
2266  
2267  	/* Accumulate error between NTP and clock interval */
2268  	tk->ntp_error += tk->ntp_tick << shift;
2269  	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2270  						(tk->ntp_error_shift + shift);
2271  
2272  	return offset;
2273  }
2274  
2275  /*
2276   * timekeeping_advance - Updates the timekeeper to the current time and
2277   * current NTP tick length
2278   */
timekeeping_advance(enum timekeeping_adv_mode mode)2279  static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2280  {
2281  	struct timekeeper *real_tk = &tk_core.timekeeper;
2282  	struct timekeeper *tk = &shadow_timekeeper;
2283  	u64 offset;
2284  	int shift = 0, maxshift;
2285  	unsigned int clock_set = 0;
2286  	unsigned long flags;
2287  
2288  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2289  
2290  	/* Make sure we're fully resumed: */
2291  	if (unlikely(timekeeping_suspended))
2292  		goto out;
2293  
2294  	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2295  				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2296  
2297  	/* Check if there's really nothing to do */
2298  	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2299  		goto out;
2300  
2301  	/* Do some additional sanity checking */
2302  	timekeeping_check_update(tk, offset);
2303  
2304  	/*
2305  	 * With NO_HZ we may have to accumulate many cycle_intervals
2306  	 * (think "ticks") worth of time at once. To do this efficiently,
2307  	 * we calculate the largest doubling multiple of cycle_intervals
2308  	 * that is smaller than the offset.  We then accumulate that
2309  	 * chunk in one go, and then try to consume the next smaller
2310  	 * doubled multiple.
2311  	 */
2312  	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2313  	shift = max(0, shift);
2314  	/* Bound shift to one less than what overflows tick_length */
2315  	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2316  	shift = min(shift, maxshift);
2317  	while (offset >= tk->cycle_interval) {
2318  		offset = logarithmic_accumulation(tk, offset, shift,
2319  							&clock_set);
2320  		if (offset < tk->cycle_interval<<shift)
2321  			shift--;
2322  	}
2323  
2324  	/* Adjust the multiplier to correct NTP error */
2325  	timekeeping_adjust(tk, offset);
2326  
2327  	/*
2328  	 * Finally, make sure that after the rounding
2329  	 * xtime_nsec isn't larger than NSEC_PER_SEC
2330  	 */
2331  	clock_set |= accumulate_nsecs_to_secs(tk);
2332  
2333  	write_seqcount_begin(&tk_core.seq);
2334  	/*
2335  	 * Update the real timekeeper.
2336  	 *
2337  	 * We could avoid this memcpy by switching pointers, but that
2338  	 * requires changes to all other timekeeper usage sites as
2339  	 * well, i.e. move the timekeeper pointer getter into the
2340  	 * spinlocked/seqcount protected sections. And we trade this
2341  	 * memcpy under the tk_core.seq against one before we start
2342  	 * updating.
2343  	 */
2344  	timekeeping_update(tk, clock_set);
2345  	memcpy(real_tk, tk, sizeof(*tk));
2346  	/* The memcpy must come last. Do not put anything here! */
2347  	write_seqcount_end(&tk_core.seq);
2348  out:
2349  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2350  
2351  	return !!clock_set;
2352  }
2353  
2354  /**
2355   * update_wall_time - Uses the current clocksource to increment the wall time
2356   *
2357   */
update_wall_time(void)2358  void update_wall_time(void)
2359  {
2360  	if (timekeeping_advance(TK_ADV_TICK))
2361  		clock_was_set_delayed();
2362  }
2363  
2364  /**
2365   * getboottime64 - Return the real time of system boot.
2366   * @ts:		pointer to the timespec64 to be set
2367   *
2368   * Returns the wall-time of boot in a timespec64.
2369   *
2370   * This is based on the wall_to_monotonic offset and the total suspend
2371   * time. Calls to settimeofday will affect the value returned (which
2372   * basically means that however wrong your real time clock is at boot time,
2373   * you get the right time here).
