1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * rtmutex API
4   */
5  #include <linux/spinlock.h>
6  #include <linux/export.h>
7  
8  #define RT_MUTEX_BUILD_MUTEX
9  #include "rtmutex.c"
10  
11  /*
12   * Max number of times we'll walk the boosting chain:
13   */
14  int max_lock_depth = 1024;
15  
16  /*
17   * Debug aware fast / slowpath lock,trylock,unlock
18   *
19   * The atomic acquire/release ops are compiled away, when either the
20   * architecture does not support cmpxchg or when debugging is enabled.
21   */
__rt_mutex_lock_common(struct rt_mutex * lock,unsigned int state,struct lockdep_map * nest_lock,unsigned int subclass)22  static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
23  						  unsigned int state,
24  						  struct lockdep_map *nest_lock,
25  						  unsigned int subclass)
26  {
27  	int ret;
28  
29  	might_sleep();
30  	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
31  	ret = __rt_mutex_lock(&lock->rtmutex, state);
32  	if (ret)
33  		mutex_release(&lock->dep_map, _RET_IP_);
34  	return ret;
35  }
36  
rt_mutex_base_init(struct rt_mutex_base * rtb)37  void rt_mutex_base_init(struct rt_mutex_base *rtb)
38  {
39  	__rt_mutex_base_init(rtb);
40  }
41  EXPORT_SYMBOL(rt_mutex_base_init);
42  
43  #ifdef CONFIG_DEBUG_LOCK_ALLOC
44  /**
45   * rt_mutex_lock_nested - lock a rt_mutex
46   *
47   * @lock: the rt_mutex to be locked
48   * @subclass: the lockdep subclass
49   */
rt_mutex_lock_nested(struct rt_mutex * lock,unsigned int subclass)50  void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
51  {
52  	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
53  }
54  EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
55  
_rt_mutex_lock_nest_lock(struct rt_mutex * lock,struct lockdep_map * nest_lock)56  void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
57  {
58  	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
59  }
60  EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
61  
62  #else /* !CONFIG_DEBUG_LOCK_ALLOC */
63  
64  /**
65   * rt_mutex_lock - lock a rt_mutex
66   *
67   * @lock: the rt_mutex to be locked
68   */
rt_mutex_lock(struct rt_mutex * lock)69  void __sched rt_mutex_lock(struct rt_mutex *lock)
70  {
71  	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
72  }
73  EXPORT_SYMBOL_GPL(rt_mutex_lock);
74  #endif
75  
76  /**
77   * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
78   *
79   * @lock:		the rt_mutex to be locked
80   *
81   * Returns:
82   *  0		on success
83   * -EINTR	when interrupted by a signal
84   */
rt_mutex_lock_interruptible(struct rt_mutex * lock)85  int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
86  {
87  	return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
88  }
89  EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
90  
91  /**
92   * rt_mutex_lock_killable - lock a rt_mutex killable
93   *
94   * @lock:		the rt_mutex to be locked
95   *
96   * Returns:
97   *  0		on success
98   * -EINTR	when interrupted by a signal
99   */
rt_mutex_lock_killable(struct rt_mutex * lock)100  int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
101  {
102  	return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
103  }
104  EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
105  
106  /**
107   * rt_mutex_trylock - try to lock a rt_mutex
108   *
109   * @lock:	the rt_mutex to be locked
110   *
111   * This function can only be called in thread context. It's safe to call it
112   * from atomic regions, but not from hard or soft interrupt context.
