1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * kernel/lockdep.c
4   *
5   * Runtime locking correctness validator
6   *
7   * Started by Ingo Molnar:
8   *
9   *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10   *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11   *
12   * this code maps all the lock dependencies as they occur in a live kernel
13   * and will warn about the following classes of locking bugs:
14   *
15   * - lock inversion scenarios
16   * - circular lock dependencies
17   * - hardirq/softirq safe/unsafe locking bugs
18   *
19   * Bugs are reported even if the current locking scenario does not cause
20   * any deadlock at this point.
21   *
22   * I.e. if anytime in the past two locks were taken in a different order,
23   * even if it happened for another task, even if those were different
24   * locks (but of the same class as this lock), this code will detect it.
25   *
26   * Thanks to Arjan van de Ven for coming up with the initial idea of
27   * mapping lock dependencies runtime.
28   */
29  #define DISABLE_BRANCH_PROFILING
30  #include <linux/mutex.h>
31  #include <linux/sched.h>
32  #include <linux/sched/clock.h>
33  #include <linux/sched/task.h>
34  #include <linux/sched/mm.h>
35  #include <linux/delay.h>
36  #include <linux/module.h>
37  #include <linux/proc_fs.h>
38  #include <linux/seq_file.h>
39  #include <linux/spinlock.h>
40  #include <linux/kallsyms.h>
41  #include <linux/interrupt.h>
42  #include <linux/stacktrace.h>
43  #include <linux/debug_locks.h>
44  #include <linux/irqflags.h>
45  #include <linux/utsname.h>
46  #include <linux/hash.h>
47  #include <linux/ftrace.h>
48  #include <linux/stringify.h>
49  #include <linux/bitmap.h>
50  #include <linux/bitops.h>
51  #include <linux/gfp.h>
52  #include <linux/random.h>
53  #include <linux/jhash.h>
54  #include <linux/nmi.h>
55  #include <linux/rcupdate.h>
56  #include <linux/kprobes.h>
57  #include <linux/lockdep.h>
58  #include <linux/context_tracking.h>
59  #include <linux/console.h>
60  
61  #include <asm/sections.h>
62  
63  #include "lockdep_internals.h"
64  
65  #include <trace/events/lock.h>
66  
67  #ifdef CONFIG_PROVE_LOCKING
68  static int prove_locking = 1;
69  module_param(prove_locking, int, 0644);
70  #else
71  #define prove_locking 0
72  #endif
73  
74  #ifdef CONFIG_LOCK_STAT
75  static int lock_stat = 1;
76  module_param(lock_stat, int, 0644);
77  #else
78  #define lock_stat 0
79  #endif
80  
81  #ifdef CONFIG_SYSCTL
82  static struct ctl_table kern_lockdep_table[] = {
83  #ifdef CONFIG_PROVE_LOCKING
84  	{
85  		.procname       = "prove_locking",
86  		.data           = &prove_locking,
87  		.maxlen         = sizeof(int),
88  		.mode           = 0644,
89  		.proc_handler   = proc_dointvec,
90  	},
91  #endif /* CONFIG_PROVE_LOCKING */
92  #ifdef CONFIG_LOCK_STAT
93  	{
94  		.procname       = "lock_stat",
95  		.data           = &lock_stat,
96  		.maxlen         = sizeof(int),
97  		.mode           = 0644,
98  		.proc_handler   = proc_dointvec,
99  	},
100  #endif /* CONFIG_LOCK_STAT */
101  };
102  
kernel_lockdep_sysctls_init(void)103  static __init int kernel_lockdep_sysctls_init(void)
104  {
105  	register_sysctl_init("kernel", kern_lockdep_table);
106  	return 0;
107  }
108  late_initcall(kernel_lockdep_sysctls_init);
109  #endif /* CONFIG_SYSCTL */
110  
111  DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112  EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113  
lockdep_enabled(void)114  static __always_inline bool lockdep_enabled(void)
115  {
116  	if (!debug_locks)
117  		return false;
118  
119  	if (this_cpu_read(lockdep_recursion))
120  		return false;
121  
122  	if (current->lockdep_recursion)
123  		return false;
124  
125  	return true;
126  }
127  
128  /*
129   * lockdep_lock: protects the lockdep graph, the hashes and the
130   *               class/list/hash allocators.
131   *
132   * This is one of the rare exceptions where it's justified
133   * to use a raw spinlock - we really dont want the spinlock
134   * code to recurse back into the lockdep code...
135   */
136  static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137  static struct task_struct *__owner;
138  
lockdep_lock(void)139  static inline void lockdep_lock(void)
140  {
141  	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142  
143  	__this_cpu_inc(lockdep_recursion);
144  	arch_spin_lock(&__lock);
145  	__owner = current;
146  }
147  
lockdep_unlock(void)148  static inline void lockdep_unlock(void)
149  {
150  	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151  
152  	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153  		return;
154  
155  	__owner = NULL;
156  	arch_spin_unlock(&__lock);
157  	__this_cpu_dec(lockdep_recursion);
158  }
159  
lockdep_assert_locked(void)160  static inline bool lockdep_assert_locked(void)
161  {
162  	return DEBUG_LOCKS_WARN_ON(__owner != current);
163  }
164  
165  static struct task_struct *lockdep_selftest_task_struct;
166  
167  
graph_lock(void)168  static int graph_lock(void)
169  {
170  	lockdep_lock();
171  	/*
172  	 * Make sure that if another CPU detected a bug while
173  	 * walking the graph we dont change it (while the other
174  	 * CPU is busy printing out stuff with the graph lock
175  	 * dropped already)
176  	 */
177  	if (!debug_locks) {
178  		lockdep_unlock();
179  		return 0;
180  	}
181  	return 1;
182  }
183  
graph_unlock(void)184  static inline void graph_unlock(void)
185  {
186  	lockdep_unlock();
187  }
188  
189  /*
190   * Turn lock debugging off and return with 0 if it was off already,
191   * and also release the graph lock:
192   */
debug_locks_off_graph_unlock(void)193  static inline int debug_locks_off_graph_unlock(void)
194  {
195  	int ret = debug_locks_off();
196  
197  	lockdep_unlock();
198  
199  	return ret;
200  }
201  
202  unsigned long nr_list_entries;
203  static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204  static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205  
206  /*
207   * All data structures here are protected by the global debug_lock.
208   *
209   * nr_lock_classes is the number of elements of lock_classes[] that is
210   * in use.
211   */
212  #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213  #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214  static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215  unsigned long nr_lock_classes;
216  unsigned long nr_zapped_classes;
217  unsigned long max_lock_class_idx;
218  struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219  DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220  
hlock_class(struct held_lock * hlock)221  static inline struct lock_class *hlock_class(struct held_lock *hlock)
222  {
223  	unsigned int class_idx = hlock->class_idx;
224  
225  	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226  	barrier();
227  
228  	if (!test_bit(class_idx, lock_classes_in_use)) {
229  		/*
230  		 * Someone passed in garbage, we give up.
231  		 */
232  		DEBUG_LOCKS_WARN_ON(1);
233  		return NULL;
234  	}
235  
236  	/*
237  	 * At this point, if the passed hlock->class_idx is still garbage,
238  	 * we just have to live with it
239  	 */
240  	return lock_classes + class_idx;
241  }
242  
243  #ifdef CONFIG_LOCK_STAT
244  static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245  
lockstat_clock(void)246  static inline u64 lockstat_clock(void)
247  {
248  	return local_clock();
249  }
250  
lock_point(unsigned long points[],unsigned long ip)251  static int lock_point(unsigned long points[], unsigned long ip)
252  {
253  	int i;
254  
255  	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256  		if (points[i] == 0) {
257  			points[i] = ip;
258  			break;
259  		}
260  		if (points[i] == ip)
261  			break;
262  	}
263  
264  	return i;
265  }
266  
lock_time_inc(struct lock_time * lt,u64 time)267  static void lock_time_inc(struct lock_time *lt, u64 time)
268  {
269  	if (time > lt->max)
270  		lt->max = time;
271  
272  	if (time < lt->min || !lt->nr)
273  		lt->min = time;
274  
275  	lt->total += time;
276  	lt->nr++;
277  }
278  
lock_time_add(struct lock_time * src,struct lock_time * dst)279  static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280  {
281  	if (!src->nr)
282  		return;
283  
284  	if (src->max > dst->max)
285  		dst->max = src->max;
286  
287  	if (src->min < dst->min || !dst->nr)
288  		dst->min = src->min;
289  
290  	dst->total += src->total;
291  	dst->nr += src->nr;
292  }
293  
lock_stats(struct lock_class * class)294  struct lock_class_stats lock_stats(struct lock_class *class)
295  {
296  	struct lock_class_stats stats;
297  	int cpu, i;
298  
299  	memset(&stats, 0, sizeof(struct lock_class_stats));
300  	for_each_possible_cpu(cpu) {
301  		struct lock_class_stats *pcs =
302  			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303  
304  		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305  			stats.contention_point[i] += pcs->contention_point[i];
306  
307  		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308  			stats.contending_point[i] += pcs->contending_point[i];
309  
310  		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311  		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312  
313  		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314  		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315  
316  		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317  			stats.bounces[i] += pcs->bounces[i];
318  	}
319  
320  	return stats;
321  }
322  
clear_lock_stats(struct lock_class * class)323  void clear_lock_stats(struct lock_class *class)
324  {
325  	int cpu;
326  
327  	for_each_possible_cpu(cpu) {
328  		struct lock_class_stats *cpu_stats =
329  			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330  
331  		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332  	}
333  	memset(class->contention_point, 0, sizeof(class->contention_point));
334  	memset(class->contending_point, 0, sizeof(class->contending_point));
335  }
336  
get_lock_stats(struct lock_class * class)337  static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338  {
339  	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340  }
341  
lock_release_holdtime(struct held_lock * hlock)342  static void lock_release_holdtime(struct held_lock *hlock)
343  {
344  	struct lock_class_stats *stats;
345  	u64 holdtime;
346  
347  	if (!lock_stat)
348  		return;
349  
350  	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351  
352  	stats = get_lock_stats(hlock_class(hlock));
353  	if (hlock->read)
354  		lock_time_inc(&stats->read_holdtime, holdtime);
355  	else
356  		lock_time_inc(&stats->write_holdtime, holdtime);
357  }
358  #else
lock_release_holdtime(struct held_lock * hlock)359  static inline void lock_release_holdtime(struct held_lock *hlock)
360  {
361  }
362  #endif
363  
364  /*
365   * We keep a global list of all lock classes. The list is only accessed with
366   * the lockdep spinlock lock held. free_lock_classes is a list with free
367   * elements. These elements are linked together by the lock_entry member in
368   * struct lock_class.
369   */
370  static LIST_HEAD(all_lock_classes);
371  static LIST_HEAD(free_lock_classes);
372  
373  /**
374   * struct pending_free - information about data structures about to be freed
375   * @zapped: Head of a list with struct lock_class elements.
376   * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377   *	are about to be freed.
378   */
379  struct pending_free {
380  	struct list_head zapped;
381  	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382  };
383  
384  /**
385   * struct delayed_free - data structures used for delayed freeing
386   *
387   * A data structure for delayed freeing of data structures that may be
388   * accessed by RCU readers at the time these were freed.
389   *
390   * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391   * @index:     Index of @pf to which freed data structures are added.
392   * @scheduled: Whether or not an RCU callback has been scheduled.
393   * @pf:        Array with information about data structures about to be freed.
394   */
395  static struct delayed_free {
396  	struct rcu_head		rcu_head;
397  	int			index;
398  	int			scheduled;
399  	struct pending_free	pf[2];
400  } delayed_free;
401  
402  /*
403   * The lockdep classes are in a hash-table as well, for fast lookup:
404   */
405  #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406  #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407  #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408  #define classhashentry(key)	(classhash_table + __classhashfn((key)))
409  
410  static struct hlist_head classhash_table[CLASSHASH_SIZE];
411  
412  /*
413   * We put the lock dependency chains into a hash-table as well, to cache
414   * their existence:
415   */
416  #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417  #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418  #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419  #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420  
421  static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422  
423  /*
424   * the id of held_lock
425   */
hlock_id(struct held_lock * hlock)426  static inline u16 hlock_id(struct held_lock *hlock)
427  {
428  	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429  
430  	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431  }
432  
chain_hlock_class_idx(u16 hlock_id)433  static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434  {
435  	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436  }
437  
438  /*
439   * The hash key of the lock dependency chains is a hash itself too:
440   * it's a hash of all locks taken up to that lock, including that lock.
441   * It's a 64-bit hash, because it's important for the keys to be
442   * unique.
443   */
iterate_chain_key(u64 key,u32 idx)444  static inline u64 iterate_chain_key(u64 key, u32 idx)
445  {
446  	u32 k0 = key, k1 = key >> 32;
447  
448  	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449  
450  	return k0 | (u64)k1 << 32;
451  }
452  
lockdep_init_task(struct task_struct * task)453  void lockdep_init_task(struct task_struct *task)
454  {
455  	task->lockdep_depth = 0; /* no locks held yet */
456  	task->curr_chain_key = INITIAL_CHAIN_KEY;
457  	task->lockdep_recursion = 0;
458  }
459  
lockdep_recursion_inc(void)460  static __always_inline void lockdep_recursion_inc(void)
461  {
462  	__this_cpu_inc(lockdep_recursion);
463  }
464  
lockdep_recursion_finish(void)465  static __always_inline void lockdep_recursion_finish(void)
466  {
467  	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468  		__this_cpu_write(lockdep_recursion, 0);
469  }
470  
lockdep_set_selftest_task(struct task_struct * task)471  void lockdep_set_selftest_task(struct task_struct *task)
472  {
473  	lockdep_selftest_task_struct = task;
474  }
475  
476  /*
477   * Debugging switches:
478   */
479  
480  #define VERBOSE			0
481  #define VERY_VERBOSE		0
482  
483  #if VERBOSE
484  # define HARDIRQ_VERBOSE	1
485  # define SOFTIRQ_VERBOSE	1
486  #else
487  # define HARDIRQ_VERBOSE	0
488  # define SOFTIRQ_VERBOSE	0
489  #endif
490  
491  #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492  /*
493   * Quick filtering for interesting events:
494   */
class_filter(struct lock_class * class)495  static int class_filter(struct lock_class *class)
496  {
497  #if 0
498  	/* Example */
499  	if (class->name_version == 1 &&
500  			!strcmp(class->name, "lockname"))
501  		return 1;
502  	if (class->name_version == 1 &&
503  			!strcmp(class->name, "&struct->lockfield"))
504  		return 1;
505  #endif
506  	/* Filter everything else. 1 would be to allow everything else */
507  	return 0;
508  }
509  #endif
510  
verbose(struct lock_class * class)511  static int verbose(struct lock_class *class)
512  {
513  #if VERBOSE
514  	return class_filter(class);
515  #endif
516  	return 0;
517  }
518  
print_lockdep_off(const char * bug_msg)519  static void print_lockdep_off(const char *bug_msg)
520  {
521  	printk(KERN_DEBUG "%s\n", bug_msg);
522  	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523  #ifdef CONFIG_LOCK_STAT
524  	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525  #endif
526  }
527  
528  unsigned long nr_stack_trace_entries;
529  
530  #ifdef CONFIG_PROVE_LOCKING
531  /**
532   * struct lock_trace - single stack backtrace
533   * @hash_entry:	Entry in a stack_trace_hash[] list.
534   * @hash:	jhash() of @entries.
535   * @nr_entries:	Number of entries in @entries.
536   * @entries:	Actual stack backtrace.
537   */
538  struct lock_trace {
539  	struct hlist_node	hash_entry;
540  	u32			hash;
541  	u32			nr_entries;
542  	unsigned long		entries[] __aligned(sizeof(unsigned long));
543  };
544  #define LOCK_TRACE_SIZE_IN_LONGS				\
545  	(sizeof(struct lock_trace) / sizeof(unsigned long))
546  /*
547   * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548   */
549  static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550  static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551  
traces_identical(struct lock_trace * t1,struct lock_trace * t2)552  static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553  {
554  	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555  		memcmp(t1->entries, t2->entries,
556  		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557  }
558  
save_trace(void)559  static struct lock_trace *save_trace(void)
560  {
561  	struct lock_trace *trace, *t2;
562  	struct hlist_head *hash_head;
563  	u32 hash;
564  	int max_entries;
565  
566  	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567  	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568  
569  	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570  	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571  		LOCK_TRACE_SIZE_IN_LONGS;
572  
573  	if (max_entries <= 0) {
574  		if (!debug_locks_off_graph_unlock())
575  			return NULL;
576  
577  		nbcon_cpu_emergency_enter();
578  		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
579  		dump_stack();
580  		nbcon_cpu_emergency_exit();
581  
582  		return NULL;
583  	}
584  	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
585  
586  	hash = jhash(trace->entries, trace->nr_entries *
587  		     sizeof(trace->entries[0]), 0);
588  	trace->hash = hash;
589  	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
590  	hlist_for_each_entry(t2, hash_head, hash_entry) {
591  		if (traces_identical(trace, t2))
592  			return t2;
593  	}
594  	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
595  	hlist_add_head(&trace->hash_entry, hash_head);
596  
597  	return trace;
598  }
599  
600  /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)601  u64 lockdep_stack_trace_count(void)
602  {
603  	struct lock_trace *trace;
604  	u64 c = 0;
605  	int i;
606  
607  	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
608  		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
609  			c++;
610  		}
611  	}
612  
613  	return c;
614  }
615  
616  /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)617  u64 lockdep_stack_hash_count(void)
618  {
619  	u64 c = 0;
620  	int i;
621  
622  	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
623  		if (!hlist_empty(&stack_trace_hash[i]))
624  			c++;
625  
626  	return c;
627  }
628  #endif
629  
630  unsigned int nr_hardirq_chains;
631  unsigned int nr_softirq_chains;
632  unsigned int nr_process_chains;
633  unsigned int max_lockdep_depth;
634  
635  #ifdef CONFIG_DEBUG_LOCKDEP
636  /*
637   * Various lockdep statistics:
638   */
639  DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
640  #endif
641  
642  #ifdef CONFIG_PROVE_LOCKING
643  /*
644   * Locking printouts:
645   */
646  
647  #define __USAGE(__STATE)						\
648  	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
649  	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
650  	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
651  	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
652  
653  static const char *usage_str[] =
654  {
655  #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
656  #include "lockdep_states.h"
657  #undef LOCKDEP_STATE
658  	[LOCK_USED] = "INITIAL USE",
659  	[LOCK_USED_READ] = "INITIAL READ USE",
660  	/* abused as string storage for verify_lock_unused() */
661  	[LOCK_USAGE_STATES] = "IN-NMI",
662  };
663  #endif
664  
__get_key_name(const struct lockdep_subclass_key * key,char * str)665  const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
666  {
667  	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
668  }
669  
lock_flag(enum lock_usage_bit bit)670  static inline unsigned long lock_flag(enum lock_usage_bit bit)
671  {
672  	return 1UL << bit;
673  }
674  
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)675  static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
676  {
677  	/*
678  	 * The usage character defaults to '.' (i.e., irqs disabled and not in
679  	 * irq context), which is the safest usage category.
680  	 */
681  	char c = '.';
682  
683  	/*
684  	 * The order of the following usage checks matters, which will
685  	 * result in the outcome character as follows:
686  	 *
687  	 * - '+': irq is enabled and not in irq context
688  	 * - '-': in irq context and irq is disabled
689  	 * - '?': in irq context and irq is enabled
690  	 */
691  	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
692  		c = '+';
693  		if (class->usage_mask & lock_flag(bit))
694  			c = '?';
695  	} else if (class->usage_mask & lock_flag(bit))
696  		c = '-';
697  
698  	return c;
699  }
700  
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])701  void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
702  {
703  	int i = 0;
704  
705  #define LOCKDEP_STATE(__STATE) 						\
706  	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
707  	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
708  #include "lockdep_states.h"
709  #undef LOCKDEP_STATE
710  
711  	usage[i] = '\0';
712  }
713  
__print_lock_name(struct held_lock * hlock,struct lock_class * class)714  static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
715  {
716  	char str[KSYM_NAME_LEN];
717  	const char *name;
718  
719  	name = class->name;
720  	if (!name) {
721  		name = __get_key_name(class->key, str);
722  		printk(KERN_CONT "%s", name);
723  	} else {
724  		printk(KERN_CONT "%s", name);
725  		if (class->name_version > 1)
726  			printk(KERN_CONT "#%d", class->name_version);
727  		if (class->subclass)
728  			printk(KERN_CONT "/%d", class->subclass);
729  		if (hlock && class->print_fn)
730  			class->print_fn(hlock->instance);
731  	}
732  }
733  
print_lock_name(struct held_lock * hlock,struct lock_class * class)734  static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
735  {
736  	char usage[LOCK_USAGE_CHARS];
737  
738  	get_usage_chars(class, usage);
739  
740  	printk(KERN_CONT " (");
741  	__print_lock_name(hlock, class);
742  	printk(KERN_CONT "){%s}-{%d:%d}", usage,
743  			class->wait_type_outer ?: class->wait_type_inner,
744  			class->wait_type_inner);
745  }
746  
print_lockdep_cache(struct lockdep_map * lock)747  static void print_lockdep_cache(struct lockdep_map *lock)
748  {
749  	const char *name;
750  	char str[KSYM_NAME_LEN];
751  
752  	name = lock->name;
753  	if (!name)
754  		name = __get_key_name(lock->key->subkeys, str);
755  
756  	printk(KERN_CONT "%s", name);
757  }
758  
print_lock(struct held_lock * hlock)759  static void print_lock(struct held_lock *hlock)
760  {
761  	/*
762  	 * We can be called locklessly through debug_show_all_locks() so be
763  	 * extra careful, the hlock might have been released and cleared.
764  	 *
765  	 * If this indeed happens, lets pretend it does not hurt to continue
766  	 * to print the lock unless the hlock class_idx does not point to a
767  	 * registered class. The rationale here is: since we don't attempt
768  	 * to distinguish whether we are in this situation, if it just
769  	 * happened we can't count on class_idx to tell either.
770  	 */
771  	struct lock_class *lock = hlock_class(hlock);
772  
773  	if (!lock) {
774  		printk(KERN_CONT "<RELEASED>\n");
775  		return;
776  	}
777  
778  	printk(KERN_CONT "%px", hlock->instance);
779  	print_lock_name(hlock, lock);
780  	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
781  }
782  
lockdep_print_held_locks(struct task_struct * p)783  static void lockdep_print_held_locks(struct task_struct *p)
784  {
785  	int i, depth = READ_ONCE(p->lockdep_depth);
786  
787  	if (!depth)
788  		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
789  	else
790  		printk("%d lock%s held by %s/%d:\n", depth,
791  		       str_plural(depth), p->comm, task_pid_nr(p));
792  	/*
793  	 * It's not reliable to print a task's held locks if it's not sleeping
794  	 * and it's not the current task.
795  	 */
796  	if (p != current && task_is_running(p))
797  		return;
798  	for (i = 0; i < depth; i++) {
799  		printk(" #%d: ", i);
800  		print_lock(p->held_locks + i);
801  	}
802  }
803  
print_kernel_ident(void)804  static void print_kernel_ident(void)
805  {
806  	printk("%s %.*s %s\n", init_utsname()->release,
807  		(int)strcspn(init_utsname()->version, " "),
808  		init_utsname()->version,
809  		print_tainted());
810  }
811  
very_verbose(struct lock_class * class)812  static int very_verbose(struct lock_class *class)
813  {
814  #if VERY_VERBOSE
815  	return class_filter(class);
816  #endif
817  	return 0;
818  }
819  
820  /*
821   * Is this the address of a static object:
822   */
823  #ifdef __KERNEL__
static_obj(const void * obj)824  static int static_obj(const void *obj)
825  {
826  	unsigned long addr = (unsigned long) obj;
827  
828  	if (is_kernel_core_data(addr))
829  		return 1;
830  
831  	/*
832  	 * keys are allowed in the __ro_after_init section.
833  	 */
834  	if (is_kernel_rodata(addr))
835  		return 1;
836  
837  	/*
838  	 * in initdata section and used during bootup only?
839  	 * NOTE: On some platforms the initdata section is
840  	 * outside of the _stext ... _end range.
841  	 */
842  	if (system_state < SYSTEM_FREEING_INITMEM &&
843  		init_section_contains((void *)addr, 1))
844  		return 1;
845  
846  	/*
847  	 * in-kernel percpu var?
848  	 */
849  	if (is_kernel_percpu_address(addr))
850  		return 1;
851  
852  	/*
853  	 * module static or percpu var?
854  	 */
855  	return is_module_address(addr) || is_module_percpu_address(addr);
856  }
857  #endif
858  
859  /*
860   * To make lock name printouts unique, we calculate a unique
861   * class->name_version generation counter. The caller must hold the graph
862   * lock.
863   */
count_matching_names(struct lock_class * new_class)864  static int count_matching_names(struct lock_class *new_class)
865  {
866  	struct lock_class *class;
867  	int count = 0;
868  
869  	if (!new_class->name)
870  		return 0;
871  
872  	list_for_each_entry(class, &all_lock_classes, lock_entry) {
873  		if (new_class->key - new_class->subclass == class->key)
874  			return class->name_version;
875  		if (class->name && !strcmp(class->name, new_class->name))
876  			count = max(count, class->name_version);
877  	}
878  
879  	return count + 1;
880  }
881  
882  /* used from NMI context -- must be lockless */
883  static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)884  look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
885  {
886  	struct lockdep_subclass_key *key;
887  	struct hlist_head *hash_head;
888  	struct lock_class *class;
889  
890  	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
891  		instrumentation_begin();
892  		debug_locks_off();
893  		nbcon_cpu_emergency_enter();
894  		printk(KERN_ERR
895  			"BUG: looking up invalid subclass: %u\n", subclass);
896  		printk(KERN_ERR
897  			"turning off the locking correctness validator.\n");
898  		dump_stack();
899  		nbcon_cpu_emergency_exit();
900  		instrumentation_end();
901  		return NULL;
902  	}
903  
904  	/*
905  	 * If it is not initialised then it has never been locked,
906  	 * so it won't be present in the hash table.
907  	 */
908  	if (unlikely(!lock->key))
909  		return NULL;
910  
911  	/*
912  	 * NOTE: the class-key must be unique. For dynamic locks, a static
913  	 * lock_class_key variable is passed in through the mutex_init()
914  	 * (or spin_lock_init()) call - which acts as the key. For static
915  	 * locks we use the lock object itself as the key.
916  	 */
917  	BUILD_BUG_ON(sizeof(struct lock_class_key) >
918  			sizeof(struct lockdep_map));
919  
920  	key = lock->key->subkeys + subclass;
921  
922  	hash_head = classhashentry(key);
923  
924  	/*
925  	 * We do an RCU walk of the hash, see lockdep_free_key_range().
926  	 */
927  	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
928  		return NULL;
929  
930  	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
931  		if (class->key == key) {
932  			/*
933  			 * Huh! same key, different name? Did someone trample
934  			 * on some memory? We're most confused.
