1  /* SPDX-License-Identifier: MIT */
2  /*
3   * Copyright © 2023 Intel Corporation
4   */
5  
6  #ifndef _UAPI_XE_DRM_H_
7  #define _UAPI_XE_DRM_H_
8  
9  #include "drm.h"
10  
11  #if defined(__cplusplus)
12  extern "C" {
13  #endif
14  
15  /*
16   * Please note that modifications to all structs defined here are
17   * subject to backwards-compatibility constraints.
18   * Sections in this file are organized as follows:
19   *   1. IOCTL definition
20   *   2. Extension definition and helper structs
21   *   3. IOCTL's Query structs in the order of the Query's entries.
22   *   4. The rest of IOCTL structs in the order of IOCTL declaration.
23   */
24  
25  /**
26   * DOC: Xe Device Block Diagram
27   *
28   * The diagram below represents a high-level simplification of a discrete
29   * GPU supported by the Xe driver. It shows some device components which
30   * are necessary to understand this API, as well as how their relations
31   * to each other. This diagram does not represent real hardware::
32   *
33   *   ┌──────────────────────────────────────────────────────────────────┐
34   *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35   *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
36   *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
37   *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
38   *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39   *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
40   *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
41   *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
42   *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
43   *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
44   *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
45   *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
46   *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
47   *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48   *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
49   *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
50   *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
51   *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
52   *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
53   *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
54   *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
55   *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
56   *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
57   *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58   *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59   *   └─────────────────────────────Device0───────┬──────────────────────┘
60   *                                               │
61   *                        ───────────────────────┴────────── PCI bus
62   */
63  
64  /**
65   * DOC: Xe uAPI Overview
66   *
67   * This section aims to describe the Xe's IOCTL entries, its structs, and other
68   * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69   * entries and usage.
70   *
71   * List of supported IOCTLs:
72   *  - &DRM_IOCTL_XE_DEVICE_QUERY
73   *  - &DRM_IOCTL_XE_GEM_CREATE
74   *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75   *  - &DRM_IOCTL_XE_VM_CREATE
76   *  - &DRM_IOCTL_XE_VM_DESTROY
77   *  - &DRM_IOCTL_XE_VM_BIND
78   *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79   *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80   *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81   *  - &DRM_IOCTL_XE_EXEC
82   *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
83   *  - &DRM_IOCTL_XE_OBSERVATION
84   */
85  
86  /*
87   * xe specific ioctls.
88   *
89   * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
90   * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
91   * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
92   */
93  #define DRM_XE_DEVICE_QUERY		0x00
94  #define DRM_XE_GEM_CREATE		0x01
95  #define DRM_XE_GEM_MMAP_OFFSET		0x02
96  #define DRM_XE_VM_CREATE		0x03
97  #define DRM_XE_VM_DESTROY		0x04
98  #define DRM_XE_VM_BIND			0x05
99  #define DRM_XE_EXEC_QUEUE_CREATE	0x06
100  #define DRM_XE_EXEC_QUEUE_DESTROY	0x07
101  #define DRM_XE_EXEC_QUEUE_GET_PROPERTY	0x08
102  #define DRM_XE_EXEC			0x09
103  #define DRM_XE_WAIT_USER_FENCE		0x0a
104  #define DRM_XE_OBSERVATION		0x0b
105  
106  /* Must be kept compact -- no holes */
107  
108  #define DRM_IOCTL_XE_DEVICE_QUERY		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
109  #define DRM_IOCTL_XE_GEM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
110  #define DRM_IOCTL_XE_GEM_MMAP_OFFSET		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
111  #define DRM_IOCTL_XE_VM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
112  #define DRM_IOCTL_XE_VM_DESTROY			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
113  #define DRM_IOCTL_XE_VM_BIND			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
114  #define DRM_IOCTL_XE_EXEC_QUEUE_CREATE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
115  #define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
116  #define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
117  #define DRM_IOCTL_XE_EXEC			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
118  #define DRM_IOCTL_XE_WAIT_USER_FENCE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
119  #define DRM_IOCTL_XE_OBSERVATION		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
120  
121  /**
122   * DOC: Xe IOCTL Extensions
123   *
124   * Before detailing the IOCTLs and its structs, it is important to highlight
125   * that every IOCTL in Xe is extensible.
126   *
127   * Many interfaces need to grow over time. In most cases we can simply
128   * extend the struct and have userspace pass in more data. Another option,
129   * as demonstrated by Vulkan's approach to providing extensions for forward
130   * and backward compatibility, is to use a list of optional structs to
131   * provide those extra details.
132   *
133   * The key advantage to using an extension chain is that it allows us to
134   * redefine the interface more easily than an ever growing struct of
135   * increasing complexity, and for large parts of that interface to be
136   * entirely optional. The downside is more pointer chasing; chasing across
137   * the __user boundary with pointers encapsulated inside u64.
138   *
139   * Example chaining:
140   *
141   * .. code-block:: C
142   *
143   *	struct drm_xe_user_extension ext3 {
144   *		.next_extension = 0, // end
145   *		.name = ...,
146   *	};
147   *	struct drm_xe_user_extension ext2 {
148   *		.next_extension = (uintptr_t)&ext3,
149   *		.name = ...,
150   *	};
151   *	struct drm_xe_user_extension ext1 {
152   *		.next_extension = (uintptr_t)&ext2,
153   *		.name = ...,
154   *	};
155   *
156   * Typically the struct drm_xe_user_extension would be embedded in some uAPI
157   * struct, and in this case we would feed it the head of the chain(i.e ext1),
158   * which would then apply all of the above extensions.
159  */
160  
161  /**
162   * struct drm_xe_user_extension - Base class for defining a chain of extensions
163   */
164  struct drm_xe_user_extension {
165  	/**
166  	 * @next_extension:
167  	 *
168  	 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
169  	 */
170  	__u64 next_extension;
171  
172  	/**
173  	 * @name: Name of the extension.
174  	 *
175  	 * Note that the name here is just some integer.
176  	 *
177  	 * Also note that the name space for this is not global for the whole
178  	 * driver, but rather its scope/meaning is limited to the specific piece
179  	 * of uAPI which has embedded the struct drm_xe_user_extension.
180  	 */
181  	__u32 name;
182  
183  	/**
184  	 * @pad: MBZ
185  	 *
186  	 * All undefined bits must be zero.
187  	 */
188  	__u32 pad;
189  };
190  
191  /**
192   * struct drm_xe_ext_set_property - Generic set property extension
193   *
194   * A generic struct that allows any of the Xe's IOCTL to be extended
195   * with a set_property operation.
196   */
197  struct drm_xe_ext_set_property {
198  	/** @base: base user extension */
199  	struct drm_xe_user_extension base;
200  
201  	/** @property: property to set */
202  	__u32 property;
203  
204  	/** @pad: MBZ */
205  	__u32 pad;
206  
207  	/** @value: property value */
208  	__u64 value;
209  
210  	/** @reserved: Reserved */
211  	__u64 reserved[2];
212  };
213  
214  /**
215   * struct drm_xe_engine_class_instance - instance of an engine class
216   *
217   * It is returned as part of the @drm_xe_engine, but it also is used as
218   * the input of engine selection for both @drm_xe_exec_queue_create and
219   * @drm_xe_query_engine_cycles
220   *
221   * The @engine_class can be:
222   *  - %DRM_XE_ENGINE_CLASS_RENDER
223   *  - %DRM_XE_ENGINE_CLASS_COPY
224   *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
225   *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
226   *  - %DRM_XE_ENGINE_CLASS_COMPUTE
227   *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
228   *    hardware engine class). Used for creating ordered queues of VM
229   *    bind operations.