113   *
114   * Returns:
115   *  1 on success
116   *  0 on contention
117   */
rt_mutex_trylock(struct rt_mutex * lock)118  int __sched rt_mutex_trylock(struct rt_mutex *lock)
119  {
120  	int ret;
121  
122  	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
123  		return 0;
124  
125  	ret = __rt_mutex_trylock(&lock->rtmutex);
126  	if (ret)
127  		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
128  
129  	return ret;
130  }
131  EXPORT_SYMBOL_GPL(rt_mutex_trylock);
132  
133  /**
134   * rt_mutex_unlock - unlock a rt_mutex
135   *
136   * @lock: the rt_mutex to be unlocked
137   */
rt_mutex_unlock(struct rt_mutex * lock)138  void __sched rt_mutex_unlock(struct rt_mutex *lock)
139  {
140  	mutex_release(&lock->dep_map, _RET_IP_);
141  	__rt_mutex_unlock(&lock->rtmutex);
142  }
143  EXPORT_SYMBOL_GPL(rt_mutex_unlock);
144  
145  /*
146   * Futex variants, must not use fastpath.
147   */
rt_mutex_futex_trylock(struct rt_mutex_base * lock)148  int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
149  {
150  	return rt_mutex_slowtrylock(lock);
151  }
152  
__rt_mutex_futex_trylock(struct rt_mutex_base * lock)153  int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
154  {
155  	return __rt_mutex_slowtrylock(lock);
156  }
157  
158  /**
159   * __rt_mutex_futex_unlock - Futex variant, that since futex variants
160   * do not use the fast-path, can be simple and will not need to retry.
161   *
162   * @lock:	The rt_mutex to be unlocked
163   * @wqh:	The wake queue head from which to get the next lock waiter
164   */
__rt_mutex_futex_unlock(struct rt_mutex_base * lock,struct rt_wake_q_head * wqh)165  bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
166  				     struct rt_wake_q_head *wqh)
167  {
168  	lockdep_assert_held(&lock->wait_lock);
169  
170  	debug_rt_mutex_unlock(lock);
171  
172  	if (!rt_mutex_has_waiters(lock)) {
173  		lock->owner = NULL;
174  		return false; /* done */
175  	}
176  
177  	/*
178  	 * We've already deboosted, mark_wakeup_next_waiter() will
179  	 * retain preempt_disabled when we drop the wait_lock, to
180  	 * avoid inversion prior to the wakeup.  preempt_disable()
181  	 * therein pairs with rt_mutex_postunlock().
182  	 */
183  	mark_wakeup_next_waiter(wqh, lock);
184  
185  	return true; /* call postunlock() */
186  }
187  
rt_mutex_futex_unlock(struct rt_mutex_base * lock)188  void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
189  {
190  	DEFINE_RT_WAKE_Q(wqh);
191  	unsigned long flags;
192  	bool postunlock;
193  
194  	raw_spin_lock_irqsave(&lock->wait_lock, flags);
195  	postunlock = __rt_mutex_futex_unlock(lock, &wqh);
196  	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
197  
198  	if (postunlock)
199  		rt_mutex_postunlock(&wqh);
200  }
201  
202  /**
203   * __rt_mutex_init - initialize the rt_mutex
204   *
205   * @lock:	The rt_mutex to be initialized
206   * @name:	The lock name used for debugging
207   * @key:	The lock class key used for debugging
208   *
209   * Initialize the rt_mutex to unlocked state.
210   *
211   * Initializing of a locked rt_mutex is not allowed
212   */
__rt_mutex_init(struct rt_mutex * lock,const char * name,struct lock_class_key * key)213  void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
214  			     struct lock_class_key *key)
215  {
216  	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
217  	__rt_mutex_base_init(&lock->rtmutex);
218  	lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
219  }
220  EXPORT_SYMBOL_GPL(__rt_mutex_init);
221  
222  /**
223   * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
224   *				proxy owner
225   *
226   * @lock:	the rt_mutex to be locked
227   * @proxy_owner:the task to set as owner
228   *
229   * No locking. Caller has to do serializing itself
230   *
231   * Special API call for PI-futex support. This initializes the rtmutex and
232   * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
233   * possible at this point because the pi_state which contains the rtmutex
234   * is not yet visible to other tasks.