935  			 */
936  			WARN_ONCE(class->name != lock->name &&
937  				  lock->key != &__lockdep_no_validate__,
938  				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
939  				  lock->name, lock->key, class->name);
940  			return class;
941  		}
942  	}
943  
944  	return NULL;
945  }
946  
947  /*
948   * Static locks do not have their class-keys yet - for them the key is
949   * the lock object itself. If the lock is in the per cpu area, the
950   * canonical address of the lock (per cpu offset removed) is used.
951   */
assign_lock_key(struct lockdep_map * lock)952  static bool assign_lock_key(struct lockdep_map *lock)
953  {
954  	unsigned long can_addr, addr = (unsigned long)lock;
955  
956  #ifdef __KERNEL__
957  	/*
958  	 * lockdep_free_key_range() assumes that struct lock_class_key
959  	 * objects do not overlap. Since we use the address of lock
960  	 * objects as class key for static objects, check whether the
961  	 * size of lock_class_key objects does not exceed the size of
962  	 * the smallest lock object.
963  	 */
964  	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
965  #endif
966  
967  	if (__is_kernel_percpu_address(addr, &can_addr))
968  		lock->key = (void *)can_addr;
969  	else if (__is_module_percpu_address(addr, &can_addr))
970  		lock->key = (void *)can_addr;
971  	else if (static_obj(lock))
972  		lock->key = (void *)lock;
973  	else {
974  		/* Debug-check: all keys must be persistent! */
975  		debug_locks_off();
976  		nbcon_cpu_emergency_enter();
977  		pr_err("INFO: trying to register non-static key.\n");
978  		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
979  		pr_err("you didn't initialize this object before use?\n");
980  		pr_err("turning off the locking correctness validator.\n");
981  		dump_stack();
982  		nbcon_cpu_emergency_exit();
983  		return false;
984  	}
985  
986  	return true;
987  }
988  
989  #ifdef CONFIG_DEBUG_LOCKDEP
990  
991  /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)992  static bool in_list(struct list_head *e, struct list_head *h)
993  {
994  	struct list_head *f;
995  
996  	list_for_each(f, h) {
997  		if (e == f)
998  			return true;
999  	}
1000  
1001  	return false;
1002  }
1003  
1004  /*
1005   * Check whether entry @e occurs in any of the locks_after or locks_before
1006   * lists.
1007   */
in_any_class_list(struct list_head * e)1008  static bool in_any_class_list(struct list_head *e)
1009  {
1010  	struct lock_class *class;
1011  	int i;
1012  
1013  	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1014  		class = &lock_classes[i];
1015  		if (in_list(e, &class->locks_after) ||
1016  		    in_list(e, &class->locks_before))
1017  			return true;
1018  	}
1019  	return false;
1020  }
1021  
class_lock_list_valid(struct lock_class * c,struct list_head * h)1022  static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1023  {
1024  	struct lock_list *e;
1025  
1026  	list_for_each_entry(e, h, entry) {
1027  		if (e->links_to != c) {
1028  			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1029  			       c->name ? : "(?)",
1030  			       (unsigned long)(e - list_entries),
1031  			       e->links_to && e->links_to->name ?
1032  			       e->links_to->name : "(?)",
1033  			       e->class && e->class->name ? e->class->name :
1034  			       "(?)");
1035  			return false;
1036  		}
1037  	}
1038  	return true;
1039  }
1040  
1041  #ifdef CONFIG_PROVE_LOCKING
1042  static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1043  #endif
1044  
check_lock_chain_key(struct lock_chain * chain)1045  static bool check_lock_chain_key(struct lock_chain *chain)
1046  {
1047  #ifdef CONFIG_PROVE_LOCKING
1048  	u64 chain_key = INITIAL_CHAIN_KEY;
1049  	int i;
1050  
1051  	for (i = chain->base; i < chain->base + chain->depth; i++)
1052  		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1053  	/*
1054  	 * The 'unsigned long long' casts avoid that a compiler warning
1055  	 * is reported when building tools/lib/lockdep.
1056  	 */
1057  	if (chain->chain_key != chain_key) {
1058  		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1059  		       (unsigned long long)(chain - lock_chains),
1060  		       (unsigned long long)chain->chain_key,
1061  		       (unsigned long long)chain_key);
1062  		return false;
1063  	}
1064  #endif
1065  	return true;
1066  }
1067  
in_any_zapped_class_list(struct lock_class * class)1068  static bool in_any_zapped_class_list(struct lock_class *class)
1069  {
1070  	struct pending_free *pf;
1071  	int i;
1072  
1073  	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1074  		if (in_list(&class->lock_entry, &pf->zapped))
1075  			return true;
1076  	}
1077  
1078  	return false;
1079  }
1080  
__check_data_structures(void)1081  static bool __check_data_structures(void)
1082  {
1083  	struct lock_class *class;
1084  	struct lock_chain *chain;
1085  	struct hlist_head *head;
1086  	struct lock_list *e;
1087  	int i;
1088  
1089  	/* Check whether all classes occur in a lock list. */
1090  	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1091  		class = &lock_classes[i];
1092  		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1093  		    !in_list(&class->lock_entry, &free_lock_classes) &&
1094  		    !in_any_zapped_class_list(class)) {
1095  			printk(KERN_INFO "class %px/%s is not in any class list\n",
1096  			       class, class->name ? : "(?)");
1097  			return false;
1098  		}
1099  	}
1100  
1101  	/* Check whether all classes have valid lock lists. */
1102  	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1103  		class = &lock_classes[i];
1104  		if (!class_lock_list_valid(class, &class->locks_before))
1105  			return false;
1106  		if (!class_lock_list_valid(class, &class->locks_after))
1107  			return false;
1108  	}
1109  
1110  	/* Check the chain_key of all lock chains. */
1111  	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1112  		head = chainhash_table + i;
1113  		hlist_for_each_entry_rcu(chain, head, entry) {
1114  			if (!check_lock_chain_key(chain))
1115  				return false;
1116  		}
1117  	}
1118  
1119  	/*
1120  	 * Check whether all list entries that are in use occur in a class
1121  	 * lock list.
1122  	 */
1123  	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1124  		e = list_entries + i;
1125  		if (!in_any_class_list(&e->entry)) {
1126  			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1127  			       (unsigned int)(e - list_entries),
1128  			       e->class->name ? : "(?)",
1129  			       e->links_to->name ? : "(?)");
1130  			return false;
1131  		}
1132  	}
1133  
1134  	/*
1135  	 * Check whether all list entries that are not in use do not occur in
1136  	 * a class lock list.
1137  	 */
1138  	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1139  		e = list_entries + i;
1140  		if (in_any_class_list(&e->entry)) {
1141  			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1142  			       (unsigned int)(e - list_entries),
1143  			       e->class && e->class->name ? e->class->name :
1144  			       "(?)",
1145  			       e->links_to && e->links_to->name ?
1146  			       e->links_to->name : "(?)");
1147  			return false;
1148  		}
1149  	}
1150  
1151  	return true;
1152  }
1153  
1154  int check_consistency = 0;
1155  module_param(check_consistency, int, 0644);
1156  
check_data_structures(void)1157  static void check_data_structures(void)
1158  {
1159  	static bool once = false;
1160  
1161  	if (check_consistency && !once) {
1162  		if (!__check_data_structures()) {
1163  			once = true;
1164  			WARN_ON(once);
1165  		}
1166  	}
1167  }
1168  
1169  #else /* CONFIG_DEBUG_LOCKDEP */
1170  
check_data_structures(void)1171  static inline void check_data_structures(void) { }
1172  
1173  #endif /* CONFIG_DEBUG_LOCKDEP */
1174  
1175  static void init_chain_block_buckets(void);
1176  
1177  /*
1178   * Initialize the lock_classes[] array elements, the free_lock_classes list
1179   * and also the delayed_free structure.
1180   */
init_data_structures_once(void)1181  static void init_data_structures_once(void)
1182  {
1183  	static bool __read_mostly ds_initialized, rcu_head_initialized;
1184  	int i;
1185  
1186  	if (likely(rcu_head_initialized))
1187  		return;
1188  
1189  	if (system_state >= SYSTEM_SCHEDULING) {
1190  		init_rcu_head(&delayed_free.rcu_head);
1191  		rcu_head_initialized = true;
1192  	}
1193  
1194  	if (ds_initialized)
1195  		return;
1196  
1197  	ds_initialized = true;
1198  
1199  	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1200  	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1201  
1202  	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1203  		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1204  		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1205  		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1206  	}
1207  	init_chain_block_buckets();
1208  }
1209  
keyhashentry(const struct lock_class_key * key)1210  static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1211  {
1212  	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1213  
1214  	return lock_keys_hash + hash;
1215  }
1216  
1217  /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1218  void lockdep_register_key(struct lock_class_key *key)
1219  {
1220  	struct hlist_head *hash_head;
1221  	struct lock_class_key *k;
1222  	unsigned long flags;
1223  
1224  	if (WARN_ON_ONCE(static_obj(key)))
1225  		return;
1226  	hash_head = keyhashentry(key);
1227  
1228  	raw_local_irq_save(flags);
1229  	if (!graph_lock())
1230  		goto restore_irqs;
1231  	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1232  		if (WARN_ON_ONCE(k == key))
1233  			goto out_unlock;
1234  	}
1235  	hlist_add_head_rcu(&key->hash_entry, hash_head);
1236  out_unlock:
1237  	graph_unlock();
1238  restore_irqs:
1239  	raw_local_irq_restore(flags);
1240  }
1241  EXPORT_SYMBOL_GPL(lockdep_register_key);
1242  
1243  /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1244  static bool is_dynamic_key(const struct lock_class_key *key)
1245  {
1246  	struct hlist_head *hash_head;
1247  	struct lock_class_key *k;
1248  	bool found = false;
1249  
1250  	if (WARN_ON_ONCE(static_obj(key)))
1251  		return false;
1252  
1253  	/*
1254  	 * If lock debugging is disabled lock_keys_hash[] may contain
1255  	 * pointers to memory that has already been freed. Avoid triggering
1256  	 * a use-after-free in that case by returning early.
1257  	 */
1258  	if (!debug_locks)
1259  		return true;
1260  
1261  	hash_head = keyhashentry(key);
1262  
1263  	rcu_read_lock();
1264  	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1265  		if (k == key) {
1266  			found = true;
1267  			break;
1268  		}
1269  	}
1270  	rcu_read_unlock();
1271  
1272  	return found;
1273  }
1274  
1275  /*
1276   * Register a lock's class in the hash-table, if the class is not present
1277   * yet. Otherwise we look it up. We cache the result in the lock object
1278   * itself, so actual lookup of the hash should be once per lock object.
1279   */
1280  static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1281  register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1282  {
1283  	struct lockdep_subclass_key *key;
1284  	struct hlist_head *hash_head;
1285  	struct lock_class *class;
1286  	int idx;
1287  
1288  	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1289  
1290  	class = look_up_lock_class(lock, subclass);
1291  	if (likely(class))
1292  		goto out_set_class_cache;
1293  
1294  	if (!lock->key) {
1295  		if (!assign_lock_key(lock))
1296  			return NULL;
1297  	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1298  		return NULL;
1299  	}
1300  
1301  	key = lock->key->subkeys + subclass;
1302  	hash_head = classhashentry(key);
1303  
1304  	if (!graph_lock()) {
1305  		return NULL;
1306  	}
1307  	/*
1308  	 * We have to do the hash-walk again, to avoid races
1309  	 * with another CPU:
1310  	 */
1311  	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1312  		if (class->key == key)
1313  			goto out_unlock_set;
1314  	}
1315  
1316  	init_data_structures_once();
1317  
1318  	/* Allocate a new lock class and add it to the hash. */
1319  	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1320  					 lock_entry);
1321  	if (!class) {
1322  		if (!debug_locks_off_graph_unlock()) {
1323  			return NULL;
1324  		}
1325  
1326  		nbcon_cpu_emergency_enter();
1327  		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1328  		dump_stack();
1329  		nbcon_cpu_emergency_exit();
1330  		return NULL;
1331  	}
1332  	nr_lock_classes++;
1333  	__set_bit(class - lock_classes, lock_classes_in_use);
1334  	debug_atomic_inc(nr_unused_locks);
1335  	class->key = key;
1336  	class->name = lock->name;
1337  	class->subclass = subclass;
1338  	WARN_ON_ONCE(!list_empty(&class->locks_before));
1339  	WARN_ON_ONCE(!list_empty(&class->locks_after));
1340  	class->name_version = count_matching_names(class);
1341  	class->wait_type_inner = lock->wait_type_inner;
1342  	class->wait_type_outer = lock->wait_type_outer;
1343  	class->lock_type = lock->lock_type;
1344  	/*
1345  	 * We use RCU's safe list-add method to make
1346  	 * parallel walking of the hash-list safe:
1347  	 */
1348  	hlist_add_head_rcu(&class->hash_entry, hash_head);
1349  	/*
1350  	 * Remove the class from the free list and add it to the global list
1351  	 * of classes.
1352  	 */
1353  	list_move_tail(&class->lock_entry, &all_lock_classes);
1354  	idx = class - lock_classes;
1355  	if (idx > max_lock_class_idx)
1356  		max_lock_class_idx = idx;
1357  
1358  	if (verbose(class)) {
1359  		graph_unlock();
1360  
1361  		nbcon_cpu_emergency_enter();
1362  		printk("\nnew class %px: %s", class->key, class->name);
1363  		if (class->name_version > 1)
1364  			printk(KERN_CONT "#%d", class->name_version);
1365  		printk(KERN_CONT "\n");
1366  		dump_stack();
1367  		nbcon_cpu_emergency_exit();
1368  
1369  		if (!graph_lock()) {
1370  			return NULL;
1371  		}
1372  	}
1373  out_unlock_set:
1374  	graph_unlock();
1375  
1376  out_set_class_cache:
1377  	if (!subclass || force)
1378  		lock->class_cache[0] = class;
1379  	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1380  		lock->class_cache[subclass] = class;
1381  
1382  	/*
1383  	 * Hash collision, did we smoke some? We found a class with a matching
1384  	 * hash but the subclass -- which is hashed in -- didn't match.
1385  	 */
1386  	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1387  		return NULL;
1388  
1389  	return class;
1390  }
1391  
1392  #ifdef CONFIG_PROVE_LOCKING
1393  /*
1394   * Allocate a lockdep entry. (assumes the graph_lock held, returns
1395   * with NULL on failure)
1396   */
alloc_list_entry(void)1397  static struct lock_list *alloc_list_entry(void)
1398  {
1399  	int idx = find_first_zero_bit(list_entries_in_use,
1400  				      ARRAY_SIZE(list_entries));
1401  
1402  	if (idx >= ARRAY_SIZE(list_entries)) {
1403  		if (!debug_locks_off_graph_unlock())
1404  			return NULL;
1405  
1406  		nbcon_cpu_emergency_enter();
1407  		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1408  		dump_stack();
1409  		nbcon_cpu_emergency_exit();
1410  		return NULL;
1411  	}
1412  	nr_list_entries++;
1413  	__set_bit(idx, list_entries_in_use);
1414  	return list_entries + idx;
1415  }
1416  
1417  /*
1418   * Add a new dependency to the head of the list:
1419   */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1420  static int add_lock_to_list(struct lock_class *this,
1421  			    struct lock_class *links_to, struct list_head *head,
1422  			    u16 distance, u8 dep,
1423  			    const struct lock_trace *trace)
1424  {
1425  	struct lock_list *entry;
1426  	/*
1427  	 * Lock not present yet - get a new dependency struct and
1428  	 * add it to the list:
1429  	 */
1430  	entry = alloc_list_entry();
1431  	if (!entry)
1432  		return 0;
1433  
1434  	entry->class = this;
1435  	entry->links_to = links_to;
1436  	entry->dep = dep;
1437  	entry->distance = distance;
1438  	entry->trace = trace;
1439  	/*
1440  	 * Both allocation and removal are done under the graph lock; but
1441  	 * iteration is under RCU-sched; see look_up_lock_class() and
1442  	 * lockdep_free_key_range().
1443  	 */
1444  	list_add_tail_rcu(&entry->entry, head);
1445  
1446  	return 1;
1447  }
1448  
1449  /*
1450   * For good efficiency of modular, we use power of 2
1451   */
1452  #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1453  #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1454  
1455  /*
1456   * The circular_queue and helpers are used to implement graph
1457   * breadth-first search (BFS) algorithm, by which we can determine
1458   * whether there is a path from a lock to another. In deadlock checks,
1459   * a path from the next lock to be acquired to a previous held lock
1460   * indicates that adding the <prev> -> <next> lock dependency will
1461   * produce a circle in the graph. Breadth-first search instead of
1462   * depth-first search is used in order to find the shortest (circular)
1463   * path.
1464   */
1465  struct circular_queue {
1466  	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1467  	unsigned int  front, rear;
1468  };
1469  
1470  static struct circular_queue lock_cq;
1471  
1472  unsigned int max_bfs_queue_depth;
1473  
1474  static unsigned int lockdep_dependency_gen_id;
1475  
__cq_init(struct circular_queue * cq)1476  static inline void __cq_init(struct circular_queue *cq)
1477  {
1478  	cq->front = cq->rear = 0;
1479  	lockdep_dependency_gen_id++;
1480  }
1481  
__cq_empty(struct circular_queue * cq)1482  static inline int __cq_empty(struct circular_queue *cq)
1483  {
1484  	return (cq->front == cq->rear);
1485  }
1486  
__cq_full(struct circular_queue * cq)1487  static inline int __cq_full(struct circular_queue *cq)
1488  {
1489  	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1490  }
1491  
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1492  static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1493  {
1494  	if (__cq_full(cq))
1495  		return -1;
1496  
1497  	cq->element[cq->rear] = elem;
1498  	cq->rear = (cq->rear + 1) & CQ_MASK;
1499  	return 0;
1500  }
1501  
1502  /*
1503   * Dequeue an element from the circular_queue, return a lock_list if
1504   * the queue is not empty, or NULL if otherwise.
1505   */
__cq_dequeue(struct circular_queue * cq)1506  static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1507  {
1508  	struct lock_list * lock;
1509  
1510  	if (__cq_empty(cq))
1511  		return NULL;
1512  
1513  	lock = cq->element[cq->front];
1514  	cq->front = (cq->front + 1) & CQ_MASK;
1515  
1516  	return lock;
1517  }
1518  
__cq_get_elem_count(struct circular_queue * cq)1519  static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1520  {
1521  	return (cq->rear - cq->front) & CQ_MASK;
1522  }
1523  
mark_lock_accessed(struct lock_list * lock)1524  static inline void mark_lock_accessed(struct lock_list *lock)
1525  {
1526  	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1527  }
1528  
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1529  static inline void visit_lock_entry(struct lock_list *lock,
1530  				    struct lock_list *parent)
1531  {
1532  	lock->parent = parent;
1533  }
1534  
lock_accessed(struct lock_list * lock)1535  static inline unsigned long lock_accessed(struct lock_list *lock)
1536  {
1537  	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1538  }
1539  
get_lock_parent(struct lock_list * child)1540  static inline struct lock_list *get_lock_parent(struct lock_list *child)
1541  {
1542  	return child->parent;
1543  }
1544  
get_lock_depth(struct lock_list * child)1545  static inline int get_lock_depth(struct lock_list *child)
1546  {
1547  	int depth = 0;
1548  	struct lock_list *parent;
1549  
1550  	while ((parent = get_lock_parent(child))) {
1551  		child = parent;
1552  		depth++;
1553  	}
1554  	return depth;
1555  }
1556  
1557  /*
1558   * Return the forward or backward dependency list.
1559   *
1560   * @lock:   the lock_list to get its class's dependency list
1561   * @offset: the offset to struct lock_class to determine whether it is
1562   *          locks_after or locks_before
1563   */
get_dep_list(struct lock_list * lock,int offset)1564  static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1565  {
1566  	void *lock_class = lock->class;
1567  
1568  	return lock_class + offset;
1569  }
1570  /*
1571   * Return values of a bfs search:
1572   *
1573   * BFS_E* indicates an error
1574   * BFS_R* indicates a result (match or not)
1575   *
1576   * BFS_EINVALIDNODE: Find a invalid node in the graph.
1577   *
1578   * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1579   *
1580   * BFS_RMATCH: Find the matched node in the graph, and put that node into
1581   *             *@target_entry.
1582   *
1583   * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1584   *               _unchanged_.
1585   */
1586  enum bfs_result {
1587  	BFS_EINVALIDNODE = -2,
1588  	BFS_EQUEUEFULL = -1,
1589  	BFS_RMATCH = 0,
1590  	BFS_RNOMATCH = 1,
1591  };
1592  
1593  /*
1594   * bfs_result < 0 means error
1595   */
bfs_error(enum bfs_result res)1596  static inline bool bfs_error(enum bfs_result res)
1597  {
1598  	return res < 0;
1599  }
1600  
1601  /*
1602   * DEP_*_BIT in lock_list::dep
1603   *
1604   * For dependency @prev -> @next:
1605   *
1606   *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1607   *       (->read == 2)
1608   *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1609   *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1610   *   EN: @prev is exclusive locker and @next is non-recursive locker
1611   *
1612   * Note that we define the value of DEP_*_BITs so that:
1613   *   bit0 is prev->read == 0
1614   *   bit1 is next->read != 2
1615   */
1616  #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1617  #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1618  #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1619  #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1620  
1621  #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1622  #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1623  #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1624  #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1625  
1626  static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1627  __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1628  {
1629  	return (prev->read == 0) + ((next->read != 2) << 1);
1630  }
1631  
calc_dep(struct held_lock * prev,struct held_lock * next)1632  static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1633  {
1634  	return 1U << __calc_dep_bit(prev, next);
1635  }
1636  
1637  /*
1638   * calculate the dep_bit for backwards edges. We care about whether @prev is
1639   * shared and whether @next is recursive.
1640   */
1641  static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1642  __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1643  {
1644  	return (next->read != 2) + ((prev->read == 0) << 1);
1645  }
1646  
calc_depb(struct held_lock * prev,struct held_lock * next)1647  static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1648  {
1649  	return 1U << __calc_dep_bitb(prev, next);
1650  }
1651  
1652  /*
1653   * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1654   * search.
1655   */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1656  static inline void __bfs_init_root(struct lock_list *lock,
1657  				   struct lock_class *class)
1658  {
1659  	lock->class = class;
1660  	lock->parent = NULL;
1661  	lock->only_xr = 0;
1662  }
1663  
1664  /*
1665   * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1666   * root for a BFS search.
1667   *
1668   * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1669   * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1670   * and -(S*)->.
1671   */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1672  static inline void bfs_init_root(struct lock_list *lock,
1673  				 struct held_lock *hlock)
1674  {
1675  	__bfs_init_root(lock, hlock_class(hlock));
1676  	lock->only_xr = (hlock->read == 2);
1677  }
1678  
1679  /*
1680   * Similar to bfs_init_root() but initialize the root for backwards BFS.
1681   *
1682   * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1683   * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1684   * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1685   */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1686  static inline void bfs_init_rootb(struct lock_list *lock,
1687  				  struct held_lock *hlock)
1688  {
1689  	__bfs_init_root(lock, hlock_class(hlock));
1690  	lock->only_xr = (hlock->read != 0);
1691  }
1692  
__bfs_next(struct lock_list * lock,int offset)1693  static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1694  {
1695  	if (!lock || !lock->parent)
1696  		return NULL;
1697  
1698  	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1699  				     &lock->entry, struct lock_list, entry);
1700  }
1701  
1702  /*
1703   * Breadth-First Search to find a strong path in the dependency graph.
1704   *
1705   * @source_entry: the source of the path we are searching for.
1706   * @data: data used for the second parameter of @match function
1707   * @match: match function for the search
1708   * @target_entry: pointer to the target of a matched path
1709   * @offset: the offset to struct lock_class to determine whether it is
1710   *          locks_after or locks_before
1711   *
1712   * We may have multiple edges (considering different kinds of dependencies,
1713   * e.g. ER and SN) between two nodes in the dependency graph. But
1714   * only the strong dependency path in the graph is relevant to deadlocks. A
1715   * strong dependency path is a dependency path that doesn't have two adjacent
1716   * dependencies as -(*R)-> -(S*)->, please see:
1717   *
1718   *         Documentation/locking/lockdep-design.rst
1719   *
1720   * for more explanation of the definition of strong dependency paths
1721   *
1722   * In __bfs(), we only traverse in the strong dependency path:
1723   *
1724   *     In lock_list::only_xr, we record whether the previous dependency only
1725   *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1726   *     filter out any -(S*)-> in the current dependency and after that, the
1727   *     ->only_xr is set according to whether we only have -(*R)-> left.
1728   */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1729  static enum bfs_result __bfs(struct lock_list *source_entry,
1730  			     void *data,
1731  			     bool (*match)(struct lock_list *entry, void *data),
1732  			     bool (*skip)(struct lock_list *entry, void *data),
1733  			     struct lock_list **target_entry,
1734  			     int offset)
1735  {
1736  	struct circular_queue *cq = &lock_cq;
1737  	struct lock_list *lock = NULL;
1738  	struct lock_list *entry;
1739  	struct list_head *head;
1740  	unsigned int cq_depth;
1741  	bool first;
1742  
1743  	lockdep_assert_locked();
1744  
1745  	__cq_init(cq);
1746  	__cq_enqueue(cq, source_entry);
1747  
1748  	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1749  		if (!lock->class)
1750  			return BFS_EINVALIDNODE;
1751  
1752  		/*
1753  		 * Step 1: check whether we already finish on this one.
1754  		 *
1755  		 * If we have visited all the dependencies from this @lock to
1756  		 * others (iow, if we have visited all lock_list entries in
1757  		 * @lock->class->locks_{after,before}) we skip, otherwise go
1758  		 * and visit all the dependencies in the list and mark this
1759  		 * list accessed.
1760  		 */
1761  		if (lock_accessed(lock))
1762  			continue;
1763  		else
1764  			mark_lock_accessed(lock);
1765  
1766  		/*
1767  		 * Step 2: check whether prev dependency and this form a strong
1768  		 *         dependency path.
1769  		 */
1770  		if (lock->parent) { /* Parent exists, check prev dependency */
1771  			u8 dep = lock->dep;
1772  			bool prev_only_xr = lock->parent->only_xr;
1773  
1774  			/*
1775  			 * Mask out all -(S*)-> if we only have *R in previous
1776  			 * step, because -(*R)-> -(S*)-> don't make up a strong
1777  			 * dependency.
1778  			 */
1779  			if (prev_only_xr)
1780  				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1781  
1782  			/* If nothing left, we skip */
1783  			if (!dep)
1784  				continue;
1785  
1786  			/* If there are only -(*R)-> left, set that for the next step */
1787  			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1788  		}
1789  
1790  		/*
1791  		 * Step 3: we haven't visited this and there is a strong
1792  		 *         dependency path to this, so check with @match.
1793  		 *         If @skip is provide and returns true, we skip this
1794  		 *         lock (and any path this lock is in).
