1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		Definitions for the AF_INET socket handler.
8   *
9   * Version:	@(#)sock.h	1.0.4	05/13/93
10   *
11   * Authors:	Ross Biro
12   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13   *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14   *		Florian La Roche <flla@stud.uni-sb.de>
15   *
16   * Fixes:
17   *		Alan Cox	:	Volatiles in skbuff pointers. See
18   *					skbuff comments. May be overdone,
19   *					better to prove they can be removed
20   *					than the reverse.
21   *		Alan Cox	:	Added a zapped field for tcp to note
22   *					a socket is reset and must stay shut up
23   *		Alan Cox	:	New fields for options
24   *	Pauline Middelink	:	identd support
25   *		Alan Cox	:	Eliminate low level recv/recvfrom
26   *		David S. Miller	:	New socket lookup architecture.
27   *              Steve Whitehouse:       Default routines for sock_ops
28   *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29   *              			protinfo be just a void pointer, as the
30   *              			protocol specific parts were moved to
31   *              			respective headers and ipv4/v6, etc now
32   *              			use private slabcaches for its socks
33   *              Pedro Hortas	:	New flags field for socket options
34   */
35  #ifndef _SOCK_H
36  #define _SOCK_H
37  
38  #include <linux/hardirq.h>
39  #include <linux/kernel.h>
40  #include <linux/list.h>
41  #include <linux/list_nulls.h>
42  #include <linux/timer.h>
43  #include <linux/cache.h>
44  #include <linux/bitops.h>
45  #include <linux/lockdep.h>
46  #include <linux/netdevice.h>
47  #include <linux/skbuff.h>	/* struct sk_buff */
48  #include <linux/mm.h>
49  #include <linux/security.h>
50  #include <linux/slab.h>
51  #include <linux/uaccess.h>
52  #include <linux/page_counter.h>
53  #include <linux/memcontrol.h>
54  #include <linux/static_key.h>
55  #include <linux/sched.h>
56  #include <linux/wait.h>
57  #include <linux/cgroup-defs.h>
58  #include <linux/rbtree.h>
59  #include <linux/rculist_nulls.h>
60  #include <linux/poll.h>
61  #include <linux/sockptr.h>
62  #include <linux/indirect_call_wrapper.h>
63  #include <linux/atomic.h>
64  #include <linux/refcount.h>
65  #include <linux/llist.h>
66  #include <net/dst.h>
67  #include <net/checksum.h>
68  #include <net/tcp_states.h>
69  #include <linux/net_tstamp.h>
70  #include <net/l3mdev.h>
71  #include <uapi/linux/socket.h>
72  
73  /*
74   * This structure really needs to be cleaned up.
75   * Most of it is for TCP, and not used by any of
76   * the other protocols.
77   */
78  
79  /* This is the per-socket lock.  The spinlock provides a synchronization
80   * between user contexts and software interrupt processing, whereas the
81   * mini-semaphore synchronizes multiple users amongst themselves.
82   */
83  typedef struct {
84  	spinlock_t		slock;
85  	int			owned;
86  	wait_queue_head_t	wq;
87  	/*
88  	 * We express the mutex-alike socket_lock semantics
89  	 * to the lock validator by explicitly managing
90  	 * the slock as a lock variant (in addition to
91  	 * the slock itself):
92  	 */
93  #ifdef CONFIG_DEBUG_LOCK_ALLOC
94  	struct lockdep_map dep_map;
95  #endif
96  } socket_lock_t;
97  
98  struct sock;
99  struct proto;
100  struct net;
101  
102  typedef __u32 __bitwise __portpair;
103  typedef __u64 __bitwise __addrpair;
104  
105  /**
106   *	struct sock_common - minimal network layer representation of sockets
107   *	@skc_daddr: Foreign IPv4 addr
108   *	@skc_rcv_saddr: Bound local IPv4 addr
109   *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110   *	@skc_hash: hash value used with various protocol lookup tables
111   *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112   *	@skc_dport: placeholder for inet_dport/tw_dport
113   *	@skc_num: placeholder for inet_num/tw_num
114   *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115   *	@skc_family: network address family
116   *	@skc_state: Connection state
117   *	@skc_reuse: %SO_REUSEADDR setting
118   *	@skc_reuseport: %SO_REUSEPORT setting
119   *	@skc_ipv6only: socket is IPV6 only
120   *	@skc_net_refcnt: socket is using net ref counting
121   *	@skc_bound_dev_if: bound device index if != 0
122   *	@skc_bind_node: bind hash linkage for various protocol lookup tables
123   *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124   *	@skc_prot: protocol handlers inside a network family
125   *	@skc_net: reference to the network namespace of this socket
126   *	@skc_v6_daddr: IPV6 destination address
127   *	@skc_v6_rcv_saddr: IPV6 source address
128   *	@skc_cookie: socket's cookie value
129   *	@skc_node: main hash linkage for various protocol lookup tables
130   *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131   *	@skc_tx_queue_mapping: tx queue number for this connection
132   *	@skc_rx_queue_mapping: rx queue number for this connection
133   *	@skc_flags: place holder for sk_flags
134   *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135   *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136   *	@skc_listener: connection request listener socket (aka rsk_listener)
137   *		[union with @skc_flags]
138   *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139   *		[union with @skc_flags]
140   *	@skc_incoming_cpu: record/match cpu processing incoming packets
141   *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142   *		[union with @skc_incoming_cpu]
143   *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144   *		[union with @skc_incoming_cpu]
145   *	@skc_refcnt: reference count
146   *
147   *	This is the minimal network layer representation of sockets, the header
148   *	for struct sock and struct inet_timewait_sock.
149   */
150  struct sock_common {
151  	union {
152  		__addrpair	skc_addrpair;
153  		struct {
154  			__be32	skc_daddr;
155  			__be32	skc_rcv_saddr;
156  		};
157  	};
158  	union  {
159  		unsigned int	skc_hash;
160  		__u16		skc_u16hashes[2];
161  	};
162  	/* skc_dport && skc_num must be grouped as well */
163  	union {
164  		__portpair	skc_portpair;
165  		struct {
166  			__be16	skc_dport;
167  			__u16	skc_num;
168  		};
169  	};
170  
171  	unsigned short		skc_family;
172  	volatile unsigned char	skc_state;
173  	unsigned char		skc_reuse:4;
174  	unsigned char		skc_reuseport:1;
175  	unsigned char		skc_ipv6only:1;
176  	unsigned char		skc_net_refcnt:1;
177  	int			skc_bound_dev_if;
178  	union {
179  		struct hlist_node	skc_bind_node;
180  		struct hlist_node	skc_portaddr_node;
181  	};
182  	struct proto		*skc_prot;
183  	possible_net_t		skc_net;
184  
185  #if IS_ENABLED(CONFIG_IPV6)
186  	struct in6_addr		skc_v6_daddr;
187  	struct in6_addr		skc_v6_rcv_saddr;
188  #endif
189  
190  	atomic64_t		skc_cookie;
191  
192  	/* following fields are padding to force
193  	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194  	 * assuming IPV6 is enabled. We use this padding differently
195  	 * for different kind of 'sockets'
196  	 */
197  	union {
198  		unsigned long	skc_flags;
199  		struct sock	*skc_listener; /* request_sock */
200  		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201  	};
202  	/*
203  	 * fields between dontcopy_begin/dontcopy_end
204  	 * are not copied in sock_copy()
205  	 */
206  	/* private: */
207  	int			skc_dontcopy_begin[0];
208  	/* public: */
209  	union {
210  		struct hlist_node	skc_node;
211  		struct hlist_nulls_node skc_nulls_node;
212  	};
213  	unsigned short		skc_tx_queue_mapping;
214  #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215  	unsigned short		skc_rx_queue_mapping;
216  #endif
217  	union {
218  		int		skc_incoming_cpu;
219  		u32		skc_rcv_wnd;
220  		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221  	};
222  
223  	refcount_t		skc_refcnt;
224  	/* private: */
225  	int                     skc_dontcopy_end[0];
226  	union {
227  		u32		skc_rxhash;
228  		u32		skc_window_clamp;
229  		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230  	};
231  	/* public: */
232  };
233  
234  struct bpf_local_storage;
235  struct sk_filter;
236  
237  /**
238    *	struct sock - network layer representation of sockets
239    *	@__sk_common: shared layout with inet_timewait_sock
240    *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241    *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242    *	@sk_lock:	synchronizer
243    *	@sk_kern_sock: True if sock is using kernel lock classes
244    *	@sk_rcvbuf: size of receive buffer in bytes
245    *	@sk_wq: sock wait queue and async head
246    *	@sk_rx_dst: receive input route used by early demux
247    *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248    *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
249    *	@sk_dst_cache: destination cache
250    *	@sk_dst_pending_confirm: need to confirm neighbour
251    *	@sk_policy: flow policy
252    *	@sk_receive_queue: incoming packets
253    *	@sk_wmem_alloc: transmit queue bytes committed
254    *	@sk_tsq_flags: TCP Small Queues flags
255    *	@sk_write_queue: Packet sending queue
256    *	@sk_omem_alloc: "o" is "option" or "other"
257    *	@sk_wmem_queued: persistent queue size
258    *	@sk_forward_alloc: space allocated forward
259    *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
260    *	@sk_napi_id: id of the last napi context to receive data for sk
261    *	@sk_ll_usec: usecs to busypoll when there is no data
262    *	@sk_allocation: allocation mode
263    *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264    *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
265    *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266    *	@sk_sndbuf: size of send buffer in bytes
267    *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268    *	@sk_no_check_rx: allow zero checksum in RX packets
269    *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270    *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271    *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272    *	@sk_gso_max_size: Maximum GSO segment size to build
273    *	@sk_gso_max_segs: Maximum number of GSO segments
274    *	@sk_pacing_shift: scaling factor for TCP Small Queues
275    *	@sk_lingertime: %SO_LINGER l_linger setting
276    *	@sk_backlog: always used with the per-socket spinlock held
277    *	@sk_callback_lock: used with the callbacks in the end of this struct
278    *	@sk_error_queue: rarely used
279    *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280    *			  IPV6_ADDRFORM for instance)
281    *	@sk_err: last error
282    *	@sk_err_soft: errors that don't cause failure but are the cause of a
283    *		      persistent failure not just 'timed out'
284    *	@sk_drops: raw/udp drops counter
285    *	@sk_ack_backlog: current listen backlog
286    *	@sk_max_ack_backlog: listen backlog set in listen()
287    *	@sk_uid: user id of owner
288    *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
289    *	@sk_busy_poll_budget: napi processing budget when busypolling
290    *	@sk_priority: %SO_PRIORITY setting
291    *	@sk_type: socket type (%SOCK_STREAM, etc)
292    *	@sk_protocol: which protocol this socket belongs in this network family
293    *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294    *	@sk_peer_pid: &struct pid for this socket's peer
295    *	@sk_peer_cred: %SO_PEERCRED setting
296    *	@sk_rcvlowat: %SO_RCVLOWAT setting
297    *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298    *	@sk_sndtimeo: %SO_SNDTIMEO setting
299    *	@sk_txhash: computed flow hash for use on transmit
300    *	@sk_txrehash: enable TX hash rethink
301    *	@sk_filter: socket filtering instructions
302    *	@sk_timer: sock cleanup timer
303    *	@sk_stamp: time stamp of last packet received
304    *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305    *	@sk_tsflags: SO_TIMESTAMPING flags
306    *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307    *			   Sockets that can be used under memory reclaim should
308    *			   set this to false.