235   */
rt_mutex_init_proxy_locked(struct rt_mutex_base * lock,struct task_struct * proxy_owner)236  void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
237  					struct task_struct *proxy_owner)
238  {
239  	static struct lock_class_key pi_futex_key;
240  
241  	__rt_mutex_base_init(lock);
242  	/*
243  	 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
244  	 * and rtmutex based. That causes a lockdep false positive, because
245  	 * some of the futex functions invoke spin_unlock(&hb->lock) with
246  	 * the wait_lock of the rtmutex associated to the pi_futex held.
247  	 * spin_unlock() in turn takes wait_lock of the rtmutex on which
248  	 * the spinlock is based, which makes lockdep notice a lock
249  	 * recursion. Give the futex/rtmutex wait_lock a separate key.
250  	 */
251  	lockdep_set_class(&lock->wait_lock, &pi_futex_key);
252  	rt_mutex_set_owner(lock, proxy_owner);
253  }
254  
255  /**
256   * rt_mutex_proxy_unlock - release a lock on behalf of owner
257   *
258   * @lock:	the rt_mutex to be locked
259   *
260   * No locking. Caller has to do serializing itself
261   *
262   * Special API call for PI-futex support. This just cleans up the rtmutex
263   * (debugging) state. Concurrent operations on this rt_mutex are not
264   * possible because it belongs to the pi_state which is about to be freed
265   * and it is not longer visible to other tasks.
266   */
rt_mutex_proxy_unlock(struct rt_mutex_base * lock)267  void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
268  {
269  	debug_rt_mutex_proxy_unlock(lock);
270  	rt_mutex_clear_owner(lock);
271  }
272  
273  /**
274   * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
275   * @lock:		the rt_mutex to take
276   * @waiter:		the pre-initialized rt_mutex_waiter
277   * @task:		the task to prepare
278   *
279   * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
280   * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
281   *
282   * NOTE: does _NOT_ remove the @waiter on failure; must either call
283   * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
284   *
285   * Returns:
286   *  0 - task blocked on lock
287   *  1 - acquired the lock for task, caller should wake it up
288   * <0 - error
289   *
290   * Special API call for PI-futex support.
291   */
__rt_mutex_start_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)292  int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
293  					struct rt_mutex_waiter *waiter,
294  					struct task_struct *task)
295  {
296  	int ret;
297  
298  	lockdep_assert_held(&lock->wait_lock);
299  
300  	if (try_to_take_rt_mutex(lock, task, NULL))
301  		return 1;
302  
303  	/* We enforce deadlock detection for futexes */
304  	ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
305  				      RT_MUTEX_FULL_CHAINWALK);
306  
307  	if (ret && !rt_mutex_owner(lock)) {
308  		/*
309  		 * Reset the return value. We might have
310  		 * returned with -EDEADLK and the owner
311  		 * released the lock while we were walking the
312  		 * pi chain.  Let the waiter sort it out.
313  		 */
314  		ret = 0;
315  	}
316  
317  	return ret;
318  }
319  
320  /**
321   * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
322   * @lock:		the rt_mutex to take
323   * @waiter:		the pre-initialized rt_mutex_waiter
324   * @task:		the task to prepare
325   *
326   * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
327   * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
328   *
329   * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
330   * on failure.
331   *
332   * Returns:
333   *  0 - task blocked on lock
334   *  1 - acquired the lock for task, caller should wake it up
335   * <0 - error
336   *
337   * Special API call for PI-futex support.
338   */
rt_mutex_start_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)339  int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
340  				      struct rt_mutex_waiter *waiter,
341  				      struct task_struct *task)
342  {
343  	int ret;
344  
345  	raw_spin_lock_irq(&lock->wait_lock);
346  	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
347  	if (unlikely(ret))
348  		remove_waiter(lock, waiter);
349  	raw_spin_unlock_irq(&lock->wait_lock);
350  
351  	return ret;
352  }
353  
354  /**
355   * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
356   * @lock:		the rt_mutex we were woken on
357   * @to:			the timeout, null if none. hrtimer should already have
358   *			been started.
359   * @waiter:		the pre-initialized rt_mutex_waiter
360   *
361   * Wait for the lock acquisition started on our behalf by
362   * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
363   * rt_mutex_cleanup_proxy_lock().
