1  /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2  /*
3   * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4   * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5   * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6   * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7   * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8   * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9   * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10   */
11  
12  #ifndef IB_VERBS_H
13  #define IB_VERBS_H
14  
15  #include <linux/ethtool.h>
16  #include <linux/types.h>
17  #include <linux/device.h>
18  #include <linux/dma-mapping.h>
19  #include <linux/kref.h>
20  #include <linux/list.h>
21  #include <linux/rwsem.h>
22  #include <linux/workqueue.h>
23  #include <linux/irq_poll.h>
24  #include <uapi/linux/if_ether.h>
25  #include <net/ipv6.h>
26  #include <net/ip.h>
27  #include <linux/string.h>
28  #include <linux/slab.h>
29  #include <linux/netdevice.h>
30  #include <linux/refcount.h>
31  #include <linux/if_link.h>
32  #include <linux/atomic.h>
33  #include <linux/mmu_notifier.h>
34  #include <linux/uaccess.h>
35  #include <linux/cgroup_rdma.h>
36  #include <linux/irqflags.h>
37  #include <linux/preempt.h>
38  #include <linux/dim.h>
39  #include <uapi/rdma/ib_user_verbs.h>
40  #include <rdma/rdma_counter.h>
41  #include <rdma/restrack.h>
42  #include <rdma/signature.h>
43  #include <uapi/rdma/rdma_user_ioctl.h>
44  #include <uapi/rdma/ib_user_ioctl_verbs.h>
45  
46  #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47  
48  struct ib_umem_odp;
49  struct ib_uqp_object;
50  struct ib_usrq_object;
51  struct ib_uwq_object;
52  struct rdma_cm_id;
53  struct ib_port;
54  struct hw_stats_device_data;
55  
56  extern struct workqueue_struct *ib_wq;
57  extern struct workqueue_struct *ib_comp_wq;
58  extern struct workqueue_struct *ib_comp_unbound_wq;
59  
60  struct ib_ucq_object;
61  
62  __printf(3, 4) __cold
63  void ibdev_printk(const char *level, const struct ib_device *ibdev,
64  		  const char *format, ...);
65  __printf(2, 3) __cold
66  void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67  __printf(2, 3) __cold
68  void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69  __printf(2, 3) __cold
70  void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71  __printf(2, 3) __cold
72  void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73  __printf(2, 3) __cold
74  void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75  __printf(2, 3) __cold
76  void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77  __printf(2, 3) __cold
78  void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79  
80  #if defined(CONFIG_DYNAMIC_DEBUG) || \
81  	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82  #define ibdev_dbg(__dev, format, args...)                       \
83  	dynamic_ibdev_dbg(__dev, format, ##args)
84  #else
85  __printf(2, 3) __cold
86  static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)87  void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88  #endif
89  
90  #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
91  do {                                                                    \
92  	static DEFINE_RATELIMIT_STATE(_rs,                              \
93  				      DEFAULT_RATELIMIT_INTERVAL,       \
94  				      DEFAULT_RATELIMIT_BURST);         \
95  	if (__ratelimit(&_rs))                                          \
96  		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
97  } while (0)
98  
99  #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100  	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101  #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102  	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103  #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104  	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105  #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106  	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107  #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108  	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109  #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110  	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111  #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112  	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113  
114  #if defined(CONFIG_DYNAMIC_DEBUG) || \
115  	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116  /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117  #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118  do {                                                                    \
119  	static DEFINE_RATELIMIT_STATE(_rs,                              \
120  				      DEFAULT_RATELIMIT_INTERVAL,       \
121  				      DEFAULT_RATELIMIT_BURST);         \
122  	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123  	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124  		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125  				    ##__VA_ARGS__);                     \
126  } while (0)
127  #else
128  __printf(2, 3) __cold
129  static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)130  void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131  #endif
132  
133  union ib_gid {
134  	u8	raw[16];
135  	struct {
136  		__be64	subnet_prefix;
137  		__be64	interface_id;
138  	} global;
139  };
140  
141  extern union ib_gid zgid;
142  
143  enum ib_gid_type {
144  	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145  	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146  	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147  	IB_GID_TYPE_SIZE
148  };
149  
150  #define ROCE_V2_UDP_DPORT      4791
151  struct ib_gid_attr {
152  	struct net_device __rcu	*ndev;
153  	struct ib_device	*device;
154  	union ib_gid		gid;
155  	enum ib_gid_type	gid_type;
156  	u16			index;
157  	u32			port_num;
158  };
159  
160  enum {
161  	/* set the local administered indication */
162  	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
163  };
164  
165  enum rdma_transport_type {
166  	RDMA_TRANSPORT_IB,
167  	RDMA_TRANSPORT_IWARP,
168  	RDMA_TRANSPORT_USNIC,
169  	RDMA_TRANSPORT_USNIC_UDP,
170  	RDMA_TRANSPORT_UNSPECIFIED,
171  };
172  
173  enum rdma_protocol_type {
174  	RDMA_PROTOCOL_IB,
175  	RDMA_PROTOCOL_IBOE,
176  	RDMA_PROTOCOL_IWARP,
177  	RDMA_PROTOCOL_USNIC_UDP
178  };
179  
180  __attribute_const__ enum rdma_transport_type
181  rdma_node_get_transport(unsigned int node_type);
182  
183  enum rdma_network_type {
184  	RDMA_NETWORK_IB,
185  	RDMA_NETWORK_ROCE_V1,
186  	RDMA_NETWORK_IPV4,
187  	RDMA_NETWORK_IPV6
188  };
189  
ib_network_to_gid_type(enum rdma_network_type network_type)190  static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191  {
192  	if (network_type == RDMA_NETWORK_IPV4 ||
193  	    network_type == RDMA_NETWORK_IPV6)
194  		return IB_GID_TYPE_ROCE_UDP_ENCAP;
195  	else if (network_type == RDMA_NETWORK_ROCE_V1)
196  		return IB_GID_TYPE_ROCE;
197  	else
198  		return IB_GID_TYPE_IB;
199  }
200  
201  static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)202  rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203  {
204  	if (attr->gid_type == IB_GID_TYPE_IB)
205  		return RDMA_NETWORK_IB;
206  
207  	if (attr->gid_type == IB_GID_TYPE_ROCE)
208  		return RDMA_NETWORK_ROCE_V1;
209  
210  	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211  		return RDMA_NETWORK_IPV4;
212  	else
213  		return RDMA_NETWORK_IPV6;
214  }
215  
216  enum rdma_link_layer {
217  	IB_LINK_LAYER_UNSPECIFIED,
218  	IB_LINK_LAYER_INFINIBAND,
219  	IB_LINK_LAYER_ETHERNET,
220  };
221  
222  enum ib_device_cap_flags {
223  	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224  	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225  	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226  	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227  	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228  	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229  	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230  	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231  	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232  	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233  	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234  	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235  	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236  	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237  	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238  
239  	/* Reserved, old SEND_W_INV = 1 << 16,*/
240  	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241  	/*
242  	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243  	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244  	 * messages and can verify the validity of checksum for
245  	 * incoming messages.  Setting this flag implies that the
246  	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247  	 */
248  	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249  	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250  
251  	/*
252  	 * This device supports the IB "base memory management extension",
253  	 * which includes support for fast registrations (IB_WR_REG_MR,
254  	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
255  	 * also be set by any iWarp device which must support FRs to comply
256  	 * to the iWarp verbs spec.  iWarp devices also support the
257  	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258  	 * stag.
259  	 */
260  	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261  	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262  	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263  	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264  	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265  	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266  	IB_DEVICE_MANAGED_FLOW_STEERING =
267  		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268  	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269  	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270  	/* The device supports padding incoming writes to cacheline. */
271  	IB_DEVICE_PCI_WRITE_END_PADDING =
272  		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273  	/* Placement type attributes */
274  	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275  	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276  	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277  };
278  
279  enum ib_kernel_cap_flags {
280  	/*
281  	 * This device supports a per-device lkey or stag that can be
282  	 * used without performing a memory registration for the local
283  	 * memory.  Note that ULPs should never check this flag, but
284  	 * instead of use the local_dma_lkey flag in the ib_pd structure,
285  	 * which will always contain a usable lkey.
286  	 */
287  	IBK_LOCAL_DMA_LKEY = 1 << 0,
288  	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289  	IBK_INTEGRITY_HANDOVER = 1 << 1,
290  	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291  	IBK_ON_DEMAND_PAGING = 1 << 2,
292  	/* IB_MR_TYPE_SG_GAPS is supported */
293  	IBK_SG_GAPS_REG = 1 << 3,
294  	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
295  	IBK_ALLOW_USER_UNREG = 1 << 4,
296  
297  	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298  	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299  	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300  	IBK_UD_TSO = 1 << 6,
301  	/* iopib will use the device ops:
302  	 *   get_vf_config
303  	 *   get_vf_guid
304  	 *   get_vf_stats
305  	 *   set_vf_guid
306  	 *   set_vf_link_state
307  	 */
308  	IBK_VIRTUAL_FUNCTION = 1 << 7,
309  	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310  	IBK_RDMA_NETDEV_OPA = 1 << 8,
311  };
312  
313  enum ib_atomic_cap {
314  	IB_ATOMIC_NONE,
315  	IB_ATOMIC_HCA,
316  	IB_ATOMIC_GLOB
317  };
318  
319  enum ib_odp_general_cap_bits {
320  	IB_ODP_SUPPORT		= 1 << 0,
321  	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322  };
323  
324  enum ib_odp_transport_cap_bits {
325  	IB_ODP_SUPPORT_SEND	= 1 << 0,
326  	IB_ODP_SUPPORT_RECV	= 1 << 1,
327  	IB_ODP_SUPPORT_WRITE	= 1 << 2,
328  	IB_ODP_SUPPORT_READ	= 1 << 3,
329  	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
330  	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
331  };
332  
333  struct ib_odp_caps {
334  	uint64_t general_caps;
335  	struct {
336  		uint32_t  rc_odp_caps;
337  		uint32_t  uc_odp_caps;
338  		uint32_t  ud_odp_caps;
339  		uint32_t  xrc_odp_caps;
340  	} per_transport_caps;
341  };
342  
343  struct ib_rss_caps {
344  	/* Corresponding bit will be set if qp type from
345  	 * 'enum ib_qp_type' is supported, e.g.
346  	 * supported_qpts |= 1 << IB_QPT_UD
347  	 */
348  	u32 supported_qpts;
349  	u32 max_rwq_indirection_tables;
350  	u32 max_rwq_indirection_table_size;
351  };
352  
353  enum ib_tm_cap_flags {
354  	/*  Support tag matching with rendezvous offload for RC transport */
355  	IB_TM_CAP_RNDV_RC = 1 << 0,
356  };
357  
358  struct ib_tm_caps {
359  	/* Max size of RNDV header */
360  	u32 max_rndv_hdr_size;
361  	/* Max number of entries in tag matching list */
362  	u32 max_num_tags;
363  	/* From enum ib_tm_cap_flags */
364  	u32 flags;
365  	/* Max number of outstanding list operations */
366  	u32 max_ops;
367  	/* Max number of SGE in tag matching entry */
368  	u32 max_sge;
369  };
370  
371  struct ib_cq_init_attr {
372  	unsigned int	cqe;
373  	u32		comp_vector;
374  	u32		flags;
375  };
376  
377  enum ib_cq_attr_mask {
378  	IB_CQ_MODERATE = 1 << 0,
379  };
380  
381  struct ib_cq_caps {
382  	u16     max_cq_moderation_count;
383  	u16     max_cq_moderation_period;
384  };
385  
386  struct ib_dm_mr_attr {
387  	u64		length;
388  	u64		offset;
389  	u32		access_flags;
390  };
391  
392  struct ib_dm_alloc_attr {
393  	u64	length;
394  	u32	alignment;
395  	u32	flags;
396  };
397  
398  struct ib_device_attr {
399  	u64			fw_ver;
400  	__be64			sys_image_guid;
401  	u64			max_mr_size;
402  	u64			page_size_cap;
403  	u32			vendor_id;
404  	u32			vendor_part_id;
405  	u32			hw_ver;
406  	int			max_qp;
407  	int			max_qp_wr;
408  	u64			device_cap_flags;
409  	u64			kernel_cap_flags;
410  	int			max_send_sge;
411  	int			max_recv_sge;
412  	int			max_sge_rd;
413  	int			max_cq;
414  	int			max_cqe;
415  	int			max_mr;
416  	int			max_pd;
417  	int			max_qp_rd_atom;
418  	int			max_ee_rd_atom;
419  	int			max_res_rd_atom;
420  	int			max_qp_init_rd_atom;
421  	int			max_ee_init_rd_atom;
422  	enum ib_atomic_cap	atomic_cap;
423  	enum ib_atomic_cap	masked_atomic_cap;
424  	int			max_ee;
425  	int			max_rdd;
426  	int			max_mw;
427  	int			max_raw_ipv6_qp;
428  	int			max_raw_ethy_qp;
429  	int			max_mcast_grp;
430  	int			max_mcast_qp_attach;
431  	int			max_total_mcast_qp_attach;
432  	int			max_ah;
433  	int			max_srq;
434  	int			max_srq_wr;
435  	int			max_srq_sge;
436  	unsigned int		max_fast_reg_page_list_len;
437  	unsigned int		max_pi_fast_reg_page_list_len;
438  	u16			max_pkeys;
439  	u8			local_ca_ack_delay;
440  	int			sig_prot_cap;
441  	int			sig_guard_cap;
442  	struct ib_odp_caps	odp_caps;
443  	uint64_t		timestamp_mask;
444  	uint64_t		hca_core_clock; /* in KHZ */
445  	struct ib_rss_caps	rss_caps;
446  	u32			max_wq_type_rq;
447  	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
448  	struct ib_tm_caps	tm_caps;
449  	struct ib_cq_caps       cq_caps;
450  	u64			max_dm_size;
451  	/* Max entries for sgl for optimized performance per READ */
452  	u32			max_sgl_rd;
453  };
454  
455  enum ib_mtu {
456  	IB_MTU_256  = 1,
457  	IB_MTU_512  = 2,
458  	IB_MTU_1024 = 3,
459  	IB_MTU_2048 = 4,
460  	IB_MTU_4096 = 5
461  };
462  
463  enum opa_mtu {
464  	OPA_MTU_8192 = 6,
465  	OPA_MTU_10240 = 7
466  };
467  
ib_mtu_enum_to_int(enum ib_mtu mtu)468  static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469  {
470  	switch (mtu) {
471  	case IB_MTU_256:  return  256;
472  	case IB_MTU_512:  return  512;
473  	case IB_MTU_1024: return 1024;
474  	case IB_MTU_2048: return 2048;
475  	case IB_MTU_4096: return 4096;
476  	default: 	  return -1;
477  	}
478  }
479  
ib_mtu_int_to_enum(int mtu)480  static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481  {
482  	if (mtu >= 4096)
483  		return IB_MTU_4096;
484  	else if (mtu >= 2048)
485  		return IB_MTU_2048;
486  	else if (mtu >= 1024)
487  		return IB_MTU_1024;
488  	else if (mtu >= 512)
489  		return IB_MTU_512;
490  	else
491  		return IB_MTU_256;
492  }
493  
opa_mtu_enum_to_int(enum opa_mtu mtu)494  static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495  {
496  	switch (mtu) {
497  	case OPA_MTU_8192:
498  		return 8192;
499  	case OPA_MTU_10240:
500  		return 10240;
501  	default:
502  		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503  	}
504  }
505  
opa_mtu_int_to_enum(int mtu)506  static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507  {
508  	if (mtu >= 10240)
509  		return OPA_MTU_10240;
510  	else if (mtu >= 8192)
511  		return OPA_MTU_8192;
512  	else
513  		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514  }
515  
516  enum ib_port_state {
517  	IB_PORT_NOP		= 0,
518  	IB_PORT_DOWN		= 1,
519  	IB_PORT_INIT		= 2,
520  	IB_PORT_ARMED		= 3,
521  	IB_PORT_ACTIVE		= 4,
522  	IB_PORT_ACTIVE_DEFER	= 5
523  };
524  
525  enum ib_port_phys_state {
526  	IB_PORT_PHYS_STATE_SLEEP = 1,
527  	IB_PORT_PHYS_STATE_POLLING = 2,
528  	IB_PORT_PHYS_STATE_DISABLED = 3,
529  	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530  	IB_PORT_PHYS_STATE_LINK_UP = 5,
531  	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532  	IB_PORT_PHYS_STATE_PHY_TEST = 7,
533  };
534  
535  enum ib_port_width {
536  	IB_WIDTH_1X	= 1,
537  	IB_WIDTH_2X	= 16,
538  	IB_WIDTH_4X	= 2,
539  	IB_WIDTH_8X	= 4,
540  	IB_WIDTH_12X	= 8
541  };
542  
ib_width_enum_to_int(enum ib_port_width width)543  static inline int ib_width_enum_to_int(enum ib_port_width width)
544  {
545  	switch (width) {
546  	case IB_WIDTH_1X:  return  1;
547  	case IB_WIDTH_2X:  return  2;
548  	case IB_WIDTH_4X:  return  4;
549  	case IB_WIDTH_8X:  return  8;
550  	case IB_WIDTH_12X: return 12;
551  	default: 	  return -1;
552  	}
553  }
554  
555  enum ib_port_speed {
556  	IB_SPEED_SDR	= 1,
557  	IB_SPEED_DDR	= 2,
558  	IB_SPEED_QDR	= 4,
559  	IB_SPEED_FDR10	= 8,
560  	IB_SPEED_FDR	= 16,
561  	IB_SPEED_EDR	= 32,
562  	IB_SPEED_HDR	= 64,
563  	IB_SPEED_NDR	= 128,
564  	IB_SPEED_XDR	= 256,
565  };
566  
567  enum ib_stat_flag {
568  	IB_STAT_FLAG_OPTIONAL = 1 << 0,
569  };
570  
571  /**
572   * struct rdma_stat_desc
573   * @name - The name of the counter
574   * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575   * @priv - Driver private information; Core code should not use
576   */
577  struct rdma_stat_desc {
578  	const char *name;
579  	unsigned int flags;
580  	const void *priv;
581  };
582  
583  /**
584   * struct rdma_hw_stats
585   * @lock - Mutex to protect parallel write access to lifespan and values
586   *    of counters, which are 64bits and not guaranteed to be written
587   *    atomicaly on 32bits systems.
588   * @timestamp - Used by the core code to track when the last update was
589   * @lifespan - Used by the core code to determine how old the counters
590   *   should be before being updated again.  Stored in jiffies, defaults
591   *   to 10 milliseconds, drivers can override the default be specifying
592   *   their own value during their allocation routine.
593   * @descs - Array of pointers to static descriptors used for the counters
594   *   in directory.
595   * @is_disabled - A bitmap to indicate each counter is currently disabled
596   *   or not.
597   * @num_counters - How many hardware counters there are.  If name is
598   *   shorter than this number, a kernel oops will result.  Driver authors
599   *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600   *   in their code to prevent this.
601   * @value - Array of u64 counters that are accessed by the sysfs code and
602   *   filled in by the drivers get_stats routine
603   */
604  struct rdma_hw_stats {
605  	struct mutex	lock; /* Protect lifespan and values[] */
606  	unsigned long	timestamp;
607  	unsigned long	lifespan;
608  	const struct rdma_stat_desc *descs;
609  	unsigned long	*is_disabled;
610  	int		num_counters;
611  	u64		value[] __counted_by(num_counters);
612  };
613  
614  #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615  
616  struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617  	const struct rdma_stat_desc *descs, int num_counters,
618  	unsigned long lifespan);
619  
620  void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621  
622  /* Define bits for the various functionality this port needs to be supported by
623   * the core.
