1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  kernel/sched/syscalls.c
4   *
5   *  Core kernel scheduler syscalls related code
6   *
7   *  Copyright (C) 1991-2002  Linus Torvalds
8   *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9   */
10  #include <linux/sched.h>
11  #include <linux/cpuset.h>
12  #include <linux/sched/debug.h>
13  
14  #include <uapi/linux/sched/types.h>
15  
16  #include "sched.h"
17  #include "autogroup.h"
18  
__normal_prio(int policy,int rt_prio,int nice)19  static inline int __normal_prio(int policy, int rt_prio, int nice)
20  {
21  	int prio;
22  
23  	if (dl_policy(policy))
24  		prio = MAX_DL_PRIO - 1;
25  	else if (rt_policy(policy))
26  		prio = MAX_RT_PRIO - 1 - rt_prio;
27  	else
28  		prio = NICE_TO_PRIO(nice);
29  
30  	return prio;
31  }
32  
33  /*
34   * Calculate the expected normal priority: i.e. priority
35   * without taking RT-inheritance into account. Might be
36   * boosted by interactivity modifiers. Changes upon fork,
37   * setprio syscalls, and whenever the interactivity
38   * estimator recalculates.
39   */
normal_prio(struct task_struct * p)40  static inline int normal_prio(struct task_struct *p)
41  {
42  	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
43  }
44  
45  /*
46   * Calculate the current priority, i.e. the priority
47   * taken into account by the scheduler. This value might
48   * be boosted by RT tasks, or might be boosted by
49   * interactivity modifiers. Will be RT if the task got
50   * RT-boosted. If not then it returns p->normal_prio.
51   */
effective_prio(struct task_struct * p)52  static int effective_prio(struct task_struct *p)
53  {
54  	p->normal_prio = normal_prio(p);
55  	/*
56  	 * If we are RT tasks or we were boosted to RT priority,
57  	 * keep the priority unchanged. Otherwise, update priority
58  	 * to the normal priority:
59  	 */
60  	if (!rt_or_dl_prio(p->prio))
61  		return p->normal_prio;
62  	return p->prio;
63  }
64  
set_user_nice(struct task_struct * p,long nice)65  void set_user_nice(struct task_struct *p, long nice)
66  {
67  	bool queued, running;
68  	struct rq *rq;
69  	int old_prio;
70  
71  	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
72  		return;
73  	/*
74  	 * We have to be careful, if called from sys_setpriority(),
75  	 * the task might be in the middle of scheduling on another CPU.
76  	 */
77  	CLASS(task_rq_lock, rq_guard)(p);
78  	rq = rq_guard.rq;
79  
80  	update_rq_clock(rq);
81  
82  	/*
83  	 * The RT priorities are set via sched_setscheduler(), but we still
84  	 * allow the 'normal' nice value to be set - but as expected
85  	 * it won't have any effect on scheduling until the task is
86  	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
87  	 */
88  	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
89  		p->static_prio = NICE_TO_PRIO(nice);
90  		return;
91  	}
92  
93  	queued = task_on_rq_queued(p);
94  	running = task_current(rq, p);
95  	if (queued)
96  		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
97  	if (running)
98  		put_prev_task(rq, p);
99  
100  	p->static_prio = NICE_TO_PRIO(nice);
101  	set_load_weight(p, true);
102  	old_prio = p->prio;
103  	p->prio = effective_prio(p);
104  
105  	if (queued)
106  		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
107  	if (running)
108  		set_next_task(rq, p);
109  
110  	/*
111  	 * If the task increased its priority or is running and
112  	 * lowered its priority, then reschedule its CPU:
113  	 */
114  	p->sched_class->prio_changed(rq, p, old_prio);
115  }
116  EXPORT_SYMBOL(set_user_nice);
117  
118  /*
119   * is_nice_reduction - check if nice value is an actual reduction
120   *
121   * Similar to can_nice() but does not perform a capability check.
122   *
123   * @p: task
124   * @nice: nice value
125   */
is_nice_reduction(const struct task_struct * p,const int nice)126  static bool is_nice_reduction(const struct task_struct *p, const int nice)
127  {
128  	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
129  	int nice_rlim = nice_to_rlimit(nice);
130  
131  	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
132  }
133  
134  /*
135   * can_nice - check if a task can reduce its nice value
136   * @p: task
137   * @nice: nice value
138   */
can_nice(const struct task_struct * p,const int nice)139  int can_nice(const struct task_struct *p, const int nice)
140  {
141  	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
142  }
143  
144  #ifdef __ARCH_WANT_SYS_NICE
145  
146  /*
147   * sys_nice - change the priority of the current process.
148   * @increment: priority increment
149   *
150   * sys_setpriority is a more generic, but much slower function that
151   * does similar things.
152   */
SYSCALL_DEFINE1(nice,int,increment)153  SYSCALL_DEFINE1(nice, int, increment)
154  {
155  	long nice, retval;
156  
157  	/*
158  	 * Setpriority might change our priority at the same moment.
159  	 * We don't have to worry. Conceptually one call occurs first
160  	 * and we have a single winner.
161  	 */
162  	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
163  	nice = task_nice(current) + increment;
164  
165  	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
166  	if (increment < 0 && !can_nice(current, nice))
167  		return -EPERM;
168  
169  	retval = security_task_setnice(current, nice);
170  	if (retval)
171  		return retval;
172  
173  	set_user_nice(current, nice);
174  	return 0;
175  }
176  
177  #endif
178  
179  /**
180   * task_prio - return the priority value of a given task.
181   * @p: the task in question.
182   *
183   * Return: The priority value as seen by users in /proc.
184   *
185   * sched policy         return value   kernel prio    user prio/nice
186   *
187   * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
188   * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
189   * deadline                     -101             -1           0
190   */
task_prio(const struct task_struct * p)191  int task_prio(const struct task_struct *p)
192  {
193  	return p->prio - MAX_RT_PRIO;
194  }
195  
196  /**
197   * idle_cpu - is a given CPU idle currently?
198   * @cpu: the processor in question.
199   *
200   * Return: 1 if the CPU is currently idle. 0 otherwise.