230   */
231  struct drm_xe_engine_class_instance {
232  #define DRM_XE_ENGINE_CLASS_RENDER		0
233  #define DRM_XE_ENGINE_CLASS_COPY		1
234  #define DRM_XE_ENGINE_CLASS_VIDEO_DECODE	2
235  #define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE	3
236  #define DRM_XE_ENGINE_CLASS_COMPUTE		4
237  #define DRM_XE_ENGINE_CLASS_VM_BIND		5
238  	/** @engine_class: engine class id */
239  	__u16 engine_class;
240  	/** @engine_instance: engine instance id */
241  	__u16 engine_instance;
242  	/** @gt_id: Unique ID of this GT within the PCI Device */
243  	__u16 gt_id;
244  	/** @pad: MBZ */
245  	__u16 pad;
246  };
247  
248  /**
249   * struct drm_xe_engine - describe hardware engine
250   */
251  struct drm_xe_engine {
252  	/** @instance: The @drm_xe_engine_class_instance */
253  	struct drm_xe_engine_class_instance instance;
254  
255  	/** @reserved: Reserved */
256  	__u64 reserved[3];
257  };
258  
259  /**
260   * struct drm_xe_query_engines - describe engines
261   *
262   * If a query is made with a struct @drm_xe_device_query where .query
263   * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
264   * struct @drm_xe_query_engines in .data.
265   */
266  struct drm_xe_query_engines {
267  	/** @num_engines: number of engines returned in @engines */
268  	__u32 num_engines;
269  	/** @pad: MBZ */
270  	__u32 pad;
271  	/** @engines: The returned engines for this device */
272  	struct drm_xe_engine engines[];
273  };
274  
275  /**
276   * enum drm_xe_memory_class - Supported memory classes.
277   */
278  enum drm_xe_memory_class {
279  	/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
280  	DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
281  	/**
282  	 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
283  	 * represents the memory that is local to the device, which we
284  	 * call VRAM. Not valid on integrated platforms.
285  	 */
286  	DRM_XE_MEM_REGION_CLASS_VRAM
287  };
288  
289  /**
290   * struct drm_xe_mem_region - Describes some region as known to
291   * the driver.
292   */
293  struct drm_xe_mem_region {
294  	/**
295  	 * @mem_class: The memory class describing this region.
296  	 *
297  	 * See enum drm_xe_memory_class for supported values.
298  	 */
299  	__u16 mem_class;
300  	/**
301  	 * @instance: The unique ID for this region, which serves as the
302  	 * index in the placement bitmask used as argument for
303  	 * &DRM_IOCTL_XE_GEM_CREATE
304  	 */
305  	__u16 instance;
306  	/**
307  	 * @min_page_size: Min page-size in bytes for this region.
308  	 *
309  	 * When the kernel allocates memory for this region, the
310  	 * underlying pages will be at least @min_page_size in size.
311  	 * Buffer objects with an allowable placement in this region must be
312  	 * created with a size aligned to this value.
313  	 * GPU virtual address mappings of (parts of) buffer objects that
314  	 * may be placed in this region must also have their GPU virtual
315  	 * address and range aligned to this value.
316  	 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
317  	 * not met.
318  	 */
319  	__u32 min_page_size;
320  	/**
321  	 * @total_size: The usable size in bytes for this region.
322  	 */
323  	__u64 total_size;
324  	/**
325  	 * @used: Estimate of the memory used in bytes for this region.
326  	 *
327  	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
328  	 * accounting.  Without this the value here will always equal
329  	 * zero.
330  	 */
331  	__u64 used;
332  	/**
333  	 * @cpu_visible_size: How much of this region can be CPU
334  	 * accessed, in bytes.
335  	 *
336  	 * This will always be <= @total_size, and the remainder (if
337  	 * any) will not be CPU accessible. If the CPU accessible part
338  	 * is smaller than @total_size then this is referred to as a
339  	 * small BAR system.
340  	 *
341  	 * On systems without small BAR (full BAR), the probed_size will
342  	 * always equal the @total_size, since all of it will be CPU
343  	 * accessible.
344  	 *
345  	 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
346  	 * regions (for other types the value here will always equal
347  	 * zero).
348  	 */
349  	__u64 cpu_visible_size;
350  	/**
351  	 * @cpu_visible_used: Estimate of CPU visible memory used, in
352  	 * bytes.
353  	 *
354  	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
355  	 * accounting. Without this the value here will always equal
356  	 * zero.  Note this is only currently tracked for
357  	 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
358  	 * here will always be zero).
359  	 */
360  	__u64 cpu_visible_used;
361  	/** @reserved: Reserved */
362  	__u64 reserved[6];
363  };
364  
365  /**
366   * struct drm_xe_query_mem_regions - describe memory regions
367   *
368   * If a query is made with a struct drm_xe_device_query where .query
369   * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
370   * struct drm_xe_query_mem_regions in .data.
371   */
372  struct drm_xe_query_mem_regions {
373  	/** @num_mem_regions: number of memory regions returned in @mem_regions */
374  	__u32 num_mem_regions;
375  	/** @pad: MBZ */
376  	__u32 pad;
377  	/** @mem_regions: The returned memory regions for this device */
378  	struct drm_xe_mem_region mem_regions[];
379  };
380  
381  /**
382   * struct drm_xe_query_config - describe the device configuration
383   *
384   * If a query is made with a struct drm_xe_device_query where .query
385   * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
386   * struct drm_xe_query_config in .data.
387   *
388   * The index in @info can be:
389   *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
390   *    and the device revision (next 8 bits)
391   *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
392   *    configuration, see list below
393   *
394   *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
395   *      has usable VRAM
396   *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
397   *    required by this device, typically SZ_4K or SZ_64K
398   *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
399   *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
400   *    available exec queue priority
401   */
402  struct drm_xe_query_config {
403  	/** @num_params: number of parameters returned in info */
404  	__u32 num_params;
405  
406  	/** @pad: MBZ */
407  	__u32 pad;
408  
409  #define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID	0
410  #define DRM_XE_QUERY_CONFIG_FLAGS			1
411  	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM	(1 << 0)
412  #define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT		2
413  #define DRM_XE_QUERY_CONFIG_VA_BITS			3
414  #define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY	4
415  	/** @info: array of elements containing the config info */
416  	__u64 info[];
417  };
418  
419  /**
420   * struct drm_xe_gt - describe an individual GT.
421   *
422   * To be used with drm_xe_query_gt_list, which will return a list with all the
423   * existing GT individual descriptions.
424   * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
425   * implementing graphics and/or media operations.