309    *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310    *	              for timestamping
311    *	@sk_tskey: counter to disambiguate concurrent tstamp requests
312    *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
313    *	@sk_socket: Identd and reporting IO signals
314    *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315    *	@sk_frag: cached page frag
316    *	@sk_peek_off: current peek_offset value
317    *	@sk_send_head: front of stuff to transmit
318    *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319    *	@sk_security: used by security modules
320    *	@sk_mark: generic packet mark
321    *	@sk_cgrp_data: cgroup data for this cgroup
322    *	@sk_memcg: this socket's memory cgroup association
323    *	@sk_write_pending: a write to stream socket waits to start
324    *	@sk_disconnects: number of disconnect operations performed on this sock
325    *	@sk_state_change: callback to indicate change in the state of the sock
326    *	@sk_data_ready: callback to indicate there is data to be processed
327    *	@sk_write_space: callback to indicate there is bf sending space available
328    *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329    *	@sk_backlog_rcv: callback to process the backlog
330    *	@sk_validate_xmit_skb: ptr to an optional validate function
331    *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332    *	@sk_reuseport_cb: reuseport group container
333    *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334    *	@sk_rcu: used during RCU grace period
335    *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336    *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337    *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
338    *	@sk_txtime_unused: unused txtime flags
339    *	@ns_tracker: tracker for netns reference
340    *	@sk_user_frags: xarray of pages the user is holding a reference on.
341    */
342  struct sock {
343  	/*
344  	 * Now struct inet_timewait_sock also uses sock_common, so please just
345  	 * don't add nothing before this first member (__sk_common) --acme
346  	 */
347  	struct sock_common	__sk_common;
348  #define sk_node			__sk_common.skc_node
349  #define sk_nulls_node		__sk_common.skc_nulls_node
350  #define sk_refcnt		__sk_common.skc_refcnt
351  #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
352  #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
353  #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
354  #endif
355  
356  #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
357  #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
358  #define sk_hash			__sk_common.skc_hash
359  #define sk_portpair		__sk_common.skc_portpair
360  #define sk_num			__sk_common.skc_num
361  #define sk_dport		__sk_common.skc_dport
362  #define sk_addrpair		__sk_common.skc_addrpair
363  #define sk_daddr		__sk_common.skc_daddr
364  #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
365  #define sk_family		__sk_common.skc_family
366  #define sk_state		__sk_common.skc_state
367  #define sk_reuse		__sk_common.skc_reuse
368  #define sk_reuseport		__sk_common.skc_reuseport
369  #define sk_ipv6only		__sk_common.skc_ipv6only
370  #define sk_net_refcnt		__sk_common.skc_net_refcnt
371  #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
372  #define sk_bind_node		__sk_common.skc_bind_node
373  #define sk_prot			__sk_common.skc_prot
374  #define sk_net			__sk_common.skc_net
375  #define sk_v6_daddr		__sk_common.skc_v6_daddr
376  #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
377  #define sk_cookie		__sk_common.skc_cookie
378  #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
379  #define sk_flags		__sk_common.skc_flags
380  #define sk_rxhash		__sk_common.skc_rxhash
381  
382  	__cacheline_group_begin(sock_write_rx);
383  
384  	atomic_t		sk_drops;
385  	__s32			sk_peek_off;
386  	struct sk_buff_head	sk_error_queue;
387  	struct sk_buff_head	sk_receive_queue;
388  	/*
389  	 * The backlog queue is special, it is always used with
390  	 * the per-socket spinlock held and requires low latency
391  	 * access. Therefore we special case it's implementation.
392  	 * Note : rmem_alloc is in this structure to fill a hole
393  	 * on 64bit arches, not because its logically part of
394  	 * backlog.
395  	 */
396  	struct {
397  		atomic_t	rmem_alloc;
398  		int		len;
399  		struct sk_buff	*head;
400  		struct sk_buff	*tail;
401  	} sk_backlog;
402  #define sk_rmem_alloc sk_backlog.rmem_alloc
403  
404  	__cacheline_group_end(sock_write_rx);
405  
406  	__cacheline_group_begin(sock_read_rx);
407  	/* early demux fields */
408  	struct dst_entry __rcu	*sk_rx_dst;
409  	int			sk_rx_dst_ifindex;
410  	u32			sk_rx_dst_cookie;
411  
412  #ifdef CONFIG_NET_RX_BUSY_POLL
413  	unsigned int		sk_ll_usec;
414  	unsigned int		sk_napi_id;
415  	u16			sk_busy_poll_budget;
416  	u8			sk_prefer_busy_poll;
417  #endif
418  	u8			sk_userlocks;
419  	int			sk_rcvbuf;
420  
421  	struct sk_filter __rcu	*sk_filter;
422  	union {
423  		struct socket_wq __rcu	*sk_wq;
424  		/* private: */
425  		struct socket_wq	*sk_wq_raw;
426  		/* public: */
427  	};
428  
429  	void			(*sk_data_ready)(struct sock *sk);
430  	long			sk_rcvtimeo;
431  	int			sk_rcvlowat;
432  	__cacheline_group_end(sock_read_rx);
433  
434  	__cacheline_group_begin(sock_read_rxtx);
435  	int			sk_err;
436  	struct socket		*sk_socket;
437  	struct mem_cgroup	*sk_memcg;
438  #ifdef CONFIG_XFRM
439  	struct xfrm_policy __rcu *sk_policy[2];
440  #endif
441  	__cacheline_group_end(sock_read_rxtx);
442  
443  	__cacheline_group_begin(sock_write_rxtx);
444  	socket_lock_t		sk_lock;
445  	u32			sk_reserved_mem;
446  	int			sk_forward_alloc;
447  	u32			sk_tsflags;
448  	__cacheline_group_end(sock_write_rxtx);
449  
450  	__cacheline_group_begin(sock_write_tx);
451  	int			sk_write_pending;
452  	atomic_t		sk_omem_alloc;
453  	int			sk_sndbuf;
454  
455  	int			sk_wmem_queued;
456  	refcount_t		sk_wmem_alloc;
457  	unsigned long		sk_tsq_flags;
458  	union {
459  		struct sk_buff	*sk_send_head;
460  		struct rb_root	tcp_rtx_queue;
461  	};
462  	struct sk_buff_head	sk_write_queue;
463  	u32			sk_dst_pending_confirm;
464  	u32			sk_pacing_status; /* see enum sk_pacing */
465  	struct page_frag	sk_frag;
466  	struct timer_list	sk_timer;
467  
468  	unsigned long		sk_pacing_rate; /* bytes per second */
469  	atomic_t		sk_zckey;
470  	atomic_t		sk_tskey;
471  	__cacheline_group_end(sock_write_tx);
472  
473  	__cacheline_group_begin(sock_read_tx);
474  	unsigned long		sk_max_pacing_rate;
475  	long			sk_sndtimeo;
476  	u32			sk_priority;
477  	u32			sk_mark;
478  	struct dst_entry __rcu	*sk_dst_cache;
479  	netdev_features_t	sk_route_caps;
480  #ifdef CONFIG_SOCK_VALIDATE_XMIT
481  	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
482  							struct net_device *dev,
483  							struct sk_buff *skb);
484  #endif
485  	u16			sk_gso_type;
486  	u16			sk_gso_max_segs;
487  	unsigned int		sk_gso_max_size;
488  	gfp_t			sk_allocation;
489  	u32			sk_txhash;
490  	u8			sk_pacing_shift;
491  	bool			sk_use_task_frag;
492  	__cacheline_group_end(sock_read_tx);
493  
494  	/*
495  	 * Because of non atomicity rules, all
496  	 * changes are protected by socket lock.
497  	 */
498  	u8			sk_gso_disabled : 1,
499  				sk_kern_sock : 1,
500  				sk_no_check_tx : 1,
501  				sk_no_check_rx : 1;
502  	u8			sk_shutdown;
503  	u16			sk_type;
504  	u16			sk_protocol;
505  	unsigned long	        sk_lingertime;
506  	struct proto		*sk_prot_creator;
507  	rwlock_t		sk_callback_lock;
508  	int			sk_err_soft;
509  	u32			sk_ack_backlog;
510  	u32			sk_max_ack_backlog;
511  	kuid_t			sk_uid;
512  	spinlock_t		sk_peer_lock;
513  	int			sk_bind_phc;
514  	struct pid		*sk_peer_pid;
515  	const struct cred	*sk_peer_cred;
516  
517  	ktime_t			sk_stamp;
518  #if BITS_PER_LONG==32
519  	seqlock_t		sk_stamp_seq;
520  #endif
521  	int			sk_disconnects;
522  
523  	u8			sk_txrehash;
524  	u8			sk_clockid;
525  	u8			sk_txtime_deadline_mode : 1,
526  				sk_txtime_report_errors : 1,
527  				sk_txtime_unused : 6;
528  
529  	void			*sk_user_data;
530  #ifdef CONFIG_SECURITY
531  	void			*sk_security;
532  #endif
533  	struct sock_cgroup_data	sk_cgrp_data;
534  	void			(*sk_state_change)(struct sock *sk);
535  	void			(*sk_write_space)(struct sock *sk);
536  	void			(*sk_error_report)(struct sock *sk);
537  	int			(*sk_backlog_rcv)(struct sock *sk,
538  						  struct sk_buff *skb);
539  	void                    (*sk_destruct)(struct sock *sk);
540  	struct sock_reuseport __rcu	*sk_reuseport_cb;
541  #ifdef CONFIG_BPF_SYSCALL
542  	struct bpf_local_storage __rcu	*sk_bpf_storage;
543  #endif
544  	struct rcu_head		sk_rcu;
545  	netns_tracker		ns_tracker;
546  	struct xarray		sk_user_frags;
547  };
548  
549  struct sock_bh_locked {
550  	struct sock *sock;
551  	local_lock_t bh_lock;
552  };
553  
554  enum sk_pacing {
555  	SK_PACING_NONE		= 0,
556  	SK_PACING_NEEDED	= 1,
557  	SK_PACING_FQ		= 2,
558  };
559  
560  /* flag bits in sk_user_data
561   *
562   * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
563   *   not be suitable for copying when cloning the socket. For instance,
564   *   it can point to a reference counted object. sk_user_data bottom
565   *   bit is set if pointer must not be copied.
566   *
567   * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
568   *   managed/owned by a BPF reuseport array. This bit should be set
569   *   when sk_user_data's sk is added to the bpf's reuseport_array.
570   *
571   * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
572   *   sk_user_data points to psock type. This bit should be set
573   *   when sk_user_data is assigned to a psock object.
574   */
575  #define SK_USER_DATA_NOCOPY	1UL
576  #define SK_USER_DATA_BPF	2UL
577  #define SK_USER_DATA_PSOCK	4UL
578  #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
579  				  SK_USER_DATA_PSOCK)
580  
581  /**
582   * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
583   * @sk: socket
584   */
sk_user_data_is_nocopy(const struct sock * sk)585  static inline bool sk_user_data_is_nocopy(const struct sock *sk)
586  {
587  	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
588  }
589  
590  #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
591  
592  /**
593   * __locked_read_sk_user_data_with_flags - return the pointer
594   * only if argument flags all has been set in sk_user_data. Otherwise
595   * return NULL
596   *
597   * @sk: socket
598   * @flags: flag bits
599   *
600   * The caller must be holding sk->sk_callback_lock.
601   */
602  static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)603  __locked_read_sk_user_data_with_flags(const struct sock *sk,
604  				      uintptr_t flags)
605  {
606  	uintptr_t sk_user_data =
607  		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
608  						 lockdep_is_held(&sk->sk_callback_lock));
609  
610  	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
611  
612  	if ((sk_user_data & flags) == flags)
613  		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
614  	return NULL;
615  }
616  
617  /**
618   * __rcu_dereference_sk_user_data_with_flags - return the pointer
619   * only if argument flags all has been set in sk_user_data. Otherwise
620   * return NULL
621   *
622   * @sk: socket
623   * @flags: flag bits
624   */
625  static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)626  __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
627  					  uintptr_t flags)
628  {
629  	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
630  
631  	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
632  
633  	if ((sk_user_data & flags) == flags)
634  		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
635  	return NULL;
636  }
637  
638  #define rcu_dereference_sk_user_data(sk)				\
639  	__rcu_dereference_sk_user_data_with_flags(sk, 0)
640  #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
641  ({									\
642  	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
643  		  __tmp2 = (uintptr_t)(flags);				\
644  	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
645  	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
646  	rcu_assign_pointer(__sk_user_data((sk)),			\
647  			   __tmp1 | __tmp2);				\
648  })
649  #define rcu_assign_sk_user_data(sk, ptr)				\
650  	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
651  
652  static inline
sock_net(const struct sock * sk)653  struct net *sock_net(const struct sock *sk)
654  {
655  	return read_pnet(&sk->sk_net);
656  }
657  
658  static inline
sock_net_set(struct sock * sk,struct net * net)659  void sock_net_set(struct sock *sk, struct net *net)
660  {
661  	write_pnet(&sk->sk_net, net);
662  }
663  
664  /*
665   * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
666   * or not whether his port will be reused by someone else. SK_FORCE_REUSE
667   * on a socket means that the socket will reuse everybody else's port
668   * without looking at the other's sk_reuse value.