201   */
idle_cpu(int cpu)202  int idle_cpu(int cpu)
203  {
204  	struct rq *rq = cpu_rq(cpu);
205  
206  	if (rq->curr != rq->idle)
207  		return 0;
208  
209  	if (rq->nr_running)
210  		return 0;
211  
212  #ifdef CONFIG_SMP
213  	if (rq->ttwu_pending)
214  		return 0;
215  #endif
216  
217  	return 1;
218  }
219  
220  /**
221   * available_idle_cpu - is a given CPU idle for enqueuing work.
222   * @cpu: the CPU in question.
223   *
224   * Return: 1 if the CPU is currently idle. 0 otherwise.
225   */
available_idle_cpu(int cpu)226  int available_idle_cpu(int cpu)
227  {
228  	if (!idle_cpu(cpu))
229  		return 0;
230  
231  	if (vcpu_is_preempted(cpu))
232  		return 0;
233  
234  	return 1;
235  }
236  
237  /**
238   * idle_task - return the idle task for a given CPU.
239   * @cpu: the processor in question.
240   *
241   * Return: The idle task for the CPU @cpu.
242   */
idle_task(int cpu)243  struct task_struct *idle_task(int cpu)
244  {
245  	return cpu_rq(cpu)->idle;
246  }
247  
248  #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)249  int sched_core_idle_cpu(int cpu)
250  {
251  	struct rq *rq = cpu_rq(cpu);
252  
253  	if (sched_core_enabled(rq) && rq->curr == rq->idle)
254  		return 1;
255  
256  	return idle_cpu(cpu);
257  }
258  
259  #endif
260  
261  /**
262   * find_process_by_pid - find a process with a matching PID value.
263   * @pid: the pid in question.
264   *
265   * The task of @pid, if found. %NULL otherwise.
266   */
find_process_by_pid(pid_t pid)267  static struct task_struct *find_process_by_pid(pid_t pid)
268  {
269  	return pid ? find_task_by_vpid(pid) : current;
270  }
271  
find_get_task(pid_t pid)272  static struct task_struct *find_get_task(pid_t pid)
273  {
274  	struct task_struct *p;
275  	guard(rcu)();
276  
277  	p = find_process_by_pid(pid);
278  	if (likely(p))
279  		get_task_struct(p);
280  
281  	return p;
282  }
283  
DEFINE_CLASS(find_get_task,struct task_struct *,if (_T)put_task_struct (_T),find_get_task (pid),pid_t pid)284  DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
285  	     find_get_task(pid), pid_t pid)
286  
287  /*
288   * sched_setparam() passes in -1 for its policy, to let the functions
289   * it calls know not to change it.
290   */
291  #define SETPARAM_POLICY	-1
292  
293  static void __setscheduler_params(struct task_struct *p,
294  		const struct sched_attr *attr)
295  {
296  	int policy = attr->sched_policy;
297  
298  	if (policy == SETPARAM_POLICY)
299  		policy = p->policy;
300  
301  	p->policy = policy;
302  
303  	if (dl_policy(policy)) {
304  		__setparam_dl(p, attr);
305  	} else if (fair_policy(policy)) {
306  		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
307  		if (attr->sched_runtime) {
308  			p->se.custom_slice = 1;
309  			p->se.slice = clamp_t(u64, attr->sched_runtime,
310  					      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
311  					      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
312  		} else {
313  			p->se.custom_slice = 0;
314  			p->se.slice = sysctl_sched_base_slice;
315  		}
316  	}
317  
318  	/* rt-policy tasks do not have a timerslack */
319  	if (rt_or_dl_task_policy(p)) {
320  		p->timer_slack_ns = 0;
321  	} else if (p->timer_slack_ns == 0) {
322  		/* when switching back to non-rt policy, restore timerslack */
323  		p->timer_slack_ns = p->default_timer_slack_ns;
324  	}
325  
326  	/*
327  	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
328  	 * !rt_policy. Always setting this ensures that things like
329  	 * getparam()/getattr() don't report silly values for !rt tasks.
330  	 */
331  	p->rt_priority = attr->sched_priority;
332  	p->normal_prio = normal_prio(p);
333  	set_load_weight(p, true);
334  }
335  
336  /*
337   * Check the target process has a UID that matches the current process's:
338   */
check_same_owner(struct task_struct * p)339  static bool check_same_owner(struct task_struct *p)
340  {
341  	const struct cred *cred = current_cred(), *pcred;
342  	guard(rcu)();
343  
344  	pcred = __task_cred(p);
345  	return (uid_eq(cred->euid, pcred->euid) ||
346  		uid_eq(cred->euid, pcred->uid));
347  }
348  
349  #ifdef CONFIG_UCLAMP_TASK
350  
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)351  static int uclamp_validate(struct task_struct *p,
352  			   const struct sched_attr *attr)
353  {
354  	int util_min = p->uclamp_req[UCLAMP_MIN].value;
355  	int util_max = p->uclamp_req[UCLAMP_MAX].value;
356  
357  	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
358  		util_min = attr->sched_util_min;
359  
360  		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
361  			return -EINVAL;
362  	}
363  
364  	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
365  		util_max = attr->sched_util_max;
366  
367  		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
368  			return -EINVAL;
369  	}
370  
371  	if (util_min != -1 && util_max != -1 && util_min > util_max)
372  		return -EINVAL;
373  
374  	/*
375  	 * We have valid uclamp attributes; make sure uclamp is enabled.
376  	 *
377  	 * We need to do that here, because enabling static branches is a
378  	 * blocking operation which obviously cannot be done while holding
379  	 * scheduler locks.
380  	 */
381  	static_branch_enable(&sched_uclamp_used);
382  
383  	return 0;
384  }
385  
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)386  static bool uclamp_reset(const struct sched_attr *attr,
387  			 enum uclamp_id clamp_id,
388  			 struct uclamp_se *uc_se)
389  {
390  	/* Reset on sched class change for a non user-defined clamp value. */
391  	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
392  	    !uc_se->user_defined)
393  		return true;
394  
395  	/* Reset on sched_util_{min,max} == -1. */
396  	if (clamp_id == UCLAMP_MIN &&
397  	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
398  	    attr->sched_util_min == -1) {
399  		return true;
400  	}
401  
402  	if (clamp_id == UCLAMP_MAX &&
403  	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
404  	    attr->sched_util_max == -1) {
405  		return true;
406  	}
407  
408  	return false;
409  }
410  
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)411  static void __setscheduler_uclamp(struct task_struct *p,
412  				  const struct sched_attr *attr)
413  {
414  	enum uclamp_id clamp_id;
415  
416  	for_each_clamp_id(clamp_id) {
417  		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
418  		unsigned int value;
419  
420  		if (!uclamp_reset(attr, clamp_id, uc_se))
421  			continue;
422  
423  		/*
424  		 * RT by default have a 100% boost value that could be modified
425  		 * at runtime.
