1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * kexec: kexec_file_load system call
4   *
5   * Copyright (C) 2014 Red Hat Inc.
6   * Authors:
7   *      Vivek Goyal <vgoyal@redhat.com>
8   */
9  
10  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11  
12  #include <linux/capability.h>
13  #include <linux/mm.h>
14  #include <linux/file.h>
15  #include <linux/slab.h>
16  #include <linux/kexec.h>
17  #include <linux/memblock.h>
18  #include <linux/mutex.h>
19  #include <linux/list.h>
20  #include <linux/fs.h>
21  #include <linux/ima.h>
22  #include <crypto/hash.h>
23  #include <crypto/sha2.h>
24  #include <linux/elf.h>
25  #include <linux/elfcore.h>
26  #include <linux/kernel.h>
27  #include <linux/kernel_read_file.h>
28  #include <linux/syscalls.h>
29  #include <linux/vmalloc.h>
30  #include "kexec_internal.h"
31  
32  #ifdef CONFIG_KEXEC_SIG
33  static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34  
set_kexec_sig_enforced(void)35  void set_kexec_sig_enforced(void)
36  {
37  	sig_enforce = true;
38  }
39  #endif
40  
41  static int kexec_calculate_store_digests(struct kimage *image);
42  
43  /* Maximum size in bytes for kernel/initrd files. */
44  #define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
45  
46  /*
47   * Currently this is the only default function that is exported as some
48   * architectures need it to do additional handlings.
49   * In the future, other default functions may be exported too if required.
50   */
kexec_image_probe_default(struct kimage * image,void * buf,unsigned long buf_len)51  int kexec_image_probe_default(struct kimage *image, void *buf,
52  			      unsigned long buf_len)
53  {
54  	const struct kexec_file_ops * const *fops;
55  	int ret = -ENOEXEC;
56  
57  	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58  		ret = (*fops)->probe(buf, buf_len);
59  		if (!ret) {
60  			image->fops = *fops;
61  			return ret;
62  		}
63  	}
64  
65  	return ret;
66  }
67  
kexec_image_load_default(struct kimage * image)68  static void *kexec_image_load_default(struct kimage *image)
69  {
70  	if (!image->fops || !image->fops->load)
71  		return ERR_PTR(-ENOEXEC);
72  
73  	return image->fops->load(image, image->kernel_buf,
74  				 image->kernel_buf_len, image->initrd_buf,
75  				 image->initrd_buf_len, image->cmdline_buf,
76  				 image->cmdline_buf_len);
77  }
78  
kexec_image_post_load_cleanup_default(struct kimage * image)79  int kexec_image_post_load_cleanup_default(struct kimage *image)
80  {
81  	if (!image->fops || !image->fops->cleanup)
82  		return 0;
83  
84  	return image->fops->cleanup(image->image_loader_data);
85  }
86  
87  /*
88   * Free up memory used by kernel, initrd, and command line. This is temporary
89   * memory allocation which is not needed any more after these buffers have
90   * been loaded into separate segments and have been copied elsewhere.
91   */
kimage_file_post_load_cleanup(struct kimage * image)92  void kimage_file_post_load_cleanup(struct kimage *image)
93  {
94  	struct purgatory_info *pi = &image->purgatory_info;
95  
96  	vfree(image->kernel_buf);
97  	image->kernel_buf = NULL;
98  
99  	vfree(image->initrd_buf);
100  	image->initrd_buf = NULL;
101  
102  	kfree(image->cmdline_buf);
103  	image->cmdline_buf = NULL;
104  
105  	vfree(pi->purgatory_buf);
106  	pi->purgatory_buf = NULL;
107  
108  	vfree(pi->sechdrs);
109  	pi->sechdrs = NULL;
110  
111  #ifdef CONFIG_IMA_KEXEC
112  	vfree(image->ima_buffer);
113  	image->ima_buffer = NULL;
114  #endif /* CONFIG_IMA_KEXEC */
115  
116  	/* See if architecture has anything to cleanup post load */
117  	arch_kimage_file_post_load_cleanup(image);
118  
119  	/*
120  	 * Above call should have called into bootloader to free up
121  	 * any data stored in kimage->image_loader_data. It should
122  	 * be ok now to free it up.