669   */
670  
671  #define SK_NO_REUSE	0
672  #define SK_CAN_REUSE	1
673  #define SK_FORCE_REUSE	2
674  
675  int sk_set_peek_off(struct sock *sk, int val);
676  
sk_peek_offset(const struct sock * sk,int flags)677  static inline int sk_peek_offset(const struct sock *sk, int flags)
678  {
679  	if (unlikely(flags & MSG_PEEK)) {
680  		return READ_ONCE(sk->sk_peek_off);
681  	}
682  
683  	return 0;
684  }
685  
sk_peek_offset_bwd(struct sock * sk,int val)686  static inline void sk_peek_offset_bwd(struct sock *sk, int val)
687  {
688  	s32 off = READ_ONCE(sk->sk_peek_off);
689  
690  	if (unlikely(off >= 0)) {
691  		off = max_t(s32, off - val, 0);
692  		WRITE_ONCE(sk->sk_peek_off, off);
693  	}
694  }
695  
sk_peek_offset_fwd(struct sock * sk,int val)696  static inline void sk_peek_offset_fwd(struct sock *sk, int val)
697  {
698  	sk_peek_offset_bwd(sk, -val);
699  }
700  
701  /*
702   * Hashed lists helper routines
703   */
sk_entry(const struct hlist_node * node)704  static inline struct sock *sk_entry(const struct hlist_node *node)
705  {
706  	return hlist_entry(node, struct sock, sk_node);
707  }
708  
__sk_head(const struct hlist_head * head)709  static inline struct sock *__sk_head(const struct hlist_head *head)
710  {
711  	return hlist_entry(head->first, struct sock, sk_node);
712  }
713  
sk_head(const struct hlist_head * head)714  static inline struct sock *sk_head(const struct hlist_head *head)
715  {
716  	return hlist_empty(head) ? NULL : __sk_head(head);
717  }
718  
__sk_nulls_head(const struct hlist_nulls_head * head)719  static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
720  {
721  	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
722  }
723  
sk_nulls_head(const struct hlist_nulls_head * head)724  static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
725  {
726  	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
727  }
728  
sk_next(const struct sock * sk)729  static inline struct sock *sk_next(const struct sock *sk)
730  {
731  	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
732  }
733  
sk_nulls_next(const struct sock * sk)734  static inline struct sock *sk_nulls_next(const struct sock *sk)
735  {
736  	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
737  		hlist_nulls_entry(sk->sk_nulls_node.next,
738  				  struct sock, sk_nulls_node) :
739  		NULL;
740  }
741  
sk_unhashed(const struct sock * sk)742  static inline bool sk_unhashed(const struct sock *sk)
743  {
744  	return hlist_unhashed(&sk->sk_node);
745  }
746  
sk_hashed(const struct sock * sk)747  static inline bool sk_hashed(const struct sock *sk)
748  {
749  	return !sk_unhashed(sk);
750  }
751  
sk_node_init(struct hlist_node * node)752  static inline void sk_node_init(struct hlist_node *node)
753  {
754  	node->pprev = NULL;
755  }
756  
__sk_del_node(struct sock * sk)757  static inline void __sk_del_node(struct sock *sk)
758  {
759  	__hlist_del(&sk->sk_node);
760  }
761  
762  /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)763  static inline bool __sk_del_node_init(struct sock *sk)
764  {
765  	if (sk_hashed(sk)) {
766  		__sk_del_node(sk);
767  		sk_node_init(&sk->sk_node);
768  		return true;
769  	}
770  	return false;
771  }
772  
773  /* Grab socket reference count. This operation is valid only
774     when sk is ALREADY grabbed f.e. it is found in hash table
775     or a list and the lookup is made under lock preventing hash table
776     modifications.
777   */
778  
sock_hold(struct sock * sk)779  static __always_inline void sock_hold(struct sock *sk)
780  {
781  	refcount_inc(&sk->sk_refcnt);
782  }
783  
784  /* Ungrab socket in the context, which assumes that socket refcnt
785     cannot hit zero, f.e. it is true in context of any socketcall.
786   */
__sock_put(struct sock * sk)787  static __always_inline void __sock_put(struct sock *sk)
788  {
789  	refcount_dec(&sk->sk_refcnt);
790  }
791  
sk_del_node_init(struct sock * sk)792  static inline bool sk_del_node_init(struct sock *sk)
793  {
794  	bool rc = __sk_del_node_init(sk);
795  
796  	if (rc) {
797  		/* paranoid for a while -acme */
798  		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
799  		__sock_put(sk);
800  	}
801  	return rc;
802  }
803  #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
804  
__sk_nulls_del_node_init_rcu(struct sock * sk)805  static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
806  {
807  	if (sk_hashed(sk)) {
808  		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
809  		return true;
810  	}
811  	return false;
812  }
813  
sk_nulls_del_node_init_rcu(struct sock * sk)814  static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
815  {
816  	bool rc = __sk_nulls_del_node_init_rcu(sk);
817  
818  	if (rc) {
819  		/* paranoid for a while -acme */
820  		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
821  		__sock_put(sk);
822  	}
823  	return rc;
824  }
825  
__sk_add_node(struct sock * sk,struct hlist_head * list)826  static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
827  {
828  	hlist_add_head(&sk->sk_node, list);
829  }
830  
sk_add_node(struct sock * sk,struct hlist_head * list)831  static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
832  {
833  	sock_hold(sk);
834  	__sk_add_node(sk, list);
835  }
836  
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)837  static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
838  {
839  	sock_hold(sk);
840  	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
841  	    sk->sk_family == AF_INET6)
842  		hlist_add_tail_rcu(&sk->sk_node, list);
843  	else
844  		hlist_add_head_rcu(&sk->sk_node, list);
845  }
846  
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)847  static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
848  {
849  	sock_hold(sk);
850  	hlist_add_tail_rcu(&sk->sk_node, list);
851  }
852  
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)853  static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
854  {
855  	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
856  }
857  
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)858  static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
859  {
860  	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
861  }
862  
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)863  static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
864  {
865  	sock_hold(sk);
866  	__sk_nulls_add_node_rcu(sk, list);
867  }
868  
__sk_del_bind_node(struct sock * sk)869  static inline void __sk_del_bind_node(struct sock *sk)
870  {
871  	__hlist_del(&sk->sk_bind_node);
872  }
873  
sk_add_bind_node(struct sock * sk,struct hlist_head * list)874  static inline void sk_add_bind_node(struct sock *sk,
875  					struct hlist_head *list)
876  {
877  	hlist_add_head(&sk->sk_bind_node, list);
878  }
879  
880  #define sk_for_each(__sk, list) \
881  	hlist_for_each_entry(__sk, list, sk_node)
882  #define sk_for_each_rcu(__sk, list) \
883  	hlist_for_each_entry_rcu(__sk, list, sk_node)
884  #define sk_nulls_for_each(__sk, node, list) \
885  	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
886  #define sk_nulls_for_each_rcu(__sk, node, list) \
887  	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
888  #define sk_for_each_from(__sk) \
889  	hlist_for_each_entry_from(__sk, sk_node)
890  #define sk_nulls_for_each_from(__sk, node) \
891  	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
892  		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
893  #define sk_for_each_safe(__sk, tmp, list) \
894  	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
895  #define sk_for_each_bound(__sk, list) \
896  	hlist_for_each_entry(__sk, list, sk_bind_node)
897  #define sk_for_each_bound_safe(__sk, tmp, list) \
898  	hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
899  
900  /**
901   * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
902   * @tpos:	the type * to use as a loop cursor.
903   * @pos:	the &struct hlist_node to use as a loop cursor.
904   * @head:	the head for your list.
905   * @offset:	offset of hlist_node within the struct.
906   *
907   */
908  #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
909  	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
910  	     pos != NULL &&						       \
911  		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
912  	     pos = rcu_dereference(hlist_next_rcu(pos)))
913  
sk_user_ns(const struct sock * sk)914  static inline struct user_namespace *sk_user_ns(const struct sock *sk)
915  {
916  	/* Careful only use this in a context where these parameters
917  	 * can not change and must all be valid, such as recvmsg from
918  	 * userspace.
919  	 */
920  	return sk->sk_socket->file->f_cred->user_ns;
921  }
922  
923  /* Sock flags */
924  enum sock_flags {
925  	SOCK_DEAD,
926  	SOCK_DONE,
927  	SOCK_URGINLINE,
928  	SOCK_KEEPOPEN,
929  	SOCK_LINGER,
930  	SOCK_DESTROY,
931  	SOCK_BROADCAST,
932  	SOCK_TIMESTAMP,
933  	SOCK_ZAPPED,
934  	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
935  	SOCK_DBG, /* %SO_DEBUG setting */
936  	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
937  	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
938  	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
939  	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
940  	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
941  	SOCK_FASYNC, /* fasync() active */
942  	SOCK_RXQ_OVFL,
943  	SOCK_ZEROCOPY, /* buffers from userspace */
944  	SOCK_WIFI_STATUS, /* push wifi status to userspace */
945  	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
946  		     * Will use last 4 bytes of packet sent from
947  		     * user-space instead.
948  		     */
949  	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
950  	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
951  	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
952  	SOCK_TXTIME,
953  	SOCK_XDP, /* XDP is attached */
954  	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
955  	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
956  };
957  
958  #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
959  
sock_copy_flags(struct sock * nsk,const struct sock * osk)960  static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
961  {
962  	nsk->sk_flags = osk->sk_flags;
963  }
964  
sock_set_flag(struct sock * sk,enum sock_flags flag)965  static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
966  {
967  	__set_bit(flag, &sk->sk_flags);
968  }
969  
sock_reset_flag(struct sock * sk,enum sock_flags flag)970  static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
971  {
972  	__clear_bit(flag, &sk->sk_flags);
973  }
974  
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)975  static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
976  				     int valbool)
977  {
978  	if (valbool)
979  		sock_set_flag(sk, bit);
980  	else
981  		sock_reset_flag(sk, bit);
982  }
983  
sock_flag(const struct sock * sk,enum sock_flags flag)984  static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
985  {
986  	return test_bit(flag, &sk->sk_flags);
987  }
988  
989  #ifdef CONFIG_NET
990  DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)991  static inline int sk_memalloc_socks(void)
992  {
993  	return static_branch_unlikely(&memalloc_socks_key);
994  }
995  
996  void __receive_sock(struct file *file);
997  #else
998  
sk_memalloc_socks(void)999  static inline int sk_memalloc_socks(void)
1000  {
1001  	return 0;
1002  }
1003  
__receive_sock(struct file * file)1004  static inline void __receive_sock(struct file *file)
1005  { }
1006  #endif
1007  
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1008  static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1009  {
1010  	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1011  }
1012  
sk_acceptq_removed(struct sock * sk)1013  static inline void sk_acceptq_removed(struct sock *sk)
1014  {
1015  	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1016  }
1017  
sk_acceptq_added(struct sock * sk)1018  static inline void sk_acceptq_added(struct sock *sk)
1019  {
1020  	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1021  }
1022  
1023  /* Note: If you think the test should be:
1024   *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1025   * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1026   */
sk_acceptq_is_full(const struct sock * sk)1027  static inline bool sk_acceptq_is_full(const struct sock *sk)
1028  {
1029  	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1030  }
1031  
1032  /*
1033   * Compute minimal free write space needed to queue new packets.