426  		 */
427  		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
428  			value = sysctl_sched_uclamp_util_min_rt_default;
429  		else
430  			value = uclamp_none(clamp_id);
431  
432  		uclamp_se_set(uc_se, value, false);
433  
434  	}
435  
436  	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
437  		return;
438  
439  	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
440  	    attr->sched_util_min != -1) {
441  		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
442  			      attr->sched_util_min, true);
443  	}
444  
445  	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
446  	    attr->sched_util_max != -1) {
447  		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
448  			      attr->sched_util_max, true);
449  	}
450  }
451  
452  #else /* !CONFIG_UCLAMP_TASK: */
453  
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)454  static inline int uclamp_validate(struct task_struct *p,
455  				  const struct sched_attr *attr)
456  {
457  	return -EOPNOTSUPP;
458  }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)459  static void __setscheduler_uclamp(struct task_struct *p,
460  				  const struct sched_attr *attr) { }
461  #endif
462  
463  /*
464   * Allow unprivileged RT tasks to decrease priority.
465   * Only issue a capable test if needed and only once to avoid an audit
466   * event on permitted non-privileged operations:
467   */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)468  static int user_check_sched_setscheduler(struct task_struct *p,
469  					 const struct sched_attr *attr,
470  					 int policy, int reset_on_fork)
471  {
472  	if (fair_policy(policy)) {
473  		if (attr->sched_nice < task_nice(p) &&
474  		    !is_nice_reduction(p, attr->sched_nice))
475  			goto req_priv;
476  	}
477  
478  	if (rt_policy(policy)) {
479  		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
480  
481  		/* Can't set/change the rt policy: */
482  		if (policy != p->policy && !rlim_rtprio)
483  			goto req_priv;
484  
485  		/* Can't increase priority: */
486  		if (attr->sched_priority > p->rt_priority &&
487  		    attr->sched_priority > rlim_rtprio)
488  			goto req_priv;
489  	}
490  
491  	/*
492  	 * Can't set/change SCHED_DEADLINE policy at all for now
493  	 * (safest behavior); in the future we would like to allow
494  	 * unprivileged DL tasks to increase their relative deadline
495  	 * or reduce their runtime (both ways reducing utilization)
496  	 */
497  	if (dl_policy(policy))
498  		goto req_priv;
499  
500  	/*
501  	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
502  	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
503  	 */
504  	if (task_has_idle_policy(p) && !idle_policy(policy)) {
505  		if (!is_nice_reduction(p, task_nice(p)))
506  			goto req_priv;
507  	}
508  
509  	/* Can't change other user's priorities: */
510  	if (!check_same_owner(p))
511  		goto req_priv;
512  
513  	/* Normal users shall not reset the sched_reset_on_fork flag: */
514  	if (p->sched_reset_on_fork && !reset_on_fork)
515  		goto req_priv;
516  
517  	return 0;
518  
519  req_priv:
520  	if (!capable(CAP_SYS_NICE))
521  		return -EPERM;
522  
523  	return 0;
524  }
525  
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)526  int __sched_setscheduler(struct task_struct *p,
527  			 const struct sched_attr *attr,
528  			 bool user, bool pi)
529  {
530  	int oldpolicy = -1, policy = attr->sched_policy;
531  	int retval, oldprio, newprio, queued, running;
532  	const struct sched_class *prev_class, *next_class;
533  	struct balance_callback *head;
534  	struct rq_flags rf;
535  	int reset_on_fork;
536  	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
537  	struct rq *rq;
538  	bool cpuset_locked = false;
539  
540  	/* The pi code expects interrupts enabled */
541  	BUG_ON(pi && in_interrupt());
542  recheck:
543  	/* Double check policy once rq lock held: */
544  	if (policy < 0) {
545  		reset_on_fork = p->sched_reset_on_fork;
546  		policy = oldpolicy = p->policy;
547  	} else {
548  		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
549  
550  		if (!valid_policy(policy))
551  			return -EINVAL;
552  	}
553  
554  	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
555  		return -EINVAL;
556  
557  	/*
558  	 * Valid priorities for SCHED_FIFO and SCHED_RR are
559  	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
560  	 * SCHED_BATCH and SCHED_IDLE is 0.
561  	 */
562  	if (attr->sched_priority > MAX_RT_PRIO-1)
563  		return -EINVAL;
564  	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
565  	    (rt_policy(policy) != (attr->sched_priority != 0)))
566  		return -EINVAL;
567  
568  	if (user) {
569  		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
570  		if (retval)
571  			return retval;
572  
573  		if (attr->sched_flags & SCHED_FLAG_SUGOV)
574  			return -EINVAL;
575  
576  		retval = security_task_setscheduler(p);
577  		if (retval)
578  			return retval;
579  	}
580  
581  	/* Update task specific "requested" clamps */
582  	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
583  		retval = uclamp_validate(p, attr);
584  		if (retval)
585  			return retval;
586  	}
587  
588  	/*
589  	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
590  	 * information.
591  	 */
592  	if (dl_policy(policy) || dl_policy(p->policy)) {
593  		cpuset_locked = true;
594  		cpuset_lock();
595  	}
596  
597  	/*
598  	 * Make sure no PI-waiters arrive (or leave) while we are
599  	 * changing the priority of the task:
600  	 *
601  	 * To be able to change p->policy safely, the appropriate
602  	 * runqueue lock must be held.
603  	 */
604  	rq = task_rq_lock(p, &rf);
605  	update_rq_clock(rq);
606  
607  	/*
608  	 * Changing the policy of the stop threads its a very bad idea:
609  	 */
610  	if (p == rq->stop) {
611  		retval = -EINVAL;
612  		goto unlock;
613  	}
614  
615  	retval = scx_check_setscheduler(p, policy);
616  	if (retval)
617  		goto unlock;
618  
619  	/*
620  	 * If not changing anything there's no need to proceed further,
621  	 * but store a possible modification of reset_on_fork.