624   */
625  /* Management                           0x00000FFF */
626  #define RDMA_CORE_CAP_IB_MAD            0x00000001
627  #define RDMA_CORE_CAP_IB_SMI            0x00000002
628  #define RDMA_CORE_CAP_IB_CM             0x00000004
629  #define RDMA_CORE_CAP_IW_CM             0x00000008
630  #define RDMA_CORE_CAP_IB_SA             0x00000010
631  #define RDMA_CORE_CAP_OPA_MAD           0x00000020
632  
633  /* Address format                       0x000FF000 */
634  #define RDMA_CORE_CAP_AF_IB             0x00001000
635  #define RDMA_CORE_CAP_ETH_AH            0x00002000
636  #define RDMA_CORE_CAP_OPA_AH            0x00004000
637  #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
638  
639  /* Protocol                             0xFFF00000 */
640  #define RDMA_CORE_CAP_PROT_IB           0x00100000
641  #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
642  #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
643  #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644  #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
645  #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
646  
647  #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648  					| RDMA_CORE_CAP_PROT_ROCE     \
649  					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650  
651  #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
652  					| RDMA_CORE_CAP_IB_MAD \
653  					| RDMA_CORE_CAP_IB_SMI \
654  					| RDMA_CORE_CAP_IB_CM  \
655  					| RDMA_CORE_CAP_IB_SA  \
656  					| RDMA_CORE_CAP_AF_IB)
657  #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
658  					| RDMA_CORE_CAP_IB_MAD  \
659  					| RDMA_CORE_CAP_IB_CM   \
660  					| RDMA_CORE_CAP_AF_IB   \
661  					| RDMA_CORE_CAP_ETH_AH)
662  #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
663  					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664  					| RDMA_CORE_CAP_IB_MAD  \
665  					| RDMA_CORE_CAP_IB_CM   \
666  					| RDMA_CORE_CAP_AF_IB   \
667  					| RDMA_CORE_CAP_ETH_AH)
668  #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
669  					| RDMA_CORE_CAP_IW_CM)
670  #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
671  					| RDMA_CORE_CAP_OPA_MAD)
672  
673  #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
674  
675  #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
676  
677  struct ib_port_attr {
678  	u64			subnet_prefix;
679  	enum ib_port_state	state;
680  	enum ib_mtu		max_mtu;
681  	enum ib_mtu		active_mtu;
682  	u32                     phys_mtu;
683  	int			gid_tbl_len;
684  	unsigned int		ip_gids:1;
685  	/* This is the value from PortInfo CapabilityMask, defined by IBA */
686  	u32			port_cap_flags;
687  	u32			max_msg_sz;
688  	u32			bad_pkey_cntr;
689  	u32			qkey_viol_cntr;
690  	u16			pkey_tbl_len;
691  	u32			sm_lid;
692  	u32			lid;
693  	u8			lmc;
694  	u8			max_vl_num;
695  	u8			sm_sl;
696  	u8			subnet_timeout;
697  	u8			init_type_reply;
698  	u8			active_width;
699  	u16			active_speed;
700  	u8                      phys_state;
701  	u16			port_cap_flags2;
702  };
703  
704  enum ib_device_modify_flags {
705  	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
706  	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
707  };
708  
709  #define IB_DEVICE_NODE_DESC_MAX 64
710  
711  struct ib_device_modify {
712  	u64	sys_image_guid;
713  	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
714  };
715  
716  enum ib_port_modify_flags {
717  	IB_PORT_SHUTDOWN		= 1,
718  	IB_PORT_INIT_TYPE		= (1<<2),
719  	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
720  	IB_PORT_OPA_MASK_CHG		= (1<<4)
721  };
722  
723  struct ib_port_modify {
724  	u32	set_port_cap_mask;
725  	u32	clr_port_cap_mask;
726  	u8	init_type;
727  };
728  
729  enum ib_event_type {
730  	IB_EVENT_CQ_ERR,
731  	IB_EVENT_QP_FATAL,
732  	IB_EVENT_QP_REQ_ERR,
733  	IB_EVENT_QP_ACCESS_ERR,
734  	IB_EVENT_COMM_EST,
735  	IB_EVENT_SQ_DRAINED,
736  	IB_EVENT_PATH_MIG,
737  	IB_EVENT_PATH_MIG_ERR,
738  	IB_EVENT_DEVICE_FATAL,
739  	IB_EVENT_PORT_ACTIVE,
740  	IB_EVENT_PORT_ERR,
741  	IB_EVENT_LID_CHANGE,
742  	IB_EVENT_PKEY_CHANGE,
743  	IB_EVENT_SM_CHANGE,
744  	IB_EVENT_SRQ_ERR,
745  	IB_EVENT_SRQ_LIMIT_REACHED,
746  	IB_EVENT_QP_LAST_WQE_REACHED,
747  	IB_EVENT_CLIENT_REREGISTER,
748  	IB_EVENT_GID_CHANGE,
749  	IB_EVENT_WQ_FATAL,
750  };
751  
752  const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753  
754  struct ib_event {
755  	struct ib_device	*device;
756  	union {
757  		struct ib_cq	*cq;
758  		struct ib_qp	*qp;
759  		struct ib_srq	*srq;
760  		struct ib_wq	*wq;
761  		u32		port_num;
762  	} element;
763  	enum ib_event_type	event;
764  };
765  
766  struct ib_event_handler {
767  	struct ib_device *device;
768  	void            (*handler)(struct ib_event_handler *, struct ib_event *);
769  	struct list_head  list;
770  };
771  
772  #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
773  	do {							\
774  		(_ptr)->device  = _device;			\
775  		(_ptr)->handler = _handler;			\
776  		INIT_LIST_HEAD(&(_ptr)->list);			\
777  	} while (0)
778  
779  struct ib_global_route {
780  	const struct ib_gid_attr *sgid_attr;
781  	union ib_gid	dgid;
782  	u32		flow_label;
783  	u8		sgid_index;
784  	u8		hop_limit;
785  	u8		traffic_class;
786  };
787  
788  struct ib_grh {
789  	__be32		version_tclass_flow;
790  	__be16		paylen;
791  	u8		next_hdr;
792  	u8		hop_limit;
793  	union ib_gid	sgid;
794  	union ib_gid	dgid;
795  };
796  
797  union rdma_network_hdr {
798  	struct ib_grh ibgrh;
799  	struct {
800  		/* The IB spec states that if it's IPv4, the header
801  		 * is located in the last 20 bytes of the header.
802  		 */
803  		u8		reserved[20];
804  		struct iphdr	roce4grh;
805  	};
806  };
807  
808  #define IB_QPN_MASK		0xFFFFFF
809  
810  enum {
811  	IB_MULTICAST_QPN = 0xffffff
812  };
813  
814  #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
815  #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
816  
817  enum ib_ah_flags {
818  	IB_AH_GRH	= 1
819  };
820  
821  enum ib_rate {
822  	IB_RATE_PORT_CURRENT = 0,
823  	IB_RATE_2_5_GBPS = 2,
824  	IB_RATE_5_GBPS   = 5,
825  	IB_RATE_10_GBPS  = 3,
826  	IB_RATE_20_GBPS  = 6,
827  	IB_RATE_30_GBPS  = 4,
828  	IB_RATE_40_GBPS  = 7,
829  	IB_RATE_60_GBPS  = 8,
830  	IB_RATE_80_GBPS  = 9,
831  	IB_RATE_120_GBPS = 10,
832  	IB_RATE_14_GBPS  = 11,
833  	IB_RATE_56_GBPS  = 12,
834  	IB_RATE_112_GBPS = 13,
835  	IB_RATE_168_GBPS = 14,
836  	IB_RATE_25_GBPS  = 15,
837  	IB_RATE_100_GBPS = 16,
838  	IB_RATE_200_GBPS = 17,
839  	IB_RATE_300_GBPS = 18,
840  	IB_RATE_28_GBPS  = 19,
841  	IB_RATE_50_GBPS  = 20,
842  	IB_RATE_400_GBPS = 21,
843  	IB_RATE_600_GBPS = 22,
844  	IB_RATE_800_GBPS = 23,
845  };
846  
847  /**
848   * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849   * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
850   * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851   * @rate: rate to convert.
852   */
853  __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854  
855  /**
856   * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857   * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858   * @rate: rate to convert.
859   */
860  __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861  
862  
863  /**
864   * enum ib_mr_type - memory region type
865   * @IB_MR_TYPE_MEM_REG:       memory region that is used for
866   *                            normal registration
867   * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
868   *                            register any arbitrary sg lists (without
869   *                            the normal mr constraints - see
870   *                            ib_map_mr_sg)
871   * @IB_MR_TYPE_DM:            memory region that is used for device
872   *                            memory registration
873   * @IB_MR_TYPE_USER:          memory region that is used for the user-space
874   *                            application
875   * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
876   *                            without address translations (VA=PA)
877   * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
878   *                            data integrity operations
879   */
880  enum ib_mr_type {
881  	IB_MR_TYPE_MEM_REG,
882  	IB_MR_TYPE_SG_GAPS,
883  	IB_MR_TYPE_DM,
884  	IB_MR_TYPE_USER,
885  	IB_MR_TYPE_DMA,
886  	IB_MR_TYPE_INTEGRITY,
887  };
888  
889  enum ib_mr_status_check {
890  	IB_MR_CHECK_SIG_STATUS = 1,
891  };
892  
893  /**
894   * struct ib_mr_status - Memory region status container
895   *
896   * @fail_status: Bitmask of MR checks status. For each
897   *     failed check a corresponding status bit is set.
898   * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899   *     failure.
900   */
901  struct ib_mr_status {
902  	u32		    fail_status;
903  	struct ib_sig_err   sig_err;
904  };
905  
906  /**
907   * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908   * enum.
909   * @mult: multiple to convert.
910   */
911  __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912  
913  struct rdma_ah_init_attr {
914  	struct rdma_ah_attr *ah_attr;
915  	u32 flags;
916  	struct net_device *xmit_slave;
917  };
918  
919  enum rdma_ah_attr_type {
920  	RDMA_AH_ATTR_TYPE_UNDEFINED,
921  	RDMA_AH_ATTR_TYPE_IB,
922  	RDMA_AH_ATTR_TYPE_ROCE,
923  	RDMA_AH_ATTR_TYPE_OPA,
924  };
925  
926  struct ib_ah_attr {
927  	u16			dlid;
928  	u8			src_path_bits;
929  };
930  
931  struct roce_ah_attr {
932  	u8			dmac[ETH_ALEN];
933  };
934  
935  struct opa_ah_attr {
936  	u32			dlid;
937  	u8			src_path_bits;
938  	bool			make_grd;
939  };
940  
941  struct rdma_ah_attr {
942  	struct ib_global_route	grh;
943  	u8			sl;
944  	u8			static_rate;
945  	u32			port_num;
946  	u8			ah_flags;
947  	enum rdma_ah_attr_type type;
948  	union {
949  		struct ib_ah_attr ib;
950  		struct roce_ah_attr roce;
951  		struct opa_ah_attr opa;
952  	};
953  };
954  
955  enum ib_wc_status {
956  	IB_WC_SUCCESS,
957  	IB_WC_LOC_LEN_ERR,
958  	IB_WC_LOC_QP_OP_ERR,
959  	IB_WC_LOC_EEC_OP_ERR,
960  	IB_WC_LOC_PROT_ERR,
961  	IB_WC_WR_FLUSH_ERR,
962  	IB_WC_MW_BIND_ERR,
963  	IB_WC_BAD_RESP_ERR,
964  	IB_WC_LOC_ACCESS_ERR,
965  	IB_WC_REM_INV_REQ_ERR,
966  	IB_WC_REM_ACCESS_ERR,
967  	IB_WC_REM_OP_ERR,
968  	IB_WC_RETRY_EXC_ERR,
969  	IB_WC_RNR_RETRY_EXC_ERR,
970  	IB_WC_LOC_RDD_VIOL_ERR,
971  	IB_WC_REM_INV_RD_REQ_ERR,
972  	IB_WC_REM_ABORT_ERR,
973  	IB_WC_INV_EECN_ERR,
974  	IB_WC_INV_EEC_STATE_ERR,
975  	IB_WC_FATAL_ERR,
976  	IB_WC_RESP_TIMEOUT_ERR,
977  	IB_WC_GENERAL_ERR
978  };
979  
980  const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981  
982  enum ib_wc_opcode {
983  	IB_WC_SEND = IB_UVERBS_WC_SEND,
984  	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985  	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986  	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987  	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988  	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989  	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990  	IB_WC_LSO = IB_UVERBS_WC_TSO,
991  	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992  	IB_WC_REG_MR,
993  	IB_WC_MASKED_COMP_SWAP,
994  	IB_WC_MASKED_FETCH_ADD,
995  	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996  /*
997   * Set value of IB_WC_RECV so consumers can test if a completion is a
998   * receive by testing (opcode & IB_WC_RECV).
999   */
1000  	IB_WC_RECV			= 1 << 7,
1001  	IB_WC_RECV_RDMA_WITH_IMM
1002  };
1003  
1004  enum ib_wc_flags {
1005  	IB_WC_GRH		= 1,
1006  	IB_WC_WITH_IMM		= (1<<1),
1007  	IB_WC_WITH_INVALIDATE	= (1<<2),
1008  	IB_WC_IP_CSUM_OK	= (1<<3),
1009  	IB_WC_WITH_SMAC		= (1<<4),
1010  	IB_WC_WITH_VLAN		= (1<<5),
1011  	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1012  };
1013  
1014  struct ib_wc {
1015  	union {
1016  		u64		wr_id;
1017  		struct ib_cqe	*wr_cqe;
1018  	};
1019  	enum ib_wc_status	status;
1020  	enum ib_wc_opcode	opcode;
1021  	u32			vendor_err;
1022  	u32			byte_len;
1023  	struct ib_qp	       *qp;
1024  	union {
1025  		__be32		imm_data;
1026  		u32		invalidate_rkey;
1027  	} ex;
1028  	u32			src_qp;
1029  	u32			slid;
1030  	int			wc_flags;
1031  	u16			pkey_index;
1032  	u8			sl;
1033  	u8			dlid_path_bits;
1034  	u32 port_num; /* valid only for DR SMPs on switches */
1035  	u8			smac[ETH_ALEN];
1036  	u16			vlan_id;
1037  	u8			network_hdr_type;
1038  };
1039  
1040  enum ib_cq_notify_flags {
1041  	IB_CQ_SOLICITED			= 1 << 0,
1042  	IB_CQ_NEXT_COMP			= 1 << 1,
1043  	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044  	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1045  };
1046  
1047  enum ib_srq_type {
1048  	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049  	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050  	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051  };
1052  
ib_srq_has_cq(enum ib_srq_type srq_type)1053  static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054  {
1055  	return srq_type == IB_SRQT_XRC ||
1056  	       srq_type == IB_SRQT_TM;
1057  }
1058  
1059  enum ib_srq_attr_mask {
1060  	IB_SRQ_MAX_WR	= 1 << 0,
1061  	IB_SRQ_LIMIT	= 1 << 1,
1062  };
1063  
1064  struct ib_srq_attr {
1065  	u32	max_wr;
1066  	u32	max_sge;
1067  	u32	srq_limit;
1068  };
1069  
1070  struct ib_srq_init_attr {
1071  	void		      (*event_handler)(struct ib_event *, void *);
1072  	void		       *srq_context;
1073  	struct ib_srq_attr	attr;
1074  	enum ib_srq_type	srq_type;
1075  
1076  	struct {
1077  		struct ib_cq   *cq;
1078  		union {
1079  			struct {
1080  				struct ib_xrcd *xrcd;
1081  			} xrc;
1082  
1083  			struct {
1084  				u32		max_num_tags;
1085  			} tag_matching;
1086  		};
1087  	} ext;
1088  };
1089  
1090  struct ib_qp_cap {
1091  	u32	max_send_wr;
1092  	u32	max_recv_wr;
1093  	u32	max_send_sge;
1094  	u32	max_recv_sge;
1095  	u32	max_inline_data;
1096  
1097  	/*
1098  	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099  	 * ib_create_qp() will calculate the right amount of needed WRs
1100  	 * and MRs based on this.
1101  	 */
1102  	u32	max_rdma_ctxs;
1103  };
1104  
1105  enum ib_sig_type {
1106  	IB_SIGNAL_ALL_WR,
1107  	IB_SIGNAL_REQ_WR
1108  };
1109  
1110  enum ib_qp_type {
1111  	/*
1112  	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113  	 * here (and in that order) since the MAD layer uses them as
1114  	 * indices into a 2-entry table.
1115  	 */
1116  	IB_QPT_SMI,
1117  	IB_QPT_GSI,
1118  
1119  	IB_QPT_RC = IB_UVERBS_QPT_RC,
1120  	IB_QPT_UC = IB_UVERBS_QPT_UC,
1121  	IB_QPT_UD = IB_UVERBS_QPT_UD,
1122  	IB_QPT_RAW_IPV6,
1123  	IB_QPT_RAW_ETHERTYPE,
1124  	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125  	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126  	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127  	IB_QPT_MAX,
1128  	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129  	/* Reserve a range for qp types internal to the low level driver.
1130  	 * These qp types will not be visible at the IB core layer, so the
1131  	 * IB_QPT_MAX usages should not be affected in the core layer
1132  	 */
1133  	IB_QPT_RESERVED1 = 0x1000,
1134  	IB_QPT_RESERVED2,
1135  	IB_QPT_RESERVED3,
1136  	IB_QPT_RESERVED4,
1137  	IB_QPT_RESERVED5,
1138  	IB_QPT_RESERVED6,
1139  	IB_QPT_RESERVED7,
1140  	IB_QPT_RESERVED8,
1141  	IB_QPT_RESERVED9,
1142  	IB_QPT_RESERVED10,
1143  };
1144  
1145  enum ib_qp_create_flags {
1146  	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1147  	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1148  		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149  	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1150  	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1151  	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1152  	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1153  	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1154  	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1155  	IB_QP_CREATE_SCATTER_FCS		=
1156  		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157  	IB_QP_CREATE_CVLAN_STRIPPING		=
1158  		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159  	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1160  	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1161  		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162  	/* reserve bits 26-31 for low level drivers' internal use */
1163  	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1164  	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1165  };
1166  
1167  /*
1168   * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169   * callback to destroy the passed in QP.
1170   */
1171  
1172  struct ib_qp_init_attr {
1173  	/* This callback occurs in workqueue context */
1174  	void                  (*event_handler)(struct ib_event *, void *);
1175  
1176  	void		       *qp_context;
1177  	struct ib_cq	       *send_cq;
1178  	struct ib_cq	       *recv_cq;
1179  	struct ib_srq	       *srq;
1180  	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1181  	struct ib_qp_cap	cap;
1182  	enum ib_sig_type	sq_sig_type;
1183  	enum ib_qp_type		qp_type;
1184  	u32			create_flags;
1185  
1186  	/*
1187  	 * Only needed for special QP types, or when using the RW API.