426   *
427   * The index in @type can be:
428   *  - %DRM_XE_QUERY_GT_TYPE_MAIN
429   *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
430   */
431  struct drm_xe_gt {
432  #define DRM_XE_QUERY_GT_TYPE_MAIN		0
433  #define DRM_XE_QUERY_GT_TYPE_MEDIA		1
434  	/** @type: GT type: Main or Media */
435  	__u16 type;
436  	/** @tile_id: Tile ID where this GT lives (Information only) */
437  	__u16 tile_id;
438  	/** @gt_id: Unique ID of this GT within the PCI Device */
439  	__u16 gt_id;
440  	/** @pad: MBZ */
441  	__u16 pad[3];
442  	/** @reference_clock: A clock frequency for timestamp */
443  	__u32 reference_clock;
444  	/**
445  	 * @near_mem_regions: Bit mask of instances from
446  	 * drm_xe_query_mem_regions that are nearest to the current engines
447  	 * of this GT.
448  	 * Each index in this mask refers directly to the struct
449  	 * drm_xe_query_mem_regions' instance, no assumptions should
450  	 * be made about order. The type of each region is described
451  	 * by struct drm_xe_query_mem_regions' mem_class.
452  	 */
453  	__u64 near_mem_regions;
454  	/**
455  	 * @far_mem_regions: Bit mask of instances from
456  	 * drm_xe_query_mem_regions that are far from the engines of this GT.
457  	 * In general, they have extra indirections when compared to the
458  	 * @near_mem_regions. For a discrete device this could mean system
459  	 * memory and memory living in a different tile.
460  	 * Each index in this mask refers directly to the struct
461  	 * drm_xe_query_mem_regions' instance, no assumptions should
462  	 * be made about order. The type of each region is described
463  	 * by struct drm_xe_query_mem_regions' mem_class.
464  	 */
465  	__u64 far_mem_regions;
466  	/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
467  	__u16 ip_ver_major;
468  	/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
469  	__u16 ip_ver_minor;
470  	/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
471  	__u16 ip_ver_rev;
472  	/** @pad2: MBZ */
473  	__u16 pad2;
474  	/** @reserved: Reserved */
475  	__u64 reserved[7];
476  };
477  
478  /**
479   * struct drm_xe_query_gt_list - A list with GT description items.
480   *
481   * If a query is made with a struct drm_xe_device_query where .query
482   * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
483   * drm_xe_query_gt_list in .data.
484   */
485  struct drm_xe_query_gt_list {
486  	/** @num_gt: number of GT items returned in gt_list */
487  	__u32 num_gt;
488  	/** @pad: MBZ */
489  	__u32 pad;
490  	/** @gt_list: The GT list returned for this device */
491  	struct drm_xe_gt gt_list[];
492  };
493  
494  /**
495   * struct drm_xe_query_topology_mask - describe the topology mask of a GT
496   *
497   * This is the hardware topology which reflects the internal physical
498   * structure of the GPU.
499   *
500   * If a query is made with a struct drm_xe_device_query where .query
501   * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
502   * struct drm_xe_query_topology_mask in .data.
503   *
504   * The @type can be:
505   *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
506   *    (DSS) available for geometry operations. For example a query response
507   *    containing the following in mask:
508   *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
509   *    means 32 DSS are available for geometry.
510   *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
511   *    (DSS) available for compute operations. For example a query response
512   *    containing the following in mask:
513   *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
514   *    means 32 DSS are available for compute.
515   *  - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks
516   *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
517   *    available per Dual Sub Slices (DSS). For example a query response
518   *    containing the following in mask:
519   *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
520   *    means each DSS has 16 SIMD8 EUs. This type may be omitted if device
521   *    doesn't have SIMD8 EUs.
522   *  - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
523   *    Units (EU) available per Dual Sub Slices (DSS). For example a query
524   *    response containing the following in mask:
525   *    ``SIMD16_EU_PER_DSS    ff ff 00 00 00 00 00 00``
526   *    means each DSS has 16 SIMD16 EUs. This type may be omitted if device
527   *    doesn't have SIMD16 EUs.
528   */
529  struct drm_xe_query_topology_mask {
530  	/** @gt_id: GT ID the mask is associated with */
531  	__u16 gt_id;
532  
533  #define DRM_XE_TOPO_DSS_GEOMETRY	1
534  #define DRM_XE_TOPO_DSS_COMPUTE		2
535  #define DRM_XE_TOPO_L3_BANK		3
536  #define DRM_XE_TOPO_EU_PER_DSS		4
537  #define DRM_XE_TOPO_SIMD16_EU_PER_DSS	5
538  	/** @type: type of mask */
539  	__u16 type;
540  
541  	/** @num_bytes: number of bytes in requested mask */
542  	__u32 num_bytes;
543  
544  	/** @mask: little-endian mask of @num_bytes */
545  	__u8 mask[];
546  };
547  
548  /**
549   * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
550   *
551   * If a query is made with a struct drm_xe_device_query where .query is equal to
552   * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
553   * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
554   * .data points to this allocated structure.
555   *
556   * The query returns the engine cycles, which along with GT's @reference_clock,
557   * can be used to calculate the engine timestamp. In addition the
558   * query returns a set of cpu timestamps that indicate when the command
559   * streamer cycle count was captured.
560   */
561  struct drm_xe_query_engine_cycles {
562  	/**
563  	 * @eci: This is input by the user and is the engine for which command
564  	 * streamer cycles is queried.
565  	 */
566  	struct drm_xe_engine_class_instance eci;
567  
568  	/**
569  	 * @clockid: This is input by the user and is the reference clock id for
570  	 * CPU timestamp. For definition, see clock_gettime(2) and
571  	 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
572  	 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
573  	 */
574  	__s32 clockid;
575  
576  	/** @width: Width of the engine cycle counter in bits. */
577  	__u32 width;
578  
579  	/**
580  	 * @engine_cycles: Engine cycles as read from its register
581  	 * at 0x358 offset.
582  	 */
583  	__u64 engine_cycles;
584  
585  	/**
586  	 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
587  	 * reading the engine_cycles register using the reference clockid set by the
588  	 * user.
589  	 */
590  	__u64 cpu_timestamp;
591  
592  	/**
593  	 * @cpu_delta: Time delta in ns captured around reading the lower dword
594  	 * of the engine_cycles register.
595  	 */
596  	__u64 cpu_delta;
597  };
598  
599  /**
600   * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
601   *
602   * Given a uc_type this will return the branch, major, minor and patch version
603   * of the micro-controller firmware.
604   */
605  struct drm_xe_query_uc_fw_version {
606  	/** @uc_type: The micro-controller type to query firmware version */
607  #define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
608  #define XE_QUERY_UC_TYPE_HUC 1
609  	__u16 uc_type;
610  
611  	/** @pad: MBZ */
612  	__u16 pad;
613  
614  	/** @branch_ver: branch uc fw version */
615  	__u32 branch_ver;
616  	/** @major_ver: major uc fw version */
617  	__u32 major_ver;
618  	/** @minor_ver: minor uc fw version */
619  	__u32 minor_ver;
620  	/** @patch_ver: patch uc fw version */
621  	__u32 patch_ver;
622  
623  	/** @pad2: MBZ */
624  	__u32 pad2;
625  
626  	/** @reserved: Reserved */
627  	__u64 reserved;
628  };
629  
630  /**
631   * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
632   * structure to query device information
633   *
634   * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
635   * and sets the value in the query member. This determines the type of
636   * the structure provided by the driver in data, among struct drm_xe_query_*.