622  	 */
623  	if (unlikely(policy == p->policy)) {
624  		if (fair_policy(policy) &&
625  		    (attr->sched_nice != task_nice(p) ||
626  		     (attr->sched_runtime != p->se.slice)))
627  			goto change;
628  		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
629  			goto change;
630  		if (dl_policy(policy) && dl_param_changed(p, attr))
631  			goto change;
632  		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
633  			goto change;
634  
635  		p->sched_reset_on_fork = reset_on_fork;
636  		retval = 0;
637  		goto unlock;
638  	}
639  change:
640  
641  	if (user) {
642  #ifdef CONFIG_RT_GROUP_SCHED
643  		/*
644  		 * Do not allow real-time tasks into groups that have no runtime
645  		 * assigned.
646  		 */
647  		if (rt_bandwidth_enabled() && rt_policy(policy) &&
648  				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
649  				!task_group_is_autogroup(task_group(p))) {
650  			retval = -EPERM;
651  			goto unlock;
652  		}
653  #endif
654  #ifdef CONFIG_SMP
655  		if (dl_bandwidth_enabled() && dl_policy(policy) &&
656  				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
657  			cpumask_t *span = rq->rd->span;
658  
659  			/*
660  			 * Don't allow tasks with an affinity mask smaller than
661  			 * the entire root_domain to become SCHED_DEADLINE. We
662  			 * will also fail if there's no bandwidth available.
663  			 */
664  			if (!cpumask_subset(span, p->cpus_ptr) ||
665  			    rq->rd->dl_bw.bw == 0) {
666  				retval = -EPERM;
667  				goto unlock;
668  			}
669  		}
670  #endif
671  	}
672  
673  	/* Re-check policy now with rq lock held: */
674  	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
675  		policy = oldpolicy = -1;
676  		task_rq_unlock(rq, p, &rf);
677  		if (cpuset_locked)
678  			cpuset_unlock();
679  		goto recheck;
680  	}
681  
682  	/*
683  	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
684  	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
685  	 * is available.
686  	 */
687  	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
688  		retval = -EBUSY;
689  		goto unlock;
690  	}
691  
692  	p->sched_reset_on_fork = reset_on_fork;
693  	oldprio = p->prio;
694  
695  	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
696  	if (pi) {
697  		/*
698  		 * Take priority boosted tasks into account. If the new
699  		 * effective priority is unchanged, we just store the new
700  		 * normal parameters and do not touch the scheduler class and
701  		 * the runqueue. This will be done when the task deboost
702  		 * itself.
703  		 */
704  		newprio = rt_effective_prio(p, newprio);
705  		if (newprio == oldprio)
706  			queue_flags &= ~DEQUEUE_MOVE;
707  	}
708  
709  	prev_class = p->sched_class;
710  	next_class = __setscheduler_class(policy, newprio);
711  
712  	if (prev_class != next_class && p->se.sched_delayed)
713  		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
714  
715  	queued = task_on_rq_queued(p);
716  	running = task_current(rq, p);
717  	if (queued)
718  		dequeue_task(rq, p, queue_flags);
719  	if (running)
720  		put_prev_task(rq, p);
721  
722  	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
723  		__setscheduler_params(p, attr);
724  		p->sched_class = next_class;
725  		p->prio = newprio;
726  	}
727  	__setscheduler_uclamp(p, attr);
728  	check_class_changing(rq, p, prev_class);
729  
730  	if (queued) {
731  		/*
732  		 * We enqueue to tail when the priority of a task is
733  		 * increased (user space view).
734  		 */
735  		if (oldprio < p->prio)
736  			queue_flags |= ENQUEUE_HEAD;
737  
738  		enqueue_task(rq, p, queue_flags);
739  	}
740  	if (running)
741  		set_next_task(rq, p);
742  
743  	check_class_changed(rq, p, prev_class, oldprio);
744  
745  	/* Avoid rq from going away on us: */
746  	preempt_disable();
747  	head = splice_balance_callbacks(rq);
748  	task_rq_unlock(rq, p, &rf);
749  
750  	if (pi) {
751  		if (cpuset_locked)
752  			cpuset_unlock();
753  		rt_mutex_adjust_pi(p);
754  	}
755  
756  	/* Run balance callbacks after we've adjusted the PI chain: */
757  	balance_callbacks(rq, head);
758  	preempt_enable();
759  
760  	return 0;
761  
762  unlock:
763  	task_rq_unlock(rq, p, &rf);
764  	if (cpuset_locked)
765  		cpuset_unlock();
766  	return retval;
767  }
768  
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)769  static int _sched_setscheduler(struct task_struct *p, int policy,
770  			       const struct sched_param *param, bool check)
771  {
772  	struct sched_attr attr = {
773  		.sched_policy   = policy,
774  		.sched_priority = param->sched_priority,
775  		.sched_nice	= PRIO_TO_NICE(p->static_prio),
776  	};
777  
778  	if (p->se.custom_slice)
779  		attr.sched_runtime = p->se.slice;
780  
781  	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
782  	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
783  		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
784  		policy &= ~SCHED_RESET_ON_FORK;
785  		attr.sched_policy = policy;
786  	}
787  
788  	return __sched_setscheduler(p, &attr, check, true);
789  }
790  /**
791   * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
792   * @p: the task in question.
793   * @policy: new policy.
794   * @param: structure containing the new RT priority.
795   *
796   * Use sched_set_fifo(), read its comment.
797   *
798   * Return: 0 on success. An error code otherwise.
799   *
800   * NOTE that the task may be already dead.
801   */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)802  int sched_setscheduler(struct task_struct *p, int policy,
803  		       const struct sched_param *param)
804  {
805  	return _sched_setscheduler(p, policy, param, true);
806  }
807  
sched_setattr(struct task_struct * p,const struct sched_attr * attr)808  int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
809  {
810  	return __sched_setscheduler(p, attr, true, true);
811  }
812  
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)813  int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
814  {
815  	return __sched_setscheduler(p, attr, false, true);
816  }
817  EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
818  
819  /**
820   * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
821   * @p: the task in question.
822   * @policy: new policy.
823   * @param: structure containing the new RT priority.
824   *
825   * Just like sched_setscheduler, only don't bother checking if the
826   * current context has permission.  For example, this is needed in
827   * stop_machine(): we create temporary high priority worker threads,
828   * but our caller might not have that capability.
829   *
830   * Return: 0 on success. An error code otherwise.