123  	 */
124  	kfree(image->image_loader_data);
125  	image->image_loader_data = NULL;
126  
127  	kexec_file_dbg_print = false;
128  }
129  
130  #ifdef CONFIG_KEXEC_SIG
131  #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
kexec_kernel_verify_pe_sig(const char * kernel,unsigned long kernel_len)132  int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133  {
134  	int ret;
135  
136  	ret = verify_pefile_signature(kernel, kernel_len,
137  				      VERIFY_USE_SECONDARY_KEYRING,
138  				      VERIFYING_KEXEC_PE_SIGNATURE);
139  	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140  		ret = verify_pefile_signature(kernel, kernel_len,
141  					      VERIFY_USE_PLATFORM_KEYRING,
142  					      VERIFYING_KEXEC_PE_SIGNATURE);
143  	}
144  	return ret;
145  }
146  #endif
147  
kexec_image_verify_sig(struct kimage * image,void * buf,unsigned long buf_len)148  static int kexec_image_verify_sig(struct kimage *image, void *buf,
149  				  unsigned long buf_len)
150  {
151  	if (!image->fops || !image->fops->verify_sig) {
152  		pr_debug("kernel loader does not support signature verification.\n");
153  		return -EKEYREJECTED;
154  	}
155  
156  	return image->fops->verify_sig(buf, buf_len);
157  }
158  
159  static int
kimage_validate_signature(struct kimage * image)160  kimage_validate_signature(struct kimage *image)
161  {
162  	int ret;
163  
164  	ret = kexec_image_verify_sig(image, image->kernel_buf,
165  				     image->kernel_buf_len);
166  	if (ret) {
167  
168  		if (sig_enforce) {
169  			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170  			return ret;
171  		}
172  
173  		/*
174  		 * If IMA is guaranteed to appraise a signature on the kexec
175  		 * image, permit it even if the kernel is otherwise locked
176  		 * down.
177  		 */
178  		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179  		    security_locked_down(LOCKDOWN_KEXEC))
180  			return -EPERM;
181  
182  		pr_debug("kernel signature verification failed (%d).\n", ret);
183  	}
184  
185  	return 0;
186  }
187  #endif
188  
189  /*
190   * In file mode list of segments is prepared by kernel. Copy relevant
191   * data from user space, do error checking, prepare segment list
192   */
193  static int
kimage_file_prepare_segments(struct kimage * image,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned flags)194  kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195  			     const char __user *cmdline_ptr,
196  			     unsigned long cmdline_len, unsigned flags)
197  {
198  	ssize_t ret;
199  	void *ldata;
200  
201  	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202  				       KEXEC_FILE_SIZE_MAX, NULL,
203  				       READING_KEXEC_IMAGE);
204  	if (ret < 0)
205  		return ret;
206  	image->kernel_buf_len = ret;
207  	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208  		      image->kernel_buf, image->kernel_buf_len);
209  
210  	/* Call arch image probe handlers */
211  	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212  					    image->kernel_buf_len);
213  	if (ret)
214  		goto out;
215  
216  #ifdef CONFIG_KEXEC_SIG
217  	ret = kimage_validate_signature(image);
218  
219  	if (ret)
220  		goto out;
221  #endif
222  	/* It is possible that there no initramfs is being loaded */
223  	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224  		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225  					       KEXEC_FILE_SIZE_MAX, NULL,
226  					       READING_KEXEC_INITRAMFS);
227  		if (ret < 0)
228  			goto out;
229  		image->initrd_buf_len = ret;
230  		ret = 0;
231  	}
232  
233  	if (cmdline_len) {
234  		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235  		if (IS_ERR(image->cmdline_buf)) {
236  			ret = PTR_ERR(image->cmdline_buf);
237  			image->cmdline_buf = NULL;
238  			goto out;
239  		}
240  
241  		image->cmdline_buf_len = cmdline_len;
242  
243  		/* command line should be a string with last byte null */
244  		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245  			ret = -EINVAL;
246  			goto out;
247  		}
248  
249  		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250  				  image->cmdline_buf_len - 1);
251  	}
252  
253  	/* IMA needs to pass the measurement list to the next kernel. */
254  	ima_add_kexec_buffer(image);
255  
256  	/* Call image load handler */
257  	ldata = kexec_image_load_default(image);
258  
259  	if (IS_ERR(ldata)) {
260  		ret = PTR_ERR(ldata);
261  		goto out;
262  	}
263  
264  	image->image_loader_data = ldata;
265  out:
266  	/* In case of error, free up all allocated memory in this function */
267  	if (ret)
268  		kimage_file_post_load_cleanup(image);
269  	return ret;
270  }
271  
272  static int
kimage_file_alloc_init(struct kimage ** rimage,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned long flags)273  kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274  		       int initrd_fd, const char __user *cmdline_ptr,
275  		       unsigned long cmdline_len, unsigned long flags)
276  {
277  	int ret;
278  	struct kimage *image;