1188  	 */
1189  	u32			port_num;
1190  	struct ib_rwq_ind_table *rwq_ind_tbl;
1191  	u32			source_qpn;
1192  };
1193  
1194  struct ib_qp_open_attr {
1195  	void                  (*event_handler)(struct ib_event *, void *);
1196  	void		       *qp_context;
1197  	u32			qp_num;
1198  	enum ib_qp_type		qp_type;
1199  };
1200  
1201  enum ib_rnr_timeout {
1202  	IB_RNR_TIMER_655_36 =  0,
1203  	IB_RNR_TIMER_000_01 =  1,
1204  	IB_RNR_TIMER_000_02 =  2,
1205  	IB_RNR_TIMER_000_03 =  3,
1206  	IB_RNR_TIMER_000_04 =  4,
1207  	IB_RNR_TIMER_000_06 =  5,
1208  	IB_RNR_TIMER_000_08 =  6,
1209  	IB_RNR_TIMER_000_12 =  7,
1210  	IB_RNR_TIMER_000_16 =  8,
1211  	IB_RNR_TIMER_000_24 =  9,
1212  	IB_RNR_TIMER_000_32 = 10,
1213  	IB_RNR_TIMER_000_48 = 11,
1214  	IB_RNR_TIMER_000_64 = 12,
1215  	IB_RNR_TIMER_000_96 = 13,
1216  	IB_RNR_TIMER_001_28 = 14,
1217  	IB_RNR_TIMER_001_92 = 15,
1218  	IB_RNR_TIMER_002_56 = 16,
1219  	IB_RNR_TIMER_003_84 = 17,
1220  	IB_RNR_TIMER_005_12 = 18,
1221  	IB_RNR_TIMER_007_68 = 19,
1222  	IB_RNR_TIMER_010_24 = 20,
1223  	IB_RNR_TIMER_015_36 = 21,
1224  	IB_RNR_TIMER_020_48 = 22,
1225  	IB_RNR_TIMER_030_72 = 23,
1226  	IB_RNR_TIMER_040_96 = 24,
1227  	IB_RNR_TIMER_061_44 = 25,
1228  	IB_RNR_TIMER_081_92 = 26,
1229  	IB_RNR_TIMER_122_88 = 27,
1230  	IB_RNR_TIMER_163_84 = 28,
1231  	IB_RNR_TIMER_245_76 = 29,
1232  	IB_RNR_TIMER_327_68 = 30,
1233  	IB_RNR_TIMER_491_52 = 31
1234  };
1235  
1236  enum ib_qp_attr_mask {
1237  	IB_QP_STATE			= 1,
1238  	IB_QP_CUR_STATE			= (1<<1),
1239  	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1240  	IB_QP_ACCESS_FLAGS		= (1<<3),
1241  	IB_QP_PKEY_INDEX		= (1<<4),
1242  	IB_QP_PORT			= (1<<5),
1243  	IB_QP_QKEY			= (1<<6),
1244  	IB_QP_AV			= (1<<7),
1245  	IB_QP_PATH_MTU			= (1<<8),
1246  	IB_QP_TIMEOUT			= (1<<9),
1247  	IB_QP_RETRY_CNT			= (1<<10),
1248  	IB_QP_RNR_RETRY			= (1<<11),
1249  	IB_QP_RQ_PSN			= (1<<12),
1250  	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1251  	IB_QP_ALT_PATH			= (1<<14),
1252  	IB_QP_MIN_RNR_TIMER		= (1<<15),
1253  	IB_QP_SQ_PSN			= (1<<16),
1254  	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1255  	IB_QP_PATH_MIG_STATE		= (1<<18),
1256  	IB_QP_CAP			= (1<<19),
1257  	IB_QP_DEST_QPN			= (1<<20),
1258  	IB_QP_RESERVED1			= (1<<21),
1259  	IB_QP_RESERVED2			= (1<<22),
1260  	IB_QP_RESERVED3			= (1<<23),
1261  	IB_QP_RESERVED4			= (1<<24),
1262  	IB_QP_RATE_LIMIT		= (1<<25),
1263  
1264  	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265  };
1266  
1267  enum ib_qp_state {
1268  	IB_QPS_RESET,
1269  	IB_QPS_INIT,
1270  	IB_QPS_RTR,
1271  	IB_QPS_RTS,
1272  	IB_QPS_SQD,
1273  	IB_QPS_SQE,
1274  	IB_QPS_ERR
1275  };
1276  
1277  enum ib_mig_state {
1278  	IB_MIG_MIGRATED,
1279  	IB_MIG_REARM,
1280  	IB_MIG_ARMED
1281  };
1282  
1283  enum ib_mw_type {
1284  	IB_MW_TYPE_1 = 1,
1285  	IB_MW_TYPE_2 = 2
1286  };
1287  
1288  struct ib_qp_attr {
1289  	enum ib_qp_state	qp_state;
1290  	enum ib_qp_state	cur_qp_state;
1291  	enum ib_mtu		path_mtu;
1292  	enum ib_mig_state	path_mig_state;
1293  	u32			qkey;
1294  	u32			rq_psn;
1295  	u32			sq_psn;
1296  	u32			dest_qp_num;
1297  	int			qp_access_flags;
1298  	struct ib_qp_cap	cap;
1299  	struct rdma_ah_attr	ah_attr;
1300  	struct rdma_ah_attr	alt_ah_attr;
1301  	u16			pkey_index;
1302  	u16			alt_pkey_index;
1303  	u8			en_sqd_async_notify;
1304  	u8			sq_draining;
1305  	u8			max_rd_atomic;
1306  	u8			max_dest_rd_atomic;
1307  	u8			min_rnr_timer;
1308  	u32			port_num;
1309  	u8			timeout;
1310  	u8			retry_cnt;
1311  	u8			rnr_retry;
1312  	u32			alt_port_num;
1313  	u8			alt_timeout;
1314  	u32			rate_limit;
1315  	struct net_device	*xmit_slave;
1316  };
1317  
1318  enum ib_wr_opcode {
1319  	/* These are shared with userspace */
1320  	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321  	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322  	IB_WR_SEND = IB_UVERBS_WR_SEND,
1323  	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324  	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325  	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326  	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327  	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328  	IB_WR_LSO = IB_UVERBS_WR_TSO,
1329  	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330  	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331  	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332  	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333  		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334  	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335  		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336  	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337  	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338  
1339  	/* These are kernel only and can not be issued by userspace */
1340  	IB_WR_REG_MR = 0x20,
1341  	IB_WR_REG_MR_INTEGRITY,
1342  
1343  	/* reserve values for low level drivers' internal use.
1344  	 * These values will not be used at all in the ib core layer.
1345  	 */
1346  	IB_WR_RESERVED1 = 0xf0,
1347  	IB_WR_RESERVED2,
1348  	IB_WR_RESERVED3,
1349  	IB_WR_RESERVED4,
1350  	IB_WR_RESERVED5,
1351  	IB_WR_RESERVED6,
1352  	IB_WR_RESERVED7,
1353  	IB_WR_RESERVED8,
1354  	IB_WR_RESERVED9,
1355  	IB_WR_RESERVED10,
1356  };
1357  
1358  enum ib_send_flags {
1359  	IB_SEND_FENCE		= 1,
1360  	IB_SEND_SIGNALED	= (1<<1),
1361  	IB_SEND_SOLICITED	= (1<<2),
1362  	IB_SEND_INLINE		= (1<<3),
1363  	IB_SEND_IP_CSUM		= (1<<4),
1364  
1365  	/* reserve bits 26-31 for low level drivers' internal use */
1366  	IB_SEND_RESERVED_START	= (1 << 26),
1367  	IB_SEND_RESERVED_END	= (1 << 31),
1368  };
1369  
1370  struct ib_sge {
1371  	u64	addr;
1372  	u32	length;
1373  	u32	lkey;
1374  };
1375  
1376  struct ib_cqe {
1377  	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378  };
1379  
1380  struct ib_send_wr {
1381  	struct ib_send_wr      *next;
1382  	union {
1383  		u64		wr_id;
1384  		struct ib_cqe	*wr_cqe;
1385  	};
1386  	struct ib_sge	       *sg_list;
1387  	int			num_sge;
1388  	enum ib_wr_opcode	opcode;
1389  	int			send_flags;
1390  	union {
1391  		__be32		imm_data;
1392  		u32		invalidate_rkey;
1393  	} ex;
1394  };
1395  
1396  struct ib_rdma_wr {
1397  	struct ib_send_wr	wr;
1398  	u64			remote_addr;
1399  	u32			rkey;
1400  };
1401  
rdma_wr(const struct ib_send_wr * wr)1402  static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403  {
1404  	return container_of(wr, struct ib_rdma_wr, wr);
1405  }
1406  
1407  struct ib_atomic_wr {
1408  	struct ib_send_wr	wr;
1409  	u64			remote_addr;
1410  	u64			compare_add;
1411  	u64			swap;
1412  	u64			compare_add_mask;
1413  	u64			swap_mask;
1414  	u32			rkey;
1415  };
1416  
atomic_wr(const struct ib_send_wr * wr)1417  static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418  {
1419  	return container_of(wr, struct ib_atomic_wr, wr);
1420  }
1421  
1422  struct ib_ud_wr {
1423  	struct ib_send_wr	wr;
1424  	struct ib_ah		*ah;
1425  	void			*header;
1426  	int			hlen;
1427  	int			mss;
1428  	u32			remote_qpn;
1429  	u32			remote_qkey;
1430  	u16			pkey_index; /* valid for GSI only */
1431  	u32			port_num; /* valid for DR SMPs on switch only */
1432  };
1433  
ud_wr(const struct ib_send_wr * wr)1434  static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435  {
1436  	return container_of(wr, struct ib_ud_wr, wr);
1437  }
1438  
1439  struct ib_reg_wr {
1440  	struct ib_send_wr	wr;
1441  	struct ib_mr		*mr;
1442  	u32			key;
1443  	int			access;
1444  };
1445  
reg_wr(const struct ib_send_wr * wr)1446  static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447  {
1448  	return container_of(wr, struct ib_reg_wr, wr);
1449  }
1450  
1451  struct ib_recv_wr {
1452  	struct ib_recv_wr      *next;
1453  	union {
1454  		u64		wr_id;
1455  		struct ib_cqe	*wr_cqe;
1456  	};
1457  	struct ib_sge	       *sg_list;
1458  	int			num_sge;
1459  };
1460  
1461  enum ib_access_flags {
1462  	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463  	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464  	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465  	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466  	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467  	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468  	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469  	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470  	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471  	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472  	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473  
1474  	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475  	IB_ACCESS_SUPPORTED =
1476  		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477  };
1478  
1479  /*
1480   * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481   * are hidden here instead of a uapi header!
1482   */
1483  enum ib_mr_rereg_flags {
1484  	IB_MR_REREG_TRANS	= 1,
1485  	IB_MR_REREG_PD		= (1<<1),
1486  	IB_MR_REREG_ACCESS	= (1<<2),
1487  	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1488  };
1489  
1490  struct ib_umem;
1491  
1492  enum rdma_remove_reason {
1493  	/*
1494  	 * Userspace requested uobject deletion or initial try
1495  	 * to remove uobject via cleanup. Call could fail
1496  	 */
1497  	RDMA_REMOVE_DESTROY,
1498  	/* Context deletion. This call should delete the actual object itself */
1499  	RDMA_REMOVE_CLOSE,
1500  	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1501  	RDMA_REMOVE_DRIVER_REMOVE,
1502  	/* uobj is being cleaned-up before being committed */
1503  	RDMA_REMOVE_ABORT,
1504  	/* The driver failed to destroy the uobject and is being disconnected */
1505  	RDMA_REMOVE_DRIVER_FAILURE,
1506  };
1507  
1508  struct ib_rdmacg_object {
1509  #ifdef CONFIG_CGROUP_RDMA
1510  	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1511  #endif
1512  };
1513  
1514  struct ib_ucontext {
1515  	struct ib_device       *device;
1516  	struct ib_uverbs_file  *ufile;
1517  
1518  	struct ib_rdmacg_object	cg_obj;
1519  	/*
1520  	 * Implementation details of the RDMA core, don't use in drivers:
1521  	 */
1522  	struct rdma_restrack_entry res;
1523  	struct xarray mmap_xa;
1524  };
1525  
1526  struct ib_uobject {
1527  	u64			user_handle;	/* handle given to us by userspace */
1528  	/* ufile & ucontext owning this object */
1529  	struct ib_uverbs_file  *ufile;
1530  	/* FIXME, save memory: ufile->context == context */
1531  	struct ib_ucontext     *context;	/* associated user context */
1532  	void		       *object;		/* containing object */
1533  	struct list_head	list;		/* link to context's list */
1534  	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1535  	int			id;		/* index into kernel idr */
1536  	struct kref		ref;
1537  	atomic_t		usecnt;		/* protects exclusive access */
1538  	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1539  
1540  	const struct uverbs_api_object *uapi_object;
1541  };
1542  
1543  struct ib_udata {
1544  	const void __user *inbuf;
1545  	void __user *outbuf;
1546  	size_t       inlen;
1547  	size_t       outlen;
1548  };
1549  
1550  struct ib_pd {
1551  	u32			local_dma_lkey;
1552  	u32			flags;
1553  	struct ib_device       *device;
1554  	struct ib_uobject      *uobject;
1555  	atomic_t          	usecnt; /* count all resources */
1556  
1557  	u32			unsafe_global_rkey;
1558  
1559  	/*
1560  	 * Implementation details of the RDMA core, don't use in drivers:
1561  	 */
1562  	struct ib_mr	       *__internal_mr;
1563  	struct rdma_restrack_entry res;
1564  };
1565  
1566  struct ib_xrcd {
1567  	struct ib_device       *device;
1568  	atomic_t		usecnt; /* count all exposed resources */
1569  	struct inode	       *inode;
1570  	struct rw_semaphore	tgt_qps_rwsem;
1571  	struct xarray		tgt_qps;
1572  };
1573  
1574  struct ib_ah {
1575  	struct ib_device	*device;
1576  	struct ib_pd		*pd;
1577  	struct ib_uobject	*uobject;
1578  	const struct ib_gid_attr *sgid_attr;
1579  	enum rdma_ah_attr_type	type;
1580  };
1581  
1582  typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583  
1584  enum ib_poll_context {
1585  	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1586  	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1587  	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588  	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589  
1590  	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1591  };
1592  
1593  struct ib_cq {
1594  	struct ib_device       *device;
1595  	struct ib_ucq_object   *uobject;
1596  	ib_comp_handler   	comp_handler;
1597  	void                  (*event_handler)(struct ib_event *, void *);
1598  	void                   *cq_context;
1599  	int               	cqe;
1600  	unsigned int		cqe_used;
1601  	atomic_t          	usecnt; /* count number of work queues */
1602  	enum ib_poll_context	poll_ctx;
1603  	struct ib_wc		*wc;
1604  	struct list_head        pool_entry;
1605  	union {
1606  		struct irq_poll		iop;
1607  		struct work_struct	work;
1608  	};
1609  	struct workqueue_struct *comp_wq;
1610  	struct dim *dim;
1611  
1612  	/* updated only by trace points */
1613  	ktime_t timestamp;
1614  	u8 interrupt:1;
1615  	u8 shared:1;
1616  	unsigned int comp_vector;
1617  
1618  	/*
1619  	 * Implementation details of the RDMA core, don't use in drivers:
1620  	 */
1621  	struct rdma_restrack_entry res;
1622  };
1623  
1624  struct ib_srq {
1625  	struct ib_device       *device;
1626  	struct ib_pd	       *pd;
1627  	struct ib_usrq_object  *uobject;
1628  	void		      (*event_handler)(struct ib_event *, void *);
1629  	void		       *srq_context;
1630  	enum ib_srq_type	srq_type;
1631  	atomic_t		usecnt;
1632  
1633  	struct {
1634  		struct ib_cq   *cq;
1635  		union {
1636  			struct {
1637  				struct ib_xrcd *xrcd;
1638  				u32		srq_num;
1639  			} xrc;
1640  		};
1641  	} ext;
1642  
1643  	/*
1644  	 * Implementation details of the RDMA core, don't use in drivers:
1645  	 */
1646  	struct rdma_restrack_entry res;
1647  };
1648  
1649  enum ib_raw_packet_caps {
1650  	/*
1651  	 * Strip cvlan from incoming packet and report it in the matching work
1652  	 * completion is supported.
1653  	 */
1654  	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655  		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656  	/*
1657  	 * Scatter FCS field of an incoming packet to host memory is supported.
1658  	 */
1659  	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660  	/* Checksum offloads are supported (for both send and receive). */
1661  	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662  	/*
1663  	 * When a packet is received for an RQ with no receive WQEs, the
1664  	 * packet processing is delayed.
1665  	 */
1666  	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667  };
1668  
1669  enum ib_wq_type {
1670  	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671  };
1672  
1673  enum ib_wq_state {
1674  	IB_WQS_RESET,
1675  	IB_WQS_RDY,
1676  	IB_WQS_ERR
1677  };
1678  
1679  struct ib_wq {
1680  	struct ib_device       *device;
1681  	struct ib_uwq_object   *uobject;
1682  	void		    *wq_context;
1683  	void		    (*event_handler)(struct ib_event *, void *);
1684  	struct ib_pd	       *pd;
1685  	struct ib_cq	       *cq;
1686  	u32		wq_num;
1687  	enum ib_wq_state       state;
1688  	enum ib_wq_type	wq_type;
1689  	atomic_t		usecnt;
1690  };
1691  
1692  enum ib_wq_flags {
1693  	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694  	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695  	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696  	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697  				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698  };
1699  
1700  struct ib_wq_init_attr {
1701  	void		       *wq_context;
1702  	enum ib_wq_type	wq_type;
1703  	u32		max_wr;
1704  	u32		max_sge;
1705  	struct	ib_cq	       *cq;
1706  	void		    (*event_handler)(struct ib_event *, void *);
1707  	u32		create_flags; /* Use enum ib_wq_flags */
1708  };
1709  
1710  enum ib_wq_attr_mask {
1711  	IB_WQ_STATE		= 1 << 0,
1712  	IB_WQ_CUR_STATE		= 1 << 1,
1713  	IB_WQ_FLAGS		= 1 << 2,
1714  };
1715  
1716  struct ib_wq_attr {
1717  	enum	ib_wq_state	wq_state;
1718  	enum	ib_wq_state	curr_wq_state;
1719  	u32			flags; /* Use enum ib_wq_flags */
1720  	u32			flags_mask; /* Use enum ib_wq_flags */
1721  };
1722  
1723  struct ib_rwq_ind_table {
1724  	struct ib_device	*device;
1725  	struct ib_uobject      *uobject;
1726  	atomic_t		usecnt;
1727  	u32		ind_tbl_num;
1728  	u32		log_ind_tbl_size;
1729  	struct ib_wq	**ind_tbl;
1730  };
1731  
1732  struct ib_rwq_ind_table_init_attr {
1733  	u32		log_ind_tbl_size;
1734  	/* Each entry is a pointer to Receive Work Queue */
1735  	struct ib_wq	**ind_tbl;
1736  };
1737  
1738  enum port_pkey_state {
1739  	IB_PORT_PKEY_NOT_VALID = 0,
1740  	IB_PORT_PKEY_VALID = 1,
1741  	IB_PORT_PKEY_LISTED = 2,
1742  };
1743  
1744  struct ib_qp_security;
1745  
1746  struct ib_port_pkey {
1747  	enum port_pkey_state	state;
1748  	u16			pkey_index;
1749  	u32			port_num;
1750  	struct list_head	qp_list;
1751  	struct list_head	to_error_list;
1752  	struct ib_qp_security  *sec;
1753  };
1754  
1755  struct ib_ports_pkeys {
1756  	struct ib_port_pkey	main;
1757  	struct ib_port_pkey	alt;
1758  };
1759  
1760  struct ib_qp_security {
1761  	struct ib_qp	       *qp;
1762  	struct ib_device       *dev;
1763  	/* Hold this mutex when changing port and pkey settings. */
1764  	struct mutex		mutex;
1765  	struct ib_ports_pkeys  *ports_pkeys;
1766  	/* A list of all open shared QP handles.  Required to enforce security
1767  	 * properly for all users of a shared QP.