364   *
365   * Returns:
366   *  0 - success
367   * <0 - error, one of -EINTR, -ETIMEDOUT
368   *
369   * Special API call for PI-futex support
370   */
rt_mutex_wait_proxy_lock(struct rt_mutex_base * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)371  int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
372  				     struct hrtimer_sleeper *to,
373  				     struct rt_mutex_waiter *waiter)
374  {
375  	int ret;
376  
377  	raw_spin_lock_irq(&lock->wait_lock);
378  	/* sleep on the mutex */
379  	set_current_state(TASK_INTERRUPTIBLE);
380  	ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
381  	/*
382  	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
383  	 * have to fix that up.
384  	 */
385  	fixup_rt_mutex_waiters(lock, true);
386  	raw_spin_unlock_irq(&lock->wait_lock);
387  
388  	return ret;
389  }
390  
391  /**
392   * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
393   * @lock:		the rt_mutex we were woken on
394   * @waiter:		the pre-initialized rt_mutex_waiter
395   *
396   * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
397   * rt_mutex_wait_proxy_lock().
398   *
399   * Unless we acquired the lock; we're still enqueued on the wait-list and can
400   * in fact still be granted ownership until we're removed. Therefore we can
401   * find we are in fact the owner and must disregard the
402   * rt_mutex_wait_proxy_lock() failure.
403   *
404   * Returns:
405   *  true  - did the cleanup, we done.
406   *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
407   *          caller should disregards its return value.
408   *
409   * Special API call for PI-futex support
410   */
rt_mutex_cleanup_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)411  bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
412  					 struct rt_mutex_waiter *waiter)
413  {
414  	bool cleanup = false;
415  
416  	raw_spin_lock_irq(&lock->wait_lock);
417  	/*
418  	 * Do an unconditional try-lock, this deals with the lock stealing
419  	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
420  	 * sets a NULL owner.
421  	 *
422  	 * We're not interested in the return value, because the subsequent
423  	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
424  	 * we will own the lock and it will have removed the waiter. If we
425  	 * failed the trylock, we're still not owner and we need to remove
426  	 * ourselves.
427  	 */
428  	try_to_take_rt_mutex(lock, current, waiter);
429  	/*
430  	 * Unless we're the owner; we're still enqueued on the wait_list.
431  	 * So check if we became owner, if not, take us off the wait_list.
432  	 */
433  	if (rt_mutex_owner(lock) != current) {
434  		remove_waiter(lock, waiter);
435  		cleanup = true;
436  	}
437  	/*
438  	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
439  	 * have to fix that up.
440  	 */
441  	fixup_rt_mutex_waiters(lock, false);
442  
443  	raw_spin_unlock_irq(&lock->wait_lock);
444  
445  	return cleanup;
446  }
447  
448  /*
449   * Recheck the pi chain, in case we got a priority setting
450   *
451   * Called from sched_setscheduler
452   */
rt_mutex_adjust_pi(struct task_struct * task)453  void __sched rt_mutex_adjust_pi(struct task_struct *task)
454  {
455  	struct rt_mutex_waiter *waiter;
456  	struct rt_mutex_base *next_lock;
457  	unsigned long flags;
458  
459  	raw_spin_lock_irqsave(&task->pi_lock, flags);
460  
461  	waiter = task->pi_blocked_on;
462  	if (!waiter || rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
463  		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
464  		return;
465  	}
466  	next_lock = waiter->lock;
467  	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
468  
469  	/* gets dropped in rt_mutex_adjust_prio_chain()! */
470  	get_task_struct(task);
471  
472  	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
473  				   next_lock, NULL, task);
474  }
475  
476  /*
477   * Performs the wakeup of the top-waiter and re-enables preemption.