831   */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)832  int sched_setscheduler_nocheck(struct task_struct *p, int policy,
833  			       const struct sched_param *param)
834  {
835  	return _sched_setscheduler(p, policy, param, false);
836  }
837  
838  /*
839   * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
840   * incapable of resource management, which is the one thing an OS really should
841   * be doing.
842   *
843   * This is of course the reason it is limited to privileged users only.
844   *
845   * Worse still; it is fundamentally impossible to compose static priority
846   * workloads. You cannot take two correctly working static prio workloads
847   * and smash them together and still expect them to work.
848   *
849   * For this reason 'all' FIFO tasks the kernel creates are basically at:
850   *
851   *   MAX_RT_PRIO / 2
852   *
853   * The administrator _MUST_ configure the system, the kernel simply doesn't
854   * know enough information to make a sensible choice.
855   */
sched_set_fifo(struct task_struct * p)856  void sched_set_fifo(struct task_struct *p)
857  {
858  	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
859  	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
860  }
861  EXPORT_SYMBOL_GPL(sched_set_fifo);
862  
863  /*
864   * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
865   */
sched_set_fifo_low(struct task_struct * p)866  void sched_set_fifo_low(struct task_struct *p)
867  {
868  	struct sched_param sp = { .sched_priority = 1 };
869  	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
870  }
871  EXPORT_SYMBOL_GPL(sched_set_fifo_low);
872  
sched_set_normal(struct task_struct * p,int nice)873  void sched_set_normal(struct task_struct *p, int nice)
874  {
875  	struct sched_attr attr = {
876  		.sched_policy = SCHED_NORMAL,
877  		.sched_nice = nice,
878  	};
879  	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
880  }
881  EXPORT_SYMBOL_GPL(sched_set_normal);
882  
883  static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)884  do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
885  {
886  	struct sched_param lparam;
887  
888  	if (!param || pid < 0)
889  		return -EINVAL;
890  	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
891  		return -EFAULT;
892  
893  	CLASS(find_get_task, p)(pid);
894  	if (!p)
895  		return -ESRCH;
896  
897  	return sched_setscheduler(p, policy, &lparam);
898  }
899  
900  /*
901   * Mimics kernel/events/core.c perf_copy_attr().
902   */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)903  static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
904  {
905  	u32 size;
906  	int ret;
907  
908  	/* Zero the full structure, so that a short copy will be nice: */
909  	memset(attr, 0, sizeof(*attr));
910  
911  	ret = get_user(size, &uattr->size);
912  	if (ret)
913  		return ret;
914  
915  	/* ABI compatibility quirk: */
916  	if (!size)
917  		size = SCHED_ATTR_SIZE_VER0;
918  	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
919  		goto err_size;
920  
921  	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
922  	if (ret) {
923  		if (ret == -E2BIG)
924  			goto err_size;
925  		return ret;
926  	}
927  
928  	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
929  	    size < SCHED_ATTR_SIZE_VER1)
930  		return -EINVAL;
931  
932  	/*
933  	 * XXX: Do we want to be lenient like existing syscalls; or do we want
934  	 * to be strict and return an error on out-of-bounds values?
935  	 */
936  	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
937  
938  	return 0;
939  
940  err_size:
941  	put_user(sizeof(*attr), &uattr->size);
942  	return -E2BIG;
943  }
944  
get_params(struct task_struct * p,struct sched_attr * attr)945  static void get_params(struct task_struct *p, struct sched_attr *attr)
946  {
947  	if (task_has_dl_policy(p)) {
948  		__getparam_dl(p, attr);
949  	} else if (task_has_rt_policy(p)) {
950  		attr->sched_priority = p->rt_priority;
951  	} else {
952  		attr->sched_nice = task_nice(p);
953  		attr->sched_runtime = p->se.slice;
954  	}
955  }
956  
957  /**
958   * sys_sched_setscheduler - set/change the scheduler policy and RT priority
959   * @pid: the pid in question.
960   * @policy: new policy.
961   * @param: structure containing the new RT priority.
962   *
963   * Return: 0 on success. An error code otherwise.
964   */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)965  SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
966  {
967  	if (policy < 0)
968  		return -EINVAL;
969  
970  	return do_sched_setscheduler(pid, policy, param);
971  }
972  
973  /**
974   * sys_sched_setparam - set/change the RT priority of a thread
975   * @pid: the pid in question.
976   * @param: structure containing the new RT priority.
977   *
978   * Return: 0 on success. An error code otherwise.
979   */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)980  SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
981  {
982  	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
983  }
984  
985  /**
986   * sys_sched_setattr - same as above, but with extended sched_attr
987   * @pid: the pid in question.
988   * @uattr: structure containing the extended parameters.
989   * @flags: for future extension.
990   */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)991  SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
992  			       unsigned int, flags)
993  {
994  	struct sched_attr attr;
995  	int retval;
996  
997  	if (!uattr || pid < 0 || flags)
998  		return -EINVAL;
999  
1000  	retval = sched_copy_attr(uattr, &attr);
1001  	if (retval)
1002  		return retval;
1003  
1004  	if ((int)attr.sched_policy < 0)
1005  		return -EINVAL;
1006  	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
1007  		attr.sched_policy = SETPARAM_POLICY;
1008  
1009  	CLASS(find_get_task, p)(pid);
1010  	if (!p)
1011  		return -ESRCH;
1012  
1013  	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
1014  		get_params(p, &attr);
1015  
1016  	return sched_setattr(p, &attr);
1017  }
1018  
1019  /**
1020   * sys_sched_getscheduler - get the policy (scheduling class) of a thread
1021   * @pid: the pid in question.
1022   *
1023   * Return: On success, the policy of the thread. Otherwise, a negative error
1024   * code.
1025   */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)1026  SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1027  {
1028  	struct task_struct *p;
1029  	int retval;
1030  
1031  	if (pid < 0)
1032  		return -EINVAL;
1033  
1034  	guard(rcu)();
1035  	p = find_process_by_pid(pid);
1036  	if (!p)
1037  		return -ESRCH;
1038  
1039  	retval = security_task_getscheduler(p);
1040  	if (!retval) {
1041  		retval = p->policy;
1042  		if (p->sched_reset_on_fork)
1043  			retval |= SCHED_RESET_ON_FORK;
1044  	}
1045  	return retval;
1046  }
1047  
1048  /**
1049   * sys_sched_getparam - get the RT priority of a thread
1050   * @pid: the pid in question.