279  	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280  
281  	image = do_kimage_alloc_init();
282  	if (!image)
283  		return -ENOMEM;
284  
285  	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286  	image->file_mode = 1;
287  
288  #ifdef CONFIG_CRASH_DUMP
289  	if (kexec_on_panic) {
290  		/* Enable special crash kernel control page alloc policy. */
291  		image->control_page = crashk_res.start;
292  		image->type = KEXEC_TYPE_CRASH;
293  	}
294  #endif
295  
296  	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
297  					   cmdline_ptr, cmdline_len, flags);
298  	if (ret)
299  		goto out_free_image;
300  
301  	ret = sanity_check_segment_list(image);
302  	if (ret)
303  		goto out_free_post_load_bufs;
304  
305  	ret = -ENOMEM;
306  	image->control_code_page = kimage_alloc_control_pages(image,
307  					   get_order(KEXEC_CONTROL_PAGE_SIZE));
308  	if (!image->control_code_page) {
309  		pr_err("Could not allocate control_code_buffer\n");
310  		goto out_free_post_load_bufs;
311  	}
312  
313  	if (!kexec_on_panic) {
314  		image->swap_page = kimage_alloc_control_pages(image, 0);
315  		if (!image->swap_page) {
316  			pr_err("Could not allocate swap buffer\n");
317  			goto out_free_control_pages;
318  		}
319  	}
320  
321  	*rimage = image;
322  	return 0;
323  out_free_control_pages:
324  	kimage_free_page_list(&image->control_pages);
325  out_free_post_load_bufs:
326  	kimage_file_post_load_cleanup(image);
327  out_free_image:
328  	kfree(image);
329  	return ret;
330  }
331  
SYSCALL_DEFINE5(kexec_file_load,int,kernel_fd,int,initrd_fd,unsigned long,cmdline_len,const char __user *,cmdline_ptr,unsigned long,flags)332  SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
333  		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
334  		unsigned long, flags)
335  {
336  	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
337  			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
338  	struct kimage **dest_image, *image;
339  	int ret = 0, i;
340  
341  	/* We only trust the superuser with rebooting the system. */
342  	if (!kexec_load_permitted(image_type))
343  		return -EPERM;
344  
345  	/* Make sure we have a legal set of flags */
346  	if (flags != (flags & KEXEC_FILE_FLAGS))
347  		return -EINVAL;
348  
349  	image = NULL;
350  
351  	if (!kexec_trylock())
352  		return -EBUSY;
353  
354  #ifdef CONFIG_CRASH_DUMP
355  	if (image_type == KEXEC_TYPE_CRASH) {
356  		dest_image = &kexec_crash_image;
357  		if (kexec_crash_image)
358  			arch_kexec_unprotect_crashkres();
359  	} else
360  #endif
361  		dest_image = &kexec_image;
362  
363  	if (flags & KEXEC_FILE_UNLOAD)
364  		goto exchange;
365  
366  	/*
367  	 * In case of crash, new kernel gets loaded in reserved region. It is
368  	 * same memory where old crash kernel might be loaded. Free any
369  	 * current crash dump kernel before we corrupt it.
370  	 */
371  	if (flags & KEXEC_FILE_ON_CRASH)
372  		kimage_free(xchg(&kexec_crash_image, NULL));
373  
374  	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
375  				     cmdline_len, flags);
376  	if (ret)
377  		goto out;
378  
379  #ifdef CONFIG_CRASH_HOTPLUG
380  	if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags))
381  		image->hotplug_support = 1;
382  #endif
383  
384  	ret = machine_kexec_prepare(image);
385  	if (ret)
386  		goto out;
387  
388  	/*
389  	 * Some architecture(like S390) may touch the crash memory before
390  	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
391  	 */
392  	ret = kimage_crash_copy_vmcoreinfo(image);
393  	if (ret)
394  		goto out;
395  
396  	ret = kexec_calculate_store_digests(image);
397  	if (ret)
398  		goto out;
399  
400  	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
401  	for (i = 0; i < image->nr_segments; i++) {
402  		struct kexec_segment *ksegment;
403  
404  		ksegment = &image->segment[i];
405  		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
406  			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
407  			      ksegment->memsz);
408  
409  		ret = kimage_load_segment(image, &image->segment[i]);
410  		if (ret)
411  			goto out;
412  	}
413  
414  	kimage_terminate(image);
415  
416  	ret = machine_kexec_post_load(image);
417  	if (ret)
418  		goto out;
419  
420  	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
421  		      image->type, image->start, image->head, flags);
422  	/*
423  	 * Free up any temporary buffers allocated which are not needed
424  	 * after image has been loaded
425  	 */
426  	kimage_file_post_load_cleanup(image);
427  exchange:
428  	image = xchg(dest_image, image);
429  out:
430  #ifdef CONFIG_CRASH_DUMP
431  	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
432  		arch_kexec_protect_crashkres();
433  #endif
434  
435  	kexec_unlock();
436  	kimage_free(image);
437  	return ret;
438  }
439  
locate_mem_hole_top_down(unsigned long start,unsigned long end,struct kexec_buf * kbuf)440  static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
441  				    struct kexec_buf *kbuf)
442  {
443  	struct kimage *image = kbuf->image;
