1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __NET_CFG80211_H
3 #define __NET_CFG80211_H
4 /*
5  * 802.11 device and configuration interface
6  *
7  * Copyright 2006-2010	Johannes Berg <johannes@sipsolutions.net>
8  * Copyright 2013-2014 Intel Mobile Communications GmbH
9  * Copyright 2015-2017	Intel Deutschland GmbH
10  * Copyright (C) 2018-2024 Intel Corporation
11  */
12 
13 #include <linux/ethtool.h>
14 #include <uapi/linux/rfkill.h>
15 #include <linux/netdevice.h>
16 #include <linux/debugfs.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/netlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/nl80211.h>
22 #include <linux/if_ether.h>
23 #include <linux/ieee80211.h>
24 #include <linux/net.h>
25 #include <linux/rfkill.h>
26 #include <net/regulatory.h>
27 
28 /**
29  * DOC: Introduction
30  *
31  * cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
32  * userspace and drivers, and offers some utility functionality associated
33  * with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
34  * by all modern wireless drivers in Linux, so that they offer a consistent
35  * API through nl80211. For backward compatibility, cfg80211 also offers
36  * wireless extensions to userspace, but hides them from drivers completely.
37  *
38  * Additionally, cfg80211 contains code to help enforce regulatory spectrum
39  * use restrictions.
40  */
41 
42 
43 /**
44  * DOC: Device registration
45  *
46  * In order for a driver to use cfg80211, it must register the hardware device
47  * with cfg80211. This happens through a number of hardware capability structs
48  * described below.
49  *
50  * The fundamental structure for each device is the 'wiphy', of which each
51  * instance describes a physical wireless device connected to the system. Each
52  * such wiphy can have zero, one, or many virtual interfaces associated with
53  * it, which need to be identified as such by pointing the network interface's
54  * @ieee80211_ptr pointer to a &struct wireless_dev which further describes
55  * the wireless part of the interface. Normally this struct is embedded in the
56  * network interface's private data area. Drivers can optionally allow creating
57  * or destroying virtual interfaces on the fly, but without at least one or the
58  * ability to create some the wireless device isn't useful.
59  *
60  * Each wiphy structure contains device capability information, and also has
61  * a pointer to the various operations the driver offers. The definitions and
62  * structures here describe these capabilities in detail.
63  */
64 
65 struct wiphy;
66 
67 /*
68  * wireless hardware capability structures
69  */
70 
71 /**
72  * enum ieee80211_channel_flags - channel flags
73  *
74  * Channel flags set by the regulatory control code.
75  *
76  * @IEEE80211_CHAN_DISABLED: This channel is disabled.
77  * @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
78  *	sending probe requests or beaconing.
79  * @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this
80  *	channel.
81  * @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
82  * @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
83  *	is not permitted.
84  * @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
85  *	is not permitted.
86  * @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
87  * @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
88  *	this flag indicates that an 80 MHz channel cannot use this
89  *	channel as the control or any of the secondary channels.
90  *	This may be due to the driver or due to regulatory bandwidth
91  *	restrictions.
92  * @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
93  *	this flag indicates that an 160 MHz channel cannot use this
94  *	channel as the control or any of the secondary channels.
95  *	This may be due to the driver or due to regulatory bandwidth
96  *	restrictions.
97  * @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
98  * @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
99  * @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
100  *	on this channel.
101  * @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
102  *	on this channel.
103  * @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
104  * @IEEE80211_CHAN_1MHZ: 1 MHz bandwidth is permitted
105  *	on this channel.
106  * @IEEE80211_CHAN_2MHZ: 2 MHz bandwidth is permitted
107  *	on this channel.
108  * @IEEE80211_CHAN_4MHZ: 4 MHz bandwidth is permitted
109  *	on this channel.
110  * @IEEE80211_CHAN_8MHZ: 8 MHz bandwidth is permitted
111  *	on this channel.
112  * @IEEE80211_CHAN_16MHZ: 16 MHz bandwidth is permitted
113  *	on this channel.
114  * @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
115  *	this flag indicates that a 320 MHz channel cannot use this
116  *	channel as the control or any of the secondary channels.
117  *	This may be due to the driver or due to regulatory bandwidth
118  *	restrictions.
119  * @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
120  * @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT
121  * @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP
122  *	not permitted using this channel
123  * @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP
124  *	not permitted using this channel
125  * @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor
126  *	mode even in the presence of other (regulatory) restrictions,
127  *	even if it is otherwise disabled.
128  * @IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP: Allow using this channel for AP operation
129  *	with very low power (VLP), even if otherwise set to NO_IR.
130  */
131 enum ieee80211_channel_flags {
132 	IEEE80211_CHAN_DISABLED			= BIT(0),
133 	IEEE80211_CHAN_NO_IR			= BIT(1),
134 	IEEE80211_CHAN_PSD			= BIT(2),
135 	IEEE80211_CHAN_RADAR			= BIT(3),
136 	IEEE80211_CHAN_NO_HT40PLUS		= BIT(4),
137 	IEEE80211_CHAN_NO_HT40MINUS		= BIT(5),
138 	IEEE80211_CHAN_NO_OFDM			= BIT(6),
139 	IEEE80211_CHAN_NO_80MHZ			= BIT(7),
140 	IEEE80211_CHAN_NO_160MHZ		= BIT(8),
141 	IEEE80211_CHAN_INDOOR_ONLY		= BIT(9),
142 	IEEE80211_CHAN_IR_CONCURRENT		= BIT(10),
143 	IEEE80211_CHAN_NO_20MHZ			= BIT(11),
144 	IEEE80211_CHAN_NO_10MHZ			= BIT(12),
145 	IEEE80211_CHAN_NO_HE			= BIT(13),
146 	IEEE80211_CHAN_1MHZ			= BIT(14),
147 	IEEE80211_CHAN_2MHZ			= BIT(15),
148 	IEEE80211_CHAN_4MHZ			= BIT(16),
149 	IEEE80211_CHAN_8MHZ			= BIT(17),
150 	IEEE80211_CHAN_16MHZ			= BIT(18),
151 	IEEE80211_CHAN_NO_320MHZ		= BIT(19),
152 	IEEE80211_CHAN_NO_EHT			= BIT(20),
153 	IEEE80211_CHAN_DFS_CONCURRENT		= BIT(21),
154 	IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT	= BIT(22),
155 	IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT	= BIT(23),
156 	IEEE80211_CHAN_CAN_MONITOR		= BIT(24),
157 	IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP	= BIT(25),
158 };
159 
160 #define IEEE80211_CHAN_NO_HT40 \
161 	(IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
162 
163 #define IEEE80211_DFS_MIN_CAC_TIME_MS		60000
164 #define IEEE80211_DFS_MIN_NOP_TIME_MS		(30 * 60 * 1000)
165 
166 /**
167  * struct ieee80211_channel - channel definition
168  *
169  * This structure describes a single channel for use
170  * with cfg80211.
171  *
172  * @center_freq: center frequency in MHz
173  * @freq_offset: offset from @center_freq, in KHz
174  * @hw_value: hardware-specific value for the channel
175  * @flags: channel flags from &enum ieee80211_channel_flags.
176  * @orig_flags: channel flags at registration time, used by regulatory
177  *	code to support devices with additional restrictions
178  * @band: band this channel belongs to.
179  * @max_antenna_gain: maximum antenna gain in dBi
180  * @max_power: maximum transmission power (in dBm)
181  * @max_reg_power: maximum regulatory transmission power (in dBm)
182  * @beacon_found: helper to regulatory code to indicate when a beacon
183  *	has been found on this channel. Use regulatory_hint_found_beacon()
184  *	to enable this, this is useful only on 5 GHz band.
185  * @orig_mag: internal use
186  * @orig_mpwr: internal use
187  * @dfs_state: current state of this channel. Only relevant if radar is required
188  *	on this channel.
189  * @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
190  * @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
191  * @psd: power spectral density (in dBm)
192  */
193 struct ieee80211_channel {
194 	enum nl80211_band band;
195 	u32 center_freq;
196 	u16 freq_offset;
197 	u16 hw_value;
198 	u32 flags;
199 	int max_antenna_gain;
200 	int max_power;
201 	int max_reg_power;
202 	bool beacon_found;
203 	u32 orig_flags;
204 	int orig_mag, orig_mpwr;
205 	enum nl80211_dfs_state dfs_state;
206 	unsigned long dfs_state_entered;
207 	unsigned int dfs_cac_ms;
208 	s8 psd;
209 };
210 
211 /**
212  * enum ieee80211_rate_flags - rate flags
213  *
214  * Hardware/specification flags for rates. These are structured
215  * in a way that allows using the same bitrate structure for
216  * different bands/PHY modes.
217  *
218  * @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
219  *	preamble on this bitrate; only relevant in 2.4GHz band and
220  *	with CCK rates.
221  * @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
222  *	when used with 802.11a (on the 5 GHz band); filled by the
223  *	core code when registering the wiphy.
224  * @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
225  *	when used with 802.11b (on the 2.4 GHz band); filled by the
226  *	core code when registering the wiphy.
227  * @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
228  *	when used with 802.11g (on the 2.4 GHz band); filled by the
229  *	core code when registering the wiphy.
230  * @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
231  * @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
232  * @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
233  */
234 enum ieee80211_rate_flags {
235 	IEEE80211_RATE_SHORT_PREAMBLE	= BIT(0),
236 	IEEE80211_RATE_MANDATORY_A	= BIT(1),
237 	IEEE80211_RATE_MANDATORY_B	= BIT(2),
238 	IEEE80211_RATE_MANDATORY_G	= BIT(3),
239 	IEEE80211_RATE_ERP_G		= BIT(4),
240 	IEEE80211_RATE_SUPPORTS_5MHZ	= BIT(5),
241 	IEEE80211_RATE_SUPPORTS_10MHZ	= BIT(6),
242 };
243 
244 /**
245  * enum ieee80211_bss_type - BSS type filter
246  *
247  * @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
248  * @IEEE80211_BSS_TYPE_PBSS: Personal BSS
249  * @IEEE80211_BSS_TYPE_IBSS: Independent BSS
250  * @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
251  * @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
252  */
253 enum ieee80211_bss_type {
254 	IEEE80211_BSS_TYPE_ESS,
255 	IEEE80211_BSS_TYPE_PBSS,
256 	IEEE80211_BSS_TYPE_IBSS,
257 	IEEE80211_BSS_TYPE_MBSS,
258 	IEEE80211_BSS_TYPE_ANY
259 };
260 
261 /**
262  * enum ieee80211_privacy - BSS privacy filter
263  *
264  * @IEEE80211_PRIVACY_ON: privacy bit set
265  * @IEEE80211_PRIVACY_OFF: privacy bit clear
266  * @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
267  */
268 enum ieee80211_privacy {
269 	IEEE80211_PRIVACY_ON,
270 	IEEE80211_PRIVACY_OFF,
271 	IEEE80211_PRIVACY_ANY
272 };
273 
274 #define IEEE80211_PRIVACY(x)	\
275 	((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
276 
277 /**
278  * struct ieee80211_rate - bitrate definition
279  *
280  * This structure describes a bitrate that an 802.11 PHY can
281  * operate with. The two values @hw_value and @hw_value_short
282  * are only for driver use when pointers to this structure are
283  * passed around.
284  *
285  * @flags: rate-specific flags from &enum ieee80211_rate_flags
286  * @bitrate: bitrate in units of 100 Kbps
287  * @hw_value: driver/hardware value for this rate
288  * @hw_value_short: driver/hardware value for this rate when
289  *	short preamble is used
290  */
291 struct ieee80211_rate {
292 	u32 flags;
293 	u16 bitrate;
294 	u16 hw_value, hw_value_short;
295 };
296 
297 /**
298  * struct ieee80211_he_obss_pd - AP settings for spatial reuse
299  *
300  * @enable: is the feature enabled.
301  * @sr_ctrl: The SR Control field of SRP element.
302  * @non_srg_max_offset: non-SRG maximum tx power offset
303  * @min_offset: minimal tx power offset an associated station shall use
304  * @max_offset: maximum tx power offset an associated station shall use
305  * @bss_color_bitmap: bitmap that indicates the BSS color values used by
306  *	members of the SRG
307  * @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
308  *	used by members of the SRG
309  */
310 struct ieee80211_he_obss_pd {
311 	bool enable;
312 	u8 sr_ctrl;
313 	u8 non_srg_max_offset;
314 	u8 min_offset;
315 	u8 max_offset;
316 	u8 bss_color_bitmap[8];
317 	u8 partial_bssid_bitmap[8];
318 };
319 
320 /**
321  * struct cfg80211_he_bss_color - AP settings for BSS coloring
322  *
323  * @color: the current color.
324  * @enabled: HE BSS color is used
325  * @partial: define the AID equation.
326  */
327 struct cfg80211_he_bss_color {
328 	u8 color;
329 	bool enabled;
330 	bool partial;
331 };
332 
333 /**
334  * struct ieee80211_sta_ht_cap - STA's HT capabilities
335  *
336  * This structure describes most essential parameters needed
337  * to describe 802.11n HT capabilities for an STA.
338  *
339  * @ht_supported: is HT supported by the STA
340  * @cap: HT capabilities map as described in 802.11n spec
341  * @ampdu_factor: Maximum A-MPDU length factor
342  * @ampdu_density: Minimum A-MPDU spacing
343  * @mcs: Supported MCS rates
344  */
345 struct ieee80211_sta_ht_cap {
346 	u16 cap; /* use IEEE80211_HT_CAP_ */
347 	bool ht_supported;
348 	u8 ampdu_factor;
349 	u8 ampdu_density;
350 	struct ieee80211_mcs_info mcs;
351 };
352 
353 /**
354  * struct ieee80211_sta_vht_cap - STA's VHT capabilities
355  *
356  * This structure describes most essential parameters needed
357  * to describe 802.11ac VHT capabilities for an STA.
358  *
359  * @vht_supported: is VHT supported by the STA
360  * @cap: VHT capabilities map as described in 802.11ac spec
361  * @vht_mcs: Supported VHT MCS rates
362  */
363 struct ieee80211_sta_vht_cap {
364 	bool vht_supported;
365 	u32 cap; /* use IEEE80211_VHT_CAP_ */
366 	struct ieee80211_vht_mcs_info vht_mcs;
367 };
368 
369 #define IEEE80211_HE_PPE_THRES_MAX_LEN		25
370 
371 /**
372  * struct ieee80211_sta_he_cap - STA's HE capabilities
373  *
374  * This structure describes most essential parameters needed
375  * to describe 802.11ax HE capabilities for a STA.
376  *
377  * @has_he: true iff HE data is valid.
378  * @he_cap_elem: Fixed portion of the HE capabilities element.
379  * @he_mcs_nss_supp: The supported NSS/MCS combinations.
380  * @ppe_thres: Holds the PPE Thresholds data.
381  */
382 struct ieee80211_sta_he_cap {
383 	bool has_he;
384 	struct ieee80211_he_cap_elem he_cap_elem;
385 	struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
386 	u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
387 };
388 
389 /**
390  * struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
391  *
392  * See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
393  * and NSS Set field"
394  *
395  * @only_20mhz: MCS/NSS support for 20 MHz-only STA.
396  * @bw: MCS/NSS support for 80, 160 and 320 MHz
397  * @bw._80: MCS/NSS support for BW <= 80 MHz
398  * @bw._160: MCS/NSS support for BW = 160 MHz
399  * @bw._320: MCS/NSS support for BW = 320 MHz
400  */
401 struct ieee80211_eht_mcs_nss_supp {
402 	union {
403 		struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
404 		struct {
405 			struct ieee80211_eht_mcs_nss_supp_bw _80;
406 			struct ieee80211_eht_mcs_nss_supp_bw _160;
407 			struct ieee80211_eht_mcs_nss_supp_bw _320;
408 		} __packed bw;
409 	} __packed;
410 } __packed;
411 
412 #define IEEE80211_EHT_PPE_THRES_MAX_LEN		32
413 
414 /**
415  * struct ieee80211_sta_eht_cap - STA's EHT capabilities
416  *
417  * This structure describes most essential parameters needed
418  * to describe 802.11be EHT capabilities for a STA.
419  *
420  * @has_eht: true iff EHT data is valid.
421  * @eht_cap_elem: Fixed portion of the eht capabilities element.
422  * @eht_mcs_nss_supp: The supported NSS/MCS combinations.
423  * @eht_ppe_thres: Holds the PPE Thresholds data.
424  */
425 struct ieee80211_sta_eht_cap {
426 	bool has_eht;
427 	struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
428 	struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
429 	u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
430 };
431 
432 /* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */
433 #ifdef __CHECKER__
434 /*
435  * This is used to mark the sband->iftype_data pointer which is supposed
436  * to be an array with special access semantics (per iftype), but a lot
437  * of code got it wrong in the past, so with this marking sparse will be
438  * noisy when the pointer is used directly.
439  */
440 # define __iftd		__attribute__((noderef, address_space(__iftype_data)))
441 #else
442 # define __iftd
443 #endif /* __CHECKER__ */
444 
445 /**
446  * struct ieee80211_sband_iftype_data - sband data per interface type
447  *
448  * This structure encapsulates sband data that is relevant for the
449  * interface types defined in @types_mask.  Each type in the
450  * @types_mask must be unique across all instances of iftype_data.
451  *
452  * @types_mask: interface types mask
453  * @he_cap: holds the HE capabilities
454  * @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
455  *	6 GHz band channel (and 0 may be valid value).
456  * @eht_cap: STA's EHT capabilities
457  * @vendor_elems: vendor element(s) to advertise
458  * @vendor_elems.data: vendor element(s) data
459  * @vendor_elems.len: vendor element(s) length
460  */
461 struct ieee80211_sband_iftype_data {
462 	u16 types_mask;
463 	struct ieee80211_sta_he_cap he_cap;
464 	struct ieee80211_he_6ghz_capa he_6ghz_capa;
465 	struct ieee80211_sta_eht_cap eht_cap;
466 	struct {
467 		const u8 *data;
468 		unsigned int len;
469 	} vendor_elems;
470 };
471 
472 /**
473  * enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
474  *
475  * @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
476  * @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
477  * @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
478  * @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
479  * @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
480  * @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
481  * @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
482  * @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
483  *	2.16GHz+2.16GHz
484  * @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
485  *	4.32GHz + 4.32GHz
486  * @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
487  *	4.32GHz + 4.32GHz
488  * @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
489  *	and 4.32GHz + 4.32GHz
490  * @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
491  *	2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
492  */
493 enum ieee80211_edmg_bw_config {
494 	IEEE80211_EDMG_BW_CONFIG_4	= 4,
495 	IEEE80211_EDMG_BW_CONFIG_5	= 5,
496 	IEEE80211_EDMG_BW_CONFIG_6	= 6,
497 	IEEE80211_EDMG_BW_CONFIG_7	= 7,
498 	IEEE80211_EDMG_BW_CONFIG_8	= 8,
499 	IEEE80211_EDMG_BW_CONFIG_9	= 9,
500 	IEEE80211_EDMG_BW_CONFIG_10	= 10,
501 	IEEE80211_EDMG_BW_CONFIG_11	= 11,
502 	IEEE80211_EDMG_BW_CONFIG_12	= 12,
503 	IEEE80211_EDMG_BW_CONFIG_13	= 13,
504 	IEEE80211_EDMG_BW_CONFIG_14	= 14,
505 	IEEE80211_EDMG_BW_CONFIG_15	= 15,
506 };
507 
508 /**
509  * struct ieee80211_edmg - EDMG configuration
510  *
511  * This structure describes most essential parameters needed
512  * to describe 802.11ay EDMG configuration
513  *
514  * @channels: bitmap that indicates the 2.16 GHz channel(s)
515  *	that are allowed to be used for transmissions.
516  *	Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
517  *	Set to 0 indicate EDMG not supported.
518  * @bw_config: Channel BW Configuration subfield encodes
519  *	the allowed channel bandwidth configurations
520  */
521 struct ieee80211_edmg {
522 	u8 channels;
523 	enum ieee80211_edmg_bw_config bw_config;
524 };
525 
526 /**
527  * struct ieee80211_sta_s1g_cap - STA's S1G capabilities
528  *
529  * This structure describes most essential parameters needed
530  * to describe 802.11ah S1G capabilities for a STA.
531  *
532  * @s1g: is STA an S1G STA
533  * @cap: S1G capabilities information
534  * @nss_mcs: Supported NSS MCS set
535  */
536 struct ieee80211_sta_s1g_cap {
537 	bool s1g;
538 	u8 cap[10]; /* use S1G_CAPAB_ */
539 	u8 nss_mcs[5];
540 };
541 
542 /**
543  * struct ieee80211_supported_band - frequency band definition
544  *
545  * This structure describes a frequency band a wiphy
546  * is able to operate in.
547  *
548  * @channels: Array of channels the hardware can operate with
549  *	in this band.
550  * @band: the band this structure represents
551  * @n_channels: Number of channels in @channels
552  * @bitrates: Array of bitrates the hardware can operate with
553  *	in this band. Must be sorted to give a valid "supported
554  *	rates" IE, i.e. CCK rates first, then OFDM.
555  * @n_bitrates: Number of bitrates in @bitrates
556  * @ht_cap: HT capabilities in this band
557  * @vht_cap: VHT capabilities in this band
558  * @s1g_cap: S1G capabilities in this band
559  * @edmg_cap: EDMG capabilities in this band
560  * @s1g_cap: S1G capabilities in this band (S1B band only, of course)
561  * @n_iftype_data: number of iftype data entries
562  * @iftype_data: interface type data entries.  Note that the bits in
563  *	@types_mask inside this structure cannot overlap (i.e. only
564  *	one occurrence of each type is allowed across all instances of
565  *	iftype_data).
566  */
567 struct ieee80211_supported_band {
568 	struct ieee80211_channel *channels;
569 	struct ieee80211_rate *bitrates;
570 	enum nl80211_band band;
571 	int n_channels;
572 	int n_bitrates;
573 	struct ieee80211_sta_ht_cap ht_cap;
574 	struct ieee80211_sta_vht_cap vht_cap;
575 	struct ieee80211_sta_s1g_cap s1g_cap;
576 	struct ieee80211_edmg edmg_cap;
577 	u16 n_iftype_data;
578 	const struct ieee80211_sband_iftype_data __iftd *iftype_data;
579 };
580 
581 /**
582  * _ieee80211_set_sband_iftype_data - set sband iftype data array
583  * @sband: the sband to initialize
584  * @iftd: the iftype data array pointer
585  * @n_iftd: the length of the iftype data array
586  *
587  * Set the sband iftype data array; use this where the length cannot
588  * be derived from the ARRAY_SIZE() of the argument, but prefer
589  * ieee80211_set_sband_iftype_data() where it can be used.
590  */
591 static inline void
_ieee80211_set_sband_iftype_data(struct ieee80211_supported_band * sband,const struct ieee80211_sband_iftype_data * iftd,u16 n_iftd)592 _ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband,
593 				 const struct ieee80211_sband_iftype_data *iftd,
594 				 u16 n_iftd)
595 {
596 	sband->iftype_data = (const void __iftd __force *)iftd;
597 	sband->n_iftype_data = n_iftd;
598 }
599 
600 /**
601  * ieee80211_set_sband_iftype_data - set sband iftype data array
602  * @sband: the sband to initialize
603  * @iftd: the iftype data array
604  */
605 #define ieee80211_set_sband_iftype_data(sband, iftd)	\
606 	_ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd))
607 
608 /**
609  * for_each_sband_iftype_data - iterate sband iftype data entries
610  * @sband: the sband whose iftype_data array to iterate
611  * @i: iterator counter
612  * @iftd: iftype data pointer to set
613  */
614 #define for_each_sband_iftype_data(sband, i, iftd)				\
615 	for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i];	\
616 	     i < (sband)->n_iftype_data;					\
617 	     i++, iftd = (const void __force *)&(sband)->iftype_data[i])
618 
619 /**
620  * ieee80211_get_sband_iftype_data - return sband data for a given iftype
621  * @sband: the sband to search for the STA on
622  * @iftype: enum nl80211_iftype
623  *
624  * Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
625  */
626 static inline const struct ieee80211_sband_iftype_data *
ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band * sband,u8 iftype)627 ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
628 				u8 iftype)
629 {
630 	const struct ieee80211_sband_iftype_data *data;
631 	int i;
632 
633 	if (WARN_ON(iftype >= NL80211_IFTYPE_MAX))
634 		return NULL;
635 
636 	if (iftype == NL80211_IFTYPE_AP_VLAN)
637 		iftype = NL80211_IFTYPE_AP;
638 
639 	for_each_sband_iftype_data(sband, i, data) {
640 		if (data->types_mask & BIT(iftype))
641 			return data;
642 	}
643 
644 	return NULL;
645 }
646 
647 /**
648  * ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
649  * @sband: the sband to search for the iftype on
650  * @iftype: enum nl80211_iftype
651  *
652  * Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
653  */
654 static inline const struct ieee80211_sta_he_cap *
ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band * sband,u8 iftype)655 ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
656 			    u8 iftype)
657 {
658 	const struct ieee80211_sband_iftype_data *data =
659 		ieee80211_get_sband_iftype_data(sband, iftype);
660 
661 	if (data && data->he_cap.has_he)
662 		return &data->he_cap;
663 
664 	return NULL;
665 }
666 
667 /**
668  * ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
669  * @sband: the sband to search for the STA on
670  * @iftype: the iftype to search for
671  *
672  * Return: the 6GHz capabilities
673  */
674 static inline __le16
ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)675 ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
676 			   enum nl80211_iftype iftype)
677 {
678 	const struct ieee80211_sband_iftype_data *data =
679 		ieee80211_get_sband_iftype_data(sband, iftype);
680 
681 	if (WARN_ON(!data || !data->he_cap.has_he))
682 		return 0;
683 
684 	return data->he_6ghz_capa.capa;
685 }
686 
687 /**
688  * ieee80211_get_eht_iftype_cap - return ETH capabilities for an sband's iftype
689  * @sband: the sband to search for the iftype on
690  * @iftype: enum nl80211_iftype
691  *
692  * Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
693  */
694 static inline const struct ieee80211_sta_eht_cap *
ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band * sband,enum nl80211_iftype iftype)695 ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
696 			     enum nl80211_iftype iftype)
697 {
698 	const struct ieee80211_sband_iftype_data *data =
699 		ieee80211_get_sband_iftype_data(sband, iftype);
700 
701 	if (data && data->eht_cap.has_eht)
702 		return &data->eht_cap;
703 
704 	return NULL;
705 }
706 
707 /**
708  * wiphy_read_of_freq_limits - read frequency limits from device tree
709  *
710  * @wiphy: the wireless device to get extra limits for
711  *
712  * Some devices may have extra limitations specified in DT. This may be useful
713  * for chipsets that normally support more bands but are limited due to board
714  * design (e.g. by antennas or external power amplifier).
715  *
716  * This function reads info from DT and uses it to *modify* channels (disable
717  * unavailable ones). It's usually a *bad* idea to use it in drivers with
718  * shared channel data as DT limitations are device specific. You should make
719  * sure to call it only if channels in wiphy are copied and can be modified
720  * without affecting other devices.
721  *
722  * As this function access device node it has to be called after set_wiphy_dev.
723  * It also modifies channels so they have to be set first.
724  * If using this helper, call it before wiphy_register().
725  */
726 #ifdef CONFIG_OF
727 void wiphy_read_of_freq_limits(struct wiphy *wiphy);
728 #else /* CONFIG_OF */
wiphy_read_of_freq_limits(struct wiphy * wiphy)729 static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
730 {
731 }
732 #endif /* !CONFIG_OF */
733 
734 
735 /*
736  * Wireless hardware/device configuration structures and methods
737  */
738 
739 /**
740  * DOC: Actions and configuration
741  *
742  * Each wireless device and each virtual interface offer a set of configuration
743  * operations and other actions that are invoked by userspace. Each of these
744  * actions is described in the operations structure, and the parameters these
745  * operations use are described separately.
746  *
747  * Additionally, some operations are asynchronous and expect to get status
748  * information via some functions that drivers need to call.
749  *
750  * Scanning and BSS list handling with its associated functionality is described
751  * in a separate chapter.
752  */
753 
754 #define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
755 				    WLAN_USER_POSITION_LEN)
756 
757 /**
758  * struct vif_params - describes virtual interface parameters
759  * @flags: monitor interface flags, unchanged if 0, otherwise
760  *	%MONITOR_FLAG_CHANGED will be set
761  * @use_4addr: use 4-address frames
762  * @macaddr: address to use for this virtual interface.
763  *	If this parameter is set to zero address the driver may
764  *	determine the address as needed.
765  *	This feature is only fully supported by drivers that enable the
766  *	%NL80211_FEATURE_MAC_ON_CREATE flag.  Others may support creating
767  **	only p2p devices with specified MAC.
768  * @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
769  *	belonging to that MU-MIMO groupID; %NULL if not changed
770  * @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
771  *	MU-MIMO packets going to the specified station; %NULL if not changed
772  */
773 struct vif_params {
774 	u32 flags;
775 	int use_4addr;
776 	u8 macaddr[ETH_ALEN];
777 	const u8 *vht_mumimo_groups;
778 	const u8 *vht_mumimo_follow_addr;
779 };
780 
781 /**
782  * struct key_params - key information
783  *
784  * Information about a key
785  *
786  * @key: key material
787  * @key_len: length of key material
788  * @cipher: cipher suite selector
789  * @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
790  *	with the get_key() callback, must be in little endian,
791  *	length given by @seq_len.
792  * @seq_len: length of @seq.
793  * @vlan_id: vlan_id for VLAN group key (if nonzero)
794  * @mode: key install mode (RX_TX, NO_TX or SET_TX)
795  */
796 struct key_params {
797 	const u8 *key;
798 	const u8 *seq;
799 	int key_len;
800 	int seq_len;
801 	u16 vlan_id;
802 	u32 cipher;
803 	enum nl80211_key_mode mode;
804 };
805 
806 /**
807  * struct cfg80211_chan_def - channel definition
808  * @chan: the (control) channel
809  * @width: channel width
810  * @center_freq1: center frequency of first segment
811  * @center_freq2: center frequency of second segment
812  *	(only with 80+80 MHz)
813  * @edmg: define the EDMG channels configuration.
814  *	If edmg is requested (i.e. the .channels member is non-zero),
815  *	chan will define the primary channel and all other
816  *	parameters are ignored.
817  * @freq1_offset: offset from @center_freq1, in KHz
818  * @punctured: mask of the punctured 20 MHz subchannels, with
819  *	bits turned on being disabled (punctured); numbered
820  *	from lower to higher frequency (like in the spec)
821  */
822 struct cfg80211_chan_def {
823 	struct ieee80211_channel *chan;
824 	enum nl80211_chan_width width;
825 	u32 center_freq1;
826 	u32 center_freq2;
827 	struct ieee80211_edmg edmg;
828 	u16 freq1_offset;
829 	u16 punctured;
830 };
831 
832 /*
833  * cfg80211_bitrate_mask - masks for bitrate control
834  */
835 struct cfg80211_bitrate_mask {
836 	struct {
837 		u32 legacy;
838 		u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
839 		u16 vht_mcs[NL80211_VHT_NSS_MAX];
840 		u16 he_mcs[NL80211_HE_NSS_MAX];
841 		enum nl80211_txrate_gi gi;
842 		enum nl80211_he_gi he_gi;
843 		enum nl80211_he_ltf he_ltf;
844 	} control[NUM_NL80211_BANDS];
845 };
846 
847 
848 /**
849  * struct cfg80211_tid_cfg - TID specific configuration
850  * @config_override: Flag to notify driver to reset TID configuration
851  *	of the peer.
852  * @tids: bitmap of TIDs to modify
853  * @mask: bitmap of attributes indicating which parameter changed,
854  *	similar to &nl80211_tid_config_supp.
855  * @noack: noack configuration value for the TID
856  * @retry_long: retry count value
857  * @retry_short: retry count value
858  * @ampdu: Enable/Disable MPDU aggregation
859  * @rtscts: Enable/Disable RTS/CTS
860  * @amsdu: Enable/Disable MSDU aggregation
861  * @txrate_type: Tx bitrate mask type
862  * @txrate_mask: Tx bitrate to be applied for the TID
863  */
864 struct cfg80211_tid_cfg {
865 	bool config_override;
866 	u8 tids;
867 	u64 mask;
868 	enum nl80211_tid_config noack;
869 	u8 retry_long, retry_short;
870 	enum nl80211_tid_config ampdu;
871 	enum nl80211_tid_config rtscts;
872 	enum nl80211_tid_config amsdu;
873 	enum nl80211_tx_rate_setting txrate_type;
874 	struct cfg80211_bitrate_mask txrate_mask;
875 };
876 
877 /**
878  * struct cfg80211_tid_config - TID configuration
879  * @peer: Station's MAC address
880  * @n_tid_conf: Number of TID specific configurations to be applied
881  * @tid_conf: Configuration change info
882  */
883 struct cfg80211_tid_config {
884 	const u8 *peer;
885 	u32 n_tid_conf;
886 	struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
887 };
888 
889 /**
890  * struct cfg80211_fils_aad - FILS AAD data
891  * @macaddr: STA MAC address
892  * @kek: FILS KEK
893  * @kek_len: FILS KEK length
894  * @snonce: STA Nonce
895  * @anonce: AP Nonce
896  */
897 struct cfg80211_fils_aad {
898 	const u8 *macaddr;
899 	const u8 *kek;
900 	u8 kek_len;
901 	const u8 *snonce;
902 	const u8 *anonce;
903 };
904 
905 /**
906  * struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
907  * @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
908  *	addresses.
909  * @enable: if set, enable HW timestamping for the specified MAC address.
910  *	Otherwise disable HW timestamping for the specified MAC address.
911  */
912 struct cfg80211_set_hw_timestamp {
913 	const u8 *macaddr;
914 	bool enable;
915 };
916 
917 /**
918  * cfg80211_get_chandef_type - return old channel type from chandef
919  * @chandef: the channel definition
920  *
921  * Return: The old channel type (NOHT, HT20, HT40+/-) from a given
922  * chandef, which must have a bandwidth allowing this conversion.
923  */
924 static inline enum nl80211_channel_type
cfg80211_get_chandef_type(const struct cfg80211_chan_def * chandef)925 cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
926 {
927 	switch (chandef->width) {
928 	case NL80211_CHAN_WIDTH_20_NOHT:
929 		return NL80211_CHAN_NO_HT;
930 	case NL80211_CHAN_WIDTH_20:
931 		return NL80211_CHAN_HT20;
932 	case NL80211_CHAN_WIDTH_40:
933 		if (chandef->center_freq1 > chandef->chan->center_freq)
934 			return NL80211_CHAN_HT40PLUS;
935 		return NL80211_CHAN_HT40MINUS;
936 	default:
937 		WARN_ON(1);
938 		return NL80211_CHAN_NO_HT;
939 	}
940 }
941 
942 /**
943  * cfg80211_chandef_create - create channel definition using channel type
944  * @chandef: the channel definition struct to fill
945  * @channel: the control channel
946  * @chantype: the channel type
947  *
948  * Given a channel type, create a channel definition.
949  */
950 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
951 			     struct ieee80211_channel *channel,
952 			     enum nl80211_channel_type chantype);
953 
954 /**
955  * cfg80211_chandef_identical - check if two channel definitions are identical
956  * @chandef1: first channel definition
957  * @chandef2: second channel definition
958  *
959  * Return: %true if the channels defined by the channel definitions are
960  * identical, %false otherwise.
961  */
962 static inline bool
cfg80211_chandef_identical(const struct cfg80211_chan_def * chandef1,const struct cfg80211_chan_def * chandef2)963 cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
964 			   const struct cfg80211_chan_def *chandef2)
965 {
966 	return (chandef1->chan == chandef2->chan &&
967 		chandef1->width == chandef2->width &&
968 		chandef1->center_freq1 == chandef2->center_freq1 &&
969 		chandef1->freq1_offset == chandef2->freq1_offset &&
970 		chandef1->center_freq2 == chandef2->center_freq2 &&
971 		chandef1->punctured == chandef2->punctured);
972 }
973 
974 /**
975  * cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
976  *
977  * @chandef: the channel definition
978  *
979  * Return: %true if EDMG defined, %false otherwise.
980  */
981 static inline bool
cfg80211_chandef_is_edmg(const struct cfg80211_chan_def * chandef)982 cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
983 {
984 	return chandef->edmg.channels || chandef->edmg.bw_config;
985 }
986 
987 /**
988  * cfg80211_chandef_compatible - check if two channel definitions are compatible
989  * @chandef1: first channel definition
990  * @chandef2: second channel definition
991  *
992  * Return: %NULL if the given channel definitions are incompatible,
993  * chandef1 or chandef2 otherwise.
994  */
995 const struct cfg80211_chan_def *
996 cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
997 			    const struct cfg80211_chan_def *chandef2);
998 
999 /**
1000  * nl80211_chan_width_to_mhz - get the channel width in MHz
1001  * @chan_width: the channel width from &enum nl80211_chan_width
1002  *
1003  * Return: channel width in MHz if the chan_width from &enum nl80211_chan_width
1004  * is valid. -1 otherwise.
1005  */
1006 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width);
1007 
1008 /**
1009  * cfg80211_chandef_valid - check if a channel definition is valid
1010  * @chandef: the channel definition to check
1011  * Return: %true if the channel definition is valid. %false otherwise.
1012  */
1013 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
1014 
1015 /**
1016  * cfg80211_chandef_usable - check if secondary channels can be used
1017  * @wiphy: the wiphy to validate against
1018  * @chandef: the channel definition to check
1019  * @prohibited_flags: the regulatory channel flags that must not be set
1020  * Return: %true if secondary channels are usable. %false otherwise.
1021  */
1022 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1023 			     const struct cfg80211_chan_def *chandef,
1024 			     u32 prohibited_flags);
1025 
1026 /**
1027  * cfg80211_chandef_dfs_required - checks if radar detection is required
1028  * @wiphy: the wiphy to validate against
1029  * @chandef: the channel definition to check
1030  * @iftype: the interface type as specified in &enum nl80211_iftype
1031  * Returns:
1032  *	1 if radar detection is required, 0 if it is not, < 0 on error
1033  */
1034 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
1035 				  const struct cfg80211_chan_def *chandef,
1036 				  enum nl80211_iftype iftype);
1037 
1038 /**
1039  * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we
1040  *				 can/need start CAC on such channel
1041  * @wiphy: the wiphy to validate against
1042  * @chandef: the channel definition to check
1043  *
1044  * Return: true if all channels available and at least
1045  *	   one channel requires CAC (NL80211_DFS_USABLE)
1046  */
1047 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
1048 				 const struct cfg80211_chan_def *chandef);
1049 
1050 /**
1051  * cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given
1052  *				   channel definition
1053  * @wiphy: the wiphy to validate against
1054  * @chandef: the channel definition to check
1055  *
1056  * Returns: DFS CAC time (in ms) which applies for this channel definition
1057  */
1058 unsigned int
1059 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1060 			      const struct cfg80211_chan_def *chandef);
1061 
1062 /**
1063  * cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq
1064  * @chandef: chandef to calculate for
1065  * @primary_chan_width: primary channel width to calculate center for
1066  * @punctured: punctured sub-channel bitmap, will be recalculated
1067  *	according to the new bandwidth, can be %NULL
1068  *
1069  * Returns: the primary 40/80/160 MHz channel center frequency, or -1
1070  *	for errors, updating the punctured bitmap
1071  */
1072 int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef,
1073 			     enum nl80211_chan_width primary_chan_width,
1074 			     u16 *punctured);
1075 
1076 /**
1077  * nl80211_send_chandef - sends the channel definition.