1768  	 */
1769  	struct list_head        shared_qp_list;
1770  	void                   *security;
1771  	bool			destroying;
1772  	atomic_t		error_list_count;
1773  	struct completion	error_complete;
1774  	int			error_comps_pending;
1775  };
1776  
1777  /*
1778   * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779   * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1780   */
1781  struct ib_qp {
1782  	struct ib_device       *device;
1783  	struct ib_pd	       *pd;
1784  	struct ib_cq	       *send_cq;
1785  	struct ib_cq	       *recv_cq;
1786  	spinlock_t		mr_lock;
1787  	int			mrs_used;
1788  	struct list_head	rdma_mrs;
1789  	struct list_head	sig_mrs;
1790  	struct ib_srq	       *srq;
1791  	struct completion	srq_completion;
1792  	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1793  	struct list_head	xrcd_list;
1794  
1795  	/* count times opened, mcast attaches, flow attaches */
1796  	atomic_t		usecnt;
1797  	struct list_head	open_list;
1798  	struct ib_qp           *real_qp;
1799  	struct ib_uqp_object   *uobject;
1800  	void                  (*event_handler)(struct ib_event *, void *);
1801  	void                  (*registered_event_handler)(struct ib_event *, void *);
1802  	void		       *qp_context;
1803  	/* sgid_attrs associated with the AV's */
1804  	const struct ib_gid_attr *av_sgid_attr;
1805  	const struct ib_gid_attr *alt_path_sgid_attr;
1806  	u32			qp_num;
1807  	u32			max_write_sge;
1808  	u32			max_read_sge;
1809  	enum ib_qp_type		qp_type;
1810  	struct ib_rwq_ind_table *rwq_ind_tbl;
1811  	struct ib_qp_security  *qp_sec;
1812  	u32			port;
1813  
1814  	bool			integrity_en;
1815  	/*
1816  	 * Implementation details of the RDMA core, don't use in drivers:
1817  	 */
1818  	struct rdma_restrack_entry     res;
1819  
1820  	/* The counter the qp is bind to */
1821  	struct rdma_counter    *counter;
1822  };
1823  
1824  struct ib_dm {
1825  	struct ib_device  *device;
1826  	u32		   length;
1827  	u32		   flags;
1828  	struct ib_uobject *uobject;
1829  	atomic_t	   usecnt;
1830  };
1831  
1832  struct ib_mr {
1833  	struct ib_device  *device;
1834  	struct ib_pd	  *pd;
1835  	u32		   lkey;
1836  	u32		   rkey;
1837  	u64		   iova;
1838  	u64		   length;
1839  	unsigned int	   page_size;
1840  	enum ib_mr_type	   type;
1841  	bool		   need_inval;
1842  	union {
1843  		struct ib_uobject	*uobject;	/* user */
1844  		struct list_head	qp_entry;	/* FR */
1845  	};
1846  
1847  	struct ib_dm      *dm;
1848  	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1849  	/*
1850  	 * Implementation details of the RDMA core, don't use in drivers:
1851  	 */
1852  	struct rdma_restrack_entry res;
1853  };
1854  
1855  struct ib_mw {
1856  	struct ib_device	*device;
1857  	struct ib_pd		*pd;
1858  	struct ib_uobject	*uobject;
1859  	u32			rkey;
1860  	enum ib_mw_type         type;
1861  };
1862  
1863  /* Supported steering options */
1864  enum ib_flow_attr_type {
1865  	/* steering according to rule specifications */
1866  	IB_FLOW_ATTR_NORMAL		= 0x0,
1867  	/* default unicast and multicast rule -
1868  	 * receive all Eth traffic which isn't steered to any QP
1869  	 */
1870  	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1871  	/* default multicast rule -
1872  	 * receive all Eth multicast traffic which isn't steered to any QP
1873  	 */
1874  	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1875  	/* sniffer rule - receive all port traffic */
1876  	IB_FLOW_ATTR_SNIFFER		= 0x3
1877  };
1878  
1879  /* Supported steering header types */
1880  enum ib_flow_spec_type {
1881  	/* L2 headers*/
1882  	IB_FLOW_SPEC_ETH		= 0x20,
1883  	IB_FLOW_SPEC_IB			= 0x22,
1884  	/* L3 header*/
1885  	IB_FLOW_SPEC_IPV4		= 0x30,
1886  	IB_FLOW_SPEC_IPV6		= 0x31,
1887  	IB_FLOW_SPEC_ESP                = 0x34,
1888  	/* L4 headers*/
1889  	IB_FLOW_SPEC_TCP		= 0x40,
1890  	IB_FLOW_SPEC_UDP		= 0x41,
1891  	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1892  	IB_FLOW_SPEC_GRE		= 0x51,
1893  	IB_FLOW_SPEC_MPLS		= 0x60,
1894  	IB_FLOW_SPEC_INNER		= 0x100,
1895  	/* Actions */
1896  	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1897  	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1898  	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1899  	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1900  };
1901  #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1902  #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1903  
1904  enum ib_flow_flags {
1905  	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1906  	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907  	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1908  };
1909  
1910  struct ib_flow_eth_filter {
1911  	u8	dst_mac[6];
1912  	u8	src_mac[6];
1913  	__be16	ether_type;
1914  	__be16	vlan_tag;
1915  };
1916  
1917  struct ib_flow_spec_eth {
1918  	u32			  type;
1919  	u16			  size;
1920  	struct ib_flow_eth_filter val;
1921  	struct ib_flow_eth_filter mask;
1922  };
1923  
1924  struct ib_flow_ib_filter {
1925  	__be16 dlid;
1926  	__u8   sl;
1927  };
1928  
1929  struct ib_flow_spec_ib {
1930  	u32			 type;
1931  	u16			 size;
1932  	struct ib_flow_ib_filter val;
1933  	struct ib_flow_ib_filter mask;
1934  };
1935  
1936  /* IPv4 header flags */
1937  enum ib_ipv4_flags {
1938  	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939  	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1940  				    last have this flag set */
1941  };
1942  
1943  struct ib_flow_ipv4_filter {
1944  	__be32	src_ip;
1945  	__be32	dst_ip;
1946  	u8	proto;
1947  	u8	tos;
1948  	u8	ttl;
1949  	u8	flags;
1950  };
1951  
1952  struct ib_flow_spec_ipv4 {
1953  	u32			   type;
1954  	u16			   size;
1955  	struct ib_flow_ipv4_filter val;
1956  	struct ib_flow_ipv4_filter mask;
1957  };
1958  
1959  struct ib_flow_ipv6_filter {
1960  	u8	src_ip[16];
1961  	u8	dst_ip[16];
1962  	__be32	flow_label;
1963  	u8	next_hdr;
1964  	u8	traffic_class;
1965  	u8	hop_limit;
1966  } __packed;
1967  
1968  struct ib_flow_spec_ipv6 {
1969  	u32			   type;
1970  	u16			   size;
1971  	struct ib_flow_ipv6_filter val;
1972  	struct ib_flow_ipv6_filter mask;
1973  };
1974  
1975  struct ib_flow_tcp_udp_filter {
1976  	__be16	dst_port;
1977  	__be16	src_port;
1978  };
1979  
1980  struct ib_flow_spec_tcp_udp {
1981  	u32			      type;
1982  	u16			      size;
1983  	struct ib_flow_tcp_udp_filter val;
1984  	struct ib_flow_tcp_udp_filter mask;
1985  };
1986  
1987  struct ib_flow_tunnel_filter {
1988  	__be32	tunnel_id;
1989  };
1990  
1991  /* ib_flow_spec_tunnel describes the Vxlan tunnel
1992   * the tunnel_id from val has the vni value
1993   */
1994  struct ib_flow_spec_tunnel {
1995  	u32			      type;
1996  	u16			      size;
1997  	struct ib_flow_tunnel_filter  val;
1998  	struct ib_flow_tunnel_filter  mask;
1999  };
2000  
2001  struct ib_flow_esp_filter {
2002  	__be32	spi;
2003  	__be32  seq;
2004  };
2005  
2006  struct ib_flow_spec_esp {
2007  	u32                           type;
2008  	u16			      size;
2009  	struct ib_flow_esp_filter     val;
2010  	struct ib_flow_esp_filter     mask;
2011  };
2012  
2013  struct ib_flow_gre_filter {
2014  	__be16 c_ks_res0_ver;
2015  	__be16 protocol;
2016  	__be32 key;
2017  };
2018  
2019  struct ib_flow_spec_gre {
2020  	u32                           type;
2021  	u16			      size;
2022  	struct ib_flow_gre_filter     val;
2023  	struct ib_flow_gre_filter     mask;
2024  };
2025  
2026  struct ib_flow_mpls_filter {
2027  	__be32 tag;
2028  };
2029  
2030  struct ib_flow_spec_mpls {
2031  	u32                           type;
2032  	u16			      size;
2033  	struct ib_flow_mpls_filter     val;
2034  	struct ib_flow_mpls_filter     mask;
2035  };
2036  
2037  struct ib_flow_spec_action_tag {
2038  	enum ib_flow_spec_type	      type;
2039  	u16			      size;
2040  	u32                           tag_id;
2041  };
2042  
2043  struct ib_flow_spec_action_drop {
2044  	enum ib_flow_spec_type	      type;
2045  	u16			      size;
2046  };
2047  
2048  struct ib_flow_spec_action_handle {
2049  	enum ib_flow_spec_type	      type;
2050  	u16			      size;
2051  	struct ib_flow_action	     *act;
2052  };
2053  
2054  enum ib_counters_description {
2055  	IB_COUNTER_PACKETS,
2056  	IB_COUNTER_BYTES,
2057  };
2058  
2059  struct ib_flow_spec_action_count {
2060  	enum ib_flow_spec_type type;
2061  	u16 size;
2062  	struct ib_counters *counters;
2063  };
2064  
2065  union ib_flow_spec {
2066  	struct {
2067  		u32			type;
2068  		u16			size;
2069  	};
2070  	struct ib_flow_spec_eth		eth;
2071  	struct ib_flow_spec_ib		ib;
2072  	struct ib_flow_spec_ipv4        ipv4;
2073  	struct ib_flow_spec_tcp_udp	tcp_udp;
2074  	struct ib_flow_spec_ipv6        ipv6;
2075  	struct ib_flow_spec_tunnel      tunnel;
2076  	struct ib_flow_spec_esp		esp;
2077  	struct ib_flow_spec_gre		gre;
2078  	struct ib_flow_spec_mpls	mpls;
2079  	struct ib_flow_spec_action_tag  flow_tag;
2080  	struct ib_flow_spec_action_drop drop;
2081  	struct ib_flow_spec_action_handle action;
2082  	struct ib_flow_spec_action_count flow_count;
2083  };
2084  
2085  struct ib_flow_attr {
2086  	enum ib_flow_attr_type type;
2087  	u16	     size;
2088  	u16	     priority;
2089  	u32	     flags;
2090  	u8	     num_of_specs;
2091  	u32	     port;
2092  	union ib_flow_spec flows[];
2093  };
2094  
2095  struct ib_flow {
2096  	struct ib_qp		*qp;
2097  	struct ib_device	*device;
2098  	struct ib_uobject	*uobject;
2099  };
2100  
2101  enum ib_flow_action_type {
2102  	IB_FLOW_ACTION_UNSPECIFIED,
2103  	IB_FLOW_ACTION_ESP = 1,
2104  };
2105  
2106  struct ib_flow_action_attrs_esp_keymats {
2107  	enum ib_uverbs_flow_action_esp_keymat			protocol;
2108  	union {
2109  		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2110  	} keymat;
2111  };
2112  
2113  struct ib_flow_action_attrs_esp_replays {
2114  	enum ib_uverbs_flow_action_esp_replay			protocol;
2115  	union {
2116  		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2117  	} replay;
2118  };
2119  
2120  enum ib_flow_action_attrs_esp_flags {
2121  	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2122  	 * This is done in order to share the same flags between user-space and
2123  	 * kernel and spare an unnecessary translation.
2124  	 */
2125  
2126  	/* Kernel flags */
2127  	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2128  	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2129  };
2130  
2131  struct ib_flow_spec_list {
2132  	struct ib_flow_spec_list	*next;
2133  	union ib_flow_spec		spec;
2134  };
2135  
2136  struct ib_flow_action_attrs_esp {
2137  	struct ib_flow_action_attrs_esp_keymats		*keymat;
2138  	struct ib_flow_action_attrs_esp_replays		*replay;
2139  	struct ib_flow_spec_list			*encap;
2140  	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2141  	 * Value of 0 is a valid value.
2142  	 */
2143  	u32						esn;
2144  	u32						spi;
2145  	u32						seq;
2146  	u32						tfc_pad;
2147  	/* Use enum ib_flow_action_attrs_esp_flags */
2148  	u64						flags;
2149  	u64						hard_limit_pkts;
2150  };
2151  
2152  struct ib_flow_action {
2153  	struct ib_device		*device;
2154  	struct ib_uobject		*uobject;
2155  	enum ib_flow_action_type	type;
2156  	atomic_t			usecnt;
2157  };
2158  
2159  struct ib_mad;
2160  
2161  enum ib_process_mad_flags {
2162  	IB_MAD_IGNORE_MKEY	= 1,
2163  	IB_MAD_IGNORE_BKEY	= 2,
2164  	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2165  };
2166  
2167  enum ib_mad_result {
2168  	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2169  	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2170  	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2171  	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2172  };
2173  
2174  struct ib_port_cache {
2175  	u64		      subnet_prefix;
2176  	struct ib_pkey_cache  *pkey;
2177  	struct ib_gid_table   *gid;
2178  	u8                     lmc;
2179  	enum ib_port_state     port_state;
2180  };
2181  
2182  struct ib_port_immutable {
2183  	int                           pkey_tbl_len;
2184  	int                           gid_tbl_len;
2185  	u32                           core_cap_flags;
2186  	u32                           max_mad_size;
2187  };
2188  
2189  struct ib_port_data {
2190  	struct ib_device *ib_dev;
2191  
2192  	struct ib_port_immutable immutable;
2193  
2194  	spinlock_t pkey_list_lock;
2195  
2196  	spinlock_t netdev_lock;
2197  
2198  	struct list_head pkey_list;
2199  
2200  	struct ib_port_cache cache;
2201  
2202  	struct net_device __rcu *netdev;
2203  	netdevice_tracker netdev_tracker;
2204  	struct hlist_node ndev_hash_link;
2205  	struct rdma_port_counter port_counter;
2206  	struct ib_port *sysfs;
2207  };
2208  
2209  /* rdma netdev type - specifies protocol type */
2210  enum rdma_netdev_t {
2211  	RDMA_NETDEV_OPA_VNIC,
2212  	RDMA_NETDEV_IPOIB,
2213  };
2214  
2215  /**
2216   * struct rdma_netdev - rdma netdev
2217   * For cases where netstack interfacing is required.
2218   */
2219  struct rdma_netdev {
2220  	void              *clnt_priv;
2221  	struct ib_device  *hca;
2222  	u32		   port_num;
2223  	int                mtu;
2224  
2225  	/*
2226  	 * cleanup function must be specified.
2227  	 * FIXME: This is only used for OPA_VNIC and that usage should be
2228  	 * removed too.
2229  	 */
2230  	void (*free_rdma_netdev)(struct net_device *netdev);
2231  
2232  	/* control functions */
2233  	void (*set_id)(struct net_device *netdev, int id);
2234  	/* send packet */
2235  	int (*send)(struct net_device *dev, struct sk_buff *skb,
2236  		    struct ib_ah *address, u32 dqpn);
2237  	/* multicast */
2238  	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2239  			    union ib_gid *gid, u16 mlid,
2240  			    int set_qkey, u32 qkey);
2241  	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2242  			    union ib_gid *gid, u16 mlid);
2243  	/* timeout */
2244  	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2245  };
2246  
2247  struct rdma_netdev_alloc_params {
2248  	size_t sizeof_priv;
2249  	unsigned int txqs;
2250  	unsigned int rxqs;
2251  	void *param;
2252  
2253  	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2254  				      struct net_device *netdev, void *param);
2255  };
2256  
2257  struct ib_odp_counters {
2258  	atomic64_t faults;
2259  	atomic64_t invalidations;
2260  	atomic64_t prefetch;
2261  };
2262  
2263  struct ib_counters {
2264  	struct ib_device	*device;
2265  	struct ib_uobject	*uobject;
2266  	/* num of objects attached */
2267  	atomic_t	usecnt;
2268  };
2269  
2270  struct ib_counters_read_attr {
2271  	u64	*counters_buff;
2272  	u32	ncounters;
2273  	u32	flags; /* use enum ib_read_counters_flags */
2274  };
2275  
2276  struct uverbs_attr_bundle;
2277  struct iw_cm_id;
2278  struct iw_cm_conn_param;
2279  
2280  #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2281  	.size_##ib_struct =                                                    \
2282  		(sizeof(struct drv_struct) +                                   \
2283  		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2284  		 BUILD_BUG_ON_ZERO(                                            \
2285  			 !__same_type(((struct drv_struct *)NULL)->member,     \
2286  				      struct ib_struct)))
2287  
2288  #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2289  	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2290  					   gfp, false))
2291  
2292  #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2293  	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2294  					   GFP_KERNEL, true))
2295  
2296  #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2297  	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2298  
2299  #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2300  
2301  struct rdma_user_mmap_entry {
2302  	struct kref ref;
2303  	struct ib_ucontext *ucontext;
2304  	unsigned long start_pgoff;
2305  	size_t npages;
2306  	bool driver_removed;
2307  };
2308  
2309  /* Return the offset (in bytes) the user should pass to libc's mmap() */
2310  static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2311  rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2312  {
2313  	return (u64)entry->start_pgoff << PAGE_SHIFT;
2314  }
2315  
2316  /**
2317   * struct ib_device_ops - InfiniBand device operations
2318   * This structure defines all the InfiniBand device operations, providers will
2319   * need to define the supported operations, otherwise they will be set to null.
2320   */
2321  struct ib_device_ops {
2322  	struct module *owner;
2323  	enum rdma_driver_id driver_id;
2324  	u32 uverbs_abi_ver;
2325  	unsigned int uverbs_no_driver_id_binding:1;
2326  
2327  	/*
2328  	 * NOTE: New drivers should not make use of device_group; instead new
2329  	 * device parameter should be exposed via netlink command. This
2330  	 * mechanism exists only for existing drivers.
2331  	 */
2332  	const struct attribute_group *device_group;
2333  	const struct attribute_group **port_groups;
2334  
2335  	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336  			 const struct ib_send_wr **bad_send_wr);
2337  	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338  			 const struct ib_recv_wr **bad_recv_wr);
2339  	void (*drain_rq)(struct ib_qp *qp);
2340  	void (*drain_sq)(struct ib_qp *qp);
2341  	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342  	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343  	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344  	int (*post_srq_recv)(struct ib_srq *srq,
2345  			     const struct ib_recv_wr *recv_wr,
2346  			     const struct ib_recv_wr **bad_recv_wr);
2347  	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348  			   u32 port_num, const struct ib_wc *in_wc,
2349  			   const struct ib_grh *in_grh,
2350  			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351  			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2352  	int (*query_device)(struct ib_device *device,
2353  			    struct ib_device_attr *device_attr,
2354  			    struct ib_udata *udata);
2355  	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356  			     struct ib_device_modify *device_modify);
2357  	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358  	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359  						     int comp_vector);
2360  	int (*query_port)(struct ib_device *device, u32 port_num,
2361  			  struct ib_port_attr *port_attr);
2362  	int (*modify_port)(struct ib_device *device, u32 port_num,
2363  			   int port_modify_mask,
2364  			   struct ib_port_modify *port_modify);
2365  	/**
2366  	 * The following mandatory functions are used only at device
2367  	 * registration.  Keep functions such as these at the end of this
2368  	 * structure to avoid cache line misses when accessing struct ib_device
2369  	 * in fast paths.
2370  	 */
2371  	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2372  				  struct ib_port_immutable *immutable);
2373  	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374  					       u32 port_num);
2375  	/**
2376  	 * When calling get_netdev, the HW vendor's driver should return the
2377  	 * net device of device @device at port @port_num or NULL if such
2378  	 * a net device doesn't exist. The vendor driver should call dev_hold
2379  	 * on this net device. The HW vendor's device driver must guarantee
2380  	 * that this function returns NULL before the net device has finished
2381  	 * NETDEV_UNREGISTER state.
2382  	 */
2383  	struct net_device *(*get_netdev)(struct ib_device *device,
2384  					 u32 port_num);
2385  	/**
2386  	 * rdma netdev operation
2387  	 *
2388  	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389  	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2390  	 */
2391  	struct net_device *(*alloc_rdma_netdev)(
2392  		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2393  		const char *name, unsigned char name_assign_type,
2394  		void (*setup)(struct net_device *));
2395  
2396  	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2397  				      enum rdma_netdev_t type,
2398  				      struct rdma_netdev_alloc_params *params);
2399  	/**
2400  	 * query_gid should be return GID value for @device, when @port_num
2401  	 * link layer is either IB or iWarp. It is no-op if @port_num port
2402  	 * is RoCE link layer.