1051   * @param: structure containing the RT priority.
1052   *
1053   * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
1054   * code.
1055   */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)1056  SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1057  {
1058  	struct sched_param lp = { .sched_priority = 0 };
1059  	struct task_struct *p;
1060  	int retval;
1061  
1062  	if (!param || pid < 0)
1063  		return -EINVAL;
1064  
1065  	scoped_guard (rcu) {
1066  		p = find_process_by_pid(pid);
1067  		if (!p)
1068  			return -ESRCH;
1069  
1070  		retval = security_task_getscheduler(p);
1071  		if (retval)
1072  			return retval;
1073  
1074  		if (task_has_rt_policy(p))
1075  			lp.sched_priority = p->rt_priority;
1076  	}
1077  
1078  	/*
1079  	 * This one might sleep, we cannot do it with a spinlock held ...
1080  	 */
1081  	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1082  }
1083  
1084  /*
1085   * Copy the kernel size attribute structure (which might be larger
1086   * than what user-space knows about) to user-space.
1087   *
1088   * Note that all cases are valid: user-space buffer can be larger or
1089   * smaller than the kernel-space buffer. The usual case is that both
1090   * have the same size.
1091   */
1092  static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)1093  sched_attr_copy_to_user(struct sched_attr __user *uattr,
1094  			struct sched_attr *kattr,
1095  			unsigned int usize)
1096  {
1097  	unsigned int ksize = sizeof(*kattr);
1098  
1099  	if (!access_ok(uattr, usize))
1100  		return -EFAULT;
1101  
1102  	/*
1103  	 * sched_getattr() ABI forwards and backwards compatibility:
1104  	 *
1105  	 * If usize == ksize then we just copy everything to user-space and all is good.
1106  	 *
1107  	 * If usize < ksize then we only copy as much as user-space has space for,
1108  	 * this keeps ABI compatibility as well. We skip the rest.
1109  	 *
1110  	 * If usize > ksize then user-space is using a newer version of the ABI,
1111  	 * which part the kernel doesn't know about. Just ignore it - tooling can
1112  	 * detect the kernel's knowledge of attributes from the attr->size value
1113  	 * which is set to ksize in this case.
1114  	 */
1115  	kattr->size = min(usize, ksize);
1116  
1117  	if (copy_to_user(uattr, kattr, kattr->size))
1118  		return -EFAULT;
1119  
1120  	return 0;
1121  }
1122  
1123  /**
1124   * sys_sched_getattr - similar to sched_getparam, but with sched_attr
1125   * @pid: the pid in question.
1126   * @uattr: structure containing the extended parameters.
1127   * @usize: sizeof(attr) for fwd/bwd comp.
1128   * @flags: for future extension.
1129   */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)1130  SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1131  		unsigned int, usize, unsigned int, flags)
1132  {
1133  	struct sched_attr kattr = { };
1134  	struct task_struct *p;
1135  	int retval;
1136  
1137  	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
1138  	    usize < SCHED_ATTR_SIZE_VER0 || flags)
1139  		return -EINVAL;
1140  
1141  	scoped_guard (rcu) {
1142  		p = find_process_by_pid(pid);
1143  		if (!p)
1144  			return -ESRCH;
1145  
1146  		retval = security_task_getscheduler(p);
1147  		if (retval)
1148  			return retval;
1149  
1150  		kattr.sched_policy = p->policy;
1151  		if (p->sched_reset_on_fork)
1152  			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
1153  		get_params(p, &kattr);
1154  		kattr.sched_flags &= SCHED_FLAG_ALL;
1155  
1156  #ifdef CONFIG_UCLAMP_TASK
1157  		/*
1158  		 * This could race with another potential updater, but this is fine
1159  		 * because it'll correctly read the old or the new value. We don't need
1160  		 * to guarantee who wins the race as long as it doesn't return garbage.
1161  		 */
1162  		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
1163  		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
1164  #endif
1165  	}
1166  
1167  	return sched_attr_copy_to_user(uattr, &kattr, usize);
1168  }
1169  
1170  #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1171  int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1172  {
1173  	/*
1174  	 * If the task isn't a deadline task or admission control is
1175  	 * disabled then we don't care about affinity changes.
1176  	 */
1177  	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
1178  		return 0;
1179  
1180  	/*
1181  	 * Since bandwidth control happens on root_domain basis,
1182  	 * if admission test is enabled, we only admit -deadline
1183  	 * tasks allowed to run on all the CPUs in the task's
1184  	 * root_domain.
1185  	 */
1186  	guard(rcu)();
1187  	if (!cpumask_subset(task_rq(p)->rd->span, mask))
1188  		return -EBUSY;
1189  
1190  	return 0;
1191  }
1192  #endif /* CONFIG_SMP */
1193  
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)1194  int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1195  {
1196  	int retval;
1197  	cpumask_var_t cpus_allowed, new_mask;
1198  
1199  	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
1200  		return -ENOMEM;
1201  
1202  	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
1203  		retval = -ENOMEM;
1204  		goto out_free_cpus_allowed;
1205  	}
1206  
1207  	cpuset_cpus_allowed(p, cpus_allowed);
1208  	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
1209  
1210  	ctx->new_mask = new_mask;
1211  	ctx->flags |= SCA_CHECK;
1212  
1213  	retval = dl_task_check_affinity(p, new_mask);
1214  	if (retval)
1215  		goto out_free_new_mask;
1216  
1217  	retval = __set_cpus_allowed_ptr(p, ctx);
1218  	if (retval)
1219  		goto out_free_new_mask;
1220  
1221  	cpuset_cpus_allowed(p, cpus_allowed);
1222  	if (!cpumask_subset(new_mask, cpus_allowed)) {
1223  		/*
1224  		 * We must have raced with a concurrent cpuset update.
1225  		 * Just reset the cpumask to the cpuset's cpus_allowed.
1226  		 */
1227  		cpumask_copy(new_mask, cpus_allowed);
1228  
1229  		/*
1230  		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
1231  		 * will restore the previous user_cpus_ptr value.
1232  		 *
1233  		 * In the unlikely event a previous user_cpus_ptr exists,
1234  		 * we need to further restrict the mask to what is allowed
1235  		 * by that old user_cpus_ptr.