1078  * @msg: the msg to send channel definition
1079  * @chandef: the channel definition to check
1080  *
1081  * Returns: 0 if sent the channel definition to msg, < 0 on error
1082  **/
1083 int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
1084 
1085 /**
1086  * ieee80211_chanwidth_rate_flags - return rate flags for channel width
1087  * @width: the channel width of the channel
1088  *
1089  * In some channel types, not all rates may be used - for example CCK
1090  * rates may not be used in 5/10 MHz channels.
1091  *
1092  * Returns: rate flags which apply for this channel width
1093  */
1094 static inline enum ieee80211_rate_flags
ieee80211_chanwidth_rate_flags(enum nl80211_chan_width width)1095 ieee80211_chanwidth_rate_flags(enum nl80211_chan_width width)
1096 {
1097 	switch (width) {
1098 	case NL80211_CHAN_WIDTH_5:
1099 		return IEEE80211_RATE_SUPPORTS_5MHZ;
1100 	case NL80211_CHAN_WIDTH_10:
1101 		return IEEE80211_RATE_SUPPORTS_10MHZ;
1102 	default:
1103 		break;
1104 	}
1105 	return 0;
1106 }
1107 
1108 /**
1109  * ieee80211_chandef_rate_flags - returns rate flags for a channel
1110  * @chandef: channel definition for the channel
1111  *
1112  * See ieee80211_chanwidth_rate_flags().
1113  *
1114  * Returns: rate flags which apply for this channel
1115  */
1116 static inline enum ieee80211_rate_flags
ieee80211_chandef_rate_flags(struct cfg80211_chan_def * chandef)1117 ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef)
1118 {
1119 	return ieee80211_chanwidth_rate_flags(chandef->width);
1120 }
1121 
1122 /**
1123  * ieee80211_chandef_max_power - maximum transmission power for the chandef
1124  *
1125  * In some regulations, the transmit power may depend on the configured channel
1126  * bandwidth which may be defined as dBm/MHz. This function returns the actual
1127  * max_power for non-standard (20 MHz) channels.
1128  *
1129  * @chandef: channel definition for the channel
1130  *
1131  * Returns: maximum allowed transmission power in dBm for the chandef
1132  */
1133 static inline int
ieee80211_chandef_max_power(struct cfg80211_chan_def * chandef)1134 ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
1135 {
1136 	switch (chandef->width) {
1137 	case NL80211_CHAN_WIDTH_5:
1138 		return min(chandef->chan->max_reg_power - 6,
1139 			   chandef->chan->max_power);
1140 	case NL80211_CHAN_WIDTH_10:
1141 		return min(chandef->chan->max_reg_power - 3,
1142 			   chandef->chan->max_power);
1143 	default:
1144 		break;
1145 	}
1146 	return chandef->chan->max_power;
1147 }
1148 
1149 /**
1150  * cfg80211_any_usable_channels - check for usable channels
1151  * @wiphy: the wiphy to check for
1152  * @band_mask: which bands to check on
1153  * @prohibited_flags: which channels to not consider usable,
1154  *	%IEEE80211_CHAN_DISABLED is always taken into account
1155  *
1156  * Return: %true if usable channels found, %false otherwise
1157  */
1158 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1159 				  unsigned long band_mask,
1160 				  u32 prohibited_flags);
1161 
1162 /**
1163  * enum survey_info_flags - survey information flags
1164  *
1165  * @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
1166  * @SURVEY_INFO_IN_USE: channel is currently being used
1167  * @SURVEY_INFO_TIME: active time (in ms) was filled in
1168  * @SURVEY_INFO_TIME_BUSY: busy time was filled in
1169  * @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
1170  * @SURVEY_INFO_TIME_RX: receive time was filled in
1171  * @SURVEY_INFO_TIME_TX: transmit time was filled in
1172  * @SURVEY_INFO_TIME_SCAN: scan time was filled in
1173  * @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
1174  *
1175  * Used by the driver to indicate which info in &struct survey_info
1176  * it has filled in during the get_survey().
1177  */
1178 enum survey_info_flags {
1179 	SURVEY_INFO_NOISE_DBM		= BIT(0),
1180 	SURVEY_INFO_IN_USE		= BIT(1),
1181 	SURVEY_INFO_TIME		= BIT(2),
1182 	SURVEY_INFO_TIME_BUSY		= BIT(3),
1183 	SURVEY_INFO_TIME_EXT_BUSY	= BIT(4),
1184 	SURVEY_INFO_TIME_RX		= BIT(5),
1185 	SURVEY_INFO_TIME_TX		= BIT(6),
1186 	SURVEY_INFO_TIME_SCAN		= BIT(7),
1187 	SURVEY_INFO_TIME_BSS_RX		= BIT(8),
1188 };
1189 
1190 /**
1191  * struct survey_info - channel survey response
1192  *
1193  * @channel: the channel this survey record reports, may be %NULL for a single
1194  *	record to report global statistics
1195  * @filled: bitflag of flags from &enum survey_info_flags
1196  * @noise: channel noise in dBm. This and all following fields are
1197  *	optional
1198  * @time: amount of time in ms the radio was turn on (on the channel)
1199  * @time_busy: amount of time the primary channel was sensed busy
1200  * @time_ext_busy: amount of time the extension channel was sensed busy
1201  * @time_rx: amount of time the radio spent receiving data
1202  * @time_tx: amount of time the radio spent transmitting data
1203  * @time_scan: amount of time the radio spent for scanning
1204  * @time_bss_rx: amount of time the radio spent receiving data on a local BSS
1205  *
1206  * Used by dump_survey() to report back per-channel survey information.
1207  *
1208  * This structure can later be expanded with things like
1209  * channel duty cycle etc.
1210  */
1211 struct survey_info {
1212 	struct ieee80211_channel *channel;
1213 	u64 time;
1214 	u64 time_busy;
1215 	u64 time_ext_busy;
1216 	u64 time_rx;
1217 	u64 time_tx;
1218 	u64 time_scan;
1219 	u64 time_bss_rx;
1220 	u32 filled;
1221 	s8 noise;
1222 };
1223 
1224 #define CFG80211_MAX_NUM_AKM_SUITES	10
1225 
1226 /**
1227  * struct cfg80211_crypto_settings - Crypto settings
1228  * @wpa_versions: indicates which, if any, WPA versions are enabled
1229  *	(from enum nl80211_wpa_versions)
1230  * @cipher_group: group key cipher suite (or 0 if unset)
1231  * @n_ciphers_pairwise: number of AP supported unicast ciphers
1232  * @ciphers_pairwise: unicast key cipher suites
1233  * @n_akm_suites: number of AKM suites
1234  * @akm_suites: AKM suites
1235  * @control_port: Whether user space controls IEEE 802.1X port, i.e.,
1236  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
1237  *	required to assume that the port is unauthorized until authorized by
1238  *	user space. Otherwise, port is marked authorized by default.
1239  * @control_port_ethertype: the control port protocol that should be
1240  *	allowed through even on unauthorized ports
1241  * @control_port_no_encrypt: TRUE to prevent encryption of control port
1242  *	protocol frames.
1243  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
1244  *	port frames over NL80211 instead of the network interface.
1245  * @control_port_no_preauth: disables pre-auth rx over the nl80211 control
1246  *	port for mac80211
1247  * @psk: PSK (for devices supporting 4-way-handshake offload)
1248  * @sae_pwd: password for SAE authentication (for devices supporting SAE
1249  *	offload)
1250  * @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
1251  * @sae_pwe: The mechanisms allowed for SAE PWE derivation:
1252  *
1253  *	NL80211_SAE_PWE_UNSPECIFIED
1254  *	  Not-specified, used to indicate userspace did not specify any
1255  *	  preference. The driver should follow its internal policy in
1256  *	  such a scenario.
1257  *
1258  *	NL80211_SAE_PWE_HUNT_AND_PECK
1259  *	  Allow hunting-and-pecking loop only
1260  *
1261  *	NL80211_SAE_PWE_HASH_TO_ELEMENT
1262  *	  Allow hash-to-element only
1263  *
1264  *	NL80211_SAE_PWE_BOTH
1265  *	  Allow either hunting-and-pecking loop or hash-to-element
1266  */
1267 struct cfg80211_crypto_settings {
1268 	u32 wpa_versions;
1269 	u32 cipher_group;
1270 	int n_ciphers_pairwise;
1271 	u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
1272 	int n_akm_suites;
1273 	u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
1274 	bool control_port;
1275 	__be16 control_port_ethertype;
1276 	bool control_port_no_encrypt;
1277 	bool control_port_over_nl80211;
1278 	bool control_port_no_preauth;
1279 	const u8 *psk;
1280 	const u8 *sae_pwd;
1281 	u8 sae_pwd_len;
1282 	enum nl80211_sae_pwe_mechanism sae_pwe;
1283 };
1284 
1285 /**
1286  * struct cfg80211_mbssid_config - AP settings for multi bssid
1287  *
1288  * @tx_wdev: pointer to the transmitted interface in the MBSSID set
1289  * @index: index of this AP in the multi bssid group.
1290  * @ema: set to true if the beacons should be sent out in EMA mode.
1291  */
1292 struct cfg80211_mbssid_config {
1293 	struct wireless_dev *tx_wdev;
1294 	u8 index;
1295 	bool ema;
1296 };
1297 
1298 /**
1299  * struct cfg80211_mbssid_elems - Multiple BSSID elements
1300  *
1301  * @cnt: Number of elements in array %elems.
1302  *
1303  * @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
1304  * @elem.data: Data for multiple BSSID elements.
1305  * @elem.len: Length of data.
1306  */
1307 struct cfg80211_mbssid_elems {
1308 	u8 cnt;
1309 	struct {
1310 		const u8 *data;
1311 		size_t len;
1312 	} elem[] __counted_by(cnt);
1313 };
1314 
1315 /**
1316  * struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
1317  *
1318  * @cnt: Number of elements in array %elems.
1319  *
1320  * @elem: Array of RNR element(s) to be added into Beacon frames.
1321  * @elem.data: Data for RNR elements.
1322  * @elem.len: Length of data.
1323  */
1324 struct cfg80211_rnr_elems {
1325 	u8 cnt;
1326 	struct {
1327 		const u8 *data;
1328 		size_t len;
1329 	} elem[] __counted_by(cnt);
1330 };
1331 
1332 /**
1333  * struct cfg80211_beacon_data - beacon data
1334  * @link_id: the link ID for the AP MLD link sending this beacon
1335  * @head: head portion of beacon (before TIM IE)
1336  *	or %NULL if not changed
1337  * @tail: tail portion of beacon (after TIM IE)
1338  *	or %NULL if not changed
1339  * @head_len: length of @head
1340  * @tail_len: length of @tail
1341  * @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
1342  * @beacon_ies_len: length of beacon_ies in octets
1343  * @proberesp_ies: extra information element(s) to add into Probe Response
1344  *	frames or %NULL
1345  * @proberesp_ies_len: length of proberesp_ies in octets
1346  * @assocresp_ies: extra information element(s) to add into (Re)Association
1347  *	Response frames or %NULL
1348  * @assocresp_ies_len: length of assocresp_ies in octets
1349  * @probe_resp_len: length of probe response template (@probe_resp)
1350  * @probe_resp: probe response template (AP mode only)
1351  * @mbssid_ies: multiple BSSID elements
1352  * @rnr_ies: reduced neighbor report elements
1353  * @ftm_responder: enable FTM responder functionality; -1 for no change
1354  *	(which also implies no change in LCI/civic location data)
1355  * @lci: Measurement Report element content, starting with Measurement Token
1356  *	(measurement type 8)
1357  * @civicloc: Measurement Report element content, starting with Measurement
1358  *	Token (measurement type 11)
1359  * @lci_len: LCI data length
1360  * @civicloc_len: Civic location data length
1361  * @he_bss_color: BSS Color settings
1362  * @he_bss_color_valid: indicates whether bss color
1363  *	attribute is present in beacon data or not.
1364  */
1365 struct cfg80211_beacon_data {
1366 	unsigned int link_id;
1367 
1368 	const u8 *head, *tail;
1369 	const u8 *beacon_ies;
1370 	const u8 *proberesp_ies;
1371 	const u8 *assocresp_ies;
1372 	const u8 *probe_resp;
1373 	const u8 *lci;
1374 	const u8 *civicloc;
1375 	struct cfg80211_mbssid_elems *mbssid_ies;
1376 	struct cfg80211_rnr_elems *rnr_ies;
1377 	s8 ftm_responder;
1378 
1379 	size_t head_len, tail_len;
1380 	size_t beacon_ies_len;
1381 	size_t proberesp_ies_len;
1382 	size_t assocresp_ies_len;
1383 	size_t probe_resp_len;
1384 	size_t lci_len;
1385 	size_t civicloc_len;
1386 	struct cfg80211_he_bss_color he_bss_color;
1387 	bool he_bss_color_valid;
1388 };
1389 
1390 struct mac_address {
1391 	u8 addr[ETH_ALEN];
1392 };
1393 
1394 /**
1395  * struct cfg80211_acl_data - Access control list data
1396  *
1397  * @acl_policy: ACL policy to be applied on the station's
1398  *	entry specified by mac_addr
1399  * @n_acl_entries: Number of MAC address entries passed
1400  * @mac_addrs: List of MAC addresses of stations to be used for ACL
1401  */
1402 struct cfg80211_acl_data {
1403 	enum nl80211_acl_policy acl_policy;
1404 	int n_acl_entries;
1405 
1406 	/* Keep it last */
1407 	struct mac_address mac_addrs[] __counted_by(n_acl_entries);
1408 };
1409 
1410 /**
1411  * struct cfg80211_fils_discovery - FILS discovery parameters from
1412  * IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
1413  *
1414  * @update: Set to true if the feature configuration should be updated.
1415  * @min_interval: Minimum packet interval in TUs (0 - 10000)
1416  * @max_interval: Maximum packet interval in TUs (0 - 10000)
1417  * @tmpl_len: Template length
1418  * @tmpl: Template data for FILS discovery frame including the action
1419  *	frame headers.
1420  */
1421 struct cfg80211_fils_discovery {
1422 	bool update;
1423 	u32 min_interval;
1424 	u32 max_interval;
1425 	size_t tmpl_len;
1426 	const u8 *tmpl;
1427 };
1428 
1429 /**
1430  * struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
1431  *	response parameters in 6GHz.
1432  *
1433  * @update: Set to true if the feature configuration should be updated.
1434  * @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
1435  *	in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
1436  *	scanning
1437  * @tmpl_len: Template length
1438  * @tmpl: Template data for probe response
1439  */
1440 struct cfg80211_unsol_bcast_probe_resp {
1441 	bool update;
1442 	u32 interval;
1443 	size_t tmpl_len;
1444 	const u8 *tmpl;
1445 };
1446 
1447 /**
1448  * struct cfg80211_ap_settings - AP configuration
1449  *
1450  * Used to configure an AP interface.
1451  *
1452  * @chandef: defines the channel to use
1453  * @beacon: beacon data
1454  * @beacon_interval: beacon interval
1455  * @dtim_period: DTIM period
1456  * @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
1457  *	user space)
1458  * @ssid_len: length of @ssid
1459  * @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
1460  * @crypto: crypto settings
1461  * @privacy: the BSS uses privacy
1462  * @auth_type: Authentication type (algorithm)
1463  * @smps_mode: SMPS mode
1464  * @inactivity_timeout: time in seconds to determine station's inactivity.
1465  * @p2p_ctwindow: P2P CT Window
1466  * @p2p_opp_ps: P2P opportunistic PS
1467  * @acl: ACL configuration used by the drivers which has support for
1468  *	MAC address based access control
1469  * @pbss: If set, start as a PCP instead of AP. Relevant for DMG
1470  *	networks.
1471  * @beacon_rate: bitrate to be used for beacons
1472  * @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
1473  * @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
1474  * @he_cap: HE capabilities (or %NULL if HE isn't enabled)
1475  * @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
1476  * @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
1477  * @ht_required: stations must support HT
1478  * @vht_required: stations must support VHT
1479  * @twt_responder: Enable Target Wait Time
1480  * @he_required: stations must support HE
1481  * @sae_h2e_required: stations must support direct H2E technique in SAE
1482  * @flags: flags, as defined in &enum nl80211_ap_settings_flags
1483  * @he_obss_pd: OBSS Packet Detection settings
1484  * @he_oper: HE operation IE (or %NULL if HE isn't enabled)
1485  * @fils_discovery: FILS discovery transmission parameters
1486  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1487  * @mbssid_config: AP settings for multiple bssid
1488  */
1489 struct cfg80211_ap_settings {
1490 	struct cfg80211_chan_def chandef;
1491 
1492 	struct cfg80211_beacon_data beacon;
1493 
1494 	int beacon_interval, dtim_period;
1495 	const u8 *ssid;
1496 	size_t ssid_len;
1497 	enum nl80211_hidden_ssid hidden_ssid;
1498 	struct cfg80211_crypto_settings crypto;
1499 	bool privacy;
1500 	enum nl80211_auth_type auth_type;
1501 	enum nl80211_smps_mode smps_mode;
1502 	int inactivity_timeout;
1503 	u8 p2p_ctwindow;
1504 	bool p2p_opp_ps;
1505 	const struct cfg80211_acl_data *acl;
1506 	bool pbss;
1507 	struct cfg80211_bitrate_mask beacon_rate;
1508 
1509 	const struct ieee80211_ht_cap *ht_cap;
1510 	const struct ieee80211_vht_cap *vht_cap;
1511 	const struct ieee80211_he_cap_elem *he_cap;
1512 	const struct ieee80211_he_operation *he_oper;
1513 	const struct ieee80211_eht_cap_elem *eht_cap;
1514 	const struct ieee80211_eht_operation *eht_oper;
1515 	bool ht_required, vht_required, he_required, sae_h2e_required;
1516 	bool twt_responder;
1517 	u32 flags;
1518 	struct ieee80211_he_obss_pd he_obss_pd;
1519 	struct cfg80211_fils_discovery fils_discovery;
1520 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1521 	struct cfg80211_mbssid_config mbssid_config;
1522 };
1523 
1524 
1525 /**
1526  * struct cfg80211_ap_update - AP configuration update
1527  *
1528  * Subset of &struct cfg80211_ap_settings, for updating a running AP.
1529  *
1530  * @beacon: beacon data
1531  * @fils_discovery: FILS discovery transmission parameters
1532  * @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
1533  */
1534 struct cfg80211_ap_update {
1535 	struct cfg80211_beacon_data beacon;
1536 	struct cfg80211_fils_discovery fils_discovery;
1537 	struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
1538 };
1539 
1540 /**
1541  * struct cfg80211_csa_settings - channel switch settings
1542  *
1543  * Used for channel switch
1544  *
1545  * @chandef: defines the channel to use after the switch
1546  * @beacon_csa: beacon data while performing the switch
1547  * @counter_offsets_beacon: offsets of the counters within the beacon (tail)
1548  * @counter_offsets_presp: offsets of the counters within the probe response
1549  * @n_counter_offsets_beacon: number of csa counters the beacon (tail)
1550  * @n_counter_offsets_presp: number of csa counters in the probe response
1551  * @beacon_after: beacon data to be used on the new channel
1552  * @radar_required: whether radar detection is required on the new channel
1553  * @block_tx: whether transmissions should be blocked while changing
1554  * @count: number of beacons until switch
1555  * @link_id: defines the link on which channel switch is expected during
1556  *	MLO. 0 in case of non-MLO.
1557  */
1558 struct cfg80211_csa_settings {
1559 	struct cfg80211_chan_def chandef;
1560 	struct cfg80211_beacon_data beacon_csa;
1561 	const u16 *counter_offsets_beacon;
1562 	const u16 *counter_offsets_presp;
1563 	unsigned int n_counter_offsets_beacon;
1564 	unsigned int n_counter_offsets_presp;
1565 	struct cfg80211_beacon_data beacon_after;
1566 	bool radar_required;
1567 	bool block_tx;
1568 	u8 count;
1569 	u8 link_id;
1570 };
1571 
1572 /**
1573  * struct cfg80211_color_change_settings - color change settings
1574  *
1575  * Used for bss color change
1576  *
1577  * @beacon_color_change: beacon data while performing the color countdown
1578  * @counter_offset_beacon: offsets of the counters within the beacon (tail)
1579  * @counter_offset_presp: offsets of the counters within the probe response
1580  * @beacon_next: beacon data to be used after the color change
1581  * @count: number of beacons until the color change
1582  * @color: the color used after the change
1583  * @link_id: defines the link on which color change is expected during MLO.
1584  *	0 in case of non-MLO.
1585  */
1586 struct cfg80211_color_change_settings {
1587 	struct cfg80211_beacon_data beacon_color_change;
1588 	u16 counter_offset_beacon;
1589 	u16 counter_offset_presp;
1590 	struct cfg80211_beacon_data beacon_next;
1591 	u8 count;
1592 	u8 color;
1593 	u8 link_id;
1594 };
1595 
1596 /**
1597  * struct iface_combination_params - input parameters for interface combinations
1598  *
1599  * Used to pass interface combination parameters
1600  *
1601  * @radio_idx: wiphy radio index or -1 for global
1602  * @num_different_channels: the number of different channels we want
1603  *	to use for verification
1604  * @radar_detect: a bitmap where each bit corresponds to a channel
1605  *	width where radar detection is needed, as in the definition of
1606  *	&struct ieee80211_iface_combination.@radar_detect_widths
1607  * @iftype_num: array with the number of interfaces of each interface
1608  *	type.  The index is the interface type as specified in &enum
1609  *	nl80211_iftype.
1610  * @new_beacon_int: set this to the beacon interval of a new interface
1611  *	that's not operating yet, if such is to be checked as part of
1612  *	the verification
1613  */
1614 struct iface_combination_params {
1615 	int radio_idx;
1616 	int num_different_channels;
1617 	u8 radar_detect;
1618 	int iftype_num[NUM_NL80211_IFTYPES];
1619 	u32 new_beacon_int;
1620 };
1621 
1622 /**
1623  * enum station_parameters_apply_mask - station parameter values to apply
1624  * @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
1625  * @STATION_PARAM_APPLY_CAPABILITY: apply new capability
1626  * @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
1627  *
1628  * Not all station parameters have in-band "no change" signalling,
1629  * for those that don't these flags will are used.
1630  */
1631 enum station_parameters_apply_mask {
1632 	STATION_PARAM_APPLY_UAPSD = BIT(0),
1633 	STATION_PARAM_APPLY_CAPABILITY = BIT(1),
1634 	STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
1635 };
1636 
1637 /**
1638  * struct sta_txpwr - station txpower configuration
1639  *
1640  * Used to configure txpower for station.
1641  *
1642  * @power: tx power (in dBm) to be used for sending data traffic. If tx power
1643  *	is not provided, the default per-interface tx power setting will be
1644  *	overriding. Driver should be picking up the lowest tx power, either tx
1645  *	power per-interface or per-station.
1646  * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
1647  *	will be less than or equal to specified from userspace, whereas if TPC
1648  *	%type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
1649  *	NL80211_TX_POWER_FIXED is not a valid configuration option for
1650  *	per peer TPC.
1651  */
1652 struct sta_txpwr {
1653 	s16 power;
1654 	enum nl80211_tx_power_setting type;
1655 };
1656 
1657 /**
1658  * struct link_station_parameters - link station parameters
1659  *
1660  * Used to change and create a new link station.
1661  *
1662  * @mld_mac: MAC address of the station
1663  * @link_id: the link id (-1 for non-MLD station)
1664  * @link_mac: MAC address of the link
1665  * @supported_rates: supported rates in IEEE 802.11 format
1666  *	(or NULL for no change)
1667  * @supported_rates_len: number of supported rates
1668  * @ht_capa: HT capabilities of station
1669  * @vht_capa: VHT capabilities of station
1670  * @opmode_notif: operating mode field from Operating Mode Notification
1671  * @opmode_notif_used: information if operating mode field is used
1672  * @he_capa: HE capabilities of station
1673  * @he_capa_len: the length of the HE capabilities
1674  * @txpwr: transmit power for an associated station
1675  * @txpwr_set: txpwr field is set
1676  * @he_6ghz_capa: HE 6 GHz Band capabilities of station
1677  * @eht_capa: EHT capabilities of station
1678  * @eht_capa_len: the length of the EHT capabilities
1679  */
1680 struct link_station_parameters {
1681 	const u8 *mld_mac;
1682 	int link_id;
1683 	const u8 *link_mac;
1684 	const u8 *supported_rates;
1685 	u8 supported_rates_len;
1686 	const struct ieee80211_ht_cap *ht_capa;
1687 	const struct ieee80211_vht_cap *vht_capa;
1688 	u8 opmode_notif;
1689 	bool opmode_notif_used;
1690 	const struct ieee80211_he_cap_elem *he_capa;
1691 	u8 he_capa_len;
1692 	struct sta_txpwr txpwr;
1693 	bool txpwr_set;
1694 	const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
1695 	const struct ieee80211_eht_cap_elem *eht_capa;
1696 	u8 eht_capa_len;
1697 };
1698 
1699 /**
1700  * struct link_station_del_parameters - link station deletion parameters
1701  *
1702  * Used to delete a link station entry (or all stations).
1703  *
1704  * @mld_mac: MAC address of the station
1705  * @link_id: the link id
1706  */
1707 struct link_station_del_parameters {
1708 	const u8 *mld_mac;
1709 	u32 link_id;
1710 };
1711 
1712 /**
1713  * struct cfg80211_ttlm_params: TID to link mapping parameters
1714  *
1715  * Used for setting a TID to link mapping.
1716  *
1717  * @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314
1718  *     (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1719  * @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314
1720  *     (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
1721  */
1722 struct cfg80211_ttlm_params {
1723 	u16 dlink[8];
1724 	u16 ulink[8];
1725 };
1726 
1727 /**
1728  * struct station_parameters - station parameters
1729  *
1730  * Used to change and create a new station.
1731  *
1732  * @vlan: vlan interface station should belong to
1733  * @sta_flags_mask: station flags that changed
1734  *	(bitmask of BIT(%NL80211_STA_FLAG_...))
1735  * @sta_flags_set: station flags values
1736  *	(bitmask of BIT(%NL80211_STA_FLAG_...))
1737  * @listen_interval: listen interval or -1 for no change
1738  * @aid: AID or zero for no change
1739  * @vlan_id: VLAN ID for station (if nonzero)
1740  * @peer_aid: mesh peer AID or zero for no change
1741  * @plink_action: plink action to take
1742  * @plink_state: set the peer link state for a station
1743  * @uapsd_queues: bitmap of queues configured for uapsd. same format
1744  *	as the AC bitmap in the QoS info field
1745  * @max_sp: max Service Period. same format as the MAX_SP in the
1746  *	QoS info field (but already shifted down)
1747  * @sta_modify_mask: bitmap indicating which parameters changed
1748  *	(for those that don't have a natural "no change" value),
1749  *	see &enum station_parameters_apply_mask
1750  * @local_pm: local link-specific mesh power save mode (no change when set
1751  *	to unknown)
1752  * @capability: station capability
1753  * @ext_capab: extended capabilities of the station
1754  * @ext_capab_len: number of extended capabilities
1755  * @supported_channels: supported channels in IEEE 802.11 format
1756  * @supported_channels_len: number of supported channels
1757  * @supported_oper_classes: supported oper classes in IEEE 802.11 format
1758  * @supported_oper_classes_len: number of supported operating classes
1759  * @support_p2p_ps: information if station supports P2P PS mechanism
1760  * @airtime_weight: airtime scheduler weight for this station
1761  * @link_sta_params: link related params.
1762  */
1763 struct station_parameters {
1764 	struct net_device *vlan;
1765 	u32 sta_flags_mask, sta_flags_set;
1766 	u32 sta_modify_mask;
1767 	int listen_interval;
1768 	u16 aid;
1769 	u16 vlan_id;
1770 	u16 peer_aid;
1771 	u8 plink_action;
1772 	u8 plink_state;
1773 	u8 uapsd_queues;
1774 	u8 max_sp;
1775 	enum nl80211_mesh_power_mode local_pm;
1776 	u16 capability;
1777 	const u8 *ext_capab;
1778 	u8 ext_capab_len;
1779 	const u8 *supported_channels;
1780 	u8 supported_channels_len;
1781 	const u8 *supported_oper_classes;
1782 	u8 supported_oper_classes_len;
1783 	int support_p2p_ps;
1784 	u16 airtime_weight;
1785 	struct link_station_parameters link_sta_params;
1786 };
1787 
1788 /**
1789  * struct station_del_parameters - station deletion parameters
1790  *
1791  * Used to delete a station entry (or all stations).
1792  *
1793  * @mac: MAC address of the station to remove or NULL to remove all stations
1794  * @subtype: Management frame subtype to use for indicating removal
1795  *	(10 = Disassociation, 12 = Deauthentication)
1796  * @reason_code: Reason code for the Disassociation/Deauthentication frame
1797  * @link_id: Link ID indicating a link that stations to be flushed must be
1798  *	using; valid only for MLO, but can also be -1 for MLO to really
1799  *	remove all stations.
1800  */
1801 struct station_del_parameters {
1802 	const u8 *mac;
1803 	u8 subtype;
1804 	u16 reason_code;
1805 	int link_id;
1806 };
1807 
1808 /**
1809  * enum cfg80211_station_type - the type of station being modified
1810  * @CFG80211_STA_AP_CLIENT: client of an AP interface
1811  * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
1812  *	unassociated (update properties for this type of client is permitted)
1813  * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
1814  *	the AP MLME in the device
1815  * @CFG80211_STA_AP_STA: AP station on managed interface
1816  * @CFG80211_STA_IBSS: IBSS station
1817  * @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
1818  *	while TDLS setup is in progress, it moves out of this state when
1819  *	being marked authorized; use this only if TDLS with external setup is
1820  *	supported/used)
1821  * @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
1822  *	entry that is operating, has been marked authorized by userspace)
1823  * @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
1824  * @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
1825  */
1826 enum cfg80211_station_type {
1827 	CFG80211_STA_AP_CLIENT,
1828 	CFG80211_STA_AP_CLIENT_UNASSOC,
1829 	CFG80211_STA_AP_MLME_CLIENT,
1830 	CFG80211_STA_AP_STA,
1831 	CFG80211_STA_IBSS,
1832 	CFG80211_STA_TDLS_PEER_SETUP,
1833 	CFG80211_STA_TDLS_PEER_ACTIVE,
1834 	CFG80211_STA_MESH_PEER_KERNEL,
1835 	CFG80211_STA_MESH_PEER_USER,
1836 };
1837 
1838 /**
1839  * cfg80211_check_station_change - validate parameter changes
1840  * @wiphy: the wiphy this operates on
1841  * @params: the new parameters for a station
1842  * @statype: the type of station being modified
1843  *
1844  * Utility function for the @change_station driver method. Call this function
1845  * with the appropriate station type looking up the station (and checking that
1846  * it exists). It will verify whether the station change is acceptable.
1847  *
1848  * Return: 0 if the change is acceptable, otherwise an error code. Note that
1849  * it may modify the parameters for backward compatibility reasons, so don't
1850  * use them before calling this.
1851  */
1852 int cfg80211_check_station_change(struct wiphy *wiphy,
1853 				  struct station_parameters *params,
1854 				  enum cfg80211_station_type statype);
1855 
1856 /**
1857  * enum rate_info_flags - bitrate info flags
1858  *
1859  * Used by the driver to indicate the specific rate transmission
1860  * type for 802.11n transmissions.
1861  *
1862  * @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
1863  * @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
1864  * @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
1865  * @RATE_INFO_FLAGS_DMG: 60GHz MCS
1866  * @RATE_INFO_FLAGS_HE_MCS: HE MCS information
1867  * @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
1868  * @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
1869  * @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
1870  * @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
1871  */
1872 enum rate_info_flags {
1873 	RATE_INFO_FLAGS_MCS			= BIT(0),
1874 	RATE_INFO_FLAGS_VHT_MCS			= BIT(1),
1875 	RATE_INFO_FLAGS_SHORT_GI		= BIT(2),
1876 	RATE_INFO_FLAGS_DMG			= BIT(3),
1877 	RATE_INFO_FLAGS_HE_MCS			= BIT(4),
1878 	RATE_INFO_FLAGS_EDMG			= BIT(5),
1879 	RATE_INFO_FLAGS_EXTENDED_SC_DMG		= BIT(6),
1880 	RATE_INFO_FLAGS_EHT_MCS			= BIT(7),
1881 	RATE_INFO_FLAGS_S1G_MCS			= BIT(8),
1882 };
1883 
1884 /**
1885  * enum rate_info_bw - rate bandwidth information
1886  *
1887  * Used by the driver to indicate the rate bandwidth.
1888  *
1889  * @RATE_INFO_BW_5: 5 MHz bandwidth
1890  * @RATE_INFO_BW_10: 10 MHz bandwidth
1891  * @RATE_INFO_BW_20: 20 MHz bandwidth
1892  * @RATE_INFO_BW_40: 40 MHz bandwidth
1893  * @RATE_INFO_BW_80: 80 MHz bandwidth
1894  * @RATE_INFO_BW_160: 160 MHz bandwidth
1895  * @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
1896  * @RATE_INFO_BW_320: 320 MHz bandwidth
1897  * @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
1898  * @RATE_INFO_BW_1: 1 MHz bandwidth
1899  * @RATE_INFO_BW_2: 2 MHz bandwidth
1900  * @RATE_INFO_BW_4: 4 MHz bandwidth
1901  * @RATE_INFO_BW_8: 8 MHz bandwidth
1902  * @RATE_INFO_BW_16: 16 MHz bandwidth
1903  */
1904 enum rate_info_bw {
1905 	RATE_INFO_BW_20 = 0,
1906 	RATE_INFO_BW_5,
1907 	RATE_INFO_BW_10,
1908 	RATE_INFO_BW_40,
1909 	RATE_INFO_BW_80,
1910 	RATE_INFO_BW_160,
1911 	RATE_INFO_BW_HE_RU,
1912 	RATE_INFO_BW_320,
1913 	RATE_INFO_BW_EHT_RU,
1914 	RATE_INFO_BW_1,
1915 	RATE_INFO_BW_2,
1916 	RATE_INFO_BW_4,
1917 	RATE_INFO_BW_8,
1918 	RATE_INFO_BW_16,
1919 };
1920 
1921 /**
1922  * struct rate_info - bitrate information
1923  *
1924  * Information about a receiving or transmitting bitrate
1925  *
1926  * @flags: bitflag of flags from &enum rate_info_flags
1927  * @legacy: bitrate in 100kbit/s for 802.11abg
1928  * @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
1929  * @nss: number of streams (VHT & HE only)
1930  * @bw: bandwidth (from &enum rate_info_bw)
1931  * @he_gi: HE guard interval (from &enum nl80211_he_gi)
1932  * @he_dcm: HE DCM value
1933  * @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
1934  *	only valid if bw is %RATE_INFO_BW_HE_RU)
1935  * @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
1936  * @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
1937  * @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
1938  *	only valid if bw is %RATE_INFO_BW_EHT_RU)
1939  */
1940 struct rate_info {
1941 	u16 flags;
1942 	u16 legacy;
1943 	u8 mcs;
1944 	u8 nss;
1945 	u8 bw;
1946 	u8 he_gi;
1947 	u8 he_dcm;
1948 	u8 he_ru_alloc;
1949 	u8 n_bonded_ch;
1950 	u8 eht_gi;
1951 	u8 eht_ru_alloc;
1952 };
1953 
1954 /**
1955  * enum bss_param_flags - bitrate info flags
1956  *
1957  * Used by the driver to indicate the specific rate transmission
1958  * type for 802.11n transmissions.
1959  *
1960  * @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
1961  * @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
1962  * @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
1963  */
1964 enum bss_param_flags {
1965 	BSS_PARAM_FLAGS_CTS_PROT	= BIT(0),
1966 	BSS_PARAM_FLAGS_SHORT_PREAMBLE	= BIT(1),
1967 	BSS_PARAM_FLAGS_SHORT_SLOT_TIME	= BIT(2),
1968 };
1969 
1970 /**
1971  * struct sta_bss_parameters - BSS parameters for the attached station
1972  *
1973  * Information about the currently associated BSS
1974  *
1975  * @flags: bitflag of flags from &enum bss_param_flags
1976  * @dtim_period: DTIM period for the BSS
1977  * @beacon_interval: beacon interval
1978  */
1979 struct sta_bss_parameters {
1980 	u8 flags;
1981 	u8 dtim_period;
1982 	u16 beacon_interval;
1983 };
1984 
1985 /**
1986  * struct cfg80211_txq_stats - TXQ statistics for this TID
1987  * @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
1988  *	indicate the relevant values in this struct are filled
1989  * @backlog_bytes: total number of bytes currently backlogged
1990  * @backlog_packets: total number of packets currently backlogged
1991  * @flows: number of new flows seen
1992  * @drops: total number of packets dropped
1993  * @ecn_marks: total number of packets marked with ECN CE
1994  * @overlimit: number of drops due to queue space overflow
1995  * @overmemory: number of drops due to memory limit overflow
1996  * @collisions: number of hash collisions
1997  * @tx_bytes: total number of bytes dequeued
1998  * @tx_packets: total number of packets dequeued
1999  * @max_flows: maximum number of flows supported
2000  */
2001 struct cfg80211_txq_stats {
2002 	u32 filled;
2003 	u32 backlog_bytes;
2004 	u32 backlog_packets;
2005 	u32 flows;
2006 	u32 drops;
2007 	u32 ecn_marks;
2008 	u32 overlimit;
2009 	u32 overmemory;
2010 	u32 collisions;
2011 	u32 tx_bytes;
2012 	u32 tx_packets;
2013 	u32 max_flows;
2014 };
2015 
2016 /**
2017  * struct cfg80211_tid_stats - per-TID statistics
2018  * @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
2019  *	indicate the relevant values in this struct are filled
2020  * @rx_msdu: number of received MSDUs
2021  * @tx_msdu: number of (attempted) transmitted MSDUs
2022  * @tx_msdu_retries: number of retries (not counting the first) for
2023  *	transmitted MSDUs
2024  * @tx_msdu_failed: number of failed transmitted MSDUs
2025  * @txq_stats: TXQ statistics
2026  */
2027 struct cfg80211_tid_stats {
2028 	u32 filled;
2029 	u64 rx_msdu;
2030 	u64 tx_msdu;
2031 	u64 tx_msdu_retries;
2032 	u64 tx_msdu_failed;
2033 	struct cfg80211_txq_stats txq_stats;
2034 };
2035 
2036 #define IEEE80211_MAX_CHAINS	4
2037 
2038 /**
2039  * struct station_info - station information
2040  *
2041  * Station information filled by driver for get_station() and dump_station.
2042  *
2043  * @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
2044  *	indicate the relevant values in this struct for them
2045  * @connected_time: time(in secs) since a station is last connected
2046  * @inactive_time: time since last station activity (tx/rx) in milliseconds
2047  * @assoc_at: bootime (ns) of the last association
2048  * @rx_bytes: bytes (size of MPDUs) received from this station
2049  * @tx_bytes: bytes (size of MPDUs) transmitted to this station
2050  * @llid: mesh local link id
2051  * @plid: mesh peer link id
2052  * @plink_state: mesh peer link state
2053  * @signal: The signal strength, type depends on the wiphy's signal_type.
2054  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2055  * @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
2056  *	For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
2057  * @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
2058  * @chain_signal: per-chain signal strength of last received packet in dBm
2059  * @chain_signal_avg: per-chain signal strength average in dBm
2060  * @txrate: current unicast bitrate from this station
2061  * @rxrate: current unicast bitrate to this station
2062  * @rx_packets: packets (MSDUs & MMPDUs) received from this station
2063  * @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
2064  * @tx_retries: cumulative retry counts (MPDUs)
2065  * @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
2066  * @rx_dropped_misc:  Dropped for un-specified reason.