2403  	 */
2404  	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2405  			 union ib_gid *gid);
2406  	/**
2407  	 * When calling add_gid, the HW vendor's driver should add the gid
2408  	 * of device of port at gid index available at @attr. Meta-info of
2409  	 * that gid (for example, the network device related to this gid) is
2410  	 * available at @attr. @context allows the HW vendor driver to store
2411  	 * extra information together with a GID entry. The HW vendor driver may
2412  	 * allocate memory to contain this information and store it in @context
2413  	 * when a new GID entry is written to. Params are consistent until the
2414  	 * next call of add_gid or delete_gid. The function should return 0 on
2415  	 * success or error otherwise. The function could be called
2416  	 * concurrently for different ports. This function is only called when
2417  	 * roce_gid_table is used.
2418  	 */
2419  	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2420  	/**
2421  	 * When calling del_gid, the HW vendor's driver should delete the
2422  	 * gid of device @device at gid index gid_index of port port_num
2423  	 * available in @attr.
2424  	 * Upon the deletion of a GID entry, the HW vendor must free any
2425  	 * allocated memory. The caller will clear @context afterwards.
2426  	 * This function is only called when roce_gid_table is used.
2427  	 */
2428  	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429  	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2430  			  u16 *pkey);
2431  	int (*alloc_ucontext)(struct ib_ucontext *context,
2432  			      struct ib_udata *udata);
2433  	void (*dealloc_ucontext)(struct ib_ucontext *context);
2434  	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2435  	/**
2436  	 * This will be called once refcount of an entry in mmap_xa reaches
2437  	 * zero. The type of the memory that was mapped may differ between
2438  	 * entries and is opaque to the rdma_user_mmap interface.
2439  	 * Therefore needs to be implemented by the driver in mmap_free.
2440  	 */
2441  	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2442  	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2443  	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444  	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2445  	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446  			 struct ib_udata *udata);
2447  	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448  			      struct ib_udata *udata);
2449  	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2450  	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2451  	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2452  	int (*create_srq)(struct ib_srq *srq,
2453  			  struct ib_srq_init_attr *srq_init_attr,
2454  			  struct ib_udata *udata);
2455  	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2456  			  enum ib_srq_attr_mask srq_attr_mask,
2457  			  struct ib_udata *udata);
2458  	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2459  	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2460  	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2461  			 struct ib_udata *udata);
2462  	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463  			 int qp_attr_mask, struct ib_udata *udata);
2464  	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465  			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2466  	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2467  	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2468  			 struct uverbs_attr_bundle *attrs);
2469  	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2470  	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2471  	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2472  	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2473  	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2474  				     u64 virt_addr, int mr_access_flags,
2475  				     struct ib_udata *udata);
2476  	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2477  					    u64 length, u64 virt_addr, int fd,
2478  					    int mr_access_flags,
2479  					    struct uverbs_attr_bundle *attrs);
2480  	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2481  				       u64 length, u64 virt_addr,
2482  				       int mr_access_flags, struct ib_pd *pd,
2483  				       struct ib_udata *udata);
2484  	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2485  	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2486  				  u32 max_num_sg);
2487  	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2488  					    u32 max_num_data_sg,
2489  					    u32 max_num_meta_sg);
2490  	int (*advise_mr)(struct ib_pd *pd,
2491  			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2492  			 struct ib_sge *sg_list, u32 num_sge,
2493  			 struct uverbs_attr_bundle *attrs);
2494  
2495  	/*
2496  	 * Kernel users should universally support relaxed ordering (RO), as
2497  	 * they are designed to read data only after observing the CQE and use
2498  	 * the DMA API correctly.
2499  	 *
2500  	 * Some drivers implicitly enable RO if platform supports it.
2501  	 */
2502  	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2503  			 unsigned int *sg_offset);
2504  	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2505  			       struct ib_mr_status *mr_status);
2506  	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2507  	int (*dealloc_mw)(struct ib_mw *mw);
2508  	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2509  	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2510  	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2511  	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2512  	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2513  				       struct ib_flow_attr *flow_attr,
2514  				       struct ib_udata *udata);
2515  	int (*destroy_flow)(struct ib_flow *flow_id);
2516  	int (*destroy_flow_action)(struct ib_flow_action *action);
2517  	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2518  				 int state);
2519  	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2520  			     struct ifla_vf_info *ivf);
2521  	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2522  			    struct ifla_vf_stats *stats);
2523  	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2524  			    struct ifla_vf_guid *node_guid,
2525  			    struct ifla_vf_guid *port_guid);
2526  	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2527  			   int type);
2528  	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2529  				   struct ib_wq_init_attr *init_attr,
2530  				   struct ib_udata *udata);
2531  	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2532  	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2533  			 u32 wq_attr_mask, struct ib_udata *udata);
2534  	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2535  				    struct ib_rwq_ind_table_init_attr *init_attr,
2536  				    struct ib_udata *udata);
2537  	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2538  	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2539  				  struct ib_ucontext *context,
2540  				  struct ib_dm_alloc_attr *attr,
2541  				  struct uverbs_attr_bundle *attrs);
2542  	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2543  	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2544  				   struct ib_dm_mr_attr *attr,
2545  				   struct uverbs_attr_bundle *attrs);
2546  	int (*create_counters)(struct ib_counters *counters,
2547  			       struct uverbs_attr_bundle *attrs);
2548  	int (*destroy_counters)(struct ib_counters *counters);
2549  	int (*read_counters)(struct ib_counters *counters,
2550  			     struct ib_counters_read_attr *counters_read_attr,
2551  			     struct uverbs_attr_bundle *attrs);
2552  	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2553  			    int data_sg_nents, unsigned int *data_sg_offset,
2554  			    struct scatterlist *meta_sg, int meta_sg_nents,
2555  			    unsigned int *meta_sg_offset);
2556  
2557  	/**
2558  	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2559  	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2560  	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2561  	 *   return struct tells the core to set a default lifespan.
2562  	 */
2563  	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2564  	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2565  						     u32 port_num);
2566  	/**
2567  	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2568  	 * @index - The index in the value array we wish to have updated, or
2569  	 *   num_counters if we want all stats updated
2570  	 * Return codes -
2571  	 *   < 0 - Error, no counters updated
2572  	 *   index - Updated the single counter pointed to by index
2573  	 *   num_counters - Updated all counters (will reset the timestamp
2574  	 *     and prevent further calls for lifespan milliseconds)
2575  	 * Drivers are allowed to update all counters in leiu of just the
2576  	 *   one given in index at their option
2577  	 */
2578  	int (*get_hw_stats)(struct ib_device *device,
2579  			    struct rdma_hw_stats *stats, u32 port, int index);
2580  
2581  	/**
2582  	 * modify_hw_stat - Modify the counter configuration
2583  	 * @enable: true/false when enable/disable a counter
2584  	 * Return codes - 0 on success or error code otherwise.
2585  	 */
2586  	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2587  			      unsigned int counter_index, bool enable);
2588  	/**
2589  	 * Allows rdma drivers to add their own restrack attributes.
2590  	 */
2591  	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2592  	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2593  	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2594  	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2595  	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2596  	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2597  	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2598  	int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2599  	int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2600  
2601  	/* Device lifecycle callbacks */
2602  	/*
2603  	 * Called after the device becomes registered, before clients are
2604  	 * attached
2605  	 */
2606  	int (*enable_driver)(struct ib_device *dev);
2607  	/*
2608  	 * This is called as part of ib_dealloc_device().
2609  	 */
2610  	void (*dealloc_driver)(struct ib_device *dev);
2611  
2612  	/* iWarp CM callbacks */
2613  	void (*iw_add_ref)(struct ib_qp *qp);
2614  	void (*iw_rem_ref)(struct ib_qp *qp);
2615  	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616  	int (*iw_connect)(struct iw_cm_id *cm_id,
2617  			  struct iw_cm_conn_param *conn_param);
2618  	int (*iw_accept)(struct iw_cm_id *cm_id,
2619  			 struct iw_cm_conn_param *conn_param);
2620  	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2621  			 u8 pdata_len);
2622  	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623  	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2624  	/**
2625  	 * counter_bind_qp - Bind a QP to a counter.
2626  	 * @counter - The counter to be bound. If counter->id is zero then
2627  	 *   the driver needs to allocate a new counter and set counter->id
2628  	 */
2629  	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2630  	/**
2631  	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632  	 *   counter and bind it onto the default one
2633  	 */
2634  	int (*counter_unbind_qp)(struct ib_qp *qp);
2635  	/**
2636  	 * counter_dealloc -De-allocate the hw counter
2637  	 */
2638  	int (*counter_dealloc)(struct rdma_counter *counter);
2639  	/**
2640  	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641  	 * the driver initialized data.
2642  	 */
2643  	struct rdma_hw_stats *(*counter_alloc_stats)(
2644  		struct rdma_counter *counter);
2645  	/**
2646  	 * counter_update_stats - Query the stats value of this counter
2647  	 */
2648  	int (*counter_update_stats)(struct rdma_counter *counter);
2649  
2650  	/**
2651  	 * Allows rdma drivers to add their own restrack attributes
2652  	 * dumped via 'rdma stat' iproute2 command.
2653  	 */
2654  	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2655  
2656  	/* query driver for its ucontext properties */
2657  	int (*query_ucontext)(struct ib_ucontext *context,
2658  			      struct uverbs_attr_bundle *attrs);
2659  
2660  	/*
2661  	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662  	 * Everyone else relies on Linux memory management model.
2663  	 */
2664  	int (*get_numa_node)(struct ib_device *dev);
2665  
2666  	/**
2667  	 * add_sub_dev - Add a sub IB device
2668  	 */
2669  	struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2670  					 enum rdma_nl_dev_type type,
2671  					 const char *name);
2672  
2673  	/**
2674  	 * del_sub_dev - Delete a sub IB device
2675  	 */
2676  	void (*del_sub_dev)(struct ib_device *sub_dev);
2677  
2678  	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2679  	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2680  	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2681  	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2682  	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2683  	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2684  	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2685  	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2686  	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2687  	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2688  };
2689  
2690  struct ib_core_device {
2691  	/* device must be the first element in structure until,
2692  	 * union of ib_core_device and device exists in ib_device.
2693  	 */
2694  	struct device dev;
2695  	possible_net_t rdma_net;
2696  	struct kobject *ports_kobj;
2697  	struct list_head port_list;
2698  	struct ib_device *owner; /* reach back to owner ib_device */
2699  };
2700  
2701  struct rdma_restrack_root;
2702  struct ib_device {
2703  	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2704  	struct device                *dma_device;
2705  	struct ib_device_ops	     ops;
2706  	char                          name[IB_DEVICE_NAME_MAX];
2707  	struct rcu_head rcu_head;
2708  
2709  	struct list_head              event_handler_list;
2710  	/* Protects event_handler_list */
2711  	struct rw_semaphore event_handler_rwsem;
2712  
2713  	/* Protects QP's event_handler calls and open_qp list */
2714  	spinlock_t qp_open_list_lock;
2715  
2716  	struct rw_semaphore	      client_data_rwsem;
2717  	struct xarray                 client_data;
2718  	struct mutex                  unregistration_lock;
2719  
2720  	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2721  	rwlock_t cache_lock;
2722  	/**
2723  	 * port_data is indexed by port number
2724  	 */
2725  	struct ib_port_data *port_data;
2726  
2727  	int			      num_comp_vectors;
2728  
2729  	union {
2730  		struct device		dev;
2731  		struct ib_core_device	coredev;
2732  	};
2733  
2734  	/* First group is for device attributes,
2735  	 * Second group is for driver provided attributes (optional).
2736  	 * Third group is for the hw_stats
2737  	 * It is a NULL terminated array.
2738  	 */
2739  	const struct attribute_group	*groups[4];
2740  
2741  	u64			     uverbs_cmd_mask;
2742  
2743  	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2744  	__be64			     node_guid;
2745  	u32			     local_dma_lkey;
2746  	u16                          is_switch:1;
2747  	/* Indicates kernel verbs support, should not be used in drivers */
2748  	u16                          kverbs_provider:1;
2749  	/* CQ adaptive moderation (RDMA DIM) */
2750  	u16                          use_cq_dim:1;
2751  	u8                           node_type;
2752  	u32			     phys_port_cnt;
2753  	struct ib_device_attr        attrs;
2754  	struct hw_stats_device_data *hw_stats_data;
2755  
2756  #ifdef CONFIG_CGROUP_RDMA
2757  	struct rdmacg_device         cg_device;
2758  #endif
2759  
2760  	u32                          index;
2761  
2762  	spinlock_t                   cq_pools_lock;
2763  	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2764  
2765  	struct rdma_restrack_root *res;
2766  
2767  	const struct uapi_definition   *driver_def;
2768  
2769  	/*
2770  	 * Positive refcount indicates that the device is currently
2771  	 * registered and cannot be unregistered.
2772  	 */
2773  	refcount_t refcount;
2774  	struct completion unreg_completion;
2775  	struct work_struct unregistration_work;
2776  
2777  	const struct rdma_link_ops *link_ops;
2778  
2779  	/* Protects compat_devs xarray modifications */
2780  	struct mutex compat_devs_mutex;
2781  	/* Maintains compat devices for each net namespace */
2782  	struct xarray compat_devs;
2783  
2784  	/* Used by iWarp CM */
2785  	char iw_ifname[IFNAMSIZ];
2786  	u32 iw_driver_flags;
2787  	u32 lag_flags;
2788  
2789  	/* A parent device has a list of sub-devices */
2790  	struct mutex subdev_lock;
2791  	struct list_head subdev_list_head;
2792  
2793  	/* A sub device has a type and a parent */
2794  	enum rdma_nl_dev_type type;
2795  	struct ib_device *parent;
2796  	struct list_head subdev_list;
2797  
2798  	enum rdma_nl_name_assign_type name_assign_type;
2799  };
2800  
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2801  static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2802  				    gfp_t gfp, bool is_numa_aware)
2803  {
2804  	if (is_numa_aware && dev->ops.get_numa_node)
2805  		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2806  
2807  	return kzalloc(size, gfp);
2808  }
2809  
2810  struct ib_client_nl_info;
2811  struct ib_client {
2812  	const char *name;
2813  	int (*add)(struct ib_device *ibdev);
2814  	void (*remove)(struct ib_device *, void *client_data);
2815  	void (*rename)(struct ib_device *dev, void *client_data);
2816  	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2817  			   struct ib_client_nl_info *res);
2818  	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2819  
2820  	/* Returns the net_dev belonging to this ib_client and matching the
2821  	 * given parameters.
2822  	 * @dev:	 An RDMA device that the net_dev use for communication.
2823  	 * @port:	 A physical port number on the RDMA device.
2824  	 * @pkey:	 P_Key that the net_dev uses if applicable.
2825  	 * @gid:	 A GID that the net_dev uses to communicate.
2826  	 * @addr:	 An IP address the net_dev is configured with.
2827  	 * @client_data: The device's client data set by ib_set_client_data().
2828  	 *
2829  	 * An ib_client that implements a net_dev on top of RDMA devices
2830  	 * (such as IP over IB) should implement this callback, allowing the
2831  	 * rdma_cm module to find the right net_dev for a given request.
2832  	 *
2833  	 * The caller is responsible for calling dev_put on the returned
2834  	 * netdev. */
2835  	struct net_device *(*get_net_dev_by_params)(
2836  			struct ib_device *dev,
2837  			u32 port,
2838  			u16 pkey,
2839  			const union ib_gid *gid,
2840  			const struct sockaddr *addr,
2841  			void *client_data);
2842  
2843  	refcount_t uses;
2844  	struct completion uses_zero;
2845  	u32 client_id;
2846  
2847  	/* kverbs are not required by the client */
2848  	u8 no_kverbs_req:1;
2849  };
2850  
2851  /*
2852   * IB block DMA iterator
2853   *
2854   * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2855   * to a HW supported page size.
2856   */
2857  struct ib_block_iter {
2858  	/* internal states */
2859  	struct scatterlist *__sg;	/* sg holding the current aligned block */
2860  	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2861  	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2862  	unsigned int __sg_nents;	/* number of SG entries */
2863  	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2864  	unsigned int __pg_bit;		/* alignment of current block */
2865  };
2866  
2867  struct ib_device *_ib_alloc_device(size_t size);
2868  #define ib_alloc_device(drv_struct, member)                                    \
2869  	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2870  				      BUILD_BUG_ON_ZERO(offsetof(              \
2871  					      struct drv_struct, member))),    \
2872  		     struct drv_struct, member)
2873  
2874  void ib_dealloc_device(struct ib_device *device);
2875  
2876  void ib_get_device_fw_str(struct ib_device *device, char *str);
2877  
2878  int ib_register_device(struct ib_device *device, const char *name,
2879  		       struct device *dma_device);
2880  void ib_unregister_device(struct ib_device *device);
2881  void ib_unregister_driver(enum rdma_driver_id driver_id);
2882  void ib_unregister_device_and_put(struct ib_device *device);
2883  void ib_unregister_device_queued(struct ib_device *ib_dev);
2884  
2885  int ib_register_client   (struct ib_client *client);
2886  void ib_unregister_client(struct ib_client *client);
2887  
2888  void __rdma_block_iter_start(struct ib_block_iter *biter,
2889  			     struct scatterlist *sglist,
2890  			     unsigned int nents,
2891  			     unsigned long pgsz);
2892  bool __rdma_block_iter_next(struct ib_block_iter *biter);
2893  
2894  /**
2895   * rdma_block_iter_dma_address - get the aligned dma address of the current
2896   * block held by the block iterator.
2897   * @biter: block iterator holding the memory block
2898   */
2899  static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2900  rdma_block_iter_dma_address(struct ib_block_iter *biter)
2901  {
2902  	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2903  }
2904  
2905  /**
2906   * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2907   * @sglist: sglist to iterate over
2908   * @biter: block iterator holding the memory block
2909   * @nents: maximum number of sg entries to iterate over
2910   * @pgsz: best HW supported page size to use
2911   *
2912   * Callers may use rdma_block_iter_dma_address() to get each
2913   * blocks aligned DMA address.
2914   */
2915  #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2916  	for (__rdma_block_iter_start(biter, sglist, nents,	\
2917  				     pgsz);			\
2918  	     __rdma_block_iter_next(biter);)
2919  
2920  /**
2921   * ib_get_client_data - Get IB client context
2922   * @device:Device to get context for
2923   * @client:Client to get context for
2924   *
2925   * ib_get_client_data() returns the client context data set with
2926   * ib_set_client_data(). This can only be called while the client is
2927   * registered to the device, once the ib_client remove() callback returns this
2928   * cannot be called.
2929   */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2930  static inline void *ib_get_client_data(struct ib_device *device,
2931  				       struct ib_client *client)
2932  {
2933  	return xa_load(&device->client_data, client->client_id);
2934  }
2935  void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2936  			 void *data);
2937  void ib_set_device_ops(struct ib_device *device,
2938  		       const struct ib_device_ops *ops);
2939  
2940  int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2941  		      unsigned long pfn, unsigned long size, pgprot_t prot,
2942  		      struct rdma_user_mmap_entry *entry);
2943  int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2944  				struct rdma_user_mmap_entry *entry,
2945  				size_t length);
2946  int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2947  				      struct rdma_user_mmap_entry *entry,
2948  				      size_t length, u32 min_pgoff,
2949  				      u32 max_pgoff);
2950  
2951  static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)2952  rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2953  				  struct rdma_user_mmap_entry *entry,
2954  				  size_t length, u32 pgoff)
2955  {
2956  	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2957  						 pgoff);
2958  }
2959  
2960  struct rdma_user_mmap_entry *
2961  rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2962  			       unsigned long pgoff);
2963  struct rdma_user_mmap_entry *
2964  rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2965  			 struct vm_area_struct *vma);
2966  void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2967  
2968  void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2969  
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2970  static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2971  {
2972  	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2973  }
2974  
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2975  static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2976  {
2977  	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2978  }
2979  
ib_is_buffer_cleared(const void __user * p,size_t len)2980  static inline bool ib_is_buffer_cleared(const void __user *p,
2981  					size_t len)
2982  {
2983  	bool ret;
2984  	u8 *buf;
2985  
2986  	if (len > USHRT_MAX)
2987  		return false;
2988  
2989  	buf = memdup_user(p, len);
2990  	if (IS_ERR(buf))
2991  		return false;
2992  
2993  	ret = !memchr_inv(buf, 0, len);
2994  	kfree(buf);
2995  	return ret;
2996  }
2997  
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2998  static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2999  				       size_t offset,
3000  				       size_t len)
3001  {
3002  	return ib_is_buffer_cleared(udata->inbuf + offset, len);
3003  }
3004  
3005  /**
3006   * ib_modify_qp_is_ok - Check that the supplied attribute mask
3007   * contains all required attributes and no attributes not allowed for
3008   * the given QP state transition.