444  	unsigned long temp_start, temp_end;
445  
446  	temp_end = min(end, kbuf->buf_max);
447  	temp_start = temp_end - kbuf->memsz + 1;
448  
449  	do {
450  		/* align down start */
451  		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
452  
453  		if (temp_start < start || temp_start < kbuf->buf_min)
454  			return 0;
455  
456  		temp_end = temp_start + kbuf->memsz - 1;
457  
458  		/*
459  		 * Make sure this does not conflict with any of existing
460  		 * segments
461  		 */
462  		if (kimage_is_destination_range(image, temp_start, temp_end)) {
463  			temp_start = temp_start - PAGE_SIZE;
464  			continue;
465  		}
466  
467  		/* We found a suitable memory range */
468  		break;
469  	} while (1);
470  
471  	/* If we are here, we found a suitable memory range */
472  	kbuf->mem = temp_start;
473  
474  	/* Success, stop navigating through remaining System RAM ranges */
475  	return 1;
476  }
477  
locate_mem_hole_bottom_up(unsigned long start,unsigned long end,struct kexec_buf * kbuf)478  static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
479  				     struct kexec_buf *kbuf)
480  {
481  	struct kimage *image = kbuf->image;
482  	unsigned long temp_start, temp_end;
483  
484  	temp_start = max(start, kbuf->buf_min);
485  
486  	do {
487  		temp_start = ALIGN(temp_start, kbuf->buf_align);
488  		temp_end = temp_start + kbuf->memsz - 1;
489  
490  		if (temp_end > end || temp_end > kbuf->buf_max)
491  			return 0;
492  		/*
493  		 * Make sure this does not conflict with any of existing
494  		 * segments
495  		 */
496  		if (kimage_is_destination_range(image, temp_start, temp_end)) {
497  			temp_start = temp_start + PAGE_SIZE;
498  			continue;
499  		}
500  
501  		/* We found a suitable memory range */
502  		break;
503  	} while (1);
504  
505  	/* If we are here, we found a suitable memory range */
506  	kbuf->mem = temp_start;
507  
508  	/* Success, stop navigating through remaining System RAM ranges */
509  	return 1;
510  }
511  
locate_mem_hole_callback(struct resource * res,void * arg)512  static int locate_mem_hole_callback(struct resource *res, void *arg)
513  {
514  	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
515  	u64 start = res->start, end = res->end;
516  	unsigned long sz = end - start + 1;
517  
518  	/* Returning 0 will take to next memory range */
519  
520  	/* Don't use memory that will be detected and handled by a driver. */
521  	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
522  		return 0;
523  
524  	if (sz < kbuf->memsz)
525  		return 0;
526  
527  	if (end < kbuf->buf_min || start > kbuf->buf_max)
528  		return 0;
529  
530  	/*
531  	 * Allocate memory top down with-in ram range. Otherwise bottom up
532  	 * allocation.
533  	 */
534  	if (kbuf->top_down)
535  		return locate_mem_hole_top_down(start, end, kbuf);
536  	return locate_mem_hole_bottom_up(start, end, kbuf);
537  }
538  
539  #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))540  static int kexec_walk_memblock(struct kexec_buf *kbuf,
541  			       int (*func)(struct resource *, void *))
542  {
543  	int ret = 0;
544  	u64 i;
545  	phys_addr_t mstart, mend;
546  	struct resource res = { };
547  
548  #ifdef CONFIG_CRASH_DUMP
549  	if (kbuf->image->type == KEXEC_TYPE_CRASH)
550  		return func(&crashk_res, kbuf);
551  #endif
552  
553  	/*
554  	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
555  	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
556  	 * locate_mem_hole_callback().
557  	 */
558  	if (kbuf->top_down) {
559  		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
560  						&mstart, &mend, NULL) {
561  			/*
562  			 * In memblock, end points to the first byte after the
563  			 * range while in kexec, end points to the last byte
564  			 * in the range.
565  			 */
566  			res.start = mstart;
567  			res.end = mend - 1;
568  			ret = func(&res, kbuf);
569  			if (ret)
570  				break;
571  		}
572  	} else {
573  		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
574  					&mstart, &mend, NULL) {
575  			/*
576  			 * In memblock, end points to the first byte after the
577  			 * range while in kexec, end points to the last byte
578  			 * in the range.
579  			 */
580  			res.start = mstart;
581  			res.end = mend - 1;
582  			ret = func(&res, kbuf);
583  			if (ret)
584  				break;
585  		}
586  	}
587  
588  	return ret;
589  }
590  #else
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))591  static int kexec_walk_memblock(struct kexec_buf *kbuf,
592  			       int (*func)(struct resource *, void *))
593  {
594  	return 0;
595  }
596  #endif
597  
598  /**
599   * kexec_walk_resources - call func(data) on free memory regions
600   * @kbuf:	Context info for the search. Also passed to @func.
601   * @func:	Function to call for each memory region.
602   *
603   * Return: The memory walk will stop when func returns a non-zero value
604   * and that value will be returned. If all free regions are visited without
605   * func returning non-zero, then zero will be returned.