1034   */
sk_stream_min_wspace(const struct sock * sk)1035  static inline int sk_stream_min_wspace(const struct sock *sk)
1036  {
1037  	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1038  }
1039  
sk_stream_wspace(const struct sock * sk)1040  static inline int sk_stream_wspace(const struct sock *sk)
1041  {
1042  	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1043  }
1044  
sk_wmem_queued_add(struct sock * sk,int val)1045  static inline void sk_wmem_queued_add(struct sock *sk, int val)
1046  {
1047  	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1048  }
1049  
sk_forward_alloc_add(struct sock * sk,int val)1050  static inline void sk_forward_alloc_add(struct sock *sk, int val)
1051  {
1052  	/* Paired with lockless reads of sk->sk_forward_alloc */
1053  	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1054  }
1055  
1056  void sk_stream_write_space(struct sock *sk);
1057  
1058  /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1059  static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1060  {
1061  	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1062  	skb_dst_force(skb);
1063  
1064  	if (!sk->sk_backlog.tail)
1065  		WRITE_ONCE(sk->sk_backlog.head, skb);
1066  	else
1067  		sk->sk_backlog.tail->next = skb;
1068  
1069  	WRITE_ONCE(sk->sk_backlog.tail, skb);
1070  	skb->next = NULL;
1071  }
1072  
1073  /*
1074   * Take into account size of receive queue and backlog queue
1075   * Do not take into account this skb truesize,
1076   * to allow even a single big packet to come.
1077   */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1078  static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1079  {
1080  	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1081  
1082  	return qsize > limit;
1083  }
1084  
1085  /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1086  static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1087  					      unsigned int limit)
1088  {
1089  	if (sk_rcvqueues_full(sk, limit))
1090  		return -ENOBUFS;
1091  
1092  	/*
1093  	 * If the skb was allocated from pfmemalloc reserves, only
1094  	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1095  	 * helping free memory
1096  	 */
1097  	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1098  		return -ENOMEM;
1099  
1100  	__sk_add_backlog(sk, skb);
1101  	sk->sk_backlog.len += skb->truesize;
1102  	return 0;
1103  }
1104  
1105  int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1106  
1107  INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1108  INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1109  
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1110  static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1111  {
1112  	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1113  		return __sk_backlog_rcv(sk, skb);
1114  
1115  	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1116  				  tcp_v6_do_rcv,
1117  				  tcp_v4_do_rcv,
1118  				  sk, skb);
1119  }
1120  
sk_incoming_cpu_update(struct sock * sk)1121  static inline void sk_incoming_cpu_update(struct sock *sk)
1122  {
1123  	int cpu = raw_smp_processor_id();
1124  
1125  	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1126  		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1127  }
1128  
1129  
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1130  static inline void sock_rps_save_rxhash(struct sock *sk,
1131  					const struct sk_buff *skb)
1132  {
1133  #ifdef CONFIG_RPS
1134  	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1135  	 * here, and another one in sock_rps_record_flow().
1136  	 */
1137  	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1138  		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1139  #endif
1140  }
1141  
sock_rps_reset_rxhash(struct sock * sk)1142  static inline void sock_rps_reset_rxhash(struct sock *sk)
1143  {
1144  #ifdef CONFIG_RPS
1145  	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1146  	WRITE_ONCE(sk->sk_rxhash, 0);
1147  #endif
1148  }
1149  
1150  #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1151  	({	int __rc, __dis = __sk->sk_disconnects;			\
1152  		release_sock(__sk);					\
1153  		__rc = __condition;					\
1154  		if (!__rc) {						\
1155  			*(__timeo) = wait_woken(__wait,			\
1156  						TASK_INTERRUPTIBLE,	\
1157  						*(__timeo));		\
1158  		}							\
1159  		sched_annotate_sleep();					\
1160  		lock_sock(__sk);					\
1161  		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1162  		__rc;							\
1163  	})
1164  
1165  int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1166  int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1167  void sk_stream_wait_close(struct sock *sk, long timeo_p);
1168  int sk_stream_error(struct sock *sk, int flags, int err);
1169  void sk_stream_kill_queues(struct sock *sk);
1170  void sk_set_memalloc(struct sock *sk);
1171  void sk_clear_memalloc(struct sock *sk);
1172  
1173  void __sk_flush_backlog(struct sock *sk);
1174  
sk_flush_backlog(struct sock * sk)1175  static inline bool sk_flush_backlog(struct sock *sk)
1176  {
1177  	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1178  		__sk_flush_backlog(sk);
1179  		return true;
1180  	}
1181  	return false;
1182  }
1183  
1184  int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1185  
1186  struct request_sock_ops;
1187  struct timewait_sock_ops;
1188  struct inet_hashinfo;
1189  struct raw_hashinfo;
1190  struct smc_hashinfo;
1191  struct module;
1192  struct sk_psock;
1193  
1194  /*
1195   * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1196   * un-modified. Special care is taken when initializing object to zero.
1197   */
sk_prot_clear_nulls(struct sock * sk,int size)1198  static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1199  {
1200  	if (offsetof(struct sock, sk_node.next) != 0)
1201  		memset(sk, 0, offsetof(struct sock, sk_node.next));
1202  	memset(&sk->sk_node.pprev, 0,
1203  	       size - offsetof(struct sock, sk_node.pprev));
1204  }
1205  
1206  struct proto_accept_arg {
1207  	int flags;
1208  	int err;
1209  	int is_empty;
1210  	bool kern;
1211  };
1212  
1213  /* Networking protocol blocks we attach to sockets.
1214   * socket layer -> transport layer interface
1215   */
1216  struct proto {
1217  	void			(*close)(struct sock *sk,
1218  					long timeout);
1219  	int			(*pre_connect)(struct sock *sk,
1220  					struct sockaddr *uaddr,
1221  					int addr_len);
1222  	int			(*connect)(struct sock *sk,
1223  					struct sockaddr *uaddr,
1224  					int addr_len);
1225  	int			(*disconnect)(struct sock *sk, int flags);
1226  
1227  	struct sock *		(*accept)(struct sock *sk,
1228  					  struct proto_accept_arg *arg);
1229  
1230  	int			(*ioctl)(struct sock *sk, int cmd,
1231  					 int *karg);
1232  	int			(*init)(struct sock *sk);
1233  	void			(*destroy)(struct sock *sk);
1234  	void			(*shutdown)(struct sock *sk, int how);
1235  	int			(*setsockopt)(struct sock *sk, int level,
1236  					int optname, sockptr_t optval,
1237  					unsigned int optlen);
1238  	int			(*getsockopt)(struct sock *sk, int level,
1239  					int optname, char __user *optval,
1240  					int __user *option);
1241  	void			(*keepalive)(struct sock *sk, int valbool);
1242  #ifdef CONFIG_COMPAT
1243  	int			(*compat_ioctl)(struct sock *sk,
1244  					unsigned int cmd, unsigned long arg);
1245  #endif
1246  	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1247  					   size_t len);
1248  	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1249  					   size_t len, int flags, int *addr_len);
1250  	void			(*splice_eof)(struct socket *sock);
1251  	int			(*bind)(struct sock *sk,
1252  					struct sockaddr *addr, int addr_len);
1253  	int			(*bind_add)(struct sock *sk,
1254  					struct sockaddr *addr, int addr_len);
1255  
1256  	int			(*backlog_rcv) (struct sock *sk,
1257  						struct sk_buff *skb);
1258  	bool			(*bpf_bypass_getsockopt)(int level,
1259  							 int optname);
1260  
1261  	void		(*release_cb)(struct sock *sk);
1262  
1263  	/* Keeping track of sk's, looking them up, and port selection methods. */
1264  	int			(*hash)(struct sock *sk);
1265  	void			(*unhash)(struct sock *sk);
1266  	void			(*rehash)(struct sock *sk);
1267  	int			(*get_port)(struct sock *sk, unsigned short snum);
1268  	void			(*put_port)(struct sock *sk);
1269  #ifdef CONFIG_BPF_SYSCALL
1270  	int			(*psock_update_sk_prot)(struct sock *sk,
1271  							struct sk_psock *psock,
1272  							bool restore);
1273  #endif
1274  
1275  	/* Keeping track of sockets in use */
1276  #ifdef CONFIG_PROC_FS
1277  	unsigned int		inuse_idx;
1278  #endif
1279  
1280  #if IS_ENABLED(CONFIG_MPTCP)
1281  	int			(*forward_alloc_get)(const struct sock *sk);
1282  #endif
1283  
1284  	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1285  	bool			(*sock_is_readable)(struct sock *sk);
1286  	/* Memory pressure */
1287  	void			(*enter_memory_pressure)(struct sock *sk);
1288  	void			(*leave_memory_pressure)(struct sock *sk);
1289  	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1290  	int  __percpu		*per_cpu_fw_alloc;
1291  	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1292  
1293  	/*
1294  	 * Pressure flag: try to collapse.
1295  	 * Technical note: it is used by multiple contexts non atomically.
1296  	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1297  	 * All the __sk_mem_schedule() is of this nature: accounting
1298  	 * is strict, actions are advisory and have some latency.
1299  	 */
1300  	unsigned long		*memory_pressure;
1301  	long			*sysctl_mem;
1302  
1303  	int			*sysctl_wmem;
1304  	int			*sysctl_rmem;
1305  	u32			sysctl_wmem_offset;
1306  	u32			sysctl_rmem_offset;
1307  
1308  	int			max_header;
1309  	bool			no_autobind;
1310  
1311  	struct kmem_cache	*slab;
1312  	unsigned int		obj_size;
1313  	unsigned int		ipv6_pinfo_offset;
1314  	slab_flags_t		slab_flags;
1315  	unsigned int		useroffset;	/* Usercopy region offset */
1316  	unsigned int		usersize;	/* Usercopy region size */
1317  
1318  	unsigned int __percpu	*orphan_count;
1319  
1320  	struct request_sock_ops	*rsk_prot;
1321  	struct timewait_sock_ops *twsk_prot;
1322  
1323  	union {
1324  		struct inet_hashinfo	*hashinfo;
1325  		struct udp_table	*udp_table;
1326  		struct raw_hashinfo	*raw_hash;
1327  		struct smc_hashinfo	*smc_hash;
1328  	} h;
1329  
1330  	struct module		*owner;
1331  
1332  	char			name[32];
1333  
1334  	struct list_head	node;
1335  	int			(*diag_destroy)(struct sock *sk, int err);
1336  } __randomize_layout;
1337  
1338  int proto_register(struct proto *prot, int alloc_slab);
1339  void proto_unregister(struct proto *prot);
1340  int sock_load_diag_module(int family, int protocol);
1341  
1342  INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1343  
sk_forward_alloc_get(const struct sock * sk)1344  static inline int sk_forward_alloc_get(const struct sock *sk)
1345  {
1346  #if IS_ENABLED(CONFIG_MPTCP)
1347  	if (sk->sk_prot->forward_alloc_get)
1348  		return sk->sk_prot->forward_alloc_get(sk);
1349  #endif
1350  	return READ_ONCE(sk->sk_forward_alloc);
1351  }
1352  
__sk_stream_memory_free(const struct sock * sk,int wake)1353  static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1354  {
1355  	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1356  		return false;
1357  
1358  	return sk->sk_prot->stream_memory_free ?