2067  * @bss_param: current BSS parameters
2068  * @generation: generation number for nl80211 dumps.
2069  *	This number should increase every time the list of stations
2070  *	changes, i.e. when a station is added or removed, so that
2071  *	userspace can tell whether it got a consistent snapshot.
2072  * @assoc_req_ies: IEs from (Re)Association Request.
2073  *	This is used only when in AP mode with drivers that do not use
2074  *	user space MLME/SME implementation. The information is provided for
2075  *	the cfg80211_new_sta() calls to notify user space of the IEs.
2076  * @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
2077  * @sta_flags: station flags mask & values
2078  * @beacon_loss_count: Number of times beacon loss event has triggered.
2079  * @t_offset: Time offset of the station relative to this host.
2080  * @local_pm: local mesh STA power save mode
2081  * @peer_pm: peer mesh STA power save mode
2082  * @nonpeer_pm: non-peer mesh STA power save mode
2083  * @expected_throughput: expected throughput in kbps (including 802.11 headers)
2084  *	towards this station.
2085  * @rx_beacon: number of beacons received from this peer
2086  * @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
2087  *	from this peer
2088  * @connected_to_gate: true if mesh STA has a path to mesh gate
2089  * @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
2090  * @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
2091  * @airtime_weight: current airtime scheduling weight
2092  * @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
2093  *	(IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
2094  *	Note that this doesn't use the @filled bit, but is used if non-NULL.
2095  * @ack_signal: signal strength (in dBm) of the last ACK frame.
2096  * @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
2097  *	been sent.
2098  * @rx_mpdu_count: number of MPDUs received from this station
2099  * @fcs_err_count: number of packets (MPDUs) received from this station with
2100  *	an FCS error. This counter should be incremented only when TA of the
2101  *	received packet with an FCS error matches the peer MAC address.
2102  * @airtime_link_metric: mesh airtime link metric.
2103  * @connected_to_as: true if mesh STA has a path to authentication server
2104  * @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
2105  *	by driver. Drivers use this only in cfg80211_new_sta() calls when AP
2106  *	MLD's MLME/SME is offload to driver. Drivers won't fill this
2107  *	information in cfg80211_del_sta_sinfo(), get_station() and
2108  *	dump_station() callbacks.
2109  * @assoc_link_id: Indicates MLO link ID of the AP, with which the station
2110  *	completed (re)association. This information filled for both MLO
2111  *	and non-MLO STA connections when the AP affiliated with an MLD.
2112  * @mld_addr: For MLO STA connection, filled with MLD address of the station.
2113  *	For non-MLO STA connection, filled with all zeros.
2114  * @assoc_resp_ies: IEs from (Re)Association Response.
2115  *	This is used only when in AP mode with drivers that do not use user
2116  *	space MLME/SME implementation. The information is provided only for the
2117  *	cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
2118  *	fill this information in cfg80211_del_sta_sinfo(), get_station() and
2119  *	dump_station() callbacks. User space needs this information to determine
2120  *	the accepted and rejected affiliated links of the connected station.
2121  * @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
2122  */
2123 struct station_info {
2124 	u64 filled;
2125 	u32 connected_time;
2126 	u32 inactive_time;
2127 	u64 assoc_at;
2128 	u64 rx_bytes;
2129 	u64 tx_bytes;
2130 	u16 llid;
2131 	u16 plid;
2132 	u8 plink_state;
2133 	s8 signal;
2134 	s8 signal_avg;
2135 
2136 	u8 chains;
2137 	s8 chain_signal[IEEE80211_MAX_CHAINS];
2138 	s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
2139 
2140 	struct rate_info txrate;
2141 	struct rate_info rxrate;
2142 	u32 rx_packets;
2143 	u32 tx_packets;
2144 	u32 tx_retries;
2145 	u32 tx_failed;
2146 	u32 rx_dropped_misc;
2147 	struct sta_bss_parameters bss_param;
2148 	struct nl80211_sta_flag_update sta_flags;
2149 
2150 	int generation;
2151 
2152 	const u8 *assoc_req_ies;
2153 	size_t assoc_req_ies_len;
2154 
2155 	u32 beacon_loss_count;
2156 	s64 t_offset;
2157 	enum nl80211_mesh_power_mode local_pm;
2158 	enum nl80211_mesh_power_mode peer_pm;
2159 	enum nl80211_mesh_power_mode nonpeer_pm;
2160 
2161 	u32 expected_throughput;
2162 
2163 	u64 tx_duration;
2164 	u64 rx_duration;
2165 	u64 rx_beacon;
2166 	u8 rx_beacon_signal_avg;
2167 	u8 connected_to_gate;
2168 
2169 	struct cfg80211_tid_stats *pertid;
2170 	s8 ack_signal;
2171 	s8 avg_ack_signal;
2172 
2173 	u16 airtime_weight;
2174 
2175 	u32 rx_mpdu_count;
2176 	u32 fcs_err_count;
2177 
2178 	u32 airtime_link_metric;
2179 
2180 	u8 connected_to_as;
2181 
2182 	bool mlo_params_valid;
2183 	u8 assoc_link_id;
2184 	u8 mld_addr[ETH_ALEN] __aligned(2);
2185 	const u8 *assoc_resp_ies;
2186 	size_t assoc_resp_ies_len;
2187 };
2188 
2189 /**
2190  * struct cfg80211_sar_sub_specs - sub specs limit
2191  * @power: power limitation in 0.25dbm
2192  * @freq_range_index: index the power limitation applies to
2193  */
2194 struct cfg80211_sar_sub_specs {
2195 	s32 power;
2196 	u32 freq_range_index;
2197 };
2198 
2199 /**
2200  * struct cfg80211_sar_specs - sar limit specs
2201  * @type: it's set with power in 0.25dbm or other types
2202  * @num_sub_specs: number of sar sub specs
2203  * @sub_specs: memory to hold the sar sub specs
2204  */
2205 struct cfg80211_sar_specs {
2206 	enum nl80211_sar_type type;
2207 	u32 num_sub_specs;
2208 	struct cfg80211_sar_sub_specs sub_specs[] __counted_by(num_sub_specs);
2209 };
2210 
2211 
2212 /**
2213  * struct cfg80211_sar_freq_ranges - sar frequency ranges
2214  * @start_freq:  start range edge frequency
2215  * @end_freq:    end range edge frequency
2216  */
2217 struct cfg80211_sar_freq_ranges {
2218 	u32 start_freq;
2219 	u32 end_freq;
2220 };
2221 
2222 /**
2223  * struct cfg80211_sar_capa - sar limit capability
2224  * @type: it's set via power in 0.25dbm or other types
2225  * @num_freq_ranges: number of frequency ranges
2226  * @freq_ranges: memory to hold the freq ranges.
2227  *
2228  * Note: WLAN driver may append new ranges or split an existing
2229  * range to small ones and then append them.
2230  */
2231 struct cfg80211_sar_capa {
2232 	enum nl80211_sar_type type;
2233 	u32 num_freq_ranges;
2234 	const struct cfg80211_sar_freq_ranges *freq_ranges;
2235 };
2236 
2237 #if IS_ENABLED(CONFIG_CFG80211)
2238 /**
2239  * cfg80211_get_station - retrieve information about a given station
2240  * @dev: the device where the station is supposed to be connected to
2241  * @mac_addr: the mac address of the station of interest
2242  * @sinfo: pointer to the structure to fill with the information
2243  *
2244  * Return: 0 on success and sinfo is filled with the available information
2245  * otherwise returns a negative error code and the content of sinfo has to be
2246  * considered undefined.
2247  */
2248 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2249 			 struct station_info *sinfo);
2250 #else
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2251 static inline int cfg80211_get_station(struct net_device *dev,
2252 				       const u8 *mac_addr,
2253 				       struct station_info *sinfo)
2254 {
2255 	return -ENOENT;
2256 }
2257 #endif
2258 
2259 /**
2260  * enum monitor_flags - monitor flags
2261  *
2262  * Monitor interface configuration flags. Note that these must be the bits
2263  * according to the nl80211 flags.
2264  *
2265  * @MONITOR_FLAG_CHANGED: set if the flags were changed
2266  * @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
2267  * @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
2268  * @MONITOR_FLAG_CONTROL: pass control frames
2269  * @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
2270  * @MONITOR_FLAG_COOK_FRAMES: report frames after processing
2271  * @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
2272  */
2273 enum monitor_flags {
2274 	MONITOR_FLAG_CHANGED		= BIT(__NL80211_MNTR_FLAG_INVALID),
2275 	MONITOR_FLAG_FCSFAIL		= BIT(NL80211_MNTR_FLAG_FCSFAIL),
2276 	MONITOR_FLAG_PLCPFAIL		= BIT(NL80211_MNTR_FLAG_PLCPFAIL),
2277 	MONITOR_FLAG_CONTROL		= BIT(NL80211_MNTR_FLAG_CONTROL),
2278 	MONITOR_FLAG_OTHER_BSS		= BIT(NL80211_MNTR_FLAG_OTHER_BSS),
2279 	MONITOR_FLAG_COOK_FRAMES	= BIT(NL80211_MNTR_FLAG_COOK_FRAMES),
2280 	MONITOR_FLAG_ACTIVE		= BIT(NL80211_MNTR_FLAG_ACTIVE),
2281 };
2282 
2283 /**
2284  * enum mpath_info_flags -  mesh path information flags
2285  *
2286  * Used by the driver to indicate which info in &struct mpath_info it has filled
2287  * in during get_station() or dump_station().
2288  *
2289  * @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
2290  * @MPATH_INFO_SN: @sn filled
2291  * @MPATH_INFO_METRIC: @metric filled
2292  * @MPATH_INFO_EXPTIME: @exptime filled
2293  * @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
2294  * @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
2295  * @MPATH_INFO_FLAGS: @flags filled
2296  * @MPATH_INFO_HOP_COUNT: @hop_count filled
2297  * @MPATH_INFO_PATH_CHANGE: @path_change_count filled
2298  */
2299 enum mpath_info_flags {
2300 	MPATH_INFO_FRAME_QLEN		= BIT(0),
2301 	MPATH_INFO_SN			= BIT(1),
2302 	MPATH_INFO_METRIC		= BIT(2),
2303 	MPATH_INFO_EXPTIME		= BIT(3),
2304 	MPATH_INFO_DISCOVERY_TIMEOUT	= BIT(4),
2305 	MPATH_INFO_DISCOVERY_RETRIES	= BIT(5),
2306 	MPATH_INFO_FLAGS		= BIT(6),
2307 	MPATH_INFO_HOP_COUNT		= BIT(7),
2308 	MPATH_INFO_PATH_CHANGE		= BIT(8),
2309 };
2310 
2311 /**
2312  * struct mpath_info - mesh path information
2313  *
2314  * Mesh path information filled by driver for get_mpath() and dump_mpath().
2315  *
2316  * @filled: bitfield of flags from &enum mpath_info_flags
2317  * @frame_qlen: number of queued frames for this destination
2318  * @sn: target sequence number
2319  * @metric: metric (cost) of this mesh path
2320  * @exptime: expiration time for the mesh path from now, in msecs
2321  * @flags: mesh path flags from &enum mesh_path_flags
2322  * @discovery_timeout: total mesh path discovery timeout, in msecs
2323  * @discovery_retries: mesh path discovery retries
2324  * @generation: generation number for nl80211 dumps.
2325  *	This number should increase every time the list of mesh paths
2326  *	changes, i.e. when a station is added or removed, so that
2327  *	userspace can tell whether it got a consistent snapshot.
2328  * @hop_count: hops to destination
2329  * @path_change_count: total number of path changes to destination
2330  */
2331 struct mpath_info {
2332 	u32 filled;
2333 	u32 frame_qlen;
2334 	u32 sn;
2335 	u32 metric;
2336 	u32 exptime;
2337 	u32 discovery_timeout;
2338 	u8 discovery_retries;
2339 	u8 flags;
2340 	u8 hop_count;
2341 	u32 path_change_count;
2342 
2343 	int generation;
2344 };
2345 
2346 /**
2347  * struct bss_parameters - BSS parameters
2348  *
2349  * Used to change BSS parameters (mainly for AP mode).
2350  *
2351  * @link_id: link_id or -1 for non-MLD
2352  * @use_cts_prot: Whether to use CTS protection
2353  *	(0 = no, 1 = yes, -1 = do not change)
2354  * @use_short_preamble: Whether the use of short preambles is allowed
2355  *	(0 = no, 1 = yes, -1 = do not change)
2356  * @use_short_slot_time: Whether the use of short slot time is allowed
2357  *	(0 = no, 1 = yes, -1 = do not change)
2358  * @basic_rates: basic rates in IEEE 802.11 format
2359  *	(or NULL for no change)
2360  * @basic_rates_len: number of basic rates
2361  * @ap_isolate: do not forward packets between connected stations
2362  *	(0 = no, 1 = yes, -1 = do not change)
2363  * @ht_opmode: HT Operation mode
2364  *	(u16 = opmode, -1 = do not change)
2365  * @p2p_ctwindow: P2P CT Window (-1 = no change)
2366  * @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
2367  */
2368 struct bss_parameters {
2369 	int link_id;
2370 	int use_cts_prot;
2371 	int use_short_preamble;
2372 	int use_short_slot_time;
2373 	const u8 *basic_rates;
2374 	u8 basic_rates_len;
2375 	int ap_isolate;
2376 	int ht_opmode;
2377 	s8 p2p_ctwindow, p2p_opp_ps;
2378 };
2379 
2380 /**
2381  * struct mesh_config - 802.11s mesh configuration
2382  *
2383  * These parameters can be changed while the mesh is active.
2384  *
2385  * @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
2386  *	by the Mesh Peering Open message
2387  * @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
2388  *	used by the Mesh Peering Open message
2389  * @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
2390  *	the mesh peering management to close a mesh peering
2391  * @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
2392  *	mesh interface
2393  * @dot11MeshMaxRetries: the maximum number of peer link open retries that can
2394  *	be sent to establish a new peer link instance in a mesh
2395  * @dot11MeshTTL: the value of TTL field set at a source mesh STA
2396  * @element_ttl: the value of TTL field set at a mesh STA for path selection
2397  *	elements
2398  * @auto_open_plinks: whether we should automatically open peer links when we
2399  *	detect compatible mesh peers
2400  * @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
2401  *	synchronize to for 11s default synchronization method
2402  * @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
2403  *	that an originator mesh STA can send to a particular path target
2404  * @path_refresh_time: how frequently to refresh mesh paths in milliseconds
2405  * @min_discovery_timeout: the minimum length of time to wait until giving up on
2406  *	a path discovery in milliseconds
2407  * @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
2408  *	receiving a PREQ shall consider the forwarding information from the
2409  *	root to be valid. (TU = time unit)
2410  * @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
2411  *	which a mesh STA can send only one action frame containing a PREQ
2412  *	element
2413  * @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
2414  *	which a mesh STA can send only one Action frame containing a PERR
2415  *	element
2416  * @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
2417  *	it takes for an HWMP information element to propagate across the mesh
2418  * @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
2419  * @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
2420  *	announcements are transmitted
2421  * @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
2422  *	station has access to a broader network beyond the MBSS. (This is
2423  *	missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
2424  *	only means that the station will announce others it's a mesh gate, but
2425  *	not necessarily using the gate announcement protocol. Still keeping the
2426  *	same nomenclature to be in sync with the spec)
2427  * @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
2428  *	entity (default is TRUE - forwarding entity)
2429  * @rssi_threshold: the threshold for average signal strength of candidate
2430  *	station to establish a peer link
2431  * @ht_opmode: mesh HT protection mode
2432  *
2433  * @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
2434  *	receiving a proactive PREQ shall consider the forwarding information to
2435  *	the root mesh STA to be valid.
2436  *
2437  * @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
2438  *	PREQs are transmitted.
2439  * @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
2440  *	during which a mesh STA can send only one Action frame containing
2441  *	a PREQ element for root path confirmation.
2442  * @power_mode: The default mesh power save mode which will be the initial
2443  *	setting for new peer links.
2444  * @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
2445  *	after transmitting its beacon.
2446  * @plink_timeout: If no tx activity is seen from a STA we've established
2447  *	peering with for longer than this time (in seconds), then remove it
2448  *	from the STA's list of peers.  Default is 30 minutes.
2449  * @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
2450  *	will advertise that it is connected to a authentication server
2451  *	in the mesh formation field.
2452  * @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
2453  *      connected to a mesh gate in mesh formation info.  If false, the
2454  *      value in mesh formation is determined by the presence of root paths
2455  *      in the mesh path table
2456  * @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
2457  *      for HWMP) if the destination is a direct neighbor. Note that this might
2458  *      not be the optimal decision as a multi-hop route might be better. So
2459  *      if using this setting you will likely also want to disable
2460  *      dot11MeshForwarding and use another mesh routing protocol on top.
2461  */
2462 struct mesh_config {
2463 	u16 dot11MeshRetryTimeout;
2464 	u16 dot11MeshConfirmTimeout;
2465 	u16 dot11MeshHoldingTimeout;
2466 	u16 dot11MeshMaxPeerLinks;
2467 	u8 dot11MeshMaxRetries;
2468 	u8 dot11MeshTTL;
2469 	u8 element_ttl;
2470 	bool auto_open_plinks;
2471 	u32 dot11MeshNbrOffsetMaxNeighbor;
2472 	u8 dot11MeshHWMPmaxPREQretries;
2473 	u32 path_refresh_time;
2474 	u16 min_discovery_timeout;
2475 	u32 dot11MeshHWMPactivePathTimeout;
2476 	u16 dot11MeshHWMPpreqMinInterval;
2477 	u16 dot11MeshHWMPperrMinInterval;
2478 	u16 dot11MeshHWMPnetDiameterTraversalTime;
2479 	u8 dot11MeshHWMPRootMode;
2480 	bool dot11MeshConnectedToMeshGate;
2481 	bool dot11MeshConnectedToAuthServer;
2482 	u16 dot11MeshHWMPRannInterval;
2483 	bool dot11MeshGateAnnouncementProtocol;
2484 	bool dot11MeshForwarding;
2485 	s32 rssi_threshold;
2486 	u16 ht_opmode;
2487 	u32 dot11MeshHWMPactivePathToRootTimeout;
2488 	u16 dot11MeshHWMProotInterval;
2489 	u16 dot11MeshHWMPconfirmationInterval;
2490 	enum nl80211_mesh_power_mode power_mode;
2491 	u16 dot11MeshAwakeWindowDuration;
2492 	u32 plink_timeout;
2493 	bool dot11MeshNolearn;
2494 };
2495 
2496 /**
2497  * struct mesh_setup - 802.11s mesh setup configuration
2498  * @chandef: defines the channel to use
2499  * @mesh_id: the mesh ID
2500  * @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
2501  * @sync_method: which synchronization method to use
2502  * @path_sel_proto: which path selection protocol to use
2503  * @path_metric: which metric to use
2504  * @auth_id: which authentication method this mesh is using
2505  * @ie: vendor information elements (optional)
2506  * @ie_len: length of vendor information elements
2507  * @is_authenticated: this mesh requires authentication
2508  * @is_secure: this mesh uses security
2509  * @user_mpm: userspace handles all MPM functions
2510  * @dtim_period: DTIM period to use
2511  * @beacon_interval: beacon interval to use
2512  * @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a]
2513  * @basic_rates: basic rates to use when creating the mesh
2514  * @beacon_rate: bitrate to be used for beacons
2515  * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
2516  *	changes the channel when a radar is detected. This is required
2517  *	to operate on DFS channels.
2518  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
2519  *	port frames over NL80211 instead of the network interface.
2520  *
2521  * These parameters are fixed when the mesh is created.
2522  */
2523 struct mesh_setup {
2524 	struct cfg80211_chan_def chandef;
2525 	const u8 *mesh_id;
2526 	u8 mesh_id_len;
2527 	u8 sync_method;
2528 	u8 path_sel_proto;
2529 	u8 path_metric;
2530 	u8 auth_id;
2531 	const u8 *ie;
2532 	u8 ie_len;
2533 	bool is_authenticated;
2534 	bool is_secure;
2535 	bool user_mpm;
2536 	u8 dtim_period;
2537 	u16 beacon_interval;
2538 	int mcast_rate[NUM_NL80211_BANDS];
2539 	u32 basic_rates;
2540 	struct cfg80211_bitrate_mask beacon_rate;
2541 	bool userspace_handles_dfs;
2542 	bool control_port_over_nl80211;
2543 };
2544 
2545 /**
2546  * struct ocb_setup - 802.11p OCB mode setup configuration
2547  * @chandef: defines the channel to use
2548  *
2549  * These parameters are fixed when connecting to the network
2550  */
2551 struct ocb_setup {
2552 	struct cfg80211_chan_def chandef;
2553 };
2554 
2555 /**
2556  * struct ieee80211_txq_params - TX queue parameters
2557  * @ac: AC identifier
2558  * @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
2559  * @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
2560  *	1..32767]
2561  * @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
2562  *	1..32767]
2563  * @aifs: Arbitration interframe space [0..255]
2564  * @link_id: link_id or -1 for non-MLD
2565  */
2566 struct ieee80211_txq_params {
2567 	enum nl80211_ac ac;
2568 	u16 txop;
2569 	u16 cwmin;
2570 	u16 cwmax;
2571 	u8 aifs;
2572 	int link_id;
2573 };
2574 
2575 /**
2576  * DOC: Scanning and BSS list handling
2577  *
2578  * The scanning process itself is fairly simple, but cfg80211 offers quite
2579  * a bit of helper functionality. To start a scan, the scan operation will
2580  * be invoked with a scan definition. This scan definition contains the
2581  * channels to scan, and the SSIDs to send probe requests for (including the
2582  * wildcard, if desired). A passive scan is indicated by having no SSIDs to
2583  * probe. Additionally, a scan request may contain extra information elements
2584  * that should be added to the probe request. The IEs are guaranteed to be
2585  * well-formed, and will not exceed the maximum length the driver advertised
2586  * in the wiphy structure.
2587  *
2588  * When scanning finds a BSS, cfg80211 needs to be notified of that, because
2589  * it is responsible for maintaining the BSS list; the driver should not
2590  * maintain a list itself. For this notification, various functions exist.
2591  *
2592  * Since drivers do not maintain a BSS list, there are also a number of
2593  * functions to search for a BSS and obtain information about it from the
2594  * BSS structure cfg80211 maintains. The BSS list is also made available
2595  * to userspace.
2596  */
2597 
2598 /**
2599  * struct cfg80211_ssid - SSID description
2600  * @ssid: the SSID
2601  * @ssid_len: length of the ssid
2602  */
2603 struct cfg80211_ssid {
2604 	u8 ssid[IEEE80211_MAX_SSID_LEN];
2605 	u8 ssid_len;
2606 };
2607 
2608 /**
2609  * struct cfg80211_scan_info - information about completed scan
2610  * @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
2611  *	wireless device that requested the scan is connected to. If this
2612  *	information is not available, this field is left zero.
2613  * @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
2614  * @aborted: set to true if the scan was aborted for any reason,
2615  *	userspace will be notified of that
2616  */
2617 struct cfg80211_scan_info {
2618 	u64 scan_start_tsf;
2619 	u8 tsf_bssid[ETH_ALEN] __aligned(2);
2620 	bool aborted;
2621 };
2622 
2623 /**
2624  * struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
2625  *
2626  * @short_ssid: short ssid to scan for
2627  * @bssid: bssid to scan for
2628  * @channel_idx: idx of the channel in the channel array in the scan request
2629  *	 which the above info is relevant to
2630  * @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
2631  * @short_ssid_valid: @short_ssid is valid and can be used
2632  * @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
2633  *       20 TUs before starting to send probe requests.
2634  * @psd_20: The AP's 20 MHz PSD value.
2635  */
2636 struct cfg80211_scan_6ghz_params {
2637 	u32 short_ssid;
2638 	u32 channel_idx;
2639 	u8 bssid[ETH_ALEN];
2640 	bool unsolicited_probe;
2641 	bool short_ssid_valid;
2642 	bool psc_no_listen;
2643 	s8 psd_20;
2644 };
2645 
2646 /**
2647  * struct cfg80211_scan_request - scan request description
2648  *
2649  * @ssids: SSIDs to scan for (active scan only)
2650  * @n_ssids: number of SSIDs
2651  * @channels: channels to scan on.
2652  * @n_channels: total number of channels to scan
2653  * @ie: optional information element(s) to add into Probe Request or %NULL
2654  * @ie_len: length of ie in octets
2655  * @duration: how long to listen on each channel, in TUs. If
2656  *	%duration_mandatory is not set, this is the maximum dwell time and
2657  *	the actual dwell time may be shorter.
2658  * @duration_mandatory: if set, the scan duration must be as specified by the
2659  *	%duration field.
2660  * @flags: control flags from &enum nl80211_scan_flags
2661  * @rates: bitmap of rates to advertise for each band
2662  * @wiphy: the wiphy this was for
2663  * @scan_start: time (in jiffies) when the scan started
2664  * @wdev: the wireless device to scan for
2665  * @info: (internal) information about completed scan
2666  * @notified: (internal) scan request was notified as done or aborted
2667  * @no_cck: used to send probe requests at non CCK rate in 2GHz band
2668  * @mac_addr: MAC address used with randomisation
2669  * @mac_addr_mask: MAC address mask used with randomisation, bits that
2670  *	are 0 in the mask should be randomised, bits that are 1 should
2671  *	be taken from the @mac_addr
2672  * @scan_6ghz: relevant for split scan request only,
2673  *	true if this is the second scan request
2674  * @n_6ghz_params: number of 6 GHz params
2675  * @scan_6ghz_params: 6 GHz params
2676  * @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
2677  * @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be
2678  *      used for TSF reporting. Can be set to -1 to indicate no preference.
2679  */
2680 struct cfg80211_scan_request {
2681 	struct cfg80211_ssid *ssids;
2682 	int n_ssids;
2683 	u32 n_channels;
2684 	const u8 *ie;
2685 	size_t ie_len;
2686 	u16 duration;
2687 	bool duration_mandatory;
2688 	u32 flags;
2689 
2690 	u32 rates[NUM_NL80211_BANDS];
2691 
2692 	struct wireless_dev *wdev;
2693 
2694 	u8 mac_addr[ETH_ALEN] __aligned(2);
2695 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2696 	u8 bssid[ETH_ALEN] __aligned(2);
2697 
2698 	/* internal */
2699 	struct wiphy *wiphy;
2700 	unsigned long scan_start;
2701 	struct cfg80211_scan_info info;
2702 	bool notified;
2703 	bool no_cck;
2704 	bool scan_6ghz;
2705 	u32 n_6ghz_params;
2706 	struct cfg80211_scan_6ghz_params *scan_6ghz_params;
2707 	s8 tsf_report_link_id;
2708 
2709 	/* keep last */
2710 	struct ieee80211_channel *channels[] __counted_by(n_channels);
2711 };
2712 
get_random_mask_addr(u8 * buf,const u8 * addr,const u8 * mask)2713 static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
2714 {
2715 	int i;
2716 
2717 	get_random_bytes(buf, ETH_ALEN);
2718 	for (i = 0; i < ETH_ALEN; i++) {
2719 		buf[i] &= ~mask[i];
2720 		buf[i] |= addr[i] & mask[i];
2721 	}
2722 }
2723 
2724 /**
2725  * struct cfg80211_match_set - sets of attributes to match
2726  *
2727  * @ssid: SSID to be matched; may be zero-length in case of BSSID match
2728  *	or no match (RSSI only)
2729  * @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
2730  *	or no match (RSSI only)
2731  * @rssi_thold: don't report scan results below this threshold (in s32 dBm)
2732  */
2733 struct cfg80211_match_set {
2734 	struct cfg80211_ssid ssid;
2735 	u8 bssid[ETH_ALEN];
2736 	s32 rssi_thold;
2737 };
2738 
2739 /**
2740  * struct cfg80211_sched_scan_plan - scan plan for scheduled scan
2741  *
2742  * @interval: interval between scheduled scan iterations. In seconds.
2743  * @iterations: number of scan iterations in this scan plan. Zero means
2744  *	infinite loop.
2745  *	The last scan plan will always have this parameter set to zero,
2746  *	all other scan plans will have a finite number of iterations.
2747  */
2748 struct cfg80211_sched_scan_plan {
2749 	u32 interval;
2750 	u32 iterations;
2751 };
2752 
2753 /**
2754  * struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
2755  *
2756  * @band: band of BSS which should match for RSSI level adjustment.
2757  * @delta: value of RSSI level adjustment.
2758  */
2759 struct cfg80211_bss_select_adjust {
2760 	enum nl80211_band band;
2761 	s8 delta;
2762 };
2763 
2764 /**
2765  * struct cfg80211_sched_scan_request - scheduled scan request description
2766  *
2767  * @reqid: identifies this request.
2768  * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
2769  * @n_ssids: number of SSIDs
2770  * @n_channels: total number of channels to scan
2771  * @ie: optional information element(s) to add into Probe Request or %NULL
2772  * @ie_len: length of ie in octets
2773  * @flags: control flags from &enum nl80211_scan_flags
2774  * @match_sets: sets of parameters to be matched for a scan result
2775  *	entry to be considered valid and to be passed to the host
2776  *	(others are filtered out).
2777  *	If omitted, all results are passed.
2778  * @n_match_sets: number of match sets
2779  * @report_results: indicates that results were reported for this request
2780  * @wiphy: the wiphy this was for
2781  * @dev: the interface
2782  * @scan_start: start time of the scheduled scan
2783  * @channels: channels to scan
2784  * @min_rssi_thold: for drivers only supporting a single threshold, this
2785  *	contains the minimum over all matchsets
2786  * @mac_addr: MAC address used with randomisation
2787  * @mac_addr_mask: MAC address mask used with randomisation, bits that
2788  *	are 0 in the mask should be randomised, bits that are 1 should
2789  *	be taken from the @mac_addr
2790  * @scan_plans: scan plans to be executed in this scheduled scan. Lowest
2791  *	index must be executed first.
2792  * @n_scan_plans: number of scan plans, at least 1.
2793  * @rcu_head: RCU callback used to free the struct
2794  * @owner_nlportid: netlink portid of owner (if this should is a request
2795  *	owned by a particular socket)
2796  * @nl_owner_dead: netlink owner socket was closed - this request be freed
2797  * @list: for keeping list of requests.
2798  * @delay: delay in seconds to use before starting the first scan
2799  *	cycle.  The driver may ignore this parameter and start
2800  *	immediately (or at any other time), if this feature is not
2801  *	supported.
2802  * @relative_rssi_set: Indicates whether @relative_rssi is set or not.
2803  * @relative_rssi: Relative RSSI threshold in dB to restrict scan result
2804  *	reporting in connected state to cases where a matching BSS is determined
2805  *	to have better or slightly worse RSSI than the current connected BSS.
2806  *	The relative RSSI threshold values are ignored in disconnected state.
2807  * @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
2808  *	to the specified band while deciding whether a better BSS is reported
2809  *	using @relative_rssi. If delta is a negative number, the BSSs that
2810  *	belong to the specified band will be penalized by delta dB in relative
2811  *	comparisons.
2812  */
2813 struct cfg80211_sched_scan_request {
2814 	u64 reqid;
2815 	struct cfg80211_ssid *ssids;
2816 	int n_ssids;
2817 	u32 n_channels;
2818 	const u8 *ie;
2819 	size_t ie_len;
2820 	u32 flags;
2821 	struct cfg80211_match_set *match_sets;
2822 	int n_match_sets;
2823 	s32 min_rssi_thold;
2824 	u32 delay;
2825 	struct cfg80211_sched_scan_plan *scan_plans;
2826 	int n_scan_plans;
2827 
2828 	u8 mac_addr[ETH_ALEN] __aligned(2);
2829 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
2830 
2831 	bool relative_rssi_set;
2832 	s8 relative_rssi;
2833 	struct cfg80211_bss_select_adjust rssi_adjust;
2834 
2835 	/* internal */
2836 	struct wiphy *wiphy;
2837 	struct net_device *dev;
2838 	unsigned long scan_start;
2839 	bool report_results;
2840 	struct rcu_head rcu_head;
2841 	u32 owner_nlportid;
2842 	bool nl_owner_dead;
2843 	struct list_head list;
2844 
2845 	/* keep last */
2846 	struct ieee80211_channel *channels[] __counted_by(n_channels);
2847 };
2848 
2849 /**
2850  * enum cfg80211_signal_type - signal type
2851  *
2852  * @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
2853  * @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
2854  * @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
2855  */
2856 enum cfg80211_signal_type {
2857 	CFG80211_SIGNAL_TYPE_NONE,
2858 	CFG80211_SIGNAL_TYPE_MBM,
2859 	CFG80211_SIGNAL_TYPE_UNSPEC,
2860 };
2861 
2862 /**
2863  * struct cfg80211_inform_bss - BSS inform data
2864  * @chan: channel the frame was received on
2865  * @signal: signal strength value, according to the wiphy's
2866  *	signal type
2867  * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
2868  *	received; should match the time when the frame was actually
2869  *	received by the device (not just by the host, in case it was
2870  *	buffered on the device) and be accurate to about 10ms.
2871  *	If the frame isn't buffered, just passing the return value of
2872  *	ktime_get_boottime_ns() is likely appropriate.
2873  * @parent_tsf: the time at the start of reception of the first octet of the
2874  *	timestamp field of the frame. The time is the TSF of the BSS specified
2875  *	by %parent_bssid.
2876  * @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
2877  *	the BSS that requested the scan in which the beacon/probe was received.
2878  * @chains: bitmask for filled values in @chain_signal.
2879  * @chain_signal: per-chain signal strength of last received BSS in dBm.
2880  * @restrict_use: restrict usage, if not set, assume @use_for is
2881  *	%NL80211_BSS_USE_FOR_NORMAL.
2882  * @use_for: bitmap of possible usage for this BSS, see
2883  *	&enum nl80211_bss_use_for
2884  * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
2885  *	if @restrict_use is set and @use_for is zero (empty); may be 0 for
2886  *	unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
2887  * @drv_data: Data to be passed through to @inform_bss
2888  */
2889 struct cfg80211_inform_bss {
2890 	struct ieee80211_channel *chan;
2891 	s32 signal;
2892 	u64 boottime_ns;
2893 	u64 parent_tsf;
2894 	u8 parent_bssid[ETH_ALEN] __aligned(2);
2895 	u8 chains;
2896 	s8 chain_signal[IEEE80211_MAX_CHAINS];
2897 
2898 	u8 restrict_use:1, use_for:7;
2899 	u8 cannot_use_reasons;
2900 
2901 	void *drv_data;
2902 };
2903 
2904 /**
2905  * struct cfg80211_bss_ies - BSS entry IE data
2906  * @tsf: TSF contained in the frame that carried these IEs
2907  * @rcu_head: internal use, for freeing
2908  * @len: length of the IEs
2909  * @from_beacon: these IEs are known to come from a beacon
2910  * @data: IE data
2911  */
2912 struct cfg80211_bss_ies {
2913 	u64 tsf;
2914 	struct rcu_head rcu_head;
2915 	int len;
2916 	bool from_beacon;
2917 	u8 data[];
2918 };
2919 
2920 /**
2921  * struct cfg80211_bss - BSS description
2922  *
2923  * This structure describes a BSS (which may also be a mesh network)
2924  * for use in scan results and similar.
2925  *
2926  * @channel: channel this BSS is on
2927  * @bssid: BSSID of the BSS
2928  * @beacon_interval: the beacon interval as from the frame
2929  * @capability: the capability field in host byte order
2930  * @ies: the information elements (Note that there is no guarantee that these
2931  *	are well-formed!); this is a pointer to either the beacon_ies or
2932  *	proberesp_ies depending on whether Probe Response frame has been
2933  *	received. It is always non-%NULL.
2934  * @beacon_ies: the information elements from the last Beacon frame
2935  *	(implementation note: if @hidden_beacon_bss is set this struct doesn't
2936  *	own the beacon_ies, but they're just pointers to the ones from the
2937  *	@hidden_beacon_bss struct)
2938  * @proberesp_ies: the information elements from the last Probe Response frame
2939  * @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame,
2940  *	cannot rely on it having valid data
2941  * @hidden_beacon_bss: in case this BSS struct represents a probe response from
2942  *	a BSS that hides the SSID in its beacon, this points to the BSS struct
2943  *	that holds the beacon data. @beacon_ies is still valid, of course, and
2944  *	points to the same data as hidden_beacon_bss->beacon_ies in that case.
2945  * @transmitted_bss: pointer to the transmitted BSS, if this is a
2946  *	non-transmitted one (multi-BSSID support)
2947  * @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
2948  *	(multi-BSSID support)
2949  * @signal: signal strength value (type depends on the wiphy's signal_type)
2950  * @chains: bitmask for filled values in @chain_signal.
2951  * @chain_signal: per-chain signal strength of last received BSS in dBm.
2952  * @bssid_index: index in the multiple BSS set
2953  * @max_bssid_indicator: max number of members in the BSS set
2954  * @use_for: bitmap of possible usage for this BSS, see
2955  *	&enum nl80211_bss_use_for
2956  * @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
2957  *	if @restrict_use is set and @use_for is zero (empty); may be 0 for
2958  *	unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
2959  * @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
2960  */
2961 struct cfg80211_bss {
2962 	struct ieee80211_channel *channel;
2963 
2964 	const struct cfg80211_bss_ies __rcu *ies;
2965 	const struct cfg80211_bss_ies __rcu *beacon_ies;
2966 	const struct cfg80211_bss_ies __rcu *proberesp_ies;
2967 
2968 	struct cfg80211_bss *hidden_beacon_bss;
2969 	struct cfg80211_bss *transmitted_bss;
2970 	struct list_head nontrans_list;
2971 
2972 	s32 signal;
2973 
2974 	u16 beacon_interval;
2975 	u16 capability;
2976 
2977 	u8 bssid[ETH_ALEN];
2978 	u8 chains;
2979 	s8 chain_signal[IEEE80211_MAX_CHAINS];
2980 
2981 	u8 proberesp_ecsa_stuck:1;
2982 
2983 	u8 bssid_index;
2984 	u8 max_bssid_indicator;
2985 
2986 	u8 use_for;
2987 	u8 cannot_use_reasons;
2988 
2989 	u8 priv[] __aligned(sizeof(void *));
2990 };
2991 
2992 /**
2993  * ieee80211_bss_get_elem - find element with given ID
2994  * @bss: the bss to search
2995  * @id: the element ID
2996  *
2997  * Note that the return value is an RCU-protected pointer, so
2998  * rcu_read_lock() must be held when calling this function.
2999  * Return: %NULL if not found.
3000  */
3001 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
3002 
3003 /**
3004  * ieee80211_bss_get_ie - find IE with given ID
3005  * @bss: the bss to search
3006  * @id: the element ID
3007  *
3008  * Note that the return value is an RCU-protected pointer, so
3009  * rcu_read_lock() must be held when calling this function.
3010  * Return: %NULL if not found.
3011  */
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 id)3012 static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
3013 {
3014 	return (const void *)ieee80211_bss_get_elem(bss, id);
3015 }
3016 
3017 
3018 /**
3019  * struct cfg80211_auth_request - Authentication request data
3020  *
3021  * This structure provides information needed to complete IEEE 802.11
3022  * authentication.
3023  *
3024  * @bss: The BSS to authenticate with, the callee must obtain a reference
3025  *	to it if it needs to keep it.