1795  		 */
1796  		if (skip && skip(lock, data))
1797  			continue;
1798  
1799  		if (match(lock, data)) {
1800  			*target_entry = lock;
1801  			return BFS_RMATCH;
1802  		}
1803  
1804  		/*
1805  		 * Step 4: if not match, expand the path by adding the
1806  		 *         forward or backwards dependencies in the search
1807  		 *
1808  		 */
1809  		first = true;
1810  		head = get_dep_list(lock, offset);
1811  		list_for_each_entry_rcu(entry, head, entry) {
1812  			visit_lock_entry(entry, lock);
1813  
1814  			/*
1815  			 * Note we only enqueue the first of the list into the
1816  			 * queue, because we can always find a sibling
1817  			 * dependency from one (see __bfs_next()), as a result
1818  			 * the space of queue is saved.
1819  			 */
1820  			if (!first)
1821  				continue;
1822  
1823  			first = false;
1824  
1825  			if (__cq_enqueue(cq, entry))
1826  				return BFS_EQUEUEFULL;
1827  
1828  			cq_depth = __cq_get_elem_count(cq);
1829  			if (max_bfs_queue_depth < cq_depth)
1830  				max_bfs_queue_depth = cq_depth;
1831  		}
1832  	}
1833  
1834  	return BFS_RNOMATCH;
1835  }
1836  
1837  static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1838  __bfs_forwards(struct lock_list *src_entry,
1839  	       void *data,
1840  	       bool (*match)(struct lock_list *entry, void *data),
1841  	       bool (*skip)(struct lock_list *entry, void *data),
1842  	       struct lock_list **target_entry)
1843  {
1844  	return __bfs(src_entry, data, match, skip, target_entry,
1845  		     offsetof(struct lock_class, locks_after));
1846  
1847  }
1848  
1849  static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1850  __bfs_backwards(struct lock_list *src_entry,
1851  		void *data,
1852  		bool (*match)(struct lock_list *entry, void *data),
1853  	       bool (*skip)(struct lock_list *entry, void *data),
1854  		struct lock_list **target_entry)
1855  {
1856  	return __bfs(src_entry, data, match, skip, target_entry,
1857  		     offsetof(struct lock_class, locks_before));
1858  
1859  }
1860  
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1861  static void print_lock_trace(const struct lock_trace *trace,
1862  			     unsigned int spaces)
1863  {
1864  	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1865  }
1866  
1867  /*
1868   * Print a dependency chain entry (this is only done when a deadlock
1869   * has been detected):
1870   */
1871  static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1872  print_circular_bug_entry(struct lock_list *target, int depth)
1873  {
1874  	if (debug_locks_silent)
1875  		return;
1876  	printk("\n-> #%u", depth);
1877  	print_lock_name(NULL, target->class);
1878  	printk(KERN_CONT ":\n");
1879  	print_lock_trace(target->trace, 6);
1880  }
1881  
1882  static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1883  print_circular_lock_scenario(struct held_lock *src,
1884  			     struct held_lock *tgt,
1885  			     struct lock_list *prt)
1886  {
1887  	struct lock_class *source = hlock_class(src);
1888  	struct lock_class *target = hlock_class(tgt);
1889  	struct lock_class *parent = prt->class;
1890  	int src_read = src->read;
1891  	int tgt_read = tgt->read;
1892  
1893  	/*
1894  	 * A direct locking problem where unsafe_class lock is taken
1895  	 * directly by safe_class lock, then all we need to show
1896  	 * is the deadlock scenario, as it is obvious that the
1897  	 * unsafe lock is taken under the safe lock.
1898  	 *
1899  	 * But if there is a chain instead, where the safe lock takes
1900  	 * an intermediate lock (middle_class) where this lock is
1901  	 * not the same as the safe lock, then the lock chain is
1902  	 * used to describe the problem. Otherwise we would need
1903  	 * to show a different CPU case for each link in the chain
1904  	 * from the safe_class lock to the unsafe_class lock.
1905  	 */
1906  	if (parent != source) {
1907  		printk("Chain exists of:\n  ");
1908  		__print_lock_name(src, source);
1909  		printk(KERN_CONT " --> ");
1910  		__print_lock_name(NULL, parent);
1911  		printk(KERN_CONT " --> ");
1912  		__print_lock_name(tgt, target);
1913  		printk(KERN_CONT "\n\n");
1914  	}
1915  
1916  	printk(" Possible unsafe locking scenario:\n\n");
1917  	printk("       CPU0                    CPU1\n");
1918  	printk("       ----                    ----\n");
1919  	if (tgt_read != 0)
1920  		printk("  rlock(");
1921  	else
1922  		printk("  lock(");
1923  	__print_lock_name(tgt, target);
1924  	printk(KERN_CONT ");\n");
1925  	printk("                               lock(");
1926  	__print_lock_name(NULL, parent);
1927  	printk(KERN_CONT ");\n");
1928  	printk("                               lock(");
1929  	__print_lock_name(tgt, target);
1930  	printk(KERN_CONT ");\n");
1931  	if (src_read != 0)
1932  		printk("  rlock(");
1933  	else if (src->sync)
1934  		printk("  sync(");
1935  	else
1936  		printk("  lock(");
1937  	__print_lock_name(src, source);
1938  	printk(KERN_CONT ");\n");
1939  	printk("\n *** DEADLOCK ***\n\n");
1940  }
1941  
1942  /*
1943   * When a circular dependency is detected, print the
1944   * header first:
1945   */
1946  static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1947  print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1948  			struct held_lock *check_src,
1949  			struct held_lock *check_tgt)
1950  {
1951  	struct task_struct *curr = current;
1952  
1953  	if (debug_locks_silent)
1954  		return;
1955  
1956  	pr_warn("\n");
1957  	pr_warn("======================================================\n");
1958  	pr_warn("WARNING: possible circular locking dependency detected\n");
1959  	print_kernel_ident();
1960  	pr_warn("------------------------------------------------------\n");
1961  	pr_warn("%s/%d is trying to acquire lock:\n",
1962  		curr->comm, task_pid_nr(curr));
1963  	print_lock(check_src);
1964  
1965  	pr_warn("\nbut task is already holding lock:\n");
1966  
1967  	print_lock(check_tgt);
1968  	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1969  	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1970  
1971  	print_circular_bug_entry(entry, depth);
1972  }
1973  
1974  /*
1975   * We are about to add A -> B into the dependency graph, and in __bfs() a
1976   * strong dependency path A -> .. -> B is found: hlock_class equals
1977   * entry->class.
1978   *
1979   * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1980   * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1981   * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1982   * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1983   * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1984   * having dependency A -> B, we could already get a equivalent path ..-> A ->
1985   * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1986   *
1987   * We need to make sure both the start and the end of A -> .. -> B is not
1988   * weaker than A -> B. For the start part, please see the comment in
1989   * check_redundant(). For the end part, we need:
1990   *
1991   * Either
1992   *
1993   *     a) A -> B is -(*R)-> (everything is not weaker than that)
1994   *
1995   * or
1996   *
1997   *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1998   *
1999   */
hlock_equal(struct lock_list * entry,void * data)2000  static inline bool hlock_equal(struct lock_list *entry, void *data)
2001  {
2002  	struct held_lock *hlock = (struct held_lock *)data;
2003  
2004  	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2005  	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2006  		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2007  }
2008  
2009  /*
2010   * We are about to add B -> A into the dependency graph, and in __bfs() a
2011   * strong dependency path A -> .. -> B is found: hlock_class equals
2012   * entry->class.
2013   *
2014   * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2015   * dependency cycle, that means:
2016   *
2017   * Either
2018   *
2019   *     a) B -> A is -(E*)->
2020   *
2021   * or
2022   *
2023   *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2024   *
2025   * as then we don't have -(*R)-> -(S*)-> in the cycle.
2026   */
hlock_conflict(struct lock_list * entry,void * data)2027  static inline bool hlock_conflict(struct lock_list *entry, void *data)
2028  {
2029  	struct held_lock *hlock = (struct held_lock *)data;
2030  
2031  	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2032  	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2033  		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2034  }
2035  
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)2036  static noinline void print_circular_bug(struct lock_list *this,
2037  				struct lock_list *target,
2038  				struct held_lock *check_src,
2039  				struct held_lock *check_tgt)
2040  {
2041  	struct task_struct *curr = current;
2042  	struct lock_list *parent;
2043  	struct lock_list *first_parent;
2044  	int depth;
2045  
2046  	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2047  		return;
2048  
2049  	this->trace = save_trace();
2050  	if (!this->trace)
2051  		return;
2052  
2053  	depth = get_lock_depth(target);
2054  
2055  	nbcon_cpu_emergency_enter();
2056  
2057  	print_circular_bug_header(target, depth, check_src, check_tgt);
2058  
2059  	parent = get_lock_parent(target);
2060  	first_parent = parent;
2061  
2062  	while (parent) {
2063  		print_circular_bug_entry(parent, --depth);
2064  		parent = get_lock_parent(parent);
2065  	}
2066  
2067  	printk("\nother info that might help us debug this:\n\n");
2068  	print_circular_lock_scenario(check_src, check_tgt,
2069  				     first_parent);
2070  
2071  	lockdep_print_held_locks(curr);
2072  
2073  	printk("\nstack backtrace:\n");
2074  	dump_stack();
2075  
2076  	nbcon_cpu_emergency_exit();
2077  }
2078  
print_bfs_bug(int ret)2079  static noinline void print_bfs_bug(int ret)
2080  {
2081  	if (!debug_locks_off_graph_unlock())
2082  		return;
2083  
2084  	/*
2085  	 * Breadth-first-search failed, graph got corrupted?
2086  	 */
2087  	if (ret == BFS_EQUEUEFULL)
2088  		pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n");
2089  
2090  	WARN(1, "lockdep bfs error:%d\n", ret);
2091  }
2092  
noop_count(struct lock_list * entry,void * data)2093  static bool noop_count(struct lock_list *entry, void *data)
2094  {
2095  	(*(unsigned long *)data)++;
2096  	return false;
2097  }
2098  
__lockdep_count_forward_deps(struct lock_list * this)2099  static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2100  {
2101  	unsigned long  count = 0;
2102  	struct lock_list *target_entry;
2103  
2104  	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2105  
2106  	return count;
2107  }
lockdep_count_forward_deps(struct lock_class * class)2108  unsigned long lockdep_count_forward_deps(struct lock_class *class)
2109  {
2110  	unsigned long ret, flags;
2111  	struct lock_list this;
2112  
2113  	__bfs_init_root(&this, class);
2114  
2115  	raw_local_irq_save(flags);
2116  	lockdep_lock();
2117  	ret = __lockdep_count_forward_deps(&this);
2118  	lockdep_unlock();
2119  	raw_local_irq_restore(flags);
2120  
2121  	return ret;
2122  }
2123  
__lockdep_count_backward_deps(struct lock_list * this)2124  static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2125  {
2126  	unsigned long  count = 0;
2127  	struct lock_list *target_entry;
2128  
2129  	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2130  
2131  	return count;
2132  }
2133  
lockdep_count_backward_deps(struct lock_class * class)2134  unsigned long lockdep_count_backward_deps(struct lock_class *class)
2135  {
2136  	unsigned long ret, flags;
2137  	struct lock_list this;
2138  
2139  	__bfs_init_root(&this, class);
2140  
2141  	raw_local_irq_save(flags);
2142  	lockdep_lock();
2143  	ret = __lockdep_count_backward_deps(&this);
2144  	lockdep_unlock();
2145  	raw_local_irq_restore(flags);
2146  
2147  	return ret;
2148  }
2149  
2150  /*
2151   * Check that the dependency graph starting at <src> can lead to
2152   * <target> or not.
2153   */
2154  static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2155  check_path(struct held_lock *target, struct lock_list *src_entry,
2156  	   bool (*match)(struct lock_list *entry, void *data),
2157  	   bool (*skip)(struct lock_list *entry, void *data),
2158  	   struct lock_list **target_entry)
2159  {
2160  	enum bfs_result ret;
2161  
2162  	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2163  
2164  	if (unlikely(bfs_error(ret)))
2165  		print_bfs_bug(ret);
2166  
2167  	return ret;
2168  }
2169  
2170  static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2171  
2172  /*
2173   * Prove that the dependency graph starting at <src> can not
2174   * lead to <target>. If it can, there is a circle when adding
2175   * <target> -> <src> dependency.
2176   *
2177   * Print an error and return BFS_RMATCH if it does.
2178   */
2179  static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2180  check_noncircular(struct held_lock *src, struct held_lock *target,
2181  		  struct lock_trace **const trace)
2182  {
2183  	enum bfs_result ret;
2184  	struct lock_list *target_entry;
2185  	struct lock_list src_entry;
2186  
2187  	bfs_init_root(&src_entry, src);
2188  
2189  	debug_atomic_inc(nr_cyclic_checks);
2190  
2191  	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2192  
2193  	if (unlikely(ret == BFS_RMATCH)) {
2194  		if (!*trace) {
2195  			/*
2196  			 * If save_trace fails here, the printing might
2197  			 * trigger a WARN but because of the !nr_entries it
2198  			 * should not do bad things.
2199  			 */
2200  			*trace = save_trace();
2201  		}
2202  
2203  		if (src->class_idx == target->class_idx)
2204  			print_deadlock_bug(current, src, target);
2205  		else
2206  			print_circular_bug(&src_entry, target_entry, src, target);
2207  	}
2208  
2209  	return ret;
2210  }
2211  
2212  #ifdef CONFIG_TRACE_IRQFLAGS
2213  
2214  /*
2215   * Forwards and backwards subgraph searching, for the purposes of
2216   * proving that two subgraphs can be connected by a new dependency
2217   * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2218   *
2219   * A irq safe->unsafe deadlock happens with the following conditions:
2220   *
2221   * 1) We have a strong dependency path A -> ... -> B
2222   *
2223   * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2224   *    irq can create a new dependency B -> A (consider the case that a holder
2225   *    of B gets interrupted by an irq whose handler will try to acquire A).
2226   *
2227   * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2228   *    strong circle:
2229   *
2230   *      For the usage bits of B:
2231   *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2232   *           ENABLED_IRQ usage suffices.
2233   *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2234   *           ENABLED_IRQ_*_READ usage suffices.
2235   *
2236   *      For the usage bits of A:
2237   *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2238   *           USED_IN_IRQ usage suffices.
2239   *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2240   *           USED_IN_IRQ_*_READ usage suffices.
2241   */
2242  
2243  /*
2244   * There is a strong dependency path in the dependency graph: A -> B, and now
2245   * we need to decide which usage bit of A should be accumulated to detect
2246   * safe->unsafe bugs.
2247   *
2248   * Note that usage_accumulate() is used in backwards search, so ->only_xr
2249   * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2250   *
2251   * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2252   * path, any usage of A should be considered. Otherwise, we should only
2253   * consider _READ usage.
2254   */
usage_accumulate(struct lock_list * entry,void * mask)2255  static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2256  {
2257  	if (!entry->only_xr)
2258  		*(unsigned long *)mask |= entry->class->usage_mask;
2259  	else /* Mask out _READ usage bits */
2260  		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2261  
2262  	return false;
2263  }
2264  
2265  /*
2266   * There is a strong dependency path in the dependency graph: A -> B, and now
2267   * we need to decide which usage bit of B conflicts with the usage bits of A,
2268   * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2269   *
2270   * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2271   * path, any usage of B should be considered. Otherwise, we should only
2272   * consider _READ usage.
2273   */
usage_match(struct lock_list * entry,void * mask)2274  static inline bool usage_match(struct lock_list *entry, void *mask)
2275  {
2276  	if (!entry->only_xr)
2277  		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2278  	else /* Mask out _READ usage bits */
2279  		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2280  }
2281  
usage_skip(struct lock_list * entry,void * mask)2282  static inline bool usage_skip(struct lock_list *entry, void *mask)
2283  {
2284  	if (entry->class->lock_type == LD_LOCK_NORMAL)
2285  		return false;
2286  
2287  	/*
2288  	 * Skip local_lock() for irq inversion detection.
2289  	 *
2290  	 * For !RT, local_lock() is not a real lock, so it won't carry any
2291  	 * dependency.
2292  	 *
2293  	 * For RT, an irq inversion happens when we have lock A and B, and on
2294  	 * some CPU we can have:
2295  	 *
2296  	 *	lock(A);
2297  	 *	<interrupted>
2298  	 *	  lock(B);
2299  	 *
2300  	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2301  	 *
2302  	 * Now we prove local_lock() cannot exist in that dependency. First we
2303  	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2304  	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2305  	 * wait context check will complain. And since B is not a sleep lock,
2306  	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2307  	 * local_lock() is 3, which is greater than 2, therefore there is no
2308  	 * way the local_lock() exists in the dependency B -> ... -> A.
2309  	 *
2310  	 * As a result, we will skip local_lock(), when we search for irq
2311  	 * inversion bugs.
2312  	 */
2313  	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2314  	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2315  		return false;
2316  
2317  	/*
2318  	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2319  	 * a lock and only used to override the wait_type.
2320  	 */
2321  
2322  	return true;
2323  }
2324  
2325  /*
2326   * Find a node in the forwards-direction dependency sub-graph starting
2327   * at @root->class that matches @bit.
2328   *
2329   * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2330   * into *@target_entry.
2331   */
2332  static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2333  find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2334  			struct lock_list **target_entry)
2335  {
2336  	enum bfs_result result;
2337  
2338  	debug_atomic_inc(nr_find_usage_forwards_checks);
2339  
2340  	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2341  
2342  	return result;
2343  }
2344  
2345  /*
2346   * Find a node in the backwards-direction dependency sub-graph starting
2347   * at @root->class that matches @bit.
2348   */
2349  static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2350  find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2351  			struct lock_list **target_entry)
2352  {
2353  	enum bfs_result result;
2354  
2355  	debug_atomic_inc(nr_find_usage_backwards_checks);
2356  
2357  	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2358  
2359  	return result;
2360  }
2361  
print_lock_class_header(struct lock_class * class,int depth)2362  static void print_lock_class_header(struct lock_class *class, int depth)
2363  {
2364  	int bit;
2365  
2366  	printk("%*s->", depth, "");
2367  	print_lock_name(NULL, class);
2368  #ifdef CONFIG_DEBUG_LOCKDEP
2369  	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2370  #endif
2371  	printk(KERN_CONT " {\n");
2372  
2373  	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2374  		if (class->usage_mask & (1 << bit)) {
2375  			int len = depth;
2376  
2377  			len += printk("%*s   %s", depth, "", usage_str[bit]);
2378  			len += printk(KERN_CONT " at:\n");
2379  			print_lock_trace(class->usage_traces[bit], len);
2380  		}
2381  	}
2382  	printk("%*s }\n", depth, "");
2383  
2384  	printk("%*s ... key      at: [<%px>] %pS\n",
2385  		depth, "", class->key, class->key);
2386  }
2387  
2388  /*
2389   * Dependency path printing:
2390   *
2391   * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2392   * printing out each lock in the dependency path will help on understanding how
2393   * the deadlock could happen. Here are some details about dependency path
2394   * printing:
2395   *
2396   * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2397   * 	for a lock dependency A -> B, there are two lock_lists:
2398   *
2399   * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2400   * 		->links_to is A. In this case, we can say the lock_list is
2401   * 		"A -> B" (forwards case).
2402   *
2403   * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2404   * 		and ->links_to is B. In this case, we can say the lock_list is
2405   * 		"B <- A" (bacwards case).
2406   *
2407   * 	The ->trace of both a) and b) point to the call trace where B was
2408   * 	acquired with A held.
2409   *
2410   * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2411   * 	represent a certain lock dependency, it only provides an initial entry
2412   * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2413   * 	->class is A, as a result BFS will search all dependencies starting with
2414   * 	A, e.g. A -> B or A -> C.
2415   *
2416   * 	The notation of a forwards helper lock_list is like "-> A", which means
2417   * 	we should search the forwards dependencies starting with "A", e.g A -> B
2418   * 	or A -> C.
2419   *
2420   * 	The notation of a bacwards helper lock_list is like "<- B", which means
2421   * 	we should search the backwards dependencies ending with "B", e.g.
2422   * 	B <- A or B <- C.
2423   */
2424  
2425  /*
2426   * printk the shortest lock dependencies from @root to @leaf in reverse order.
2427   *
2428   * We have a lock dependency path as follow:
2429   *
2430   *    @root                                                                 @leaf
2431   *      |                                                                     |
2432   *      V                                                                     V
2433   *	          ->parent                                   ->parent
2434   * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2435   * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2436   *
2437   * , so it's natural that we start from @leaf and print every ->class and
2438   * ->trace until we reach the @root.
2439   */
2440  static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2441  print_shortest_lock_dependencies(struct lock_list *leaf,
2442  				 struct lock_list *root)
2443  {
2444  	struct lock_list *entry = leaf;
2445  	int depth;
2446  
2447  	/*compute depth from generated tree by BFS*/
2448  	depth = get_lock_depth(leaf);
2449  
2450  	do {
2451  		print_lock_class_header(entry->class, depth);
2452  		printk("%*s ... acquired at:\n", depth, "");
2453  		print_lock_trace(entry->trace, 2);
2454  		printk("\n");
2455  
2456  		if (depth == 0 && (entry != root)) {
2457  			printk("lockdep:%s bad path found in chain graph\n", __func__);
2458  			break;
2459  		}
2460  
2461  		entry = get_lock_parent(entry);
2462  		depth--;
2463  	} while (entry && (depth >= 0));
2464  }
2465  
2466  /*
2467   * printk the shortest lock dependencies from @leaf to @root.
2468   *
2469   * We have a lock dependency path (from a backwards search) as follow:
2470   *
2471   *    @leaf                                                                 @root
2472   *      |                                                                     |
2473   *      V                                                                     V
2474   *	          ->parent                                   ->parent
2475   * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2476   * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2477   *
2478   * , so when we iterate from @leaf to @root, we actually print the lock
2479   * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2480   *
2481   * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2482   * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2483   * trace of L1 in the dependency path, which is alright, because most of the
2484   * time we can figure out where L1 is held from the call trace of L2.
2485   */
2486  static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2487  print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2488  					   struct lock_list *root)
2489  {
2490  	struct lock_list *entry = leaf;
2491  	const struct lock_trace *trace = NULL;
2492  	int depth;
2493  
2494  	/*compute depth from generated tree by BFS*/
2495  	depth = get_lock_depth(leaf);
2496  
2497  	do {
2498  		print_lock_class_header(entry->class, depth);
2499  		if (trace) {
2500  			printk("%*s ... acquired at:\n", depth, "");
2501  			print_lock_trace(trace, 2);
2502  			printk("\n");
2503  		}
2504  
2505  		/*
2506  		 * Record the pointer to the trace for the next lock_list
2507  		 * entry, see the comments for the function.
2508  		 */
2509  		trace = entry->trace;
2510  
2511  		if (depth == 0 && (entry != root)) {
2512  			printk("lockdep:%s bad path found in chain graph\n", __func__);
2513  			break;
2514  		}
2515  
2516  		entry = get_lock_parent(entry);
2517  		depth--;
2518  	} while (entry && (depth >= 0));
2519  }
2520  
2521  static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2522  print_irq_lock_scenario(struct lock_list *safe_entry,
2523  			struct lock_list *unsafe_entry,
2524  			struct lock_class *prev_class,
2525  			struct lock_class *next_class)
2526  {
2527  	struct lock_class *safe_class = safe_entry->class;
2528  	struct lock_class *unsafe_class = unsafe_entry->class;
2529  	struct lock_class *middle_class = prev_class;
2530  
2531  	if (middle_class == safe_class)
2532  		middle_class = next_class;
2533  
2534  	/*
2535  	 * A direct locking problem where unsafe_class lock is taken
2536  	 * directly by safe_class lock, then all we need to show
2537  	 * is the deadlock scenario, as it is obvious that the
2538  	 * unsafe lock is taken under the safe lock.
2539  	 *
2540  	 * But if there is a chain instead, where the safe lock takes
2541  	 * an intermediate lock (middle_class) where this lock is
2542  	 * not the same as the safe lock, then the lock chain is
2543  	 * used to describe the problem. Otherwise we would need
2544  	 * to show a different CPU case for each link in the chain
2545  	 * from the safe_class lock to the unsafe_class lock.
2546  	 */
2547  	if (middle_class != unsafe_class) {
2548  		printk("Chain exists of:\n  ");
2549  		__print_lock_name(NULL, safe_class);
2550  		printk(KERN_CONT " --> ");
2551  		__print_lock_name(NULL, middle_class);
2552  		printk(KERN_CONT " --> ");
2553  		__print_lock_name(NULL, unsafe_class);
2554  		printk(KERN_CONT "\n\n");
2555  	}
2556  
2557  	printk(" Possible interrupt unsafe locking scenario:\n\n");
2558  	printk("       CPU0                    CPU1\n");
2559  	printk("       ----                    ----\n");
2560  	printk("  lock(");
2561  	__print_lock_name(NULL, unsafe_class);
2562  	printk(KERN_CONT ");\n");
2563  	printk("                               local_irq_disable();\n");
2564  	printk("                               lock(");
2565  	__print_lock_name(NULL, safe_class);
2566  	printk(KERN_CONT ");\n");
2567  	printk("                               lock(");
2568  	__print_lock_name(NULL, middle_class);
2569  	printk(KERN_CONT ");\n");
2570  	printk("  <Interrupt>\n");
2571  	printk("    lock(");
2572  	__print_lock_name(NULL, safe_class);
2573  	printk(KERN_CONT ");\n");
2574  	printk("\n *** DEADLOCK ***\n\n");
2575  }
2576  
2577  static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2578  print_bad_irq_dependency(struct task_struct *curr,
2579  			 struct lock_list *prev_root,
2580  			 struct lock_list *next_root,
2581  			 struct lock_list *backwards_entry,
2582  			 struct lock_list *forwards_entry,
2583  			 struct held_lock *prev,
2584  			 struct held_lock *next,
2585  			 enum lock_usage_bit bit1,
2586  			 enum lock_usage_bit bit2,
2587  			 const char *irqclass)
2588  {
2589  	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2590  		return;
2591  
2592  	nbcon_cpu_emergency_enter();
2593  
2594  	pr_warn("\n");
2595  	pr_warn("=====================================================\n");
2596  	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2597  		irqclass, irqclass);
2598  	print_kernel_ident();
2599  	pr_warn("-----------------------------------------------------\n");
2600  	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2601  		curr->comm, task_pid_nr(curr),
2602  		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2603  		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2604  		lockdep_hardirqs_enabled(),
2605  		curr->softirqs_enabled);
2606  	print_lock(next);
2607  
2608  	pr_warn("\nand this task is already holding:\n");
2609  	print_lock(prev);
2610  	pr_warn("which would create a new lock dependency:\n");
2611  	print_lock_name(prev, hlock_class(prev));
2612  	pr_cont(" ->");
2613  	print_lock_name(next, hlock_class(next));
2614  	pr_cont("\n");
2615  
2616  	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2617  		irqclass);
2618  	print_lock_name(NULL, backwards_entry->class);
2619  	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2620  
2621  	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2622  
2623  	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2624  	print_lock_name(NULL, forwards_entry->class);
2625  	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2626  	pr_warn("...");
2627  
2628  	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2629  
2630  	pr_warn("\nother info that might help us debug this:\n\n");
2631  	print_irq_lock_scenario(backwards_entry, forwards_entry,
2632  				hlock_class(prev), hlock_class(next));
2633  
2634  	lockdep_print_held_locks(curr);
2635  
2636  	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2637  	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2638  
2639  	pr_warn("\nthe dependencies between the lock to be acquired");
2640  	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2641  	next_root->trace = save_trace();
2642  	if (!next_root->trace)
2643  		goto out;
2644  	print_shortest_lock_dependencies(forwards_entry, next_root);
2645  
2646  	pr_warn("\nstack backtrace:\n");
2647  	dump_stack();
2648  out:
2649  	nbcon_cpu_emergency_exit();
2650  }
2651  
2652  static const char *state_names[] = {
2653  #define LOCKDEP_STATE(__STATE) \
2654  	__stringify(__STATE),
2655  #include "lockdep_states.h"
2656  #undef LOCKDEP_STATE
2657  };
2658  
2659  static const char *state_rnames[] = {
2660  #define LOCKDEP_STATE(__STATE) \
2661  	__stringify(__STATE)"-READ",
2662  #include "lockdep_states.h"
2663  #undef LOCKDEP_STATE
2664  };
2665  
state_name(enum lock_usage_bit bit)2666  static inline const char *state_name(enum lock_usage_bit bit)
2667  {
2668  	if (bit & LOCK_USAGE_READ_MASK)
2669  		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2670  	else
2671  		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2672  }
2673  
2674  /*
2675   * The bit number is encoded like:
2676   *
2677   *  bit0: 0 exclusive, 1 read lock
2678   *  bit1: 0 used in irq, 1 irq enabled
2679   *  bit2-n: state
2680   */
exclusive_bit(int new_bit)2681  static int exclusive_bit(int new_bit)
2682  {
2683  	int state = new_bit & LOCK_USAGE_STATE_MASK;
2684  	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2685  
2686  	/*
2687  	 * keep state, bit flip the direction and strip read.