1236  		 */
1237  		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
1238  			bool empty = !cpumask_and(new_mask, new_mask,
1239  						  ctx->user_mask);
1240  
1241  			if (WARN_ON_ONCE(empty))
1242  				cpumask_copy(new_mask, cpus_allowed);
1243  		}
1244  		__set_cpus_allowed_ptr(p, ctx);
1245  		retval = -EINVAL;
1246  	}
1247  
1248  out_free_new_mask:
1249  	free_cpumask_var(new_mask);
1250  out_free_cpus_allowed:
1251  	free_cpumask_var(cpus_allowed);
1252  	return retval;
1253  }
1254  
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)1255  long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1256  {
1257  	struct affinity_context ac;
1258  	struct cpumask *user_mask;
1259  	int retval;
1260  
1261  	CLASS(find_get_task, p)(pid);
1262  	if (!p)
1263  		return -ESRCH;
1264  
1265  	if (p->flags & PF_NO_SETAFFINITY)
1266  		return -EINVAL;
1267  
1268  	if (!check_same_owner(p)) {
1269  		guard(rcu)();
1270  		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1271  			return -EPERM;
1272  	}
1273  
1274  	retval = security_task_setscheduler(p);
1275  	if (retval)
1276  		return retval;
1277  
1278  	/*
1279  	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
1280  	 * alloc_user_cpus_ptr() returns NULL.
1281  	 */
1282  	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
1283  	if (user_mask) {
1284  		cpumask_copy(user_mask, in_mask);
1285  	} else if (IS_ENABLED(CONFIG_SMP)) {
1286  		return -ENOMEM;
1287  	}
1288  
1289  	ac = (struct affinity_context){
1290  		.new_mask  = in_mask,
1291  		.user_mask = user_mask,
1292  		.flags     = SCA_USER,
1293  	};
1294  
1295  	retval = __sched_setaffinity(p, &ac);
1296  	kfree(ac.user_mask);
1297  
1298  	return retval;
1299  }
1300  
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)1301  static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
1302  			     struct cpumask *new_mask)
1303  {
1304  	if (len < cpumask_size())
1305  		cpumask_clear(new_mask);
1306  	else if (len > cpumask_size())
1307  		len = cpumask_size();
1308  
1309  	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
1310  }
1311  
1312  /**
1313   * sys_sched_setaffinity - set the CPU affinity of a process
1314   * @pid: pid of the process
1315   * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1316   * @user_mask_ptr: user-space pointer to the new CPU mask
1317   *
1318   * Return: 0 on success. An error code otherwise.
1319   */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)1320  SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
1321  		unsigned long __user *, user_mask_ptr)
1322  {
1323  	cpumask_var_t new_mask;
1324  	int retval;
1325  
1326  	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
1327  		return -ENOMEM;
1328  
1329  	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
1330  	if (retval == 0)
1331  		retval = sched_setaffinity(pid, new_mask);
1332  	free_cpumask_var(new_mask);
1333  	return retval;
1334  }
1335  
sched_getaffinity(pid_t pid,struct cpumask * mask)1336  long sched_getaffinity(pid_t pid, struct cpumask *mask)
1337  {
1338  	struct task_struct *p;
1339  	int retval;
1340  
1341  	guard(rcu)();
1342  	p = find_process_by_pid(pid);
1343  	if (!p)
1344  		return -ESRCH;
1345  
1346  	retval = security_task_getscheduler(p);
1347  	if (retval)
1348  		return retval;
1349  
1350  	guard(raw_spinlock_irqsave)(&p->pi_lock);
1351  	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
1352  
1353  	return 0;
1354  }
1355  
1356  /**
1357   * sys_sched_getaffinity - get the CPU affinity of a process
1358   * @pid: pid of the process
1359   * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1360   * @user_mask_ptr: user-space pointer to hold the current CPU mask
1361   *
1362   * Return: size of CPU mask copied to user_mask_ptr on success. An
1363   * error code otherwise.
1364   */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)1365  SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
1366  		unsigned long __user *, user_mask_ptr)
1367  {
1368  	int ret;
1369  	cpumask_var_t mask;
1370  
1371  	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
1372  		return -EINVAL;
1373  	if (len & (sizeof(unsigned long)-1))
1374  		return -EINVAL;
1375  
1376  	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1377  		return -ENOMEM;
1378  
1379  	ret = sched_getaffinity(pid, mask);
1380  	if (ret == 0) {
1381  		unsigned int retlen = min(len, cpumask_size());
1382  
1383  		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
1384  			ret = -EFAULT;
1385  		else
1386  			ret = retlen;
1387  	}
1388  	free_cpumask_var(mask);
1389  
1390  	return ret;
1391  }
1392  
do_sched_yield(void)1393  static void do_sched_yield(void)
1394  {
1395  	struct rq_flags rf;
1396  	struct rq *rq;
1397  
1398  	rq = this_rq_lock_irq(&rf);
1399  
1400  	schedstat_inc(rq->yld_count);
1401  	current->sched_class->yield_task(rq);
1402  
1403  	preempt_disable();
1404  	rq_unlock_irq(rq, &rf);
1405  	sched_preempt_enable_no_resched();
1406  
1407  	schedule();
1408  }
1409  
1410  /**
1411   * sys_sched_yield - yield the current processor to other threads.
1412   *
1413   * This function yields the current CPU to other tasks. If there are no
1414   * other threads running on this CPU then this function will return.
1415   *
1416   * Return: 0.
1417   */
SYSCALL_DEFINE0(sched_yield)1418  SYSCALL_DEFINE0(sched_yield)
1419  {
1420  	do_sched_yield();
1421  	return 0;
1422  }
1423  
1424  /**
1425   * yield - yield the current processor to other threads.
1426   *
1427   * Do not ever use this function, there's a 99% chance you're doing it wrong.
1428   *
1429   * The scheduler is at all times free to pick the calling task as the most
1430   * eligible task to run, if removing the yield() call from your code breaks
1431   * it, it's already broken.
1432   *
1433   * Typical broken usage is:
1434   *
1435   * while (!event)
1436   *	yield();
1437   *
1438   * where one assumes that yield() will let 'the other' process run that will
1439   * make event true. If the current task is a SCHED_FIFO task that will never
1440   * happen. Never use yield() as a progress guarantee!!
1441   *
1442   * If you want to use yield() to wait for something, use wait_event().