3009   * @cur_state: Current QP state
3010   * @next_state: Next QP state
3011   * @type: QP type
3012   * @mask: Mask of supplied QP attributes
3013   *
3014   * This function is a helper function that a low-level driver's
3015   * modify_qp method can use to validate the consumer's input.  It
3016   * checks that cur_state and next_state are valid QP states, that a
3017   * transition from cur_state to next_state is allowed by the IB spec,
3018   * and that the attribute mask supplied is allowed for the transition.
3019   */
3020  bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3021  			enum ib_qp_type type, enum ib_qp_attr_mask mask);
3022  
3023  void ib_register_event_handler(struct ib_event_handler *event_handler);
3024  void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3025  void ib_dispatch_event(const struct ib_event *event);
3026  
3027  int ib_query_port(struct ib_device *device,
3028  		  u32 port_num, struct ib_port_attr *port_attr);
3029  
3030  enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3031  					       u32 port_num);
3032  
3033  /**
3034   * rdma_cap_ib_switch - Check if the device is IB switch
3035   * @device: Device to check
3036   *
3037   * Device driver is responsible for setting is_switch bit on
3038   * in ib_device structure at init time.
3039   *
3040   * Return: true if the device is IB switch.
3041   */
rdma_cap_ib_switch(const struct ib_device * device)3042  static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3043  {
3044  	return device->is_switch;
3045  }
3046  
3047  /**
3048   * rdma_start_port - Return the first valid port number for the device
3049   * specified
3050   *
3051   * @device: Device to be checked
3052   *
3053   * Return start port number
3054   */
rdma_start_port(const struct ib_device * device)3055  static inline u32 rdma_start_port(const struct ib_device *device)
3056  {
3057  	return rdma_cap_ib_switch(device) ? 0 : 1;
3058  }
3059  
3060  /**
3061   * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3062   * @device - The struct ib_device * to iterate over
3063   * @iter - The unsigned int to store the port number
3064   */
3065  #define rdma_for_each_port(device, iter)                                       \
3066  	for (iter = rdma_start_port(device +				       \
3067  				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3068  								   iter)));    \
3069  	     iter <= rdma_end_port(device); iter++)
3070  
3071  /**
3072   * rdma_end_port - Return the last valid port number for the device
3073   * specified
3074   *
3075   * @device: Device to be checked
3076   *
3077   * Return last port number
3078   */
rdma_end_port(const struct ib_device * device)3079  static inline u32 rdma_end_port(const struct ib_device *device)
3080  {
3081  	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3082  }
3083  
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3084  static inline int rdma_is_port_valid(const struct ib_device *device,
3085  				     unsigned int port)
3086  {
3087  	return (port >= rdma_start_port(device) &&
3088  		port <= rdma_end_port(device));
3089  }
3090  
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3091  static inline bool rdma_is_grh_required(const struct ib_device *device,
3092  					u32 port_num)
3093  {
3094  	return device->port_data[port_num].immutable.core_cap_flags &
3095  	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3096  }
3097  
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3098  static inline bool rdma_protocol_ib(const struct ib_device *device,
3099  				    u32 port_num)
3100  {
3101  	return device->port_data[port_num].immutable.core_cap_flags &
3102  	       RDMA_CORE_CAP_PROT_IB;
3103  }
3104  
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3105  static inline bool rdma_protocol_roce(const struct ib_device *device,
3106  				      u32 port_num)
3107  {
3108  	return device->port_data[port_num].immutable.core_cap_flags &
3109  	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3110  }
3111  
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3112  static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3113  						u32 port_num)
3114  {
3115  	return device->port_data[port_num].immutable.core_cap_flags &
3116  	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3117  }
3118  
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3119  static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3120  						u32 port_num)
3121  {
3122  	return device->port_data[port_num].immutable.core_cap_flags &
3123  	       RDMA_CORE_CAP_PROT_ROCE;
3124  }
3125  
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3126  static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3127  				       u32 port_num)
3128  {
3129  	return device->port_data[port_num].immutable.core_cap_flags &
3130  	       RDMA_CORE_CAP_PROT_IWARP;
3131  }
3132  
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3133  static inline bool rdma_ib_or_roce(const struct ib_device *device,
3134  				   u32 port_num)
3135  {
3136  	return rdma_protocol_ib(device, port_num) ||
3137  		rdma_protocol_roce(device, port_num);
3138  }
3139  
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3140  static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3141  					    u32 port_num)
3142  {
3143  	return device->port_data[port_num].immutable.core_cap_flags &
3144  	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3145  }
3146  
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3147  static inline bool rdma_protocol_usnic(const struct ib_device *device,
3148  				       u32 port_num)
3149  {
3150  	return device->port_data[port_num].immutable.core_cap_flags &
3151  	       RDMA_CORE_CAP_PROT_USNIC;
3152  }
3153  
3154  /**
3155   * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3156   * Management Datagrams.
3157   * @device: Device to check
3158   * @port_num: Port number to check
3159   *
3160   * Management Datagrams (MAD) are a required part of the InfiniBand
3161   * specification and are supported on all InfiniBand devices.  A slightly
3162   * extended version are also supported on OPA interfaces.
3163   *
3164   * Return: true if the port supports sending/receiving of MAD packets.
3165   */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3166  static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3167  {
3168  	return device->port_data[port_num].immutable.core_cap_flags &
3169  	       RDMA_CORE_CAP_IB_MAD;
3170  }
3171  
3172  /**
3173   * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3174   * Management Datagrams.
3175   * @device: Device to check
3176   * @port_num: Port number to check
3177   *
3178   * Intel OmniPath devices extend and/or replace the InfiniBand Management
3179   * datagrams with their own versions.  These OPA MADs share many but not all of
3180   * the characteristics of InfiniBand MADs.
3181   *
3182   * OPA MADs differ in the following ways:
3183   *
3184   *    1) MADs are variable size up to 2K
3185   *       IBTA defined MADs remain fixed at 256 bytes
3186   *    2) OPA SMPs must carry valid PKeys
3187   *    3) OPA SMP packets are a different format
3188   *
3189   * Return: true if the port supports OPA MAD packet formats.
3190   */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3191  static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3192  {
3193  	return device->port_data[port_num].immutable.core_cap_flags &
3194  		RDMA_CORE_CAP_OPA_MAD;
3195  }
3196  
3197  /**
3198   * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3199   * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3200   * @device: Device to check
3201   * @port_num: Port number to check
3202   *
3203   * Each InfiniBand node is required to provide a Subnet Management Agent
3204   * that the subnet manager can access.  Prior to the fabric being fully
3205   * configured by the subnet manager, the SMA is accessed via a well known
3206   * interface called the Subnet Management Interface (SMI).  This interface
3207   * uses directed route packets to communicate with the SM to get around the
3208   * chicken and egg problem of the SM needing to know what's on the fabric
3209   * in order to configure the fabric, and needing to configure the fabric in
3210   * order to send packets to the devices on the fabric.  These directed
3211   * route packets do not need the fabric fully configured in order to reach
3212   * their destination.  The SMI is the only method allowed to send
3213   * directed route packets on an InfiniBand fabric.
3214   *
3215   * Return: true if the port provides an SMI.
3216   */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3217  static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3218  {
3219  	return device->port_data[port_num].immutable.core_cap_flags &
3220  	       RDMA_CORE_CAP_IB_SMI;
3221  }
3222  
3223  /**
3224   * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3225   * Communication Manager.
3226   * @device: Device to check
3227   * @port_num: Port number to check
3228   *
3229   * The InfiniBand Communication Manager is one of many pre-defined General
3230   * Service Agents (GSA) that are accessed via the General Service
3231   * Interface (GSI).  It's role is to facilitate establishment of connections
3232   * between nodes as well as other management related tasks for established
3233   * connections.
3234   *
3235   * Return: true if the port supports an IB CM (this does not guarantee that
3236   * a CM is actually running however).
3237   */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3238  static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3239  {
3240  	return device->port_data[port_num].immutable.core_cap_flags &
3241  	       RDMA_CORE_CAP_IB_CM;
3242  }
3243  
3244  /**
3245   * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3246   * Communication Manager.
3247   * @device: Device to check
3248   * @port_num: Port number to check
3249   *
3250   * Similar to above, but specific to iWARP connections which have a different
3251   * managment protocol than InfiniBand.
3252   *
3253   * Return: true if the port supports an iWARP CM (this does not guarantee that
3254   * a CM is actually running however).
3255   */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3256  static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3257  {
3258  	return device->port_data[port_num].immutable.core_cap_flags &
3259  	       RDMA_CORE_CAP_IW_CM;
3260  }
3261  
3262  /**
3263   * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3264   * Subnet Administration.
3265   * @device: Device to check
3266   * @port_num: Port number to check
3267   *
3268   * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3269   * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3270   * fabrics, devices should resolve routes to other hosts by contacting the
3271   * SA to query the proper route.
3272   *
3273   * Return: true if the port should act as a client to the fabric Subnet
3274   * Administration interface.  This does not imply that the SA service is
3275   * running locally.
3276   */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3277  static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3278  {
3279  	return device->port_data[port_num].immutable.core_cap_flags &
3280  	       RDMA_CORE_CAP_IB_SA;
3281  }
3282  
3283  /**
3284   * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3285   * Multicast.
3286   * @device: Device to check
3287   * @port_num: Port number to check
3288   *
3289   * InfiniBand multicast registration is more complex than normal IPv4 or
3290   * IPv6 multicast registration.  Each Host Channel Adapter must register
3291   * with the Subnet Manager when it wishes to join a multicast group.  It
3292   * should do so only once regardless of how many queue pairs it subscribes
3293   * to this group.  And it should leave the group only after all queue pairs
3294   * attached to the group have been detached.
3295   *
3296   * Return: true if the port must undertake the additional adminstrative
3297   * overhead of registering/unregistering with the SM and tracking of the
3298   * total number of queue pairs attached to the multicast group.
3299   */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3300  static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3301  				     u32 port_num)
3302  {
3303  	return rdma_cap_ib_sa(device, port_num);
3304  }
3305  
3306  /**
3307   * rdma_cap_af_ib - Check if the port of device has the capability
3308   * Native Infiniband Address.
3309   * @device: Device to check
3310   * @port_num: Port number to check
3311   *
3312   * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3313   * GID.  RoCE uses a different mechanism, but still generates a GID via
3314   * a prescribed mechanism and port specific data.
3315   *
3316   * Return: true if the port uses a GID address to identify devices on the
3317   * network.
3318   */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3319  static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3320  {
3321  	return device->port_data[port_num].immutable.core_cap_flags &
3322  	       RDMA_CORE_CAP_AF_IB;
3323  }
3324  
3325  /**
3326   * rdma_cap_eth_ah - Check if the port of device has the capability
3327   * Ethernet Address Handle.
3328   * @device: Device to check
3329   * @port_num: Port number to check
3330   *
3331   * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3332   * to fabricate GIDs over Ethernet/IP specific addresses native to the
3333   * port.  Normally, packet headers are generated by the sending host
3334   * adapter, but when sending connectionless datagrams, we must manually
3335   * inject the proper headers for the fabric we are communicating over.
3336   *
3337   * Return: true if we are running as a RoCE port and must force the
3338   * addition of a Global Route Header built from our Ethernet Address
3339   * Handle into our header list for connectionless packets.
3340   */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3341  static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3342  {
3343  	return device->port_data[port_num].immutable.core_cap_flags &
3344  	       RDMA_CORE_CAP_ETH_AH;
3345  }
3346  
3347  /**
3348   * rdma_cap_opa_ah - Check if the port of device supports
3349   * OPA Address handles
3350   * @device: Device to check
3351   * @port_num: Port number to check
3352   *
3353   * Return: true if we are running on an OPA device which supports
3354   * the extended OPA addressing.
3355   */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3356  static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3357  {
3358  	return (device->port_data[port_num].immutable.core_cap_flags &
3359  		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3360  }
3361  
3362  /**
3363   * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3364   *
3365   * @device: Device
3366   * @port_num: Port number
3367   *
3368   * This MAD size includes the MAD headers and MAD payload.  No other headers
3369   * are included.
3370   *
3371   * Return the max MAD size required by the Port.  Will return 0 if the port
3372   * does not support MADs
3373   */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3374  static inline size_t rdma_max_mad_size(const struct ib_device *device,
3375  				       u32 port_num)
3376  {
3377  	return device->port_data[port_num].immutable.max_mad_size;
3378  }
3379  
3380  /**
3381   * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3382   * @device: Device to check
3383   * @port_num: Port number to check
3384   *
3385   * RoCE GID table mechanism manages the various GIDs for a device.
3386   *
3387   * NOTE: if allocating the port's GID table has failed, this call will still
3388   * return true, but any RoCE GID table API will fail.
3389   *
3390   * Return: true if the port uses RoCE GID table mechanism in order to manage
3391   * its GIDs.
3392   */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3393  static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3394  					   u32 port_num)
3395  {
3396  	return rdma_protocol_roce(device, port_num) &&
3397  		device->ops.add_gid && device->ops.del_gid;
3398  }
3399  
3400  /*
3401   * Check if the device supports READ W/ INVALIDATE.
3402   */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3403  static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3404  {
3405  	/*
3406  	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3407  	 * has support for it yet.
3408  	 */
3409  	return rdma_protocol_iwarp(dev, port_num);
3410  }
3411  
3412  /**
3413   * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3414   * @device: Device
3415   * @port_num: 1 based Port number
3416   *
3417   * Return true if port is an Intel OPA port , false if not
3418   */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3419  static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3420  					  u32 port_num)
3421  {
3422  	return (device->port_data[port_num].immutable.core_cap_flags &
3423  		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3424  }
3425  
3426  /**
3427   * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3428   * @device: Device
3429   * @port_num: Port number
3430   * @mtu: enum value of MTU
3431   *
3432   * Return the MTU size supported by the port as an integer value. Will return
3433   * -1 if enum value of mtu is not supported.
3434   */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3435  static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3436  				       int mtu)
3437  {
3438  	if (rdma_core_cap_opa_port(device, port))
3439  		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3440  	else
3441  		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3442  }
3443  
3444  /**
3445   * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3446   * @device: Device
3447   * @port_num: Port number
3448   * @attr: port attribute
3449   *
3450   * Return the MTU size supported by the port as an integer value.
3451   */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3452  static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3453  				     struct ib_port_attr *attr)
3454  {
3455  	if (rdma_core_cap_opa_port(device, port))
3456  		return attr->phys_mtu;
3457  	else
3458  		return ib_mtu_enum_to_int(attr->max_mtu);
3459  }
3460  
3461  int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3462  			 int state);
3463  int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3464  		     struct ifla_vf_info *info);
3465  int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3466  		    struct ifla_vf_stats *stats);
3467  int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3468  		    struct ifla_vf_guid *node_guid,
3469  		    struct ifla_vf_guid *port_guid);
3470  int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3471  		   int type);
3472  
3473  int ib_query_pkey(struct ib_device *device,
3474  		  u32 port_num, u16 index, u16 *pkey);
3475  
3476  int ib_modify_device(struct ib_device *device,
3477  		     int device_modify_mask,
3478  		     struct ib_device_modify *device_modify);
3479  
3480  int ib_modify_port(struct ib_device *device,
3481  		   u32 port_num, int port_modify_mask,
3482  		   struct ib_port_modify *port_modify);
3483  
3484  int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3485  		u32 *port_num, u16 *index);
3486  
3487  int ib_find_pkey(struct ib_device *device,
3488  		 u32 port_num, u16 pkey, u16 *index);
3489  
3490  enum ib_pd_flags {
3491  	/*
3492  	 * Create a memory registration for all memory in the system and place
3493  	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3494  	 * ULPs to avoid the overhead of dynamic MRs.
3495  	 *
3496  	 * This flag is generally considered unsafe and must only be used in
3497  	 * extremly trusted environments.  Every use of it will log a warning
3498  	 * in the kernel log.
3499  	 */
3500  	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3501  };
3502  
3503  struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3504  		const char *caller);
3505  
3506  /**
3507   * ib_alloc_pd - Allocates an unused protection domain.
3508   * @device: The device on which to allocate the protection domain.
3509   * @flags: protection domain flags
3510   *
3511   * A protection domain object provides an association between QPs, shared
3512   * receive queues, address handles, memory regions, and memory windows.
3513   *
3514   * Every PD has a local_dma_lkey which can be used as the lkey value for local
3515   * memory operations.
3516   */
3517  #define ib_alloc_pd(device, flags) \
3518  	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3519  
3520  int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3521  
3522  /**
3523   * ib_dealloc_pd - Deallocate kernel PD
3524   * @pd: The protection domain
3525   *
3526   * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3527   */
ib_dealloc_pd(struct ib_pd * pd)3528  static inline void ib_dealloc_pd(struct ib_pd *pd)
3529  {
3530  	int ret = ib_dealloc_pd_user(pd, NULL);
3531  
3532  	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3533  }
3534  
3535  enum rdma_create_ah_flags {
3536  	/* In a sleepable context */
3537  	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3538  };
3539  
3540  /**
3541   * rdma_create_ah - Creates an address handle for the given address vector.
3542   * @pd: The protection domain associated with the address handle.
3543   * @ah_attr: The attributes of the address vector.
3544   * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3545   *
3546   * The address handle is used to reference a local or global destination
3547   * in all UD QP post sends.
3548   */
3549  struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3550  			     u32 flags);
3551  
3552  /**
3553   * rdma_create_user_ah - Creates an address handle for the given address vector.
3554   * It resolves destination mac address for ah attribute of RoCE type.
3555   * @pd: The protection domain associated with the address handle.
3556   * @ah_attr: The attributes of the address vector.
3557   * @udata: pointer to user's input output buffer information need by
3558   *         provider driver.
3559   *
3560   * It returns 0 on success and returns appropriate error code on error.
3561   * The address handle is used to reference a local or global destination
3562   * in all UD QP post sends.
3563   */
3564  struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3565  				  struct rdma_ah_attr *ah_attr,
3566  				  struct ib_udata *udata);
3567  /**
3568   * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3569   *   work completion.
3570   * @hdr: the L3 header to parse
3571   * @net_type: type of header to parse
3572   * @sgid: place to store source gid
3573   * @dgid: place to store destination gid
3574   */
3575  int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3576  			      enum rdma_network_type net_type,
3577  			      union ib_gid *sgid, union ib_gid *dgid);
3578  
3579  /**
3580   * ib_get_rdma_header_version - Get the header version
3581   * @hdr: the L3 header to parse
3582   */
3583  int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3584  
3585  /**
3586   * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3587   *   work completion.
3588   * @device: Device on which the received message arrived.
3589   * @port_num: Port on which the received message arrived.
3590   * @wc: Work completion associated with the received message.
3591   * @grh: References the received global route header.  This parameter is
3592   *   ignored unless the work completion indicates that the GRH is valid.
3593   * @ah_attr: Returned attributes that can be used when creating an address
3594   *   handle for replying to the message.
3595   * When ib_init_ah_attr_from_wc() returns success,
3596   * (a) for IB link layer it optionally contains a reference to SGID attribute
3597   * when GRH is present for IB link layer.