2374   */
getboottime64(struct timespec64 * ts)2375  void getboottime64(struct timespec64 *ts)
2376  {
2377  	struct timekeeper *tk = &tk_core.timekeeper;
2378  	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2379  
2380  	*ts = ktime_to_timespec64(t);
2381  }
2382  EXPORT_SYMBOL_GPL(getboottime64);
2383  
ktime_get_coarse_real_ts64(struct timespec64 * ts)2384  void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2385  {
2386  	struct timekeeper *tk = &tk_core.timekeeper;
2387  	unsigned int seq;
2388  
2389  	do {
2390  		seq = read_seqcount_begin(&tk_core.seq);
2391  
2392  		*ts = tk_xtime(tk);
2393  	} while (read_seqcount_retry(&tk_core.seq, seq));
2394  }
2395  EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2396  
ktime_get_coarse_ts64(struct timespec64 * ts)2397  void ktime_get_coarse_ts64(struct timespec64 *ts)
2398  {
2399  	struct timekeeper *tk = &tk_core.timekeeper;
2400  	struct timespec64 now, mono;
2401  	unsigned int seq;
2402  
2403  	do {
2404  		seq = read_seqcount_begin(&tk_core.seq);
2405  
2406  		now = tk_xtime(tk);
2407  		mono = tk->wall_to_monotonic;
2408  	} while (read_seqcount_retry(&tk_core.seq, seq));
2409  
2410  	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2411  				now.tv_nsec + mono.tv_nsec);
2412  }
2413  EXPORT_SYMBOL(ktime_get_coarse_ts64);
2414  
2415  /*
2416   * Must hold jiffies_lock
2417   */
do_timer(unsigned long ticks)2418  void do_timer(unsigned long ticks)
2419  {
2420  	jiffies_64 += ticks;
2421  	calc_global_load();
2422  }
2423  
2424  /**
2425   * ktime_get_update_offsets_now - hrtimer helper
2426   * @cwsseq:	pointer to check and store the clock was set sequence number
2427   * @offs_real:	pointer to storage for monotonic -> realtime offset
2428   * @offs_boot:	pointer to storage for monotonic -> boottime offset
2429   * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2430   *
2431   * Returns current monotonic time and updates the offsets if the
2432   * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2433   * different.
2434   *
2435   * Called from hrtimer_interrupt() or retrigger_next_event()
2436   */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2437  ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2438  				     ktime_t *offs_boot, ktime_t *offs_tai)
2439  {
2440  	struct timekeeper *tk = &tk_core.timekeeper;
2441  	unsigned int seq;
2442  	ktime_t base;
2443  	u64 nsecs;
2444  
2445  	do {
2446  		seq = read_seqcount_begin(&tk_core.seq);
2447  
2448  		base = tk->tkr_mono.base;
2449  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2450  		base = ktime_add_ns(base, nsecs);
2451  
2452  		if (*cwsseq != tk->clock_was_set_seq) {
2453  			*cwsseq = tk->clock_was_set_seq;
2454  			*offs_real = tk->offs_real;
2455  			*offs_boot = tk->offs_boot;
2456  			*offs_tai = tk->offs_tai;
2457  		}
2458  
2459  		/* Handle leapsecond insertion adjustments */
2460  		if (unlikely(base >= tk->next_leap_ktime))
2461  			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2462  
2463  	} while (read_seqcount_retry(&tk_core.seq, seq));
2464  
2465  	return base;
2466  }
2467  
2468  /*
2469   * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2470   */
timekeeping_validate_timex(const struct __kernel_timex * txc)2471  static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2472  {
2473  	if (txc->modes & ADJ_ADJTIME) {
2474  		/* singleshot must not be used with any other mode bits */
2475  		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2476  			return -EINVAL;
2477  		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2478  		    !capable(CAP_SYS_TIME))
2479  			return -EPERM;
2480  	} else {
2481  		/* In order to modify anything, you gotta be super-user! */
2482  		if (txc->modes && !capable(CAP_SYS_TIME))
2483  			return -EPERM;
2484  		/*
2485  		 * if the quartz is off by more than 10% then
2486  		 * something is VERY wrong!
2487  		 */
2488  		if (txc->modes & ADJ_TICK &&
2489  		    (txc->tick <  900000/USER_HZ ||
2490  		     txc->tick > 1100000/USER_HZ))
2491  			return -EINVAL;
2492  	}
2493  
2494  	if (txc->modes & ADJ_SETOFFSET) {
2495  		/* In order to inject time, you gotta be super-user! */
2496  		if (!capable(CAP_SYS_TIME))
2497  			return -EPERM;
2498  
2499  		/*
2500  		 * Validate if a timespec/timeval used to inject a time
2501  		 * offset is valid.  Offsets can be positive or negative, so
2502  		 * we don't check tv_sec. The value of the timeval/timespec
2503  		 * is the sum of its fields,but *NOTE*:
2504  		 * The field tv_usec/tv_nsec must always be non-negative and
2505  		 * we can't have more nanoseconds/microseconds than a second.