3026  * @auth_type: Authentication type (algorithm)
3027  * @ie: Extra IEs to add to Authentication frame or %NULL
3028  * @ie_len: Length of ie buffer in octets
3029  * @key_len: length of WEP key for shared key authentication
3030  * @key_idx: index of WEP key for shared key authentication
3031  * @key: WEP key for shared key authentication
3032  * @auth_data: Fields and elements in Authentication frames. This contains
3033  *	the authentication frame body (non-IE and IE data), excluding the
3034  *	Authentication algorithm number, i.e., starting at the Authentication
3035  *	transaction sequence number field.
3036  * @auth_data_len: Length of auth_data buffer in octets
3037  * @link_id: if >= 0, indicates authentication should be done as an MLD,
3038  *	the interface address is included as the MLD address and the
3039  *	necessary link (with the given link_id) will be created (and
3040  *	given an MLD address) by the driver
3041  * @ap_mld_addr: AP MLD address in case of authentication request with
3042  *	an AP MLD, valid iff @link_id >= 0
3043  */
3044 struct cfg80211_auth_request {
3045 	struct cfg80211_bss *bss;
3046 	const u8 *ie;
3047 	size_t ie_len;
3048 	enum nl80211_auth_type auth_type;
3049 	const u8 *key;
3050 	u8 key_len;
3051 	s8 key_idx;
3052 	const u8 *auth_data;
3053 	size_t auth_data_len;
3054 	s8 link_id;
3055 	const u8 *ap_mld_addr;
3056 };
3057 
3058 /**
3059  * struct cfg80211_assoc_link - per-link information for MLO association
3060  * @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
3061  *	if this is %NULL for a link, that link is not requested
3062  * @elems: extra elements for the per-STA profile for this link
3063  * @elems_len: length of the elements
3064  * @disabled: If set this link should be included during association etc. but it
3065  *	should not be used until enabled by the AP MLD.
3066  * @error: per-link error code, must be <= 0. If there is an error, then the
3067  *	operation as a whole must fail.
3068  */
3069 struct cfg80211_assoc_link {
3070 	struct cfg80211_bss *bss;
3071 	const u8 *elems;
3072 	size_t elems_len;
3073 	bool disabled;
3074 	int error;
3075 };
3076 
3077 /**
3078  * enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
3079  *
3080  * @ASSOC_REQ_DISABLE_HT:  Disable HT (802.11n)
3081  * @ASSOC_REQ_DISABLE_VHT:  Disable VHT
3082  * @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
3083  * @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
3084  *	authentication capability. Drivers can offload authentication to
3085  *	userspace if this flag is set. Only applicable for cfg80211_connect()
3086  *	request (connect callback).
3087  * @ASSOC_REQ_DISABLE_HE:  Disable HE
3088  * @ASSOC_REQ_DISABLE_EHT:  Disable EHT
3089  * @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
3090  *	Drivers shall disable MLO features for the current association if this
3091  *	flag is not set.
3092  * @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any)
3093  */
3094 enum cfg80211_assoc_req_flags {
3095 	ASSOC_REQ_DISABLE_HT			= BIT(0),
3096 	ASSOC_REQ_DISABLE_VHT			= BIT(1),
3097 	ASSOC_REQ_USE_RRM			= BIT(2),
3098 	CONNECT_REQ_EXTERNAL_AUTH_SUPPORT	= BIT(3),
3099 	ASSOC_REQ_DISABLE_HE			= BIT(4),
3100 	ASSOC_REQ_DISABLE_EHT			= BIT(5),
3101 	CONNECT_REQ_MLO_SUPPORT			= BIT(6),
3102 	ASSOC_REQ_SPP_AMSDU			= BIT(7),
3103 };
3104 
3105 /**
3106  * struct cfg80211_assoc_request - (Re)Association request data
3107  *
3108  * This structure provides information needed to complete IEEE 802.11
3109  * (re)association.
3110  * @bss: The BSS to associate with. If the call is successful the driver is
3111  *	given a reference that it must give back to cfg80211_send_rx_assoc()
3112  *	or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
3113  *	association requests while already associating must be rejected.
3114  *	This also applies to the @links.bss parameter, which is used instead
3115  *	of this one (it is %NULL) for MLO associations.
3116  * @ie: Extra IEs to add to (Re)Association Request frame or %NULL
3117  * @ie_len: Length of ie buffer in octets
3118  * @use_mfp: Use management frame protection (IEEE 802.11w) in this association
3119  * @crypto: crypto settings
3120  * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3121  *	to indicate a request to reassociate within the ESS instead of a request
3122  *	do the initial association with the ESS. When included, this is set to
3123  *	the BSSID of the current association, i.e., to the value that is
3124  *	included in the Current AP address field of the Reassociation Request
3125  *	frame.
3126  * @flags:  See &enum cfg80211_assoc_req_flags
3127  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3128  *	will be used in ht_capa.  Un-supported values will be ignored.
3129  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3130  * @vht_capa: VHT capability override
3131  * @vht_capa_mask: VHT capability mask indicating which fields to use
3132  * @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
3133  *	%NULL if FILS is not used.
3134  * @fils_kek_len: Length of fils_kek in octets
3135  * @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
3136  *	Request/Response frame or %NULL if FILS is not used. This field starts
3137  *	with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
3138  * @s1g_capa: S1G capability override
3139  * @s1g_capa_mask: S1G capability override mask
3140  * @links: per-link information for MLO connections
3141  * @link_id: >= 0 for MLO connections, where links are given, and indicates
3142  *	the link on which the association request should be sent
3143  * @ap_mld_addr: AP MLD address in case of MLO association request,
3144  *	valid iff @link_id >= 0
3145  */
3146 struct cfg80211_assoc_request {
3147 	struct cfg80211_bss *bss;
3148 	const u8 *ie, *prev_bssid;
3149 	size_t ie_len;
3150 	struct cfg80211_crypto_settings crypto;
3151 	bool use_mfp;
3152 	u32 flags;
3153 	struct ieee80211_ht_cap ht_capa;
3154 	struct ieee80211_ht_cap ht_capa_mask;
3155 	struct ieee80211_vht_cap vht_capa, vht_capa_mask;
3156 	const u8 *fils_kek;
3157 	size_t fils_kek_len;
3158 	const u8 *fils_nonces;
3159 	struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
3160 	struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
3161 	const u8 *ap_mld_addr;
3162 	s8 link_id;
3163 };
3164 
3165 /**
3166  * struct cfg80211_deauth_request - Deauthentication request data
3167  *
3168  * This structure provides information needed to complete IEEE 802.11
3169  * deauthentication.
3170  *
3171  * @bssid: the BSSID or AP MLD address to deauthenticate from
3172  * @ie: Extra IEs to add to Deauthentication frame or %NULL
3173  * @ie_len: Length of ie buffer in octets
3174  * @reason_code: The reason code for the deauthentication
3175  * @local_state_change: if set, change local state only and
3176  *	do not set a deauth frame
3177  */
3178 struct cfg80211_deauth_request {
3179 	const u8 *bssid;
3180 	const u8 *ie;
3181 	size_t ie_len;
3182 	u16 reason_code;
3183 	bool local_state_change;
3184 };
3185 
3186 /**
3187  * struct cfg80211_disassoc_request - Disassociation request data
3188  *
3189  * This structure provides information needed to complete IEEE 802.11
3190  * disassociation.
3191  *
3192  * @ap_addr: the BSSID or AP MLD address to disassociate from
3193  * @ie: Extra IEs to add to Disassociation frame or %NULL
3194  * @ie_len: Length of ie buffer in octets
3195  * @reason_code: The reason code for the disassociation
3196  * @local_state_change: This is a request for a local state only, i.e., no
3197  *	Disassociation frame is to be transmitted.
3198  */
3199 struct cfg80211_disassoc_request {
3200 	const u8 *ap_addr;
3201 	const u8 *ie;
3202 	size_t ie_len;
3203 	u16 reason_code;
3204 	bool local_state_change;
3205 };
3206 
3207 /**
3208  * struct cfg80211_ibss_params - IBSS parameters
3209  *
3210  * This structure defines the IBSS parameters for the join_ibss()
3211  * method.
3212  *
3213  * @ssid: The SSID, will always be non-null.
3214  * @ssid_len: The length of the SSID, will always be non-zero.
3215  * @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
3216  *	search for IBSSs with a different BSSID.
3217  * @chandef: defines the channel to use if no other IBSS to join can be found
3218  * @channel_fixed: The channel should be fixed -- do not search for
3219  *	IBSSs to join on other channels.
3220  * @ie: information element(s) to include in the beacon
3221  * @ie_len: length of that
3222  * @beacon_interval: beacon interval to use
3223  * @privacy: this is a protected network, keys will be configured
3224  *	after joining
3225  * @control_port: whether user space controls IEEE 802.1X port, i.e.,
3226  *	sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
3227  *	required to assume that the port is unauthorized until authorized by
3228  *	user space. Otherwise, port is marked authorized by default.
3229  * @control_port_over_nl80211: TRUE if userspace expects to exchange control
3230  *	port frames over NL80211 instead of the network interface.
3231  * @userspace_handles_dfs: whether user space controls DFS operation, i.e.
3232  *	changes the channel when a radar is detected. This is required
3233  *	to operate on DFS channels.
3234  * @basic_rates: bitmap of basic rates to use when creating the IBSS
3235  * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
3236  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3237  *	will be used in ht_capa.  Un-supported values will be ignored.
3238  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3239  * @wep_keys: static WEP keys, if not NULL points to an array of
3240  *	CFG80211_MAX_WEP_KEYS WEP keys
3241  * @wep_tx_key: key index (0..3) of the default TX static WEP key
3242  */
3243 struct cfg80211_ibss_params {
3244 	const u8 *ssid;
3245 	const u8 *bssid;
3246 	struct cfg80211_chan_def chandef;
3247 	const u8 *ie;
3248 	u8 ssid_len, ie_len;
3249 	u16 beacon_interval;
3250 	u32 basic_rates;
3251 	bool channel_fixed;
3252 	bool privacy;
3253 	bool control_port;
3254 	bool control_port_over_nl80211;
3255 	bool userspace_handles_dfs;
3256 	int mcast_rate[NUM_NL80211_BANDS];
3257 	struct ieee80211_ht_cap ht_capa;
3258 	struct ieee80211_ht_cap ht_capa_mask;
3259 	struct key_params *wep_keys;
3260 	int wep_tx_key;
3261 };
3262 
3263 /**
3264  * struct cfg80211_bss_selection - connection parameters for BSS selection.
3265  *
3266  * @behaviour: requested BSS selection behaviour.
3267  * @param: parameters for requestion behaviour.
3268  * @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
3269  * @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
3270  */
3271 struct cfg80211_bss_selection {
3272 	enum nl80211_bss_select_attr behaviour;
3273 	union {
3274 		enum nl80211_band band_pref;
3275 		struct cfg80211_bss_select_adjust adjust;
3276 	} param;
3277 };
3278 
3279 /**
3280  * struct cfg80211_connect_params - Connection parameters
3281  *
3282  * This structure provides information needed to complete IEEE 802.11
3283  * authentication and association.
3284  *
3285  * @channel: The channel to use or %NULL if not specified (auto-select based
3286  *	on scan results)
3287  * @channel_hint: The channel of the recommended BSS for initial connection or
3288  *	%NULL if not specified
3289  * @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
3290  *	results)
3291  * @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
3292  *	%NULL if not specified. Unlike the @bssid parameter, the driver is
3293  *	allowed to ignore this @bssid_hint if it has knowledge of a better BSS
3294  *	to use.
3295  * @ssid: SSID
3296  * @ssid_len: Length of ssid in octets
3297  * @auth_type: Authentication type (algorithm)
3298  * @ie: IEs for association request
3299  * @ie_len: Length of assoc_ie in octets
3300  * @privacy: indicates whether privacy-enabled APs should be used
3301  * @mfp: indicate whether management frame protection is used
3302  * @crypto: crypto settings
3303  * @key_len: length of WEP key for shared key authentication
3304  * @key_idx: index of WEP key for shared key authentication
3305  * @key: WEP key for shared key authentication
3306  * @flags:  See &enum cfg80211_assoc_req_flags
3307  * @bg_scan_period:  Background scan period in seconds
3308  *	or -1 to indicate that default value is to be used.
3309  * @ht_capa:  HT Capabilities over-rides.  Values set in ht_capa_mask
3310  *	will be used in ht_capa.  Un-supported values will be ignored.
3311  * @ht_capa_mask:  The bits of ht_capa which are to be used.
3312  * @vht_capa:  VHT Capability overrides
3313  * @vht_capa_mask: The bits of vht_capa which are to be used.
3314  * @pbss: if set, connect to a PCP instead of AP. Valid for DMG
3315  *	networks.
3316  * @bss_select: criteria to be used for BSS selection.
3317  * @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
3318  *	to indicate a request to reassociate within the ESS instead of a request
3319  *	do the initial association with the ESS. When included, this is set to
3320  *	the BSSID of the current association, i.e., to the value that is
3321  *	included in the Current AP address field of the Reassociation Request
3322  *	frame.
3323  * @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
3324  *	NAI or %NULL if not specified. This is used to construct FILS wrapped
3325  *	data IE.
3326  * @fils_erp_username_len: Length of @fils_erp_username in octets.
3327  * @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
3328  *	%NULL if not specified. This specifies the domain name of ER server and
3329  *	is used to construct FILS wrapped data IE.
3330  * @fils_erp_realm_len: Length of @fils_erp_realm in octets.
3331  * @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
3332  *	messages. This is also used to construct FILS wrapped data IE.
3333  * @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
3334  *	keys in FILS or %NULL if not specified.
3335  * @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
3336  * @want_1x: indicates user-space supports and wants to use 802.1X driver
3337  *	offload of 4-way handshake.
3338  * @edmg: define the EDMG channels.
3339  *	This may specify multiple channels and bonding options for the driver
3340  *	to choose from, based on BSS configuration.
3341  */
3342 struct cfg80211_connect_params {
3343 	struct ieee80211_channel *channel;
3344 	struct ieee80211_channel *channel_hint;
3345 	const u8 *bssid;
3346 	const u8 *bssid_hint;
3347 	const u8 *ssid;
3348 	size_t ssid_len;
3349 	enum nl80211_auth_type auth_type;
3350 	const u8 *ie;
3351 	size_t ie_len;
3352 	bool privacy;
3353 	enum nl80211_mfp mfp;
3354 	struct cfg80211_crypto_settings crypto;
3355 	const u8 *key;
3356 	u8 key_len, key_idx;
3357 	u32 flags;
3358 	int bg_scan_period;
3359 	struct ieee80211_ht_cap ht_capa;
3360 	struct ieee80211_ht_cap ht_capa_mask;
3361 	struct ieee80211_vht_cap vht_capa;
3362 	struct ieee80211_vht_cap vht_capa_mask;
3363 	bool pbss;
3364 	struct cfg80211_bss_selection bss_select;
3365 	const u8 *prev_bssid;
3366 	const u8 *fils_erp_username;
3367 	size_t fils_erp_username_len;
3368 	const u8 *fils_erp_realm;
3369 	size_t fils_erp_realm_len;
3370 	u16 fils_erp_next_seq_num;
3371 	const u8 *fils_erp_rrk;
3372 	size_t fils_erp_rrk_len;
3373 	bool want_1x;
3374 	struct ieee80211_edmg edmg;
3375 };
3376 
3377 /**
3378  * enum cfg80211_connect_params_changed - Connection parameters being updated
3379  *
3380  * This enum provides information of all connect parameters that
3381  * have to be updated as part of update_connect_params() call.
3382  *
3383  * @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
3384  * @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
3385  *	username, erp sequence number and rrk) are updated
3386  * @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
3387  */
3388 enum cfg80211_connect_params_changed {
3389 	UPDATE_ASSOC_IES		= BIT(0),
3390 	UPDATE_FILS_ERP_INFO		= BIT(1),
3391 	UPDATE_AUTH_TYPE		= BIT(2),
3392 };
3393 
3394 /**
3395  * enum wiphy_params_flags - set_wiphy_params bitfield values
3396  * @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
3397  * @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
3398  * @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
3399  * @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
3400  * @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
3401  * @WIPHY_PARAM_DYN_ACK: dynack has been enabled
3402  * @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
3403  * @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
3404  * @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
3405  */
3406 enum wiphy_params_flags {
3407 	WIPHY_PARAM_RETRY_SHORT		= BIT(0),
3408 	WIPHY_PARAM_RETRY_LONG		= BIT(1),
3409 	WIPHY_PARAM_FRAG_THRESHOLD	= BIT(2),
3410 	WIPHY_PARAM_RTS_THRESHOLD	= BIT(3),
3411 	WIPHY_PARAM_COVERAGE_CLASS	= BIT(4),
3412 	WIPHY_PARAM_DYN_ACK		= BIT(5),
3413 	WIPHY_PARAM_TXQ_LIMIT		= BIT(6),
3414 	WIPHY_PARAM_TXQ_MEMORY_LIMIT	= BIT(7),
3415 	WIPHY_PARAM_TXQ_QUANTUM		= BIT(8),
3416 };
3417 
3418 #define IEEE80211_DEFAULT_AIRTIME_WEIGHT	256
3419 
3420 /* The per TXQ device queue limit in airtime */
3421 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L	5000
3422 #define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H	12000
3423 
3424 /* The per interface airtime threshold to switch to lower queue limit */
3425 #define IEEE80211_AQL_THRESHOLD			24000
3426 
3427 /**
3428  * struct cfg80211_pmksa - PMK Security Association
3429  *
3430  * This structure is passed to the set/del_pmksa() method for PMKSA
3431  * caching.
3432  *
3433  * @bssid: The AP's BSSID (may be %NULL).
3434  * @pmkid: The identifier to refer a PMKSA.
3435  * @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
3436  *	derivation by a FILS STA. Otherwise, %NULL.
3437  * @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
3438  *	the hash algorithm used to generate this.
3439  * @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
3440  *	cache identifier (may be %NULL).
3441  * @ssid_len: Length of the @ssid in octets.
3442  * @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
3443  *	scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
3444  *	%NULL).
3445  * @pmk_lifetime: Maximum lifetime for PMKSA in seconds
3446  *	(dot11RSNAConfigPMKLifetime) or 0 if not specified.
3447  *	The configured PMKSA must not be used for PMKSA caching after
3448  *	expiration and any keys derived from this PMK become invalid on
3449  *	expiration, i.e., the current association must be dropped if the PMK
3450  *	used for it expires.
3451  * @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
3452  *	PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
3453  *	Drivers are expected to trigger a full authentication instead of using
3454  *	this PMKSA for caching when reassociating to a new BSS after this
3455  *	threshold to generate a new PMK before the current one expires.
3456  */
3457 struct cfg80211_pmksa {
3458 	const u8 *bssid;
3459 	const u8 *pmkid;
3460 	const u8 *pmk;
3461 	size_t pmk_len;
3462 	const u8 *ssid;
3463 	size_t ssid_len;
3464 	const u8 *cache_id;
3465 	u32 pmk_lifetime;
3466 	u8 pmk_reauth_threshold;
3467 };
3468 
3469 /**
3470  * struct cfg80211_pkt_pattern - packet pattern
3471  * @mask: bitmask where to match pattern and where to ignore bytes,
3472  *	one bit per byte, in same format as nl80211
3473  * @pattern: bytes to match where bitmask is 1
3474  * @pattern_len: length of pattern (in bytes)
3475  * @pkt_offset: packet offset (in bytes)
3476  *
3477  * Internal note: @mask and @pattern are allocated in one chunk of
3478  * memory, free @mask only!
3479  */
3480 struct cfg80211_pkt_pattern {
3481 	const u8 *mask, *pattern;
3482 	int pattern_len;
3483 	int pkt_offset;
3484 };
3485 
3486 /**
3487  * struct cfg80211_wowlan_tcp - TCP connection parameters
3488  *
3489  * @sock: (internal) socket for source port allocation
3490  * @src: source IP address
3491  * @dst: destination IP address
3492  * @dst_mac: destination MAC address
3493  * @src_port: source port
3494  * @dst_port: destination port
3495  * @payload_len: data payload length
3496  * @payload: data payload buffer
3497  * @payload_seq: payload sequence stamping configuration
3498  * @data_interval: interval at which to send data packets
3499  * @wake_len: wakeup payload match length
3500  * @wake_data: wakeup payload match data
3501  * @wake_mask: wakeup payload match mask
3502  * @tokens_size: length of the tokens buffer
3503  * @payload_tok: payload token usage configuration
3504  */
3505 struct cfg80211_wowlan_tcp {
3506 	struct socket *sock;
3507 	__be32 src, dst;
3508 	u16 src_port, dst_port;
3509 	u8 dst_mac[ETH_ALEN];
3510 	int payload_len;
3511 	const u8 *payload;
3512 	struct nl80211_wowlan_tcp_data_seq payload_seq;
3513 	u32 data_interval;
3514 	u32 wake_len;
3515 	const u8 *wake_data, *wake_mask;
3516 	u32 tokens_size;
3517 	/* must be last, variable member */
3518 	struct nl80211_wowlan_tcp_data_token payload_tok;
3519 };
3520 
3521 /**
3522  * struct cfg80211_wowlan - Wake on Wireless-LAN support info
3523  *
3524  * This structure defines the enabled WoWLAN triggers for the device.
3525  * @any: wake up on any activity -- special trigger if device continues
3526  *	operating as normal during suspend
3527  * @disconnect: wake up if getting disconnected
3528  * @magic_pkt: wake up on receiving magic packet
3529  * @patterns: wake up on receiving packet matching a pattern
3530  * @n_patterns: number of patterns
3531  * @gtk_rekey_failure: wake up on GTK rekey failure
3532  * @eap_identity_req: wake up on EAP identity request packet
3533  * @four_way_handshake: wake up on 4-way handshake
3534  * @rfkill_release: wake up when rfkill is released
3535  * @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
3536  *	NULL if not configured.
3537  * @nd_config: configuration for the scan to be used for net detect wake.
3538  */
3539 struct cfg80211_wowlan {
3540 	bool any, disconnect, magic_pkt, gtk_rekey_failure,
3541 	     eap_identity_req, four_way_handshake,
3542 	     rfkill_release;
3543 	struct cfg80211_pkt_pattern *patterns;
3544 	struct cfg80211_wowlan_tcp *tcp;
3545 	int n_patterns;
3546 	struct cfg80211_sched_scan_request *nd_config;
3547 };
3548 
3549 /**
3550  * struct cfg80211_coalesce_rules - Coalesce rule parameters
3551  *
3552  * This structure defines coalesce rule for the device.
3553  * @delay: maximum coalescing delay in msecs.
3554  * @condition: condition for packet coalescence.
3555  *	see &enum nl80211_coalesce_condition.
3556  * @patterns: array of packet patterns
3557  * @n_patterns: number of patterns
3558  */
3559 struct cfg80211_coalesce_rules {
3560 	int delay;
3561 	enum nl80211_coalesce_condition condition;
3562 	struct cfg80211_pkt_pattern *patterns;
3563 	int n_patterns;
3564 };
3565 
3566 /**
3567  * struct cfg80211_coalesce - Packet coalescing settings
3568  *
3569  * This structure defines coalescing settings.
3570  * @rules: array of coalesce rules
3571  * @n_rules: number of rules
3572  */
3573 struct cfg80211_coalesce {
3574 	int n_rules;
3575 	struct cfg80211_coalesce_rules rules[] __counted_by(n_rules);
3576 };
3577 
3578 /**
3579  * struct cfg80211_wowlan_nd_match - information about the match
3580  *
3581  * @ssid: SSID of the match that triggered the wake up
3582  * @n_channels: Number of channels where the match occurred.  This
3583  *	value may be zero if the driver can't report the channels.
3584  * @channels: center frequencies of the channels where a match
3585  *	occurred (in MHz)
3586  */
3587 struct cfg80211_wowlan_nd_match {
3588 	struct cfg80211_ssid ssid;
3589 	int n_channels;
3590 	u32 channels[] __counted_by(n_channels);
3591 };
3592 
3593 /**
3594  * struct cfg80211_wowlan_nd_info - net detect wake up information
3595  *
3596  * @n_matches: Number of match information instances provided in
3597  *	@matches.  This value may be zero if the driver can't provide
3598  *	match information.
3599  * @matches: Array of pointers to matches containing information about
3600  *	the matches that triggered the wake up.
3601  */
3602 struct cfg80211_wowlan_nd_info {
3603 	int n_matches;
3604 	struct cfg80211_wowlan_nd_match *matches[] __counted_by(n_matches);
3605 };
3606 
3607 /**
3608  * struct cfg80211_wowlan_wakeup - wakeup report
3609  * @disconnect: woke up by getting disconnected
3610  * @magic_pkt: woke up by receiving magic packet
3611  * @gtk_rekey_failure: woke up by GTK rekey failure
3612  * @eap_identity_req: woke up by EAP identity request packet
3613  * @four_way_handshake: woke up by 4-way handshake
3614  * @rfkill_release: woke up by rfkill being released
3615  * @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
3616  * @packet_present_len: copied wakeup packet data
3617  * @packet_len: original wakeup packet length
3618  * @packet: The packet causing the wakeup, if any.
3619  * @packet_80211:  For pattern match, magic packet and other data
3620  *	frame triggers an 802.3 frame should be reported, for
3621  *	disconnect due to deauth 802.11 frame. This indicates which
3622  *	it is.
3623  * @tcp_match: TCP wakeup packet received
3624  * @tcp_connlost: TCP connection lost or failed to establish
3625  * @tcp_nomoretokens: TCP data ran out of tokens
3626  * @net_detect: if not %NULL, woke up because of net detect
3627  * @unprot_deauth_disassoc: woke up due to unprotected deauth or
3628  *	disassoc frame (in MFP).
3629  */
3630 struct cfg80211_wowlan_wakeup {
3631 	bool disconnect, magic_pkt, gtk_rekey_failure,
3632 	     eap_identity_req, four_way_handshake,
3633 	     rfkill_release, packet_80211,
3634 	     tcp_match, tcp_connlost, tcp_nomoretokens,
3635 	     unprot_deauth_disassoc;
3636 	s32 pattern_idx;
3637 	u32 packet_present_len, packet_len;
3638 	const void *packet;
3639 	struct cfg80211_wowlan_nd_info *net_detect;
3640 };
3641 
3642 /**
3643  * struct cfg80211_gtk_rekey_data - rekey data
3644  * @kek: key encryption key (@kek_len bytes)
3645  * @kck: key confirmation key (@kck_len bytes)
3646  * @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
3647  * @kek_len: length of kek
3648  * @kck_len: length of kck
3649  * @akm: akm (oui, id)
3650  */
3651 struct cfg80211_gtk_rekey_data {
3652 	const u8 *kek, *kck, *replay_ctr;
3653 	u32 akm;
3654 	u8 kek_len, kck_len;
3655 };
3656 
3657 /**
3658  * struct cfg80211_update_ft_ies_params - FT IE Information
3659  *
3660  * This structure provides information needed to update the fast transition IE
3661  *
3662  * @md: The Mobility Domain ID, 2 Octet value
3663  * @ie: Fast Transition IEs
3664  * @ie_len: Length of ft_ie in octets
3665  */
3666 struct cfg80211_update_ft_ies_params {
3667 	u16 md;
3668 	const u8 *ie;
3669 	size_t ie_len;
3670 };
3671 
3672 /**
3673  * struct cfg80211_mgmt_tx_params - mgmt tx parameters
3674  *
3675  * This structure provides information needed to transmit a mgmt frame
3676  *
3677  * @chan: channel to use
3678  * @offchan: indicates whether off channel operation is required
3679  * @wait: duration for ROC
3680  * @buf: buffer to transmit
3681  * @len: buffer length
3682  * @no_cck: don't use cck rates for this frame
3683  * @dont_wait_for_ack: tells the low level not to wait for an ack
3684  * @n_csa_offsets: length of csa_offsets array
3685  * @csa_offsets: array of all the csa offsets in the frame
3686  * @link_id: for MLO, the link ID to transmit on, -1 if not given; note
3687  *	that the link ID isn't validated (much), it's in range but the
3688  *	link might not exist (or be used by the receiver STA)
3689  */
3690 struct cfg80211_mgmt_tx_params {
3691 	struct ieee80211_channel *chan;
3692 	bool offchan;
3693 	unsigned int wait;
3694 	const u8 *buf;
3695 	size_t len;
3696 	bool no_cck;
3697 	bool dont_wait_for_ack;
3698 	int n_csa_offsets;
3699 	const u16 *csa_offsets;
3700 	int link_id;
3701 };
3702 
3703 /**
3704  * struct cfg80211_dscp_exception - DSCP exception
3705  *
3706  * @dscp: DSCP value that does not adhere to the user priority range definition
3707  * @up: user priority value to which the corresponding DSCP value belongs
3708  */
3709 struct cfg80211_dscp_exception {
3710 	u8 dscp;
3711 	u8 up;
3712 };
3713 
3714 /**
3715  * struct cfg80211_dscp_range - DSCP range definition for user priority
3716  *
3717  * @low: lowest DSCP value of this user priority range, inclusive
3718  * @high: highest DSCP value of this user priority range, inclusive
3719  */
3720 struct cfg80211_dscp_range {
3721 	u8 low;
3722 	u8 high;
3723 };
3724 
3725 /* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
3726 #define IEEE80211_QOS_MAP_MAX_EX	21
3727 #define IEEE80211_QOS_MAP_LEN_MIN	16
3728 #define IEEE80211_QOS_MAP_LEN_MAX \
3729 	(IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
3730 
3731 /**
3732  * struct cfg80211_qos_map - QoS Map Information
3733  *
3734  * This struct defines the Interworking QoS map setting for DSCP values
3735  *
3736  * @num_des: number of DSCP exceptions (0..21)
3737  * @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
3738  *	the user priority DSCP range definition
3739  * @up: DSCP range definition for a particular user priority
3740  */
3741 struct cfg80211_qos_map {
3742 	u8 num_des;
3743 	struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
3744 	struct cfg80211_dscp_range up[8];
3745 };
3746 
3747 /**
3748  * struct cfg80211_nan_conf - NAN configuration
3749  *
3750  * This struct defines NAN configuration parameters
3751  *
3752  * @master_pref: master preference (1 - 255)
3753  * @bands: operating bands, a bitmap of &enum nl80211_band values.
3754  *	For instance, for NL80211_BAND_2GHZ, bit 0 would be set
3755  *	(i.e. BIT(NL80211_BAND_2GHZ)).
3756  */
3757 struct cfg80211_nan_conf {
3758 	u8 master_pref;
3759 	u8 bands;
3760 };
3761 
3762 /**
3763  * enum cfg80211_nan_conf_changes - indicates changed fields in NAN
3764  * configuration
3765  *
3766  * @CFG80211_NAN_CONF_CHANGED_PREF: master preference
3767  * @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
3768  */
3769 enum cfg80211_nan_conf_changes {
3770 	CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
3771 	CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
3772 };
3773 
3774 /**
3775  * struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
3776  *
3777  * @filter: the content of the filter
3778  * @len: the length of the filter
3779  */
3780 struct cfg80211_nan_func_filter {
3781 	const u8 *filter;
3782 	u8 len;
3783 };
3784 
3785 /**
3786  * struct cfg80211_nan_func - a NAN function
3787  *
3788  * @type: &enum nl80211_nan_function_type
3789  * @service_id: the service ID of the function
3790  * @publish_type: &nl80211_nan_publish_type
3791  * @close_range: if true, the range should be limited. Threshold is
3792  *	implementation specific.
3793  * @publish_bcast: if true, the solicited publish should be broadcasted
3794  * @subscribe_active: if true, the subscribe is active
3795  * @followup_id: the instance ID for follow up
3796  * @followup_reqid: the requester instance ID for follow up
3797  * @followup_dest: MAC address of the recipient of the follow up
3798  * @ttl: time to live counter in DW.
3799  * @serv_spec_info: Service Specific Info
3800  * @serv_spec_info_len: Service Specific Info length
3801  * @srf_include: if true, SRF is inclusive
3802  * @srf_bf: Bloom Filter
3803  * @srf_bf_len: Bloom Filter length
3804  * @srf_bf_idx: Bloom Filter index
3805  * @srf_macs: SRF MAC addresses
3806  * @srf_num_macs: number of MAC addresses in SRF
3807  * @rx_filters: rx filters that are matched with corresponding peer's tx_filter
3808  * @tx_filters: filters that should be transmitted in the SDF.
3809  * @num_rx_filters: length of &rx_filters.
3810  * @num_tx_filters: length of &tx_filters.
3811  * @instance_id: driver allocated id of the function.
3812  * @cookie: unique NAN function identifier.
3813  */
3814 struct cfg80211_nan_func {
3815 	enum nl80211_nan_function_type type;
3816 	u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
3817 	u8 publish_type;
3818 	bool close_range;
3819 	bool publish_bcast;
3820 	bool subscribe_active;
3821 	u8 followup_id;
3822 	u8 followup_reqid;
3823 	struct mac_address followup_dest;
3824 	u32 ttl;
3825 	const u8 *serv_spec_info;
3826 	u8 serv_spec_info_len;
3827 	bool srf_include;
3828 	const u8 *srf_bf;
3829 	u8 srf_bf_len;
3830 	u8 srf_bf_idx;
3831 	struct mac_address *srf_macs;
3832 	int srf_num_macs;
3833 	struct cfg80211_nan_func_filter *rx_filters;
3834 	struct cfg80211_nan_func_filter *tx_filters;
3835 	u8 num_tx_filters;
3836 	u8 num_rx_filters;
3837 	u8 instance_id;
3838 	u64 cookie;
3839 };
3840 
3841 /**
3842  * struct cfg80211_pmk_conf - PMK configuration
3843  *
3844  * @aa: authenticator address
3845  * @pmk_len: PMK length in bytes.
3846  * @pmk: the PMK material
3847  * @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
3848  *	is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
3849  *	holds PMK-R0.
3850  */
3851 struct cfg80211_pmk_conf {
3852 	const u8 *aa;
3853 	u8 pmk_len;
3854 	const u8 *pmk;
3855 	const u8 *pmk_r0_name;
3856 };
3857 
3858 /**
3859  * struct cfg80211_external_auth_params - Trigger External authentication.
3860  *
3861  * Commonly used across the external auth request and event interfaces.
3862  *
3863  * @action: action type / trigger for external authentication. Only significant
3864  *	for the authentication request event interface (driver to user space).
3865  * @bssid: BSSID of the peer with which the authentication has
3866  *	to happen. Used by both the authentication request event and
3867  *	authentication response command interface.
3868  * @ssid: SSID of the AP.  Used by both the authentication request event and
3869  *	authentication response command interface.
3870  * @key_mgmt_suite: AKM suite of the respective authentication. Used by the
3871  *	authentication request event interface.
3872  * @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
3873  *	use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
3874  *	the real status code for failures. Used only for the authentication
3875  *	response command interface (user space to driver).
3876  * @pmkid: The identifier to refer a PMKSA.
3877  * @mld_addr: MLD address of the peer. Used by the authentication request event
3878  *	interface. Driver indicates this to enable MLO during the authentication
3879  *	offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
3880  *	flag capability in NL80211_CMD_CONNECT to know whether the user space
3881  *	supports enabling MLO during the authentication offload.
3882  *	User space should use the address of the interface (on which the
3883  *	authentication request event reported) as self MLD address. User space
3884  *	and driver should use MLD addresses in RA, TA and BSSID fields of
3885  *	authentication frames sent or received via cfg80211. The driver
3886  *	translates the MLD addresses to/from link addresses based on the link
3887  *	chosen for the authentication.
3888  */
3889 struct cfg80211_external_auth_params {
3890 	enum nl80211_external_auth_action action;
3891 	u8 bssid[ETH_ALEN] __aligned(2);
3892 	struct cfg80211_ssid ssid;
3893 	unsigned int key_mgmt_suite;
3894 	u16 status;
3895 	const u8 *pmkid;
3896 	u8 mld_addr[ETH_ALEN] __aligned(2);
3897 };
3898 
3899 /**
3900  * struct cfg80211_ftm_responder_stats - FTM responder statistics
3901  *
3902  * @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
3903  *	indicate the relevant values in this struct for them
3904  * @success_num: number of FTM sessions in which all frames were successfully
3905  *	answered
3906  * @partial_num: number of FTM sessions in which part of frames were
3907  *	successfully answered
3908  * @failed_num: number of failed FTM sessions
3909  * @asap_num: number of ASAP FTM sessions
3910  * @non_asap_num: number of  non-ASAP FTM sessions
3911  * @total_duration_ms: total sessions durations - gives an indication
3912  *	of how much time the responder was busy
3913  * @unknown_triggers_num: number of unknown FTM triggers - triggers from
3914  *	initiators that didn't finish successfully the negotiation phase with
3915  *	the responder
3916  * @reschedule_requests_num: number of FTM reschedule requests - initiator asks
3917  *	for a new scheduling although it already has scheduled FTM slot
3918  * @out_of_window_triggers_num: total FTM triggers out of scheduled window
3919  */
3920 struct cfg80211_ftm_responder_stats {
3921 	u32 filled;
3922 	u32 success_num;
3923 	u32 partial_num;
3924 	u32 failed_num;
3925 	u32 asap_num;
3926 	u32 non_asap_num;
3927 	u64 total_duration_ms;
3928 	u32 unknown_triggers_num;
3929 	u32 reschedule_requests_num;
3930 	u32 out_of_window_triggers_num;
3931 };
3932 
3933 /**
3934  * struct cfg80211_pmsr_ftm_result - FTM result
3935  * @failure_reason: if this measurement failed (PMSR status is
3936  *	%NL80211_PMSR_STATUS_FAILURE), this gives a more precise
3937  *	reason than just "failure"
3938  * @burst_index: if reporting partial results, this is the index
3939  *	in [0 .. num_bursts-1] of the burst that's being reported
3940  * @num_ftmr_attempts: number of FTM request frames transmitted
3941  * @num_ftmr_successes: number of FTM request frames acked
3942  * @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
3943  *	fill this to indicate in how many seconds a retry is deemed possible
3944  *	by the responder
3945  * @num_bursts_exp: actual number of bursts exponent negotiated
3946  * @burst_duration: actual burst duration negotiated
3947  * @ftms_per_burst: actual FTMs per burst negotiated
3948  * @lci_len: length of LCI information (if present)
3949  * @civicloc_len: length of civic location information (if present)
3950  * @lci: LCI data (may be %NULL)
3951  * @civicloc: civic location data (may be %NULL)
3952  * @rssi_avg: average RSSI over FTM action frames reported
3953  * @rssi_spread: spread of the RSSI over FTM action frames reported
3954  * @tx_rate: bitrate for transmitted FTM action frame response
3955  * @rx_rate: bitrate of received FTM action frame
3956  * @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
3957  * @rtt_variance: variance of RTTs measured (note that standard deviation is
3958  *	the square root of the variance)
3959  * @rtt_spread: spread of the RTTs measured
3960  * @dist_avg: average of distances (mm) measured
3961  *	(must have either this or @rtt_avg)
3962  * @dist_variance: variance of distances measured (see also @rtt_variance)
3963  * @dist_spread: spread of distances measured (see also @rtt_spread)
3964  * @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
3965  * @num_ftmr_successes_valid: @num_ftmr_successes is valid
3966  * @rssi_avg_valid: @rssi_avg is valid
3967  * @rssi_spread_valid: @rssi_spread is valid
3968  * @tx_rate_valid: @tx_rate is valid
3969  * @rx_rate_valid: @rx_rate is valid
3970  * @rtt_avg_valid: @rtt_avg is valid
3971  * @rtt_variance_valid: @rtt_variance is valid
3972  * @rtt_spread_valid: @rtt_spread is valid
3973  * @dist_avg_valid: @dist_avg is valid
3974  * @dist_variance_valid: @dist_variance is valid
3975  * @dist_spread_valid: @dist_spread is valid
3976  */
3977 struct cfg80211_pmsr_ftm_result {
3978 	const u8 *lci;
3979 	const u8 *civicloc;
3980 	unsigned int lci_len;
3981 	unsigned int civicloc_len;
3982 	enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
3983 	u32 num_ftmr_attempts, num_ftmr_successes;
3984 	s16 burst_index;
3985 	u8 busy_retry_time;
3986 	u8 num_bursts_exp;
3987 	u8 burst_duration;
3988 	u8 ftms_per_burst;
3989 	s32 rssi_avg;
3990 	s32 rssi_spread;
3991 	struct rate_info tx_rate, rx_rate;
3992 	s64 rtt_avg;
3993 	s64 rtt_variance;
3994 	s64 rtt_spread;
3995 	s64 dist_avg;
3996 	s64 dist_variance;
3997 	s64 dist_spread;
3998 
3999 	u16 num_ftmr_attempts_valid:1,
4000 	    num_ftmr_successes_valid:1,
4001 	    rssi_avg_valid:1,
4002 	    rssi_spread_valid:1,
4003 	    tx_rate_valid:1,
4004 	    rx_rate_valid:1,
4005 	    rtt_avg_valid:1,
4006 	    rtt_variance_valid:1,
4007 	    rtt_spread_valid:1,
4008 	    dist_avg_valid:1,
4009 	    dist_variance_valid:1,
4010 	    dist_spread_valid:1;
4011 };
4012 
4013 /**
4014  * struct cfg80211_pmsr_result - peer measurement result
4015  * @addr: address of the peer
4016  * @host_time: host time (use ktime_get_boottime() adjust to the time when the
4017  *	measurement was made)
4018  * @ap_tsf: AP's TSF at measurement time
4019  * @status: status of the measurement
4020  * @final: if reporting partial results, mark this as the last one; if not
4021  *	reporting partial results always set this flag
4022  * @ap_tsf_valid: indicates the @ap_tsf value is valid
4023  * @type: type of the measurement reported, note that we only support reporting
4024  *	one type at a time, but you can report multiple results separately and
4025  *	they're all aggregated for userspace.