1359  		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1360  				     tcp_stream_memory_free, sk, wake) : true;
1361  }
1362  
sk_stream_memory_free(const struct sock * sk)1363  static inline bool sk_stream_memory_free(const struct sock *sk)
1364  {
1365  	return __sk_stream_memory_free(sk, 0);
1366  }
1367  
__sk_stream_is_writeable(const struct sock * sk,int wake)1368  static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1369  {
1370  	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1371  	       __sk_stream_memory_free(sk, wake);
1372  }
1373  
sk_stream_is_writeable(const struct sock * sk)1374  static inline bool sk_stream_is_writeable(const struct sock *sk)
1375  {
1376  	return __sk_stream_is_writeable(sk, 0);
1377  }
1378  
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1379  static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1380  					    struct cgroup *ancestor)
1381  {
1382  #ifdef CONFIG_SOCK_CGROUP_DATA
1383  	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1384  				    ancestor);
1385  #else
1386  	return -ENOTSUPP;
1387  #endif
1388  }
1389  
1390  #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1391  
sk_sockets_allocated_dec(struct sock * sk)1392  static inline void sk_sockets_allocated_dec(struct sock *sk)
1393  {
1394  	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1395  				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1396  }
1397  
sk_sockets_allocated_inc(struct sock * sk)1398  static inline void sk_sockets_allocated_inc(struct sock *sk)
1399  {
1400  	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1401  				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1402  }
1403  
1404  static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1405  sk_sockets_allocated_read_positive(struct sock *sk)
1406  {
1407  	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1408  }
1409  
1410  static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1411  proto_sockets_allocated_sum_positive(struct proto *prot)
1412  {
1413  	return percpu_counter_sum_positive(prot->sockets_allocated);
1414  }
1415  
1416  #ifdef CONFIG_PROC_FS
1417  #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1418  struct prot_inuse {
1419  	int all;
1420  	int val[PROTO_INUSE_NR];
1421  };
1422  
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1423  static inline void sock_prot_inuse_add(const struct net *net,
1424  				       const struct proto *prot, int val)
1425  {
1426  	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1427  }
1428  
sock_inuse_add(const struct net * net,int val)1429  static inline void sock_inuse_add(const struct net *net, int val)
1430  {
1431  	this_cpu_add(net->core.prot_inuse->all, val);
1432  }
1433  
1434  int sock_prot_inuse_get(struct net *net, struct proto *proto);
1435  int sock_inuse_get(struct net *net);
1436  #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1437  static inline void sock_prot_inuse_add(const struct net *net,
1438  				       const struct proto *prot, int val)
1439  {
1440  }
1441  
sock_inuse_add(const struct net * net,int val)1442  static inline void sock_inuse_add(const struct net *net, int val)
1443  {
1444  }
1445  #endif
1446  
1447  
1448  /* With per-bucket locks this operation is not-atomic, so that
1449   * this version is not worse.
1450   */
__sk_prot_rehash(struct sock * sk)1451  static inline int __sk_prot_rehash(struct sock *sk)
1452  {
1453  	sk->sk_prot->unhash(sk);
1454  	return sk->sk_prot->hash(sk);
1455  }
1456  
1457  /* About 10 seconds */
1458  #define SOCK_DESTROY_TIME (10*HZ)
1459  
1460  /* Sockets 0-1023 can't be bound to unless you are superuser */
1461  #define PROT_SOCK	1024
1462  
1463  #define SHUTDOWN_MASK	3
1464  #define RCV_SHUTDOWN	1
1465  #define SEND_SHUTDOWN	2
1466  
1467  #define SOCK_BINDADDR_LOCK	4
1468  #define SOCK_BINDPORT_LOCK	8
1469  
1470  struct socket_alloc {
1471  	struct socket socket;
1472  	struct inode vfs_inode;
1473  };
1474  
SOCKET_I(struct inode * inode)1475  static inline struct socket *SOCKET_I(struct inode *inode)
1476  {
1477  	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1478  }
1479  
SOCK_INODE(struct socket * socket)1480  static inline struct inode *SOCK_INODE(struct socket *socket)
1481  {
1482  	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1483  }
1484  
1485  /*
1486   * Functions for memory accounting
1487   */
1488  int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1489  int __sk_mem_schedule(struct sock *sk, int size, int kind);
1490  void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1491  void __sk_mem_reclaim(struct sock *sk, int amount);
1492  
1493  #define SK_MEM_SEND	0
1494  #define SK_MEM_RECV	1
1495  
1496  /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1497  static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1498  {
1499  	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1500  }
1501  
sk_mem_pages(int amt)1502  static inline int sk_mem_pages(int amt)
1503  {
1504  	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1505  }
1506  
sk_has_account(struct sock * sk)1507  static inline bool sk_has_account(struct sock *sk)
1508  {
1509  	/* return true if protocol supports memory accounting */
1510  	return !!sk->sk_prot->memory_allocated;
1511  }
1512  
sk_wmem_schedule(struct sock * sk,int size)1513  static inline bool sk_wmem_schedule(struct sock *sk, int size)
1514  {
1515  	int delta;
1516  
1517  	if (!sk_has_account(sk))
1518  		return true;
1519  	delta = size - sk->sk_forward_alloc;
1520  	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1521  }
1522  
1523  static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1524  sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1525  {
1526  	int delta;
1527  
1528  	if (!sk_has_account(sk))
1529  		return true;
1530  	delta = size - sk->sk_forward_alloc;
1531  	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1532  		skb_pfmemalloc(skb);
1533  }
1534  
sk_unused_reserved_mem(const struct sock * sk)1535  static inline int sk_unused_reserved_mem(const struct sock *sk)
1536  {
1537  	int unused_mem;
1538  
1539  	if (likely(!sk->sk_reserved_mem))
1540  		return 0;
1541  
1542  	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1543  			atomic_read(&sk->sk_rmem_alloc);
1544  
1545  	return unused_mem > 0 ? unused_mem : 0;
1546  }
1547  
sk_mem_reclaim(struct sock * sk)1548  static inline void sk_mem_reclaim(struct sock *sk)
1549  {
1550  	int reclaimable;
1551  
1552  	if (!sk_has_account(sk))
1553  		return;
1554  
1555  	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1556  
1557  	if (reclaimable >= (int)PAGE_SIZE)
1558  		__sk_mem_reclaim(sk, reclaimable);
1559  }
1560  
sk_mem_reclaim_final(struct sock * sk)1561  static inline void sk_mem_reclaim_final(struct sock *sk)
1562  {
1563  	sk->sk_reserved_mem = 0;
1564  	sk_mem_reclaim(sk);
1565  }
1566  
sk_mem_charge(struct sock * sk,int size)1567  static inline void sk_mem_charge(struct sock *sk, int size)
1568  {
1569  	if (!sk_has_account(sk))
1570  		return;
1571  	sk_forward_alloc_add(sk, -size);
1572  }
1573  
sk_mem_uncharge(struct sock * sk,int size)1574  static inline void sk_mem_uncharge(struct sock *sk, int size)
1575  {
1576  	if (!sk_has_account(sk))
1577  		return;
1578  	sk_forward_alloc_add(sk, size);
1579  	sk_mem_reclaim(sk);
1580  }
1581  
1582  /*
1583   * Macro so as to not evaluate some arguments when
1584   * lockdep is not enabled.
1585   *
1586   * Mark both the sk_lock and the sk_lock.slock as a
1587   * per-address-family lock class.
1588   */
1589  #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1590  do {									\
1591  	sk->sk_lock.owned = 0;						\
1592  	init_waitqueue_head(&sk->sk_lock.wq);				\
1593  	spin_lock_init(&(sk)->sk_lock.slock);				\
1594  	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1595  			sizeof((sk)->sk_lock));				\
1596  	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1597  				(skey), (sname));				\
1598  	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1599  } while (0)
1600  
lockdep_sock_is_held(const struct sock * sk)1601  static inline bool lockdep_sock_is_held(const struct sock *sk)
1602  {
1603  	return lockdep_is_held(&sk->sk_lock) ||
1604  	       lockdep_is_held(&sk->sk_lock.slock);
1605  }
1606  
1607  void lock_sock_nested(struct sock *sk, int subclass);
1608  
lock_sock(struct sock * sk)1609  static inline void lock_sock(struct sock *sk)
1610  {
1611  	lock_sock_nested(sk, 0);
1612  }
1613  
1614  void __lock_sock(struct sock *sk);
1615  void __release_sock(struct sock *sk);
1616  void release_sock(struct sock *sk);
1617  
1618  /* BH context may only use the following locking interface. */
1619  #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1620  #define bh_lock_sock_nested(__sk) \
1621  				spin_lock_nested(&((__sk)->sk_lock.slock), \
1622  				SINGLE_DEPTH_NESTING)
1623  #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1624  
1625  bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1626  
1627  /**
1628   * lock_sock_fast - fast version of lock_sock
1629   * @sk: socket
1630   *
1631   * This version should be used for very small section, where process won't block
1632   * return false if fast path is taken:
1633   *
1634   *   sk_lock.slock locked, owned = 0, BH disabled
1635   *
1636   * return true if slow path is taken:
1637   *
1638   *   sk_lock.slock unlocked, owned = 1, BH enabled
1639   */
lock_sock_fast(struct sock * sk)1640  static inline bool lock_sock_fast(struct sock *sk)
1641  {
1642  	/* The sk_lock has mutex_lock() semantics here. */
1643  	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1644  
1645  	return __lock_sock_fast(sk);
1646  }
1647  
1648  /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1649  static inline bool lock_sock_fast_nested(struct sock *sk)
1650  {
1651  	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1652  
1653  	return __lock_sock_fast(sk);
1654  }
1655  
1656  /**
1657   * unlock_sock_fast - complement of lock_sock_fast
1658   * @sk: socket
1659   * @slow: slow mode
1660   *
1661   * fast unlock socket for user context.
1662   * If slow mode is on, we call regular release_sock()
1663   */
unlock_sock_fast(struct sock * sk,bool slow)1664  static inline void unlock_sock_fast(struct sock *sk, bool slow)
1665  	__releases(&sk->sk_lock.slock)
1666  {
1667  	if (slow) {
1668  		release_sock(sk);
1669  		__release(&sk->sk_lock.slock);
1670  	} else {
1671  		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1672  		spin_unlock_bh(&sk->sk_lock.slock);
1673  	}
1674  }
1675  
1676  void sockopt_lock_sock(struct sock *sk);
1677  void sockopt_release_sock(struct sock *sk);
1678  bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1679  bool sockopt_capable(int cap);
1680  
1681  /* Used by processes to "lock" a socket state, so that
1682   * interrupts and bottom half handlers won't change it
1683   * from under us. It essentially blocks any incoming
1684   * packets, so that we won't get any new data or any
1685   * packets that change the state of the socket.
1686   *
1687   * While locked, BH processing will add new packets to
1688   * the backlog queue.  This queue is processed by the
1689   * owner of the socket lock right before it is released.
1690   *
1691   * Since ~2.3.5 it is also exclusive sleep lock serializing
1692   * accesses from user process context.