637   *
638   * The @query can be:
639   *  - %DRM_XE_DEVICE_QUERY_ENGINES
640   *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
641   *  - %DRM_XE_DEVICE_QUERY_CONFIG
642   *  - %DRM_XE_DEVICE_QUERY_GT_LIST
643   *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
644   *    configuration of the device such as information on slices, memory,
645   *    caches, and so on. It is provided as a table of key / value
646   *    attributes.
647   *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
648   *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
649   *
650   * If size is set to 0, the driver fills it with the required size for
651   * the requested type of data to query. If size is equal to the required
652   * size, the queried information is copied into data. If size is set to
653   * a value different from 0 and different from the required size, the
654   * IOCTL call returns -EINVAL.
655   *
656   * For example the following code snippet allows retrieving and printing
657   * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
658   *
659   * .. code-block:: C
660   *
661   *     struct drm_xe_query_engines *engines;
662   *     struct drm_xe_device_query query = {
663   *         .extensions = 0,
664   *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
665   *         .size = 0,
666   *         .data = 0,
667   *     };
668   *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
669   *     engines = malloc(query.size);
670   *     query.data = (uintptr_t)engines;
671   *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
672   *     for (int i = 0; i < engines->num_engines; i++) {
673   *         printf("Engine %d: %s\n", i,
674   *             engines->engines[i].instance.engine_class ==
675   *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
676   *             engines->engines[i].instance.engine_class ==
677   *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
678   *             engines->engines[i].instance.engine_class ==
679   *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
680   *             engines->engines[i].instance.engine_class ==
681   *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
682   *             engines->engines[i].instance.engine_class ==
683   *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
684   *             "UNKNOWN");
685   *     }
686   *     free(engines);
687   */
688  struct drm_xe_device_query {
689  	/** @extensions: Pointer to the first extension struct, if any */
690  	__u64 extensions;
691  
692  #define DRM_XE_DEVICE_QUERY_ENGINES		0
693  #define DRM_XE_DEVICE_QUERY_MEM_REGIONS		1
694  #define DRM_XE_DEVICE_QUERY_CONFIG		2
695  #define DRM_XE_DEVICE_QUERY_GT_LIST		3
696  #define DRM_XE_DEVICE_QUERY_HWCONFIG		4
697  #define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY		5
698  #define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES	6
699  #define DRM_XE_DEVICE_QUERY_UC_FW_VERSION	7
700  #define DRM_XE_DEVICE_QUERY_OA_UNITS		8
701  	/** @query: The type of data to query */
702  	__u32 query;
703  
704  	/** @size: Size of the queried data */
705  	__u32 size;
706  
707  	/** @data: Queried data is placed here */
708  	__u64 data;
709  
710  	/** @reserved: Reserved */
711  	__u64 reserved[2];
712  };
713  
714  /**
715   * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
716   * gem creation
717   *
718   * The @flags can be:
719   *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
720   *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
721   *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
722   *    possible placement, ensure that the corresponding VRAM allocation
723   *    will always use the CPU accessible part of VRAM. This is important
724   *    for small-bar systems (on full-bar systems this gets turned into a
725   *    noop).
726   *    Note1: System memory can be used as an extra placement if the kernel
727   *    should spill the allocation to system memory, if space can't be made
728   *    available in the CPU accessible part of VRAM (giving the same
729   *    behaviour as the i915 interface, see
730   *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
731   *    Note2: For clear-color CCS surfaces the kernel needs to read the
732   *    clear-color value stored in the buffer, and on discrete platforms we
733   *    need to use VRAM for display surfaces, therefore the kernel requires
734   *    setting this flag for such objects, otherwise an error is thrown on
735   *    small-bar systems.
736   *
737   * @cpu_caching supports the following values:
738   *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
739   *    caching. On iGPU this can't be used for scanout surfaces. Currently
740   *    not allowed for objects placed in VRAM.
741   *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
742   *    is uncached. Scanout surfaces should likely use this. All objects
743   *    that can be placed in VRAM must use this.
744   */
745  struct drm_xe_gem_create {
746  	/** @extensions: Pointer to the first extension struct, if any */
747  	__u64 extensions;
748  
749  	/**
750  	 * @size: Size of the object to be created, must match region
751  	 * (system or vram) minimum alignment (&min_page_size).
752  	 */
753  	__u64 size;
754  
755  	/**
756  	 * @placement: A mask of memory instances of where BO can be placed.
757  	 * Each index in this mask refers directly to the struct
758  	 * drm_xe_query_mem_regions' instance, no assumptions should
759  	 * be made about order. The type of each region is described
760  	 * by struct drm_xe_query_mem_regions' mem_class.
761  	 */
762  	__u32 placement;
763  
764  #define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING		(1 << 0)
765  #define DRM_XE_GEM_CREATE_FLAG_SCANOUT			(1 << 1)
766  #define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM	(1 << 2)
767  	/**
768  	 * @flags: Flags, currently a mask of memory instances of where BO can
769  	 * be placed
770  	 */
771  	__u32 flags;
772  
773  	/**
774  	 * @vm_id: Attached VM, if any
775  	 *
776  	 * If a VM is specified, this BO must:
777  	 *
778  	 *  1. Only ever be bound to that VM.
779  	 *  2. Cannot be exported as a PRIME fd.
780  	 */
781  	__u32 vm_id;
782  
783  	/**
784  	 * @handle: Returned handle for the object.
785  	 *
786  	 * Object handles are nonzero.
787  	 */
788  	__u32 handle;
789  
790  #define DRM_XE_GEM_CPU_CACHING_WB                      1
791  #define DRM_XE_GEM_CPU_CACHING_WC                      2
792  	/**
793  	 * @cpu_caching: The CPU caching mode to select for this object. If
794  	 * mmaping the object the mode selected here will also be used. The
795  	 * exception is when mapping system memory (including data evicted
796  	 * to system) on discrete GPUs. The caching mode selected will
797  	 * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
798  	 * between GPU- and CPU is guaranteed. The caching mode of
799  	 * existing CPU-mappings will be updated transparently to
800  	 * user-space clients.
801  	 */
802  	__u16 cpu_caching;
803  	/** @pad: MBZ */
804  	__u16 pad[3];
805  
806  	/** @reserved: Reserved */
807  	__u64 reserved[2];
808  };
809  
810  /**
811   * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
812   */
813  struct drm_xe_gem_mmap_offset {
814  	/** @extensions: Pointer to the first extension struct, if any */
815  	__u64 extensions;
816  
817  	/** @handle: Handle for the object being mapped. */
818  	__u32 handle;
819  
820  	/** @flags: Must be zero */
821  	__u32 flags;
822  
823  	/** @offset: The fake offset to use for subsequent mmap call */
824  	__u64 offset;
825  
826  	/** @reserved: Reserved */
827  	__u64 reserved[2];
828  };
829  
830  /**
831   * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
832   *
833   * The @flags can be:
834   *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
835   *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
836   *    exec submissions to its exec_queues that don't have an upper time
837   *    limit on the job execution time. But exec submissions to these
838   *    don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
839   *    DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
840   *    used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
841   *    LR VMs can be created in recoverable page-fault mode using
842   *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
843   *    If that flag is omitted, the UMD can not rely on the slightly
844   *    different per-VM overcommit semantics that are enabled by
845   *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
846   *    still enable recoverable pagefaults if supported by the device.
847   *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
848   *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
849   *    demand when accessed, and also allows per-VM overcommit of memory.
850   *    The xe driver internally uses recoverable pagefaults to implement
851   *    this.