4026  * @ftm: FTM result
4027  */
4028 struct cfg80211_pmsr_result {
4029 	u64 host_time, ap_tsf;
4030 	enum nl80211_peer_measurement_status status;
4031 
4032 	u8 addr[ETH_ALEN];
4033 
4034 	u8 final:1,
4035 	   ap_tsf_valid:1;
4036 
4037 	enum nl80211_peer_measurement_type type;
4038 
4039 	union {
4040 		struct cfg80211_pmsr_ftm_result ftm;
4041 	};
4042 };
4043 
4044 /**
4045  * struct cfg80211_pmsr_ftm_request_peer - FTM request data
4046  * @requested: indicates FTM is requested
4047  * @preamble: frame preamble to use
4048  * @burst_period: burst period to use
4049  * @asap: indicates to use ASAP mode
4050  * @num_bursts_exp: number of bursts exponent
4051  * @burst_duration: burst duration
4052  * @ftms_per_burst: number of FTMs per burst
4053  * @ftmr_retries: number of retries for FTM request
4054  * @request_lci: request LCI information
4055  * @request_civicloc: request civic location information
4056  * @trigger_based: use trigger based ranging for the measurement
4057  *		 If neither @trigger_based nor @non_trigger_based is set,
4058  *		 EDCA based ranging will be used.
4059  * @non_trigger_based: use non trigger based ranging for the measurement
4060  *		 If neither @trigger_based nor @non_trigger_based is set,
4061  *		 EDCA based ranging will be used.
4062  * @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
4063  *		 @trigger_based or @non_trigger_based is set.
4064  * @bss_color: the bss color of the responder. Optional. Set to zero to
4065  *	indicate the driver should set the BSS color. Only valid if
4066  *	@non_trigger_based or @trigger_based is set.
4067  *
4068  * See also nl80211 for the respective attribute documentation.
4069  */
4070 struct cfg80211_pmsr_ftm_request_peer {
4071 	enum nl80211_preamble preamble;
4072 	u16 burst_period;
4073 	u8 requested:1,
4074 	   asap:1,
4075 	   request_lci:1,
4076 	   request_civicloc:1,
4077 	   trigger_based:1,
4078 	   non_trigger_based:1,
4079 	   lmr_feedback:1;
4080 	u8 num_bursts_exp;
4081 	u8 burst_duration;
4082 	u8 ftms_per_burst;
4083 	u8 ftmr_retries;
4084 	u8 bss_color;
4085 };
4086 
4087 /**
4088  * struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
4089  * @addr: MAC address
4090  * @chandef: channel to use
4091  * @report_ap_tsf: report the associated AP's TSF
4092  * @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
4093  */
4094 struct cfg80211_pmsr_request_peer {
4095 	u8 addr[ETH_ALEN];
4096 	struct cfg80211_chan_def chandef;
4097 	u8 report_ap_tsf:1;
4098 	struct cfg80211_pmsr_ftm_request_peer ftm;
4099 };
4100 
4101 /**
4102  * struct cfg80211_pmsr_request - peer measurement request
4103  * @cookie: cookie, set by cfg80211
4104  * @nl_portid: netlink portid - used by cfg80211
4105  * @drv_data: driver data for this request, if required for aborting,
4106  *	not otherwise freed or anything by cfg80211
4107  * @mac_addr: MAC address used for (randomised) request
4108  * @mac_addr_mask: MAC address mask used for randomisation, bits that
4109  *	are 0 in the mask should be randomised, bits that are 1 should
4110  *	be taken from the @mac_addr
4111  * @list: used by cfg80211 to hold on to the request
4112  * @timeout: timeout (in milliseconds) for the whole operation, if
4113  *	zero it means there's no timeout
4114  * @n_peers: number of peers to do measurements with
4115  * @peers: per-peer measurement request data
4116  */
4117 struct cfg80211_pmsr_request {
4118 	u64 cookie;
4119 	void *drv_data;
4120 	u32 n_peers;
4121 	u32 nl_portid;
4122 
4123 	u32 timeout;
4124 
4125 	u8 mac_addr[ETH_ALEN] __aligned(2);
4126 	u8 mac_addr_mask[ETH_ALEN] __aligned(2);
4127 
4128 	struct list_head list;
4129 
4130 	struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
4131 };
4132 
4133 /**
4134  * struct cfg80211_update_owe_info - OWE Information
4135  *
4136  * This structure provides information needed for the drivers to offload OWE
4137  * (Opportunistic Wireless Encryption) processing to the user space.
4138  *
4139  * Commonly used across update_owe_info request and event interfaces.
4140  *
4141  * @peer: MAC address of the peer device for which the OWE processing
4142  *	has to be done.
4143  * @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
4144  *	processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
4145  *	cannot give you the real status code for failures. Used only for
4146  *	OWE update request command interface (user space to driver).
4147  * @ie: IEs obtained from the peer or constructed by the user space. These are
4148  *	the IEs of the remote peer in the event from the host driver and
4149  *	the constructed IEs by the user space in the request interface.
4150  * @ie_len: Length of IEs in octets.
4151  * @assoc_link_id: MLO link ID of the AP, with which (re)association requested
4152  *	by peer. This will be filled by driver for both MLO and non-MLO station
4153  *	connections when the AP affiliated with an MLD. For non-MLD AP mode, it
4154  *	will be -1. Used only with OWE update event (driver to user space).
4155  * @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
4156  *	connection, it will be all zeros. This is applicable only when
4157  *	@assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
4158  *	with OWE update event (driver to user space).
4159  */
4160 struct cfg80211_update_owe_info {
4161 	u8 peer[ETH_ALEN] __aligned(2);
4162 	u16 status;
4163 	const u8 *ie;
4164 	size_t ie_len;
4165 	int assoc_link_id;
4166 	u8 peer_mld_addr[ETH_ALEN] __aligned(2);
4167 };
4168 
4169 /**
4170  * struct mgmt_frame_regs - management frame registrations data
4171  * @global_stypes: bitmap of management frame subtypes registered
4172  *	for the entire device
4173  * @interface_stypes: bitmap of management frame subtypes registered
4174  *	for the given interface
4175  * @global_mcast_stypes: mcast RX is needed globally for these subtypes
4176  * @interface_mcast_stypes: mcast RX is needed on this interface
4177  *	for these subtypes
4178  */
4179 struct mgmt_frame_regs {
4180 	u32 global_stypes, interface_stypes;
4181 	u32 global_mcast_stypes, interface_mcast_stypes;
4182 };
4183 
4184 /**
4185  * struct cfg80211_ops - backend description for wireless configuration
4186  *
4187  * This struct is registered by fullmac card drivers and/or wireless stacks
4188  * in order to handle configuration requests on their interfaces.
4189  *
4190  * All callbacks except where otherwise noted should return 0
4191  * on success or a negative error code.
4192  *
4193  * All operations are invoked with the wiphy mutex held. The RTNL may be
4194  * held in addition (due to wireless extensions) but this cannot be relied
4195  * upon except in cases where documented below. Note that due to ordering,
4196  * the RTNL also cannot be acquired in any handlers.
4197  *
4198  * @suspend: wiphy device needs to be suspended. The variable @wow will
4199  *	be %NULL or contain the enabled Wake-on-Wireless triggers that are
4200  *	configured for the device.
4201  * @resume: wiphy device needs to be resumed
4202  * @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
4203  *	to call device_set_wakeup_enable() to enable/disable wakeup from
4204  *	the device.
4205  *
4206  * @add_virtual_intf: create a new virtual interface with the given name,
4207  *	must set the struct wireless_dev's iftype. Beware: You must create
4208  *	the new netdev in the wiphy's network namespace! Returns the struct
4209  *	wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
4210  *	also set the address member in the wdev.
4211  *	This additionally holds the RTNL to be able to do netdev changes.
4212  *
4213  * @del_virtual_intf: remove the virtual interface
4214  *	This additionally holds the RTNL to be able to do netdev changes.
4215  *
4216  * @change_virtual_intf: change type/configuration of virtual interface,
4217  *	keep the struct wireless_dev's iftype updated.
4218  *	This additionally holds the RTNL to be able to do netdev changes.
4219  *
4220  * @add_intf_link: Add a new MLO link to the given interface. Note that
4221  *	the wdev->link[] data structure has been updated, so the new link
4222  *	address is available.
4223  * @del_intf_link: Remove an MLO link from the given interface.
4224  *
4225  * @add_key: add a key with the given parameters. @mac_addr will be %NULL
4226  *	when adding a group key. @link_id will be -1 for non-MLO connection.
4227  *	For MLO connection, @link_id will be >= 0 for group key and -1 for
4228  *	pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
4229  *
4230  * @get_key: get information about the key with the given parameters.
4231  *	@mac_addr will be %NULL when requesting information for a group
4232  *	key. All pointers given to the @callback function need not be valid
4233  *	after it returns. This function should return an error if it is
4234  *	not possible to retrieve the key, -ENOENT if it doesn't exist.
4235  *	@link_id will be -1 for non-MLO connection. For MLO connection,
4236  *	@link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
4237  *	will be peer's MLD address for MLO pairwise key.
4238  *
4239  * @del_key: remove a key given the @mac_addr (%NULL for a group key)
4240  *	and @key_index, return -ENOENT if the key doesn't exist. @link_id will
4241  *	be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
4242  *	for group key and -1 for pairwise key, @mac_addr will be peer's MLD
4243  *	address for MLO pairwise key.
4244  *
4245  * @set_default_key: set the default key on an interface. @link_id will be >= 0
4246  *	for MLO connection and -1 for non-MLO connection.
4247  *
4248  * @set_default_mgmt_key: set the default management frame key on an interface.
4249  *	@link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4250  *
4251  * @set_default_beacon_key: set the default Beacon frame key on an interface.
4252  *	@link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
4253  *
4254  * @set_rekey_data: give the data necessary for GTK rekeying to the driver
4255  *
4256  * @start_ap: Start acting in AP mode defined by the parameters.
4257  * @change_beacon: Change the beacon parameters for an access point mode
4258  *	interface. This should reject the call when AP mode wasn't started.
4259  * @stop_ap: Stop being an AP, including stopping beaconing.
4260  *
4261  * @add_station: Add a new station.
4262  * @del_station: Remove a station
4263  * @change_station: Modify a given station. Note that flags changes are not much
4264  *	validated in cfg80211, in particular the auth/assoc/authorized flags
4265  *	might come to the driver in invalid combinations -- make sure to check
4266  *	them, also against the existing state! Drivers must call
4267  *	cfg80211_check_station_change() to validate the information.
4268  * @get_station: get station information for the station identified by @mac
4269  * @dump_station: dump station callback -- resume dump at index @idx
4270  *
4271  * @add_mpath: add a fixed mesh path
4272  * @del_mpath: delete a given mesh path
4273  * @change_mpath: change a given mesh path
4274  * @get_mpath: get a mesh path for the given parameters
4275  * @dump_mpath: dump mesh path callback -- resume dump at index @idx
4276  * @get_mpp: get a mesh proxy path for the given parameters
4277  * @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
4278  * @join_mesh: join the mesh network with the specified parameters
4279  *	(invoked with the wireless_dev mutex held)
4280  * @leave_mesh: leave the current mesh network
4281  *	(invoked with the wireless_dev mutex held)
4282  *
4283  * @get_mesh_config: Get the current mesh configuration
4284  *
4285  * @update_mesh_config: Update mesh parameters on a running mesh.
4286  *	The mask is a bitfield which tells us which parameters to
4287  *	set, and which to leave alone.
4288  *
4289  * @change_bss: Modify parameters for a given BSS.
4290  *
4291  * @inform_bss: Called by cfg80211 while being informed about new BSS data
4292  *	for every BSS found within the reported data or frame. This is called
4293  *	from within the cfg8011 inform_bss handlers while holding the bss_lock.
4294  *	The data parameter is passed through from drv_data inside
4295  *	struct cfg80211_inform_bss.
4296  *	The new IE data for the BSS is explicitly passed.
4297  *
4298  * @set_txq_params: Set TX queue parameters
4299  *
4300  * @libertas_set_mesh_channel: Only for backward compatibility for libertas,
4301  *	as it doesn't implement join_mesh and needs to set the channel to
4302  *	join the mesh instead.
4303  *
4304  * @set_monitor_channel: Set the monitor mode channel for the device. If other
4305  *	interfaces are active this callback should reject the configuration.
4306  *	If no interfaces are active or the device is down, the channel should
4307  *	be stored for when a monitor interface becomes active.
4308  *
4309  * @scan: Request to do a scan. If returning zero, the scan request is given
4310  *	the driver, and will be valid until passed to cfg80211_scan_done().
4311  *	For scan results, call cfg80211_inform_bss(); you can call this outside
4312  *	the scan/scan_done bracket too.
4313  * @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
4314  *	indicate the status of the scan through cfg80211_scan_done().
4315  *
4316  * @auth: Request to authenticate with the specified peer
4317  *	(invoked with the wireless_dev mutex held)
4318  * @assoc: Request to (re)associate with the specified peer
4319  *	(invoked with the wireless_dev mutex held)
4320  * @deauth: Request to deauthenticate from the specified peer
4321  *	(invoked with the wireless_dev mutex held)
4322  * @disassoc: Request to disassociate from the specified peer
4323  *	(invoked with the wireless_dev mutex held)
4324  *
4325  * @connect: Connect to the ESS with the specified parameters. When connected,
4326  *	call cfg80211_connect_result()/cfg80211_connect_bss() with status code
4327  *	%WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
4328  *	cfg80211_connect_result()/cfg80211_connect_bss() with the status code
4329  *	from the AP or cfg80211_connect_timeout() if no frame with status code
4330  *	was received.
4331  *	The driver is allowed to roam to other BSSes within the ESS when the
4332  *	other BSS matches the connect parameters. When such roaming is initiated
4333  *	by the driver, the driver is expected to verify that the target matches
4334  *	the configured security parameters and to use Reassociation Request
4335  *	frame instead of Association Request frame.
4336  *	The connect function can also be used to request the driver to perform a
4337  *	specific roam when connected to an ESS. In that case, the prev_bssid
4338  *	parameter is set to the BSSID of the currently associated BSS as an
4339  *	indication of requesting reassociation.
4340  *	In both the driver-initiated and new connect() call initiated roaming
4341  *	cases, the result of roaming is indicated with a call to
4342  *	cfg80211_roamed(). (invoked with the wireless_dev mutex held)
4343  * @update_connect_params: Update the connect parameters while connected to a
4344  *	BSS. The updated parameters can be used by driver/firmware for
4345  *	subsequent BSS selection (roaming) decisions and to form the
4346  *	Authentication/(Re)Association Request frames. This call does not
4347  *	request an immediate disassociation or reassociation with the current
4348  *	BSS, i.e., this impacts only subsequent (re)associations. The bits in
4349  *	changed are defined in &enum cfg80211_connect_params_changed.
4350  *	(invoked with the wireless_dev mutex held)
4351  * @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
4352  *      connection is in progress. Once done, call cfg80211_disconnected() in
4353  *      case connection was already established (invoked with the
4354  *      wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
4355  *
4356  * @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
4357  *	cfg80211_ibss_joined(), also call that function when changing BSSID due
4358  *	to a merge.
4359  *	(invoked with the wireless_dev mutex held)
4360  * @leave_ibss: Leave the IBSS.
4361  *	(invoked with the wireless_dev mutex held)
4362  *
4363  * @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
4364  *	MESH mode)
4365  *
4366  * @set_wiphy_params: Notify that wiphy parameters have changed;
4367  *	@changed bitfield (see &enum wiphy_params_flags) describes which values
4368  *	have changed. The actual parameter values are available in
4369  *	struct wiphy. If returning an error, no value should be changed.
4370  *
4371  * @set_tx_power: set the transmit power according to the parameters,
4372  *	the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
4373  *	wdev may be %NULL if power was set for the wiphy, and will
4374  *	always be %NULL unless the driver supports per-vif TX power
4375  *	(as advertised by the nl80211 feature flag.)
4376  * @get_tx_power: store the current TX power into the dbm variable;
4377  *	return 0 if successful
4378  *
4379  * @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
4380  *	functions to adjust rfkill hw state
4381  *
4382  * @dump_survey: get site survey information.
4383  *
4384  * @remain_on_channel: Request the driver to remain awake on the specified
4385  *	channel for the specified duration to complete an off-channel
4386  *	operation (e.g., public action frame exchange). When the driver is
4387  *	ready on the requested channel, it must indicate this with an event
4388  *	notification by calling cfg80211_ready_on_channel().
4389  * @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
4390  *	This allows the operation to be terminated prior to timeout based on
4391  *	the duration value.
4392  * @mgmt_tx: Transmit a management frame.
4393  * @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
4394  *	frame on another channel
4395  *
4396  * @testmode_cmd: run a test mode command; @wdev may be %NULL
4397  * @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
4398  *	used by the function, but 0 and 1 must not be touched. Additionally,
4399  *	return error codes other than -ENOBUFS and -ENOENT will terminate the
4400  *	dump and return to userspace with an error, so be careful. If any data
4401  *	was passed in from userspace then the data/len arguments will be present
4402  *	and point to the data contained in %NL80211_ATTR_TESTDATA.
4403  *
4404  * @set_bitrate_mask: set the bitrate mask configuration
4405  *
4406  * @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
4407  *	devices running firmwares capable of generating the (re) association
4408  *	RSN IE. It allows for faster roaming between WPA2 BSSIDs.
4409  * @del_pmksa: Delete a cached PMKID.
4410  * @flush_pmksa: Flush all cached PMKIDs.
4411  * @set_power_mgmt: Configure WLAN power management. A timeout value of -1
4412  *	allows the driver to adjust the dynamic ps timeout value.
4413  * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
4414  *	After configuration, the driver should (soon) send an event indicating
4415  *	the current level is above/below the configured threshold; this may
4416  *	need some care when the configuration is changed (without first being
4417  *	disabled.)
4418  * @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
4419  *	connection quality monitor.  An event is to be sent only when the
4420  *	signal level is found to be outside the two values.  The driver should
4421  *	set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
4422  *	If it is provided then there's no point providing @set_cqm_rssi_config.
4423  * @set_cqm_txe_config: Configure connection quality monitor TX error
4424  *	thresholds.
4425  * @sched_scan_start: Tell the driver to start a scheduled scan.
4426  * @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
4427  *	given request id. This call must stop the scheduled scan and be ready
4428  *	for starting a new one before it returns, i.e. @sched_scan_start may be
4429  *	called immediately after that again and should not fail in that case.
4430  *	The driver should not call cfg80211_sched_scan_stopped() for a requested
4431  *	stop (when this method returns 0).
4432  *
4433  * @update_mgmt_frame_registrations: Notify the driver that management frame
4434  *	registrations were updated. The callback is allowed to sleep.
4435  *
4436  * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
4437  *	Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
4438  *	reject TX/RX mask combinations they cannot support by returning -EINVAL
4439  *	(also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
4440  *
4441  * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
4442  *
4443  * @tdls_mgmt: Transmit a TDLS management frame.
4444  * @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
4445  *
4446  * @probe_client: probe an associated client, must return a cookie that it
4447  *	later passes to cfg80211_probe_status().
4448  *
4449  * @set_noack_map: Set the NoAck Map for the TIDs.
4450  *
4451  * @get_channel: Get the current operating channel for the virtual interface.
4452  *	For monitor interfaces, it should return %NULL unless there's a single
4453  *	current monitoring channel.
4454  *
4455  * @start_p2p_device: Start the given P2P device.
4456  * @stop_p2p_device: Stop the given P2P device.
4457  *
4458  * @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
4459  *	Parameters include ACL policy, an array of MAC address of stations
4460  *	and the number of MAC addresses. If there is already a list in driver
4461  *	this new list replaces the existing one. Driver has to clear its ACL
4462  *	when number of MAC addresses entries is passed as 0. Drivers which
4463  *	advertise the support for MAC based ACL have to implement this callback.
4464  *
4465  * @start_radar_detection: Start radar detection in the driver.
4466  *
4467  * @end_cac: End running CAC, probably because a related CAC
4468  *	was finished on another phy.
4469  *
4470  * @update_ft_ies: Provide updated Fast BSS Transition information to the
4471  *	driver. If the SME is in the driver/firmware, this information can be
4472  *	used in building Authentication and Reassociation Request frames.
4473  *
4474  * @crit_proto_start: Indicates a critical protocol needs more link reliability
4475  *	for a given duration (milliseconds). The protocol is provided so the
4476  *	driver can take the most appropriate actions.
4477  * @crit_proto_stop: Indicates critical protocol no longer needs increased link
4478  *	reliability. This operation can not fail.
4479  * @set_coalesce: Set coalesce parameters.
4480  *
4481  * @channel_switch: initiate channel-switch procedure (with CSA). Driver is
4482  *	responsible for veryfing if the switch is possible. Since this is
4483  *	inherently tricky driver may decide to disconnect an interface later
4484  *	with cfg80211_stop_iface(). This doesn't mean driver can accept
4485  *	everything. It should do it's best to verify requests and reject them
4486  *	as soon as possible.
4487  *
4488  * @set_qos_map: Set QoS mapping information to the driver
4489  *
4490  * @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
4491  *	given interface This is used e.g. for dynamic HT 20/40 MHz channel width
4492  *	changes during the lifetime of the BSS.
4493  *
4494  * @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
4495  *	with the given parameters; action frame exchange has been handled by
4496  *	userspace so this just has to modify the TX path to take the TS into
4497  *	account.
4498  *	If the admitted time is 0 just validate the parameters to make sure
4499  *	the session can be created at all; it is valid to just always return
4500  *	success for that but that may result in inefficient behaviour (handshake
4501  *	with the peer followed by immediate teardown when the addition is later
4502  *	rejected)
4503  * @del_tx_ts: remove an existing TX TS
4504  *
4505  * @join_ocb: join the OCB network with the specified parameters
4506  *	(invoked with the wireless_dev mutex held)
4507  * @leave_ocb: leave the current OCB network
4508  *	(invoked with the wireless_dev mutex held)
4509  *
4510  * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
4511  *	is responsible for continually initiating channel-switching operations
4512  *	and returning to the base channel for communication with the AP.
4513  * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
4514  *	peers must be on the base channel when the call completes.
4515  * @start_nan: Start the NAN interface.
4516  * @stop_nan: Stop the NAN interface.
4517  * @add_nan_func: Add a NAN function. Returns negative value on failure.
4518  *	On success @nan_func ownership is transferred to the driver and
4519  *	it may access it outside of the scope of this function. The driver
4520  *	should free the @nan_func when no longer needed by calling
4521  *	cfg80211_free_nan_func().
4522  *	On success the driver should assign an instance_id in the
4523  *	provided @nan_func.
4524  * @del_nan_func: Delete a NAN function.
4525  * @nan_change_conf: changes NAN configuration. The changed parameters must
4526  *	be specified in @changes (using &enum cfg80211_nan_conf_changes);
4527  *	All other parameters must be ignored.
4528  *
4529  * @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
4530  *
4531  * @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
4532  *      function should return phy stats, and interface stats otherwise.
4533  *
4534  * @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
4535  *	If not deleted through @del_pmk the PMK remains valid until disconnect
4536  *	upon which the driver should clear it.
4537  *	(invoked with the wireless_dev mutex held)
4538  * @del_pmk: delete the previously configured PMK for the given authenticator.
4539  *	(invoked with the wireless_dev mutex held)
4540  *
4541  * @external_auth: indicates result of offloaded authentication processing from
4542  *     user space
4543  *
4544  * @tx_control_port: TX a control port frame (EAPoL).  The noencrypt parameter
4545  *	tells the driver that the frame should not be encrypted.
4546  *
4547  * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
4548  *	Statistics should be cumulative, currently no way to reset is provided.
4549  * @start_pmsr: start peer measurement (e.g. FTM)
4550  * @abort_pmsr: abort peer measurement
4551  *
4552  * @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
4553  *	but offloading OWE processing to the user space will get the updated
4554  *	DH IE through this interface.
4555  *
4556  * @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
4557  *	and overrule HWMP path selection algorithm.
4558  * @set_tid_config: TID specific configuration, this can be peer or BSS specific
4559  *	This callback may sleep.
4560  * @reset_tid_config: Reset TID specific configuration for the peer, for the
4561  *	given TIDs. This callback may sleep.
4562  *
4563  * @set_sar_specs: Update the SAR (TX power) settings.
4564  *
4565  * @color_change: Initiate a color change.
4566  *
4567  * @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
4568  *	those to decrypt (Re)Association Request and encrypt (Re)Association
4569  *	Response frame.
4570  *
4571  * @set_radar_background: Configure dedicated offchannel chain available for
4572  *	radar/CAC detection on some hw. This chain can't be used to transmit
4573  *	or receive frames and it is bounded to a running wdev.
4574  *	Background radar/CAC detection allows to avoid the CAC downtime
4575  *	switching to a different channel during CAC detection on the selected
4576  *	radar channel.
4577  *	The caller is expected to set chandef pointer to NULL in order to
4578  *	disable background CAC/radar detection.
4579  * @add_link_station: Add a link to a station.
4580  * @mod_link_station: Modify a link of a station.
4581  * @del_link_station: Remove a link of a station.
4582  *
4583  * @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
4584  * @set_ttlm: set the TID to link mapping.
4585  * @get_radio_mask: get bitmask of radios in use.
4586  *	(invoked with the wiphy mutex held)
4587  */
4588 struct cfg80211_ops {
4589 	int	(*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
4590 	int	(*resume)(struct wiphy *wiphy);
4591 	void	(*set_wakeup)(struct wiphy *wiphy, bool enabled);
4592 
4593 	struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
4594 						  const char *name,
4595 						  unsigned char name_assign_type,
4596 						  enum nl80211_iftype type,
4597 						  struct vif_params *params);
4598 	int	(*del_virtual_intf)(struct wiphy *wiphy,
4599 				    struct wireless_dev *wdev);
4600 	int	(*change_virtual_intf)(struct wiphy *wiphy,
4601 				       struct net_device *dev,
4602 				       enum nl80211_iftype type,
4603 				       struct vif_params *params);
4604 
4605 	int	(*add_intf_link)(struct wiphy *wiphy,
4606 				 struct wireless_dev *wdev,
4607 				 unsigned int link_id);
4608 	void	(*del_intf_link)(struct wiphy *wiphy,
4609 				 struct wireless_dev *wdev,
4610 				 unsigned int link_id);
4611 
4612 	int	(*add_key)(struct wiphy *wiphy, struct net_device *netdev,
4613 			   int link_id, u8 key_index, bool pairwise,
4614 			   const u8 *mac_addr, struct key_params *params);
4615 	int	(*get_key)(struct wiphy *wiphy, struct net_device *netdev,
4616 			   int link_id, u8 key_index, bool pairwise,
4617 			   const u8 *mac_addr, void *cookie,
4618 			   void (*callback)(void *cookie, struct key_params*));
4619 	int	(*del_key)(struct wiphy *wiphy, struct net_device *netdev,
4620 			   int link_id, u8 key_index, bool pairwise,
4621 			   const u8 *mac_addr);
4622 	int	(*set_default_key)(struct wiphy *wiphy,
4623 				   struct net_device *netdev, int link_id,
4624 				   u8 key_index, bool unicast, bool multicast);
4625 	int	(*set_default_mgmt_key)(struct wiphy *wiphy,
4626 					struct net_device *netdev, int link_id,
4627 					u8 key_index);
4628 	int	(*set_default_beacon_key)(struct wiphy *wiphy,
4629 					  struct net_device *netdev,
4630 					  int link_id,
4631 					  u8 key_index);
4632 
4633 	int	(*start_ap)(struct wiphy *wiphy, struct net_device *dev,
4634 			    struct cfg80211_ap_settings *settings);
4635 	int	(*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
4636 				 struct cfg80211_ap_update *info);
4637 	int	(*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
4638 			   unsigned int link_id);
4639 
4640 
4641 	int	(*add_station)(struct wiphy *wiphy, struct net_device *dev,
4642 			       const u8 *mac,
4643 			       struct station_parameters *params);
4644 	int	(*del_station)(struct wiphy *wiphy, struct net_device *dev,
4645 			       struct station_del_parameters *params);
4646 	int	(*change_station)(struct wiphy *wiphy, struct net_device *dev,
4647 				  const u8 *mac,
4648 				  struct station_parameters *params);
4649 	int	(*get_station)(struct wiphy *wiphy, struct net_device *dev,
4650 			       const u8 *mac, struct station_info *sinfo);
4651 	int	(*dump_station)(struct wiphy *wiphy, struct net_device *dev,
4652 				int idx, u8 *mac, struct station_info *sinfo);
4653 
4654 	int	(*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
4655 			       const u8 *dst, const u8 *next_hop);
4656 	int	(*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
4657 			       const u8 *dst);
4658 	int	(*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
4659 				  const u8 *dst, const u8 *next_hop);
4660 	int	(*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
4661 			     u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
4662 	int	(*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
4663 			      int idx, u8 *dst, u8 *next_hop,
4664 			      struct mpath_info *pinfo);
4665 	int	(*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
4666 			   u8 *dst, u8 *mpp, struct mpath_info *pinfo);
4667 	int	(*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
4668 			    int idx, u8 *dst, u8 *mpp,
4669 			    struct mpath_info *pinfo);
4670 	int	(*get_mesh_config)(struct wiphy *wiphy,
4671 				struct net_device *dev,
4672 				struct mesh_config *conf);
4673 	int	(*update_mesh_config)(struct wiphy *wiphy,
4674 				      struct net_device *dev, u32 mask,
4675 				      const struct mesh_config *nconf);
4676 	int	(*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
4677 			     const struct mesh_config *conf,
4678 			     const struct mesh_setup *setup);
4679 	int	(*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
4680 
4681 	int	(*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
4682 			    struct ocb_setup *setup);
4683 	int	(*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
4684 
4685 	int	(*change_bss)(struct wiphy *wiphy, struct net_device *dev,
4686 			      struct bss_parameters *params);
4687 
4688 	void	(*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
4689 			      const struct cfg80211_bss_ies *ies, void *data);
4690 
4691 	int	(*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
4692 				  struct ieee80211_txq_params *params);
4693 
4694 	int	(*libertas_set_mesh_channel)(struct wiphy *wiphy,
4695 					     struct net_device *dev,
4696 					     struct ieee80211_channel *chan);
4697 
4698 	int	(*set_monitor_channel)(struct wiphy *wiphy,
4699 				       struct cfg80211_chan_def *chandef);
4700 
4701 	int	(*scan)(struct wiphy *wiphy,
4702 			struct cfg80211_scan_request *request);
4703 	void	(*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4704 
4705 	int	(*auth)(struct wiphy *wiphy, struct net_device *dev,
4706 			struct cfg80211_auth_request *req);
4707 	int	(*assoc)(struct wiphy *wiphy, struct net_device *dev,
4708 			 struct cfg80211_assoc_request *req);
4709 	int	(*deauth)(struct wiphy *wiphy, struct net_device *dev,
4710 			  struct cfg80211_deauth_request *req);
4711 	int	(*disassoc)(struct wiphy *wiphy, struct net_device *dev,
4712 			    struct cfg80211_disassoc_request *req);
4713 
4714 	int	(*connect)(struct wiphy *wiphy, struct net_device *dev,
4715 			   struct cfg80211_connect_params *sme);
4716 	int	(*update_connect_params)(struct wiphy *wiphy,
4717 					 struct net_device *dev,
4718 					 struct cfg80211_connect_params *sme,
4719 					 u32 changed);
4720 	int	(*disconnect)(struct wiphy *wiphy, struct net_device *dev,
4721 			      u16 reason_code);
4722 
4723 	int	(*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
4724 			     struct cfg80211_ibss_params *params);
4725 	int	(*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
4726 
4727 	int	(*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
4728 				  int rate[NUM_NL80211_BANDS]);
4729 
4730 	int	(*set_wiphy_params)(struct wiphy *wiphy, u32 changed);
4731 
4732 	int	(*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4733 				enum nl80211_tx_power_setting type, int mbm);
4734 	int	(*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
4735 				int *dbm);
4736 
4737 	void	(*rfkill_poll)(struct wiphy *wiphy);
4738 
4739 #ifdef CONFIG_NL80211_TESTMODE
4740 	int	(*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
4741 				void *data, int len);
4742 	int	(*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
4743 				 struct netlink_callback *cb,
4744 				 void *data, int len);
4745 #endif
4746 
4747 	int	(*set_bitrate_mask)(struct wiphy *wiphy,
4748 				    struct net_device *dev,
4749 				    unsigned int link_id,
4750 				    const u8 *peer,
4751 				    const struct cfg80211_bitrate_mask *mask);
4752 
4753 	int	(*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
4754 			int idx, struct survey_info *info);
4755 
4756 	int	(*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4757 			     struct cfg80211_pmksa *pmksa);
4758 	int	(*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
4759 			     struct cfg80211_pmksa *pmksa);
4760 	int	(*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
4761 
4762 	int	(*remain_on_channel)(struct wiphy *wiphy,
4763 				     struct wireless_dev *wdev,
4764 				     struct ieee80211_channel *chan,
4765 				     unsigned int duration,
4766 				     u64 *cookie);
4767 	int	(*cancel_remain_on_channel)(struct wiphy *wiphy,
4768 					    struct wireless_dev *wdev,
4769 					    u64 cookie);
4770 
4771 	int	(*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
4772 			   struct cfg80211_mgmt_tx_params *params,
4773 			   u64 *cookie);
4774 	int	(*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
4775 				       struct wireless_dev *wdev,
4776 				       u64 cookie);
4777 
4778 	int	(*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4779 				  bool enabled, int timeout);
4780 
4781 	int	(*set_cqm_rssi_config)(struct wiphy *wiphy,
4782 				       struct net_device *dev,
4783 				       s32 rssi_thold, u32 rssi_hyst);
4784 
4785 	int	(*set_cqm_rssi_range_config)(struct wiphy *wiphy,
4786 					     struct net_device *dev,
4787 					     s32 rssi_low, s32 rssi_high);
4788 
4789 	int	(*set_cqm_txe_config)(struct wiphy *wiphy,
4790 				      struct net_device *dev,
4791 				      u32 rate, u32 pkts, u32 intvl);
4792 
4793 	void	(*update_mgmt_frame_registrations)(struct wiphy *wiphy,
4794 						   struct wireless_dev *wdev,
4795 						   struct mgmt_frame_regs *upd);
4796 
4797 	int	(*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
4798 	int	(*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
4799 
4800 	int	(*sched_scan_start)(struct wiphy *wiphy,
4801 				struct net_device *dev,
4802 				struct cfg80211_sched_scan_request *request);
4803 	int	(*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
4804 				   u64 reqid);
4805 
4806 	int	(*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
4807 				  struct cfg80211_gtk_rekey_data *data);
4808 
4809 	int	(*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
4810 			     const u8 *peer, int link_id,
4811 			     u8 action_code, u8 dialog_token, u16 status_code,
4812 			     u32 peer_capability, bool initiator,
4813 			     const u8 *buf, size_t len);
4814 	int	(*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
4815 			     const u8 *peer, enum nl80211_tdls_operation oper);
4816 
4817 	int	(*probe_client)(struct wiphy *wiphy, struct net_device *dev,
4818 				const u8 *peer, u64 *cookie);
4819 
4820 	int	(*set_noack_map)(struct wiphy *wiphy,
4821 				  struct net_device *dev,
4822 				  u16 noack_map);
4823 
4824 	int	(*get_channel)(struct wiphy *wiphy,
4825 			       struct wireless_dev *wdev,
4826 			       unsigned int link_id,
4827 			       struct cfg80211_chan_def *chandef);
4828 
4829 	int	(*start_p2p_device)(struct wiphy *wiphy,
4830 				    struct wireless_dev *wdev);
4831 	void	(*stop_p2p_device)(struct wiphy *wiphy,
4832 				   struct wireless_dev *wdev);
4833 
4834 	int	(*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
4835 			       const struct cfg80211_acl_data *params);
4836 
4837 	int	(*start_radar_detection)(struct wiphy *wiphy,
4838 					 struct net_device *dev,
4839 					 struct cfg80211_chan_def *chandef,
4840 					 u32 cac_time_ms, int link_id);
4841 	void	(*end_cac)(struct wiphy *wiphy,
4842 			   struct net_device *dev, unsigned int link_id);
4843 	int	(*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
4844 				 struct cfg80211_update_ft_ies_params *ftie);
4845 	int	(*crit_proto_start)(struct wiphy *wiphy,
4846 				    struct wireless_dev *wdev,
4847 				    enum nl80211_crit_proto_id protocol,
4848 				    u16 duration);
4849 	void	(*crit_proto_stop)(struct wiphy *wiphy,
4850 				   struct wireless_dev *wdev);
4851 	int	(*set_coalesce)(struct wiphy *wiphy,
4852 				struct cfg80211_coalesce *coalesce);
4853 
4854 	int	(*channel_switch)(struct wiphy *wiphy,
4855 				  struct net_device *dev,
4856 				  struct cfg80211_csa_settings *params);
4857 
4858 	int     (*set_qos_map)(struct wiphy *wiphy,
4859 			       struct net_device *dev,
4860 			       struct cfg80211_qos_map *qos_map);
4861 
4862 	int	(*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
4863 				    unsigned int link_id,
4864 				    struct cfg80211_chan_def *chandef);
4865 
4866 	int	(*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
4867 			     u8 tsid, const u8 *peer, u8 user_prio,
4868 			     u16 admitted_time);
4869 	int	(*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
4870 			     u8 tsid, const u8 *peer);
4871 
4872 	int	(*tdls_channel_switch)(struct wiphy *wiphy,
4873 				       struct net_device *dev,
4874 				       const u8 *addr, u8 oper_class,
4875 				       struct cfg80211_chan_def *chandef);
4876 	void	(*tdls_cancel_channel_switch)(struct wiphy *wiphy,
4877 					      struct net_device *dev,
4878 					      const u8 *addr);
4879 	int	(*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
4880 			     struct cfg80211_nan_conf *conf);
4881 	void	(*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
4882 	int	(*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
4883 				struct cfg80211_nan_func *nan_func);
4884 	void	(*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
4885 			       u64 cookie);
4886 	int	(*nan_change_conf)(struct wiphy *wiphy,
4887 				   struct wireless_dev *wdev,
4888 				   struct cfg80211_nan_conf *conf,
4889 				   u32 changes);
4890 
4891 	int	(*set_multicast_to_unicast)(struct wiphy *wiphy,
4892 					    struct net_device *dev,
4893 					    const bool enabled);
4894 
4895 	int	(*get_txq_stats)(struct wiphy *wiphy,
4896 				 struct wireless_dev *wdev,
4897 				 struct cfg80211_txq_stats *txqstats);
4898 
4899 	int	(*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
4900 			   const struct cfg80211_pmk_conf *conf);
4901 	int	(*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
4902 			   const u8 *aa);
4903 	int     (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
4904 				 struct cfg80211_external_auth_params *params);
4905 
4906 	int	(*tx_control_port)(struct wiphy *wiphy,
4907 				   struct net_device *dev,
4908 				   const u8 *buf, size_t len,
4909 				   const u8 *dest, const __be16 proto,
4910 				   const bool noencrypt, int link_id,
4911 				   u64 *cookie);
4912 
4913 	int	(*get_ftm_responder_stats)(struct wiphy *wiphy,
4914 				struct net_device *dev,
4915 				struct cfg80211_ftm_responder_stats *ftm_stats);
4916 
4917 	int	(*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
4918 			      struct cfg80211_pmsr_request *request);
4919 	void	(*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
4920 			      struct cfg80211_pmsr_request *request);
4921 	int	(*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
4922 				   struct cfg80211_update_owe_info *owe_info);
4923 	int	(*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
4924 				   const u8 *buf, size_t len);
4925 	int     (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
4926 				  struct cfg80211_tid_config *tid_conf);
4927 	int	(*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
4928 				    const u8 *peer, u8 tids);
4929 	int	(*set_sar_specs)(struct wiphy *wiphy,
4930 				 struct cfg80211_sar_specs *sar);
4931 	int	(*color_change)(struct wiphy *wiphy,
4932 				struct net_device *dev,
4933 				struct cfg80211_color_change_settings *params);
4934 	int     (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
4935 				struct cfg80211_fils_aad *fils_aad);
4936 	int	(*set_radar_background)(struct wiphy *wiphy,
4937 					struct cfg80211_chan_def *chandef);
4938 	int	(*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
4939 				    struct link_station_parameters *params);
4940 	int	(*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
4941 				    struct link_station_parameters *params);
4942 	int	(*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
4943 				    struct link_station_del_parameters *params);
4944 	int	(*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
4945 				    struct cfg80211_set_hw_timestamp *hwts);
4946 	int	(*set_ttlm)(struct wiphy *wiphy, struct net_device *dev,
4947 			    struct cfg80211_ttlm_params *params);
4948 	u32	(*get_radio_mask)(struct wiphy *wiphy, struct net_device *dev);
4949 };
4950 
4951 /*
4952  * wireless hardware and networking interfaces structures
4953  * and registration/helper functions
4954  */
4955 
4956 /**
4957  * enum wiphy_flags - wiphy capability flags
4958  *
4959  * @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
4960  *	 into two, first for legacy bands and second for 6 GHz.