3598   * (b) for RoCE link layer it contains a reference to SGID attribute.
3599   * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3600   * attributes which are initialized using ib_init_ah_attr_from_wc().
3601   *
3602   */
3603  int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3604  			    const struct ib_wc *wc, const struct ib_grh *grh,
3605  			    struct rdma_ah_attr *ah_attr);
3606  
3607  /**
3608   * ib_create_ah_from_wc - Creates an address handle associated with the
3609   *   sender of the specified work completion.
3610   * @pd: The protection domain associated with the address handle.
3611   * @wc: Work completion information associated with a received message.
3612   * @grh: References the received global route header.  This parameter is
3613   *   ignored unless the work completion indicates that the GRH is valid.
3614   * @port_num: The outbound port number to associate with the address.
3615   *
3616   * The address handle is used to reference a local or global destination
3617   * in all UD QP post sends.
3618   */
3619  struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3620  				   const struct ib_grh *grh, u32 port_num);
3621  
3622  /**
3623   * rdma_modify_ah - Modifies the address vector associated with an address
3624   *   handle.
3625   * @ah: The address handle to modify.
3626   * @ah_attr: The new address vector attributes to associate with the
3627   *   address handle.
3628   */
3629  int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3630  
3631  /**
3632   * rdma_query_ah - Queries the address vector associated with an address
3633   *   handle.
3634   * @ah: The address handle to query.
3635   * @ah_attr: The address vector attributes associated with the address
3636   *   handle.
3637   */
3638  int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3639  
3640  enum rdma_destroy_ah_flags {
3641  	/* In a sleepable context */
3642  	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3643  };
3644  
3645  /**
3646   * rdma_destroy_ah_user - Destroys an address handle.
3647   * @ah: The address handle to destroy.
3648   * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3649   * @udata: Valid user data or NULL for kernel objects
3650   */
3651  int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3652  
3653  /**
3654   * rdma_destroy_ah - Destroys an kernel address handle.
3655   * @ah: The address handle to destroy.
3656   * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3657   *
3658   * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3659   */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3660  static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3661  {
3662  	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3663  
3664  	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3665  }
3666  
3667  struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3668  				  struct ib_srq_init_attr *srq_init_attr,
3669  				  struct ib_usrq_object *uobject,
3670  				  struct ib_udata *udata);
3671  static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3672  ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3673  {
3674  	if (!pd->device->ops.create_srq)
3675  		return ERR_PTR(-EOPNOTSUPP);
3676  
3677  	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3678  }
3679  
3680  /**
3681   * ib_modify_srq - Modifies the attributes for the specified SRQ.
3682   * @srq: The SRQ to modify.
3683   * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3684   *   the current values of selected SRQ attributes are returned.
3685   * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3686   *   are being modified.
3687   *
3688   * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3689   * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3690   * the number of receives queued drops below the limit.
3691   */
3692  int ib_modify_srq(struct ib_srq *srq,
3693  		  struct ib_srq_attr *srq_attr,
3694  		  enum ib_srq_attr_mask srq_attr_mask);
3695  
3696  /**
3697   * ib_query_srq - Returns the attribute list and current values for the
3698   *   specified SRQ.
3699   * @srq: The SRQ to query.
3700   * @srq_attr: The attributes of the specified SRQ.
3701   */
3702  int ib_query_srq(struct ib_srq *srq,
3703  		 struct ib_srq_attr *srq_attr);
3704  
3705  /**
3706   * ib_destroy_srq_user - Destroys the specified SRQ.
3707   * @srq: The SRQ to destroy.
3708   * @udata: Valid user data or NULL for kernel objects
3709   */
3710  int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3711  
3712  /**
3713   * ib_destroy_srq - Destroys the specified kernel SRQ.
3714   * @srq: The SRQ to destroy.
3715   *
3716   * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3717   */
ib_destroy_srq(struct ib_srq * srq)3718  static inline void ib_destroy_srq(struct ib_srq *srq)
3719  {
3720  	int ret = ib_destroy_srq_user(srq, NULL);
3721  
3722  	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3723  }
3724  
3725  /**
3726   * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3727   * @srq: The SRQ to post the work request on.
3728   * @recv_wr: A list of work requests to post on the receive queue.
3729   * @bad_recv_wr: On an immediate failure, this parameter will reference
3730   *   the work request that failed to be posted on the QP.
3731   */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3732  static inline int ib_post_srq_recv(struct ib_srq *srq,
3733  				   const struct ib_recv_wr *recv_wr,
3734  				   const struct ib_recv_wr **bad_recv_wr)
3735  {
3736  	const struct ib_recv_wr *dummy;
3737  
3738  	return srq->device->ops.post_srq_recv(srq, recv_wr,
3739  					      bad_recv_wr ? : &dummy);
3740  }
3741  
3742  struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3743  				  struct ib_qp_init_attr *qp_init_attr,
3744  				  const char *caller);
3745  /**
3746   * ib_create_qp - Creates a kernel QP associated with the specific protection
3747   * domain.
3748   * @pd: The protection domain associated with the QP.
3749   * @init_attr: A list of initial attributes required to create the
3750   *   QP.  If QP creation succeeds, then the attributes are updated to
3751   *   the actual capabilities of the created QP.
3752   */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3753  static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3754  					 struct ib_qp_init_attr *init_attr)
3755  {
3756  	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3757  }
3758  
3759  /**
3760   * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3761   * @qp: The QP to modify.
3762   * @attr: On input, specifies the QP attributes to modify.  On output,
3763   *   the current values of selected QP attributes are returned.
3764   * @attr_mask: A bit-mask used to specify which attributes of the QP
3765   *   are being modified.
3766   * @udata: pointer to user's input output buffer information
3767   *   are being modified.
3768   * It returns 0 on success and returns appropriate error code on error.
3769   */
3770  int ib_modify_qp_with_udata(struct ib_qp *qp,
3771  			    struct ib_qp_attr *attr,
3772  			    int attr_mask,
3773  			    struct ib_udata *udata);
3774  
3775  /**
3776   * ib_modify_qp - Modifies the attributes for the specified QP and then
3777   *   transitions the QP to the given state.
3778   * @qp: The QP to modify.
3779   * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3780   *   the current values of selected QP attributes are returned.
3781   * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3782   *   are being modified.
3783   */
3784  int ib_modify_qp(struct ib_qp *qp,
3785  		 struct ib_qp_attr *qp_attr,
3786  		 int qp_attr_mask);
3787  
3788  /**
3789   * ib_query_qp - Returns the attribute list and current values for the
3790   *   specified QP.
3791   * @qp: The QP to query.
3792   * @qp_attr: The attributes of the specified QP.
3793   * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3794   * @qp_init_attr: Additional attributes of the selected QP.
3795   *
3796   * The qp_attr_mask may be used to limit the query to gathering only the
3797   * selected attributes.
3798   */
3799  int ib_query_qp(struct ib_qp *qp,
3800  		struct ib_qp_attr *qp_attr,
3801  		int qp_attr_mask,
3802  		struct ib_qp_init_attr *qp_init_attr);
3803  
3804  /**
3805   * ib_destroy_qp - Destroys the specified QP.
3806   * @qp: The QP to destroy.
3807   * @udata: Valid udata or NULL for kernel objects
3808   */
3809  int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3810  
3811  /**
3812   * ib_destroy_qp - Destroys the specified kernel QP.
3813   * @qp: The QP to destroy.
3814   *
3815   * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3816   */
ib_destroy_qp(struct ib_qp * qp)3817  static inline int ib_destroy_qp(struct ib_qp *qp)
3818  {
3819  	return ib_destroy_qp_user(qp, NULL);
3820  }
3821  
3822  /**
3823   * ib_open_qp - Obtain a reference to an existing sharable QP.
3824   * @xrcd - XRC domain
3825   * @qp_open_attr: Attributes identifying the QP to open.
3826   *
3827   * Returns a reference to a sharable QP.
3828   */
3829  struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3830  			 struct ib_qp_open_attr *qp_open_attr);
3831  
3832  /**
3833   * ib_close_qp - Release an external reference to a QP.
3834   * @qp: The QP handle to release
3835   *
3836   * The opened QP handle is released by the caller.  The underlying
3837   * shared QP is not destroyed until all internal references are released.
3838   */
3839  int ib_close_qp(struct ib_qp *qp);
3840  
3841  /**
3842   * ib_post_send - Posts a list of work requests to the send queue of
3843   *   the specified QP.
3844   * @qp: The QP to post the work request on.
3845   * @send_wr: A list of work requests to post on the send queue.
3846   * @bad_send_wr: On an immediate failure, this parameter will reference
3847   *   the work request that failed to be posted on the QP.
3848   *
3849   * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3850   * error is returned, the QP state shall not be affected,
3851   * ib_post_send() will return an immediate error after queueing any
3852   * earlier work requests in the list.
3853   */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3854  static inline int ib_post_send(struct ib_qp *qp,
3855  			       const struct ib_send_wr *send_wr,
3856  			       const struct ib_send_wr **bad_send_wr)
3857  {
3858  	const struct ib_send_wr *dummy;
3859  
3860  	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3861  }
3862  
3863  /**
3864   * ib_post_recv - Posts a list of work requests to the receive queue of
3865   *   the specified QP.
3866   * @qp: The QP to post the work request on.
3867   * @recv_wr: A list of work requests to post on the receive queue.
3868   * @bad_recv_wr: On an immediate failure, this parameter will reference
3869   *   the work request that failed to be posted on the QP.
3870   */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3871  static inline int ib_post_recv(struct ib_qp *qp,
3872  			       const struct ib_recv_wr *recv_wr,
3873  			       const struct ib_recv_wr **bad_recv_wr)
3874  {
3875  	const struct ib_recv_wr *dummy;
3876  
3877  	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3878  }
3879  
3880  struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3881  			    int comp_vector, enum ib_poll_context poll_ctx,
3882  			    const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3883  static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3884  					int nr_cqe, int comp_vector,
3885  					enum ib_poll_context poll_ctx)
3886  {
3887  	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3888  			     KBUILD_MODNAME);
3889  }
3890  
3891  struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3892  				int nr_cqe, enum ib_poll_context poll_ctx,
3893  				const char *caller);
3894  
3895  /**
3896   * ib_alloc_cq_any: Allocate kernel CQ
3897   * @dev: The IB device
3898   * @private: Private data attached to the CQE
3899   * @nr_cqe: Number of CQEs in the CQ
3900   * @poll_ctx: Context used for polling the CQ
3901   */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3902  static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3903  					    void *private, int nr_cqe,
3904  					    enum ib_poll_context poll_ctx)
3905  {
3906  	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3907  				 KBUILD_MODNAME);
3908  }
3909  
3910  void ib_free_cq(struct ib_cq *cq);
3911  int ib_process_cq_direct(struct ib_cq *cq, int budget);
3912  
3913  /**
3914   * ib_create_cq - Creates a CQ on the specified device.
3915   * @device: The device on which to create the CQ.
3916   * @comp_handler: A user-specified callback that is invoked when a
3917   *   completion event occurs on the CQ.
3918   * @event_handler: A user-specified callback that is invoked when an
3919   *   asynchronous event not associated with a completion occurs on the CQ.
3920   * @cq_context: Context associated with the CQ returned to the user via
3921   *   the associated completion and event handlers.
3922   * @cq_attr: The attributes the CQ should be created upon.
3923   *
3924   * Users can examine the cq structure to determine the actual CQ size.
3925   */
3926  struct ib_cq *__ib_create_cq(struct ib_device *device,
3927  			     ib_comp_handler comp_handler,
3928  			     void (*event_handler)(struct ib_event *, void *),
3929  			     void *cq_context,
3930  			     const struct ib_cq_init_attr *cq_attr,
3931  			     const char *caller);
3932  #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3933  	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3934  
3935  /**
3936   * ib_resize_cq - Modifies the capacity of the CQ.
3937   * @cq: The CQ to resize.
3938   * @cqe: The minimum size of the CQ.
3939   *
3940   * Users can examine the cq structure to determine the actual CQ size.
3941   */
3942  int ib_resize_cq(struct ib_cq *cq, int cqe);
3943  
3944  /**
3945   * rdma_set_cq_moderation - Modifies moderation params of the CQ
3946   * @cq: The CQ to modify.
3947   * @cq_count: number of CQEs that will trigger an event
3948   * @cq_period: max period of time in usec before triggering an event
3949   *
3950   */
3951  int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3952  
3953  /**
3954   * ib_destroy_cq_user - Destroys the specified CQ.
3955   * @cq: The CQ to destroy.
3956   * @udata: Valid user data or NULL for kernel objects
3957   */
3958  int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3959  
3960  /**
3961   * ib_destroy_cq - Destroys the specified kernel CQ.
3962   * @cq: The CQ to destroy.
3963   *
3964   * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3965   */
ib_destroy_cq(struct ib_cq * cq)3966  static inline void ib_destroy_cq(struct ib_cq *cq)
3967  {
3968  	int ret = ib_destroy_cq_user(cq, NULL);
3969  
3970  	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3971  }
3972  
3973  /**
3974   * ib_poll_cq - poll a CQ for completion(s)
3975   * @cq:the CQ being polled
3976   * @num_entries:maximum number of completions to return
3977   * @wc:array of at least @num_entries &struct ib_wc where completions
3978   *   will be returned
3979   *
3980   * Poll a CQ for (possibly multiple) completions.  If the return value
3981   * is < 0, an error occurred.  If the return value is >= 0, it is the
3982   * number of completions returned.  If the return value is
3983   * non-negative and < num_entries, then the CQ was emptied.
3984   */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3985  static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3986  			     struct ib_wc *wc)
3987  {
3988  	return cq->device->ops.poll_cq(cq, num_entries, wc);
3989  }
3990  
3991  /**
3992   * ib_req_notify_cq - Request completion notification on a CQ.
3993   * @cq: The CQ to generate an event for.
3994   * @flags:
3995   *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3996   *   to request an event on the next solicited event or next work
3997   *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3998   *   may also be |ed in to request a hint about missed events, as
3999   *   described below.
4000   *
4001   * Return Value:
4002   *    < 0 means an error occurred while requesting notification
4003   *   == 0 means notification was requested successfully, and if
4004   *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4005   *        were missed and it is safe to wait for another event.  In
4006   *        this case is it guaranteed that any work completions added
4007   *        to the CQ since the last CQ poll will trigger a completion
4008   *        notification event.
4009   *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4010   *        in.  It means that the consumer must poll the CQ again to
4011   *        make sure it is empty to avoid missing an event because of a
4012   *        race between requesting notification and an entry being
4013   *        added to the CQ.  This return value means it is possible
4014   *        (but not guaranteed) that a work completion has been added
4015   *        to the CQ since the last poll without triggering a
4016   *        completion notification event.
4017   */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4018  static inline int ib_req_notify_cq(struct ib_cq *cq,
4019  				   enum ib_cq_notify_flags flags)
4020  {
4021  	return cq->device->ops.req_notify_cq(cq, flags);
4022  }
4023  
4024  struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4025  			     int comp_vector_hint,
4026  			     enum ib_poll_context poll_ctx);
4027  
4028  void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4029  
4030  /*
4031   * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4032   * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4033   * address into the dma address.
4034   */
ib_uses_virt_dma(struct ib_device * dev)4035  static inline bool ib_uses_virt_dma(struct ib_device *dev)
4036  {
4037  	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4038  }
4039  
4040  /*
4041   * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4042   */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4043  static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4044  {
4045  	if (ib_uses_virt_dma(dev))
4046  		return false;
4047  
4048  	return dma_pci_p2pdma_supported(dev->dma_device);
4049  }
4050  
4051  /**
4052   * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4053   * @dma_addr: The DMA address
4054   *
4055   * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4056   * going through the dma_addr marshalling.
4057   */
ib_virt_dma_to_ptr(u64 dma_addr)4058  static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4059  {
4060  	/* virt_dma mode maps the kvs's directly into the dma addr */
4061  	return (void *)(uintptr_t)dma_addr;
4062  }
4063  
4064  /**
4065   * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4066   * @dma_addr: The DMA address
4067   *
4068   * Used by ib_uses_virt_dma() device to get back to the struct page after going
4069   * through the dma_addr marshalling.
4070   */
ib_virt_dma_to_page(u64 dma_addr)4071  static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4072  {
4073  	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4074  }
4075  
4076  /**
4077   * ib_dma_mapping_error - check a DMA addr for error
4078   * @dev: The device for which the dma_addr was created
4079   * @dma_addr: The DMA address to check
4080   */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4081  static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4082  {
4083  	if (ib_uses_virt_dma(dev))
4084  		return 0;
4085  	return dma_mapping_error(dev->dma_device, dma_addr);
4086  }
4087  
4088  /**
4089   * ib_dma_map_single - Map a kernel virtual address to DMA address
4090   * @dev: The device for which the dma_addr is to be created
4091   * @cpu_addr: The kernel virtual address
4092   * @size: The size of the region in bytes
4093   * @direction: The direction of the DMA
4094   */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4095  static inline u64 ib_dma_map_single(struct ib_device *dev,
4096  				    void *cpu_addr, size_t size,
4097  				    enum dma_data_direction direction)
4098  {
4099  	if (ib_uses_virt_dma(dev))
4100  		return (uintptr_t)cpu_addr;
4101  	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4102  }
4103  
4104  /**
4105   * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4106   * @dev: The device for which the DMA address was created
4107   * @addr: The DMA address
4108   * @size: The size of the region in bytes
4109   * @direction: The direction of the DMA
4110   */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4111  static inline void ib_dma_unmap_single(struct ib_device *dev,
4112  				       u64 addr, size_t size,
4113  				       enum dma_data_direction direction)
4114  {
4115  	if (!ib_uses_virt_dma(dev))
4116  		dma_unmap_single(dev->dma_device, addr, size, direction);
4117  }
4118  
4119  /**
4120   * ib_dma_map_page - Map a physical page to DMA address
4121   * @dev: The device for which the dma_addr is to be created
4122   * @page: The page to be mapped
4123   * @offset: The offset within the page
4124   * @size: The size of the region in bytes
4125   * @direction: The direction of the DMA
4126   */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4127  static inline u64 ib_dma_map_page(struct ib_device *dev,
4128  				  struct page *page,
4129  				  unsigned long offset,
4130  				  size_t size,
4131  					 enum dma_data_direction direction)
4132  {
4133  	if (ib_uses_virt_dma(dev))
4134  		return (uintptr_t)(page_address(page) + offset);
4135  	return dma_map_page(dev->dma_device, page, offset, size, direction);
4136  }
4137  
4138  /**
4139   * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4140   * @dev: The device for which the DMA address was created
4141   * @addr: The DMA address
4142   * @size: The size of the region in bytes
4143   * @direction: The direction of the DMA
4144   */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4145  static inline void ib_dma_unmap_page(struct ib_device *dev,
4146  				     u64 addr, size_t size,
4147  				     enum dma_data_direction direction)
4148  {
4149  	if (!ib_uses_virt_dma(dev))
4150  		dma_unmap_page(dev->dma_device, addr, size, direction);
4151  }
4152  
4153  int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4154  static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4155  				      struct scatterlist *sg, int nents,
4156  				      enum dma_data_direction direction,
4157  				      unsigned long dma_attrs)
4158  {
4159  	if (ib_uses_virt_dma(dev))
4160  		return ib_dma_virt_map_sg(dev, sg, nents);
4161  	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4162  				dma_attrs);
4163  }
4164  
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4165  static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4166  					 struct scatterlist *sg, int nents,
4167  					 enum dma_data_direction direction,
4168  					 unsigned long dma_attrs)
4169  {
4170  	if (!ib_uses_virt_dma(dev))
4171  		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4172  				   dma_attrs);
4173  }
4174  
4175  /**
4176   * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4177   * @dev: The device for which the DMA addresses are to be created
4178   * @sg: The sg_table object describing the buffer
4179   * @direction: The direction of the DMA
4180   * @attrs: Optional DMA attributes for the map operation
4181   */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4182  static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4183  					   struct sg_table *sgt,
4184  					   enum dma_data_direction direction,
4185  					   unsigned long dma_attrs)
4186  {
4187  	int nents;
4188  
4189  	if (ib_uses_virt_dma(dev)) {
4190  		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4191  		if (!nents)
4192  			return -EIO;
4193  		sgt->nents = nents;
4194  		return 0;
4195  	}
4196  	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4197  }
4198  
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4199  static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4200  					      struct sg_table *sgt,
4201  					      enum dma_data_direction direction,
4202  					      unsigned long dma_attrs)
4203  {
4204  	if (!ib_uses_virt_dma(dev))
4205  		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4206  }
4207  
4208  /**
4209   * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4210   * @dev: The device for which the DMA addresses are to be created
4211   * @sg: The array of scatter/gather entries
4212   * @nents: The number of scatter/gather entries
4213   * @direction: The direction of the DMA
4214   */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4215  static inline int ib_dma_map_sg(struct ib_device *dev,
4216  				struct scatterlist *sg, int nents,
4217  				enum dma_data_direction direction)
4218  {
4219  	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4220  }
4221  
4222  /**
4223   * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4224   * @dev: The device for which the DMA addresses were created
4225   * @sg: The array of scatter/gather entries
4226   * @nents: The number of scatter/gather entries
4227   * @direction: The direction of the DMA
4228   */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4229  static inline void ib_dma_unmap_sg(struct ib_device *dev,
4230  				   struct scatterlist *sg, int nents,
4231  				   enum dma_data_direction direction)
4232  {
4233  	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4234  }
4235  
4236  /**
4237   * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4238   * @dev: The device to query
4239   *
4240   * The returned value represents a size in bytes.