1693   */
1694  
sock_owned_by_me(const struct sock * sk)1695  static inline void sock_owned_by_me(const struct sock *sk)
1696  {
1697  #ifdef CONFIG_LOCKDEP
1698  	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1699  #endif
1700  }
1701  
sock_not_owned_by_me(const struct sock * sk)1702  static inline void sock_not_owned_by_me(const struct sock *sk)
1703  {
1704  #ifdef CONFIG_LOCKDEP
1705  	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1706  #endif
1707  }
1708  
sock_owned_by_user(const struct sock * sk)1709  static inline bool sock_owned_by_user(const struct sock *sk)
1710  {
1711  	sock_owned_by_me(sk);
1712  	return sk->sk_lock.owned;
1713  }
1714  
sock_owned_by_user_nocheck(const struct sock * sk)1715  static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1716  {
1717  	return sk->sk_lock.owned;
1718  }
1719  
sock_release_ownership(struct sock * sk)1720  static inline void sock_release_ownership(struct sock *sk)
1721  {
1722  	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1723  	sk->sk_lock.owned = 0;
1724  
1725  	/* The sk_lock has mutex_unlock() semantics: */
1726  	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1727  }
1728  
1729  /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1730  static inline bool sock_allow_reclassification(const struct sock *csk)
1731  {
1732  	struct sock *sk = (struct sock *)csk;
1733  
1734  	return !sock_owned_by_user_nocheck(sk) &&
1735  		!spin_is_locked(&sk->sk_lock.slock);
1736  }
1737  
1738  struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1739  		      struct proto *prot, int kern);
1740  void sk_free(struct sock *sk);
1741  void sk_destruct(struct sock *sk);
1742  struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1743  void sk_free_unlock_clone(struct sock *sk);
1744  
1745  struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1746  			     gfp_t priority);
1747  void __sock_wfree(struct sk_buff *skb);
1748  void sock_wfree(struct sk_buff *skb);
1749  struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1750  			     gfp_t priority);
1751  void skb_orphan_partial(struct sk_buff *skb);
1752  void sock_rfree(struct sk_buff *skb);
1753  void sock_efree(struct sk_buff *skb);
1754  #ifdef CONFIG_INET
1755  void sock_edemux(struct sk_buff *skb);
1756  void sock_pfree(struct sk_buff *skb);
1757  #else
1758  #define sock_edemux sock_efree
1759  #endif
1760  
1761  int sk_setsockopt(struct sock *sk, int level, int optname,
1762  		  sockptr_t optval, unsigned int optlen);
1763  int sock_setsockopt(struct socket *sock, int level, int op,
1764  		    sockptr_t optval, unsigned int optlen);
1765  int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1766  		       int optname, sockptr_t optval, int optlen);
1767  int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1768  		       int optname, sockptr_t optval, sockptr_t optlen);
1769  
1770  int sk_getsockopt(struct sock *sk, int level, int optname,
1771  		  sockptr_t optval, sockptr_t optlen);
1772  int sock_gettstamp(struct socket *sock, void __user *userstamp,
1773  		   bool timeval, bool time32);
1774  struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1775  				     unsigned long data_len, int noblock,
1776  				     int *errcode, int max_page_order);
1777  
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1778  static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1779  						  unsigned long size,
1780  						  int noblock, int *errcode)
1781  {
1782  	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1783  }
1784  
1785  void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1786  void sock_kfree_s(struct sock *sk, void *mem, int size);
1787  void sock_kzfree_s(struct sock *sk, void *mem, int size);
1788  void sk_send_sigurg(struct sock *sk);
1789  
sock_replace_proto(struct sock * sk,struct proto * proto)1790  static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1791  {
1792  	if (sk->sk_socket)
1793  		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1794  	WRITE_ONCE(sk->sk_prot, proto);
1795  }
1796  
1797  struct sockcm_cookie {
1798  	u64 transmit_time;
1799  	u32 mark;
1800  	u32 tsflags;
1801  };
1802  
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1803  static inline void sockcm_init(struct sockcm_cookie *sockc,
1804  			       const struct sock *sk)
1805  {
1806  	*sockc = (struct sockcm_cookie) {
1807  		.tsflags = READ_ONCE(sk->sk_tsflags)
1808  	};
1809  }
1810  
1811  int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1812  		     struct sockcm_cookie *sockc);
1813  int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1814  		   struct sockcm_cookie *sockc);
1815  
1816  /*
1817   * Functions to fill in entries in struct proto_ops when a protocol
1818   * does not implement a particular function.
1819   */
1820  int sock_no_bind(struct socket *, struct sockaddr *, int);
1821  int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1822  int sock_no_socketpair(struct socket *, struct socket *);
1823  int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1824  int sock_no_getname(struct socket *, struct sockaddr *, int);
1825  int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1826  int sock_no_listen(struct socket *, int);
1827  int sock_no_shutdown(struct socket *, int);
1828  int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1829  int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1830  int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1831  int sock_no_mmap(struct file *file, struct socket *sock,
1832  		 struct vm_area_struct *vma);
1833  
1834  /*
1835   * Functions to fill in entries in struct proto_ops when a protocol
1836   * uses the inet style.
1837   */
1838  int sock_common_getsockopt(struct socket *sock, int level, int optname,
1839  				  char __user *optval, int __user *optlen);
1840  int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1841  			int flags);
1842  int sock_common_setsockopt(struct socket *sock, int level, int optname,
1843  			   sockptr_t optval, unsigned int optlen);
1844  
1845  void sk_common_release(struct sock *sk);
1846  
1847  /*
1848   *	Default socket callbacks and setup code
1849   */
1850  
1851  /* Initialise core socket variables using an explicit uid. */
1852  void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1853  
1854  /* Initialise core socket variables.
1855   * Assumes struct socket *sock is embedded in a struct socket_alloc.
1856   */
1857  void sock_init_data(struct socket *sock, struct sock *sk);
1858  
1859  /*
1860   * Socket reference counting postulates.
1861   *
1862   * * Each user of socket SHOULD hold a reference count.
1863   * * Each access point to socket (an hash table bucket, reference from a list,
1864   *   running timer, skb in flight MUST hold a reference count.
1865   * * When reference count hits 0, it means it will never increase back.
1866   * * When reference count hits 0, it means that no references from
1867   *   outside exist to this socket and current process on current CPU
1868   *   is last user and may/should destroy this socket.
1869   * * sk_free is called from any context: process, BH, IRQ. When
1870   *   it is called, socket has no references from outside -> sk_free
1871   *   may release descendant resources allocated by the socket, but
1872   *   to the time when it is called, socket is NOT referenced by any
1873   *   hash tables, lists etc.
1874   * * Packets, delivered from outside (from network or from another process)
1875   *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1876   *   when they sit in queue. Otherwise, packets will leak to hole, when
1877   *   socket is looked up by one cpu and unhasing is made by another CPU.
1878   *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1879   *   (leak to backlog). Packet socket does all the processing inside
1880   *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1881   *   use separate SMP lock, so that they are prone too.
1882   */
1883  
1884  /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1885  static inline void sock_put(struct sock *sk)
1886  {
1887  	if (refcount_dec_and_test(&sk->sk_refcnt))
1888  		sk_free(sk);
1889  }
1890  /* Generic version of sock_put(), dealing with all sockets
1891   * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1892   */
1893  void sock_gen_put(struct sock *sk);
1894  
1895  int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1896  		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1897  static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1898  				 const int nested)
1899  {
1900  	return __sk_receive_skb(sk, skb, nested, 1, true);
1901  }
1902  
sk_tx_queue_set(struct sock * sk,int tx_queue)1903  static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1904  {
1905  	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1906  	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1907  		return;
1908  	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1909  	 * other WRITE_ONCE() because socket lock might be not held.
1910  	 */
1911  	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1912  }
1913  
1914  #define NO_QUEUE_MAPPING	USHRT_MAX
1915  
sk_tx_queue_clear(struct sock * sk)1916  static inline void sk_tx_queue_clear(struct sock *sk)
1917  {
1918  	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1919  	 * other WRITE_ONCE() because socket lock might be not held.
1920  	 */
1921  	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1922  }
1923  
sk_tx_queue_get(const struct sock * sk)1924  static inline int sk_tx_queue_get(const struct sock *sk)
1925  {
1926  	if (sk) {
1927  		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1928  		 * and sk_tx_queue_set().
1929  		 */
1930  		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1931  
1932  		if (val != NO_QUEUE_MAPPING)
1933  			return val;
1934  	}
1935  	return -1;
1936  }
1937  
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)1938  static inline void __sk_rx_queue_set(struct sock *sk,
1939  				     const struct sk_buff *skb,
1940  				     bool force_set)
1941  {
1942  #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1943  	if (skb_rx_queue_recorded(skb)) {
1944  		u16 rx_queue = skb_get_rx_queue(skb);
1945  
1946  		if (force_set ||
1947  		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1948  			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1949  	}
1950  #endif
1951  }
1952  
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1953  static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1954  {
1955  	__sk_rx_queue_set(sk, skb, true);
1956  }
1957  
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)1958  static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1959  {
1960  	__sk_rx_queue_set(sk, skb, false);
1961  }
1962  
sk_rx_queue_clear(struct sock * sk)1963  static inline void sk_rx_queue_clear(struct sock *sk)
1964  {
1965  #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1966  	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1967  #endif
1968  }
1969  
sk_rx_queue_get(const struct sock * sk)1970  static inline int sk_rx_queue_get(const struct sock *sk)
1971  {
1972  #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1973  	if (sk) {
1974  		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1975  
1976  		if (res != NO_QUEUE_MAPPING)
1977  			return res;
1978  	}
1979  #endif
1980  
1981  	return -1;
1982  }
1983  
sk_set_socket(struct sock * sk,struct socket * sock)1984  static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1985  {
1986  	sk->sk_socket = sock;
1987  }
1988  
sk_sleep(struct sock * sk)1989  static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1990  {
1991  	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1992  	return &rcu_dereference_raw(sk->sk_wq)->wait;
1993  }
1994  /* Detach socket from process context.
1995   * Announce socket dead, detach it from wait queue and inode.
1996   * Note that parent inode held reference count on this struct sock,
1997   * we do not release it in this function, because protocol
1998   * probably wants some additional cleanups or even continuing
1999   * to work with this socket (TCP).