4961  * @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
4962  *	wiphy at all
4963  * @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
4964  *	by default -- this flag will be set depending on the kernel's default
4965  *	on wiphy_new(), but can be changed by the driver if it has a good
4966  *	reason to override the default
4967  * @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
4968  *	on a VLAN interface). This flag also serves an extra purpose of
4969  *	supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
4970  * @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
4971  * @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
4972  *	control port protocol ethertype. The device also honours the
4973  *	control_port_no_encrypt flag.
4974  * @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
4975  * @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
4976  *	auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
4977  * @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
4978  *	firmware.
4979  * @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
4980  * @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
4981  * @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
4982  *	link setup/discovery operations internally. Setup, discovery and
4983  *	teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
4984  *	command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
4985  *	used for asking the driver/firmware to perform a TDLS operation.
4986  * @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
4987  * @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
4988  *	when there are virtual interfaces in AP mode by calling
4989  *	cfg80211_report_obss_beacon().
4990  * @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
4991  *	responds to probe-requests in hardware.
4992  * @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
4993  * @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
4994  * @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
4995  * @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
4996  *	beaconing mode (AP, IBSS, Mesh, ...).
4997  * @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
4998  * @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
4999  *	in order to not have them reachable in normal drivers, until we have
5000  *	complete feature/interface combinations/etc. advertisement. No driver
5001  *	should set this flag for now.
5002  * @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
5003  * @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
5004  *	NL80211_REGDOM_SET_BY_DRIVER.
5005  * @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver
5006  *	set this flag to update channels on beacon hints.
5007  * @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link
5008  *	of an NSTR mobile AP MLD.
5009  * @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
5010  */
5011 enum wiphy_flags {
5012 	WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK		= BIT(0),
5013 	WIPHY_FLAG_SUPPORTS_MLO			= BIT(1),
5014 	WIPHY_FLAG_SPLIT_SCAN_6GHZ		= BIT(2),
5015 	WIPHY_FLAG_NETNS_OK			= BIT(3),
5016 	WIPHY_FLAG_PS_ON_BY_DEFAULT		= BIT(4),
5017 	WIPHY_FLAG_4ADDR_AP			= BIT(5),
5018 	WIPHY_FLAG_4ADDR_STATION		= BIT(6),
5019 	WIPHY_FLAG_CONTROL_PORT_PROTOCOL	= BIT(7),
5020 	WIPHY_FLAG_IBSS_RSN			= BIT(8),
5021 	WIPHY_FLAG_DISABLE_WEXT			= BIT(9),
5022 	WIPHY_FLAG_MESH_AUTH			= BIT(10),
5023 	WIPHY_FLAG_SUPPORTS_EXT_KCK_32          = BIT(11),
5024 	WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY	= BIT(12),
5025 	WIPHY_FLAG_SUPPORTS_FW_ROAM		= BIT(13),
5026 	WIPHY_FLAG_AP_UAPSD			= BIT(14),
5027 	WIPHY_FLAG_SUPPORTS_TDLS		= BIT(15),
5028 	WIPHY_FLAG_TDLS_EXTERNAL_SETUP		= BIT(16),
5029 	WIPHY_FLAG_HAVE_AP_SME			= BIT(17),
5030 	WIPHY_FLAG_REPORTS_OBSS			= BIT(18),
5031 	WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD	= BIT(19),
5032 	WIPHY_FLAG_OFFCHAN_TX			= BIT(20),
5033 	WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL	= BIT(21),
5034 	WIPHY_FLAG_SUPPORTS_5_10_MHZ		= BIT(22),
5035 	WIPHY_FLAG_HAS_CHANNEL_SWITCH		= BIT(23),
5036 	WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER	= BIT(24),
5037 	WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON     = BIT(25),
5038 };
5039 
5040 /**
5041  * struct ieee80211_iface_limit - limit on certain interface types
5042  * @max: maximum number of interfaces of these types
5043  * @types: interface types (bits)
5044  */
5045 struct ieee80211_iface_limit {
5046 	u16 max;
5047 	u16 types;
5048 };
5049 
5050 /**
5051  * struct ieee80211_iface_combination - possible interface combination
5052  *
5053  * With this structure the driver can describe which interface
5054  * combinations it supports concurrently. When set in a struct wiphy_radio,
5055  * the combinations refer to combinations of interfaces currently active on
5056  * that radio.
5057  *
5058  * Examples:
5059  *
5060  * 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
5061  *
5062  *    .. code-block:: c
5063  *
5064  *	struct ieee80211_iface_limit limits1[] = {
5065  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5066  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
5067  *	};
5068  *	struct ieee80211_iface_combination combination1 = {
5069  *		.limits = limits1,
5070  *		.n_limits = ARRAY_SIZE(limits1),
5071  *		.max_interfaces = 2,
5072  *		.beacon_int_infra_match = true,
5073  *	};
5074  *
5075  *
5076  * 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
5077  *
5078  *    .. code-block:: c
5079  *
5080  *	struct ieee80211_iface_limit limits2[] = {
5081  *		{ .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
5082  *				     BIT(NL80211_IFTYPE_P2P_GO), },
5083  *	};
5084  *	struct ieee80211_iface_combination combination2 = {
5085  *		.limits = limits2,
5086  *		.n_limits = ARRAY_SIZE(limits2),
5087  *		.max_interfaces = 8,
5088  *		.num_different_channels = 1,
5089  *	};
5090  *
5091  *
5092  * 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
5093  *
5094  *    This allows for an infrastructure connection and three P2P connections.
5095  *
5096  *    .. code-block:: c
5097  *
5098  *	struct ieee80211_iface_limit limits3[] = {
5099  *		{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
5100  *		{ .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
5101  *				     BIT(NL80211_IFTYPE_P2P_CLIENT), },
5102  *	};
5103  *	struct ieee80211_iface_combination combination3 = {
5104  *		.limits = limits3,
5105  *		.n_limits = ARRAY_SIZE(limits3),
5106  *		.max_interfaces = 4,
5107  *		.num_different_channels = 2,
5108  *	};
5109  *
5110  */
5111 struct ieee80211_iface_combination {
5112 	/**
5113 	 * @limits:
5114 	 * limits for the given interface types
5115 	 */
5116 	const struct ieee80211_iface_limit *limits;
5117 
5118 	/**
5119 	 * @num_different_channels:
5120 	 * can use up to this many different channels
5121 	 */
5122 	u32 num_different_channels;
5123 
5124 	/**
5125 	 * @max_interfaces:
5126 	 * maximum number of interfaces in total allowed in this group
5127 	 */
5128 	u16 max_interfaces;
5129 
5130 	/**
5131 	 * @n_limits:
5132 	 * number of limitations
5133 	 */
5134 	u8 n_limits;
5135 
5136 	/**
5137 	 * @beacon_int_infra_match:
5138 	 * In this combination, the beacon intervals between infrastructure
5139 	 * and AP types must match. This is required only in special cases.
5140 	 */
5141 	bool beacon_int_infra_match;
5142 
5143 	/**
5144 	 * @radar_detect_widths:
5145 	 * bitmap of channel widths supported for radar detection
5146 	 */
5147 	u8 radar_detect_widths;
5148 
5149 	/**
5150 	 * @radar_detect_regions:
5151 	 * bitmap of regions supported for radar detection
5152 	 */
5153 	u8 radar_detect_regions;
5154 
5155 	/**
5156 	 * @beacon_int_min_gcd:
5157 	 * This interface combination supports different beacon intervals.
5158 	 *
5159 	 * = 0
5160 	 *   all beacon intervals for different interface must be same.
5161 	 * > 0
5162 	 *   any beacon interval for the interface part of this combination AND
5163 	 *   GCD of all beacon intervals from beaconing interfaces of this
5164 	 *   combination must be greater or equal to this value.
5165 	 */
5166 	u32 beacon_int_min_gcd;
5167 };
5168 
5169 struct ieee80211_txrx_stypes {
5170 	u16 tx, rx;
5171 };
5172 
5173 /**
5174  * enum wiphy_wowlan_support_flags - WoWLAN support flags
5175  * @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
5176  *	trigger that keeps the device operating as-is and
5177  *	wakes up the host on any activity, for example a
5178  *	received packet that passed filtering; note that the
5179  *	packet should be preserved in that case
5180  * @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
5181  *	(see nl80211.h)
5182  * @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
5183  * @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
5184  * @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
5185  * @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
5186  * @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
5187  * @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
5188  * @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
5189  */
5190 enum wiphy_wowlan_support_flags {
5191 	WIPHY_WOWLAN_ANY		= BIT(0),
5192 	WIPHY_WOWLAN_MAGIC_PKT		= BIT(1),
5193 	WIPHY_WOWLAN_DISCONNECT		= BIT(2),
5194 	WIPHY_WOWLAN_SUPPORTS_GTK_REKEY	= BIT(3),
5195 	WIPHY_WOWLAN_GTK_REKEY_FAILURE	= BIT(4),
5196 	WIPHY_WOWLAN_EAP_IDENTITY_REQ	= BIT(5),
5197 	WIPHY_WOWLAN_4WAY_HANDSHAKE	= BIT(6),
5198 	WIPHY_WOWLAN_RFKILL_RELEASE	= BIT(7),
5199 	WIPHY_WOWLAN_NET_DETECT		= BIT(8),
5200 };
5201 
5202 struct wiphy_wowlan_tcp_support {
5203 	const struct nl80211_wowlan_tcp_data_token_feature *tok;
5204 	u32 data_payload_max;
5205 	u32 data_interval_max;
5206 	u32 wake_payload_max;
5207 	bool seq;
5208 };
5209 
5210 /**
5211  * struct wiphy_wowlan_support - WoWLAN support data
5212  * @flags: see &enum wiphy_wowlan_support_flags
5213  * @n_patterns: number of supported wakeup patterns
5214  *	(see nl80211.h for the pattern definition)
5215  * @pattern_max_len: maximum length of each pattern
5216  * @pattern_min_len: minimum length of each pattern
5217  * @max_pkt_offset: maximum Rx packet offset
5218  * @max_nd_match_sets: maximum number of matchsets for net-detect,
5219  *	similar, but not necessarily identical, to max_match_sets for
5220  *	scheduled scans.
5221  *	See &struct cfg80211_sched_scan_request.@match_sets for more
5222  *	details.
5223  * @tcp: TCP wakeup support information
5224  */
5225 struct wiphy_wowlan_support {
5226 	u32 flags;
5227 	int n_patterns;
5228 	int pattern_max_len;
5229 	int pattern_min_len;
5230 	int max_pkt_offset;
5231 	int max_nd_match_sets;
5232 	const struct wiphy_wowlan_tcp_support *tcp;
5233 };
5234 
5235 /**
5236  * struct wiphy_coalesce_support - coalesce support data
5237  * @n_rules: maximum number of coalesce rules
5238  * @max_delay: maximum supported coalescing delay in msecs
5239  * @n_patterns: number of supported patterns in a rule
5240  *	(see nl80211.h for the pattern definition)
5241  * @pattern_max_len: maximum length of each pattern
5242  * @pattern_min_len: minimum length of each pattern
5243  * @max_pkt_offset: maximum Rx packet offset
5244  */
5245 struct wiphy_coalesce_support {
5246 	int n_rules;
5247 	int max_delay;
5248 	int n_patterns;
5249 	int pattern_max_len;
5250 	int pattern_min_len;
5251 	int max_pkt_offset;
5252 };
5253 
5254 /**
5255  * enum wiphy_vendor_command_flags - validation flags for vendor commands
5256  * @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
5257  * @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
5258  * @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
5259  *	(must be combined with %_WDEV or %_NETDEV)
5260  */
5261 enum wiphy_vendor_command_flags {
5262 	WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
5263 	WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
5264 	WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
5265 };
5266 
5267 /**
5268  * enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
5269  *
5270  * @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
5271  * @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
5272  * @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
5273  *
5274  */
5275 enum wiphy_opmode_flag {
5276 	STA_OPMODE_MAX_BW_CHANGED	= BIT(0),
5277 	STA_OPMODE_SMPS_MODE_CHANGED	= BIT(1),
5278 	STA_OPMODE_N_SS_CHANGED		= BIT(2),
5279 };
5280 
5281 /**
5282  * struct sta_opmode_info - Station's ht/vht operation mode information
5283  * @changed: contains value from &enum wiphy_opmode_flag
5284  * @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
5285  * @bw: new max bandwidth value from &enum nl80211_chan_width of a station
5286  * @rx_nss: new rx_nss value of a station
5287  */
5288 
5289 struct sta_opmode_info {
5290 	u32 changed;
5291 	enum nl80211_smps_mode smps_mode;
5292 	enum nl80211_chan_width bw;
5293 	u8 rx_nss;
5294 };
5295 
5296 #define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
5297 
5298 /**
5299  * struct wiphy_vendor_command - vendor command definition
5300  * @info: vendor command identifying information, as used in nl80211
5301  * @flags: flags, see &enum wiphy_vendor_command_flags
5302  * @doit: callback for the operation, note that wdev is %NULL if the
5303  *	flags didn't ask for a wdev and non-%NULL otherwise; the data
5304  *	pointer may be %NULL if userspace provided no data at all
5305  * @dumpit: dump callback, for transferring bigger/multiple items. The
5306  *	@storage points to cb->args[5], ie. is preserved over the multiple
5307  *	dumpit calls.
5308  * @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
5309  *	Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
5310  *	attribute is just raw data (e.g. a firmware command).
5311  * @maxattr: highest attribute number in policy
5312  * It's recommended to not have the same sub command with both @doit and
5313  * @dumpit, so that userspace can assume certain ones are get and others
5314  * are used with dump requests.
5315  */
5316 struct wiphy_vendor_command {
5317 	struct nl80211_vendor_cmd_info info;
5318 	u32 flags;
5319 	int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5320 		    const void *data, int data_len);
5321 	int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
5322 		      struct sk_buff *skb, const void *data, int data_len,
5323 		      unsigned long *storage);
5324 	const struct nla_policy *policy;
5325 	unsigned int maxattr;
5326 };
5327 
5328 /**
5329  * struct wiphy_iftype_ext_capab - extended capabilities per interface type
5330  * @iftype: interface type
5331  * @extended_capabilities: extended capabilities supported by the driver,
5332  *	additional capabilities might be supported by userspace; these are the
5333  *	802.11 extended capabilities ("Extended Capabilities element") and are
5334  *	in the same format as in the information element. See IEEE Std
5335  *	802.11-2012 8.4.2.29 for the defined fields.
5336  * @extended_capabilities_mask: mask of the valid values
5337  * @extended_capabilities_len: length of the extended capabilities
5338  * @eml_capabilities: EML capabilities (for MLO)
5339  * @mld_capa_and_ops: MLD capabilities and operations (for MLO)
5340  */
5341 struct wiphy_iftype_ext_capab {
5342 	enum nl80211_iftype iftype;
5343 	const u8 *extended_capabilities;
5344 	const u8 *extended_capabilities_mask;
5345 	u8 extended_capabilities_len;
5346 	u16 eml_capabilities;
5347 	u16 mld_capa_and_ops;
5348 };
5349 
5350 /**
5351  * cfg80211_get_iftype_ext_capa - lookup interface type extended capability
5352  * @wiphy: the wiphy to look up from
5353  * @type: the interface type to look up
5354  *
5355  * Return: The extended capability for the given interface @type, may be %NULL
5356  */
5357 const struct wiphy_iftype_ext_capab *
5358 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
5359 
5360 /**
5361  * struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
5362  * @max_peers: maximum number of peers in a single measurement
5363  * @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
5364  * @randomize_mac_addr: can randomize MAC address for measurement
5365  * @ftm: FTM measurement data
5366  * @ftm.supported: FTM measurement is supported
5367  * @ftm.asap: ASAP-mode is supported
5368  * @ftm.non_asap: non-ASAP-mode is supported
5369  * @ftm.request_lci: can request LCI data
5370  * @ftm.request_civicloc: can request civic location data
5371  * @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
5372  * @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
5373  * @ftm.max_bursts_exponent: maximum burst exponent supported
5374  *	(set to -1 if not limited; note that setting this will necessarily
5375  *	forbid using the value 15 to let the responder pick)
5376  * @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
5377  *	not limited)
5378  * @ftm.trigger_based: trigger based ranging measurement is supported
5379  * @ftm.non_trigger_based: non trigger based ranging measurement is supported
5380  */
5381 struct cfg80211_pmsr_capabilities {
5382 	unsigned int max_peers;
5383 	u8 report_ap_tsf:1,
5384 	   randomize_mac_addr:1;
5385 
5386 	struct {
5387 		u32 preambles;
5388 		u32 bandwidths;
5389 		s8 max_bursts_exponent;
5390 		u8 max_ftms_per_burst;
5391 		u8 supported:1,
5392 		   asap:1,
5393 		   non_asap:1,
5394 		   request_lci:1,
5395 		   request_civicloc:1,
5396 		   trigger_based:1,
5397 		   non_trigger_based:1;
5398 	} ftm;
5399 };
5400 
5401 /**
5402  * struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
5403  * suites for interface types defined in @iftypes_mask. Each type in the
5404  * @iftypes_mask must be unique across all instances of iftype_akm_suites.
5405  *
5406  * @iftypes_mask: bitmask of interfaces types
5407  * @akm_suites: points to an array of supported akm suites
5408  * @n_akm_suites: number of supported AKM suites
5409  */
5410 struct wiphy_iftype_akm_suites {
5411 	u16 iftypes_mask;
5412 	const u32 *akm_suites;
5413 	int n_akm_suites;
5414 };
5415 
5416 /**
5417  * struct wiphy_radio_freq_range - wiphy frequency range
5418  * @start_freq:  start range edge frequency (kHz)
5419  * @end_freq:    end range edge frequency (kHz)
5420  */
5421 struct wiphy_radio_freq_range {
5422 	u32 start_freq;
5423 	u32 end_freq;
5424 };
5425 
5426 
5427 /**
5428  * struct wiphy_radio - physical radio of a wiphy
5429  * This structure describes a physical radio belonging to a wiphy.
5430  * It is used to describe concurrent-channel capabilities. Only one channel
5431  * can be active on the radio described by struct wiphy_radio.
5432  *
5433  * @freq_range: frequency range that the radio can operate on.
5434  * @n_freq_range: number of elements in @freq_range
5435  *
5436  * @iface_combinations: Valid interface combinations array, should not
5437  *	list single interface types.
5438  * @n_iface_combinations: number of entries in @iface_combinations array.
5439  */
5440 struct wiphy_radio {
5441 	const struct wiphy_radio_freq_range *freq_range;
5442 	int n_freq_range;
5443 
5444 	const struct ieee80211_iface_combination *iface_combinations;
5445 	int n_iface_combinations;
5446 };
5447 
5448 #define CFG80211_HW_TIMESTAMP_ALL_PEERS	0xffff
5449 
5450 /**
5451  * struct wiphy - wireless hardware description
5452  * @mtx: mutex for the data (structures) of this device
5453  * @reg_notifier: the driver's regulatory notification callback,
5454  *	note that if your driver uses wiphy_apply_custom_regulatory()
5455  *	the reg_notifier's request can be passed as NULL
5456  * @regd: the driver's regulatory domain, if one was requested via
5457  *	the regulatory_hint() API. This can be used by the driver
5458  *	on the reg_notifier() if it chooses to ignore future
5459  *	regulatory domain changes caused by other drivers.
5460  * @signal_type: signal type reported in &struct cfg80211_bss.
5461  * @cipher_suites: supported cipher suites
5462  * @n_cipher_suites: number of supported cipher suites
5463  * @akm_suites: supported AKM suites. These are the default AKMs supported if
5464  *	the supported AKMs not advertized for a specific interface type in
5465  *	iftype_akm_suites.
5466  * @n_akm_suites: number of supported AKM suites
5467  * @iftype_akm_suites: array of supported akm suites info per interface type.
5468  *	Note that the bits in @iftypes_mask inside this structure cannot
5469  *	overlap (i.e. only one occurrence of each type is allowed across all
5470  *	instances of iftype_akm_suites).
5471  * @num_iftype_akm_suites: number of interface types for which supported akm
5472  *	suites are specified separately.
5473  * @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
5474  * @retry_long: Retry limit for long frames (dot11LongRetryLimit)
5475  * @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
5476  *	-1 = fragmentation disabled, only odd values >= 256 used
5477  * @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
5478  * @_net: the network namespace this wiphy currently lives in
5479  * @perm_addr: permanent MAC address of this device
5480  * @addr_mask: If the device supports multiple MAC addresses by masking,
5481  *	set this to a mask with variable bits set to 1, e.g. if the last
5482  *	four bits are variable then set it to 00-00-00-00-00-0f. The actual
5483  *	variable bits shall be determined by the interfaces added, with
5484  *	interfaces not matching the mask being rejected to be brought up.
5485  * @n_addresses: number of addresses in @addresses.
5486  * @addresses: If the device has more than one address, set this pointer
5487  *	to a list of addresses (6 bytes each). The first one will be used
5488  *	by default for perm_addr. In this case, the mask should be set to
5489  *	all-zeroes. In this case it is assumed that the device can handle
5490  *	the same number of arbitrary MAC addresses.
5491  * @registered: protects ->resume and ->suspend sysfs callbacks against
5492  *	unregister hardware
5493  * @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
5494  *	It will be renamed automatically on wiphy renames
5495  * @dev: (virtual) struct device for this wiphy. The item in
5496  *	/sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
5497  *	(see below).
5498  * @wext: wireless extension handlers
5499  * @priv: driver private data (sized according to wiphy_new() parameter)
5500  * @interface_modes: bitmask of interfaces types valid for this wiphy,
5501  *	must be set by driver
5502  * @iface_combinations: Valid interface combinations array, should not
5503  *	list single interface types.
5504  * @n_iface_combinations: number of entries in @iface_combinations array.
5505  * @software_iftypes: bitmask of software interface types, these are not
5506  *	subject to any restrictions since they are purely managed in SW.
5507  * @flags: wiphy flags, see &enum wiphy_flags
5508  * @regulatory_flags: wiphy regulatory flags, see
5509  *	&enum ieee80211_regulatory_flags
5510  * @features: features advertised to nl80211, see &enum nl80211_feature_flags.
5511  * @ext_features: extended features advertised to nl80211, see
5512  *	&enum nl80211_ext_feature_index.
5513  * @bss_priv_size: each BSS struct has private data allocated with it,
5514  *	this variable determines its size
5515  * @max_scan_ssids: maximum number of SSIDs the device can scan for in
5516  *	any given scan
5517  * @max_sched_scan_reqs: maximum number of scheduled scan requests that
5518  *	the device can run concurrently.
5519  * @max_sched_scan_ssids: maximum number of SSIDs the device can scan
5520  *	for in any given scheduled scan
5521  * @max_match_sets: maximum number of match sets the device can handle
5522  *	when performing a scheduled scan, 0 if filtering is not
5523  *	supported.
5524  * @max_scan_ie_len: maximum length of user-controlled IEs device can
5525  *	add to probe request frames transmitted during a scan, must not
5526  *	include fixed IEs like supported rates
5527  * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
5528  *	scans
5529  * @max_sched_scan_plans: maximum number of scan plans (scan interval and number
5530  *	of iterations) for scheduled scan supported by the device.
5531  * @max_sched_scan_plan_interval: maximum interval (in seconds) for a
5532  *	single scan plan supported by the device.
5533  * @max_sched_scan_plan_iterations: maximum number of iterations for a single
5534  *	scan plan supported by the device.
5535  * @coverage_class: current coverage class
5536  * @fw_version: firmware version for ethtool reporting
5537  * @hw_version: hardware version for ethtool reporting
5538  * @max_num_pmkids: maximum number of PMKIDs supported by device
5539  * @privid: a pointer that drivers can use to identify if an arbitrary
5540  *	wiphy is theirs, e.g. in global notifiers
5541  * @bands: information about bands/channels supported by this device
5542  *
5543  * @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
5544  *	transmitted through nl80211, points to an array indexed by interface
5545  *	type
5546  *
5547  * @available_antennas_tx: bitmap of antennas which are available to be
5548  *	configured as TX antennas. Antenna configuration commands will be
5549  *	rejected unless this or @available_antennas_rx is set.
5550  *
5551  * @available_antennas_rx: bitmap of antennas which are available to be
5552  *	configured as RX antennas. Antenna configuration commands will be
5553  *	rejected unless this or @available_antennas_tx is set.
5554  *
5555  * @probe_resp_offload:
5556  *	 Bitmap of supported protocols for probe response offloading.
5557  *	 See &enum nl80211_probe_resp_offload_support_attr. Only valid
5558  *	 when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
5559  *
5560  * @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
5561  *	may request, if implemented.
5562  *
5563  * @wowlan: WoWLAN support information
5564  * @wowlan_config: current WoWLAN configuration; this should usually not be
5565  *	used since access to it is necessarily racy, use the parameter passed
5566  *	to the suspend() operation instead.
5567  *
5568  * @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
5569  * @ht_capa_mod_mask:  Specify what ht_cap values can be over-ridden.
5570  *	If null, then none can be over-ridden.
5571  * @vht_capa_mod_mask:  Specify what VHT capabilities can be over-ridden.
5572  *	If null, then none can be over-ridden.
5573  *
5574  * @wdev_list: the list of associated (virtual) interfaces; this list must
5575  *	not be modified by the driver, but can be read with RTNL/RCU protection.
5576  *
5577  * @max_acl_mac_addrs: Maximum number of MAC addresses that the device
5578  *	supports for ACL.
5579  *
5580  * @extended_capabilities: extended capabilities supported by the driver,
5581  *	additional capabilities might be supported by userspace; these are
5582  *	the 802.11 extended capabilities ("Extended Capabilities element")
5583  *	and are in the same format as in the information element. See
5584  *	802.11-2012 8.4.2.29 for the defined fields. These are the default
5585  *	extended capabilities to be used if the capabilities are not specified
5586  *	for a specific interface type in iftype_ext_capab.
5587  * @extended_capabilities_mask: mask of the valid values
5588  * @extended_capabilities_len: length of the extended capabilities
5589  * @iftype_ext_capab: array of extended capabilities per interface type
5590  * @num_iftype_ext_capab: number of interface types for which extended
5591  *	capabilities are specified separately.
5592  * @coalesce: packet coalescing support information
5593  *
5594  * @vendor_commands: array of vendor commands supported by the hardware
5595  * @n_vendor_commands: number of vendor commands
5596  * @vendor_events: array of vendor events supported by the hardware
5597  * @n_vendor_events: number of vendor events
5598  *
5599  * @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
5600  *	(including P2P GO) or 0 to indicate no such limit is advertised. The
5601  *	driver is allowed to advertise a theoretical limit that it can reach in
5602  *	some cases, but may not always reach.
5603  *
5604  * @max_num_csa_counters: Number of supported csa_counters in beacons
5605  *	and probe responses.  This value should be set if the driver
5606  *	wishes to limit the number of csa counters. Default (0) means
5607  *	infinite.
5608  * @bss_select_support: bitmask indicating the BSS selection criteria supported
5609  *	by the driver in the .connect() callback. The bit position maps to the
5610  *	attribute indices defined in &enum nl80211_bss_select_attr.
5611  *
5612  * @nan_supported_bands: bands supported by the device in NAN mode, a
5613  *	bitmap of &enum nl80211_band values.  For instance, for
5614  *	NL80211_BAND_2GHZ, bit 0 would be set
5615  *	(i.e. BIT(NL80211_BAND_2GHZ)).
5616  *
5617  * @txq_limit: configuration of internal TX queue frame limit
5618  * @txq_memory_limit: configuration internal TX queue memory limit
5619  * @txq_quantum: configuration of internal TX queue scheduler quantum
5620  *
5621  * @tx_queue_len: allow setting transmit queue len for drivers not using
5622  *	wake_tx_queue
5623  *
5624  * @support_mbssid: can HW support association with nontransmitted AP
5625  * @support_only_he_mbssid: don't parse MBSSID elements if it is not
5626  *	HE AP, in order to avoid compatibility issues.
5627  *	@support_mbssid must be set for this to have any effect.
5628  *
5629  * @pmsr_capa: peer measurement capabilities
5630  *
5631  * @tid_config_support: describes the per-TID config support that the
5632  *	device has
5633  * @tid_config_support.vif: bitmap of attributes (configurations)
5634  *	supported by the driver for each vif
5635  * @tid_config_support.peer: bitmap of attributes (configurations)
5636  *	supported by the driver for each peer
5637  * @tid_config_support.max_retry: maximum supported retry count for
5638  *	long/short retry configuration
5639  *
5640  * @max_data_retry_count: maximum supported per TID retry count for
5641  *	configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
5642  *	%NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
5643  * @sar_capa: SAR control capabilities
5644  * @rfkill: a pointer to the rfkill structure
5645  *
5646  * @mbssid_max_interfaces: maximum number of interfaces supported by the driver
5647  *	in a multiple BSSID set. This field must be set to a non-zero value
5648  *	by the driver to advertise MBSSID support.
5649  * @ema_max_profile_periodicity: maximum profile periodicity supported by
5650  *	the driver. Setting this field to a non-zero value indicates that the
5651  *	driver supports enhanced multi-BSSID advertisements (EMA AP).
5652  * @max_num_akm_suites: maximum number of AKM suites allowed for
5653  *	configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
5654  *	%NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
5655  *	driver. If set by driver minimum allowed value is
5656  *	NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
5657  *	legacy userspace and maximum allowed value is
5658  *	CFG80211_MAX_NUM_AKM_SUITES.
5659  *
5660  * @hw_timestamp_max_peers: maximum number of peers that the driver supports
5661  *	enabling HW timestamping for concurrently. Setting this field to a
5662  *	non-zero value indicates that the driver supports HW timestamping.
5663  *	A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
5664  *	supports enabling HW timestamping for all peers (i.e. no need to
5665  *	specify a mac address).
5666  *
5667  * @radio: radios belonging to this wiphy
5668  * @n_radio: number of radios
5669  */
5670 struct wiphy {
5671 	struct mutex mtx;
5672 
5673 	/* assign these fields before you register the wiphy */
5674 
5675 	u8 perm_addr[ETH_ALEN];
5676 	u8 addr_mask[ETH_ALEN];
5677 
5678 	struct mac_address *addresses;
5679 
5680 	const struct ieee80211_txrx_stypes *mgmt_stypes;
5681 
5682 	const struct ieee80211_iface_combination *iface_combinations;
5683 	int n_iface_combinations;
5684 	u16 software_iftypes;
5685 
5686 	u16 n_addresses;
5687 
5688 	/* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
5689 	u16 interface_modes;
5690 
5691 	u16 max_acl_mac_addrs;
5692 
5693 	u32 flags, regulatory_flags, features;
5694 	u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
5695 
5696 	u32 ap_sme_capa;
5697 
5698 	enum cfg80211_signal_type signal_type;
5699 
5700 	int bss_priv_size;
5701 	u8 max_scan_ssids;
5702 	u8 max_sched_scan_reqs;
5703 	u8 max_sched_scan_ssids;
5704 	u8 max_match_sets;
5705 	u16 max_scan_ie_len;
5706 	u16 max_sched_scan_ie_len;
5707 	u32 max_sched_scan_plans;
5708 	u32 max_sched_scan_plan_interval;
5709 	u32 max_sched_scan_plan_iterations;
5710 
5711 	int n_cipher_suites;
5712 	const u32 *cipher_suites;
5713 
5714 	int n_akm_suites;
5715 	const u32 *akm_suites;
5716 
5717 	const struct wiphy_iftype_akm_suites *iftype_akm_suites;
5718 	unsigned int num_iftype_akm_suites;
5719 
5720 	u8 retry_short;
5721 	u8 retry_long;
5722 	u32 frag_threshold;
5723 	u32 rts_threshold;
5724 	u8 coverage_class;
5725 
5726 	char fw_version[ETHTOOL_FWVERS_LEN];
5727 	u32 hw_version;
5728 
5729 #ifdef CONFIG_PM
5730 	const struct wiphy_wowlan_support *wowlan;
5731 	struct cfg80211_wowlan *wowlan_config;
5732 #endif
5733 
5734 	u16 max_remain_on_channel_duration;
5735 
5736 	u8 max_num_pmkids;
5737 
5738 	u32 available_antennas_tx;
5739 	u32 available_antennas_rx;
5740 
5741 	u32 probe_resp_offload;
5742 
5743 	const u8 *extended_capabilities, *extended_capabilities_mask;
5744 	u8 extended_capabilities_len;
5745 
5746 	const struct wiphy_iftype_ext_capab *iftype_ext_capab;
5747 	unsigned int num_iftype_ext_capab;
5748 
5749 	const void *privid;
5750 
5751 	struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
5752 
5753 	void (*reg_notifier)(struct wiphy *wiphy,
5754 			     struct regulatory_request *request);
5755 
5756 	/* fields below are read-only, assigned by cfg80211 */
5757 
5758 	const struct ieee80211_regdomain __rcu *regd;
5759 
5760 	struct device dev;
5761 
5762 	bool registered;
5763 
5764 	struct dentry *debugfsdir;
5765 
5766 	const struct ieee80211_ht_cap *ht_capa_mod_mask;
5767 	const struct ieee80211_vht_cap *vht_capa_mod_mask;
5768 
5769 	struct list_head wdev_list;
5770 
5771 	possible_net_t _net;
5772 
5773 #ifdef CONFIG_CFG80211_WEXT
5774 	const struct iw_handler_def *wext;
5775 #endif
5776 
5777 	const struct wiphy_coalesce_support *coalesce;
5778 
5779 	const struct wiphy_vendor_command *vendor_commands;
5780 	const struct nl80211_vendor_cmd_info *vendor_events;
5781 	int n_vendor_commands, n_vendor_events;
5782 
5783 	u16 max_ap_assoc_sta;
5784 
5785 	u8 max_num_csa_counters;
5786 
5787 	u32 bss_select_support;
5788 
5789 	u8 nan_supported_bands;
5790 
5791 	u32 txq_limit;
5792 	u32 txq_memory_limit;
5793 	u32 txq_quantum;
5794 
5795 	unsigned long tx_queue_len;
5796 
5797 	u8 support_mbssid:1,
5798 	   support_only_he_mbssid:1;
5799 
5800 	const struct cfg80211_pmsr_capabilities *pmsr_capa;
5801 
5802 	struct {
5803 		u64 peer, vif;
5804 		u8 max_retry;
5805 	} tid_config_support;
5806 
5807 	u8 max_data_retry_count;
5808 
5809 	const struct cfg80211_sar_capa *sar_capa;
5810 
5811 	struct rfkill *rfkill;
5812 
5813 	u8 mbssid_max_interfaces;
5814 	u8 ema_max_profile_periodicity;
5815 	u16 max_num_akm_suites;
5816 
5817 	u16 hw_timestamp_max_peers;
5818 
5819 	int n_radio;
5820 	const struct wiphy_radio *radio;
5821 
5822 	char priv[] __aligned(NETDEV_ALIGN);
5823 };
5824 
wiphy_net(struct wiphy * wiphy)5825 static inline struct net *wiphy_net(struct wiphy *wiphy)
5826 {
5827 	return read_pnet(&wiphy->_net);
5828 }
5829 
wiphy_net_set(struct wiphy * wiphy,struct net * net)5830 static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
5831 {
5832 	write_pnet(&wiphy->_net, net);
5833 }
5834 
5835 /**
5836  * wiphy_priv - return priv from wiphy
5837  *
5838  * @wiphy: the wiphy whose priv pointer to return
5839  * Return: The priv of @wiphy.
5840  */
wiphy_priv(struct wiphy * wiphy)5841 static inline void *wiphy_priv(struct wiphy *wiphy)
5842 {
5843 	BUG_ON(!wiphy);
5844 	return &wiphy->priv;
5845 }
5846 
5847 /**
5848  * priv_to_wiphy - return the wiphy containing the priv
5849  *
5850  * @priv: a pointer previously returned by wiphy_priv
5851  * Return: The wiphy of @priv.