2506  		 */
2507  		if (txc->time.tv_usec < 0)
2508  			return -EINVAL;
2509  
2510  		if (txc->modes & ADJ_NANO) {
2511  			if (txc->time.tv_usec >= NSEC_PER_SEC)
2512  				return -EINVAL;
2513  		} else {
2514  			if (txc->time.tv_usec >= USEC_PER_SEC)
2515  				return -EINVAL;
2516  		}
2517  	}
2518  
2519  	/*
2520  	 * Check for potential multiplication overflows that can
2521  	 * only happen on 64-bit systems:
2522  	 */
2523  	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2524  		if (LLONG_MIN / PPM_SCALE > txc->freq)
2525  			return -EINVAL;
2526  		if (LLONG_MAX / PPM_SCALE < txc->freq)
2527  			return -EINVAL;
2528  	}
2529  
2530  	return 0;
2531  }
2532  
2533  /**
2534   * random_get_entropy_fallback - Returns the raw clock source value,
2535   * used by random.c for platforms with no valid random_get_entropy().
2536   */
random_get_entropy_fallback(void)2537  unsigned long random_get_entropy_fallback(void)
2538  {
2539  	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2540  	struct clocksource *clock = READ_ONCE(tkr->clock);
2541  
2542  	if (unlikely(timekeeping_suspended || !clock))
2543  		return 0;
2544  	return clock->read(clock);
2545  }
2546  EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2547  
2548  /**
2549   * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2550   * @txc:	Pointer to kernel_timex structure containing NTP parameters
2551   */
do_adjtimex(struct __kernel_timex * txc)2552  int do_adjtimex(struct __kernel_timex *txc)
2553  {
2554  	struct timekeeper *tk = &tk_core.timekeeper;
2555  	struct audit_ntp_data ad;
2556  	bool offset_set = false;
2557  	bool clock_set = false;
2558  	struct timespec64 ts;
2559  	unsigned long flags;
2560  	s32 orig_tai, tai;
2561  	int ret;
2562  
2563  	/* Validate the data before disabling interrupts */
2564  	ret = timekeeping_validate_timex(txc);
2565  	if (ret)
2566  		return ret;
2567  	add_device_randomness(txc, sizeof(*txc));
2568  
2569  	if (txc->modes & ADJ_SETOFFSET) {
2570  		struct timespec64 delta;
2571  		delta.tv_sec  = txc->time.tv_sec;
2572  		delta.tv_nsec = txc->time.tv_usec;
2573  		if (!(txc->modes & ADJ_NANO))
2574  			delta.tv_nsec *= 1000;
2575  		ret = timekeeping_inject_offset(&delta);
2576  		if (ret)
2577  			return ret;
2578  
2579  		offset_set = delta.tv_sec != 0;
2580  		audit_tk_injoffset(delta);
2581  	}
2582  
2583  	audit_ntp_init(&ad);
2584  
2585  	ktime_get_real_ts64(&ts);
2586  	add_device_randomness(&ts, sizeof(ts));
2587  
2588  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2589  	write_seqcount_begin(&tk_core.seq);
2590  
2591  	orig_tai = tai = tk->tai_offset;
2592  	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2593  
2594  	if (tai != orig_tai) {
2595  		__timekeeping_set_tai_offset(tk, tai);
2596  		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2597  		clock_set = true;
2598  	}
2599  	tk_update_leap_state(tk);
2600  
2601  	write_seqcount_end(&tk_core.seq);
2602  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2603  
2604  	audit_ntp_log(&ad);
2605  
2606  	/* Update the multiplier immediately if frequency was set directly */
2607  	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2608  		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2609  
2610  	if (clock_set)
2611  		clock_was_set(CLOCK_SET_WALL);
2612  
2613  	ntp_notify_cmos_timer(offset_set);
2614  
2615  	return ret;
2616  }
2617  
2618  #ifdef CONFIG_NTP_PPS
2619  /**
2620   * hardpps() - Accessor function to NTP __hardpps function
2621   * @phase_ts:	Pointer to timespec64 structure representing phase timestamp
2622   * @raw_ts:	Pointer to timespec64 structure representing raw timestamp
2623   */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2624  void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2625  {
2626  	unsigned long flags;
2627  
2628  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2629  	write_seqcount_begin(&tk_core.seq);
2630  
2631  	__hardpps(phase_ts, raw_ts);
2632  
2633  	write_seqcount_end(&tk_core.seq);
2634  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2635  }
2636  EXPORT_SYMBOL(hardpps);
2637  #endif /* CONFIG_NTP_PPS */
2638