2000   */
sock_orphan(struct sock * sk)2001  static inline void sock_orphan(struct sock *sk)
2002  {
2003  	write_lock_bh(&sk->sk_callback_lock);
2004  	sock_set_flag(sk, SOCK_DEAD);
2005  	sk_set_socket(sk, NULL);
2006  	sk->sk_wq  = NULL;
2007  	write_unlock_bh(&sk->sk_callback_lock);
2008  }
2009  
sock_graft(struct sock * sk,struct socket * parent)2010  static inline void sock_graft(struct sock *sk, struct socket *parent)
2011  {
2012  	WARN_ON(parent->sk);
2013  	write_lock_bh(&sk->sk_callback_lock);
2014  	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2015  	parent->sk = sk;
2016  	sk_set_socket(sk, parent);
2017  	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2018  	security_sock_graft(sk, parent);
2019  	write_unlock_bh(&sk->sk_callback_lock);
2020  }
2021  
2022  kuid_t sock_i_uid(struct sock *sk);
2023  unsigned long __sock_i_ino(struct sock *sk);
2024  unsigned long sock_i_ino(struct sock *sk);
2025  
sock_net_uid(const struct net * net,const struct sock * sk)2026  static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2027  {
2028  	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2029  }
2030  
net_tx_rndhash(void)2031  static inline u32 net_tx_rndhash(void)
2032  {
2033  	u32 v = get_random_u32();
2034  
2035  	return v ?: 1;
2036  }
2037  
sk_set_txhash(struct sock * sk)2038  static inline void sk_set_txhash(struct sock *sk)
2039  {
2040  	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2041  	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2042  }
2043  
sk_rethink_txhash(struct sock * sk)2044  static inline bool sk_rethink_txhash(struct sock *sk)
2045  {
2046  	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2047  		sk_set_txhash(sk);
2048  		return true;
2049  	}
2050  	return false;
2051  }
2052  
2053  static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2054  __sk_dst_get(const struct sock *sk)
2055  {
2056  	return rcu_dereference_check(sk->sk_dst_cache,
2057  				     lockdep_sock_is_held(sk));
2058  }
2059  
2060  static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2061  sk_dst_get(const struct sock *sk)
2062  {
2063  	struct dst_entry *dst;
2064  
2065  	rcu_read_lock();
2066  	dst = rcu_dereference(sk->sk_dst_cache);
2067  	if (dst && !rcuref_get(&dst->__rcuref))
2068  		dst = NULL;
2069  	rcu_read_unlock();
2070  	return dst;
2071  }
2072  
__dst_negative_advice(struct sock * sk)2073  static inline void __dst_negative_advice(struct sock *sk)
2074  {
2075  	struct dst_entry *dst = __sk_dst_get(sk);
2076  
2077  	if (dst && dst->ops->negative_advice)
2078  		dst->ops->negative_advice(sk, dst);
2079  }
2080  
dst_negative_advice(struct sock * sk)2081  static inline void dst_negative_advice(struct sock *sk)
2082  {
2083  	sk_rethink_txhash(sk);
2084  	__dst_negative_advice(sk);
2085  }
2086  
2087  static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2088  __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2089  {
2090  	struct dst_entry *old_dst;
2091  
2092  	sk_tx_queue_clear(sk);
2093  	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2094  	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2095  					    lockdep_sock_is_held(sk));
2096  	rcu_assign_pointer(sk->sk_dst_cache, dst);
2097  	dst_release(old_dst);
2098  }
2099  
2100  static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2101  sk_dst_set(struct sock *sk, struct dst_entry *dst)
2102  {
2103  	struct dst_entry *old_dst;
2104  
2105  	sk_tx_queue_clear(sk);
2106  	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2107  	old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2108  	dst_release(old_dst);
2109  }
2110  
2111  static inline void
__sk_dst_reset(struct sock * sk)2112  __sk_dst_reset(struct sock *sk)
2113  {
2114  	__sk_dst_set(sk, NULL);
2115  }
2116  
2117  static inline void
sk_dst_reset(struct sock * sk)2118  sk_dst_reset(struct sock *sk)
2119  {
2120  	sk_dst_set(sk, NULL);
2121  }
2122  
2123  struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2124  
2125  struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2126  
sk_dst_confirm(struct sock * sk)2127  static inline void sk_dst_confirm(struct sock *sk)
2128  {
2129  	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2130  		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2131  }
2132  
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2133  static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2134  {
2135  	if (skb_get_dst_pending_confirm(skb)) {
2136  		struct sock *sk = skb->sk;
2137  
2138  		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2139  			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2140  		neigh_confirm(n);
2141  	}
2142  }
2143  
2144  bool sk_mc_loop(const struct sock *sk);
2145  
sk_can_gso(const struct sock * sk)2146  static inline bool sk_can_gso(const struct sock *sk)
2147  {
2148  	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2149  }
2150  
2151  void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2152  
sk_gso_disable(struct sock * sk)2153  static inline void sk_gso_disable(struct sock *sk)
2154  {
2155  	sk->sk_gso_disabled = 1;
2156  	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2157  }
2158  
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2159  static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2160  					   struct iov_iter *from, char *to,
2161  					   int copy, int offset)
2162  {
2163  	if (skb->ip_summed == CHECKSUM_NONE) {
2164  		__wsum csum = 0;
2165  		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2166  			return -EFAULT;
2167  		skb->csum = csum_block_add(skb->csum, csum, offset);
2168  	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2169  		if (!copy_from_iter_full_nocache(to, copy, from))
2170  			return -EFAULT;
2171  	} else if (!copy_from_iter_full(to, copy, from))
2172  		return -EFAULT;
2173  
2174  	return 0;
2175  }
2176  
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2177  static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2178  				       struct iov_iter *from, int copy)
2179  {
2180  	int err, offset = skb->len;
2181  
2182  	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2183  				       copy, offset);
2184  	if (err)
2185  		__skb_trim(skb, offset);
2186  
2187  	return err;
2188  }
2189  
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2190  static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2191  					   struct sk_buff *skb,
2192  					   struct page *page,
2193  					   int off, int copy)
2194  {
2195  	int err;
2196  
2197  	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2198  				       copy, skb->len);
2199  	if (err)
2200  		return err;
2201  
2202  	skb_len_add(skb, copy);
2203  	sk_wmem_queued_add(sk, copy);
2204  	sk_mem_charge(sk, copy);
2205  	return 0;
2206  }
2207  
2208  /**
2209   * sk_wmem_alloc_get - returns write allocations
2210   * @sk: socket
2211   *
2212   * Return: sk_wmem_alloc minus initial offset of one
2213   */
sk_wmem_alloc_get(const struct sock * sk)2214  static inline int sk_wmem_alloc_get(const struct sock *sk)
2215  {
2216  	return refcount_read(&sk->sk_wmem_alloc) - 1;
2217  }
2218  
2219  /**
2220   * sk_rmem_alloc_get - returns read allocations
2221   * @sk: socket
2222   *
2223   * Return: sk_rmem_alloc
2224   */
sk_rmem_alloc_get(const struct sock * sk)2225  static inline int sk_rmem_alloc_get(const struct sock *sk)
2226  {
2227  	return atomic_read(&sk->sk_rmem_alloc);
2228  }
2229  
2230  /**
2231   * sk_has_allocations - check if allocations are outstanding
2232   * @sk: socket
2233   *
2234   * Return: true if socket has write or read allocations
2235   */
sk_has_allocations(const struct sock * sk)2236  static inline bool sk_has_allocations(const struct sock *sk)
2237  {
2238  	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2239  }
2240  
2241  /**
2242   * skwq_has_sleeper - check if there are any waiting processes
2243   * @wq: struct socket_wq
2244   *
2245   * Return: true if socket_wq has waiting processes
2246   *
2247   * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2248   * barrier call. They were added due to the race found within the tcp code.
2249   *
2250   * Consider following tcp code paths::
2251   *
2252   *   CPU1                CPU2
2253   *   sys_select          receive packet
2254   *   ...                 ...
2255   *   __add_wait_queue    update tp->rcv_nxt
2256   *   ...                 ...
2257   *   tp->rcv_nxt check   sock_def_readable
2258   *   ...                 {
2259   *   schedule               rcu_read_lock();
2260   *                          wq = rcu_dereference(sk->sk_wq);
2261   *                          if (wq && waitqueue_active(&wq->wait))
2262   *                              wake_up_interruptible(&wq->wait)
2263   *                          ...
2264   *                       }
2265   *
2266   * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2267   * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2268   * could then endup calling schedule and sleep forever if there are no more
2269   * data on the socket.
2270   *
2271   */
skwq_has_sleeper(struct socket_wq * wq)2272  static inline bool skwq_has_sleeper(struct socket_wq *wq)
2273  {
2274  	return wq && wq_has_sleeper(&wq->wait);
2275  }
2276  
2277  /**
2278   * sock_poll_wait - place memory barrier behind the poll_wait call.
2279   * @filp:           file
2280   * @sock:           socket to wait on
2281   * @p:              poll_table
2282   *
2283   * See the comments in the wq_has_sleeper function.
2284   */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2285  static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2286  				  poll_table *p)
2287  {
2288  	if (!poll_does_not_wait(p)) {
2289  		poll_wait(filp, &sock->wq.wait, p);
2290  		/* We need to be sure we are in sync with the
2291  		 * socket flags modification.
2292  		 *
2293  		 * This memory barrier is paired in the wq_has_sleeper.
2294  		 */
2295  		smp_mb();
2296  	}
2297  }
2298  
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2299  static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2300  {
2301  	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2302  	u32 txhash = READ_ONCE(sk->sk_txhash);
2303  
2304  	if (txhash) {
2305  		skb->l4_hash = 1;
2306  		skb->hash = txhash;
2307  	}
2308  }
2309  
2310  void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2311  
2312  /*
2313   *	Queue a received datagram if it will fit. Stream and sequenced
2314   *	protocols can't normally use this as they need to fit buffers in
2315   *	and play with them.
2316   *
2317   *	Inlined as it's very short and called for pretty much every
2318   *	packet ever received.
2319   */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2320  static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2321  {
2322  	skb_orphan(skb);
2323  	skb->sk = sk;
2324  	skb->destructor = sock_rfree;
2325  	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2326  	sk_mem_charge(sk, skb->truesize);
2327  }
2328  
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2329  static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2330  {
2331  	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2332  		skb_orphan(skb);
2333  		skb->destructor = sock_efree;
2334  		skb->sk = sk;
2335  		return true;
2336  	}
2337  	return false;
2338  }
2339  
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2340  static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2341  {
2342  	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2343  	if (skb) {
2344  		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2345  			skb_set_owner_r(skb, sk);
2346  			return skb;
2347  		}
2348  		__kfree_skb(skb);
2349  	}
2350  	return NULL;
2351  }
2352  
skb_prepare_for_gro(struct sk_buff * skb)2353  static inline void skb_prepare_for_gro(struct sk_buff *skb)
2354  {
2355  	if (skb->destructor != sock_wfree) {
2356  		skb_orphan(skb);
2357  		return;
2358  	}
2359  	skb->slow_gro = 1;
2360  }
2361  
2362  void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2363  		    unsigned long expires);
2364  
2365  void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2366  
2367  void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2368  
2369  int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2370  			struct sk_buff *skb, unsigned int flags,
2371  			void (*destructor)(struct sock *sk,
2372  					   struct sk_buff *skb));
2373  int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2374  
2375  int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2376  			      enum skb_drop_reason *reason);
2377  
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2378  static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2379  {
2380  	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2381  }
2382  
2383  int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2384  struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2385  
2386  /*
2387   *	Recover an error report and clear atomically
2388   */
2389  
sock_error(struct sock * sk)2390  static inline int sock_error(struct sock *sk)
2391  {
2392  	int err;
2393  
2394  	/* Avoid an atomic operation for the common case.
2395  	 * This is racy since another cpu/thread can change sk_err under us.
2396  	 */
2397  	if (likely(data_race(!sk->sk_err)))
2398  		return 0;
2399  
2400  	err = xchg(&sk->sk_err, 0);
2401  	return -err;
2402  }
2403  
2404  void sk_error_report(struct sock *sk);
2405  
sock_wspace(struct sock * sk)2406  static inline unsigned long sock_wspace(struct sock *sk)
2407  {
2408  	int amt = 0;
2409  
2410  	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2411  		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2412  		if (amt < 0)
2413  			amt = 0;
2414  	}
2415  	return amt;
2416  }
2417  
2418  /* Note:
2419   *  We use sk->sk_wq_raw, from contexts knowing this
2420   *  pointer is not NULL and cannot disappear/change.
2421   */
sk_set_bit(int nr,struct sock * sk)2422  static inline void sk_set_bit(int nr, struct sock *sk)
2423  {
2424  	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2425  	    !sock_flag(sk, SOCK_FASYNC))
2426  		return;
2427  
2428  	set_bit(nr, &sk->sk_wq_raw->flags);
2429  }
2430  
sk_clear_bit(int nr,struct sock * sk)2431  static inline void sk_clear_bit(int nr, struct sock *sk)
2432  {
2433  	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2434  	    !sock_flag(sk, SOCK_FASYNC))
2435  		return;
2436  
2437  	clear_bit(nr, &sk->sk_wq_raw->flags);
2438  }
2439  
sk_wake_async(const struct sock * sk,int how,int band)2440  static inline void sk_wake_async(const struct sock *sk, int how, int band)
2441  {
2442  	if (sock_flag(sk, SOCK_FASYNC)) {
2443  		rcu_read_lock();
2444  		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2445  		rcu_read_unlock();
2446  	}
2447  }
2448  
sk_wake_async_rcu(const struct sock * sk,int how,int band)2449  static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2450  {
2451  	if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2452  		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2453  }
2454  
2455  /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2456   * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2457   * Note: for send buffers, TCP works better if we can build two skbs at
2458   * minimum.
2459   */
2460  #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2461  
2462  #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2463  #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2464  
sk_stream_moderate_sndbuf(struct sock * sk)2465  static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2466  {
2467  	u32 val;
2468  
2469  	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2470  		return;
2471  
2472  	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2473  	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2474  
2475  	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2476  }
2477  
2478  /**
2479   * sk_page_frag - return an appropriate page_frag
2480   * @sk: socket
2481   *
2482   * Use the per task page_frag instead of the per socket one for
2483   * optimization when we know that we're in process context and own
2484   * everything that's associated with %current.
2485   *
2486   * Both direct reclaim and page faults can nest inside other
2487   * socket operations and end up recursing into sk_page_frag()
2488   * while it's already in use: explicitly avoid task page_frag
2489   * when users disable sk_use_task_frag.
2490   *
2491   * Return: a per task page_frag if context allows that,
2492   * otherwise a per socket one.