606   */
kexec_walk_resources(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))607  static int kexec_walk_resources(struct kexec_buf *kbuf,
608  				int (*func)(struct resource *, void *))
609  {
610  #ifdef CONFIG_CRASH_DUMP
611  	if (kbuf->image->type == KEXEC_TYPE_CRASH)
612  		return walk_iomem_res_desc(crashk_res.desc,
613  					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
614  					   crashk_res.start, crashk_res.end,
615  					   kbuf, func);
616  #endif
617  	if (kbuf->top_down)
618  		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
619  	else
620  		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
621  }
622  
623  /**
624   * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
625   * @kbuf:	Parameters for the memory search.
626   *
627   * On success, kbuf->mem will have the start address of the memory region found.
628   *
629   * Return: 0 on success, negative errno on error.
630   */
kexec_locate_mem_hole(struct kexec_buf * kbuf)631  int kexec_locate_mem_hole(struct kexec_buf *kbuf)
632  {
633  	int ret;
634  
635  	/* Arch knows where to place */
636  	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
637  		return 0;
638  
639  	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
640  		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
641  	else
642  		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
643  
644  	return ret == 1 ? 0 : -EADDRNOTAVAIL;
645  }
646  
647  /**
648   * kexec_add_buffer - place a buffer in a kexec segment
649   * @kbuf:	Buffer contents and memory parameters.
650   *
651   * This function assumes that kexec_lock is held.
652   * On successful return, @kbuf->mem will have the physical address of
653   * the buffer in memory.
654   *
655   * Return: 0 on success, negative errno on error.
656   */
kexec_add_buffer(struct kexec_buf * kbuf)657  int kexec_add_buffer(struct kexec_buf *kbuf)
658  {
659  	struct kexec_segment *ksegment;
660  	int ret;
661  
662  	/* Currently adding segment this way is allowed only in file mode */
663  	if (!kbuf->image->file_mode)
664  		return -EINVAL;
665  
666  	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
667  		return -EINVAL;
668  
669  	/*
670  	 * Make sure we are not trying to add buffer after allocating
671  	 * control pages. All segments need to be placed first before
672  	 * any control pages are allocated. As control page allocation
673  	 * logic goes through list of segments to make sure there are
674  	 * no destination overlaps.
675  	 */
676  	if (!list_empty(&kbuf->image->control_pages)) {
677  		WARN_ON(1);
678  		return -EINVAL;
679  	}
680  
681  	/* Ensure minimum alignment needed for segments. */
682  	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
683  	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
684  
685  	/* Walk the RAM ranges and allocate a suitable range for the buffer */
686  	ret = arch_kexec_locate_mem_hole(kbuf);
687  	if (ret)
688  		return ret;
689  
690  	/* Found a suitable memory range */
691  	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
692  	ksegment->kbuf = kbuf->buffer;
693  	ksegment->bufsz = kbuf->bufsz;
694  	ksegment->mem = kbuf->mem;
695  	ksegment->memsz = kbuf->memsz;
696  	kbuf->image->nr_segments++;
697  	return 0;
698  }
699  
700  /* Calculate and store the digest of segments */
kexec_calculate_store_digests(struct kimage * image)701  static int kexec_calculate_store_digests(struct kimage *image)
702  {
703  	struct crypto_shash *tfm;
704  	struct shash_desc *desc;
705  	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
706  	size_t desc_size, nullsz;
707  	char *digest;
708  	void *zero_buf;
709  	struct kexec_sha_region *sha_regions;
710  	struct purgatory_info *pi = &image->purgatory_info;
711  
712  	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
713  		return 0;
714  
715  	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
716  	zero_buf_sz = PAGE_SIZE;
717  
718  	tfm = crypto_alloc_shash("sha256", 0, 0);
719  	if (IS_ERR(tfm)) {
720  		ret = PTR_ERR(tfm);
721  		goto out;
722  	}
723  
724  	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
725  	desc = kzalloc(desc_size, GFP_KERNEL);
726  	if (!desc) {
727  		ret = -ENOMEM;
728  		goto out_free_tfm;
729  	}
730  
731  	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
732  	sha_regions = vzalloc(sha_region_sz);
733  	if (!sha_regions) {
734  		ret = -ENOMEM;
735  		goto out_free_desc;
736  	}
737  
738  	desc->tfm   = tfm;
739  
740  	ret = crypto_shash_init(desc);
741  	if (ret < 0)
742  		goto out_free_sha_regions;
743  
744  	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
745  	if (!digest) {
746  		ret = -ENOMEM;
747  		goto out_free_sha_regions;
748  	}
749  
750  	for (j = i = 0; i < image->nr_segments; i++) {
751  		struct kexec_segment *ksegment;
752  
753  #ifdef CONFIG_CRASH_HOTPLUG
754  		/* Exclude elfcorehdr segment to allow future changes via hotplug */
755  		if (i == image->elfcorehdr_index)
756  			continue;
757  #endif
758  
759  		ksegment = &image->segment[i];
760  		/*
761  		 * Skip purgatory as it will be modified once we put digest
762  		 * info in purgatory.