2688  	 */
2689  	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2690  }
2691  
2692  /*
2693   * Observe that when given a bitmask where each bitnr is encoded as above, a
2694   * right shift of the mask transforms the individual bitnrs as -1 and
2695   * conversely, a left shift transforms into +1 for the individual bitnrs.
2696   *
2697   * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2698   * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2699   * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2700   *
2701   * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2702   *
2703   * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2704   * all bits set) and recompose with bitnr1 flipped.
2705   */
invert_dir_mask(unsigned long mask)2706  static unsigned long invert_dir_mask(unsigned long mask)
2707  {
2708  	unsigned long excl = 0;
2709  
2710  	/* Invert dir */
2711  	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2712  	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2713  
2714  	return excl;
2715  }
2716  
2717  /*
2718   * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2719   * usage may cause deadlock too, for example:
2720   *
2721   * P1				P2
2722   * <irq disabled>
2723   * write_lock(l1);		<irq enabled>
2724   *				read_lock(l2);
2725   * write_lock(l2);
2726   * 				<in irq>
2727   * 				read_lock(l1);
2728   *
2729   * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2730   * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2731   * deadlock.
2732   *
2733   * In fact, all of the following cases may cause deadlocks:
2734   *
2735   * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2736   * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2737   * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2738   * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2739   *
2740   * As a result, to calculate the "exclusive mask", first we invert the
2741   * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2742   * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2743   * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2744   */
exclusive_mask(unsigned long mask)2745  static unsigned long exclusive_mask(unsigned long mask)
2746  {
2747  	unsigned long excl = invert_dir_mask(mask);
2748  
2749  	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2750  	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2751  
2752  	return excl;
2753  }
2754  
2755  /*
2756   * Retrieve the _possible_ original mask to which @mask is
2757   * exclusive. Ie: this is the opposite of exclusive_mask().
2758   * Note that 2 possible original bits can match an exclusive
2759   * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2760   * cleared. So both are returned for each exclusive bit.
2761   */
original_mask(unsigned long mask)2762  static unsigned long original_mask(unsigned long mask)
2763  {
2764  	unsigned long excl = invert_dir_mask(mask);
2765  
2766  	/* Include read in existing usages */
2767  	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2768  	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2769  
2770  	return excl;
2771  }
2772  
2773  /*
2774   * Find the first pair of bit match between an original
2775   * usage mask and an exclusive usage mask.
2776   */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2777  static int find_exclusive_match(unsigned long mask,
2778  				unsigned long excl_mask,
2779  				enum lock_usage_bit *bitp,
2780  				enum lock_usage_bit *excl_bitp)
2781  {
2782  	int bit, excl, excl_read;
2783  
2784  	for_each_set_bit(bit, &mask, LOCK_USED) {
2785  		/*
2786  		 * exclusive_bit() strips the read bit, however,
2787  		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2788  		 * to search excl | LOCK_USAGE_READ_MASK as well.
2789  		 */
2790  		excl = exclusive_bit(bit);
2791  		excl_read = excl | LOCK_USAGE_READ_MASK;
2792  		if (excl_mask & lock_flag(excl)) {
2793  			*bitp = bit;
2794  			*excl_bitp = excl;
2795  			return 0;
2796  		} else if (excl_mask & lock_flag(excl_read)) {
2797  			*bitp = bit;
2798  			*excl_bitp = excl_read;
2799  			return 0;
2800  		}
2801  	}
2802  	return -1;
2803  }
2804  
2805  /*
2806   * Prove that the new dependency does not connect a hardirq-safe(-read)
2807   * lock with a hardirq-unsafe lock - to achieve this we search
2808   * the backwards-subgraph starting at <prev>, and the
2809   * forwards-subgraph starting at <next>:
2810   */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2811  static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2812  			   struct held_lock *next)
2813  {
2814  	unsigned long usage_mask = 0, forward_mask, backward_mask;
2815  	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2816  	struct lock_list *target_entry1;
2817  	struct lock_list *target_entry;
2818  	struct lock_list this, that;
2819  	enum bfs_result ret;
2820  
2821  	/*
2822  	 * Step 1: gather all hard/soft IRQs usages backward in an
2823  	 * accumulated usage mask.
2824  	 */
2825  	bfs_init_rootb(&this, prev);
2826  
2827  	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2828  	if (bfs_error(ret)) {
2829  		print_bfs_bug(ret);
2830  		return 0;
2831  	}
2832  
2833  	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2834  	if (!usage_mask)
2835  		return 1;
2836  
2837  	/*
2838  	 * Step 2: find exclusive uses forward that match the previous
2839  	 * backward accumulated mask.
2840  	 */
2841  	forward_mask = exclusive_mask(usage_mask);
2842  
2843  	bfs_init_root(&that, next);
2844  
2845  	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2846  	if (bfs_error(ret)) {
2847  		print_bfs_bug(ret);
2848  		return 0;
2849  	}
2850  	if (ret == BFS_RNOMATCH)
2851  		return 1;
2852  
2853  	/*
2854  	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2855  	 * list whose usage mask matches the exclusive usage mask from the
2856  	 * lock found on the forward list.
2857  	 *
2858  	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2859  	 * the follow case:
2860  	 *
2861  	 * When trying to add A -> B to the graph, we find that there is a
2862  	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2863  	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2864  	 * invert bits of M's usage_mask, we will find another lock N that is
2865  	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2866  	 * cause a inversion deadlock.
2867  	 */
2868  	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2869  
2870  	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2871  	if (bfs_error(ret)) {
2872  		print_bfs_bug(ret);
2873  		return 0;
2874  	}
2875  	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2876  		return 1;
2877  
2878  	/*
2879  	 * Step 4: narrow down to a pair of incompatible usage bits
2880  	 * and report it.
2881  	 */
2882  	ret = find_exclusive_match(target_entry->class->usage_mask,
2883  				   target_entry1->class->usage_mask,
2884  				   &backward_bit, &forward_bit);
2885  	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2886  		return 1;
2887  
2888  	print_bad_irq_dependency(curr, &this, &that,
2889  				 target_entry, target_entry1,
2890  				 prev, next,
2891  				 backward_bit, forward_bit,
2892  				 state_name(backward_bit));
2893  
2894  	return 0;
2895  }
2896  
2897  #else
2898  
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2899  static inline int check_irq_usage(struct task_struct *curr,
2900  				  struct held_lock *prev, struct held_lock *next)
2901  {
2902  	return 1;
2903  }
2904  
usage_skip(struct lock_list * entry,void * mask)2905  static inline bool usage_skip(struct lock_list *entry, void *mask)
2906  {
2907  	return false;
2908  }
2909  
2910  #endif /* CONFIG_TRACE_IRQFLAGS */
2911  
2912  #ifdef CONFIG_LOCKDEP_SMALL
2913  /*
2914   * Check that the dependency graph starting at <src> can lead to
2915   * <target> or not. If it can, <src> -> <target> dependency is already
2916   * in the graph.
2917   *
2918   * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2919   * any error appears in the bfs search.
2920   */
2921  static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2922  check_redundant(struct held_lock *src, struct held_lock *target)
2923  {
2924  	enum bfs_result ret;
2925  	struct lock_list *target_entry;
2926  	struct lock_list src_entry;
2927  
2928  	bfs_init_root(&src_entry, src);
2929  	/*
2930  	 * Special setup for check_redundant().
2931  	 *
2932  	 * To report redundant, we need to find a strong dependency path that
2933  	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2934  	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2935  	 * we achieve this by setting the initial node's ->only_xr to true in
2936  	 * that case. And if <prev> is S, we set initial ->only_xr to false
2937  	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2938  	 */
2939  	src_entry.only_xr = src->read == 0;
2940  
2941  	debug_atomic_inc(nr_redundant_checks);
2942  
2943  	/*
2944  	 * Note: we skip local_lock() for redundant check, because as the
2945  	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2946  	 * the same.
2947  	 */
2948  	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2949  
2950  	if (ret == BFS_RMATCH)
2951  		debug_atomic_inc(nr_redundant);
2952  
2953  	return ret;
2954  }
2955  
2956  #else
2957  
2958  static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2959  check_redundant(struct held_lock *src, struct held_lock *target)
2960  {
2961  	return BFS_RNOMATCH;
2962  }
2963  
2964  #endif
2965  
inc_chains(int irq_context)2966  static void inc_chains(int irq_context)
2967  {
2968  	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2969  		nr_hardirq_chains++;
2970  	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2971  		nr_softirq_chains++;
2972  	else
2973  		nr_process_chains++;
2974  }
2975  
dec_chains(int irq_context)2976  static void dec_chains(int irq_context)
2977  {
2978  	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2979  		nr_hardirq_chains--;
2980  	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2981  		nr_softirq_chains--;
2982  	else
2983  		nr_process_chains--;
2984  }
2985  
2986  static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2987  print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2988  {
2989  	struct lock_class *next = hlock_class(nxt);
2990  	struct lock_class *prev = hlock_class(prv);
2991  
2992  	printk(" Possible unsafe locking scenario:\n\n");
2993  	printk("       CPU0\n");
2994  	printk("       ----\n");
2995  	printk("  lock(");
2996  	__print_lock_name(prv, prev);
2997  	printk(KERN_CONT ");\n");
2998  	printk("  lock(");
2999  	__print_lock_name(nxt, next);
3000  	printk(KERN_CONT ");\n");
3001  	printk("\n *** DEADLOCK ***\n\n");
3002  	printk(" May be due to missing lock nesting notation\n\n");
3003  }
3004  
3005  static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)3006  print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3007  		   struct held_lock *next)
3008  {
3009  	struct lock_class *class = hlock_class(prev);
3010  
3011  	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3012  		return;
3013  
3014  	nbcon_cpu_emergency_enter();
3015  
3016  	pr_warn("\n");
3017  	pr_warn("============================================\n");
3018  	pr_warn("WARNING: possible recursive locking detected\n");
3019  	print_kernel_ident();
3020  	pr_warn("--------------------------------------------\n");
3021  	pr_warn("%s/%d is trying to acquire lock:\n",
3022  		curr->comm, task_pid_nr(curr));
3023  	print_lock(next);
3024  	pr_warn("\nbut task is already holding lock:\n");
3025  	print_lock(prev);
3026  
3027  	if (class->cmp_fn) {
3028  		pr_warn("and the lock comparison function returns %i:\n",
3029  			class->cmp_fn(prev->instance, next->instance));
3030  	}
3031  
3032  	pr_warn("\nother info that might help us debug this:\n");
3033  	print_deadlock_scenario(next, prev);
3034  	lockdep_print_held_locks(curr);
3035  
3036  	pr_warn("\nstack backtrace:\n");
3037  	dump_stack();
3038  
3039  	nbcon_cpu_emergency_exit();
3040  }
3041  
3042  /*
3043   * Check whether we are holding such a class already.
3044   *
3045   * (Note that this has to be done separately, because the graph cannot
3046   * detect such classes of deadlocks.)
3047   *
3048   * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3049   * lock class is held but nest_lock is also held, i.e. we rely on the
3050   * nest_lock to avoid the deadlock.
3051   */
3052  static int
check_deadlock(struct task_struct * curr,struct held_lock * next)3053  check_deadlock(struct task_struct *curr, struct held_lock *next)
3054  {
3055  	struct lock_class *class;
3056  	struct held_lock *prev;
3057  	struct held_lock *nest = NULL;
3058  	int i;
3059  
3060  	for (i = 0; i < curr->lockdep_depth; i++) {
3061  		prev = curr->held_locks + i;
3062  
3063  		if (prev->instance == next->nest_lock)
3064  			nest = prev;
3065  
3066  		if (hlock_class(prev) != hlock_class(next))
3067  			continue;
3068  
3069  		/*
3070  		 * Allow read-after-read recursion of the same
3071  		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3072  		 */
3073  		if ((next->read == 2) && prev->read)
3074  			continue;
3075  
3076  		class = hlock_class(prev);
3077  
3078  		if (class->cmp_fn &&
3079  		    class->cmp_fn(prev->instance, next->instance) < 0)
3080  			continue;
3081  
3082  		/*
3083  		 * We're holding the nest_lock, which serializes this lock's
3084  		 * nesting behaviour.
3085  		 */
3086  		if (nest)
3087  			return 2;
3088  
3089  		print_deadlock_bug(curr, prev, next);
3090  		return 0;
3091  	}
3092  	return 1;
3093  }
3094  
3095  /*
3096   * There was a chain-cache miss, and we are about to add a new dependency
3097   * to a previous lock. We validate the following rules:
3098   *
3099   *  - would the adding of the <prev> -> <next> dependency create a
3100   *    circular dependency in the graph? [== circular deadlock]
3101   *
3102   *  - does the new prev->next dependency connect any hardirq-safe lock
3103   *    (in the full backwards-subgraph starting at <prev>) with any
3104   *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3105   *    <next>)? [== illegal lock inversion with hardirq contexts]
3106   *
3107   *  - does the new prev->next dependency connect any softirq-safe lock
3108   *    (in the full backwards-subgraph starting at <prev>) with any
3109   *    softirq-unsafe lock (in the full forwards-subgraph starting at
3110   *    <next>)? [== illegal lock inversion with softirq contexts]
3111   *
3112   * any of these scenarios could lead to a deadlock.
3113   *
3114   * Then if all the validations pass, we add the forwards and backwards
3115   * dependency.
3116   */
3117  static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3118  check_prev_add(struct task_struct *curr, struct held_lock *prev,
3119  	       struct held_lock *next, u16 distance,
3120  	       struct lock_trace **const trace)
3121  {
3122  	struct lock_list *entry;
3123  	enum bfs_result ret;
3124  
3125  	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3126  		/*
3127  		 * The warning statements below may trigger a use-after-free
3128  		 * of the class name. It is better to trigger a use-after free
3129  		 * and to have the class name most of the time instead of not
3130  		 * having the class name available.
3131  		 */
3132  		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3133  			  "Detected use-after-free of lock class %px/%s\n",
3134  			  hlock_class(prev),
3135  			  hlock_class(prev)->name);
3136  		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3137  			  "Detected use-after-free of lock class %px/%s\n",
3138  			  hlock_class(next),
3139  			  hlock_class(next)->name);
3140  		return 2;
3141  	}
3142  
3143  	if (prev->class_idx == next->class_idx) {
3144  		struct lock_class *class = hlock_class(prev);
3145  
3146  		if (class->cmp_fn &&
3147  		    class->cmp_fn(prev->instance, next->instance) < 0)
3148  			return 2;
3149  	}
3150  
3151  	/*
3152  	 * Prove that the new <prev> -> <next> dependency would not
3153  	 * create a circular dependency in the graph. (We do this by
3154  	 * a breadth-first search into the graph starting at <next>,
3155  	 * and check whether we can reach <prev>.)
3156  	 *
3157  	 * The search is limited by the size of the circular queue (i.e.,
3158  	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3159  	 * in the graph whose neighbours are to be checked.
3160  	 */
3161  	ret = check_noncircular(next, prev, trace);
3162  	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3163  		return 0;
3164  
3165  	if (!check_irq_usage(curr, prev, next))
3166  		return 0;
3167  
3168  	/*
3169  	 * Is the <prev> -> <next> dependency already present?
3170  	 *
3171  	 * (this may occur even though this is a new chain: consider
3172  	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3173  	 *  chains - the second one will be new, but L1 already has
3174  	 *  L2 added to its dependency list, due to the first chain.)
3175  	 */
3176  	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3177  		if (entry->class == hlock_class(next)) {
3178  			if (distance == 1)
3179  				entry->distance = 1;
3180  			entry->dep |= calc_dep(prev, next);
3181  
3182  			/*
3183  			 * Also, update the reverse dependency in @next's
3184  			 * ->locks_before list.
3185  			 *
3186  			 *  Here we reuse @entry as the cursor, which is fine
3187  			 *  because we won't go to the next iteration of the
3188  			 *  outer loop:
3189  			 *
3190  			 *  For normal cases, we return in the inner loop.
3191  			 *
3192  			 *  If we fail to return, we have inconsistency, i.e.
3193  			 *  <prev>::locks_after contains <next> while
3194  			 *  <next>::locks_before doesn't contain <prev>. In
3195  			 *  that case, we return after the inner and indicate
3196  			 *  something is wrong.
3197  			 */
3198  			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3199  				if (entry->class == hlock_class(prev)) {
3200  					if (distance == 1)
3201  						entry->distance = 1;
3202  					entry->dep |= calc_depb(prev, next);
3203  					return 1;
3204  				}
3205  			}
3206  
3207  			/* <prev> is not found in <next>::locks_before */
3208  			return 0;
3209  		}
3210  	}
3211  
3212  	/*
3213  	 * Is the <prev> -> <next> link redundant?
3214  	 */
3215  	ret = check_redundant(prev, next);
3216  	if (bfs_error(ret))
3217  		return 0;
3218  	else if (ret == BFS_RMATCH)
3219  		return 2;
3220  
3221  	if (!*trace) {
3222  		*trace = save_trace();
3223  		if (!*trace)
3224  			return 0;
3225  	}
3226  
3227  	/*
3228  	 * Ok, all validations passed, add the new lock
3229  	 * to the previous lock's dependency list:
3230  	 */
3231  	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3232  			       &hlock_class(prev)->locks_after, distance,
3233  			       calc_dep(prev, next), *trace);
3234  
3235  	if (!ret)
3236  		return 0;
3237  
3238  	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3239  			       &hlock_class(next)->locks_before, distance,
3240  			       calc_depb(prev, next), *trace);
3241  	if (!ret)
3242  		return 0;
3243  
3244  	return 2;
3245  }
3246  
3247  /*
3248   * Add the dependency to all directly-previous locks that are 'relevant'.
3249   * The ones that are relevant are (in increasing distance from curr):
3250   * all consecutive trylock entries and the final non-trylock entry - or
3251   * the end of this context's lock-chain - whichever comes first.
3252   */
3253  static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3254  check_prevs_add(struct task_struct *curr, struct held_lock *next)
3255  {
3256  	struct lock_trace *trace = NULL;
3257  	int depth = curr->lockdep_depth;
3258  	struct held_lock *hlock;
3259  
3260  	/*
3261  	 * Debugging checks.
3262  	 *
3263  	 * Depth must not be zero for a non-head lock:
3264  	 */
3265  	if (!depth)
3266  		goto out_bug;
3267  	/*
3268  	 * At least two relevant locks must exist for this
3269  	 * to be a head:
3270  	 */
3271  	if (curr->held_locks[depth].irq_context !=
3272  			curr->held_locks[depth-1].irq_context)
3273  		goto out_bug;
3274  
3275  	for (;;) {
3276  		u16 distance = curr->lockdep_depth - depth + 1;
3277  		hlock = curr->held_locks + depth - 1;
3278  
3279  		if (hlock->check) {
3280  			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3281  			if (!ret)
3282  				return 0;
3283  
3284  			/*
3285  			 * Stop after the first non-trylock entry,
3286  			 * as non-trylock entries have added their
3287  			 * own direct dependencies already, so this
3288  			 * lock is connected to them indirectly:
3289  			 */
3290  			if (!hlock->trylock)
3291  				break;
3292  		}
3293  
3294  		depth--;
3295  		/*
3296  		 * End of lock-stack?
3297  		 */
3298  		if (!depth)
3299  			break;
3300  		/*
3301  		 * Stop the search if we cross into another context:
3302  		 */
3303  		if (curr->held_locks[depth].irq_context !=
3304  				curr->held_locks[depth-1].irq_context)
3305  			break;
3306  	}
3307  	return 1;
3308  out_bug:
3309  	if (!debug_locks_off_graph_unlock())
3310  		return 0;
3311  
3312  	/*
3313  	 * Clearly we all shouldn't be here, but since we made it we
3314  	 * can reliable say we messed up our state. See the above two
3315  	 * gotos for reasons why we could possibly end up here.
3316  	 */
3317  	WARN_ON(1);
3318  
3319  	return 0;
3320  }
3321  
3322  struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3323  static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3324  static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3325  unsigned long nr_zapped_lock_chains;
3326  unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3327  unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3328  unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3329  
3330  /*
3331   * The first 2 chain_hlocks entries in the chain block in the bucket
3332   * list contains the following meta data:
3333   *
3334   *   entry[0]:
3335   *     Bit    15 - always set to 1 (it is not a class index)
3336   *     Bits 0-14 - upper 15 bits of the next block index
3337   *   entry[1]    - lower 16 bits of next block index
3338   *
3339   * A next block index of all 1 bits means it is the end of the list.
3340   *
3341   * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3342   * the chain block size:
3343   *
3344   *   entry[2] - upper 16 bits of the chain block size
3345   *   entry[3] - lower 16 bits of the chain block size
3346   */
3347  #define MAX_CHAIN_BUCKETS	16
3348  #define CHAIN_BLK_FLAG		(1U << 15)
3349  #define CHAIN_BLK_LIST_END	0xFFFFU
3350  
3351  static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3352  
size_to_bucket(int size)3353  static inline int size_to_bucket(int size)
3354  {
3355  	if (size > MAX_CHAIN_BUCKETS)
3356  		return 0;
3357  
3358  	return size - 1;
3359  }
3360  
3361  /*
3362   * Iterate all the chain blocks in a bucket.
3363   */
3364  #define for_each_chain_block(bucket, prev, curr)		\
3365  	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3366  	     (curr) >= 0;					\
3367  	     (prev) = (curr), (curr) = chain_block_next(curr))
3368  
3369  /*
3370   * next block or -1
3371   */
chain_block_next(int offset)3372  static inline int chain_block_next(int offset)
3373  {
3374  	int next = chain_hlocks[offset];
3375  
3376  	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3377  
3378  	if (next == CHAIN_BLK_LIST_END)
3379  		return -1;
3380  
3381  	next &= ~CHAIN_BLK_FLAG;
3382  	next <<= 16;
3383  	next |= chain_hlocks[offset + 1];
3384  
3385  	return next;
3386  }
3387  
3388  /*
3389   * bucket-0 only
3390   */
chain_block_size(int offset)3391  static inline int chain_block_size(int offset)
3392  {
3393  	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3394  }
3395  
init_chain_block(int offset,int next,int bucket,int size)3396  static inline void init_chain_block(int offset, int next, int bucket, int size)
3397  {
3398  	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3399  	chain_hlocks[offset + 1] = (u16)next;
3400  
3401  	if (size && !bucket) {
3402  		chain_hlocks[offset + 2] = size >> 16;
3403  		chain_hlocks[offset + 3] = (u16)size;
3404  	}
3405  }
3406  
add_chain_block(int offset,int size)3407  static inline void add_chain_block(int offset, int size)
3408  {
3409  	int bucket = size_to_bucket(size);
3410  	int next = chain_block_buckets[bucket];
3411  	int prev, curr;
3412  
3413  	if (unlikely(size < 2)) {
3414  		/*
3415  		 * We can't store single entries on the freelist. Leak them.
3416  		 *
3417  		 * One possible way out would be to uniquely mark them, other
3418  		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3419  		 * the block before it is re-added.
3420  		 */
3421  		if (size)
3422  			nr_lost_chain_hlocks++;
3423  		return;
3424  	}
3425  
3426  	nr_free_chain_hlocks += size;
3427  	if (!bucket) {
3428  		nr_large_chain_blocks++;
3429  
3430  		/*
3431  		 * Variable sized, sort large to small.
3432  		 */
3433  		for_each_chain_block(0, prev, curr) {
3434  			if (size >= chain_block_size(curr))
3435  				break;
3436  		}
3437  		init_chain_block(offset, curr, 0, size);
3438  		if (prev < 0)
3439  			chain_block_buckets[0] = offset;
3440  		else
3441  			init_chain_block(prev, offset, 0, 0);
3442  		return;
3443  	}
3444  	/*
3445  	 * Fixed size, add to head.
3446  	 */
3447  	init_chain_block(offset, next, bucket, size);
3448  	chain_block_buckets[bucket] = offset;
3449  }
3450  
3451  /*
3452   * Only the first block in the list can be deleted.
3453   *
3454   * For the variable size bucket[0], the first block (the largest one) is
3455   * returned, broken up and put back into the pool. So if a chain block of
3456   * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3457   * queued up after the primordial chain block and never be used until the
3458   * hlock entries in the primordial chain block is almost used up. That
3459   * causes fragmentation and reduce allocation efficiency. That can be
3460   * monitored by looking at the "large chain blocks" number in lockdep_stats.
3461   */
del_chain_block(int bucket,int size,int next)3462  static inline void del_chain_block(int bucket, int size, int next)
3463  {
3464  	nr_free_chain_hlocks -= size;
3465  	chain_block_buckets[bucket] = next;
3466  
3467  	if (!bucket)
3468  		nr_large_chain_blocks--;
3469  }
3470  
init_chain_block_buckets(void)3471  static void init_chain_block_buckets(void)
3472  {
3473  	int i;
3474  
3475  	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3476  		chain_block_buckets[i] = -1;
3477  
3478  	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3479  }
3480  
3481  /*
3482   * Return offset of a chain block of the right size or -1 if not found.
3483   *
3484   * Fairly simple worst-fit allocator with the addition of a number of size
3485   * specific free lists.