2493   */
sk_page_frag(struct sock * sk)2494  static inline struct page_frag *sk_page_frag(struct sock *sk)
2495  {
2496  	if (sk->sk_use_task_frag)
2497  		return &current->task_frag;
2498  
2499  	return &sk->sk_frag;
2500  }
2501  
2502  bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2503  
2504  /*
2505   *	Default write policy as shown to user space via poll/select/SIGIO
2506   */
sock_writeable(const struct sock * sk)2507  static inline bool sock_writeable(const struct sock *sk)
2508  {
2509  	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2510  }
2511  
gfp_any(void)2512  static inline gfp_t gfp_any(void)
2513  {
2514  	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2515  }
2516  
gfp_memcg_charge(void)2517  static inline gfp_t gfp_memcg_charge(void)
2518  {
2519  	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2520  }
2521  
sock_rcvtimeo(const struct sock * sk,bool noblock)2522  static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2523  {
2524  	return noblock ? 0 : sk->sk_rcvtimeo;
2525  }
2526  
sock_sndtimeo(const struct sock * sk,bool noblock)2527  static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2528  {
2529  	return noblock ? 0 : sk->sk_sndtimeo;
2530  }
2531  
sock_rcvlowat(const struct sock * sk,int waitall,int len)2532  static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2533  {
2534  	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2535  
2536  	return v ?: 1;
2537  }
2538  
2539  /* Alas, with timeout socket operations are not restartable.
2540   * Compare this to poll().
2541   */
sock_intr_errno(long timeo)2542  static inline int sock_intr_errno(long timeo)
2543  {
2544  	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2545  }
2546  
2547  struct sock_skb_cb {
2548  	u32 dropcount;
2549  };
2550  
2551  /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2552   * using skb->cb[] would keep using it directly and utilize its
2553   * alignment guarantee.
2554   */
2555  #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2556  			    sizeof(struct sock_skb_cb)))
2557  
2558  #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2559  			    SOCK_SKB_CB_OFFSET))
2560  
2561  #define sock_skb_cb_check_size(size) \
2562  	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2563  
2564  static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2565  sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2566  {
2567  	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2568  						atomic_read(&sk->sk_drops) : 0;
2569  }
2570  
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2571  static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2572  {
2573  	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2574  
2575  	atomic_add(segs, &sk->sk_drops);
2576  }
2577  
sock_read_timestamp(struct sock * sk)2578  static inline ktime_t sock_read_timestamp(struct sock *sk)
2579  {
2580  #if BITS_PER_LONG==32
2581  	unsigned int seq;
2582  	ktime_t kt;
2583  
2584  	do {
2585  		seq = read_seqbegin(&sk->sk_stamp_seq);
2586  		kt = sk->sk_stamp;
2587  	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2588  
2589  	return kt;
2590  #else
2591  	return READ_ONCE(sk->sk_stamp);
2592  #endif
2593  }
2594  
sock_write_timestamp(struct sock * sk,ktime_t kt)2595  static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2596  {
2597  #if BITS_PER_LONG==32
2598  	write_seqlock(&sk->sk_stamp_seq);
2599  	sk->sk_stamp = kt;
2600  	write_sequnlock(&sk->sk_stamp_seq);
2601  #else
2602  	WRITE_ONCE(sk->sk_stamp, kt);
2603  #endif
2604  }
2605  
2606  void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2607  			   struct sk_buff *skb);
2608  void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2609  			     struct sk_buff *skb);
2610  
2611  static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2612  sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2613  {
2614  	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2615  	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2616  	ktime_t kt = skb->tstamp;
2617  	/*
2618  	 * generate control messages if
2619  	 * - receive time stamping in software requested
2620  	 * - software time stamp available and wanted
2621  	 * - hardware time stamps available and wanted
2622  	 */
2623  	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2624  	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2625  	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2626  	    (hwtstamps->hwtstamp &&
2627  	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2628  		__sock_recv_timestamp(msg, sk, skb);
2629  	else
2630  		sock_write_timestamp(sk, kt);
2631  
2632  	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2633  		__sock_recv_wifi_status(msg, sk, skb);
2634  }
2635  
2636  void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2637  		       struct sk_buff *skb);
2638  
2639  #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2640  static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2641  				   struct sk_buff *skb)
2642  {
2643  #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2644  			   (1UL << SOCK_RCVTSTAMP)			| \
2645  			   (1UL << SOCK_RCVMARK))
2646  #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2647  			   SOF_TIMESTAMPING_RAW_HARDWARE)
2648  
2649  	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2650  	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2651  		__sock_recv_cmsgs(msg, sk, skb);
2652  	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2653  		sock_write_timestamp(sk, skb->tstamp);
2654  	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2655  		sock_write_timestamp(sk, 0);
2656  }
2657  
2658  void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2659  
2660  /**
2661   * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2662   * @sk:		socket sending this packet
2663   * @tsflags:	timestamping flags to use
2664   * @tx_flags:	completed with instructions for time stamping
2665   * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2666   *
2667   * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2668   */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2669  static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2670  				      __u8 *tx_flags, __u32 *tskey)
2671  {
2672  	if (unlikely(tsflags)) {
2673  		__sock_tx_timestamp(tsflags, tx_flags);
2674  		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2675  		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2676  			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2677  	}
2678  	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2679  		*tx_flags |= SKBTX_WIFI_STATUS;
2680  }
2681  
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2682  static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2683  				     __u8 *tx_flags)
2684  {
2685  	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2686  }
2687  
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2688  static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2689  {
2690  	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2691  			   &skb_shinfo(skb)->tskey);
2692  }
2693  
sk_is_inet(const struct sock * sk)2694  static inline bool sk_is_inet(const struct sock *sk)
2695  {
2696  	int family = READ_ONCE(sk->sk_family);
2697  
2698  	return family == AF_INET || family == AF_INET6;
2699  }
2700  
sk_is_tcp(const struct sock * sk)2701  static inline bool sk_is_tcp(const struct sock *sk)
2702  {
2703  	return sk_is_inet(sk) &&
2704  	       sk->sk_type == SOCK_STREAM &&
2705  	       sk->sk_protocol == IPPROTO_TCP;
2706  }
2707  
sk_is_udp(const struct sock * sk)2708  static inline bool sk_is_udp(const struct sock *sk)
2709  {
2710  	return sk_is_inet(sk) &&
2711  	       sk->sk_type == SOCK_DGRAM &&
2712  	       sk->sk_protocol == IPPROTO_UDP;
2713  }
2714  
sk_is_stream_unix(const struct sock * sk)2715  static inline bool sk_is_stream_unix(const struct sock *sk)
2716  {
2717  	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2718  }
2719  
sk_is_vsock(const struct sock * sk)2720  static inline bool sk_is_vsock(const struct sock *sk)
2721  {
2722  	return sk->sk_family == AF_VSOCK;
2723  }
2724  
2725  /**
2726   * sk_eat_skb - Release a skb if it is no longer needed
2727   * @sk: socket to eat this skb from
2728   * @skb: socket buffer to eat
2729   *
2730   * This routine must be called with interrupts disabled or with the socket
2731   * locked so that the sk_buff queue operation is ok.
2732  */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2733  static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2734  {
2735  	__skb_unlink(skb, &sk->sk_receive_queue);
2736  	__kfree_skb(skb);
2737  }
2738  
2739  static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2740  skb_sk_is_prefetched(struct sk_buff *skb)
2741  {
2742  #ifdef CONFIG_INET
2743  	return skb->destructor == sock_pfree;
2744  #else
2745  	return false;
2746  #endif /* CONFIG_INET */
2747  }
2748  
2749  /* This helper checks if a socket is a full socket,
2750   * ie _not_ a timewait or request socket.
2751   */
sk_fullsock(const struct sock * sk)2752  static inline bool sk_fullsock(const struct sock *sk)
2753  {
2754  	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2755  }
2756  
2757  static inline bool
sk_is_refcounted(struct sock * sk)2758  sk_is_refcounted(struct sock *sk)
2759  {
2760  	/* Only full sockets have sk->sk_flags. */
2761  	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2762  }
2763  
2764  /* Checks if this SKB belongs to an HW offloaded socket
2765   * and whether any SW fallbacks are required based on dev.
2766   * Check decrypted mark in case skb_orphan() cleared socket.
2767   */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2768  static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2769  						   struct net_device *dev)
2770  {
2771  #ifdef CONFIG_SOCK_VALIDATE_XMIT
2772  	struct sock *sk = skb->sk;
2773  
2774  	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2775  		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2776  	} else if (unlikely(skb_is_decrypted(skb))) {
2777  		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2778  		kfree_skb(skb);
2779  		skb = NULL;
2780  	}
2781  #endif
2782  
2783  	return skb;
2784  }
2785  
2786  /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2787   * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2788   */
sk_listener(const struct sock * sk)2789  static inline bool sk_listener(const struct sock *sk)
2790  {
2791  	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2792  }
2793  
2794  void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2795  int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2796  		       int type);
2797  
2798  bool sk_ns_capable(const struct sock *sk,
2799  		   struct user_namespace *user_ns, int cap);
2800  bool sk_capable(const struct sock *sk, int cap);
2801  bool sk_net_capable(const struct sock *sk, int cap);
2802  
2803  void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2804  
2805  /* Take into consideration the size of the struct sk_buff overhead in the
2806   * determination of these values, since that is non-constant across
2807   * platforms.  This makes socket queueing behavior and performance
2808   * not depend upon such differences.
2809   */
2810  #define _SK_MEM_PACKETS		256
2811  #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2812  #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2813  #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2814  
2815  extern __u32 sysctl_wmem_max;
2816  extern __u32 sysctl_rmem_max;
2817  
2818  extern int sysctl_tstamp_allow_data;
2819  
2820  extern __u32 sysctl_wmem_default;
2821  extern __u32 sysctl_rmem_default;
2822  
2823  #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2824  DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2825  
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2826  static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2827  {
2828  	/* Does this proto have per netns sysctl_wmem ? */
2829  	if (proto->sysctl_wmem_offset)
2830  		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2831  
2832  	return READ_ONCE(*proto->sysctl_wmem);
2833  }
2834  
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2835  static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2836  {
2837  	/* Does this proto have per netns sysctl_rmem ? */
2838  	if (proto->sysctl_rmem_offset)
2839  		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2840  
2841  	return READ_ONCE(*proto->sysctl_rmem);
2842  }
2843  
2844  /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2845   * Some wifi drivers need to tweak it to get more chunks.
2846   * They can use this helper from their ndo_start_xmit()
2847   */
sk_pacing_shift_update(struct sock * sk,int val)2848  static inline void sk_pacing_shift_update(struct sock *sk, int val)
2849  {
2850  	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2851  		return;
2852  	WRITE_ONCE(sk->sk_pacing_shift, val);
2853  }
2854  
2855  /* if a socket is bound to a device, check that the given device
2856   * index is either the same or that the socket is bound to an L3
2857   * master device and the given device index is also enslaved to
2858   * that L3 master
2859   */
sk_dev_equal_l3scope(struct sock * sk,int dif)2860  static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2861  {
2862  	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2863  	int mdif;
2864  
2865  	if (!bound_dev_if || bound_dev_if == dif)
2866  		return true;
2867  
2868  	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2869  	if (mdif && mdif == bound_dev_if)
2870  		return true;
2871  
2872  	return false;
2873  }
2874  
2875  void sock_def_readable(struct sock *sk);
2876  
2877  int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2878  void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2879  int sock_set_timestamping(struct sock *sk, int optname,
2880  			  struct so_timestamping timestamping);
2881  
2882  void sock_enable_timestamps(struct sock *sk);
2883  void sock_no_linger(struct sock *sk);
2884  void sock_set_keepalive(struct sock *sk);
2885  void sock_set_priority(struct sock *sk, u32 priority);
2886  void sock_set_rcvbuf(struct sock *sk, int val);
2887  void sock_set_mark(struct sock *sk, u32 val);
2888  void sock_set_reuseaddr(struct sock *sk);
2889  void sock_set_reuseport(struct sock *sk);
2890  void sock_set_sndtimeo(struct sock *sk, s64 secs);
2891  
2892  int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2893  
2894  int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2895  int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2896  			   sockptr_t optval, int optlen, bool old_timeval);
2897  
2898  int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2899  		     void __user *arg, void *karg, size_t size);
2900  int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)2901  static inline bool sk_is_readable(struct sock *sk)
2902  {
2903  	if (sk->sk_prot->sock_is_readable)
2904  		return sk->sk_prot->sock_is_readable(sk);
2905  	return false;
2906  }
2907  #endif	/* _SOCK_H */
2908