763  		 */
764  		if (ksegment->kbuf == pi->purgatory_buf)
765  			continue;
766  
767  		ret = crypto_shash_update(desc, ksegment->kbuf,
768  					  ksegment->bufsz);
769  		if (ret)
770  			break;
771  
772  		/*
773  		 * Assume rest of the buffer is filled with zero and
774  		 * update digest accordingly.
775  		 */
776  		nullsz = ksegment->memsz - ksegment->bufsz;
777  		while (nullsz) {
778  			unsigned long bytes = nullsz;
779  
780  			if (bytes > zero_buf_sz)
781  				bytes = zero_buf_sz;
782  			ret = crypto_shash_update(desc, zero_buf, bytes);
783  			if (ret)
784  				break;
785  			nullsz -= bytes;
786  		}
787  
788  		if (ret)
789  			break;
790  
791  		sha_regions[j].start = ksegment->mem;
792  		sha_regions[j].len = ksegment->memsz;
793  		j++;
794  	}
795  
796  	if (!ret) {
797  		ret = crypto_shash_final(desc, digest);
798  		if (ret)
799  			goto out_free_digest;
800  		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
801  						     sha_regions, sha_region_sz, 0);
802  		if (ret)
803  			goto out_free_digest;
804  
805  		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
806  						     digest, SHA256_DIGEST_SIZE, 0);
807  		if (ret)
808  			goto out_free_digest;
809  	}
810  
811  out_free_digest:
812  	kfree(digest);
813  out_free_sha_regions:
814  	vfree(sha_regions);
815  out_free_desc:
816  	kfree(desc);
817  out_free_tfm:
818  	kfree(tfm);
819  out:
820  	return ret;
821  }
822  
823  #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
824  /*
825   * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
826   * @pi:		Purgatory to be loaded.
827   * @kbuf:	Buffer to setup.
828   *
829   * Allocates the memory needed for the buffer. Caller is responsible to free
830   * the memory after use.
831   *
832   * Return: 0 on success, negative errno on error.
833   */
kexec_purgatory_setup_kbuf(struct purgatory_info * pi,struct kexec_buf * kbuf)834  static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
835  				      struct kexec_buf *kbuf)
836  {
837  	const Elf_Shdr *sechdrs;
838  	unsigned long bss_align;
839  	unsigned long bss_sz;
840  	unsigned long align;
841  	int i, ret;
842  
843  	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
844  	kbuf->buf_align = bss_align = 1;
845  	kbuf->bufsz = bss_sz = 0;
846  
847  	for (i = 0; i < pi->ehdr->e_shnum; i++) {
848  		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
849  			continue;
850  
851  		align = sechdrs[i].sh_addralign;
852  		if (sechdrs[i].sh_type != SHT_NOBITS) {
853  			if (kbuf->buf_align < align)
854  				kbuf->buf_align = align;
855  			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
856  			kbuf->bufsz += sechdrs[i].sh_size;
857  		} else {
858  			if (bss_align < align)
859  				bss_align = align;
860  			bss_sz = ALIGN(bss_sz, align);
861  			bss_sz += sechdrs[i].sh_size;
862  		}
863  	}
864  	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
865  	kbuf->memsz = kbuf->bufsz + bss_sz;
866  	if (kbuf->buf_align < bss_align)
867  		kbuf->buf_align = bss_align;
868  
869  	kbuf->buffer = vzalloc(kbuf->bufsz);
870  	if (!kbuf->buffer)
871  		return -ENOMEM;
872  	pi->purgatory_buf = kbuf->buffer;
873  
874  	ret = kexec_add_buffer(kbuf);
875  	if (ret)
876  		goto out;
877  
878  	return 0;
879  out:
880  	vfree(pi->purgatory_buf);
881  	pi->purgatory_buf = NULL;
882  	return ret;
883  }
884  
885  /*
886   * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
887   * @pi:		Purgatory to be loaded.
888   * @kbuf:	Buffer prepared to store purgatory.
889   *
890   * Allocates the memory needed for the buffer. Caller is responsible to free
891   * the memory after use.
892   *
893   * Return: 0 on success, negative errno on error.
894   */
kexec_purgatory_setup_sechdrs(struct purgatory_info * pi,struct kexec_buf * kbuf)895  static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
896  					 struct kexec_buf *kbuf)
897  {
898  	unsigned long bss_addr;
899  	unsigned long offset;
900  	size_t sechdrs_size;
901  	Elf_Shdr *sechdrs;
902  	int i;
903  
904  	/*
905  	 * The section headers in kexec_purgatory are read-only. In order to
906  	 * have them modifiable make a temporary copy.