5852  */
priv_to_wiphy(void * priv)5853 static inline struct wiphy *priv_to_wiphy(void *priv)
5854 {
5855 	BUG_ON(!priv);
5856 	return container_of(priv, struct wiphy, priv);
5857 }
5858 
5859 /**
5860  * set_wiphy_dev - set device pointer for wiphy
5861  *
5862  * @wiphy: The wiphy whose device to bind
5863  * @dev: The device to parent it to
5864  */
set_wiphy_dev(struct wiphy * wiphy,struct device * dev)5865 static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
5866 {
5867 	wiphy->dev.parent = dev;
5868 }
5869 
5870 /**
5871  * wiphy_dev - get wiphy dev pointer
5872  *
5873  * @wiphy: The wiphy whose device struct to look up
5874  * Return: The dev of @wiphy.
5875  */
wiphy_dev(struct wiphy * wiphy)5876 static inline struct device *wiphy_dev(struct wiphy *wiphy)
5877 {
5878 	return wiphy->dev.parent;
5879 }
5880 
5881 /**
5882  * wiphy_name - get wiphy name
5883  *
5884  * @wiphy: The wiphy whose name to return
5885  * Return: The name of @wiphy.
5886  */
wiphy_name(const struct wiphy * wiphy)5887 static inline const char *wiphy_name(const struct wiphy *wiphy)
5888 {
5889 	return dev_name(&wiphy->dev);
5890 }
5891 
5892 /**
5893  * wiphy_new_nm - create a new wiphy for use with cfg80211
5894  *
5895  * @ops: The configuration operations for this device
5896  * @sizeof_priv: The size of the private area to allocate
5897  * @requested_name: Request a particular name.
5898  *	NULL is valid value, and means use the default phy%d naming.
5899  *
5900  * Create a new wiphy and associate the given operations with it.
5901  * @sizeof_priv bytes are allocated for private use.
5902  *
5903  * Return: A pointer to the new wiphy. This pointer must be
5904  * assigned to each netdev's ieee80211_ptr for proper operation.
5905  */
5906 struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
5907 			   const char *requested_name);
5908 
5909 /**
5910  * wiphy_new - create a new wiphy for use with cfg80211
5911  *
5912  * @ops: The configuration operations for this device
5913  * @sizeof_priv: The size of the private area to allocate
5914  *
5915  * Create a new wiphy and associate the given operations with it.
5916  * @sizeof_priv bytes are allocated for private use.
5917  *
5918  * Return: A pointer to the new wiphy. This pointer must be
5919  * assigned to each netdev's ieee80211_ptr for proper operation.
5920  */
wiphy_new(const struct cfg80211_ops * ops,int sizeof_priv)5921 static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
5922 				      int sizeof_priv)
5923 {
5924 	return wiphy_new_nm(ops, sizeof_priv, NULL);
5925 }
5926 
5927 /**
5928  * wiphy_register - register a wiphy with cfg80211
5929  *
5930  * @wiphy: The wiphy to register.
5931  *
5932  * Return: A non-negative wiphy index or a negative error code.
5933  */
5934 int wiphy_register(struct wiphy *wiphy);
5935 
5936 /* this is a define for better error reporting (file/line) */
5937 #define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
5938 
5939 /**
5940  * rcu_dereference_wiphy - rcu_dereference with debug checking
5941  * @wiphy: the wiphy to check the locking on
5942  * @p: The pointer to read, prior to dereferencing
5943  *
5944  * Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
5945  * or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
5946  */
5947 #define rcu_dereference_wiphy(wiphy, p)				\
5948         rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
5949 
5950 /**
5951  * wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
5952  * @wiphy: the wiphy to check the locking on
5953  * @p: The pointer to read, prior to dereferencing
5954  *
5955  * Return the value of the specified RCU-protected pointer, but omit the
5956  * READ_ONCE(), because caller holds the wiphy mutex used for updates.
5957  */
5958 #define wiphy_dereference(wiphy, p)				\
5959         rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
5960 
5961 /**
5962  * get_wiphy_regdom - get custom regdomain for the given wiphy
5963  * @wiphy: the wiphy to get the regdomain from
5964  *
5965  * Context: Requires any of RTNL, wiphy mutex or RCU protection.
5966  *
5967  * Return: pointer to the regulatory domain associated with the wiphy
5968  */
5969 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
5970 
5971 /**
5972  * wiphy_unregister - deregister a wiphy from cfg80211
5973  *
5974  * @wiphy: The wiphy to unregister.
5975  *
5976  * After this call, no more requests can be made with this priv
5977  * pointer, but the call may sleep to wait for an outstanding
5978  * request that is being handled.
5979  */
5980 void wiphy_unregister(struct wiphy *wiphy);
5981 
5982 /**
5983  * wiphy_free - free wiphy
5984  *
5985  * @wiphy: The wiphy to free
5986  */
5987 void wiphy_free(struct wiphy *wiphy);
5988 
5989 /* internal structs */
5990 struct cfg80211_conn;
5991 struct cfg80211_internal_bss;
5992 struct cfg80211_cached_keys;
5993 struct cfg80211_cqm_config;
5994 
5995 /**
5996  * wiphy_lock - lock the wiphy
5997  * @wiphy: the wiphy to lock
5998  *
5999  * This is needed around registering and unregistering netdevs that
6000  * aren't created through cfg80211 calls, since that requires locking
6001  * in cfg80211 when the notifiers is called, but that cannot
6002  * differentiate which way it's called.
6003  *
6004  * It can also be used by drivers for their own purposes.
6005  *
6006  * When cfg80211 ops are called, the wiphy is already locked.
6007  *
6008  * Note that this makes sure that no workers that have been queued
6009  * with wiphy_queue_work() are running.
6010  */
wiphy_lock(struct wiphy * wiphy)6011 static inline void wiphy_lock(struct wiphy *wiphy)
6012 	__acquires(&wiphy->mtx)
6013 {
6014 	mutex_lock(&wiphy->mtx);
6015 	__acquire(&wiphy->mtx);
6016 }
6017 
6018 /**
6019  * wiphy_unlock - unlock the wiphy again
6020  * @wiphy: the wiphy to unlock
6021  */
wiphy_unlock(struct wiphy * wiphy)6022 static inline void wiphy_unlock(struct wiphy *wiphy)
6023 	__releases(&wiphy->mtx)
6024 {
6025 	__release(&wiphy->mtx);
6026 	mutex_unlock(&wiphy->mtx);
6027 }
6028 
6029 struct wiphy_work;
6030 typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
6031 
6032 struct wiphy_work {
6033 	struct list_head entry;
6034 	wiphy_work_func_t func;
6035 };
6036 
wiphy_work_init(struct wiphy_work * work,wiphy_work_func_t func)6037 static inline void wiphy_work_init(struct wiphy_work *work,
6038 				   wiphy_work_func_t func)
6039 {
6040 	INIT_LIST_HEAD(&work->entry);
6041 	work->func = func;
6042 }
6043 
6044 /**
6045  * wiphy_work_queue - queue work for the wiphy
6046  * @wiphy: the wiphy to queue for
6047  * @work: the work item
6048  *
6049  * This is useful for work that must be done asynchronously, and work
6050  * queued here has the special property that the wiphy mutex will be
6051  * held as if wiphy_lock() was called, and that it cannot be running
6052  * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6053  * use just cancel_work() instead of cancel_work_sync(), it requires
6054  * being in a section protected by wiphy_lock().
6055  */
6056 void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
6057 
6058 /**
6059  * wiphy_work_cancel - cancel previously queued work
6060  * @wiphy: the wiphy, for debug purposes
6061  * @work: the work to cancel
6062  *
6063  * Cancel the work *without* waiting for it, this assumes being
6064  * called under the wiphy mutex acquired by wiphy_lock().
6065  */
6066 void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
6067 
6068 /**
6069  * wiphy_work_flush - flush previously queued work
6070  * @wiphy: the wiphy, for debug purposes
6071  * @work: the work to flush, this can be %NULL to flush all work
6072  *
6073  * Flush the work (i.e. run it if pending). This must be called
6074  * under the wiphy mutex acquired by wiphy_lock().
6075  */
6076 void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
6077 
6078 struct wiphy_delayed_work {
6079 	struct wiphy_work work;
6080 	struct wiphy *wiphy;
6081 	struct timer_list timer;
6082 };
6083 
6084 void wiphy_delayed_work_timer(struct timer_list *t);
6085 
wiphy_delayed_work_init(struct wiphy_delayed_work * dwork,wiphy_work_func_t func)6086 static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
6087 					   wiphy_work_func_t func)
6088 {
6089 	timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
6090 	wiphy_work_init(&dwork->work, func);
6091 }
6092 
6093 /**
6094  * wiphy_delayed_work_queue - queue delayed work for the wiphy
6095  * @wiphy: the wiphy to queue for
6096  * @dwork: the delayable worker
6097  * @delay: number of jiffies to wait before queueing
6098  *
6099  * This is useful for work that must be done asynchronously, and work
6100  * queued here has the special property that the wiphy mutex will be
6101  * held as if wiphy_lock() was called, and that it cannot be running
6102  * after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
6103  * use just cancel_work() instead of cancel_work_sync(), it requires
6104  * being in a section protected by wiphy_lock().
6105  */
6106 void wiphy_delayed_work_queue(struct wiphy *wiphy,
6107 			      struct wiphy_delayed_work *dwork,
6108 			      unsigned long delay);
6109 
6110 /**
6111  * wiphy_delayed_work_cancel - cancel previously queued delayed work
6112  * @wiphy: the wiphy, for debug purposes
6113  * @dwork: the delayed work to cancel
6114  *
6115  * Cancel the work *without* waiting for it, this assumes being
6116  * called under the wiphy mutex acquired by wiphy_lock().
6117  */
6118 void wiphy_delayed_work_cancel(struct wiphy *wiphy,
6119 			       struct wiphy_delayed_work *dwork);
6120 
6121 /**
6122  * wiphy_delayed_work_flush - flush previously queued delayed work
6123  * @wiphy: the wiphy, for debug purposes
6124  * @dwork: the delayed work to flush
6125  *
6126  * Flush the work (i.e. run it if pending). This must be called
6127  * under the wiphy mutex acquired by wiphy_lock().
6128  */
6129 void wiphy_delayed_work_flush(struct wiphy *wiphy,
6130 			      struct wiphy_delayed_work *dwork);
6131 
6132 /**
6133  * wiphy_delayed_work_pending - Find out whether a wiphy delayable
6134  * work item is currently pending.
6135  *
6136  * @wiphy: the wiphy, for debug purposes
6137  * @dwork: the delayed work in question
6138  *
6139  * Return: true if timer is pending, false otherwise
6140  *
6141  * How wiphy_delayed_work_queue() works is by setting a timer which
6142  * when it expires calls wiphy_work_queue() to queue the wiphy work.
6143  * Because wiphy_delayed_work_queue() uses mod_timer(), if it is
6144  * called twice and the second call happens before the first call
6145  * deadline, the work will rescheduled for the second deadline and
6146  * won't run before that.
6147  *
6148  * wiphy_delayed_work_pending() can be used to detect if calling
6149  * wiphy_work_delayed_work_queue() would start a new work schedule
6150  * or delayed a previous one. As seen below it cannot be used to
6151  * detect precisely if the work has finished to execute nor if it
6152  * is currently executing.
6153  *
6154  *      CPU0                                CPU1
6155  * wiphy_delayed_work_queue(wk)
6156  *  mod_timer(wk->timer)
6157  *                                     wiphy_delayed_work_pending(wk) -> true
6158  *
6159  * [...]
6160  * expire_timers(wk->timer)
6161  *  detach_timer(wk->timer)
6162  *                                     wiphy_delayed_work_pending(wk) -> false
6163  *  wk->timer->function()                          |
6164  *   wiphy_work_queue(wk)                          | delayed work pending
6165  *    list_add_tail()                              | returns false but
6166  *    queue_work(cfg80211_wiphy_work)              | wk->func() has not
6167  *                                                 | been run yet
6168  * [...]                                           |
6169  *  cfg80211_wiphy_work()                          |
6170  *   wk->func()                                    V
6171  *
6172  */
6173 bool wiphy_delayed_work_pending(struct wiphy *wiphy,
6174 				struct wiphy_delayed_work *dwork);
6175 
6176 /**
6177  * enum ieee80211_ap_reg_power - regulatory power for an Access Point
6178  *
6179  * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
6180  * @IEEE80211_REG_LPI_AP: Indoor Access Point
6181  * @IEEE80211_REG_SP_AP: Standard power Access Point
6182  * @IEEE80211_REG_VLP_AP: Very low power Access Point
6183  */
6184 enum ieee80211_ap_reg_power {
6185 	IEEE80211_REG_UNSET_AP,
6186 	IEEE80211_REG_LPI_AP,
6187 	IEEE80211_REG_SP_AP,
6188 	IEEE80211_REG_VLP_AP,
6189 };
6190 
6191 /**
6192  * struct wireless_dev - wireless device state
6193  *
6194  * For netdevs, this structure must be allocated by the driver
6195  * that uses the ieee80211_ptr field in struct net_device (this
6196  * is intentional so it can be allocated along with the netdev.)
6197  * It need not be registered then as netdev registration will
6198  * be intercepted by cfg80211 to see the new wireless device,
6199  * however, drivers must lock the wiphy before registering or
6200  * unregistering netdevs if they pre-create any netdevs (in ops
6201  * called from cfg80211, the wiphy is already locked.)
6202  *
6203  * For non-netdev uses, it must also be allocated by the driver
6204  * in response to the cfg80211 callbacks that require it, as
6205  * there's no netdev registration in that case it may not be
6206  * allocated outside of callback operations that return it.
6207  *
6208  * @wiphy: pointer to hardware description
6209  * @iftype: interface type
6210  * @registered: is this wdev already registered with cfg80211
6211  * @registering: indicates we're doing registration under wiphy lock
6212  *	for the notifier
6213  * @list: (private) Used to collect the interfaces
6214  * @netdev: (private) Used to reference back to the netdev, may be %NULL
6215  * @identifier: (private) Identifier used in nl80211 to identify this
6216  *	wireless device if it has no netdev
6217  * @u: union containing data specific to @iftype
6218  * @connected: indicates if connected or not (STA mode)
6219  * @wext: (private) Used by the internal wireless extensions compat code
6220  * @wext.ibss: (private) IBSS data part of wext handling
6221  * @wext.connect: (private) connection handling data
6222  * @wext.keys: (private) (WEP) key data
6223  * @wext.ie: (private) extra elements for association
6224  * @wext.ie_len: (private) length of extra elements
6225  * @wext.bssid: (private) selected network BSSID
6226  * @wext.ssid: (private) selected network SSID
6227  * @wext.default_key: (private) selected default key index
6228  * @wext.default_mgmt_key: (private) selected default management key index
6229  * @wext.prev_bssid: (private) previous BSSID for reassociation
6230  * @wext.prev_bssid_valid: (private) previous BSSID validity
6231  * @use_4addr: indicates 4addr mode is used on this interface, must be
6232  *	set by driver (if supported) on add_interface BEFORE registering the
6233  *	netdev and may otherwise be used by driver read-only, will be update
6234  *	by cfg80211 on change_interface
6235  * @mgmt_registrations: list of registrations for management frames
6236  * @mgmt_registrations_need_update: mgmt registrations were updated,
6237  *	need to propagate the update to the driver
6238  * @address: The address for this device, valid only if @netdev is %NULL
6239  * @is_running: true if this is a non-netdev device that has been started, e.g.
6240  *	the P2P Device.
6241  * @ps: powersave mode is enabled
6242  * @ps_timeout: dynamic powersave timeout
6243  * @ap_unexpected_nlportid: (private) netlink port ID of application
6244  *	registered for unexpected class 3 frames (AP mode)
6245  * @conn: (private) cfg80211 software SME connection state machine data
6246  * @connect_keys: (private) keys to set after connection is established
6247  * @conn_bss_type: connecting/connected BSS type
6248  * @conn_owner_nlportid: (private) connection owner socket port ID
6249  * @disconnect_wk: (private) auto-disconnect work
6250  * @disconnect_bssid: (private) the BSSID to use for auto-disconnect
6251  * @event_list: (private) list for internal event processing
6252  * @event_lock: (private) lock for event list
6253  * @owner_nlportid: (private) owner socket port ID
6254  * @nl_owner_dead: (private) owner socket went away
6255  * @cqm_rssi_work: (private) CQM RSSI reporting work
6256  * @cqm_config: (private) nl80211 RSSI monitor state
6257  * @pmsr_list: (private) peer measurement requests
6258  * @pmsr_lock: (private) peer measurements requests/results lock
6259  * @pmsr_free_wk: (private) peer measurements cleanup work
6260  * @unprot_beacon_reported: (private) timestamp of last
6261  *	unprotected beacon report
6262  * @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
6263  *	@ap and @client for each link
6264  * @links.cac_started: true if DFS channel availability check has been
6265  *	started
6266  * @links.cac_start_time: timestamp (jiffies) when the dfs state was
6267  *	entered.
6268  * @links.cac_time_ms: CAC time in ms
6269  * @valid_links: bitmap describing what elements of @links are valid
6270  */
6271 struct wireless_dev {
6272 	struct wiphy *wiphy;
6273 	enum nl80211_iftype iftype;
6274 
6275 	/* the remainder of this struct should be private to cfg80211 */
6276 	struct list_head list;
6277 	struct net_device *netdev;
6278 
6279 	u32 identifier;
6280 
6281 	struct list_head mgmt_registrations;
6282 	u8 mgmt_registrations_need_update:1;
6283 
6284 	bool use_4addr, is_running, registered, registering;
6285 
6286 	u8 address[ETH_ALEN] __aligned(sizeof(u16));
6287 
6288 	/* currently used for IBSS and SME - might be rearranged later */
6289 	struct cfg80211_conn *conn;
6290 	struct cfg80211_cached_keys *connect_keys;
6291 	enum ieee80211_bss_type conn_bss_type;
6292 	u32 conn_owner_nlportid;
6293 
6294 	struct work_struct disconnect_wk;
6295 	u8 disconnect_bssid[ETH_ALEN];
6296 
6297 	struct list_head event_list;
6298 	spinlock_t event_lock;
6299 
6300 	u8 connected:1;
6301 
6302 	bool ps;
6303 	int ps_timeout;
6304 
6305 	u32 ap_unexpected_nlportid;
6306 
6307 	u32 owner_nlportid;
6308 	bool nl_owner_dead;
6309 
6310 #ifdef CONFIG_CFG80211_WEXT
6311 	/* wext data */
6312 	struct {
6313 		struct cfg80211_ibss_params ibss;
6314 		struct cfg80211_connect_params connect;
6315 		struct cfg80211_cached_keys *keys;
6316 		const u8 *ie;
6317 		size_t ie_len;
6318 		u8 bssid[ETH_ALEN];
6319 		u8 prev_bssid[ETH_ALEN];
6320 		u8 ssid[IEEE80211_MAX_SSID_LEN];
6321 		s8 default_key, default_mgmt_key;
6322 		bool prev_bssid_valid;
6323 	} wext;
6324 #endif
6325 
6326 	struct wiphy_work cqm_rssi_work;
6327 	struct cfg80211_cqm_config __rcu *cqm_config;
6328 
6329 	struct list_head pmsr_list;
6330 	spinlock_t pmsr_lock;
6331 	struct work_struct pmsr_free_wk;
6332 
6333 	unsigned long unprot_beacon_reported;
6334 
6335 	union {
6336 		struct {
6337 			u8 connected_addr[ETH_ALEN] __aligned(2);
6338 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6339 			u8 ssid_len;
6340 		} client;
6341 		struct {
6342 			int beacon_interval;
6343 			struct cfg80211_chan_def preset_chandef;
6344 			struct cfg80211_chan_def chandef;
6345 			u8 id[IEEE80211_MAX_MESH_ID_LEN];
6346 			u8 id_len, id_up_len;
6347 		} mesh;
6348 		struct {
6349 			struct cfg80211_chan_def preset_chandef;
6350 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6351 			u8 ssid_len;
6352 		} ap;
6353 		struct {
6354 			struct cfg80211_internal_bss *current_bss;
6355 			struct cfg80211_chan_def chandef;
6356 			int beacon_interval;
6357 			u8 ssid[IEEE80211_MAX_SSID_LEN];
6358 			u8 ssid_len;
6359 		} ibss;
6360 		struct {
6361 			struct cfg80211_chan_def chandef;
6362 		} ocb;
6363 	} u;
6364 
6365 	struct {
6366 		u8 addr[ETH_ALEN] __aligned(2);
6367 		union {
6368 			struct {
6369 				unsigned int beacon_interval;
6370 				struct cfg80211_chan_def chandef;
6371 			} ap;
6372 			struct {
6373 				struct cfg80211_internal_bss *current_bss;
6374 			} client;
6375 		};
6376 
6377 		bool cac_started;
6378 		unsigned long cac_start_time;
6379 		unsigned int cac_time_ms;
6380 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
6381 	u16 valid_links;
6382 };
6383 
wdev_address(struct wireless_dev * wdev)6384 static inline const u8 *wdev_address(struct wireless_dev *wdev)
6385 {
6386 	if (wdev->netdev)
6387 		return wdev->netdev->dev_addr;
6388 	return wdev->address;
6389 }
6390 
wdev_running(struct wireless_dev * wdev)6391 static inline bool wdev_running(struct wireless_dev *wdev)
6392 {
6393 	if (wdev->netdev)
6394 		return netif_running(wdev->netdev);
6395 	return wdev->is_running;
6396 }
6397 
6398 /**
6399  * wdev_priv - return wiphy priv from wireless_dev
6400  *
6401  * @wdev: The wireless device whose wiphy's priv pointer to return
6402  * Return: The wiphy priv of @wdev.
6403  */
wdev_priv(struct wireless_dev * wdev)6404 static inline void *wdev_priv(struct wireless_dev *wdev)
6405 {
6406 	BUG_ON(!wdev);
6407 	return wiphy_priv(wdev->wiphy);
6408 }
6409 
6410 /**
6411  * wdev_chandef - return chandef pointer from wireless_dev
6412  * @wdev: the wdev
6413  * @link_id: the link ID for MLO
6414  *
6415  * Return: The chandef depending on the mode, or %NULL.
6416  */
6417 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
6418 				       unsigned int link_id);
6419 
WARN_INVALID_LINK_ID(struct wireless_dev * wdev,unsigned int link_id)6420 static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
6421 					unsigned int link_id)
6422 {
6423 	WARN_ON(link_id && !wdev->valid_links);
6424 	WARN_ON(wdev->valid_links &&
6425 		!(wdev->valid_links & BIT(link_id)));
6426 }
6427 
6428 #define for_each_valid_link(link_info, link_id)			\
6429 	for (link_id = 0;					\
6430 	     link_id < ((link_info)->valid_links ?		\
6431 			ARRAY_SIZE((link_info)->links) : 1);	\
6432 	     link_id++)						\
6433 		if (!(link_info)->valid_links ||		\
6434 		    ((link_info)->valid_links & BIT(link_id)))
6435 
6436 /**
6437  * DOC: Utility functions
6438  *
6439  * cfg80211 offers a number of utility functions that can be useful.
6440  */
6441 
6442 /**
6443  * ieee80211_channel_equal - compare two struct ieee80211_channel
6444  *
6445  * @a: 1st struct ieee80211_channel
6446  * @b: 2nd struct ieee80211_channel
6447  * Return: true if center frequency of @a == @b
6448  */
6449 static inline bool
ieee80211_channel_equal(struct ieee80211_channel * a,struct ieee80211_channel * b)6450 ieee80211_channel_equal(struct ieee80211_channel *a,
6451 			struct ieee80211_channel *b)
6452 {
6453 	return (a->center_freq == b->center_freq &&
6454 		a->freq_offset == b->freq_offset);
6455 }
6456 
6457 /**
6458  * ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
6459  * @chan: struct ieee80211_channel to convert
6460  * Return: The corresponding frequency (in KHz)
6461  */
6462 static inline u32
ieee80211_channel_to_khz(const struct ieee80211_channel * chan)6463 ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
6464 {
6465 	return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
6466 }
6467 
6468 /**
6469  * ieee80211_s1g_channel_width - get allowed channel width from @chan
6470  *
6471  * Only allowed for band NL80211_BAND_S1GHZ
6472  * @chan: channel
6473  * Return: The allowed channel width for this center_freq
6474  */
6475 enum nl80211_chan_width
6476 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan);
6477 
6478 /**
6479  * ieee80211_channel_to_freq_khz - convert channel number to frequency
6480  * @chan: channel number
6481  * @band: band, necessary due to channel number overlap
6482  * Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
6483  */
6484 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
6485 
6486 /**
6487  * ieee80211_channel_to_frequency - convert channel number to frequency
6488  * @chan: channel number
6489  * @band: band, necessary due to channel number overlap
6490  * Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
6491  */
6492 static inline int
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)6493 ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
6494 {
6495 	return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
6496 }
6497 
6498 /**
6499  * ieee80211_freq_khz_to_channel - convert frequency to channel number
6500  * @freq: center frequency in KHz
6501  * Return: The corresponding channel, or 0 if the conversion failed.
6502  */
6503 int ieee80211_freq_khz_to_channel(u32 freq);
6504 
6505 /**
6506  * ieee80211_frequency_to_channel - convert frequency to channel number
6507  * @freq: center frequency in MHz
6508  * Return: The corresponding channel, or 0 if the conversion failed.
6509  */
6510 static inline int
ieee80211_frequency_to_channel(int freq)6511 ieee80211_frequency_to_channel(int freq)
6512 {
6513 	return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
6514 }
6515 
6516 /**
6517  * ieee80211_get_channel_khz - get channel struct from wiphy for specified
6518  * frequency
6519  * @wiphy: the struct wiphy to get the channel for
6520  * @freq: the center frequency (in KHz) of the channel
6521  * Return: The channel struct from @wiphy at @freq.
6522  */
6523 struct ieee80211_channel *
6524 ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
6525 
6526 /**
6527  * ieee80211_get_channel - get channel struct from wiphy for specified frequency
6528  *
6529  * @wiphy: the struct wiphy to get the channel for
6530  * @freq: the center frequency (in MHz) of the channel
6531  * Return: The channel struct from @wiphy at @freq.
6532  */
6533 static inline struct ieee80211_channel *
ieee80211_get_channel(struct wiphy * wiphy,int freq)6534 ieee80211_get_channel(struct wiphy *wiphy, int freq)
6535 {
6536 	return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
6537 }
6538 
6539 /**
6540  * cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
6541  * @chan: control channel to check
6542  *
6543  * The Preferred Scanning Channels (PSC) are defined in
6544  * Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
6545  *
6546  * Return: %true if channel is a PSC, %false otherwise
6547  */
cfg80211_channel_is_psc(struct ieee80211_channel * chan)6548 static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
6549 {
6550 	if (chan->band != NL80211_BAND_6GHZ)
6551 		return false;
6552 
6553 	return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5;
6554 }
6555 
6556 /**
6557  * cfg80211_radio_chandef_valid - Check if the radio supports the chandef
6558  *
6559  * @radio: wiphy radio
6560  * @chandef: chandef for current channel
6561  *
6562  * Return: whether or not the given chandef is valid for the given radio
6563  */
6564 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
6565 				  const struct cfg80211_chan_def *chandef);
6566 
6567 /**
6568  * ieee80211_get_response_rate - get basic rate for a given rate
6569  *
6570  * @sband: the band to look for rates in
6571  * @basic_rates: bitmap of basic rates
6572  * @bitrate: the bitrate for which to find the basic rate
6573  *
6574  * Return: The basic rate corresponding to a given bitrate, that
6575  * is the next lower bitrate contained in the basic rate map,
6576  * which is, for this function, given as a bitmap of indices of
6577  * rates in the band's bitrate table.
6578  */
6579 const struct ieee80211_rate *
6580 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
6581 			    u32 basic_rates, int bitrate);
6582 
6583 /**
6584  * ieee80211_mandatory_rates - get mandatory rates for a given band
6585  * @sband: the band to look for rates in
6586  *
6587  * Return: a bitmap of the mandatory rates for the given band, bits
6588  * are set according to the rate position in the bitrates array.
6589  */
6590 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband);
6591 
6592 /*
6593  * Radiotap parsing functions -- for controlled injection support
6594  *
6595  * Implemented in net/wireless/radiotap.c
6596  * Documentation in Documentation/networking/radiotap-headers.rst
6597  */
6598 
6599 struct radiotap_align_size {
6600 	uint8_t align:4, size:4;
6601 };
6602 
6603 struct ieee80211_radiotap_namespace {
6604 	const struct radiotap_align_size *align_size;
6605 	int n_bits;
6606 	uint32_t oui;
6607 	uint8_t subns;
6608 };
6609 
6610 struct ieee80211_radiotap_vendor_namespaces {
6611 	const struct ieee80211_radiotap_namespace *ns;
6612 	int n_ns;
6613 };
6614 
6615 /**
6616  * struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
6617  * @this_arg_index: index of current arg, valid after each successful call
6618  *	to ieee80211_radiotap_iterator_next()
6619  * @this_arg: pointer to current radiotap arg; it is valid after each
6620  *	call to ieee80211_radiotap_iterator_next() but also after
6621  *	ieee80211_radiotap_iterator_init() where it will point to
6622  *	the beginning of the actual data portion
6623  * @this_arg_size: length of the current arg, for convenience
6624  * @current_namespace: pointer to the current namespace definition
6625  *	(or internally %NULL if the current namespace is unknown)
6626  * @is_radiotap_ns: indicates whether the current namespace is the default
6627  *	radiotap namespace or not
6628  *
6629  * @_rtheader: pointer to the radiotap header we are walking through
6630  * @_max_length: length of radiotap header in cpu byte ordering
6631  * @_arg_index: next argument index
6632  * @_arg: next argument pointer
6633  * @_next_bitmap: internal pointer to next present u32
6634  * @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
6635  * @_vns: vendor namespace definitions
6636  * @_next_ns_data: beginning of the next namespace's data
6637  * @_reset_on_ext: internal; reset the arg index to 0 when going to the
6638  *	next bitmap word
6639  *
6640  * Describes the radiotap parser state. Fields prefixed with an underscore
6641  * must not be used by users of the parser, only by the parser internally.
6642  */
6643 
6644 struct ieee80211_radiotap_iterator {
6645 	struct ieee80211_radiotap_header *_rtheader;
6646 	const struct ieee80211_radiotap_vendor_namespaces *_vns;
6647 	const struct ieee80211_radiotap_namespace *current_namespace;
6648 
6649 	unsigned char *_arg, *_next_ns_data;
6650 	__le32 *_next_bitmap;
6651 
6652 	unsigned char *this_arg;
6653 	int this_arg_index;
6654 	int this_arg_size;
6655 
6656 	int is_radiotap_ns;
6657 
6658 	int _max_length;
6659 	int _arg_index;
6660 	uint32_t _bitmap_shifter;
6661 	int _reset_on_ext;
6662 };
6663 
6664 int
6665 ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
6666 				 struct ieee80211_radiotap_header *radiotap_header,
6667 				 int max_length,
6668 				 const struct ieee80211_radiotap_vendor_namespaces *vns);
6669 
6670 int
6671 ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
6672 
6673 
6674 extern const unsigned char rfc1042_header[6];
6675 extern const unsigned char bridge_tunnel_header[6];
6676 
6677 /**
6678  * ieee80211_get_hdrlen_from_skb - get header length from data
6679  *
6680  * @skb: the frame
6681  *
6682  * Given an skb with a raw 802.11 header at the data pointer this function
6683  * returns the 802.11 header length.
6684  *
6685  * Return: The 802.11 header length in bytes (not including encryption
6686  * headers). Or 0 if the data in the sk_buff is too short to contain a valid
6687  * 802.11 header.
6688  */
6689 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
6690 
6691 /**
6692  * ieee80211_hdrlen - get header length in bytes from frame control
6693  * @fc: frame control field in little-endian format
6694  * Return: The header length in bytes.
6695  */
6696 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
6697 
6698 /**
6699  * ieee80211_get_mesh_hdrlen - get mesh extension header length
6700  * @meshhdr: the mesh extension header, only the flags field
6701  *	(first byte) will be accessed
6702  * Return: The length of the extension header, which is always at
6703  * least 6 bytes and at most 18 if address 5 and 6 are present.
6704  */
6705 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
6706 
6707 /**
6708  * DOC: Data path helpers
6709  *
6710  * In addition to generic utilities, cfg80211 also offers
6711  * functions that help implement the data path for devices
6712  * that do not do the 802.11/802.3 conversion on the device.
6713  */
6714 
6715 /**
6716  * ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
6717  * @skb: the 802.11 data frame
6718  * @ehdr: pointer to a &struct ethhdr that will get the header, instead
6719  *	of it being pushed into the SKB
6720  * @addr: the device MAC address
6721  * @iftype: the virtual interface type
6722  * @data_offset: offset of payload after the 802.11 header
6723  * @is_amsdu: true if the 802.11 header is A-MSDU
6724  * Return: 0 on success. Non-zero on error.
6725  */
6726 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
6727 				  const u8 *addr, enum nl80211_iftype iftype,
6728 				  u8 data_offset, bool is_amsdu);
6729 
6730 /**
6731  * ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
6732  * @skb: the 802.11 data frame
6733  * @addr: the device MAC address
6734  * @iftype: the virtual interface type
6735  * Return: 0 on success. Non-zero on error.
6736  */
ieee80211_data_to_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype)6737 static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
6738 					 enum nl80211_iftype iftype)
6739 {
6740 	return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false);
6741 }
6742 
6743 /**
6744  * ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
6745  *
6746  * This is used to detect non-standard A-MSDU frames, e.g. the ones generated
6747  * by ath10k and ath11k, where the subframe length includes the length of the
6748  * mesh control field.
6749  *
6750  * @skb: The input A-MSDU frame without any headers.
6751  * @mesh_hdr: the type of mesh header to test
6752  *	0: non-mesh A-MSDU length field
6753  *	1: big-endian mesh A-MSDU length field
6754  *	2: little-endian mesh A-MSDU length field
6755  * Returns: true if subframe header lengths are valid for the @mesh_hdr mode
6756  */
6757 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
6758 
6759 /**
6760  * ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
6761  *
6762  * Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
6763  * The @list will be empty if the decode fails. The @skb must be fully
6764  * header-less before being passed in here; it is freed in this function.
6765  *
6766  * @skb: The input A-MSDU frame without any headers.
6767  * @list: The output list of 802.3 frames. It must be allocated and
6768  *	initialized by the caller.
6769  * @addr: The device MAC address.
6770  * @iftype: The device interface type.
6771  * @extra_headroom: The hardware extra headroom for SKBs in the @list.
6772  * @check_da: DA to check in the inner ethernet header, or NULL
6773  * @check_sa: SA to check in the inner ethernet header, or NULL
6774  * @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
6775  */
6776 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
6777 			      const u8 *addr, enum nl80211_iftype iftype,
6778 			      const unsigned int extra_headroom,
6779 			      const u8 *check_da, const u8 *check_sa,
6780 			      u8 mesh_control);
6781 
6782 /**
6783  * ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
6784  *
6785  * Check for RFC1042 or bridge tunnel header and fetch the encapsulated
6786  * protocol.
6787  *
6788  * @hdr: pointer to the MSDU payload
6789  * @proto: destination pointer to store the protocol
6790  * Return: true if encapsulation was found
6791  */
6792 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
6793 
6794 /**
6795  * ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
6796  *
6797  * Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
6798  * of the MSDU data. Also move any source/destination addresses from the mesh
6799  * header to the ethernet header (if present).
6800  *
6801  * @skb: The 802.3 frame with embedded mesh header
6802  *
6803  * Return: 0 on success. Non-zero on error.
6804  */
6805 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
6806 
6807 /**
6808  * cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
6809  * @skb: the data frame
6810  * @qos_map: Interworking QoS mapping or %NULL if not in use
6811  * Return: The 802.1p/1d tag.
6812  */
6813 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
6814 				    struct cfg80211_qos_map *qos_map);
6815 
6816 /**
6817  * cfg80211_find_elem_match - match information element and byte array in data
6818  *
6819  * @eid: element ID
6820  * @ies: data consisting of IEs
6821  * @len: length of data
6822  * @match: byte array to match
6823  * @match_len: number of bytes in the match array
6824  * @match_offset: offset in the IE data where the byte array should match.
6825  *	Note the difference to cfg80211_find_ie_match() which considers
6826  *	the offset to start from the element ID byte, but here we take
6827  *	the data portion instead.
6828  *
6829  * Return: %NULL if the element ID could not be found or if
6830  * the element is invalid (claims to be longer than the given
6831  * data) or if the byte array doesn't match; otherwise return the
6832  * requested element struct.
6833  *
6834  * Note: There are no checks on the element length other than
6835  * having to fit into the given data and being large enough for the
6836  * byte array to match.
6837  */
6838 const struct element *
6839 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
6840 			 const u8 *match, unsigned int match_len,
6841 			 unsigned int match_offset);
6842 
6843 /**
6844  * cfg80211_find_ie_match - match information element and byte array in data
6845  *
6846  * @eid: element ID
6847  * @ies: data consisting of IEs
6848  * @len: length of data
6849  * @match: byte array to match
6850  * @match_len: number of bytes in the match array
6851  * @match_offset: offset in the IE where the byte array should match.
6852  *	If match_len is zero, this must also be set to zero.
6853  *	Otherwise this must be set to 2 or more, because the first
6854  *	byte is the element id, which is already compared to eid, and
6855  *	the second byte is the IE length.
6856  *
6857  * Return: %NULL if the element ID could not be found or if
6858  * the element is invalid (claims to be longer than the given
6859  * data) or if the byte array doesn't match, or a pointer to the first
6860  * byte of the requested element, that is the byte containing the
6861  * element ID.
6862  *
6863  * Note: There are no checks on the element length other than
6864  * having to fit into the given data and being large enough for the
6865  * byte array to match.
6866  */
6867 static inline const u8 *
cfg80211_find_ie_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)6868 cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
6869 		       const u8 *match, unsigned int match_len,
6870 		       unsigned int match_offset)
6871 {
6872 	/* match_offset can't be smaller than 2, unless match_len is
6873 	 * zero, in which case match_offset must be zero as well.
6874 	 */
6875 	if (WARN_ON((match_len && match_offset < 2) ||
6876 		    (!match_len && match_offset)))
6877 		return NULL;
6878 
6879 	return (const void *)cfg80211_find_elem_match(eid, ies, len,
6880 						      match, match_len,
6881 						      match_offset ?
6882 							match_offset - 2 : 0);
6883 }
6884 
6885 /**
6886  * cfg80211_find_elem - find information element in data
6887  *
6888  * @eid: element ID
6889  * @ies: data consisting of IEs
6890  * @len: length of data
6891  *
6892  * Return: %NULL if the element ID could not be found or if
6893  * the element is invalid (claims to be longer than the given
6894  * data) or if the byte array doesn't match; otherwise return the
6895  * requested element struct.
6896  *
6897  * Note: There are no checks on the element length other than
6898  * having to fit into the given data.
6899  */
6900 static inline const struct element *
cfg80211_find_elem(u8 eid,const u8 * ies,int len)6901 cfg80211_find_elem(u8 eid, const u8 *ies, int len)
6902 {
6903 	return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0);
6904 }
6905 
6906 /**
6907  * cfg80211_find_ie - find information element in data
6908  *
6909  * @eid: element ID
6910  * @ies: data consisting of IEs
6911  * @len: length of data
6912  *
6913  * Return: %NULL if the element ID could not be found or if
6914  * the element is invalid (claims to be longer than the given
6915  * data), or a pointer to the first byte of the requested
6916  * element, that is the byte containing the element ID.