3486   */
alloc_chain_hlocks(int req)3487  static int alloc_chain_hlocks(int req)
3488  {
3489  	int bucket, curr, size;
3490  
3491  	/*
3492  	 * We rely on the MSB to act as an escape bit to denote freelist
3493  	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3494  	 */
3495  	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3496  
3497  	init_data_structures_once();
3498  
3499  	if (nr_free_chain_hlocks < req)
3500  		return -1;
3501  
3502  	/*
3503  	 * We require a minimum of 2 (u16) entries to encode a freelist
3504  	 * 'pointer'.
3505  	 */
3506  	req = max(req, 2);
3507  	bucket = size_to_bucket(req);
3508  	curr = chain_block_buckets[bucket];
3509  
3510  	if (bucket) {
3511  		if (curr >= 0) {
3512  			del_chain_block(bucket, req, chain_block_next(curr));
3513  			return curr;
3514  		}
3515  		/* Try bucket 0 */
3516  		curr = chain_block_buckets[0];
3517  	}
3518  
3519  	/*
3520  	 * The variable sized freelist is sorted by size; the first entry is
3521  	 * the largest. Use it if it fits.
3522  	 */
3523  	if (curr >= 0) {
3524  		size = chain_block_size(curr);
3525  		if (likely(size >= req)) {
3526  			del_chain_block(0, size, chain_block_next(curr));
3527  			if (size > req)
3528  				add_chain_block(curr + req, size - req);
3529  			return curr;
3530  		}
3531  	}
3532  
3533  	/*
3534  	 * Last resort, split a block in a larger sized bucket.
3535  	 */
3536  	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3537  		bucket = size_to_bucket(size);
3538  		curr = chain_block_buckets[bucket];
3539  		if (curr < 0)
3540  			continue;
3541  
3542  		del_chain_block(bucket, size, chain_block_next(curr));
3543  		add_chain_block(curr + req, size - req);
3544  		return curr;
3545  	}
3546  
3547  	return -1;
3548  }
3549  
free_chain_hlocks(int base,int size)3550  static inline void free_chain_hlocks(int base, int size)
3551  {
3552  	add_chain_block(base, max(size, 2));
3553  }
3554  
lock_chain_get_class(struct lock_chain * chain,int i)3555  struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3556  {
3557  	u16 chain_hlock = chain_hlocks[chain->base + i];
3558  	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3559  
3560  	return lock_classes + class_idx;
3561  }
3562  
3563  /*
3564   * Returns the index of the first held_lock of the current chain
3565   */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3566  static inline int get_first_held_lock(struct task_struct *curr,
3567  					struct held_lock *hlock)
3568  {
3569  	int i;
3570  	struct held_lock *hlock_curr;
3571  
3572  	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3573  		hlock_curr = curr->held_locks + i;
3574  		if (hlock_curr->irq_context != hlock->irq_context)
3575  			break;
3576  
3577  	}
3578  
3579  	return ++i;
3580  }
3581  
3582  #ifdef CONFIG_DEBUG_LOCKDEP
3583  /*
3584   * Returns the next chain_key iteration
3585   */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3586  static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3587  {
3588  	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3589  
3590  	printk(" hlock_id:%d -> chain_key:%016Lx",
3591  		(unsigned int)hlock_id,
3592  		(unsigned long long)new_chain_key);
3593  	return new_chain_key;
3594  }
3595  
3596  static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3597  print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3598  {
3599  	struct held_lock *hlock;
3600  	u64 chain_key = INITIAL_CHAIN_KEY;
3601  	int depth = curr->lockdep_depth;
3602  	int i = get_first_held_lock(curr, hlock_next);
3603  
3604  	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3605  		hlock_next->irq_context);
3606  	for (; i < depth; i++) {
3607  		hlock = curr->held_locks + i;
3608  		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3609  
3610  		print_lock(hlock);
3611  	}
3612  
3613  	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3614  	print_lock(hlock_next);
3615  }
3616  
print_chain_keys_chain(struct lock_chain * chain)3617  static void print_chain_keys_chain(struct lock_chain *chain)
3618  {
3619  	int i;
3620  	u64 chain_key = INITIAL_CHAIN_KEY;
3621  	u16 hlock_id;
3622  
3623  	printk("depth: %u\n", chain->depth);
3624  	for (i = 0; i < chain->depth; i++) {
3625  		hlock_id = chain_hlocks[chain->base + i];
3626  		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3627  
3628  		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3629  		printk("\n");
3630  	}
3631  }
3632  
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3633  static void print_collision(struct task_struct *curr,
3634  			struct held_lock *hlock_next,
3635  			struct lock_chain *chain)
3636  {
3637  	nbcon_cpu_emergency_enter();
3638  
3639  	pr_warn("\n");
3640  	pr_warn("============================\n");
3641  	pr_warn("WARNING: chain_key collision\n");
3642  	print_kernel_ident();
3643  	pr_warn("----------------------------\n");
3644  	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3645  	pr_warn("Hash chain already cached but the contents don't match!\n");
3646  
3647  	pr_warn("Held locks:");
3648  	print_chain_keys_held_locks(curr, hlock_next);
3649  
3650  	pr_warn("Locks in cached chain:");
3651  	print_chain_keys_chain(chain);
3652  
3653  	pr_warn("\nstack backtrace:\n");
3654  	dump_stack();
3655  
3656  	nbcon_cpu_emergency_exit();
3657  }
3658  #endif
3659  
3660  /*
3661   * Checks whether the chain and the current held locks are consistent
3662   * in depth and also in content. If they are not it most likely means
3663   * that there was a collision during the calculation of the chain_key.
3664   * Returns: 0 not passed, 1 passed
3665   */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3666  static int check_no_collision(struct task_struct *curr,
3667  			struct held_lock *hlock,
3668  			struct lock_chain *chain)
3669  {
3670  #ifdef CONFIG_DEBUG_LOCKDEP
3671  	int i, j, id;
3672  
3673  	i = get_first_held_lock(curr, hlock);
3674  
3675  	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3676  		print_collision(curr, hlock, chain);
3677  		return 0;
3678  	}
3679  
3680  	for (j = 0; j < chain->depth - 1; j++, i++) {
3681  		id = hlock_id(&curr->held_locks[i]);
3682  
3683  		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3684  			print_collision(curr, hlock, chain);
3685  			return 0;
3686  		}
3687  	}
3688  #endif
3689  	return 1;
3690  }
3691  
3692  /*
3693   * Given an index that is >= -1, return the index of the next lock chain.
3694   * Return -2 if there is no next lock chain.
3695   */
lockdep_next_lockchain(long i)3696  long lockdep_next_lockchain(long i)
3697  {
3698  	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3699  	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3700  }
3701  
lock_chain_count(void)3702  unsigned long lock_chain_count(void)
3703  {
3704  	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3705  }
3706  
3707  /* Must be called with the graph lock held. */
alloc_lock_chain(void)3708  static struct lock_chain *alloc_lock_chain(void)
3709  {
3710  	int idx = find_first_zero_bit(lock_chains_in_use,
3711  				      ARRAY_SIZE(lock_chains));
3712  
3713  	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3714  		return NULL;
3715  	__set_bit(idx, lock_chains_in_use);
3716  	return lock_chains + idx;
3717  }
3718  
3719  /*
3720   * Adds a dependency chain into chain hashtable. And must be called with
3721   * graph_lock held.
3722   *
3723   * Return 0 if fail, and graph_lock is released.
3724   * Return 1 if succeed, with graph_lock held.
3725   */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3726  static inline int add_chain_cache(struct task_struct *curr,
3727  				  struct held_lock *hlock,
3728  				  u64 chain_key)
3729  {
3730  	struct hlist_head *hash_head = chainhashentry(chain_key);
3731  	struct lock_chain *chain;
3732  	int i, j;
3733  
3734  	/*
3735  	 * The caller must hold the graph lock, ensure we've got IRQs
3736  	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3737  	 * lockdep won't complain about its own locking errors.
3738  	 */
3739  	if (lockdep_assert_locked())
3740  		return 0;
3741  
3742  	chain = alloc_lock_chain();
3743  	if (!chain) {
3744  		if (!debug_locks_off_graph_unlock())
3745  			return 0;
3746  
3747  		nbcon_cpu_emergency_enter();
3748  		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3749  		dump_stack();
3750  		nbcon_cpu_emergency_exit();
3751  		return 0;
3752  	}
3753  	chain->chain_key = chain_key;
3754  	chain->irq_context = hlock->irq_context;
3755  	i = get_first_held_lock(curr, hlock);
3756  	chain->depth = curr->lockdep_depth + 1 - i;
3757  
3758  	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3759  	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3760  	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3761  
3762  	j = alloc_chain_hlocks(chain->depth);
3763  	if (j < 0) {
3764  		if (!debug_locks_off_graph_unlock())
3765  			return 0;
3766  
3767  		nbcon_cpu_emergency_enter();
3768  		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3769  		dump_stack();
3770  		nbcon_cpu_emergency_exit();
3771  		return 0;
3772  	}
3773  
3774  	chain->base = j;
3775  	for (j = 0; j < chain->depth - 1; j++, i++) {
3776  		int lock_id = hlock_id(curr->held_locks + i);
3777  
3778  		chain_hlocks[chain->base + j] = lock_id;
3779  	}
3780  	chain_hlocks[chain->base + j] = hlock_id(hlock);
3781  	hlist_add_head_rcu(&chain->entry, hash_head);
3782  	debug_atomic_inc(chain_lookup_misses);
3783  	inc_chains(chain->irq_context);
3784  
3785  	return 1;
3786  }
3787  
3788  /*
3789   * Look up a dependency chain. Must be called with either the graph lock or
3790   * the RCU read lock held.
3791   */
lookup_chain_cache(u64 chain_key)3792  static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3793  {
3794  	struct hlist_head *hash_head = chainhashentry(chain_key);
3795  	struct lock_chain *chain;
3796  
3797  	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3798  		if (READ_ONCE(chain->chain_key) == chain_key) {
3799  			debug_atomic_inc(chain_lookup_hits);
3800  			return chain;
3801  		}
3802  	}
3803  	return NULL;
3804  }
3805  
3806  /*
3807   * If the key is not present yet in dependency chain cache then
3808   * add it and return 1 - in this case the new dependency chain is
3809   * validated. If the key is already hashed, return 0.
3810   * (On return with 1 graph_lock is held.)
3811   */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3812  static inline int lookup_chain_cache_add(struct task_struct *curr,
3813  					 struct held_lock *hlock,
3814  					 u64 chain_key)
3815  {
3816  	struct lock_class *class = hlock_class(hlock);
3817  	struct lock_chain *chain = lookup_chain_cache(chain_key);
3818  
3819  	if (chain) {
3820  cache_hit:
3821  		if (!check_no_collision(curr, hlock, chain))
3822  			return 0;
3823  
3824  		if (very_verbose(class)) {
3825  			printk("\nhash chain already cached, key: "
3826  					"%016Lx tail class: [%px] %s\n",
3827  					(unsigned long long)chain_key,
3828  					class->key, class->name);
3829  		}
3830  
3831  		return 0;
3832  	}
3833  
3834  	if (very_verbose(class)) {
3835  		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3836  			(unsigned long long)chain_key, class->key, class->name);
3837  	}
3838  
3839  	if (!graph_lock())
3840  		return 0;
3841  
3842  	/*
3843  	 * We have to walk the chain again locked - to avoid duplicates:
3844  	 */
3845  	chain = lookup_chain_cache(chain_key);
3846  	if (chain) {
3847  		graph_unlock();
3848  		goto cache_hit;
3849  	}
3850  
3851  	if (!add_chain_cache(curr, hlock, chain_key))
3852  		return 0;
3853  
3854  	return 1;
3855  }
3856  
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3857  static int validate_chain(struct task_struct *curr,
3858  			  struct held_lock *hlock,
3859  			  int chain_head, u64 chain_key)
3860  {
3861  	/*
3862  	 * Trylock needs to maintain the stack of held locks, but it
3863  	 * does not add new dependencies, because trylock can be done
3864  	 * in any order.
3865  	 *
3866  	 * We look up the chain_key and do the O(N^2) check and update of
3867  	 * the dependencies only if this is a new dependency chain.
3868  	 * (If lookup_chain_cache_add() return with 1 it acquires
3869  	 * graph_lock for us)
3870  	 */
3871  	if (!hlock->trylock && hlock->check &&
3872  	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3873  		/*
3874  		 * Check whether last held lock:
3875  		 *
3876  		 * - is irq-safe, if this lock is irq-unsafe
3877  		 * - is softirq-safe, if this lock is hardirq-unsafe
3878  		 *
3879  		 * And check whether the new lock's dependency graph
3880  		 * could lead back to the previous lock:
3881  		 *
3882  		 * - within the current held-lock stack
3883  		 * - across our accumulated lock dependency records
3884  		 *
3885  		 * any of these scenarios could lead to a deadlock.
3886  		 */
3887  		/*
3888  		 * The simple case: does the current hold the same lock
3889  		 * already?
3890  		 */
3891  		int ret = check_deadlock(curr, hlock);
3892  
3893  		if (!ret)
3894  			return 0;
3895  		/*
3896  		 * Add dependency only if this lock is not the head
3897  		 * of the chain, and if the new lock introduces no more
3898  		 * lock dependency (because we already hold a lock with the
3899  		 * same lock class) nor deadlock (because the nest_lock
3900  		 * serializes nesting locks), see the comments for
3901  		 * check_deadlock().
3902  		 */
3903  		if (!chain_head && ret != 2) {
3904  			if (!check_prevs_add(curr, hlock))
3905  				return 0;
3906  		}
3907  
3908  		graph_unlock();
3909  	} else {
3910  		/* after lookup_chain_cache_add(): */
3911  		if (unlikely(!debug_locks))
3912  			return 0;
3913  	}
3914  
3915  	return 1;
3916  }
3917  #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3918  static inline int validate_chain(struct task_struct *curr,
3919  				 struct held_lock *hlock,
3920  				 int chain_head, u64 chain_key)
3921  {
3922  	return 1;
3923  }
3924  
init_chain_block_buckets(void)3925  static void init_chain_block_buckets(void)	{ }
3926  #endif /* CONFIG_PROVE_LOCKING */
3927  
3928  /*
3929   * We are building curr_chain_key incrementally, so double-check
3930   * it from scratch, to make sure that it's done correctly:
3931   */
check_chain_key(struct task_struct * curr)3932  static void check_chain_key(struct task_struct *curr)
3933  {
3934  #ifdef CONFIG_DEBUG_LOCKDEP
3935  	struct held_lock *hlock, *prev_hlock = NULL;
3936  	unsigned int i;
3937  	u64 chain_key = INITIAL_CHAIN_KEY;
3938  
3939  	for (i = 0; i < curr->lockdep_depth; i++) {
3940  		hlock = curr->held_locks + i;
3941  		if (chain_key != hlock->prev_chain_key) {
3942  			debug_locks_off();
3943  			/*
3944  			 * We got mighty confused, our chain keys don't match
3945  			 * with what we expect, someone trample on our task state?
3946  			 */
3947  			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3948  				curr->lockdep_depth, i,
3949  				(unsigned long long)chain_key,
3950  				(unsigned long long)hlock->prev_chain_key);
3951  			return;
3952  		}
3953  
3954  		/*
3955  		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3956  		 * it registered lock class index?
3957  		 */
3958  		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3959  			return;
3960  
3961  		if (prev_hlock && (prev_hlock->irq_context !=
3962  							hlock->irq_context))
3963  			chain_key = INITIAL_CHAIN_KEY;
3964  		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3965  		prev_hlock = hlock;
3966  	}
3967  	if (chain_key != curr->curr_chain_key) {
3968  		debug_locks_off();
3969  		/*
3970  		 * More smoking hash instead of calculating it, damn see these
3971  		 * numbers float.. I bet that a pink elephant stepped on my memory.
3972  		 */
3973  		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3974  			curr->lockdep_depth, i,
3975  			(unsigned long long)chain_key,
3976  			(unsigned long long)curr->curr_chain_key);
3977  	}
3978  #endif
3979  }
3980  
3981  #ifdef CONFIG_PROVE_LOCKING
3982  static int mark_lock(struct task_struct *curr, struct held_lock *this,
3983  		     enum lock_usage_bit new_bit);
3984  
print_usage_bug_scenario(struct held_lock * lock)3985  static void print_usage_bug_scenario(struct held_lock *lock)
3986  {
3987  	struct lock_class *class = hlock_class(lock);
3988  
3989  	printk(" Possible unsafe locking scenario:\n\n");
3990  	printk("       CPU0\n");
3991  	printk("       ----\n");
3992  	printk("  lock(");
3993  	__print_lock_name(lock, class);
3994  	printk(KERN_CONT ");\n");
3995  	printk("  <Interrupt>\n");
3996  	printk("    lock(");
3997  	__print_lock_name(lock, class);
3998  	printk(KERN_CONT ");\n");
3999  	printk("\n *** DEADLOCK ***\n\n");
4000  }
4001  
4002  static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)4003  print_usage_bug(struct task_struct *curr, struct held_lock *this,
4004  		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4005  {
4006  	if (!debug_locks_off() || debug_locks_silent)
4007  		return;
4008  
4009  	nbcon_cpu_emergency_enter();
4010  
4011  	pr_warn("\n");
4012  	pr_warn("================================\n");
4013  	pr_warn("WARNING: inconsistent lock state\n");
4014  	print_kernel_ident();
4015  	pr_warn("--------------------------------\n");
4016  
4017  	pr_warn("inconsistent {%s} -> {%s} usage.\n",
4018  		usage_str[prev_bit], usage_str[new_bit]);
4019  
4020  	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4021  		curr->comm, task_pid_nr(curr),
4022  		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4023  		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4024  		lockdep_hardirqs_enabled(),
4025  		lockdep_softirqs_enabled(curr));
4026  	print_lock(this);
4027  
4028  	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4029  	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4030  
4031  	print_irqtrace_events(curr);
4032  	pr_warn("\nother info that might help us debug this:\n");
4033  	print_usage_bug_scenario(this);
4034  
4035  	lockdep_print_held_locks(curr);
4036  
4037  	pr_warn("\nstack backtrace:\n");
4038  	dump_stack();
4039  
4040  	nbcon_cpu_emergency_exit();
4041  }
4042  
4043  /*
4044   * Print out an error if an invalid bit is set:
4045   */
4046  static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)4047  valid_state(struct task_struct *curr, struct held_lock *this,
4048  	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4049  {
4050  	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4051  		graph_unlock();
4052  		print_usage_bug(curr, this, bad_bit, new_bit);
4053  		return 0;
4054  	}
4055  	return 1;
4056  }
4057  
4058  
4059  /*
4060   * print irq inversion bug:
4061   */
4062  static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)4063  print_irq_inversion_bug(struct task_struct *curr,
4064  			struct lock_list *root, struct lock_list *other,
4065  			struct held_lock *this, int forwards,
4066  			const char *irqclass)
4067  {
4068  	struct lock_list *entry = other;
4069  	struct lock_list *middle = NULL;
4070  	int depth;
4071  
4072  	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4073  		return;
4074  
4075  	nbcon_cpu_emergency_enter();
4076  
4077  	pr_warn("\n");
4078  	pr_warn("========================================================\n");
4079  	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4080  	print_kernel_ident();
4081  	pr_warn("--------------------------------------------------------\n");
4082  	pr_warn("%s/%d just changed the state of lock:\n",
4083  		curr->comm, task_pid_nr(curr));
4084  	print_lock(this);
4085  	if (forwards)
4086  		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4087  	else
4088  		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4089  	print_lock_name(NULL, other->class);
4090  	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4091  
4092  	pr_warn("\nother info that might help us debug this:\n");
4093  
4094  	/* Find a middle lock (if one exists) */
4095  	depth = get_lock_depth(other);
4096  	do {
4097  		if (depth == 0 && (entry != root)) {
4098  			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4099  			break;
4100  		}
4101  		middle = entry;
4102  		entry = get_lock_parent(entry);
4103  		depth--;
4104  	} while (entry && entry != root && (depth >= 0));
4105  	if (forwards)
4106  		print_irq_lock_scenario(root, other,
4107  			middle ? middle->class : root->class, other->class);
4108  	else
4109  		print_irq_lock_scenario(other, root,
4110  			middle ? middle->class : other->class, root->class);
4111  
4112  	lockdep_print_held_locks(curr);
4113  
4114  	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4115  	root->trace = save_trace();
4116  	if (!root->trace)
4117  		goto out;
4118  	print_shortest_lock_dependencies(other, root);
4119  
4120  	pr_warn("\nstack backtrace:\n");
4121  	dump_stack();
4122  out:
4123  	nbcon_cpu_emergency_exit();
4124  }
4125  
4126  /*
4127   * Prove that in the forwards-direction subgraph starting at <this>
4128   * there is no lock matching <mask>:
4129   */
4130  static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4131  check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4132  		     enum lock_usage_bit bit)
4133  {
4134  	enum bfs_result ret;
4135  	struct lock_list root;
4136  	struct lock_list *target_entry;
4137  	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4138  	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4139  
4140  	bfs_init_root(&root, this);
4141  	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4142  	if (bfs_error(ret)) {
4143  		print_bfs_bug(ret);
4144  		return 0;
4145  	}
4146  	if (ret == BFS_RNOMATCH)
4147  		return 1;
4148  
4149  	/* Check whether write or read usage is the match */
4150  	if (target_entry->class->usage_mask & lock_flag(bit)) {
4151  		print_irq_inversion_bug(curr, &root, target_entry,
4152  					this, 1, state_name(bit));
4153  	} else {
4154  		print_irq_inversion_bug(curr, &root, target_entry,
4155  					this, 1, state_name(read_bit));
4156  	}
4157  
4158  	return 0;
4159  }
4160  
4161  /*
4162   * Prove that in the backwards-direction subgraph starting at <this>
4163   * there is no lock matching <mask>:
4164   */
4165  static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4166  check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4167  		      enum lock_usage_bit bit)
4168  {
4169  	enum bfs_result ret;
4170  	struct lock_list root;
4171  	struct lock_list *target_entry;
4172  	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4173  	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4174  
4175  	bfs_init_rootb(&root, this);
4176  	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4177  	if (bfs_error(ret)) {
4178  		print_bfs_bug(ret);
4179  		return 0;
4180  	}
4181  	if (ret == BFS_RNOMATCH)
4182  		return 1;
4183  
4184  	/* Check whether write or read usage is the match */
4185  	if (target_entry->class->usage_mask & lock_flag(bit)) {
4186  		print_irq_inversion_bug(curr, &root, target_entry,
4187  					this, 0, state_name(bit));
4188  	} else {
4189  		print_irq_inversion_bug(curr, &root, target_entry,
4190  					this, 0, state_name(read_bit));
4191  	}
4192  
4193  	return 0;
4194  }
4195  
print_irqtrace_events(struct task_struct * curr)4196  void print_irqtrace_events(struct task_struct *curr)
4197  {
4198  	const struct irqtrace_events *trace = &curr->irqtrace;
4199  
4200  	nbcon_cpu_emergency_enter();
4201  
4202  	printk("irq event stamp: %u\n", trace->irq_events);
4203  	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4204  		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4205  		(void *)trace->hardirq_enable_ip);
4206  	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4207  		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4208  		(void *)trace->hardirq_disable_ip);
4209  	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4210  		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4211  		(void *)trace->softirq_enable_ip);
4212  	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4213  		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4214  		(void *)trace->softirq_disable_ip);
4215  
4216  	nbcon_cpu_emergency_exit();
4217  }
4218  
HARDIRQ_verbose(struct lock_class * class)4219  static int HARDIRQ_verbose(struct lock_class *class)
4220  {
4221  #if HARDIRQ_VERBOSE
4222  	return class_filter(class);
4223  #endif
4224  	return 0;
4225  }
4226  
SOFTIRQ_verbose(struct lock_class * class)4227  static int SOFTIRQ_verbose(struct lock_class *class)
4228  {
4229  #if SOFTIRQ_VERBOSE
4230  	return class_filter(class);
4231  #endif
4232  	return 0;
4233  }
4234  
4235  static int (*state_verbose_f[])(struct lock_class *class) = {
4236  #define LOCKDEP_STATE(__STATE) \
4237  	__STATE##_verbose,
4238  #include "lockdep_states.h"
4239  #undef LOCKDEP_STATE
4240  };
4241  
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4242  static inline int state_verbose(enum lock_usage_bit bit,
4243  				struct lock_class *class)
4244  {
4245  	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4246  }
4247  
4248  typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4249  			     enum lock_usage_bit bit, const char *name);
4250  
4251  static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4252  mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4253  		enum lock_usage_bit new_bit)
4254  {
4255  	int excl_bit = exclusive_bit(new_bit);
4256  	int read = new_bit & LOCK_USAGE_READ_MASK;
4257  	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4258  
4259  	/*
4260  	 * Validate that this particular lock does not have conflicting
4261  	 * usage states.
4262  	 */
4263  	if (!valid_state(curr, this, new_bit, excl_bit))
4264  		return 0;
4265  
4266  	/*
4267  	 * Check for read in write conflicts
4268  	 */
4269  	if (!read && !valid_state(curr, this, new_bit,
4270  				  excl_bit + LOCK_USAGE_READ_MASK))
4271  		return 0;
4272  
4273  
4274  	/*
4275  	 * Validate that the lock dependencies don't have conflicting usage
4276  	 * states.
4277  	 */
4278  	if (dir) {
4279  		/*
4280  		 * mark ENABLED has to look backwards -- to ensure no dependee
4281  		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4282  		 */
4283  		if (!check_usage_backwards(curr, this, excl_bit))
4284  			return 0;
4285  	} else {
4286  		/*
4287  		 * mark USED_IN has to look forwards -- to ensure no dependency
4288  		 * has ENABLED state, which would allow recursion deadlocks.
4289  		 */
4290  		if (!check_usage_forwards(curr, this, excl_bit))
4291  			return 0;
4292  	}
4293  
4294  	if (state_verbose(new_bit, hlock_class(this)))
4295  		return 2;
4296  
4297  	return 1;
4298  }
4299  
4300  /*
4301   * Mark all held locks with a usage bit:
4302   */
4303  static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4304  mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4305  {
4306  	struct held_lock *hlock;
4307  	int i;
4308  
4309  	for (i = 0; i < curr->lockdep_depth; i++) {
4310  		enum lock_usage_bit hlock_bit = base_bit;
4311  		hlock = curr->held_locks + i;
4312  
4313  		if (hlock->read)
4314  			hlock_bit += LOCK_USAGE_READ_MASK;
4315  
4316  		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4317  
4318  		if (!hlock->check)
4319  			continue;
4320  
4321  		if (!mark_lock(curr, hlock, hlock_bit))
4322  			return 0;
4323  	}
4324  
4325  	return 1;
4326  }
4327  
4328  /*
4329   * Hardirqs will be enabled:
4330   */
__trace_hardirqs_on_caller(void)4331  static void __trace_hardirqs_on_caller(void)
4332  {
4333  	struct task_struct *curr = current;
4334  
4335  	/*
4336  	 * We are going to turn hardirqs on, so set the
4337  	 * usage bit for all held locks:
4338  	 */
4339  	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4340  		return;
4341  	/*
4342  	 * If we have softirqs enabled, then set the usage
4343  	 * bit for all held locks. (disabled hardirqs prevented
4344  	 * this bit from being set before)
4345  	 */
4346  	if (curr->softirqs_enabled)
4347  		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4348  }
4349  
4350  /**
4351   * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4352   *
4353   * Invoked before a possible transition to RCU idle from exit to user or
4354   * guest mode. This ensures that all RCU operations are done before RCU
4355   * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4356   * invoked to set the final state.