852   */
853  struct drm_xe_vm_create {
854  	/** @extensions: Pointer to the first extension struct, if any */
855  	__u64 extensions;
856  
857  #define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE	(1 << 0)
858  #define DRM_XE_VM_CREATE_FLAG_LR_MODE	        (1 << 1)
859  #define DRM_XE_VM_CREATE_FLAG_FAULT_MODE	(1 << 2)
860  	/** @flags: Flags */
861  	__u32 flags;
862  
863  	/** @vm_id: Returned VM ID */
864  	__u32 vm_id;
865  
866  	/** @reserved: Reserved */
867  	__u64 reserved[2];
868  };
869  
870  /**
871   * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
872   */
873  struct drm_xe_vm_destroy {
874  	/** @vm_id: VM ID */
875  	__u32 vm_id;
876  
877  	/** @pad: MBZ */
878  	__u32 pad;
879  
880  	/** @reserved: Reserved */
881  	__u64 reserved[2];
882  };
883  
884  /**
885   * struct drm_xe_vm_bind_op - run bind operations
886   *
887   * The @op can be:
888   *  - %DRM_XE_VM_BIND_OP_MAP
889   *  - %DRM_XE_VM_BIND_OP_UNMAP
890   *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
891   *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
892   *  - %DRM_XE_VM_BIND_OP_PREFETCH
893   *
894   * and the @flags can be:
895   *  - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
896   *    to ensure write protection
897   *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
898   *    MAP operation immediately rather than deferring the MAP to the page
899   *    fault handler. This is implied on a non-faulting VM as there is no
900   *    fault handler to defer to.
901   *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
902   *    tables are setup with a special bit which indicates writes are
903   *    dropped and all reads return zero. In the future, the NULL flags
904   *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
905   *    handle MBZ, and the BO offset MBZ. This flag is intended to
906   *    implement VK sparse bindings.
907   */
908  struct drm_xe_vm_bind_op {
909  	/** @extensions: Pointer to the first extension struct, if any */
910  	__u64 extensions;
911  
912  	/**
913  	 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
914  	 */
915  	__u32 obj;
916  
917  	/**
918  	 * @pat_index: The platform defined @pat_index to use for this mapping.
919  	 * The index basically maps to some predefined memory attributes,
920  	 * including things like caching, coherency, compression etc.  The exact
921  	 * meaning of the pat_index is platform specific and defined in the
922  	 * Bspec and PRMs.  When the KMD sets up the binding the index here is
923  	 * encoded into the ppGTT PTE.
924  	 *
925  	 * For coherency the @pat_index needs to be at least 1way coherent when
926  	 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
927  	 * will extract the coherency mode from the @pat_index and reject if
928  	 * there is a mismatch (see note below for pre-MTL platforms).
929  	 *
930  	 * Note: On pre-MTL platforms there is only a caching mode and no
931  	 * explicit coherency mode, but on such hardware there is always a
932  	 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
933  	 * CPU caches even with the caching mode set as uncached.  It's only the
934  	 * display engine that is incoherent (on dgpu it must be in VRAM which
935  	 * is always mapped as WC on the CPU). However to keep the uapi somewhat
936  	 * consistent with newer platforms the KMD groups the different cache
937  	 * levels into the following coherency buckets on all pre-MTL platforms:
938  	 *
939  	 *	ppGTT UC -> COH_NONE
940  	 *	ppGTT WC -> COH_NONE
941  	 *	ppGTT WT -> COH_NONE
942  	 *	ppGTT WB -> COH_AT_LEAST_1WAY
943  	 *
944  	 * In practice UC/WC/WT should only ever used for scanout surfaces on
945  	 * such platforms (or perhaps in general for dma-buf if shared with
946  	 * another device) since it is only the display engine that is actually
947  	 * incoherent.  Everything else should typically use WB given that we
948  	 * have a shared-LLC.  On MTL+ this completely changes and the HW
949  	 * defines the coherency mode as part of the @pat_index, where
950  	 * incoherent GT access is possible.
951  	 *
952  	 * Note: For userptr and externally imported dma-buf the kernel expects
953  	 * either 1WAY or 2WAY for the @pat_index.
954  	 *
955  	 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
956  	 * on the @pat_index. For such mappings there is no actual memory being
957  	 * mapped (the address in the PTE is invalid), so the various PAT memory
958  	 * attributes likely do not apply.  Simply leaving as zero is one
959  	 * option (still a valid pat_index).
960  	 */
961  	__u16 pat_index;
962  
963  	/** @pad: MBZ */
964  	__u16 pad;
965  
966  	union {
967  		/**
968  		 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
969  		 * ignored for unbind
970  		 */
971  		__u64 obj_offset;
972  
973  		/** @userptr: user pointer to bind on */
974  		__u64 userptr;
975  	};
976  
977  	/**
978  	 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
979  	 */
980  	__u64 range;
981  
982  	/** @addr: Address to operate on, MBZ for UNMAP_ALL */
983  	__u64 addr;
984  
985  #define DRM_XE_VM_BIND_OP_MAP		0x0
986  #define DRM_XE_VM_BIND_OP_UNMAP		0x1
987  #define DRM_XE_VM_BIND_OP_MAP_USERPTR	0x2
988  #define DRM_XE_VM_BIND_OP_UNMAP_ALL	0x3
989  #define DRM_XE_VM_BIND_OP_PREFETCH	0x4
990  	/** @op: Bind operation to perform */
991  	__u32 op;
992  
993  #define DRM_XE_VM_BIND_FLAG_READONLY	(1 << 0)
994  #define DRM_XE_VM_BIND_FLAG_IMMEDIATE	(1 << 1)
995  #define DRM_XE_VM_BIND_FLAG_NULL	(1 << 2)
996  #define DRM_XE_VM_BIND_FLAG_DUMPABLE	(1 << 3)
997  	/** @flags: Bind flags */
998  	__u32 flags;
999  
1000  	/**
1001  	 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
1002  	 * It is a region instance, not a mask.
1003  	 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
1004  	 */
1005  	__u32 prefetch_mem_region_instance;
1006  
1007  	/** @pad2: MBZ */
1008  	__u32 pad2;
1009  
1010  	/** @reserved: Reserved */
1011  	__u64 reserved[3];
1012  };
1013  
1014  /**
1015   * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1016   *
1017   * Below is an example of a minimal use of @drm_xe_vm_bind to
1018   * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1019   * illustrate `userptr`. It can be synchronized by using the example
1020   * provided for @drm_xe_sync.
1021   *
1022   * .. code-block:: C
1023   *
1024   *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
1025   *     struct drm_xe_vm_bind bind = {
1026   *         .vm_id = vm,
1027   *         .num_binds = 1,
1028   *         .bind.obj = 0,
1029   *         .bind.obj_offset = to_user_pointer(data),
1030   *         .bind.range = BO_SIZE,
1031   *         .bind.addr = BIND_ADDRESS,
1032   *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1033   *         .bind.flags = 0,
1034   *         .num_syncs = 1,
1035   *         .syncs = &sync,
1036   *         .exec_queue_id = 0,
1037   *     };
1038   *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1039   *
1040   */
1041  struct drm_xe_vm_bind {
1042  	/** @extensions: Pointer to the first extension struct, if any */
1043  	__u64 extensions;
1044  
1045  	/** @vm_id: The ID of the VM to bind to */
1046  	__u32 vm_id;
1047  
1048  	/**
1049  	 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1050  	 * and exec queue must have same vm_id. If zero, the default VM bind engine
1051  	 * is used.