907  	 */
908  	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
909  	sechdrs = vzalloc(sechdrs_size);
910  	if (!sechdrs)
911  		return -ENOMEM;
912  	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
913  	pi->sechdrs = sechdrs;
914  
915  	offset = 0;
916  	bss_addr = kbuf->mem + kbuf->bufsz;
917  	kbuf->image->start = pi->ehdr->e_entry;
918  
919  	for (i = 0; i < pi->ehdr->e_shnum; i++) {
920  		unsigned long align;
921  		void *src, *dst;
922  
923  		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
924  			continue;
925  
926  		align = sechdrs[i].sh_addralign;
927  		if (sechdrs[i].sh_type == SHT_NOBITS) {
928  			bss_addr = ALIGN(bss_addr, align);
929  			sechdrs[i].sh_addr = bss_addr;
930  			bss_addr += sechdrs[i].sh_size;
931  			continue;
932  		}
933  
934  		offset = ALIGN(offset, align);
935  
936  		/*
937  		 * Check if the segment contains the entry point, if so,
938  		 * calculate the value of image->start based on it.
939  		 * If the compiler has produced more than one .text section
940  		 * (Eg: .text.hot), they are generally after the main .text
941  		 * section, and they shall not be used to calculate
942  		 * image->start. So do not re-calculate image->start if it
943  		 * is not set to the initial value, and warn the user so they
944  		 * have a chance to fix their purgatory's linker script.
945  		 */
946  		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
947  		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
948  		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
949  					 + sechdrs[i].sh_size) &&
950  		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
951  			kbuf->image->start -= sechdrs[i].sh_addr;
952  			kbuf->image->start += kbuf->mem + offset;
953  		}
954  
955  		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
956  		dst = pi->purgatory_buf + offset;
957  		memcpy(dst, src, sechdrs[i].sh_size);
958  
959  		sechdrs[i].sh_addr = kbuf->mem + offset;
960  		sechdrs[i].sh_offset = offset;
961  		offset += sechdrs[i].sh_size;
962  	}
963  
964  	return 0;
965  }
966  
kexec_apply_relocations(struct kimage * image)967  static int kexec_apply_relocations(struct kimage *image)
968  {
969  	int i, ret;
970  	struct purgatory_info *pi = &image->purgatory_info;
971  	const Elf_Shdr *sechdrs;
972  
973  	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
974  
975  	for (i = 0; i < pi->ehdr->e_shnum; i++) {
976  		const Elf_Shdr *relsec;
977  		const Elf_Shdr *symtab;
978  		Elf_Shdr *section;
979  
980  		relsec = sechdrs + i;
981  
982  		if (relsec->sh_type != SHT_RELA &&
983  		    relsec->sh_type != SHT_REL)
984  			continue;
985  
986  		/*
987  		 * For section of type SHT_RELA/SHT_REL,
988  		 * ->sh_link contains section header index of associated
989  		 * symbol table. And ->sh_info contains section header
990  		 * index of section to which relocations apply.
991  		 */
992  		if (relsec->sh_info >= pi->ehdr->e_shnum ||
993  		    relsec->sh_link >= pi->ehdr->e_shnum)
994  			return -ENOEXEC;
995  
996  		section = pi->sechdrs + relsec->sh_info;
997  		symtab = sechdrs + relsec->sh_link;
998  
999  		if (!(section->sh_flags & SHF_ALLOC))
1000  			continue;
1001  
1002  		/*
1003  		 * symtab->sh_link contain section header index of associated
1004  		 * string table.
1005  		 */
1006  		if (symtab->sh_link >= pi->ehdr->e_shnum)
1007  			/* Invalid section number? */
1008  			continue;
1009  
1010  		/*
1011  		 * Respective architecture needs to provide support for applying
1012  		 * relocations of type SHT_RELA/SHT_REL.
1013  		 */
1014  		if (relsec->sh_type == SHT_RELA)
1015  			ret = arch_kexec_apply_relocations_add(pi, section,
1016  							       relsec, symtab);
1017  		else if (relsec->sh_type == SHT_REL)
1018  			ret = arch_kexec_apply_relocations(pi, section,
1019  							   relsec, symtab);
1020  		if (ret)
1021  			return ret;
1022  	}
1023  
1024  	return 0;
1025  }
1026  
1027  /*
1028   * kexec_load_purgatory - Load and relocate the purgatory object.
1029   * @image:	Image to add the purgatory to.
1030   * @kbuf:	Memory parameters to use.
1031   *
1032   * Allocates the memory needed for image->purgatory_info.sechdrs and
1033   * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1034   * to free the memory after use.
1035   *
1036   * Return: 0 on success, negative errno on error.