4241   */
ib_dma_max_seg_size(struct ib_device * dev)4242  static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4243  {
4244  	if (ib_uses_virt_dma(dev))
4245  		return UINT_MAX;
4246  	return dma_get_max_seg_size(dev->dma_device);
4247  }
4248  
4249  /**
4250   * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4251   * @dev: The device for which the DMA address was created
4252   * @addr: The DMA address
4253   * @size: The size of the region in bytes
4254   * @dir: The direction of the DMA
4255   */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4256  static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4257  					      u64 addr,
4258  					      size_t size,
4259  					      enum dma_data_direction dir)
4260  {
4261  	if (!ib_uses_virt_dma(dev))
4262  		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4263  }
4264  
4265  /**
4266   * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4267   * @dev: The device for which the DMA address was created
4268   * @addr: The DMA address
4269   * @size: The size of the region in bytes
4270   * @dir: The direction of the DMA
4271   */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4272  static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4273  						 u64 addr,
4274  						 size_t size,
4275  						 enum dma_data_direction dir)
4276  {
4277  	if (!ib_uses_virt_dma(dev))
4278  		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4279  }
4280  
4281  /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4282   * space. This function should be called when 'current' is the owning MM.
4283   */
4284  struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4285  			     u64 virt_addr, int mr_access_flags);
4286  
4287  /* ib_advise_mr -  give an advice about an address range in a memory region */
4288  int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4289  		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4290  /**
4291   * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4292   *   HCA translation table.
4293   * @mr: The memory region to deregister.
4294   * @udata: Valid user data or NULL for kernel object
4295   *
4296   * This function can fail, if the memory region has memory windows bound to it.
4297   */
4298  int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4299  
4300  /**
4301   * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4302   *   HCA translation table.
4303   * @mr: The memory region to deregister.
4304   *
4305   * This function can fail, if the memory region has memory windows bound to it.
4306   *
4307   * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4308   */
ib_dereg_mr(struct ib_mr * mr)4309  static inline int ib_dereg_mr(struct ib_mr *mr)
4310  {
4311  	return ib_dereg_mr_user(mr, NULL);
4312  }
4313  
4314  struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4315  			  u32 max_num_sg);
4316  
4317  struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4318  				    u32 max_num_data_sg,
4319  				    u32 max_num_meta_sg);
4320  
4321  /**
4322   * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4323   *   R_Key and L_Key.
4324   * @mr - struct ib_mr pointer to be updated.
4325   * @newkey - new key to be used.
4326   */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4327  static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4328  {
4329  	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4330  	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4331  }
4332  
4333  /**
4334   * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4335   * for calculating a new rkey for type 2 memory windows.
4336   * @rkey - the rkey to increment.
4337   */
ib_inc_rkey(u32 rkey)4338  static inline u32 ib_inc_rkey(u32 rkey)
4339  {
4340  	const u32 mask = 0x000000ff;
4341  	return ((rkey + 1) & mask) | (rkey & ~mask);
4342  }
4343  
4344  /**
4345   * ib_attach_mcast - Attaches the specified QP to a multicast group.
4346   * @qp: QP to attach to the multicast group.  The QP must be type
4347   *   IB_QPT_UD.
4348   * @gid: Multicast group GID.
4349   * @lid: Multicast group LID in host byte order.
4350   *
4351   * In order to send and receive multicast packets, subnet
4352   * administration must have created the multicast group and configured
4353   * the fabric appropriately.  The port associated with the specified
4354   * QP must also be a member of the multicast group.
4355   */
4356  int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4357  
4358  /**
4359   * ib_detach_mcast - Detaches the specified QP from a multicast group.
4360   * @qp: QP to detach from the multicast group.
4361   * @gid: Multicast group GID.
4362   * @lid: Multicast group LID in host byte order.
4363   */
4364  int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4365  
4366  struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4367  				   struct inode *inode, struct ib_udata *udata);
4368  int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4369  
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4370  static inline int ib_check_mr_access(struct ib_device *ib_dev,
4371  				     unsigned int flags)
4372  {
4373  	u64 device_cap = ib_dev->attrs.device_cap_flags;
4374  
4375  	/*
4376  	 * Local write permission is required if remote write or
4377  	 * remote atomic permission is also requested.
4378  	 */
4379  	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4380  	    !(flags & IB_ACCESS_LOCAL_WRITE))
4381  		return -EINVAL;
4382  
4383  	if (flags & ~IB_ACCESS_SUPPORTED)
4384  		return -EINVAL;
4385  
4386  	if (flags & IB_ACCESS_ON_DEMAND &&
4387  	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4388  		return -EOPNOTSUPP;
4389  
4390  	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4391  	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4392  	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4393  	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4394  		return -EOPNOTSUPP;
4395  
4396  	return 0;
4397  }
4398  
ib_access_writable(int access_flags)4399  static inline bool ib_access_writable(int access_flags)
4400  {
4401  	/*
4402  	 * We have writable memory backing the MR if any of the following
4403  	 * access flags are set.  "Local write" and "remote write" obviously
4404  	 * require write access.  "Remote atomic" can do things like fetch and
4405  	 * add, which will modify memory, and "MW bind" can change permissions
4406  	 * by binding a window.
4407  	 */
4408  	return access_flags &
4409  		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4410  		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4411  }
4412  
4413  /**
4414   * ib_check_mr_status: lightweight check of MR status.
4415   *     This routine may provide status checks on a selected
4416   *     ib_mr. first use is for signature status check.
4417   *
4418   * @mr: A memory region.
4419   * @check_mask: Bitmask of which checks to perform from
4420   *     ib_mr_status_check enumeration.
4421   * @mr_status: The container of relevant status checks.
4422   *     failed checks will be indicated in the status bitmask
4423   *     and the relevant info shall be in the error item.
4424   */
4425  int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4426  		       struct ib_mr_status *mr_status);
4427  
4428  /**
4429   * ib_device_try_get: Hold a registration lock
4430   * device: The device to lock
4431   *
4432   * A device under an active registration lock cannot become unregistered. It
4433   * is only possible to obtain a registration lock on a device that is fully
4434   * registered, otherwise this function returns false.
4435   *
4436   * The registration lock is only necessary for actions which require the
4437   * device to still be registered. Uses that only require the device pointer to
4438   * be valid should use get_device(&ibdev->dev) to hold the memory.
4439   *
4440   */
ib_device_try_get(struct ib_device * dev)4441  static inline bool ib_device_try_get(struct ib_device *dev)
4442  {
4443  	return refcount_inc_not_zero(&dev->refcount);
4444  }
4445  
4446  void ib_device_put(struct ib_device *device);
4447  struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4448  					  enum rdma_driver_id driver_id);
4449  struct ib_device *ib_device_get_by_name(const char *name,
4450  					enum rdma_driver_id driver_id);
4451  struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4452  					    u16 pkey, const union ib_gid *gid,
4453  					    const struct sockaddr *addr);
4454  int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4455  			 unsigned int port);
4456  struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4457  					u32 port);
4458  struct ib_wq *ib_create_wq(struct ib_pd *pd,
4459  			   struct ib_wq_init_attr *init_attr);
4460  int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4461  
4462  int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4463  		 unsigned int *sg_offset, unsigned int page_size);
4464  int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4465  		    int data_sg_nents, unsigned int *data_sg_offset,
4466  		    struct scatterlist *meta_sg, int meta_sg_nents,
4467  		    unsigned int *meta_sg_offset, unsigned int page_size);
4468  
4469  static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4470  ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4471  		  unsigned int *sg_offset, unsigned int page_size)
4472  {
4473  	int n;
4474  
4475  	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4476  	mr->iova = 0;
4477  
4478  	return n;
4479  }
4480  
4481  int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4482  		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4483  
4484  void ib_drain_rq(struct ib_qp *qp);
4485  void ib_drain_sq(struct ib_qp *qp);
4486  void ib_drain_qp(struct ib_qp *qp);
4487  
4488  int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4489  		     u8 *width);
4490  
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4491  static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4492  {
4493  	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4494  		return attr->roce.dmac;
4495  	return NULL;
4496  }
4497  
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4498  static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4499  {
4500  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4501  		attr->ib.dlid = (u16)dlid;
4502  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4503  		attr->opa.dlid = dlid;
4504  }
4505  
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4506  static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4507  {
4508  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4509  		return attr->ib.dlid;
4510  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4511  		return attr->opa.dlid;
4512  	return 0;
4513  }
4514  
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4515  static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4516  {
4517  	attr->sl = sl;
4518  }
4519  
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4520  static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4521  {
4522  	return attr->sl;
4523  }
4524  
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4525  static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4526  					 u8 src_path_bits)
4527  {
4528  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4529  		attr->ib.src_path_bits = src_path_bits;
4530  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4531  		attr->opa.src_path_bits = src_path_bits;
4532  }
4533  
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4534  static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4535  {
4536  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4537  		return attr->ib.src_path_bits;
4538  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4539  		return attr->opa.src_path_bits;
4540  	return 0;
4541  }
4542  
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4543  static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4544  					bool make_grd)
4545  {
4546  	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4547  		attr->opa.make_grd = make_grd;
4548  }
4549  
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4550  static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4551  {
4552  	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4553  		return attr->opa.make_grd;
4554  	return false;
4555  }
4556  
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4557  static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4558  {
4559  	attr->port_num = port_num;
4560  }
4561  
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4562  static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4563  {
4564  	return attr->port_num;
4565  }
4566  
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4567  static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4568  					   u8 static_rate)
4569  {
4570  	attr->static_rate = static_rate;
4571  }
4572  
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4573  static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4574  {
4575  	return attr->static_rate;
4576  }
4577  
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4578  static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4579  					enum ib_ah_flags flag)
4580  {
4581  	attr->ah_flags = flag;
4582  }
4583  
4584  static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4585  		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4586  {
4587  	return attr->ah_flags;
4588  }
4589  
4590  static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4591  		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4592  {
4593  	return &attr->grh;
4594  }
4595  
4596  /*To retrieve and modify the grh */
4597  static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4598  		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4599  {
4600  	return &attr->grh;
4601  }
4602  
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4603  static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4604  {
4605  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4606  
4607  	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4608  }
4609  
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4610  static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4611  					     __be64 prefix)
4612  {
4613  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4614  
4615  	grh->dgid.global.subnet_prefix = prefix;
4616  }
4617  
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4618  static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4619  					    __be64 if_id)
4620  {
4621  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4622  
4623  	grh->dgid.global.interface_id = if_id;
4624  }
4625  
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4626  static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4627  				   union ib_gid *dgid, u32 flow_label,
4628  				   u8 sgid_index, u8 hop_limit,
4629  				   u8 traffic_class)
4630  {
4631  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4632  
4633  	attr->ah_flags = IB_AH_GRH;
4634  	if (dgid)
4635  		grh->dgid = *dgid;
4636  	grh->flow_label = flow_label;
4637  	grh->sgid_index = sgid_index;
4638  	grh->hop_limit = hop_limit;
4639  	grh->traffic_class = traffic_class;
4640  	grh->sgid_attr = NULL;
4641  }
4642  
4643  void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4644  void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4645  			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4646  			     const struct ib_gid_attr *sgid_attr);
4647  void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4648  		       const struct rdma_ah_attr *src);
4649  void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4650  			  const struct rdma_ah_attr *new);
4651  void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4652  
4653  /**
4654   * rdma_ah_find_type - Return address handle type.
4655   *
4656   * @dev: Device to be checked
4657   * @port_num: Port number
4658   */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4659  static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4660  						       u32 port_num)
4661  {
4662  	if (rdma_protocol_roce(dev, port_num))
4663  		return RDMA_AH_ATTR_TYPE_ROCE;
4664  	if (rdma_protocol_ib(dev, port_num)) {
4665  		if (rdma_cap_opa_ah(dev, port_num))
4666  			return RDMA_AH_ATTR_TYPE_OPA;
4667  		return RDMA_AH_ATTR_TYPE_IB;
4668  	}
4669  	if (dev->type == RDMA_DEVICE_TYPE_SMI)
4670  		return RDMA_AH_ATTR_TYPE_IB;
4671  
4672  	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4673  }
4674  
4675  /**
4676   * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4677   *     In the current implementation the only way to
4678   *     get the 32bit lid is from other sources for OPA.
4679   *     For IB, lids will always be 16bits so cast the
4680   *     value accordingly.
4681   *
4682   * @lid: A 32bit LID
4683   */
ib_lid_cpu16(u32 lid)4684  static inline u16 ib_lid_cpu16(u32 lid)
4685  {
4686  	WARN_ON_ONCE(lid & 0xFFFF0000);
4687  	return (u16)lid;
4688  }
4689  
4690  /**
4691   * ib_lid_be16 - Return lid in 16bit BE encoding.
4692   *
4693   * @lid: A 32bit LID
4694   */
ib_lid_be16(u32 lid)4695  static inline __be16 ib_lid_be16(u32 lid)
4696  {
4697  	WARN_ON_ONCE(lid & 0xFFFF0000);
4698  	return cpu_to_be16((u16)lid);
4699  }
4700  
4701  /**
4702   * ib_get_vector_affinity - Get the affinity mappings of a given completion
4703   *   vector
4704   * @device:         the rdma device
4705   * @comp_vector:    index of completion vector
4706   *
4707   * Returns NULL on failure, otherwise a corresponding cpu map of the
4708   * completion vector (returns all-cpus map if the device driver doesn't
4709   * implement get_vector_affinity).
4710   */
4711  static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4712  ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4713  {
4714  	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4715  	    !device->ops.get_vector_affinity)
4716  		return NULL;
4717  
4718  	return device->ops.get_vector_affinity(device, comp_vector);
4719  
4720  }
4721  
4722  /**
4723   * rdma_roce_rescan_device - Rescan all of the network devices in the system
4724   * and add their gids, as needed, to the relevant RoCE devices.
4725   *
4726   * @device:         the rdma device
4727   */
4728  void rdma_roce_rescan_device(struct ib_device *ibdev);
4729  
4730  struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4731  
4732  int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4733  
4734  struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4735  				     enum rdma_netdev_t type, const char *name,
4736  				     unsigned char name_assign_type,
4737  				     void (*setup)(struct net_device *));
4738  
4739  int rdma_init_netdev(struct ib_device *device, u32 port_num,
4740  		     enum rdma_netdev_t type, const char *name,
4741  		     unsigned char name_assign_type,
4742  		     void (*setup)(struct net_device *),
4743  		     struct net_device *netdev);
4744  
4745  /**
4746   * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4747   *
4748   * @device:	device pointer for which ib_device pointer to retrieve
4749   *
4750   * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4751   *
4752   */
rdma_device_to_ibdev(struct device * device)4753  static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4754  {
4755  	struct ib_core_device *coredev =
4756  		container_of(device, struct ib_core_device, dev);
4757  
4758  	return coredev->owner;
4759  }
4760  
4761  /**
4762   * ibdev_to_node - return the NUMA node for a given ib_device
4763   * @dev:	device to get the NUMA node for.
4764   */
ibdev_to_node(struct ib_device * ibdev)4765  static inline int ibdev_to_node(struct ib_device *ibdev)
4766  {
4767  	struct device *parent = ibdev->dev.parent;
4768  
4769  	if (!parent)
4770  		return NUMA_NO_NODE;
4771  	return dev_to_node(parent);
4772  }
4773  
4774  /**
4775   * rdma_device_to_drv_device - Helper macro to reach back to driver's
4776   *			       ib_device holder structure from device pointer.
4777   *
4778   * NOTE: New drivers should not make use of this API; This API is only for
4779   * existing drivers who have exposed sysfs entries using
4780   * ops->device_group.
4781   */
4782  #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4783  	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4784  
4785  bool rdma_dev_access_netns(const struct ib_device *device,
4786  			   const struct net *net);
4787  
4788  #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4789  #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4790  #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4791  
4792  /**
4793   * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4794   *                               on the flow_label
4795   *
4796   * This function will convert the 20 bit flow_label input to a valid RoCE v2
4797   * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4798   * convention.
4799   */
rdma_flow_label_to_udp_sport(u32 fl)4800  static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4801  {
4802  	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4803  
4804  	fl_low ^= fl_high >> 14;
4805  	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4806  }
4807  
4808  /**
4809   * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4810   *                        local and remote qpn values
4811   *
4812   * This function folded the multiplication results of two qpns, 24 bit each,
4813   * fields, and converts it to a 20 bit results.
4814   *
4815   * This function will create symmetric flow_label value based on the local
4816   * and remote qpn values. this will allow both the requester and responder
4817   * to calculate the same flow_label for a given connection.
4818   *
4819   * This helper function should be used by driver in case the upper layer
4820   * provide a zero flow_label value. This is to improve entropy of RDMA
4821   * traffic in the network.
4822   */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4823  static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4824  {
4825  	u64 v = (u64)lqpn * rqpn;
4826  
4827  	v ^= v >> 20;
4828  	v ^= v >> 40;
4829  
4830  	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4831  }
4832  
4833  /**
4834   * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4835   *                      label. If flow label is not defined in GRH then
4836   *                      calculate it based on lqpn/rqpn.
4837   *
4838   * @fl:                 flow label from GRH
4839   * @lqpn:               local qp number
4840   * @rqpn:               remote qp number
4841   */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4842  static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4843  {
4844  	if (!fl)
4845  		fl = rdma_calc_flow_label(lqpn, rqpn);
4846  
4847  	return rdma_flow_label_to_udp_sport(fl);
4848  }
4849  
4850  const struct ib_port_immutable*
4851  ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4852  
4853  /** ib_add_sub_device - Add a sub IB device on an existing one
4854   *
4855   * @parent: The IB device that needs to add a sub device
4856   * @type: The type of the new sub device
4857   * @name: The name of the new sub device
4858   *
4859   *
4860   * Return 0 on success, an error code otherwise
4861   */
4862  int ib_add_sub_device(struct ib_device *parent,
4863  		      enum rdma_nl_dev_type type,
4864  		      const char *name);
4865  
4866  
4867  /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4868   *
4869   * @sub: The sub device that is going to be deleted
4870   *
4871   * Return 0 on success, an error code otherwise
4872   */
4873  int ib_del_sub_device_and_put(struct ib_device *sub);
4874  
ib_mark_name_assigned_by_user(struct ib_device * ibdev)4875  static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4876  {
4877  	ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4878  }
4879  
4880  #endif /* IB_VERBS_H */
4881