1052  	 */
1053  	__u32 exec_queue_id;
1054  
1055  	/** @pad: MBZ */
1056  	__u32 pad;
1057  
1058  	/** @num_binds: number of binds in this IOCTL */
1059  	__u32 num_binds;
1060  
1061  	union {
1062  		/** @bind: used if num_binds == 1 */
1063  		struct drm_xe_vm_bind_op bind;
1064  
1065  		/**
1066  		 * @vector_of_binds: userptr to array of struct
1067  		 * drm_xe_vm_bind_op if num_binds > 1
1068  		 */
1069  		__u64 vector_of_binds;
1070  	};
1071  
1072  	/** @pad2: MBZ */
1073  	__u32 pad2;
1074  
1075  	/** @num_syncs: amount of syncs to wait on */
1076  	__u32 num_syncs;
1077  
1078  	/** @syncs: pointer to struct drm_xe_sync array */
1079  	__u64 syncs;
1080  
1081  	/** @reserved: Reserved */
1082  	__u64 reserved[2];
1083  };
1084  
1085  /**
1086   * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1087   *
1088   * The example below shows how to use @drm_xe_exec_queue_create to create
1089   * a simple exec_queue (no parallel submission) of class
1090   * &DRM_XE_ENGINE_CLASS_RENDER.
1091   *
1092   * .. code-block:: C
1093   *
1094   *     struct drm_xe_engine_class_instance instance = {
1095   *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1096   *     };
1097   *     struct drm_xe_exec_queue_create exec_queue_create = {
1098   *          .extensions = 0,
1099   *          .vm_id = vm,
1100   *          .num_bb_per_exec = 1,
1101   *          .num_eng_per_bb = 1,
1102   *          .instances = to_user_pointer(&instance),
1103   *     };
1104   *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1105   *
1106   */
1107  struct drm_xe_exec_queue_create {
1108  #define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY		0
1109  #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY		0
1110  #define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE		1
1111  
1112  	/** @extensions: Pointer to the first extension struct, if any */
1113  	__u64 extensions;
1114  
1115  	/** @width: submission width (number BB per exec) for this exec queue */
1116  	__u16 width;
1117  
1118  	/** @num_placements: number of valid placements for this exec queue */
1119  	__u16 num_placements;
1120  
1121  	/** @vm_id: VM to use for this exec queue */
1122  	__u32 vm_id;
1123  
1124  	/** @flags: MBZ */
1125  	__u32 flags;
1126  
1127  	/** @exec_queue_id: Returned exec queue ID */
1128  	__u32 exec_queue_id;
1129  
1130  	/**
1131  	 * @instances: user pointer to a 2-d array of struct
1132  	 * drm_xe_engine_class_instance
1133  	 *
1134  	 * length = width (i) * num_placements (j)
1135  	 * index = j + i * width
1136  	 */
1137  	__u64 instances;
1138  
1139  	/** @reserved: Reserved */
1140  	__u64 reserved[2];
1141  };
1142  
1143  /**
1144   * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1145   */
1146  struct drm_xe_exec_queue_destroy {
1147  	/** @exec_queue_id: Exec queue ID */
1148  	__u32 exec_queue_id;
1149  
1150  	/** @pad: MBZ */
1151  	__u32 pad;
1152  
1153  	/** @reserved: Reserved */
1154  	__u64 reserved[2];
1155  };
1156  
1157  /**
1158   * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1159   *
1160   * The @property can be:
1161   *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1162   */
1163  struct drm_xe_exec_queue_get_property {
1164  	/** @extensions: Pointer to the first extension struct, if any */
1165  	__u64 extensions;
1166  
1167  	/** @exec_queue_id: Exec queue ID */
1168  	__u32 exec_queue_id;
1169  
1170  #define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN	0
1171  	/** @property: property to get */
1172  	__u32 property;
1173  
1174  	/** @value: property value */
1175  	__u64 value;
1176  
1177  	/** @reserved: Reserved */
1178  	__u64 reserved[2];
1179  };
1180  
1181  /**
1182   * struct drm_xe_sync - sync object
1183   *
1184   * The @type can be:
1185   *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1186   *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1187   *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1188   *
1189   * and the @flags can be:
1190   *  - %DRM_XE_SYNC_FLAG_SIGNAL
1191   *
1192   * A minimal use of @drm_xe_sync looks like this:
1193   *
1194   * .. code-block:: C
1195   *
1196   *     struct drm_xe_sync sync = {
1197   *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1198   *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1199   *     };
1200   *     struct drm_syncobj_create syncobj_create = { 0 };
1201   *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1202   *     sync.handle = syncobj_create.handle;
1203   *         ...
1204   *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1205   *         ...
1206   *     struct drm_syncobj_wait wait = {
1207   *         .handles = &sync.handle,
1208   *         .timeout_nsec = INT64_MAX,
1209   *         .count_handles = 1,
1210   *         .flags = 0,
1211   *         .first_signaled = 0,
1212   *         .pad = 0,
1213   *     };
1214   *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1215   */
1216  struct drm_xe_sync {
1217  	/** @extensions: Pointer to the first extension struct, if any */
1218  	__u64 extensions;
1219  
1220  #define DRM_XE_SYNC_TYPE_SYNCOBJ		0x0
1221  #define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ	0x1
1222  #define DRM_XE_SYNC_TYPE_USER_FENCE		0x2
1223  	/** @type: Type of the this sync object */
1224  	__u32 type;
1225  
1226  #define DRM_XE_SYNC_FLAG_SIGNAL	(1 << 0)
1227  	/** @flags: Sync Flags */
1228  	__u32 flags;
1229  
1230  	union {
1231  		/** @handle: Handle for the object */
1232  		__u32 handle;
1233  
1234  		/**
1235  		 * @addr: Address of user fence. When sync is passed in via exec
1236  		 * IOCTL this is a GPU address in the VM. When sync passed in via
1237  		 * VM bind IOCTL this is a user pointer. In either case, it is
1238  		 * the users responsibility that this address is present and
1239  		 * mapped when the user fence is signalled. Must be qword
1240  		 * aligned.
1241  		 */
1242  		__u64 addr;
1243  	};
1244  
1245  	/**
1246  	 * @timeline_value: Input for the timeline sync object. Needs to be
1247  	 * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
1248  	 */
1249  	__u64 timeline_value;
1250  
1251  	/** @reserved: Reserved */
1252  	__u64 reserved[2];
1253  };
1254  
1255  /**
1256   * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1257   *
1258   * This is an example to use @drm_xe_exec for execution of the object
1259   * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1260   * (see example in @drm_xe_exec_queue_create). It can be synchronized
1261   * by using the example provided for @drm_xe_sync.