1037   */
kexec_load_purgatory(struct kimage * image,struct kexec_buf * kbuf)1038  int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1039  {
1040  	struct purgatory_info *pi = &image->purgatory_info;
1041  	int ret;
1042  
1043  	if (kexec_purgatory_size <= 0)
1044  		return -EINVAL;
1045  
1046  	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1047  
1048  	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1049  	if (ret)
1050  		return ret;
1051  
1052  	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1053  	if (ret)
1054  		goto out_free_kbuf;
1055  
1056  	ret = kexec_apply_relocations(image);
1057  	if (ret)
1058  		goto out;
1059  
1060  	return 0;
1061  out:
1062  	vfree(pi->sechdrs);
1063  	pi->sechdrs = NULL;
1064  out_free_kbuf:
1065  	vfree(pi->purgatory_buf);
1066  	pi->purgatory_buf = NULL;
1067  	return ret;
1068  }
1069  
1070  /*
1071   * kexec_purgatory_find_symbol - find a symbol in the purgatory
1072   * @pi:		Purgatory to search in.
1073   * @name:	Name of the symbol.
1074   *
1075   * Return: pointer to symbol in read-only symtab on success, NULL on error.
1076   */
kexec_purgatory_find_symbol(struct purgatory_info * pi,const char * name)1077  static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1078  						  const char *name)
1079  {
1080  	const Elf_Shdr *sechdrs;
1081  	const Elf_Ehdr *ehdr;
1082  	const Elf_Sym *syms;
1083  	const char *strtab;
1084  	int i, k;
1085  
1086  	if (!pi->ehdr)
1087  		return NULL;
1088  
1089  	ehdr = pi->ehdr;
1090  	sechdrs = (void *)ehdr + ehdr->e_shoff;
1091  
1092  	for (i = 0; i < ehdr->e_shnum; i++) {
1093  		if (sechdrs[i].sh_type != SHT_SYMTAB)
1094  			continue;
1095  
1096  		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1097  			/* Invalid strtab section number */
1098  			continue;
1099  		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1100  		syms = (void *)ehdr + sechdrs[i].sh_offset;
1101  
1102  		/* Go through symbols for a match */
1103  		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1104  			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1105  				continue;
1106  
1107  			if (strcmp(strtab + syms[k].st_name, name) != 0)
1108  				continue;
1109  
1110  			if (syms[k].st_shndx == SHN_UNDEF ||
1111  			    syms[k].st_shndx >= ehdr->e_shnum) {
1112  				pr_debug("Symbol: %s has bad section index %d.\n",
1113  						name, syms[k].st_shndx);
1114  				return NULL;
1115  			}
1116  
1117  			/* Found the symbol we are looking for */
1118  			return &syms[k];
1119  		}
1120  	}
1121  
1122  	return NULL;
1123  }
1124  
kexec_purgatory_get_symbol_addr(struct kimage * image,const char * name)1125  void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1126  {
1127  	struct purgatory_info *pi = &image->purgatory_info;
1128  	const Elf_Sym *sym;
1129  	Elf_Shdr *sechdr;
1130  
1131  	sym = kexec_purgatory_find_symbol(pi, name);
1132  	if (!sym)
1133  		return ERR_PTR(-EINVAL);
1134  
1135  	sechdr = &pi->sechdrs[sym->st_shndx];
1136  
1137  	/*
1138  	 * Returns the address where symbol will finally be loaded after
1139  	 * kexec_load_segment()
1140  	 */
1141  	return (void *)(sechdr->sh_addr + sym->st_value);
1142  }
1143  
1144  /*
1145   * Get or set value of a symbol. If "get_value" is true, symbol value is
1146   * returned in buf otherwise symbol value is set based on value in buf.
1147   */
kexec_purgatory_get_set_symbol(struct kimage * image,const char * name,void * buf,unsigned int size,bool get_value)1148  int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1149  				   void *buf, unsigned int size, bool get_value)
1150  {
1151  	struct purgatory_info *pi = &image->purgatory_info;
1152  	const Elf_Sym *sym;
1153  	Elf_Shdr *sec;
1154  	char *sym_buf;
1155  
1156  	sym = kexec_purgatory_find_symbol(pi, name);
1157  	if (!sym)
1158  		return -EINVAL;
1159  
1160  	if (sym->st_size != size) {
1161  		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1162  		       name, (unsigned long)sym->st_size, size);
1163  		return -EINVAL;
1164  	}
1165  
1166  	sec = pi->sechdrs + sym->st_shndx;
1167  
1168  	if (sec->sh_type == SHT_NOBITS) {
1169  		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1170  		       get_value ? "get" : "set");
1171  		return -EINVAL;
1172  	}
1173  
1174  	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1175  
1176  	if (get_value)
1177  		memcpy((void *)buf, sym_buf, size);
1178  	else
1179  		memcpy((void *)sym_buf, buf, size);
1180  
1181  	return 0;
1182  }
1183  #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1184