4357   */
lockdep_hardirqs_on_prepare(void)4358  void lockdep_hardirqs_on_prepare(void)
4359  {
4360  	if (unlikely(!debug_locks))
4361  		return;
4362  
4363  	/*
4364  	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4365  	 */
4366  	if (unlikely(in_nmi()))
4367  		return;
4368  
4369  	if (unlikely(this_cpu_read(lockdep_recursion)))
4370  		return;
4371  
4372  	if (unlikely(lockdep_hardirqs_enabled())) {
4373  		/*
4374  		 * Neither irq nor preemption are disabled here
4375  		 * so this is racy by nature but losing one hit
4376  		 * in a stat is not a big deal.
4377  		 */
4378  		__debug_atomic_inc(redundant_hardirqs_on);
4379  		return;
4380  	}
4381  
4382  	/*
4383  	 * We're enabling irqs and according to our state above irqs weren't
4384  	 * already enabled, yet we find the hardware thinks they are in fact
4385  	 * enabled.. someone messed up their IRQ state tracing.
4386  	 */
4387  	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4388  		return;
4389  
4390  	/*
4391  	 * See the fine text that goes along with this variable definition.
4392  	 */
4393  	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4394  		return;
4395  
4396  	/*
4397  	 * Can't allow enabling interrupts while in an interrupt handler,
4398  	 * that's general bad form and such. Recursion, limited stack etc..
4399  	 */
4400  	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4401  		return;
4402  
4403  	current->hardirq_chain_key = current->curr_chain_key;
4404  
4405  	lockdep_recursion_inc();
4406  	__trace_hardirqs_on_caller();
4407  	lockdep_recursion_finish();
4408  }
4409  EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4410  
lockdep_hardirqs_on(unsigned long ip)4411  void noinstr lockdep_hardirqs_on(unsigned long ip)
4412  {
4413  	struct irqtrace_events *trace = &current->irqtrace;
4414  
4415  	if (unlikely(!debug_locks))
4416  		return;
4417  
4418  	/*
4419  	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4420  	 * tracking state and hardware state are out of sync.
4421  	 *
4422  	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4423  	 * and not rely on hardware state like normal interrupts.
4424  	 */
4425  	if (unlikely(in_nmi())) {
4426  		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4427  			return;
4428  
4429  		/*
4430  		 * Skip:
4431  		 *  - recursion check, because NMI can hit lockdep;
4432  		 *  - hardware state check, because above;
4433  		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4434  		 */
4435  		goto skip_checks;
4436  	}
4437  
4438  	if (unlikely(this_cpu_read(lockdep_recursion)))
4439  		return;
4440  
4441  	if (lockdep_hardirqs_enabled()) {
4442  		/*
4443  		 * Neither irq nor preemption are disabled here
4444  		 * so this is racy by nature but losing one hit
4445  		 * in a stat is not a big deal.
4446  		 */
4447  		__debug_atomic_inc(redundant_hardirqs_on);
4448  		return;
4449  	}
4450  
4451  	/*
4452  	 * We're enabling irqs and according to our state above irqs weren't
4453  	 * already enabled, yet we find the hardware thinks they are in fact
4454  	 * enabled.. someone messed up their IRQ state tracing.
4455  	 */
4456  	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4457  		return;
4458  
4459  	/*
4460  	 * Ensure the lock stack remained unchanged between
4461  	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4462  	 */
4463  	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4464  			    current->curr_chain_key);
4465  
4466  skip_checks:
4467  	/* we'll do an OFF -> ON transition: */
4468  	__this_cpu_write(hardirqs_enabled, 1);
4469  	trace->hardirq_enable_ip = ip;
4470  	trace->hardirq_enable_event = ++trace->irq_events;
4471  	debug_atomic_inc(hardirqs_on_events);
4472  }
4473  EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4474  
4475  /*
4476   * Hardirqs were disabled:
4477   */
lockdep_hardirqs_off(unsigned long ip)4478  void noinstr lockdep_hardirqs_off(unsigned long ip)
4479  {
4480  	if (unlikely(!debug_locks))
4481  		return;
4482  
4483  	/*
4484  	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4485  	 * they will restore the software state. This ensures the software
4486  	 * state is consistent inside NMIs as well.
4487  	 */
4488  	if (in_nmi()) {
4489  		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4490  			return;
4491  	} else if (__this_cpu_read(lockdep_recursion))
4492  		return;
4493  
4494  	/*
4495  	 * So we're supposed to get called after you mask local IRQs, but for
4496  	 * some reason the hardware doesn't quite think you did a proper job.
4497  	 */
4498  	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4499  		return;
4500  
4501  	if (lockdep_hardirqs_enabled()) {
4502  		struct irqtrace_events *trace = &current->irqtrace;
4503  
4504  		/*
4505  		 * We have done an ON -> OFF transition:
4506  		 */
4507  		__this_cpu_write(hardirqs_enabled, 0);
4508  		trace->hardirq_disable_ip = ip;
4509  		trace->hardirq_disable_event = ++trace->irq_events;
4510  		debug_atomic_inc(hardirqs_off_events);
4511  	} else {
4512  		debug_atomic_inc(redundant_hardirqs_off);
4513  	}
4514  }
4515  EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4516  
4517  /*
4518   * Softirqs will be enabled:
4519   */
lockdep_softirqs_on(unsigned long ip)4520  void lockdep_softirqs_on(unsigned long ip)
4521  {
4522  	struct irqtrace_events *trace = &current->irqtrace;
4523  
4524  	if (unlikely(!lockdep_enabled()))
4525  		return;
4526  
4527  	/*
4528  	 * We fancy IRQs being disabled here, see softirq.c, avoids
4529  	 * funny state and nesting things.
4530  	 */
4531  	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4532  		return;
4533  
4534  	if (current->softirqs_enabled) {
4535  		debug_atomic_inc(redundant_softirqs_on);
4536  		return;
4537  	}
4538  
4539  	lockdep_recursion_inc();
4540  	/*
4541  	 * We'll do an OFF -> ON transition:
4542  	 */
4543  	current->softirqs_enabled = 1;
4544  	trace->softirq_enable_ip = ip;
4545  	trace->softirq_enable_event = ++trace->irq_events;
4546  	debug_atomic_inc(softirqs_on_events);
4547  	/*
4548  	 * We are going to turn softirqs on, so set the
4549  	 * usage bit for all held locks, if hardirqs are
4550  	 * enabled too:
4551  	 */
4552  	if (lockdep_hardirqs_enabled())
4553  		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4554  	lockdep_recursion_finish();
4555  }
4556  
4557  /*
4558   * Softirqs were disabled:
4559   */
lockdep_softirqs_off(unsigned long ip)4560  void lockdep_softirqs_off(unsigned long ip)
4561  {
4562  	if (unlikely(!lockdep_enabled()))
4563  		return;
4564  
4565  	/*
4566  	 * We fancy IRQs being disabled here, see softirq.c
4567  	 */
4568  	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4569  		return;
4570  
4571  	if (current->softirqs_enabled) {
4572  		struct irqtrace_events *trace = &current->irqtrace;
4573  
4574  		/*
4575  		 * We have done an ON -> OFF transition:
4576  		 */
4577  		current->softirqs_enabled = 0;
4578  		trace->softirq_disable_ip = ip;
4579  		trace->softirq_disable_event = ++trace->irq_events;
4580  		debug_atomic_inc(softirqs_off_events);
4581  		/*
4582  		 * Whoops, we wanted softirqs off, so why aren't they?
4583  		 */
4584  		DEBUG_LOCKS_WARN_ON(!softirq_count());
4585  	} else
4586  		debug_atomic_inc(redundant_softirqs_off);
4587  }
4588  
4589  static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4590  mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4591  {
4592  	if (!check)
4593  		goto lock_used;
4594  
4595  	/*
4596  	 * If non-trylock use in a hardirq or softirq context, then
4597  	 * mark the lock as used in these contexts:
4598  	 */
4599  	if (!hlock->trylock) {
4600  		if (hlock->read) {
4601  			if (lockdep_hardirq_context())
4602  				if (!mark_lock(curr, hlock,
4603  						LOCK_USED_IN_HARDIRQ_READ))
4604  					return 0;
4605  			if (curr->softirq_context)
4606  				if (!mark_lock(curr, hlock,
4607  						LOCK_USED_IN_SOFTIRQ_READ))
4608  					return 0;
4609  		} else {
4610  			if (lockdep_hardirq_context())
4611  				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4612  					return 0;
4613  			if (curr->softirq_context)
4614  				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4615  					return 0;
4616  		}
4617  	}
4618  
4619  	/*
4620  	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4621  	 * creates no critical section and no extra dependency can be introduced
4622  	 * by interrupts
4623  	 */
4624  	if (!hlock->hardirqs_off && !hlock->sync) {
4625  		if (hlock->read) {
4626  			if (!mark_lock(curr, hlock,
4627  					LOCK_ENABLED_HARDIRQ_READ))
4628  				return 0;
4629  			if (curr->softirqs_enabled)
4630  				if (!mark_lock(curr, hlock,
4631  						LOCK_ENABLED_SOFTIRQ_READ))
4632  					return 0;
4633  		} else {
4634  			if (!mark_lock(curr, hlock,
4635  					LOCK_ENABLED_HARDIRQ))
4636  				return 0;
4637  			if (curr->softirqs_enabled)
4638  				if (!mark_lock(curr, hlock,
4639  						LOCK_ENABLED_SOFTIRQ))
4640  					return 0;
4641  		}
4642  	}
4643  
4644  lock_used:
4645  	/* mark it as used: */
4646  	if (!mark_lock(curr, hlock, LOCK_USED))
4647  		return 0;
4648  
4649  	return 1;
4650  }
4651  
task_irq_context(struct task_struct * task)4652  static inline unsigned int task_irq_context(struct task_struct *task)
4653  {
4654  	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4655  	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4656  }
4657  
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4658  static int separate_irq_context(struct task_struct *curr,
4659  		struct held_lock *hlock)
4660  {
4661  	unsigned int depth = curr->lockdep_depth;
4662  
4663  	/*
4664  	 * Keep track of points where we cross into an interrupt context:
4665  	 */
4666  	if (depth) {
4667  		struct held_lock *prev_hlock;
4668  
4669  		prev_hlock = curr->held_locks + depth-1;
4670  		/*
4671  		 * If we cross into another context, reset the
4672  		 * hash key (this also prevents the checking and the
4673  		 * adding of the dependency to 'prev'):
4674  		 */
4675  		if (prev_hlock->irq_context != hlock->irq_context)
4676  			return 1;
4677  	}
4678  	return 0;
4679  }
4680  
4681  /*
4682   * Mark a lock with a usage bit, and validate the state transition:
4683   */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4684  static int mark_lock(struct task_struct *curr, struct held_lock *this,
4685  			     enum lock_usage_bit new_bit)
4686  {
4687  	unsigned int new_mask, ret = 1;
4688  
4689  	if (new_bit >= LOCK_USAGE_STATES) {
4690  		DEBUG_LOCKS_WARN_ON(1);
4691  		return 0;
4692  	}
4693  
4694  	if (new_bit == LOCK_USED && this->read)
4695  		new_bit = LOCK_USED_READ;
4696  
4697  	new_mask = 1 << new_bit;
4698  
4699  	/*
4700  	 * If already set then do not dirty the cacheline,
4701  	 * nor do any checks:
4702  	 */
4703  	if (likely(hlock_class(this)->usage_mask & new_mask))
4704  		return 1;
4705  
4706  	if (!graph_lock())
4707  		return 0;
4708  	/*
4709  	 * Make sure we didn't race:
4710  	 */
4711  	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4712  		goto unlock;
4713  
4714  	if (!hlock_class(this)->usage_mask)
4715  		debug_atomic_dec(nr_unused_locks);
4716  
4717  	hlock_class(this)->usage_mask |= new_mask;
4718  
4719  	if (new_bit < LOCK_TRACE_STATES) {
4720  		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4721  			return 0;
4722  	}
4723  
4724  	if (new_bit < LOCK_USED) {
4725  		ret = mark_lock_irq(curr, this, new_bit);
4726  		if (!ret)
4727  			return 0;
4728  	}
4729  
4730  unlock:
4731  	graph_unlock();
4732  
4733  	/*
4734  	 * We must printk outside of the graph_lock:
4735  	 */
4736  	if (ret == 2) {
4737  		nbcon_cpu_emergency_enter();
4738  		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4739  		print_lock(this);
4740  		print_irqtrace_events(curr);
4741  		dump_stack();
4742  		nbcon_cpu_emergency_exit();
4743  	}
4744  
4745  	return ret;
4746  }
4747  
task_wait_context(struct task_struct * curr)4748  static inline short task_wait_context(struct task_struct *curr)
4749  {
4750  	/*
4751  	 * Set appropriate wait type for the context; for IRQs we have to take
4752  	 * into account force_irqthread as that is implied by PREEMPT_RT.
4753  	 */
4754  	if (lockdep_hardirq_context()) {
4755  		/*
4756  		 * Check if force_irqthreads will run us threaded.
4757  		 */
4758  		if (curr->hardirq_threaded || curr->irq_config)
4759  			return LD_WAIT_CONFIG;
4760  
4761  		return LD_WAIT_SPIN;
4762  	} else if (curr->softirq_context) {
4763  		/*
4764  		 * Softirqs are always threaded.
4765  		 */
4766  		return LD_WAIT_CONFIG;
4767  	}
4768  
4769  	return LD_WAIT_MAX;
4770  }
4771  
4772  static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4773  print_lock_invalid_wait_context(struct task_struct *curr,
4774  				struct held_lock *hlock)
4775  {
4776  	short curr_inner;
4777  
4778  	if (!debug_locks_off())
4779  		return 0;
4780  	if (debug_locks_silent)
4781  		return 0;
4782  
4783  	nbcon_cpu_emergency_enter();
4784  
4785  	pr_warn("\n");
4786  	pr_warn("=============================\n");
4787  	pr_warn("[ BUG: Invalid wait context ]\n");
4788  	print_kernel_ident();
4789  	pr_warn("-----------------------------\n");
4790  
4791  	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4792  	print_lock(hlock);
4793  
4794  	pr_warn("other info that might help us debug this:\n");
4795  
4796  	curr_inner = task_wait_context(curr);
4797  	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4798  
4799  	lockdep_print_held_locks(curr);
4800  
4801  	pr_warn("stack backtrace:\n");
4802  	dump_stack();
4803  
4804  	nbcon_cpu_emergency_exit();
4805  
4806  	return 0;
4807  }
4808  
4809  /*
4810   * Verify the wait_type context.
4811   *
4812   * This check validates we take locks in the right wait-type order; that is it
4813   * ensures that we do not take mutexes inside spinlocks and do not attempt to
4814   * acquire spinlocks inside raw_spinlocks and the sort.
4815   *
4816   * The entire thing is slightly more complex because of RCU, RCU is a lock that
4817   * can be taken from (pretty much) any context but also has constraints.
4818   * However when taken in a stricter environment the RCU lock does not loosen
4819   * the constraints.
4820   *
4821   * Therefore we must look for the strictest environment in the lock stack and
4822   * compare that to the lock we're trying to acquire.
4823   */
check_wait_context(struct task_struct * curr,struct held_lock * next)4824  static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4825  {
4826  	u8 next_inner = hlock_class(next)->wait_type_inner;
4827  	u8 next_outer = hlock_class(next)->wait_type_outer;
4828  	u8 curr_inner;
4829  	int depth;
4830  
4831  	if (!next_inner || next->trylock)
4832  		return 0;
4833  
4834  	if (!next_outer)
4835  		next_outer = next_inner;
4836  
4837  	/*
4838  	 * Find start of current irq_context..
4839  	 */
4840  	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4841  		struct held_lock *prev = curr->held_locks + depth;
4842  		if (prev->irq_context != next->irq_context)
4843  			break;
4844  	}
4845  	depth++;
4846  
4847  	curr_inner = task_wait_context(curr);
4848  
4849  	for (; depth < curr->lockdep_depth; depth++) {
4850  		struct held_lock *prev = curr->held_locks + depth;
4851  		struct lock_class *class = hlock_class(prev);
4852  		u8 prev_inner = class->wait_type_inner;
4853  
4854  		if (prev_inner) {
4855  			/*
4856  			 * We can have a bigger inner than a previous one
4857  			 * when outer is smaller than inner, as with RCU.
4858  			 *
4859  			 * Also due to trylocks.
4860  			 */
4861  			curr_inner = min(curr_inner, prev_inner);
4862  
4863  			/*
4864  			 * Allow override for annotations -- this is typically
4865  			 * only valid/needed for code that only exists when
4866  			 * CONFIG_PREEMPT_RT=n.
4867  			 */
4868  			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4869  				curr_inner = prev_inner;
4870  		}
4871  	}
4872  
4873  	if (next_outer > curr_inner)
4874  		return print_lock_invalid_wait_context(curr, next);
4875  
4876  	return 0;
4877  }
4878  
4879  #else /* CONFIG_PROVE_LOCKING */
4880  
4881  static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4882  mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4883  {
4884  	return 1;
4885  }
4886  
task_irq_context(struct task_struct * task)4887  static inline unsigned int task_irq_context(struct task_struct *task)
4888  {
4889  	return 0;
4890  }
4891  
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4892  static inline int separate_irq_context(struct task_struct *curr,
4893  		struct held_lock *hlock)
4894  {
4895  	return 0;
4896  }
4897  
check_wait_context(struct task_struct * curr,struct held_lock * next)4898  static inline int check_wait_context(struct task_struct *curr,
4899  				     struct held_lock *next)
4900  {
4901  	return 0;
4902  }
4903  
4904  #endif /* CONFIG_PROVE_LOCKING */
4905  
4906  /*
4907   * Initialize a lock instance's lock-class mapping info:
4908   */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4909  void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4910  			    struct lock_class_key *key, int subclass,
4911  			    u8 inner, u8 outer, u8 lock_type)
4912  {
4913  	int i;
4914  
4915  	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4916  		lock->class_cache[i] = NULL;
4917  
4918  #ifdef CONFIG_LOCK_STAT
4919  	lock->cpu = raw_smp_processor_id();
4920  #endif
4921  
4922  	/*
4923  	 * Can't be having no nameless bastards around this place!
4924  	 */
4925  	if (DEBUG_LOCKS_WARN_ON(!name)) {
4926  		lock->name = "NULL";
4927  		return;
4928  	}
4929  
4930  	lock->name = name;
4931  
4932  	lock->wait_type_outer = outer;
4933  	lock->wait_type_inner = inner;
4934  	lock->lock_type = lock_type;
4935  
4936  	/*
4937  	 * No key, no joy, we need to hash something.
4938  	 */
4939  	if (DEBUG_LOCKS_WARN_ON(!key))
4940  		return;
4941  	/*
4942  	 * Sanity check, the lock-class key must either have been allocated
4943  	 * statically or must have been registered as a dynamic key.
4944  	 */
4945  	if (!static_obj(key) && !is_dynamic_key(key)) {
4946  		if (debug_locks)
4947  			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4948  		DEBUG_LOCKS_WARN_ON(1);
4949  		return;
4950  	}
4951  	lock->key = key;
4952  
4953  	if (unlikely(!debug_locks))
4954  		return;
4955  
4956  	if (subclass) {
4957  		unsigned long flags;
4958  
4959  		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4960  			return;
4961  
4962  		raw_local_irq_save(flags);
4963  		lockdep_recursion_inc();
4964  		register_lock_class(lock, subclass, 1);
4965  		lockdep_recursion_finish();
4966  		raw_local_irq_restore(flags);
4967  	}
4968  }
4969  EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4970  
4971  struct lock_class_key __lockdep_no_validate__;
4972  EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4973  
4974  struct lock_class_key __lockdep_no_track__;
4975  EXPORT_SYMBOL_GPL(__lockdep_no_track__);
4976  
4977  #ifdef CONFIG_PROVE_LOCKING
lockdep_set_lock_cmp_fn(struct lockdep_map * lock,lock_cmp_fn cmp_fn,lock_print_fn print_fn)4978  void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4979  			     lock_print_fn print_fn)
4980  {
4981  	struct lock_class *class = lock->class_cache[0];
4982  	unsigned long flags;
4983  
4984  	raw_local_irq_save(flags);
4985  	lockdep_recursion_inc();
4986  
4987  	if (!class)
4988  		class = register_lock_class(lock, 0, 0);
4989  
4990  	if (class) {
4991  		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4992  		WARN_ON(class->print_fn && class->print_fn != print_fn);
4993  
4994  		class->cmp_fn	= cmp_fn;
4995  		class->print_fn = print_fn;
4996  	}
4997  
4998  	lockdep_recursion_finish();
4999  	raw_local_irq_restore(flags);
5000  }
5001  EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
5002  #endif
5003  
5004  static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)5005  print_lock_nested_lock_not_held(struct task_struct *curr,
5006  				struct held_lock *hlock)
5007  {
5008  	if (!debug_locks_off())
5009  		return;
5010  	if (debug_locks_silent)
5011  		return;
5012  
5013  	nbcon_cpu_emergency_enter();
5014  
5015  	pr_warn("\n");
5016  	pr_warn("==================================\n");
5017  	pr_warn("WARNING: Nested lock was not taken\n");
5018  	print_kernel_ident();
5019  	pr_warn("----------------------------------\n");
5020  
5021  	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5022  	print_lock(hlock);
5023  
5024  	pr_warn("\nbut this task is not holding:\n");
5025  	pr_warn("%s\n", hlock->nest_lock->name);
5026  
5027  	pr_warn("\nstack backtrace:\n");
5028  	dump_stack();
5029  
5030  	pr_warn("\nother info that might help us debug this:\n");
5031  	lockdep_print_held_locks(curr);
5032  
5033  	pr_warn("\nstack backtrace:\n");
5034  	dump_stack();
5035  
5036  	nbcon_cpu_emergency_exit();
5037  }
5038  
5039  static int __lock_is_held(const struct lockdep_map *lock, int read);
5040  
5041  /*
5042   * This gets called for every mutex_lock*()/spin_lock*() operation.
5043   * We maintain the dependency maps and validate the locking attempt:
5044   *
5045   * The callers must make sure that IRQs are disabled before calling it,
5046   * otherwise we could get an interrupt which would want to take locks,
5047   * which would end up in lockdep again.
5048   */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count,int sync)5049  static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5050  			  int trylock, int read, int check, int hardirqs_off,
5051  			  struct lockdep_map *nest_lock, unsigned long ip,
5052  			  int references, int pin_count, int sync)
5053  {
5054  	struct task_struct *curr = current;
5055  	struct lock_class *class = NULL;
5056  	struct held_lock *hlock;
5057  	unsigned int depth;
5058  	int chain_head = 0;
5059  	int class_idx;
5060  	u64 chain_key;
5061  
5062  	if (unlikely(!debug_locks))
5063  		return 0;
5064  
5065  	if (unlikely(lock->key == &__lockdep_no_track__))
5066  		return 0;
5067  
5068  	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5069  		check = 0;
5070  
5071  	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5072  		class = lock->class_cache[subclass];
5073  	/*
5074  	 * Not cached?
5075  	 */
5076  	if (unlikely(!class)) {
5077  		class = register_lock_class(lock, subclass, 0);
5078  		if (!class)
5079  			return 0;
5080  	}
5081  
5082  	debug_class_ops_inc(class);
5083  
5084  	if (very_verbose(class)) {
5085  		nbcon_cpu_emergency_enter();
5086  		printk("\nacquire class [%px] %s", class->key, class->name);
5087  		if (class->name_version > 1)
5088  			printk(KERN_CONT "#%d", class->name_version);
5089  		printk(KERN_CONT "\n");
5090  		dump_stack();
5091  		nbcon_cpu_emergency_exit();
5092  	}
5093  
5094  	/*
5095  	 * Add the lock to the list of currently held locks.
5096  	 * (we dont increase the depth just yet, up until the
5097  	 * dependency checks are done)
5098  	 */
5099  	depth = curr->lockdep_depth;
5100  	/*
5101  	 * Ran out of static storage for our per-task lock stack again have we?
5102  	 */
5103  	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5104  		return 0;
5105  
5106  	class_idx = class - lock_classes;
5107  
5108  	if (depth && !sync) {
5109  		/* we're holding locks and the new held lock is not a sync */
5110  		hlock = curr->held_locks + depth - 1;
5111  		if (hlock->class_idx == class_idx && nest_lock) {
5112  			if (!references)
5113  				references++;
5114  
5115  			if (!hlock->references)
5116  				hlock->references++;
5117  
5118  			hlock->references += references;
5119  
5120  			/* Overflow */
5121  			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5122  				return 0;
5123  
5124  			return 2;
5125  		}
5126  	}
5127  
5128  	hlock = curr->held_locks + depth;
5129  	/*
5130  	 * Plain impossible, we just registered it and checked it weren't no
5131  	 * NULL like.. I bet this mushroom I ate was good!
5132  	 */
5133  	if (DEBUG_LOCKS_WARN_ON(!class))
5134  		return 0;
5135  	hlock->class_idx = class_idx;
5136  	hlock->acquire_ip = ip;
5137  	hlock->instance = lock;
5138  	hlock->nest_lock = nest_lock;
5139  	hlock->irq_context = task_irq_context(curr);
5140  	hlock->trylock = trylock;
5141  	hlock->read = read;
5142  	hlock->check = check;
5143  	hlock->sync = !!sync;
5144  	hlock->hardirqs_off = !!hardirqs_off;
5145  	hlock->references = references;
5146  #ifdef CONFIG_LOCK_STAT
5147  	hlock->waittime_stamp = 0;
5148  	hlock->holdtime_stamp = lockstat_clock();
5149  #endif
5150  	hlock->pin_count = pin_count;
5151  
5152  	if (check_wait_context(curr, hlock))
5153  		return 0;
5154  
5155  	/* Initialize the lock usage bit */
5156  	if (!mark_usage(curr, hlock, check))
5157  		return 0;
5158  
5159  	/*
5160  	 * Calculate the chain hash: it's the combined hash of all the
5161  	 * lock keys along the dependency chain. We save the hash value
5162  	 * at every step so that we can get the current hash easily
5163  	 * after unlock. The chain hash is then used to cache dependency
5164  	 * results.
5165  	 *
5166  	 * The 'key ID' is what is the most compact key value to drive
5167  	 * the hash, not class->key.
5168  	 */
5169  	/*
5170  	 * Whoops, we did it again.. class_idx is invalid.
5171  	 */
5172  	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5173  		return 0;
5174  
5175  	chain_key = curr->curr_chain_key;
5176  	if (!depth) {
5177  		/*
5178  		 * How can we have a chain hash when we ain't got no keys?!