1262   *
1263   * .. code-block:: C
1264   *
1265   *     struct drm_xe_exec exec = {
1266   *         .exec_queue_id = exec_queue,
1267   *         .syncs = &sync,
1268   *         .num_syncs = 1,
1269   *         .address = BIND_ADDRESS,
1270   *         .num_batch_buffer = 1,
1271   *     };
1272   *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1273   *
1274   */
1275  struct drm_xe_exec {
1276  	/** @extensions: Pointer to the first extension struct, if any */
1277  	__u64 extensions;
1278  
1279  	/** @exec_queue_id: Exec queue ID for the batch buffer */
1280  	__u32 exec_queue_id;
1281  
1282  	/** @num_syncs: Amount of struct drm_xe_sync in array. */
1283  	__u32 num_syncs;
1284  
1285  	/** @syncs: Pointer to struct drm_xe_sync array. */
1286  	__u64 syncs;
1287  
1288  	/**
1289  	 * @address: address of batch buffer if num_batch_buffer == 1 or an
1290  	 * array of batch buffer addresses
1291  	 */
1292  	__u64 address;
1293  
1294  	/**
1295  	 * @num_batch_buffer: number of batch buffer in this exec, must match
1296  	 * the width of the engine
1297  	 */
1298  	__u16 num_batch_buffer;
1299  
1300  	/** @pad: MBZ */
1301  	__u16 pad[3];
1302  
1303  	/** @reserved: Reserved */
1304  	__u64 reserved[2];
1305  };
1306  
1307  /**
1308   * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1309   *
1310   * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1311   * instances list and check if user fence is complete::
1312   *
1313   *	(*addr & MASK) OP (VALUE & MASK)
1314   *
1315   * Returns to user on user fence completion or timeout.
1316   *
1317   * The @op can be:
1318   *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1319   *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1320   *  - %DRM_XE_UFENCE_WAIT_OP_GT
1321   *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1322   *  - %DRM_XE_UFENCE_WAIT_OP_LT
1323   *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1324   *
1325   * and the @flags can be:
1326   *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1327   *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1328   *
1329   * The @mask values can be for example:
1330   *  - 0xffu for u8
1331   *  - 0xffffu for u16
1332   *  - 0xffffffffu for u32
1333   *  - 0xffffffffffffffffu for u64
1334   */
1335  struct drm_xe_wait_user_fence {
1336  	/** @extensions: Pointer to the first extension struct, if any */
1337  	__u64 extensions;
1338  
1339  	/**
1340  	 * @addr: user pointer address to wait on, must qword aligned
1341  	 */
1342  	__u64 addr;
1343  
1344  #define DRM_XE_UFENCE_WAIT_OP_EQ	0x0
1345  #define DRM_XE_UFENCE_WAIT_OP_NEQ	0x1
1346  #define DRM_XE_UFENCE_WAIT_OP_GT	0x2
1347  #define DRM_XE_UFENCE_WAIT_OP_GTE	0x3
1348  #define DRM_XE_UFENCE_WAIT_OP_LT	0x4
1349  #define DRM_XE_UFENCE_WAIT_OP_LTE	0x5
1350  	/** @op: wait operation (type of comparison) */
1351  	__u16 op;
1352  
1353  #define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME	(1 << 0)
1354  	/** @flags: wait flags */
1355  	__u16 flags;
1356  
1357  	/** @pad: MBZ */
1358  	__u32 pad;
1359  
1360  	/** @value: compare value */
1361  	__u64 value;
1362  
1363  	/** @mask: comparison mask */
1364  	__u64 mask;
1365  
1366  	/**
1367  	 * @timeout: how long to wait before bailing, value in nanoseconds.
1368  	 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1369  	 * it contains timeout expressed in nanoseconds to wait (fence will
1370  	 * expire at now() + timeout).
1371  	 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1372  	 * will end at timeout (uses system MONOTONIC_CLOCK).
1373  	 * Passing negative timeout leads to neverending wait.
1374  	 *
1375  	 * On relative timeout this value is updated with timeout left
1376  	 * (for restarting the call in case of signal delivery).
1377  	 * On absolute timeout this value stays intact (restarted call still
1378  	 * expire at the same point of time).
1379  	 */
1380  	__s64 timeout;
1381  
1382  	/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1383  	__u32 exec_queue_id;
1384  
1385  	/** @pad2: MBZ */
1386  	__u32 pad2;
1387  
1388  	/** @reserved: Reserved */
1389  	__u64 reserved[2];
1390  };
1391  
1392  /**
1393   * enum drm_xe_observation_type - Observation stream types
1394   */
1395  enum drm_xe_observation_type {
1396  	/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
1397  	DRM_XE_OBSERVATION_TYPE_OA,
1398  };
1399  
1400  /**
1401   * enum drm_xe_observation_op - Observation stream ops
1402   */
1403  enum drm_xe_observation_op {
1404  	/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
1405  	DRM_XE_OBSERVATION_OP_STREAM_OPEN,
1406  
1407  	/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
1408  	DRM_XE_OBSERVATION_OP_ADD_CONFIG,
1409  
1410  	/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
1411  	DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
1412  };
1413  
1414  /**
1415   * struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
1416   *
1417   * The observation layer enables multiplexing observation streams of
1418   * multiple types. The actual params for a particular stream operation are
1419   * supplied via the @param pointer (use __copy_from_user to get these
1420   * params).
1421   */
1422  struct drm_xe_observation_param {
1423  	/** @extensions: Pointer to the first extension struct, if any */
1424  	__u64 extensions;
1425  	/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
1426  	__u64 observation_type;
1427  	/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
1428  	__u64 observation_op;
1429  	/** @param: Pointer to actual stream params */
1430  	__u64 param;
1431  };
1432  
1433  /**
1434   * enum drm_xe_observation_ioctls - Observation stream fd ioctl's
1435   *
1436   * Information exchanged between userspace and kernel for observation fd
1437   * ioctl's is stream type specific
1438   */
1439  enum drm_xe_observation_ioctls {
1440  	/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
1441  	DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
1442  
1443  	/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
1444  	DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
1445  
1446  	/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
1447  	DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
1448  
1449  	/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
1450  	DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
1451  
1452  	/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
1453  	DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
1454  };
1455  
1456  /**
1457   * enum drm_xe_oa_unit_type - OA unit types
1458   */
1459  enum drm_xe_oa_unit_type {
1460  	/**
1461  	 * @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
1462  	 * sub-types of OAG. For OAR/OAC, use OAG.
1463  	 */
1464  	DRM_XE_OA_UNIT_TYPE_OAG,
1465  
1466  	/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
1467  	DRM_XE_OA_UNIT_TYPE_OAM,
1468  };
1469  
1470  /**
1471   * struct drm_xe_oa_unit - describe OA unit
1472   */
1473  struct drm_xe_oa_unit {
1474  	/** @extensions: Pointer to the first extension struct, if any */
1475  	__u64 extensions;
1476  
1477  	/** @oa_unit_id: OA unit ID */
1478  	__u32 oa_unit_id;
1479  
1480  	/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
1481  	__u32 oa_unit_type;
1482  
1483  	/** @capabilities: OA capabilities bit-mask */
1484  	__u64 capabilities;
1485  #define DRM_XE_OA_CAPS_BASE		(1 << 0)
1486  
1487  	/** @oa_timestamp_freq: OA timestamp freq */
1488  	__u64 oa_timestamp_freq;
1489  
1490  	/** @reserved: MBZ */
1491  	__u64 reserved[4];
1492  
1493  	/** @num_engines: number of engines in @eci array */
1494  	__u64 num_engines;
1495  
1496  	/** @eci: engines attached to this OA unit */
1497  	struct drm_xe_engine_class_instance eci[];
1498  };
1499  
1500  /**
1501   * struct drm_xe_query_oa_units - describe OA units
1502   *
1503   * If a query is made with a struct drm_xe_device_query where .query
1504   * is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
1505   * drm_xe_query_oa_units in .data.