1443   * If you want to use yield() to be 'nice' for others, use cond_resched().
1444   * If you still want to use yield(), do not!
1445   */
yield(void)1446  void __sched yield(void)
1447  {
1448  	set_current_state(TASK_RUNNING);
1449  	do_sched_yield();
1450  }
1451  EXPORT_SYMBOL(yield);
1452  
1453  /**
1454   * yield_to - yield the current processor to another thread in
1455   * your thread group, or accelerate that thread toward the
1456   * processor it's on.
1457   * @p: target task
1458   * @preempt: whether task preemption is allowed or not
1459   *
1460   * It's the caller's job to ensure that the target task struct
1461   * can't go away on us before we can do any checks.
1462   *
1463   * Return:
1464   *	true (>0) if we indeed boosted the target task.
1465   *	false (0) if we failed to boost the target.
1466   *	-ESRCH if there's no task to yield to.
1467   */
yield_to(struct task_struct * p,bool preempt)1468  int __sched yield_to(struct task_struct *p, bool preempt)
1469  {
1470  	struct task_struct *curr = current;
1471  	struct rq *rq, *p_rq;
1472  	int yielded = 0;
1473  
1474  	scoped_guard (irqsave) {
1475  		rq = this_rq();
1476  
1477  again:
1478  		p_rq = task_rq(p);
1479  		/*
1480  		 * If we're the only runnable task on the rq and target rq also
1481  		 * has only one task, there's absolutely no point in yielding.
1482  		 */
1483  		if (rq->nr_running == 1 && p_rq->nr_running == 1)
1484  			return -ESRCH;
1485  
1486  		guard(double_rq_lock)(rq, p_rq);
1487  		if (task_rq(p) != p_rq)
1488  			goto again;
1489  
1490  		if (!curr->sched_class->yield_to_task)
1491  			return 0;
1492  
1493  		if (curr->sched_class != p->sched_class)
1494  			return 0;
1495  
1496  		if (task_on_cpu(p_rq, p) || !task_is_running(p))
1497  			return 0;
1498  
1499  		yielded = curr->sched_class->yield_to_task(rq, p);
1500  		if (yielded) {
1501  			schedstat_inc(rq->yld_count);
1502  			/*
1503  			 * Make p's CPU reschedule; pick_next_entity
1504  			 * takes care of fairness.
1505  			 */
1506  			if (preempt && rq != p_rq)
1507  				resched_curr(p_rq);
1508  		}
1509  	}
1510  
1511  	if (yielded)
1512  		schedule();
1513  
1514  	return yielded;
1515  }
1516  EXPORT_SYMBOL_GPL(yield_to);
1517  
1518  /**
1519   * sys_sched_get_priority_max - return maximum RT priority.
1520   * @policy: scheduling class.
1521   *
1522   * Return: On success, this syscall returns the maximum
1523   * rt_priority that can be used by a given scheduling class.
1524   * On failure, a negative error code is returned.
1525   */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)1526  SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1527  {
1528  	int ret = -EINVAL;
1529  
1530  	switch (policy) {
1531  	case SCHED_FIFO:
1532  	case SCHED_RR:
1533  		ret = MAX_RT_PRIO-1;
1534  		break;
1535  	case SCHED_DEADLINE:
1536  	case SCHED_NORMAL:
1537  	case SCHED_BATCH:
1538  	case SCHED_IDLE:
1539  	case SCHED_EXT:
1540  		ret = 0;
1541  		break;
1542  	}
1543  	return ret;
1544  }
1545  
1546  /**
1547   * sys_sched_get_priority_min - return minimum RT priority.
1548   * @policy: scheduling class.
1549   *
1550   * Return: On success, this syscall returns the minimum
1551   * rt_priority that can be used by a given scheduling class.
1552   * On failure, a negative error code is returned.
1553   */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)1554  SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1555  {
1556  	int ret = -EINVAL;
1557  
1558  	switch (policy) {
1559  	case SCHED_FIFO:
1560  	case SCHED_RR:
1561  		ret = 1;
1562  		break;
1563  	case SCHED_DEADLINE:
1564  	case SCHED_NORMAL:
1565  	case SCHED_BATCH:
1566  	case SCHED_IDLE:
1567  	case SCHED_EXT:
1568  		ret = 0;
1569  	}
1570  	return ret;
1571  }
1572  
sched_rr_get_interval(pid_t pid,struct timespec64 * t)1573  static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1574  {
1575  	unsigned int time_slice = 0;
1576  	int retval;
1577  
1578  	if (pid < 0)
1579  		return -EINVAL;
1580  
1581  	scoped_guard (rcu) {
1582  		struct task_struct *p = find_process_by_pid(pid);
1583  		if (!p)
1584  			return -ESRCH;
1585  
1586  		retval = security_task_getscheduler(p);
1587  		if (retval)
1588  			return retval;
1589  
1590  		scoped_guard (task_rq_lock, p) {
1591  			struct rq *rq = scope.rq;
1592  			if (p->sched_class->get_rr_interval)
1593  				time_slice = p->sched_class->get_rr_interval(rq, p);
1594  		}
1595  	}
1596  
1597  	jiffies_to_timespec64(time_slice, t);
1598  	return 0;
1599  }
1600  
1601  /**
1602   * sys_sched_rr_get_interval - return the default time-slice of a process.
1603   * @pid: pid of the process.
1604   * @interval: userspace pointer to the time-slice value.
1605   *
1606   * this syscall writes the default time-slice value of a given process
1607   * into the user-space timespec buffer. A value of '0' means infinity.
1608   *
1609   * Return: On success, 0 and the time-slice is in @interval. Otherwise,
1610   * an error code.
1611   */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)1612  SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
1613  		struct __kernel_timespec __user *, interval)
1614  {
1615  	struct timespec64 t;
1616  	int retval = sched_rr_get_interval(pid, &t);
1617  
1618  	if (retval == 0)
1619  		retval = put_timespec64(&t, interval);
1620  
1621  	return retval;
1622  }
1623  
1624  #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)1625  SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
1626  		struct old_timespec32 __user *, interval)
1627  {
1628  	struct timespec64 t;
1629  	int retval = sched_rr_get_interval(pid, &t);
1630  
1631  	if (retval == 0)
1632  		retval = put_old_timespec32(&t, interval);
1633  	return retval;
1634  }
1635  #endif
1636