5179  		 */
5180  		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5181  			return 0;
5182  		chain_head = 1;
5183  	}
5184  
5185  	hlock->prev_chain_key = chain_key;
5186  	if (separate_irq_context(curr, hlock)) {
5187  		chain_key = INITIAL_CHAIN_KEY;
5188  		chain_head = 1;
5189  	}
5190  	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5191  
5192  	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5193  		print_lock_nested_lock_not_held(curr, hlock);
5194  		return 0;
5195  	}
5196  
5197  	if (!debug_locks_silent) {
5198  		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5199  		WARN_ON_ONCE(!hlock_class(hlock)->key);
5200  	}
5201  
5202  	if (!validate_chain(curr, hlock, chain_head, chain_key))
5203  		return 0;
5204  
5205  	/* For lock_sync(), we are done here since no actual critical section */
5206  	if (hlock->sync)
5207  		return 1;
5208  
5209  	curr->curr_chain_key = chain_key;
5210  	curr->lockdep_depth++;
5211  	check_chain_key(curr);
5212  #ifdef CONFIG_DEBUG_LOCKDEP
5213  	if (unlikely(!debug_locks))
5214  		return 0;
5215  #endif
5216  	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5217  		debug_locks_off();
5218  		nbcon_cpu_emergency_enter();
5219  		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5220  		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5221  		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5222  
5223  		lockdep_print_held_locks(current);
5224  		debug_show_all_locks();
5225  		dump_stack();
5226  		nbcon_cpu_emergency_exit();
5227  
5228  		return 0;
5229  	}
5230  
5231  	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5232  		max_lockdep_depth = curr->lockdep_depth;
5233  
5234  	return 1;
5235  }
5236  
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5237  static void print_unlock_imbalance_bug(struct task_struct *curr,
5238  				       struct lockdep_map *lock,
5239  				       unsigned long ip)
5240  {
5241  	if (!debug_locks_off())
5242  		return;
5243  	if (debug_locks_silent)
5244  		return;
5245  
5246  	nbcon_cpu_emergency_enter();
5247  
5248  	pr_warn("\n");
5249  	pr_warn("=====================================\n");
5250  	pr_warn("WARNING: bad unlock balance detected!\n");
5251  	print_kernel_ident();
5252  	pr_warn("-------------------------------------\n");
5253  	pr_warn("%s/%d is trying to release lock (",
5254  		curr->comm, task_pid_nr(curr));
5255  	print_lockdep_cache(lock);
5256  	pr_cont(") at:\n");
5257  	print_ip_sym(KERN_WARNING, ip);
5258  	pr_warn("but there are no more locks to release!\n");
5259  	pr_warn("\nother info that might help us debug this:\n");
5260  	lockdep_print_held_locks(curr);
5261  
5262  	pr_warn("\nstack backtrace:\n");
5263  	dump_stack();
5264  
5265  	nbcon_cpu_emergency_exit();
5266  }
5267  
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5268  static noinstr int match_held_lock(const struct held_lock *hlock,
5269  				   const struct lockdep_map *lock)
5270  {
5271  	if (hlock->instance == lock)
5272  		return 1;
5273  
5274  	if (hlock->references) {
5275  		const struct lock_class *class = lock->class_cache[0];
5276  
5277  		if (!class)
5278  			class = look_up_lock_class(lock, 0);
5279  
5280  		/*
5281  		 * If look_up_lock_class() failed to find a class, we're trying
5282  		 * to test if we hold a lock that has never yet been acquired.
5283  		 * Clearly if the lock hasn't been acquired _ever_, we're not
5284  		 * holding it either, so report failure.
5285  		 */
5286  		if (!class)
5287  			return 0;
5288  
5289  		/*
5290  		 * References, but not a lock we're actually ref-counting?
5291  		 * State got messed up, follow the sites that change ->references
5292  		 * and try to make sense of it.
5293  		 */
5294  		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5295  			return 0;
5296  
5297  		if (hlock->class_idx == class - lock_classes)
5298  			return 1;
5299  	}
5300  
5301  	return 0;
5302  }
5303  
5304  /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5305  static struct held_lock *find_held_lock(struct task_struct *curr,
5306  					struct lockdep_map *lock,
5307  					unsigned int depth, int *idx)
5308  {
5309  	struct held_lock *ret, *hlock, *prev_hlock;
5310  	int i;
5311  
5312  	i = depth - 1;
5313  	hlock = curr->held_locks + i;
5314  	ret = hlock;
5315  	if (match_held_lock(hlock, lock))
5316  		goto out;
5317  
5318  	ret = NULL;
5319  	for (i--, prev_hlock = hlock--;
5320  	     i >= 0;
5321  	     i--, prev_hlock = hlock--) {
5322  		/*
5323  		 * We must not cross into another context:
5324  		 */
5325  		if (prev_hlock->irq_context != hlock->irq_context) {
5326  			ret = NULL;
5327  			break;
5328  		}
5329  		if (match_held_lock(hlock, lock)) {
5330  			ret = hlock;
5331  			break;
5332  		}
5333  	}
5334  
5335  out:
5336  	*idx = i;
5337  	return ret;
5338  }
5339  
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5340  static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5341  				int idx, unsigned int *merged)
5342  {
5343  	struct held_lock *hlock;
5344  	int first_idx = idx;
5345  
5346  	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5347  		return 0;
5348  
5349  	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5350  		switch (__lock_acquire(hlock->instance,
5351  				    hlock_class(hlock)->subclass,
5352  				    hlock->trylock,
5353  				    hlock->read, hlock->check,
5354  				    hlock->hardirqs_off,
5355  				    hlock->nest_lock, hlock->acquire_ip,
5356  				    hlock->references, hlock->pin_count, 0)) {
5357  		case 0:
5358  			return 1;
5359  		case 1:
5360  			break;
5361  		case 2:
5362  			*merged += (idx == first_idx);
5363  			break;
5364  		default:
5365  			WARN_ON(1);
5366  			return 0;
5367  		}
5368  	}
5369  	return 0;
5370  }
5371  
5372  static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5373  __lock_set_class(struct lockdep_map *lock, const char *name,
5374  		 struct lock_class_key *key, unsigned int subclass,
5375  		 unsigned long ip)
5376  {
5377  	struct task_struct *curr = current;
5378  	unsigned int depth, merged = 0;
5379  	struct held_lock *hlock;
5380  	struct lock_class *class;
5381  	int i;
5382  
5383  	if (unlikely(!debug_locks))
5384  		return 0;
5385  
5386  	depth = curr->lockdep_depth;
5387  	/*
5388  	 * This function is about (re)setting the class of a held lock,
5389  	 * yet we're not actually holding any locks. Naughty user!
5390  	 */
5391  	if (DEBUG_LOCKS_WARN_ON(!depth))
5392  		return 0;
5393  
5394  	hlock = find_held_lock(curr, lock, depth, &i);
5395  	if (!hlock) {
5396  		print_unlock_imbalance_bug(curr, lock, ip);
5397  		return 0;
5398  	}
5399  
5400  	lockdep_init_map_type(lock, name, key, 0,
5401  			      lock->wait_type_inner,
5402  			      lock->wait_type_outer,
5403  			      lock->lock_type);
5404  	class = register_lock_class(lock, subclass, 0);
5405  	hlock->class_idx = class - lock_classes;
5406  
5407  	curr->lockdep_depth = i;
5408  	curr->curr_chain_key = hlock->prev_chain_key;
5409  
5410  	if (reacquire_held_locks(curr, depth, i, &merged))
5411  		return 0;
5412  
5413  	/*
5414  	 * I took it apart and put it back together again, except now I have
5415  	 * these 'spare' parts.. where shall I put them.
5416  	 */
5417  	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5418  		return 0;
5419  	return 1;
5420  }
5421  
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5422  static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5423  {
5424  	struct task_struct *curr = current;
5425  	unsigned int depth, merged = 0;
5426  	struct held_lock *hlock;
5427  	int i;
5428  
5429  	if (unlikely(!debug_locks))
5430  		return 0;
5431  
5432  	depth = curr->lockdep_depth;
5433  	/*
5434  	 * This function is about (re)setting the class of a held lock,
5435  	 * yet we're not actually holding any locks. Naughty user!
5436  	 */
5437  	if (DEBUG_LOCKS_WARN_ON(!depth))
5438  		return 0;
5439  
5440  	hlock = find_held_lock(curr, lock, depth, &i);
5441  	if (!hlock) {
5442  		print_unlock_imbalance_bug(curr, lock, ip);
5443  		return 0;
5444  	}
5445  
5446  	curr->lockdep_depth = i;
5447  	curr->curr_chain_key = hlock->prev_chain_key;
5448  
5449  	WARN(hlock->read, "downgrading a read lock");
5450  	hlock->read = 1;
5451  	hlock->acquire_ip = ip;
5452  
5453  	if (reacquire_held_locks(curr, depth, i, &merged))
5454  		return 0;
5455  
5456  	/* Merging can't happen with unchanged classes.. */
5457  	if (DEBUG_LOCKS_WARN_ON(merged))
5458  		return 0;
5459  
5460  	/*
5461  	 * I took it apart and put it back together again, except now I have
5462  	 * these 'spare' parts.. where shall I put them.
5463  	 */
5464  	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5465  		return 0;
5466  
5467  	return 1;
5468  }
5469  
5470  /*
5471   * Remove the lock from the list of currently held locks - this gets
5472   * called on mutex_unlock()/spin_unlock*() (or on a failed
5473   * mutex_lock_interruptible()).
5474   */
5475  static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5476  __lock_release(struct lockdep_map *lock, unsigned long ip)
5477  {
5478  	struct task_struct *curr = current;
5479  	unsigned int depth, merged = 1;
5480  	struct held_lock *hlock;
5481  	int i;
5482  
5483  	if (unlikely(!debug_locks))
5484  		return 0;
5485  
5486  	depth = curr->lockdep_depth;
5487  	/*
5488  	 * So we're all set to release this lock.. wait what lock? We don't
5489  	 * own any locks, you've been drinking again?
5490  	 */
5491  	if (depth <= 0) {
5492  		print_unlock_imbalance_bug(curr, lock, ip);
5493  		return 0;
5494  	}
5495  
5496  	/*
5497  	 * Check whether the lock exists in the current stack
5498  	 * of held locks:
5499  	 */
5500  	hlock = find_held_lock(curr, lock, depth, &i);
5501  	if (!hlock) {
5502  		print_unlock_imbalance_bug(curr, lock, ip);
5503  		return 0;
5504  	}
5505  
5506  	if (hlock->instance == lock)
5507  		lock_release_holdtime(hlock);
5508  
5509  	WARN(hlock->pin_count, "releasing a pinned lock\n");
5510  
5511  	if (hlock->references) {
5512  		hlock->references--;
5513  		if (hlock->references) {
5514  			/*
5515  			 * We had, and after removing one, still have
5516  			 * references, the current lock stack is still
5517  			 * valid. We're done!
5518  			 */
5519  			return 1;
5520  		}
5521  	}
5522  
5523  	/*
5524  	 * We have the right lock to unlock, 'hlock' points to it.
5525  	 * Now we remove it from the stack, and add back the other
5526  	 * entries (if any), recalculating the hash along the way:
5527  	 */
5528  
5529  	curr->lockdep_depth = i;
5530  	curr->curr_chain_key = hlock->prev_chain_key;
5531  
5532  	/*
5533  	 * The most likely case is when the unlock is on the innermost
5534  	 * lock. In this case, we are done!
5535  	 */
5536  	if (i == depth-1)
5537  		return 1;
5538  
5539  	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5540  		return 0;
5541  
5542  	/*
5543  	 * We had N bottles of beer on the wall, we drank one, but now
5544  	 * there's not N-1 bottles of beer left on the wall...
5545  	 * Pouring two of the bottles together is acceptable.
5546  	 */
5547  	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5548  
5549  	/*
5550  	 * Since reacquire_held_locks() would have called check_chain_key()
5551  	 * indirectly via __lock_acquire(), we don't need to do it again
5552  	 * on return.
5553  	 */
5554  	return 0;
5555  }
5556  
5557  static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5558  int __lock_is_held(const struct lockdep_map *lock, int read)
5559  {
5560  	struct task_struct *curr = current;
5561  	int i;
5562  
5563  	for (i = 0; i < curr->lockdep_depth; i++) {
5564  		struct held_lock *hlock = curr->held_locks + i;
5565  
5566  		if (match_held_lock(hlock, lock)) {
5567  			if (read == -1 || !!hlock->read == read)
5568  				return LOCK_STATE_HELD;
5569  
5570  			return LOCK_STATE_NOT_HELD;
5571  		}
5572  	}
5573  
5574  	return LOCK_STATE_NOT_HELD;
5575  }
5576  
__lock_pin_lock(struct lockdep_map * lock)5577  static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5578  {
5579  	struct pin_cookie cookie = NIL_COOKIE;
5580  	struct task_struct *curr = current;
5581  	int i;
5582  
5583  	if (unlikely(!debug_locks))
5584  		return cookie;
5585  
5586  	for (i = 0; i < curr->lockdep_depth; i++) {
5587  		struct held_lock *hlock = curr->held_locks + i;
5588  
5589  		if (match_held_lock(hlock, lock)) {
5590  			/*
5591  			 * Grab 16bits of randomness; this is sufficient to not
5592  			 * be guessable and still allows some pin nesting in
5593  			 * our u32 pin_count.
5594  			 */
5595  			cookie.val = 1 + (sched_clock() & 0xffff);
5596  			hlock->pin_count += cookie.val;
5597  			return cookie;
5598  		}
5599  	}
5600  
5601  	WARN(1, "pinning an unheld lock\n");
5602  	return cookie;
5603  }
5604  
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5605  static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5606  {
5607  	struct task_struct *curr = current;
5608  	int i;
5609  
5610  	if (unlikely(!debug_locks))
5611  		return;
5612  
5613  	for (i = 0; i < curr->lockdep_depth; i++) {
5614  		struct held_lock *hlock = curr->held_locks + i;
5615  
5616  		if (match_held_lock(hlock, lock)) {
5617  			hlock->pin_count += cookie.val;
5618  			return;
5619  		}
5620  	}
5621  
5622  	WARN(1, "pinning an unheld lock\n");
5623  }
5624  
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5625  static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5626  {
5627  	struct task_struct *curr = current;
5628  	int i;
5629  
5630  	if (unlikely(!debug_locks))
5631  		return;
5632  
5633  	for (i = 0; i < curr->lockdep_depth; i++) {
5634  		struct held_lock *hlock = curr->held_locks + i;
5635  
5636  		if (match_held_lock(hlock, lock)) {
5637  			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5638  				return;
5639  
5640  			hlock->pin_count -= cookie.val;
5641  
5642  			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5643  				hlock->pin_count = 0;
5644  
5645  			return;
5646  		}
5647  	}
5648  
5649  	WARN(1, "unpinning an unheld lock\n");
5650  }
5651  
5652  /*
5653   * Check whether we follow the irq-flags state precisely:
5654   */
check_flags(unsigned long flags)5655  static noinstr void check_flags(unsigned long flags)
5656  {
5657  #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5658  	if (!debug_locks)
5659  		return;
5660  
5661  	/* Get the warning out..  */
5662  	instrumentation_begin();
5663  
5664  	if (irqs_disabled_flags(flags)) {
5665  		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5666  			printk("possible reason: unannotated irqs-off.\n");
5667  		}
5668  	} else {
5669  		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5670  			printk("possible reason: unannotated irqs-on.\n");
5671  		}
5672  	}
5673  
5674  #ifndef CONFIG_PREEMPT_RT
5675  	/*
5676  	 * We dont accurately track softirq state in e.g.
5677  	 * hardirq contexts (such as on 4KSTACKS), so only
5678  	 * check if not in hardirq contexts:
5679  	 */
5680  	if (!hardirq_count()) {
5681  		if (softirq_count()) {
5682  			/* like the above, but with softirqs */
5683  			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5684  		} else {
5685  			/* lick the above, does it taste good? */
5686  			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5687  		}
5688  	}
5689  #endif
5690  
5691  	if (!debug_locks)
5692  		print_irqtrace_events(current);
5693  
5694  	instrumentation_end();
5695  #endif
5696  }
5697  
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5698  void lock_set_class(struct lockdep_map *lock, const char *name,
5699  		    struct lock_class_key *key, unsigned int subclass,
5700  		    unsigned long ip)
5701  {
5702  	unsigned long flags;
5703  
5704  	if (unlikely(!lockdep_enabled()))
5705  		return;
5706  
5707  	raw_local_irq_save(flags);
5708  	lockdep_recursion_inc();
5709  	check_flags(flags);
5710  	if (__lock_set_class(lock, name, key, subclass, ip))
5711  		check_chain_key(current);
5712  	lockdep_recursion_finish();
5713  	raw_local_irq_restore(flags);
5714  }
5715  EXPORT_SYMBOL_GPL(lock_set_class);
5716  
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5717  void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5718  {
5719  	unsigned long flags;
5720  
5721  	if (unlikely(!lockdep_enabled()))
5722  		return;
5723  
5724  	raw_local_irq_save(flags);
5725  	lockdep_recursion_inc();
5726  	check_flags(flags);
5727  	if (__lock_downgrade(lock, ip))
5728  		check_chain_key(current);
5729  	lockdep_recursion_finish();
5730  	raw_local_irq_restore(flags);
5731  }
5732  EXPORT_SYMBOL_GPL(lock_downgrade);
5733  
5734  /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5735  static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5736  {
5737  #ifdef CONFIG_PROVE_LOCKING
5738  	struct lock_class *class = look_up_lock_class(lock, subclass);
5739  	unsigned long mask = LOCKF_USED;
5740  
5741  	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5742  	if (!class)
5743  		return;
5744  
5745  	/*
5746  	 * READ locks only conflict with USED, such that if we only ever use
5747  	 * READ locks, there is no deadlock possible -- RCU.
5748  	 */
5749  	if (!hlock->read)
5750  		mask |= LOCKF_USED_READ;
5751  
5752  	if (!(class->usage_mask & mask))
5753  		return;
5754  
5755  	hlock->class_idx = class - lock_classes;
5756  
5757  	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5758  #endif
5759  }
5760  
lockdep_nmi(void)5761  static bool lockdep_nmi(void)
5762  {
5763  	if (raw_cpu_read(lockdep_recursion))
5764  		return false;
5765  
5766  	if (!in_nmi())
5767  		return false;
5768  
5769  	return true;
5770  }
5771  
5772  /*
5773   * read_lock() is recursive if:
5774   * 1. We force lockdep think this way in selftests or
5775   * 2. The implementation is not queued read/write lock or
5776   * 3. The locker is at an in_interrupt() context.
5777   */
read_lock_is_recursive(void)5778  bool read_lock_is_recursive(void)
5779  {
5780  	return force_read_lock_recursive ||
5781  	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5782  	       in_interrupt();
5783  }
5784  EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5785  
5786  /*
5787   * We are not always called with irqs disabled - do that here,
5788   * and also avoid lockdep recursion:
5789   */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5790  void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5791  			  int trylock, int read, int check,
5792  			  struct lockdep_map *nest_lock, unsigned long ip)
5793  {
5794  	unsigned long flags;
5795  
5796  	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5797  
5798  	if (!debug_locks)
5799  		return;
5800  
5801  	if (unlikely(!lockdep_enabled())) {
5802  		/* XXX allow trylock from NMI ?!? */
5803  		if (lockdep_nmi() && !trylock) {
5804  			struct held_lock hlock;
5805  
5806  			hlock.acquire_ip = ip;
5807  			hlock.instance = lock;
5808  			hlock.nest_lock = nest_lock;
5809  			hlock.irq_context = 2; // XXX
5810  			hlock.trylock = trylock;
5811  			hlock.read = read;
5812  			hlock.check = check;
5813  			hlock.hardirqs_off = true;
5814  			hlock.references = 0;
5815  
5816  			verify_lock_unused(lock, &hlock, subclass);
5817  		}
5818  		return;
5819  	}
5820  
5821  	raw_local_irq_save(flags);
5822  	check_flags(flags);
5823  
5824  	lockdep_recursion_inc();
5825  	__lock_acquire(lock, subclass, trylock, read, check,
5826  		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5827  	lockdep_recursion_finish();
5828  	raw_local_irq_restore(flags);
5829  }
5830  EXPORT_SYMBOL_GPL(lock_acquire);
5831  
lock_release(struct lockdep_map * lock,unsigned long ip)5832  void lock_release(struct lockdep_map *lock, unsigned long ip)
5833  {
5834  	unsigned long flags;
5835  
5836  	trace_lock_release(lock, ip);
5837  
5838  	if (unlikely(!lockdep_enabled() ||
5839  		     lock->key == &__lockdep_no_track__))
5840  		return;
5841  
5842  	raw_local_irq_save(flags);
5843  	check_flags(flags);
5844  
5845  	lockdep_recursion_inc();
5846  	if (__lock_release(lock, ip))
5847  		check_chain_key(current);
5848  	lockdep_recursion_finish();
5849  	raw_local_irq_restore(flags);
5850  }
5851  EXPORT_SYMBOL_GPL(lock_release);
5852  
5853  /*
5854   * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5855   *
5856   * No actual critical section is created by the APIs annotated with this: these
5857   * APIs are used to wait for one or multiple critical sections (on other CPUs
5858   * or threads), and it means that calling these APIs inside these critical
5859   * sections is potential deadlock.
5860   */
lock_sync(struct lockdep_map * lock,unsigned subclass,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5861  void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5862  	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5863  {
5864  	unsigned long flags;
5865  
5866  	if (unlikely(!lockdep_enabled()))
5867  		return;
5868  
5869  	raw_local_irq_save(flags);
5870  	check_flags(flags);
5871  
5872  	lockdep_recursion_inc();
5873  	__lock_acquire(lock, subclass, 0, read, check,
5874  		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5875  	check_chain_key(current);
5876  	lockdep_recursion_finish();
5877  	raw_local_irq_restore(flags);
5878  }
5879  EXPORT_SYMBOL_GPL(lock_sync);
5880  
lock_is_held_type(const struct lockdep_map * lock,int read)5881  noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5882  {
5883  	unsigned long flags;
5884  	int ret = LOCK_STATE_NOT_HELD;
5885  
5886  	/*
5887  	 * Avoid false negative lockdep_assert_held() and
5888  	 * lockdep_assert_not_held().
5889  	 */
5890  	if (unlikely(!lockdep_enabled()))
5891  		return LOCK_STATE_UNKNOWN;
5892  
5893  	raw_local_irq_save(flags);
5894  	check_flags(flags);
5895  
5896  	lockdep_recursion_inc();
5897  	ret = __lock_is_held(lock, read);
5898  	lockdep_recursion_finish();
5899  	raw_local_irq_restore(flags);
5900  
5901  	return ret;
5902  }
5903  EXPORT_SYMBOL_GPL(lock_is_held_type);
5904  NOKPROBE_SYMBOL(lock_is_held_type);
5905  
lock_pin_lock(struct lockdep_map * lock)5906  struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5907  {
5908  	struct pin_cookie cookie = NIL_COOKIE;
5909  	unsigned long flags;
5910  
5911  	if (unlikely(!lockdep_enabled()))
5912  		return cookie;
5913  
5914  	raw_local_irq_save(flags);
5915  	check_flags(flags);
5916  
5917  	lockdep_recursion_inc();
5918  	cookie = __lock_pin_lock(lock);
5919  	lockdep_recursion_finish();
5920  	raw_local_irq_restore(flags);
5921  
5922  	return cookie;
5923  }
5924  EXPORT_SYMBOL_GPL(lock_pin_lock);
5925  
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5926  void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5927  {
5928  	unsigned long flags;
5929  
5930  	if (unlikely(!lockdep_enabled()))
5931  		return;
5932  
5933  	raw_local_irq_save(flags);
5934  	check_flags(flags);
5935  
5936  	lockdep_recursion_inc();
5937  	__lock_repin_lock(lock, cookie);
5938  	lockdep_recursion_finish();
5939  	raw_local_irq_restore(flags);
5940  }
5941  EXPORT_SYMBOL_GPL(lock_repin_lock);
5942  
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5943  void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5944  {
5945  	unsigned long flags;
5946  
5947  	if (unlikely(!lockdep_enabled()))
5948  		return;
5949  
5950  	raw_local_irq_save(flags);
5951  	check_flags(flags);
5952  
5953  	lockdep_recursion_inc();
5954  	__lock_unpin_lock(lock, cookie);
5955  	lockdep_recursion_finish();
5956  	raw_local_irq_restore(flags);
5957  }
5958  EXPORT_SYMBOL_GPL(lock_unpin_lock);
5959  
5960  #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5961  static void print_lock_contention_bug(struct task_struct *curr,
5962  				      struct lockdep_map *lock,
5963  				      unsigned long ip)
5964  {
5965  	if (!debug_locks_off())
5966  		return;
5967  	if (debug_locks_silent)
5968  		return;
5969  
5970  	nbcon_cpu_emergency_enter();
5971  
5972  	pr_warn("\n");
5973  	pr_warn("=================================\n");
5974  	pr_warn("WARNING: bad contention detected!\n");
5975  	print_kernel_ident();
5976  	pr_warn("---------------------------------\n");
5977  	pr_warn("%s/%d is trying to contend lock (",
5978  		curr->comm, task_pid_nr(curr));
5979  	print_lockdep_cache(lock);
5980  	pr_cont(") at:\n");
5981  	print_ip_sym(KERN_WARNING, ip);
5982  	pr_warn("but there are no locks held!\n");
5983  	pr_warn("\nother info that might help us debug this:\n");
5984  	lockdep_print_held_locks(curr);
5985  
5986  	pr_warn("\nstack backtrace:\n");
5987  	dump_stack();
5988  
5989  	nbcon_cpu_emergency_exit();
5990  }
5991  
5992  static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5993  __lock_contended(struct lockdep_map *lock, unsigned long ip)
5994  {
5995  	struct task_struct *curr = current;
5996  	struct held_lock *hlock;
5997  	struct lock_class_stats *stats;
5998  	unsigned int depth;
5999  	int i, contention_point, contending_point;
6000  
6001  	depth = curr->lockdep_depth;
6002  	/*
6003  	 * Whee, we contended on this lock, except it seems we're not
6004  	 * actually trying to acquire anything much at all..