1506   *
1507   * OA unit properties for all OA units can be accessed using a code block
1508   * such as the one below:
1509   *
1510   * .. code-block:: C
1511   *
1512   *	struct drm_xe_query_oa_units *qoa;
1513   *	struct drm_xe_oa_unit *oau;
1514   *	u8 *poau;
1515   *
1516   *	// malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
1517   *	poau = (u8 *)&qoa->oa_units[0];
1518   *	for (int i = 0; i < qoa->num_oa_units; i++) {
1519   *		oau = (struct drm_xe_oa_unit *)poau;
1520   *		// Access 'struct drm_xe_oa_unit' fields here
1521   *		poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
1522   *	}
1523   */
1524  struct drm_xe_query_oa_units {
1525  	/** @extensions: Pointer to the first extension struct, if any */
1526  	__u64 extensions;
1527  	/** @num_oa_units: number of OA units returned in oau[] */
1528  	__u32 num_oa_units;
1529  	/** @pad: MBZ */
1530  	__u32 pad;
1531  	/**
1532  	 * @oa_units: struct @drm_xe_oa_unit array returned for this device.
1533  	 * Written below as a u64 array to avoid problems with nested flexible
1534  	 * arrays with some compilers
1535  	 */
1536  	__u64 oa_units[];
1537  };
1538  
1539  /**
1540   * enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
1541   * 52198/60942
1542   */
1543  enum drm_xe_oa_format_type {
1544  	/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
1545  	DRM_XE_OA_FMT_TYPE_OAG,
1546  	/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
1547  	DRM_XE_OA_FMT_TYPE_OAR,
1548  	/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
1549  	DRM_XE_OA_FMT_TYPE_OAM,
1550  	/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
1551  	DRM_XE_OA_FMT_TYPE_OAC,
1552  	/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
1553  	DRM_XE_OA_FMT_TYPE_OAM_MPEC,
1554  	/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
1555  	DRM_XE_OA_FMT_TYPE_PEC,
1556  };
1557  
1558  /**
1559   * enum drm_xe_oa_property_id - OA stream property id's
1560   *
1561   * Stream params are specified as a chain of @drm_xe_ext_set_property
1562   * struct's, with @property values from enum @drm_xe_oa_property_id and
1563   * @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
1564   * @param field in struct @drm_xe_observation_param points to the first
1565   * @drm_xe_ext_set_property struct.
1566   *
1567   * Exactly the same mechanism is also used for stream reconfiguration using the
1568   * @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
1569   * subset of properties below can be specified for stream reconfiguration.
1570   */
1571  enum drm_xe_oa_property_id {
1572  #define DRM_XE_OA_EXTENSION_SET_PROPERTY	0
1573  	/**
1574  	 * @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
1575  	 * the OA stream, see @oa_unit_id in 'struct
1576  	 * drm_xe_query_oa_units'. Defaults to 0 if not provided.
1577  	 */
1578  	DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
1579  
1580  	/**
1581  	 * @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
1582  	 * OA unit reports or stream samples in a global buffer attached to an
1583  	 * OA unit.
1584  	 */
1585  	DRM_XE_OA_PROPERTY_SAMPLE_OA,
1586  
1587  	/**
1588  	 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
1589  	 * reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
1590  	 */
1591  	DRM_XE_OA_PROPERTY_OA_METRIC_SET,
1592  
1593  	/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
1594  	DRM_XE_OA_PROPERTY_OA_FORMAT,
1595  	/*
1596  	 * OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
1597  	 * in terms of the following quantities: a. enum @drm_xe_oa_format_type
1598  	 * b. Counter select c. Counter size and d. BC report. Also refer to the
1599  	 * oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
1600  	 */
1601  #define DRM_XE_OA_FORMAT_MASK_FMT_TYPE		(0xffu << 0)
1602  #define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL	(0xffu << 8)
1603  #define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE	(0xffu << 16)
1604  #define DRM_XE_OA_FORMAT_MASK_BC_REPORT		(0xffu << 24)
1605  
1606  	/**
1607  	 * @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
1608  	 * sampling with sampling frequency proportional to 2^(period_exponent + 1)
1609  	 */
1610  	DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
1611  
1612  	/**
1613  	 * @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
1614  	 * stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
1615  	 */
1616  	DRM_XE_OA_PROPERTY_OA_DISABLED,
1617  
1618  	/**
1619  	 * @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
1620  	 * @exec_queue_id. OA queries can be executed on this exec queue.
1621  	 */
1622  	DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
1623  
1624  	/**
1625  	 * @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
1626  	 * pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
1627  	 */
1628  	DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
1629  
1630  	/**
1631  	 * @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
1632  	 * to be disabled for the stream exec queue.
1633  	 */
1634  	DRM_XE_OA_PROPERTY_NO_PREEMPT,
1635  };
1636  
1637  /**
1638   * struct drm_xe_oa_config - OA metric configuration
1639   *
1640   * Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
1641   * particular config can be specified when opening an OA stream using
1642   * @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
1643   */
1644  struct drm_xe_oa_config {
1645  	/** @extensions: Pointer to the first extension struct, if any */
1646  	__u64 extensions;
1647  
1648  	/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
1649  	char uuid[36];
1650  
1651  	/** @n_regs: Number of regs in @regs_ptr */
1652  	__u32 n_regs;
1653  
1654  	/**
1655  	 * @regs_ptr: Pointer to (register address, value) pairs for OA config
1656  	 * registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
1657  	 */
1658  	__u64 regs_ptr;
1659  };
1660  
1661  /**
1662   * struct drm_xe_oa_stream_status - OA stream status returned from
1663   * @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
1664   * call the ioctl to query stream status in response to EIO errno from
1665   * observation fd read().
1666   */
1667  struct drm_xe_oa_stream_status {
1668  	/** @extensions: Pointer to the first extension struct, if any */
1669  	__u64 extensions;
1670  
1671  	/** @oa_status: OA stream status (see Bspec 46717/61226) */
1672  	__u64 oa_status;
1673  #define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL		(1 << 3)
1674  #define DRM_XE_OASTATUS_COUNTER_OVERFLOW	(1 << 2)
1675  #define DRM_XE_OASTATUS_BUFFER_OVERFLOW		(1 << 1)
1676  #define DRM_XE_OASTATUS_REPORT_LOST		(1 << 0)
1677  
1678  	/** @reserved: reserved for future use */
1679  	__u64 reserved[3];
1680  };
1681  
1682  /**
1683   * struct drm_xe_oa_stream_info - OA stream info returned from
1684   * @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
1685   */
1686  struct drm_xe_oa_stream_info {
1687  	/** @extensions: Pointer to the first extension struct, if any */
1688  	__u64 extensions;
1689  
1690  	/** @oa_buf_size: OA buffer size */
1691  	__u64 oa_buf_size;
1692  
1693  	/** @reserved: reserved for future use */
1694  	__u64 reserved[3];
1695  };
1696  
1697  #if defined(__cplusplus)
1698  }
1699  #endif
1700  
1701  #endif /* _UAPI_XE_DRM_H_ */
1702