478   */
rt_mutex_postunlock(struct rt_wake_q_head * wqh)479  void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
480  {
481  	rt_mutex_wake_up_q(wqh);
482  }
483  
484  #ifdef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_debug_task_free(struct task_struct * task)485  void rt_mutex_debug_task_free(struct task_struct *task)
486  {
487  	DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
488  	DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
489  }
490  #endif
491  
492  #ifdef CONFIG_PREEMPT_RT
493  /* Mutexes */
__mutex_rt_init(struct mutex * mutex,const char * name,struct lock_class_key * key)494  void __mutex_rt_init(struct mutex *mutex, const char *name,
495  		     struct lock_class_key *key)
496  {
497  	debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
498  	lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
499  }
500  EXPORT_SYMBOL(__mutex_rt_init);
501  
__mutex_lock_common(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)502  static __always_inline int __mutex_lock_common(struct mutex *lock,
503  					       unsigned int state,
504  					       unsigned int subclass,
505  					       struct lockdep_map *nest_lock,
506  					       unsigned long ip)
507  {
508  	int ret;
509  
510  	might_sleep();
511  	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
512  	ret = __rt_mutex_lock(&lock->rtmutex, state);
513  	if (ret)
514  		mutex_release(&lock->dep_map, ip);
515  	else
516  		lock_acquired(&lock->dep_map, ip);
517  	return ret;
518  }
519  
520  #ifdef CONFIG_DEBUG_LOCK_ALLOC
mutex_lock_nested(struct mutex * lock,unsigned int subclass)521  void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
522  {
523  	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
524  }
525  EXPORT_SYMBOL_GPL(mutex_lock_nested);
526  
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest_lock)527  void __sched _mutex_lock_nest_lock(struct mutex *lock,
528  				   struct lockdep_map *nest_lock)
529  {
530  	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
531  }
532  EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
533  
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)534  int __sched mutex_lock_interruptible_nested(struct mutex *lock,
535  					    unsigned int subclass)
536  {
537  	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
538  }
539  EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
540  
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)541  int __sched mutex_lock_killable_nested(struct mutex *lock,
542  					    unsigned int subclass)
543  {
544  	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
545  }
546  EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
547  
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)548  void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
549  {
550  	int token;
551  
552  	might_sleep();
553  
554  	token = io_schedule_prepare();
555  	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
556  	io_schedule_finish(token);
557  }
558  EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
559  
560  #else /* CONFIG_DEBUG_LOCK_ALLOC */
561  
mutex_lock(struct mutex * lock)562  void __sched mutex_lock(struct mutex *lock)
563  {
564  	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
565  }
566  EXPORT_SYMBOL(mutex_lock);
567  
mutex_lock_interruptible(struct mutex * lock)568  int __sched mutex_lock_interruptible(struct mutex *lock)
569  {
570  	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
571  }
572  EXPORT_SYMBOL(mutex_lock_interruptible);
573  
mutex_lock_killable(struct mutex * lock)574  int __sched mutex_lock_killable(struct mutex *lock)
575  {
576  	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
577  }
578  EXPORT_SYMBOL(mutex_lock_killable);
579  
mutex_lock_io(struct mutex * lock)580  void __sched mutex_lock_io(struct mutex *lock)
581  {
582  	int token = io_schedule_prepare();
583  
584  	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
585  	io_schedule_finish(token);
586  }
587  EXPORT_SYMBOL(mutex_lock_io);
588  #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
589  
mutex_trylock(struct mutex * lock)590  int __sched mutex_trylock(struct mutex *lock)
591  {
592  	int ret;
593  
594  	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
595  		return 0;
596  
597  	ret = __rt_mutex_trylock(&lock->rtmutex);
598  	if (ret)
599  		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
600  
601  	return ret;
602  }
603  EXPORT_SYMBOL(mutex_trylock);
604  
mutex_unlock(struct mutex * lock)605  void __sched mutex_unlock(struct mutex *lock)
606  {
607  	mutex_release(&lock->dep_map, _RET_IP_);
608  	__rt_mutex_unlock(&lock->rtmutex);
609  }
610  EXPORT_SYMBOL(mutex_unlock);
611  
612  #endif /* CONFIG_PREEMPT_RT */
613