6005  	 */
6006  	if (DEBUG_LOCKS_WARN_ON(!depth))
6007  		return;
6008  
6009  	if (unlikely(lock->key == &__lockdep_no_track__))
6010  		return;
6011  
6012  	hlock = find_held_lock(curr, lock, depth, &i);
6013  	if (!hlock) {
6014  		print_lock_contention_bug(curr, lock, ip);
6015  		return;
6016  	}
6017  
6018  	if (hlock->instance != lock)
6019  		return;
6020  
6021  	hlock->waittime_stamp = lockstat_clock();
6022  
6023  	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6024  	contending_point = lock_point(hlock_class(hlock)->contending_point,
6025  				      lock->ip);
6026  
6027  	stats = get_lock_stats(hlock_class(hlock));
6028  	if (contention_point < LOCKSTAT_POINTS)
6029  		stats->contention_point[contention_point]++;
6030  	if (contending_point < LOCKSTAT_POINTS)
6031  		stats->contending_point[contending_point]++;
6032  	if (lock->cpu != smp_processor_id())
6033  		stats->bounces[bounce_contended + !!hlock->read]++;
6034  }
6035  
6036  static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)6037  __lock_acquired(struct lockdep_map *lock, unsigned long ip)
6038  {
6039  	struct task_struct *curr = current;
6040  	struct held_lock *hlock;
6041  	struct lock_class_stats *stats;
6042  	unsigned int depth;
6043  	u64 now, waittime = 0;
6044  	int i, cpu;
6045  
6046  	depth = curr->lockdep_depth;
6047  	/*
6048  	 * Yay, we acquired ownership of this lock we didn't try to
6049  	 * acquire, how the heck did that happen?
6050  	 */
6051  	if (DEBUG_LOCKS_WARN_ON(!depth))
6052  		return;
6053  
6054  	if (unlikely(lock->key == &__lockdep_no_track__))
6055  		return;
6056  
6057  	hlock = find_held_lock(curr, lock, depth, &i);
6058  	if (!hlock) {
6059  		print_lock_contention_bug(curr, lock, _RET_IP_);
6060  		return;
6061  	}
6062  
6063  	if (hlock->instance != lock)
6064  		return;
6065  
6066  	cpu = smp_processor_id();
6067  	if (hlock->waittime_stamp) {
6068  		now = lockstat_clock();
6069  		waittime = now - hlock->waittime_stamp;
6070  		hlock->holdtime_stamp = now;
6071  	}
6072  
6073  	stats = get_lock_stats(hlock_class(hlock));
6074  	if (waittime) {
6075  		if (hlock->read)
6076  			lock_time_inc(&stats->read_waittime, waittime);
6077  		else
6078  			lock_time_inc(&stats->write_waittime, waittime);
6079  	}
6080  	if (lock->cpu != cpu)
6081  		stats->bounces[bounce_acquired + !!hlock->read]++;
6082  
6083  	lock->cpu = cpu;
6084  	lock->ip = ip;
6085  }
6086  
lock_contended(struct lockdep_map * lock,unsigned long ip)6087  void lock_contended(struct lockdep_map *lock, unsigned long ip)
6088  {
6089  	unsigned long flags;
6090  
6091  	trace_lock_contended(lock, ip);
6092  
6093  	if (unlikely(!lock_stat || !lockdep_enabled()))
6094  		return;
6095  
6096  	raw_local_irq_save(flags);
6097  	check_flags(flags);
6098  	lockdep_recursion_inc();
6099  	__lock_contended(lock, ip);
6100  	lockdep_recursion_finish();
6101  	raw_local_irq_restore(flags);
6102  }
6103  EXPORT_SYMBOL_GPL(lock_contended);
6104  
lock_acquired(struct lockdep_map * lock,unsigned long ip)6105  void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6106  {
6107  	unsigned long flags;
6108  
6109  	trace_lock_acquired(lock, ip);
6110  
6111  	if (unlikely(!lock_stat || !lockdep_enabled()))
6112  		return;
6113  
6114  	raw_local_irq_save(flags);
6115  	check_flags(flags);
6116  	lockdep_recursion_inc();
6117  	__lock_acquired(lock, ip);
6118  	lockdep_recursion_finish();
6119  	raw_local_irq_restore(flags);
6120  }
6121  EXPORT_SYMBOL_GPL(lock_acquired);
6122  #endif
6123  
6124  /*
6125   * Used by the testsuite, sanitize the validator state
6126   * after a simulated failure:
6127   */
6128  
lockdep_reset(void)6129  void lockdep_reset(void)
6130  {
6131  	unsigned long flags;
6132  	int i;
6133  
6134  	raw_local_irq_save(flags);
6135  	lockdep_init_task(current);
6136  	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6137  	nr_hardirq_chains = 0;
6138  	nr_softirq_chains = 0;
6139  	nr_process_chains = 0;
6140  	debug_locks = 1;
6141  	for (i = 0; i < CHAINHASH_SIZE; i++)
6142  		INIT_HLIST_HEAD(chainhash_table + i);
6143  	raw_local_irq_restore(flags);
6144  }
6145  
6146  /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)6147  static void remove_class_from_lock_chain(struct pending_free *pf,
6148  					 struct lock_chain *chain,
6149  					 struct lock_class *class)
6150  {
6151  #ifdef CONFIG_PROVE_LOCKING
6152  	int i;
6153  
6154  	for (i = chain->base; i < chain->base + chain->depth; i++) {
6155  		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6156  			continue;
6157  		/*
6158  		 * Each lock class occurs at most once in a lock chain so once
6159  		 * we found a match we can break out of this loop.
6160  		 */
6161  		goto free_lock_chain;
6162  	}
6163  	/* Since the chain has not been modified, return. */
6164  	return;
6165  
6166  free_lock_chain:
6167  	free_chain_hlocks(chain->base, chain->depth);
6168  	/* Overwrite the chain key for concurrent RCU readers. */
6169  	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6170  	dec_chains(chain->irq_context);
6171  
6172  	/*
6173  	 * Note: calling hlist_del_rcu() from inside a
6174  	 * hlist_for_each_entry_rcu() loop is safe.
6175  	 */
6176  	hlist_del_rcu(&chain->entry);
6177  	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6178  	nr_zapped_lock_chains++;
6179  #endif
6180  }
6181  
6182  /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)6183  static void remove_class_from_lock_chains(struct pending_free *pf,
6184  					  struct lock_class *class)
6185  {
6186  	struct lock_chain *chain;
6187  	struct hlist_head *head;
6188  	int i;
6189  
6190  	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6191  		head = chainhash_table + i;
6192  		hlist_for_each_entry_rcu(chain, head, entry) {
6193  			remove_class_from_lock_chain(pf, chain, class);
6194  		}
6195  	}
6196  }
6197  
6198  /*
6199   * Remove all references to a lock class. The caller must hold the graph lock.
6200   */
zap_class(struct pending_free * pf,struct lock_class * class)6201  static void zap_class(struct pending_free *pf, struct lock_class *class)
6202  {
6203  	struct lock_list *entry;
6204  	int i;
6205  
6206  	WARN_ON_ONCE(!class->key);
6207  
6208  	/*
6209  	 * Remove all dependencies this lock is
6210  	 * involved in:
6211  	 */
6212  	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6213  		entry = list_entries + i;
6214  		if (entry->class != class && entry->links_to != class)
6215  			continue;
6216  		__clear_bit(i, list_entries_in_use);
6217  		nr_list_entries--;
6218  		list_del_rcu(&entry->entry);
6219  	}
6220  	if (list_empty(&class->locks_after) &&
6221  	    list_empty(&class->locks_before)) {
6222  		list_move_tail(&class->lock_entry, &pf->zapped);
6223  		hlist_del_rcu(&class->hash_entry);
6224  		WRITE_ONCE(class->key, NULL);
6225  		WRITE_ONCE(class->name, NULL);
6226  		nr_lock_classes--;
6227  		__clear_bit(class - lock_classes, lock_classes_in_use);
6228  		if (class - lock_classes == max_lock_class_idx)
6229  			max_lock_class_idx--;
6230  	} else {
6231  		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6232  			  class->name);
6233  	}
6234  
6235  	remove_class_from_lock_chains(pf, class);
6236  	nr_zapped_classes++;
6237  }
6238  
reinit_class(struct lock_class * class)6239  static void reinit_class(struct lock_class *class)
6240  {
6241  	WARN_ON_ONCE(!class->lock_entry.next);
6242  	WARN_ON_ONCE(!list_empty(&class->locks_after));
6243  	WARN_ON_ONCE(!list_empty(&class->locks_before));
6244  	memset_startat(class, 0, key);
6245  	WARN_ON_ONCE(!class->lock_entry.next);
6246  	WARN_ON_ONCE(!list_empty(&class->locks_after));
6247  	WARN_ON_ONCE(!list_empty(&class->locks_before));
6248  }
6249  
within(const void * addr,void * start,unsigned long size)6250  static inline int within(const void *addr, void *start, unsigned long size)
6251  {
6252  	return addr >= start && addr < start + size;
6253  }
6254  
inside_selftest(void)6255  static bool inside_selftest(void)
6256  {
6257  	return current == lockdep_selftest_task_struct;
6258  }
6259  
6260  /* The caller must hold the graph lock. */
get_pending_free(void)6261  static struct pending_free *get_pending_free(void)
6262  {
6263  	return delayed_free.pf + delayed_free.index;
6264  }
6265  
6266  static void free_zapped_rcu(struct rcu_head *cb);
6267  
6268  /*
6269  * See if we need to queue an RCU callback, must called with
6270  * the lockdep lock held, returns false if either we don't have
6271  * any pending free or the callback is already scheduled.
6272  * Otherwise, a call_rcu() must follow this function call.
6273  */
prepare_call_rcu_zapped(struct pending_free * pf)6274  static bool prepare_call_rcu_zapped(struct pending_free *pf)
6275  {
6276  	WARN_ON_ONCE(inside_selftest());
6277  
6278  	if (list_empty(&pf->zapped))
6279  		return false;
6280  
6281  	if (delayed_free.scheduled)
6282  		return false;
6283  
6284  	delayed_free.scheduled = true;
6285  
6286  	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6287  	delayed_free.index ^= 1;
6288  
6289  	return true;
6290  }
6291  
6292  /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6293  static void __free_zapped_classes(struct pending_free *pf)
6294  {
6295  	struct lock_class *class;
6296  
6297  	check_data_structures();
6298  
6299  	list_for_each_entry(class, &pf->zapped, lock_entry)
6300  		reinit_class(class);
6301  
6302  	list_splice_init(&pf->zapped, &free_lock_classes);
6303  
6304  #ifdef CONFIG_PROVE_LOCKING
6305  	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6306  		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6307  	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6308  #endif
6309  }
6310  
free_zapped_rcu(struct rcu_head * ch)6311  static void free_zapped_rcu(struct rcu_head *ch)
6312  {
6313  	struct pending_free *pf;
6314  	unsigned long flags;
6315  	bool need_callback;
6316  
6317  	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6318  		return;
6319  
6320  	raw_local_irq_save(flags);
6321  	lockdep_lock();
6322  
6323  	/* closed head */
6324  	pf = delayed_free.pf + (delayed_free.index ^ 1);
6325  	__free_zapped_classes(pf);
6326  	delayed_free.scheduled = false;
6327  	need_callback =
6328  		prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6329  	lockdep_unlock();
6330  	raw_local_irq_restore(flags);
6331  
6332  	/*
6333  	* If there's pending free and its callback has not been scheduled,
6334  	* queue an RCU callback.
6335  	*/
6336  	if (need_callback)
6337  		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6338  
6339  }
6340  
6341  /*
6342   * Remove all lock classes from the class hash table and from the
6343   * all_lock_classes list whose key or name is in the address range [start,
6344   * start + size). Move these lock classes to the zapped_classes list. Must
6345   * be called with the graph lock held.
6346   */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6347  static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6348  				     unsigned long size)
6349  {
6350  	struct lock_class *class;
6351  	struct hlist_head *head;
6352  	int i;
6353  
6354  	/* Unhash all classes that were created by a module. */
6355  	for (i = 0; i < CLASSHASH_SIZE; i++) {
6356  		head = classhash_table + i;
6357  		hlist_for_each_entry_rcu(class, head, hash_entry) {
6358  			if (!within(class->key, start, size) &&
6359  			    !within(class->name, start, size))
6360  				continue;
6361  			zap_class(pf, class);
6362  		}
6363  	}
6364  }
6365  
6366  /*
6367   * Used in module.c to remove lock classes from memory that is going to be
6368   * freed; and possibly re-used by other modules.
6369   *
6370   * We will have had one synchronize_rcu() before getting here, so we're
6371   * guaranteed nobody will look up these exact classes -- they're properly dead
6372   * but still allocated.
6373   */
lockdep_free_key_range_reg(void * start,unsigned long size)6374  static void lockdep_free_key_range_reg(void *start, unsigned long size)
6375  {
6376  	struct pending_free *pf;
6377  	unsigned long flags;
6378  	bool need_callback;
6379  
6380  	init_data_structures_once();
6381  
6382  	raw_local_irq_save(flags);
6383  	lockdep_lock();
6384  	pf = get_pending_free();
6385  	__lockdep_free_key_range(pf, start, size);
6386  	need_callback = prepare_call_rcu_zapped(pf);
6387  	lockdep_unlock();
6388  	raw_local_irq_restore(flags);
6389  	if (need_callback)
6390  		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6391  	/*
6392  	 * Wait for any possible iterators from look_up_lock_class() to pass
6393  	 * before continuing to free the memory they refer to.
6394  	 */
6395  	synchronize_rcu();
6396  }
6397  
6398  /*
6399   * Free all lockdep keys in the range [start, start+size). Does not sleep.
6400   * Ignores debug_locks. Must only be used by the lockdep selftests.
6401   */
lockdep_free_key_range_imm(void * start,unsigned long size)6402  static void lockdep_free_key_range_imm(void *start, unsigned long size)
6403  {
6404  	struct pending_free *pf = delayed_free.pf;
6405  	unsigned long flags;
6406  
6407  	init_data_structures_once();
6408  
6409  	raw_local_irq_save(flags);
6410  	lockdep_lock();
6411  	__lockdep_free_key_range(pf, start, size);
6412  	__free_zapped_classes(pf);
6413  	lockdep_unlock();
6414  	raw_local_irq_restore(flags);
6415  }
6416  
lockdep_free_key_range(void * start,unsigned long size)6417  void lockdep_free_key_range(void *start, unsigned long size)
6418  {
6419  	init_data_structures_once();
6420  
6421  	if (inside_selftest())
6422  		lockdep_free_key_range_imm(start, size);
6423  	else
6424  		lockdep_free_key_range_reg(start, size);
6425  }
6426  
6427  /*
6428   * Check whether any element of the @lock->class_cache[] array refers to a
6429   * registered lock class. The caller must hold either the graph lock or the
6430   * RCU read lock.
6431   */
lock_class_cache_is_registered(struct lockdep_map * lock)6432  static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6433  {
6434  	struct lock_class *class;
6435  	struct hlist_head *head;
6436  	int i, j;
6437  
6438  	for (i = 0; i < CLASSHASH_SIZE; i++) {
6439  		head = classhash_table + i;
6440  		hlist_for_each_entry_rcu(class, head, hash_entry) {
6441  			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6442  				if (lock->class_cache[j] == class)
6443  					return true;
6444  		}
6445  	}
6446  	return false;
6447  }
6448  
6449  /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6450  static void __lockdep_reset_lock(struct pending_free *pf,
6451  				 struct lockdep_map *lock)
6452  {
6453  	struct lock_class *class;
6454  	int j;
6455  
6456  	/*
6457  	 * Remove all classes this lock might have:
6458  	 */
6459  	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6460  		/*
6461  		 * If the class exists we look it up and zap it:
6462  		 */
6463  		class = look_up_lock_class(lock, j);
6464  		if (class)
6465  			zap_class(pf, class);
6466  	}
6467  	/*
6468  	 * Debug check: in the end all mapped classes should
6469  	 * be gone.
6470  	 */
6471  	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6472  		debug_locks_off();
6473  }
6474  
6475  /*
6476   * Remove all information lockdep has about a lock if debug_locks == 1. Free
6477   * released data structures from RCU context.
6478   */
lockdep_reset_lock_reg(struct lockdep_map * lock)6479  static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6480  {
6481  	struct pending_free *pf;
6482  	unsigned long flags;
6483  	int locked;
6484  	bool need_callback = false;
6485  
6486  	raw_local_irq_save(flags);
6487  	locked = graph_lock();
6488  	if (!locked)
6489  		goto out_irq;
6490  
6491  	pf = get_pending_free();
6492  	__lockdep_reset_lock(pf, lock);
6493  	need_callback = prepare_call_rcu_zapped(pf);
6494  
6495  	graph_unlock();
6496  out_irq:
6497  	raw_local_irq_restore(flags);
6498  	if (need_callback)
6499  		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6500  }
6501  
6502  /*
6503   * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6504   * lockdep selftests.
6505   */
lockdep_reset_lock_imm(struct lockdep_map * lock)6506  static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6507  {
6508  	struct pending_free *pf = delayed_free.pf;
6509  	unsigned long flags;
6510  
6511  	raw_local_irq_save(flags);
6512  	lockdep_lock();
6513  	__lockdep_reset_lock(pf, lock);
6514  	__free_zapped_classes(pf);
6515  	lockdep_unlock();
6516  	raw_local_irq_restore(flags);
6517  }
6518  
lockdep_reset_lock(struct lockdep_map * lock)6519  void lockdep_reset_lock(struct lockdep_map *lock)
6520  {
6521  	init_data_structures_once();
6522  
6523  	if (inside_selftest())
6524  		lockdep_reset_lock_imm(lock);
6525  	else
6526  		lockdep_reset_lock_reg(lock);
6527  }
6528  
6529  /*
6530   * Unregister a dynamically allocated key.
6531   *
6532   * Unlike lockdep_register_key(), a search is always done to find a matching
6533   * key irrespective of debug_locks to avoid potential invalid access to freed
6534   * memory in lock_class entry.
6535   */
lockdep_unregister_key(struct lock_class_key * key)6536  void lockdep_unregister_key(struct lock_class_key *key)
6537  {
6538  	struct hlist_head *hash_head = keyhashentry(key);
6539  	struct lock_class_key *k;
6540  	struct pending_free *pf;
6541  	unsigned long flags;
6542  	bool found = false;
6543  	bool need_callback = false;
6544  
6545  	might_sleep();
6546  
6547  	if (WARN_ON_ONCE(static_obj(key)))
6548  		return;
6549  
6550  	raw_local_irq_save(flags);
6551  	lockdep_lock();
6552  
6553  	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6554  		if (k == key) {
6555  			hlist_del_rcu(&k->hash_entry);
6556  			found = true;
6557  			break;
6558  		}
6559  	}
6560  	WARN_ON_ONCE(!found && debug_locks);
6561  	if (found) {
6562  		pf = get_pending_free();
6563  		__lockdep_free_key_range(pf, key, 1);
6564  		need_callback = prepare_call_rcu_zapped(pf);
6565  	}
6566  	lockdep_unlock();
6567  	raw_local_irq_restore(flags);
6568  
6569  	if (need_callback)
6570  		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6571  
6572  	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6573  	synchronize_rcu();
6574  }
6575  EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6576  
lockdep_init(void)6577  void __init lockdep_init(void)
6578  {
6579  	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6580  
6581  	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6582  	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6583  	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6584  	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6585  	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6586  	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6587  	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6588  
6589  	printk(" memory used by lock dependency info: %zu kB\n",
6590  	       (sizeof(lock_classes) +
6591  		sizeof(lock_classes_in_use) +
6592  		sizeof(classhash_table) +
6593  		sizeof(list_entries) +
6594  		sizeof(list_entries_in_use) +
6595  		sizeof(chainhash_table) +
6596  		sizeof(delayed_free)
6597  #ifdef CONFIG_PROVE_LOCKING
6598  		+ sizeof(lock_cq)
6599  		+ sizeof(lock_chains)
6600  		+ sizeof(lock_chains_in_use)
6601  		+ sizeof(chain_hlocks)
6602  #endif
6603  		) / 1024
6604  		);
6605  
6606  #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6607  	printk(" memory used for stack traces: %zu kB\n",
6608  	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6609  	       );
6610  #endif
6611  
6612  	printk(" per task-struct memory footprint: %zu bytes\n",
6613  	       sizeof(((struct task_struct *)NULL)->held_locks));
6614  }
6615  
6616  static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6617  print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6618  		     const void *mem_to, struct held_lock *hlock)
6619  {
6620  	if (!debug_locks_off())
6621  		return;
6622  	if (debug_locks_silent)
6623  		return;
6624  
6625  	nbcon_cpu_emergency_enter();
6626  
6627  	pr_warn("\n");
6628  	pr_warn("=========================\n");
6629  	pr_warn("WARNING: held lock freed!\n");
6630  	print_kernel_ident();
6631  	pr_warn("-------------------------\n");
6632  	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6633  		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6634  	print_lock(hlock);
6635  	lockdep_print_held_locks(curr);
6636  
6637  	pr_warn("\nstack backtrace:\n");
6638  	dump_stack();
6639  
6640  	nbcon_cpu_emergency_exit();
6641  }
6642  
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6643  static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6644  				const void* lock_from, unsigned long lock_len)
6645  {
6646  	return lock_from + lock_len <= mem_from ||
6647  		mem_from + mem_len <= lock_from;
6648  }
6649  
6650  /*
6651   * Called when kernel memory is freed (or unmapped), or if a lock
6652   * is destroyed or reinitialized - this code checks whether there is
6653   * any held lock in the memory range of <from> to <to>:
6654   */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6655  void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6656  {
6657  	struct task_struct *curr = current;
6658  	struct held_lock *hlock;
6659  	unsigned long flags;
6660  	int i;
6661  
6662  	if (unlikely(!debug_locks))
6663  		return;
6664  
6665  	raw_local_irq_save(flags);
6666  	for (i = 0; i < curr->lockdep_depth; i++) {
6667  		hlock = curr->held_locks + i;
6668  
6669  		if (not_in_range(mem_from, mem_len, hlock->instance,
6670  					sizeof(*hlock->instance)))
6671  			continue;
6672  
6673  		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6674  		break;
6675  	}
6676  	raw_local_irq_restore(flags);
6677  }
6678  EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6679  
print_held_locks_bug(void)6680  static void print_held_locks_bug(void)
6681  {
6682  	if (!debug_locks_off())
6683  		return;
6684  	if (debug_locks_silent)
6685  		return;
6686  
6687  	nbcon_cpu_emergency_enter();
6688  
6689  	pr_warn("\n");
6690  	pr_warn("====================================\n");
6691  	pr_warn("WARNING: %s/%d still has locks held!\n",
6692  	       current->comm, task_pid_nr(current));
6693  	print_kernel_ident();
6694  	pr_warn("------------------------------------\n");
6695  	lockdep_print_held_locks(current);
6696  	pr_warn("\nstack backtrace:\n");
6697  	dump_stack();
6698  
6699  	nbcon_cpu_emergency_exit();
6700  }
6701  
debug_check_no_locks_held(void)6702  void debug_check_no_locks_held(void)
6703  {
6704  	if (unlikely(current->lockdep_depth > 0))
6705  		print_held_locks_bug();
6706  }
6707  EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6708  
6709  #ifdef __KERNEL__
debug_show_all_locks(void)6710  void debug_show_all_locks(void)
6711  {
6712  	struct task_struct *g, *p;
6713  
6714  	if (unlikely(!debug_locks)) {
6715  		pr_warn("INFO: lockdep is turned off.\n");
6716  		return;
6717  	}
6718  	pr_warn("\nShowing all locks held in the system:\n");
6719  
6720  	rcu_read_lock();
6721  	for_each_process_thread(g, p) {
6722  		if (!p->lockdep_depth)
6723  			continue;
6724  		lockdep_print_held_locks(p);
6725  		touch_nmi_watchdog();
6726  		touch_all_softlockup_watchdogs();
6727  	}
6728  	rcu_read_unlock();
6729  
6730  	pr_warn("\n");
6731  	pr_warn("=============================================\n\n");
6732  }
6733  EXPORT_SYMBOL_GPL(debug_show_all_locks);
6734  #endif
6735  
6736  /*
6737   * Careful: only use this function if you are sure that
6738   * the task cannot run in parallel!
6739   */
debug_show_held_locks(struct task_struct * task)6740  void debug_show_held_locks(struct task_struct *task)
6741  {
6742  	if (unlikely(!debug_locks)) {
6743  		printk("INFO: lockdep is turned off.\n");
6744  		return;
6745  	}
6746  	lockdep_print_held_locks(task);
6747  }
6748  EXPORT_SYMBOL_GPL(debug_show_held_locks);
6749  
lockdep_sys_exit(void)6750  asmlinkage __visible void lockdep_sys_exit(void)
6751  {
6752  	struct task_struct *curr = current;
6753  
6754  	if (unlikely(curr->lockdep_depth)) {
6755  		if (!debug_locks_off())
6756  			return;
6757  		nbcon_cpu_emergency_enter();
6758  		pr_warn("\n");
6759  		pr_warn("================================================\n");
6760  		pr_warn("WARNING: lock held when returning to user space!\n");
6761  		print_kernel_ident();
6762  		pr_warn("------------------------------------------------\n");
6763  		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6764  				curr->comm, curr->pid);
6765  		lockdep_print_held_locks(curr);
6766  		nbcon_cpu_emergency_exit();
6767  	}
6768  
6769  	/*
6770  	 * The lock history for each syscall should be independent. So wipe the
6771  	 * slate clean on return to userspace.
6772  	 */
6773  	lockdep_invariant_state(false);
6774  }
6775  
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6776  void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6777  {
6778  	struct task_struct *curr = current;
6779  	int dl = READ_ONCE(debug_locks);
6780  	bool rcu = warn_rcu_enter();
6781  
6782  	/* Note: the following can be executed concurrently, so be careful. */
6783  	nbcon_cpu_emergency_enter();
6784  	pr_warn("\n");
6785  	pr_warn("=============================\n");
6786  	pr_warn("WARNING: suspicious RCU usage\n");
6787  	print_kernel_ident();
6788  	pr_warn("-----------------------------\n");
6789  	pr_warn("%s:%d %s!\n", file, line, s);
6790  	pr_warn("\nother info that might help us debug this:\n\n");
6791  	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6792  	       !rcu_lockdep_current_cpu_online()
6793  			? "RCU used illegally from offline CPU!\n"
6794  			: "",
6795  	       rcu_scheduler_active, dl,
6796  	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6797  
6798  	/*
6799  	 * If a CPU is in the RCU-free window in idle (ie: in the section
6800  	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6801  	 * considers that CPU to be in an "extended quiescent state",
6802  	 * which means that RCU will be completely ignoring that CPU.
6803  	 * Therefore, rcu_read_lock() and friends have absolutely no
6804  	 * effect on a CPU running in that state. In other words, even if
6805  	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6806  	 * delete data structures out from under it.  RCU really has no
6807  	 * choice here: we need to keep an RCU-free window in idle where
6808  	 * the CPU may possibly enter into low power mode. This way we can
6809  	 * notice an extended quiescent state to other CPUs that started a grace
6810  	 * period. Otherwise we would delay any grace period as long as we run
6811  	 * in the idle task.
6812  	 *
6813  	 * So complain bitterly if someone does call rcu_read_lock(),
6814  	 * rcu_read_lock_bh() and so on from extended quiescent states.
6815  	 */
6816  	if (!rcu_is_watching())
6817  		pr_warn("RCU used illegally from extended quiescent state!\n");
6818  
6819  	lockdep_print_held_locks(curr);
6820  	pr_warn("\nstack backtrace:\n");
6821  	dump_stack();
6822  	nbcon_cpu_emergency_exit();
6823  	warn_rcu_exit(rcu);
6824  }
6825  EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6826