6917  *
6918  * Note: There are no checks on the element length other than
6919  * having to fit into the given data.
6920  */
cfg80211_find_ie(u8 eid,const u8 * ies,int len)6921 static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
6922 {
6923 	return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0);
6924 }
6925 
6926 /**
6927  * cfg80211_find_ext_elem - find information element with EID Extension in data
6928  *
6929  * @ext_eid: element ID Extension
6930  * @ies: data consisting of IEs
6931  * @len: length of data
6932  *
6933  * Return: %NULL if the extended element could not be found or if
6934  * the element is invalid (claims to be longer than the given
6935  * data) or if the byte array doesn't match; otherwise return the
6936  * requested element struct.
6937  *
6938  * Note: There are no checks on the element length other than
6939  * having to fit into the given data.
6940  */
6941 static inline const struct element *
cfg80211_find_ext_elem(u8 ext_eid,const u8 * ies,int len)6942 cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
6943 {
6944 	return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len,
6945 					&ext_eid, 1, 0);
6946 }
6947 
6948 /**
6949  * cfg80211_find_ext_ie - find information element with EID Extension in data
6950  *
6951  * @ext_eid: element ID Extension
6952  * @ies: data consisting of IEs
6953  * @len: length of data
6954  *
6955  * Return: %NULL if the extended element ID could not be found or if
6956  * the element is invalid (claims to be longer than the given
6957  * data), or a pointer to the first byte of the requested
6958  * element, that is the byte containing the element ID.
6959  *
6960  * Note: There are no checks on the element length other than
6961  * having to fit into the given data.
6962  */
cfg80211_find_ext_ie(u8 ext_eid,const u8 * ies,int len)6963 static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
6964 {
6965 	return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len,
6966 				      &ext_eid, 1, 2);
6967 }
6968 
6969 /**
6970  * cfg80211_find_vendor_elem - find vendor specific information element in data
6971  *
6972  * @oui: vendor OUI
6973  * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
6974  * @ies: data consisting of IEs
6975  * @len: length of data
6976  *
6977  * Return: %NULL if the vendor specific element ID could not be found or if the
6978  * element is invalid (claims to be longer than the given data); otherwise
6979  * return the element structure for the requested element.
6980  *
6981  * Note: There are no checks on the element length other than having to fit into
6982  * the given data.
6983  */
6984 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
6985 						const u8 *ies,
6986 						unsigned int len);
6987 
6988 /**
6989  * cfg80211_find_vendor_ie - find vendor specific information element in data
6990  *
6991  * @oui: vendor OUI
6992  * @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
6993  * @ies: data consisting of IEs
6994  * @len: length of data
6995  *
6996  * Return: %NULL if the vendor specific element ID could not be found or if the
6997  * element is invalid (claims to be longer than the given data), or a pointer to
6998  * the first byte of the requested element, that is the byte containing the
6999  * element ID.
7000  *
7001  * Note: There are no checks on the element length other than having to fit into
7002  * the given data.
7003  */
7004 static inline const u8 *
cfg80211_find_vendor_ie(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)7005 cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
7006 			const u8 *ies, unsigned int len)
7007 {
7008 	return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
7009 }
7010 
7011 /**
7012  * enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state
7013  * @RNR_ITER_CONTINUE: continue iterating with the next entry
7014  * @RNR_ITER_BREAK: break iteration and return success
7015  * @RNR_ITER_ERROR: break iteration and return error
7016  */
7017 enum cfg80211_rnr_iter_ret {
7018 	RNR_ITER_CONTINUE,
7019 	RNR_ITER_BREAK,
7020 	RNR_ITER_ERROR,
7021 };
7022 
7023 /**
7024  * cfg80211_iter_rnr - iterate reduced neighbor report entries
7025  * @elems: the frame elements to iterate RNR elements and then
7026  *	their entries in
7027  * @elems_len: length of the elements
7028  * @iter: iteration function, see also &enum cfg80211_rnr_iter_ret
7029  *	for the return value
7030  * @iter_data: additional data passed to the iteration function
7031  * Return: %true on success (after successfully iterating all entries
7032  *	or if the iteration function returned %RNR_ITER_BREAK),
7033  *	%false on error (iteration function returned %RNR_ITER_ERROR
7034  *	or elements were malformed.)
7035  */
7036 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
7037 		       enum cfg80211_rnr_iter_ret
7038 		       (*iter)(void *data, u8 type,
7039 			       const struct ieee80211_neighbor_ap_info *info,
7040 			       const u8 *tbtt_info, u8 tbtt_info_len),
7041 		       void *iter_data);
7042 
7043 /**
7044  * cfg80211_defragment_element - Defrag the given element data into a buffer
7045  *
7046  * @elem: the element to defragment
7047  * @ies: elements where @elem is contained
7048  * @ieslen: length of @ies
7049  * @data: buffer to store element data, or %NULL to just determine size
7050  * @data_len: length of @data, or 0
7051  * @frag_id: the element ID of fragments
7052  *
7053  * Return: length of @data, or -EINVAL on error
7054  *
7055  * Copy out all data from an element that may be fragmented into @data, while
7056  * skipping all headers.
7057  *
7058  * The function uses memmove() internally. It is acceptable to defragment an
7059  * element in-place.
7060  */
7061 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
7062 				    size_t ieslen, u8 *data, size_t data_len,
7063 				    u8 frag_id);
7064 
7065 /**
7066  * cfg80211_send_layer2_update - send layer 2 update frame
7067  *
7068  * @dev: network device
7069  * @addr: STA MAC address
7070  *
7071  * Wireless drivers can use this function to update forwarding tables in bridge
7072  * devices upon STA association.
7073  */
7074 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
7075 
7076 /**
7077  * DOC: Regulatory enforcement infrastructure
7078  *
7079  * TODO
7080  */
7081 
7082 /**
7083  * regulatory_hint - driver hint to the wireless core a regulatory domain
7084  * @wiphy: the wireless device giving the hint (used only for reporting
7085  *	conflicts)
7086  * @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
7087  *	should be in. If @rd is set this should be NULL. Note that if you
7088  *	set this to NULL you should still set rd->alpha2 to some accepted
7089  *	alpha2.
7090  *
7091  * Wireless drivers can use this function to hint to the wireless core
7092  * what it believes should be the current regulatory domain by
7093  * giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
7094  * domain should be in or by providing a completely build regulatory domain.
7095  * If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
7096  * for a regulatory domain structure for the respective country.
7097  *
7098  * The wiphy must have been registered to cfg80211 prior to this call.
7099  * For cfg80211 drivers this means you must first use wiphy_register(),
7100  * for mac80211 drivers you must first use ieee80211_register_hw().
7101  *
7102  * Drivers should check the return value, its possible you can get
7103  * an -ENOMEM.
7104  *
7105  * Return: 0 on success. -ENOMEM.
7106  */
7107 int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
7108 
7109 /**
7110  * regulatory_set_wiphy_regd - set regdom info for self managed drivers
7111  * @wiphy: the wireless device we want to process the regulatory domain on
7112  * @rd: the regulatory domain information to use for this wiphy
7113  *
7114  * Set the regulatory domain information for self-managed wiphys, only they
7115  * may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
7116  * information.
7117  *
7118  * Return: 0 on success. -EINVAL, -EPERM
7119  */
7120 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
7121 			      struct ieee80211_regdomain *rd);
7122 
7123 /**
7124  * regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
7125  * @wiphy: the wireless device we want to process the regulatory domain on
7126  * @rd: the regulatory domain information to use for this wiphy
7127  *
7128  * This functions requires the RTNL and the wiphy mutex to be held and
7129  * applies the new regdomain synchronously to this wiphy. For more details
7130  * see regulatory_set_wiphy_regd().
7131  *
7132  * Return: 0 on success. -EINVAL, -EPERM
7133  */
7134 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
7135 				   struct ieee80211_regdomain *rd);
7136 
7137 /**
7138  * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
7139  * @wiphy: the wireless device we want to process the regulatory domain on
7140  * @regd: the custom regulatory domain to use for this wiphy
7141  *
7142  * Drivers can sometimes have custom regulatory domains which do not apply
7143  * to a specific country. Drivers can use this to apply such custom regulatory
7144  * domains. This routine must be called prior to wiphy registration. The
7145  * custom regulatory domain will be trusted completely and as such previous
7146  * default channel settings will be disregarded. If no rule is found for a
7147  * channel on the regulatory domain the channel will be disabled.
7148  * Drivers using this for a wiphy should also set the wiphy flag
7149  * REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
7150  * that called this helper.
7151  */
7152 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
7153 				   const struct ieee80211_regdomain *regd);
7154 
7155 /**
7156  * freq_reg_info - get regulatory information for the given frequency
7157  * @wiphy: the wiphy for which we want to process this rule for
7158  * @center_freq: Frequency in KHz for which we want regulatory information for
7159  *
7160  * Use this function to get the regulatory rule for a specific frequency on
7161  * a given wireless device. If the device has a specific regulatory domain
7162  * it wants to follow we respect that unless a country IE has been received
7163  * and processed already.
7164  *
7165  * Return: A valid pointer, or, when an error occurs, for example if no rule
7166  * can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
7167  * check and PTR_ERR() to obtain the numeric return value. The numeric return
7168  * value will be -ERANGE if we determine the given center_freq does not even
7169  * have a regulatory rule for a frequency range in the center_freq's band.
7170  * See freq_in_rule_band() for our current definition of a band -- this is
7171  * purely subjective and right now it's 802.11 specific.
7172  */
7173 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
7174 					       u32 center_freq);
7175 
7176 /**
7177  * reg_initiator_name - map regulatory request initiator enum to name
7178  * @initiator: the regulatory request initiator
7179  *
7180  * You can use this to map the regulatory request initiator enum to a
7181  * proper string representation.
7182  *
7183  * Return: pointer to string representation of the initiator
7184  */
7185 const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
7186 
7187 /**
7188  * regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
7189  * @wiphy: wiphy for which pre-CAC capability is checked.
7190  *
7191  * Pre-CAC is allowed only in some regdomains (notable ETSI).
7192  *
7193  * Return: %true if allowed, %false otherwise
7194  */
7195 bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
7196 
7197 /**
7198  * DOC: Internal regulatory db functions
7199  *
7200  */
7201 
7202 /**
7203  * reg_query_regdb_wmm -  Query internal regulatory db for wmm rule
7204  * Regulatory self-managed driver can use it to proactively
7205  *
7206  * @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
7207  * @freq: the frequency (in MHz) to be queried.
7208  * @rule: pointer to store the wmm rule from the regulatory db.
7209  *
7210  * Self-managed wireless drivers can use this function to  query
7211  * the internal regulatory database to check whether the given
7212  * ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
7213  *
7214  * Drivers should check the return value, its possible you can get
7215  * an -ENODATA.
7216  *
7217  * Return: 0 on success. -ENODATA.
7218  */
7219 int reg_query_regdb_wmm(char *alpha2, int freq,
7220 			struct ieee80211_reg_rule *rule);
7221 
7222 /*
7223  * callbacks for asynchronous cfg80211 methods, notification
7224  * functions and BSS handling helpers
7225  */
7226 
7227 /**
7228  * cfg80211_scan_done - notify that scan finished
7229  *
7230  * @request: the corresponding scan request
7231  * @info: information about the completed scan
7232  */
7233 void cfg80211_scan_done(struct cfg80211_scan_request *request,
7234 			struct cfg80211_scan_info *info);
7235 
7236 /**
7237  * cfg80211_sched_scan_results - notify that new scan results are available
7238  *
7239  * @wiphy: the wiphy which got scheduled scan results
7240  * @reqid: identifier for the related scheduled scan request
7241  */
7242 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
7243 
7244 /**
7245  * cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
7246  *
7247  * @wiphy: the wiphy on which the scheduled scan stopped
7248  * @reqid: identifier for the related scheduled scan request
7249  *
7250  * The driver can call this function to inform cfg80211 that the
7251  * scheduled scan had to be stopped, for whatever reason.  The driver
7252  * is then called back via the sched_scan_stop operation when done.
7253  */
7254 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
7255 
7256 /**
7257  * cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
7258  *
7259  * @wiphy: the wiphy on which the scheduled scan stopped
7260  * @reqid: identifier for the related scheduled scan request
7261  *
7262  * The driver can call this function to inform cfg80211 that the
7263  * scheduled scan had to be stopped, for whatever reason.  The driver
7264  * is then called back via the sched_scan_stop operation when done.
7265  * This function should be called with the wiphy mutex held.
7266  */
7267 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
7268 
7269 /**
7270  * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
7271  * @wiphy: the wiphy reporting the BSS
7272  * @data: the BSS metadata
7273  * @mgmt: the management frame (probe response or beacon)
7274  * @len: length of the management frame
7275  * @gfp: context flags
7276  *
7277  * This informs cfg80211 that BSS information was found and
7278  * the BSS should be updated/added.
7279  *
7280  * Return: A referenced struct, must be released with cfg80211_put_bss()!
7281  * Or %NULL on error.
7282  */
7283 struct cfg80211_bss * __must_check
7284 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
7285 			       struct cfg80211_inform_bss *data,
7286 			       struct ieee80211_mgmt *mgmt, size_t len,
7287 			       gfp_t gfp);
7288 
7289 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_frame(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,struct ieee80211_mgmt * mgmt,size_t len,s32 signal,gfp_t gfp)7290 cfg80211_inform_bss_frame(struct wiphy *wiphy,
7291 			  struct ieee80211_channel *rx_channel,
7292 			  struct ieee80211_mgmt *mgmt, size_t len,
7293 			  s32 signal, gfp_t gfp)
7294 {
7295 	struct cfg80211_inform_bss data = {
7296 		.chan = rx_channel,
7297 		.signal = signal,
7298 	};
7299 
7300 	return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
7301 }
7302 
7303 /**
7304  * cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
7305  * @bssid: transmitter BSSID
7306  * @max_bssid: max BSSID indicator, taken from Multiple BSSID element
7307  * @mbssid_index: BSSID index, taken from Multiple BSSID index element
7308  * @new_bssid: calculated nontransmitted BSSID
7309  */
cfg80211_gen_new_bssid(const u8 * bssid,u8 max_bssid,u8 mbssid_index,u8 * new_bssid)7310 static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
7311 					  u8 mbssid_index, u8 *new_bssid)
7312 {
7313 	u64 bssid_u64 = ether_addr_to_u64(bssid);
7314 	u64 mask = GENMASK_ULL(max_bssid - 1, 0);
7315 	u64 new_bssid_u64;
7316 
7317 	new_bssid_u64 = bssid_u64 & ~mask;
7318 
7319 	new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
7320 
7321 	u64_to_ether_addr(new_bssid_u64, new_bssid);
7322 }
7323 
7324 /**
7325  * cfg80211_is_element_inherited - returns if element ID should be inherited
7326  * @element: element to check
7327  * @non_inherit_element: non inheritance element
7328  *
7329  * Return: %true if should be inherited, %false otherwise
7330  */
7331 bool cfg80211_is_element_inherited(const struct element *element,
7332 				   const struct element *non_inherit_element);
7333 
7334 /**
7335  * cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
7336  * @ie: ies
7337  * @ielen: length of IEs
7338  * @mbssid_elem: current MBSSID element
7339  * @sub_elem: current MBSSID subelement (profile)
7340  * @merged_ie: location of the merged profile
7341  * @max_copy_len: max merged profile length
7342  *
7343  * Return: the number of bytes merged
7344  */
7345 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
7346 			      const struct element *mbssid_elem,
7347 			      const struct element *sub_elem,
7348 			      u8 *merged_ie, size_t max_copy_len);
7349 
7350 /**
7351  * enum cfg80211_bss_frame_type - frame type that the BSS data came from
7352  * @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
7353  *	from a beacon or probe response
7354  * @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
7355  * @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
7356  * @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon
7357  */
7358 enum cfg80211_bss_frame_type {
7359 	CFG80211_BSS_FTYPE_UNKNOWN,
7360 	CFG80211_BSS_FTYPE_BEACON,
7361 	CFG80211_BSS_FTYPE_PRESP,
7362 	CFG80211_BSS_FTYPE_S1G_BEACON,
7363 };
7364 
7365 /**
7366  * cfg80211_get_ies_channel_number - returns the channel number from ies
7367  * @ie: IEs
7368  * @ielen: length of IEs
7369  * @band: enum nl80211_band of the channel
7370  *
7371  * Return: the channel number, or -1 if none could be determined.
7372  */
7373 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
7374 				    enum nl80211_band band);
7375 
7376 /**
7377  * cfg80211_ssid_eq - compare two SSIDs
7378  * @a: first SSID
7379  * @b: second SSID
7380  *
7381  * Return: %true if SSIDs are equal, %false otherwise.
7382  */
7383 static inline bool
cfg80211_ssid_eq(struct cfg80211_ssid * a,struct cfg80211_ssid * b)7384 cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b)
7385 {
7386 	if (WARN_ON(!a || !b))
7387 		return false;
7388 	if (a->ssid_len != b->ssid_len)
7389 		return false;
7390 	return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true;
7391 }
7392 
7393 /**
7394  * cfg80211_inform_bss_data - inform cfg80211 of a new BSS
7395  *
7396  * @wiphy: the wiphy reporting the BSS
7397  * @data: the BSS metadata
7398  * @ftype: frame type (if known)
7399  * @bssid: the BSSID of the BSS
7400  * @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
7401  * @capability: the capability field sent by the peer
7402  * @beacon_interval: the beacon interval announced by the peer
7403  * @ie: additional IEs sent by the peer
7404  * @ielen: length of the additional IEs
7405  * @gfp: context flags
7406  *
7407  * This informs cfg80211 that BSS information was found and
7408  * the BSS should be updated/added.
7409  *
7410  * Return: A referenced struct, must be released with cfg80211_put_bss()!
7411  * Or %NULL on error.
7412  */
7413 struct cfg80211_bss * __must_check
7414 cfg80211_inform_bss_data(struct wiphy *wiphy,
7415 			 struct cfg80211_inform_bss *data,
7416 			 enum cfg80211_bss_frame_type ftype,
7417 			 const u8 *bssid, u64 tsf, u16 capability,
7418 			 u16 beacon_interval, const u8 *ie, size_t ielen,
7419 			 gfp_t gfp);
7420 
7421 static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss(struct wiphy * wiphy,struct ieee80211_channel * rx_channel,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,s32 signal,gfp_t gfp)7422 cfg80211_inform_bss(struct wiphy *wiphy,
7423 		    struct ieee80211_channel *rx_channel,
7424 		    enum cfg80211_bss_frame_type ftype,
7425 		    const u8 *bssid, u64 tsf, u16 capability,
7426 		    u16 beacon_interval, const u8 *ie, size_t ielen,
7427 		    s32 signal, gfp_t gfp)
7428 {
7429 	struct cfg80211_inform_bss data = {
7430 		.chan = rx_channel,
7431 		.signal = signal,
7432 	};
7433 
7434 	return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
7435 					capability, beacon_interval, ie, ielen,
7436 					gfp);
7437 }
7438 
7439 /**
7440  * __cfg80211_get_bss - get a BSS reference
7441  * @wiphy: the wiphy this BSS struct belongs to
7442  * @channel: the channel to search on (or %NULL)
7443  * @bssid: the desired BSSID (or %NULL)
7444  * @ssid: the desired SSID (or %NULL)
7445  * @ssid_len: length of the SSID (or 0)
7446  * @bss_type: type of BSS, see &enum ieee80211_bss_type
7447  * @privacy: privacy filter, see &enum ieee80211_privacy
7448  * @use_for: indicates which use is intended
7449  *
7450  * Return: Reference-counted BSS on success. %NULL on error.
7451  */
7452 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
7453 					struct ieee80211_channel *channel,
7454 					const u8 *bssid,
7455 					const u8 *ssid, size_t ssid_len,
7456 					enum ieee80211_bss_type bss_type,
7457 					enum ieee80211_privacy privacy,
7458 					u32 use_for);
7459 
7460 /**
7461  * cfg80211_get_bss - get a BSS reference
7462  * @wiphy: the wiphy this BSS struct belongs to
7463  * @channel: the channel to search on (or %NULL)
7464  * @bssid: the desired BSSID (or %NULL)
7465  * @ssid: the desired SSID (or %NULL)
7466  * @ssid_len: length of the SSID (or 0)
7467  * @bss_type: type of BSS, see &enum ieee80211_bss_type
7468  * @privacy: privacy filter, see &enum ieee80211_privacy
7469  *
7470  * This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL.
7471  *
7472  * Return: Reference-counted BSS on success. %NULL on error.
7473  */
7474 static inline struct cfg80211_bss *
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)7475 cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel,
7476 		 const u8 *bssid, const u8 *ssid, size_t ssid_len,
7477 		 enum ieee80211_bss_type bss_type,
7478 		 enum ieee80211_privacy privacy)
7479 {
7480 	return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len,
7481 				  bss_type, privacy,
7482 				  NL80211_BSS_USE_FOR_NORMAL);
7483 }
7484 
7485 static inline struct cfg80211_bss *
cfg80211_get_ibss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * ssid,size_t ssid_len)7486 cfg80211_get_ibss(struct wiphy *wiphy,
7487 		  struct ieee80211_channel *channel,
7488 		  const u8 *ssid, size_t ssid_len)
7489 {
7490 	return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
7491 				IEEE80211_BSS_TYPE_IBSS,
7492 				IEEE80211_PRIVACY_ANY);
7493 }
7494 
7495 /**
7496  * cfg80211_ref_bss - reference BSS struct
7497  * @wiphy: the wiphy this BSS struct belongs to
7498  * @bss: the BSS struct to reference
7499  *
7500  * Increments the refcount of the given BSS struct.
7501  */
7502 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7503 
7504 /**
7505  * cfg80211_put_bss - unref BSS struct
7506  * @wiphy: the wiphy this BSS struct belongs to
7507  * @bss: the BSS struct
7508  *
7509  * Decrements the refcount of the given BSS struct.
7510  */
7511 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7512 
7513 /**
7514  * cfg80211_unlink_bss - unlink BSS from internal data structures
7515  * @wiphy: the wiphy
7516  * @bss: the bss to remove
7517  *
7518  * This function removes the given BSS from the internal data structures
7519  * thereby making it no longer show up in scan results etc. Use this
7520  * function when you detect a BSS is gone. Normally BSSes will also time
7521  * out, so it is not necessary to use this function at all.
7522  */
7523 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
7524 
7525 /**
7526  * cfg80211_bss_iter - iterate all BSS entries
7527  *
7528  * This function iterates over the BSS entries associated with the given wiphy
7529  * and calls the callback for the iterated BSS. The iterator function is not
7530  * allowed to call functions that might modify the internal state of the BSS DB.
7531  *
7532  * @wiphy: the wiphy
7533  * @chandef: if given, the iterator function will be called only if the channel
7534  *     of the currently iterated BSS is a subset of the given channel.
7535  * @iter: the iterator function to call
7536  * @iter_data: an argument to the iterator function
7537  */
7538 void cfg80211_bss_iter(struct wiphy *wiphy,
7539 		       struct cfg80211_chan_def *chandef,
7540 		       void (*iter)(struct wiphy *wiphy,
7541 				    struct cfg80211_bss *bss,
7542 				    void *data),
7543 		       void *iter_data);
7544 
7545 /**
7546  * cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
7547  * @dev: network device
7548  * @buf: authentication frame (header + body)
7549  * @len: length of the frame data
7550  *
7551  * This function is called whenever an authentication, disassociation or
7552  * deauthentication frame has been received and processed in station mode.
7553  * After being asked to authenticate via cfg80211_ops::auth() the driver must
7554  * call either this function or cfg80211_auth_timeout().
7555  * After being asked to associate via cfg80211_ops::assoc() the driver must
7556  * call either this function or cfg80211_auth_timeout().
7557  * While connected, the driver must calls this for received and processed
7558  * disassociation and deauthentication frames. If the frame couldn't be used
7559  * because it was unprotected, the driver must call the function
7560  * cfg80211_rx_unprot_mlme_mgmt() instead.
7561  *
7562  * This function may sleep. The caller must hold the corresponding wdev's mutex.
7563  */
7564 void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
7565 
7566 /**
7567  * cfg80211_auth_timeout - notification of timed out authentication
7568  * @dev: network device
7569  * @addr: The MAC address of the device with which the authentication timed out
7570  *
7571  * This function may sleep. The caller must hold the corresponding wdev's
7572  * mutex.
7573  */
7574 void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
7575 
7576 /**
7577  * struct cfg80211_rx_assoc_resp_data - association response data
7578  * @buf: (Re)Association Response frame (header + body)
7579  * @len: length of the frame data
7580  * @uapsd_queues: bitmap of queues configured for uapsd. Same format
7581  *	as the AC bitmap in the QoS info field
7582  * @req_ies: information elements from the (Re)Association Request frame
7583  * @req_ies_len: length of req_ies data
7584  * @ap_mld_addr: AP MLD address (in case of MLO)
7585  * @links: per-link information indexed by link ID, use links[0] for
7586  *	non-MLO connections
7587  * @links.bss: the BSS that association was requested with, ownership of the
7588  *      pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
7589  * @links.status: Set this (along with a BSS pointer) for links that
7590  *	were rejected by the AP.
7591  */
7592 struct cfg80211_rx_assoc_resp_data {
7593 	const u8 *buf;
7594 	size_t len;
7595 	const u8 *req_ies;
7596 	size_t req_ies_len;
7597 	int uapsd_queues;
7598 	const u8 *ap_mld_addr;
7599 	struct {
7600 		u8 addr[ETH_ALEN] __aligned(2);
7601 		struct cfg80211_bss *bss;
7602 		u16 status;
7603 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
7604 };
7605 
7606 /**
7607  * cfg80211_rx_assoc_resp - notification of processed association response
7608  * @dev: network device
7609  * @data: association response data, &struct cfg80211_rx_assoc_resp_data
7610  *
7611  * After being asked to associate via cfg80211_ops::assoc() the driver must
7612  * call either this function or cfg80211_auth_timeout().
7613  *
7614  * This function may sleep. The caller must hold the corresponding wdev's mutex.
7615  */
7616 void cfg80211_rx_assoc_resp(struct net_device *dev,
7617 			    const struct cfg80211_rx_assoc_resp_data *data);
7618 
7619 /**
7620  * struct cfg80211_assoc_failure - association failure data
7621  * @ap_mld_addr: AP MLD address, or %NULL
7622  * @bss: list of BSSes, must use entry 0 for non-MLO connections
7623  *	(@ap_mld_addr is %NULL)
7624  * @timeout: indicates the association failed due to timeout, otherwise
7625  *	the association was abandoned for a reason reported through some
7626  *	other API (e.g. deauth RX)
7627  */
7628 struct cfg80211_assoc_failure {
7629 	const u8 *ap_mld_addr;
7630 	struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
7631 	bool timeout;
7632 };
7633 
7634 /**
7635  * cfg80211_assoc_failure - notification of association failure
7636  * @dev: network device
7637  * @data: data describing the association failure
7638  *
7639  * This function may sleep. The caller must hold the corresponding wdev's mutex.
7640  */
7641 void cfg80211_assoc_failure(struct net_device *dev,
7642 			    struct cfg80211_assoc_failure *data);
7643 
7644 /**
7645  * cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
7646  * @dev: network device
7647  * @buf: 802.11 frame (header + body)
7648  * @len: length of the frame data
7649  * @reconnect: immediate reconnect is desired (include the nl80211 attribute)
7650  *
7651  * This function is called whenever deauthentication has been processed in
7652  * station mode. This includes both received deauthentication frames and
7653  * locally generated ones. This function may sleep. The caller must hold the
7654  * corresponding wdev's mutex.
7655  */
7656 void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
7657 			   bool reconnect);
7658 
7659 /**
7660  * cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
7661  * @dev: network device
7662  * @buf: received management frame (header + body)
7663  * @len: length of the frame data
7664  *
7665  * This function is called whenever a received deauthentication or dissassoc
7666  * frame has been dropped in station mode because of MFP being used but the
7667  * frame was not protected. This is also used to notify reception of a Beacon
7668  * frame that was dropped because it did not include a valid MME MIC while
7669  * beacon protection was enabled (BIGTK configured in station mode).
7670  *
7671  * This function may sleep.
7672  */
7673 void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
7674 				  const u8 *buf, size_t len);
7675 
7676 /**
7677  * cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
7678  * @dev: network device
7679  * @addr: The source MAC address of the frame
7680  * @key_type: The key type that the received frame used
7681  * @key_id: Key identifier (0..3). Can be -1 if missing.
7682  * @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
7683  * @gfp: allocation flags
7684  *
7685  * This function is called whenever the local MAC detects a MIC failure in a
7686  * received frame. This matches with MLME-MICHAELMICFAILURE.indication()
7687  * primitive.
7688  */
7689 void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
7690 				  enum nl80211_key_type key_type, int key_id,
7691 				  const u8 *tsc, gfp_t gfp);
7692 
7693 /**
7694  * cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
7695  *
7696  * @dev: network device
7697  * @bssid: the BSSID of the IBSS joined
7698  * @channel: the channel of the IBSS joined
7699  * @gfp: allocation flags
7700  *
7701  * This function notifies cfg80211 that the device joined an IBSS or
7702  * switched to a different BSSID. Before this function can be called,
7703  * either a beacon has to have been received from the IBSS, or one of
7704  * the cfg80211_inform_bss{,_frame} functions must have been called
7705  * with the locally generated beacon -- this guarantees that there is
7706  * always a scan result for this IBSS. cfg80211 will handle the rest.
7707  */
7708 void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
7709 			  struct ieee80211_channel *channel, gfp_t gfp);
7710 
7711 /**
7712  * cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
7713  * 					candidate
7714  *
7715  * @dev: network device
7716  * @macaddr: the MAC address of the new candidate
7717  * @ie: information elements advertised by the peer candidate
7718  * @ie_len: length of the information elements buffer
7719  * @sig_dbm: signal level in dBm
7720  * @gfp: allocation flags
7721  *
7722  * This function notifies cfg80211 that the mesh peer candidate has been
7723  * detected, most likely via a beacon or, less likely, via a probe response.
7724  * cfg80211 then sends a notification to userspace.
7725  */
7726 void cfg80211_notify_new_peer_candidate(struct net_device *dev,
7727 		const u8 *macaddr, const u8 *ie, u8 ie_len,
7728 		int sig_dbm, gfp_t gfp);
7729 
7730 /**
7731  * DOC: RFkill integration
7732  *
7733  * RFkill integration in cfg80211 is almost invisible to drivers,
7734  * as cfg80211 automatically registers an rfkill instance for each
7735  * wireless device it knows about. Soft kill is also translated
7736  * into disconnecting and turning all interfaces off. Drivers are
7737  * expected to turn off the device when all interfaces are down.
7738  *
7739  * However, devices may have a hard RFkill line, in which case they
7740  * also need to interact with the rfkill subsystem, via cfg80211.
7741  * They can do this with a few helper functions documented here.
7742  */
7743 
7744 /**
7745  * wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
7746  * @wiphy: the wiphy
7747  * @blocked: block status
7748  * @reason: one of reasons in &enum rfkill_hard_block_reasons
7749  */
7750 void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
7751 				      enum rfkill_hard_block_reasons reason);
7752 
wiphy_rfkill_set_hw_state(struct wiphy * wiphy,bool blocked)7753 static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
7754 {
7755 	wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
7756 					 RFKILL_HARD_BLOCK_SIGNAL);
7757 }
7758 
7759 /**
7760  * wiphy_rfkill_start_polling - start polling rfkill
7761  * @wiphy: the wiphy
7762  */
7763 void wiphy_rfkill_start_polling(struct wiphy *wiphy);
7764 
7765 /**
7766  * wiphy_rfkill_stop_polling - stop polling rfkill
7767  * @wiphy: the wiphy
7768  */
wiphy_rfkill_stop_polling(struct wiphy * wiphy)7769 static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
7770 {
7771 	rfkill_pause_polling(wiphy->rfkill);
7772 }
7773 
7774 /**
7775  * DOC: Vendor commands
7776  *
7777  * Occasionally, there are special protocol or firmware features that
7778  * can't be implemented very openly. For this and similar cases, the
7779  * vendor command functionality allows implementing the features with
7780  * (typically closed-source) userspace and firmware, using nl80211 as
7781  * the configuration mechanism.
7782  *
7783  * A driver supporting vendor commands must register them as an array
7784  * in struct wiphy, with handlers for each one. Each command has an
7785  * OUI and sub command ID to identify it.
7786  *
7787  * Note that this feature should not be (ab)used to implement protocol
7788  * features that could openly be shared across drivers. In particular,
7789  * it must never be required to use vendor commands to implement any
7790  * "normal" functionality that higher-level userspace like connection
7791  * managers etc. need.
7792  */
7793 
7794 struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
7795 					   enum nl80211_commands cmd,
7796 					   enum nl80211_attrs attr,
7797 					   int approxlen);
7798 
7799 struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
7800 					   struct wireless_dev *wdev,
7801 					   enum nl80211_commands cmd,
7802 					   enum nl80211_attrs attr,
7803 					   unsigned int portid,
7804 					   int vendor_event_idx,
7805 					   int approxlen, gfp_t gfp);
7806 
7807 void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
7808 
7809 /**
7810  * cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
7811  * @wiphy: the wiphy
7812  * @approxlen: an upper bound of the length of the data that will
7813  *	be put into the skb
7814  *
7815  * This function allocates and pre-fills an skb for a reply to
7816  * a vendor command. Since it is intended for a reply, calling
7817  * it outside of a vendor command's doit() operation is invalid.
7818  *
7819  * The returned skb is pre-filled with some identifying data in
7820  * a way that any data that is put into the skb (with skb_put(),
7821  * nla_put() or similar) will end up being within the
7822  * %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
7823  * with the skb is adding data for the corresponding userspace tool
7824  * which can then read that data out of the vendor data attribute.
7825  * You must not modify the skb in any other way.
7826  *
7827  * When done, call cfg80211_vendor_cmd_reply() with the skb and return
7828  * its error code as the result of the doit() operation.
7829  *
7830  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7831  */
7832 static inline struct sk_buff *
cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy * wiphy,int approxlen)7833 cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
7834 {
7835 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
7836 					  NL80211_ATTR_VENDOR_DATA, approxlen);
7837 }
7838 
7839 /**
7840  * cfg80211_vendor_cmd_reply - send the reply skb
7841  * @skb: The skb, must have been allocated with
7842  *	cfg80211_vendor_cmd_alloc_reply_skb()
7843  *
7844  * Since calling this function will usually be the last thing
7845  * before returning from the vendor command doit() you should
7846  * return the error code.  Note that this function consumes the
7847  * skb regardless of the return value.
7848  *
7849  * Return: An error code or 0 on success.
7850  */
7851 int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
7852 
7853 /**
7854  * cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
7855  * @wiphy: the wiphy
7856  *
7857  * Return: the current netlink port ID in a vendor command handler.
7858  *
7859  * Context: May only be called from a vendor command handler
7860  */
7861 unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
7862 
7863 /**
7864  * cfg80211_vendor_event_alloc - allocate vendor-specific event skb
7865  * @wiphy: the wiphy
7866  * @wdev: the wireless device
7867  * @event_idx: index of the vendor event in the wiphy's vendor_events
7868  * @approxlen: an upper bound of the length of the data that will
7869  *	be put into the skb
7870  * @gfp: allocation flags
7871  *
7872  * This function allocates and pre-fills an skb for an event on the
7873  * vendor-specific multicast group.
7874  *
7875  * If wdev != NULL, both the ifindex and identifier of the specified
7876  * wireless device are added to the event message before the vendor data
7877  * attribute.
7878  *
7879  * When done filling the skb, call cfg80211_vendor_event() with the
7880  * skb to send the event.
7881  *
7882  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7883  */
7884 static inline struct sk_buff *
cfg80211_vendor_event_alloc(struct wiphy * wiphy,struct wireless_dev * wdev,int approxlen,int event_idx,gfp_t gfp)7885 cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
7886 			     int approxlen, int event_idx, gfp_t gfp)
7887 {
7888 	return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
7889 					  NL80211_ATTR_VENDOR_DATA,
7890 					  0, event_idx, approxlen, gfp);
7891 }
7892 
7893 /**
7894  * cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
7895  * @wiphy: the wiphy
7896  * @wdev: the wireless device
7897  * @event_idx: index of the vendor event in the wiphy's vendor_events
7898  * @portid: port ID of the receiver
7899  * @approxlen: an upper bound of the length of the data that will
7900  *	be put into the skb
7901  * @gfp: allocation flags
7902  *
7903  * This function allocates and pre-fills an skb for an event to send to
7904  * a specific (userland) socket. This socket would previously have been
7905  * obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
7906  * care to register a netlink notifier to see when the socket closes.
7907  *
7908  * If wdev != NULL, both the ifindex and identifier of the specified
7909  * wireless device are added to the event message before the vendor data
7910  * attribute.
7911  *
7912  * When done filling the skb, call cfg80211_vendor_event() with the
7913  * skb to send the event.
7914  *
7915  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7916  */
7917 static inline struct sk_buff *
cfg80211_vendor_event_alloc_ucast(struct wiphy * wiphy,struct wireless_dev * wdev,unsigned int portid,int approxlen,int event_idx,gfp_t gfp)7918 cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
7919 				  struct wireless_dev *wdev,
7920 				  unsigned int portid, int approxlen,
7921 				  int event_idx, gfp_t gfp)
7922 {
7923 	return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
7924 					  NL80211_ATTR_VENDOR_DATA,
7925 					  portid, event_idx, approxlen, gfp);
7926 }
7927 
7928 /**
7929  * cfg80211_vendor_event - send the event
7930  * @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
7931  * @gfp: allocation flags
7932  *
7933  * This function sends the given @skb, which must have been allocated
7934  * by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
7935  */
cfg80211_vendor_event(struct sk_buff * skb,gfp_t gfp)7936 static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
7937 {
7938 	__cfg80211_send_event_skb(skb, gfp);
7939 }
7940 
7941 #ifdef CONFIG_NL80211_TESTMODE
7942 /**
7943  * DOC: Test mode
7944  *
7945  * Test mode is a set of utility functions to allow drivers to
7946  * interact with driver-specific tools to aid, for instance,
7947  * factory programming.
7948  *
7949  * This chapter describes how drivers interact with it. For more
7950  * information see the nl80211 book's chapter on it.
7951  */
7952 
7953 /**
7954  * cfg80211_testmode_alloc_reply_skb - allocate testmode reply
7955  * @wiphy: the wiphy
7956  * @approxlen: an upper bound of the length of the data that will
7957  *	be put into the skb
7958  *
7959  * This function allocates and pre-fills an skb for a reply to
7960  * the testmode command. Since it is intended for a reply, calling
7961  * it outside of the @testmode_cmd operation is invalid.
7962  *
7963  * The returned skb is pre-filled with the wiphy index and set up in
7964  * a way that any data that is put into the skb (with skb_put(),
7965  * nla_put() or similar) will end up being within the
7966  * %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
7967  * with the skb is adding data for the corresponding userspace tool
7968  * which can then read that data out of the testdata attribute. You
7969  * must not modify the skb in any other way.
7970  *
7971  * When done, call cfg80211_testmode_reply() with the skb and return
7972  * its error code as the result of the @testmode_cmd operation.
7973  *
7974  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
7975  */
7976 static inline struct sk_buff *
cfg80211_testmode_alloc_reply_skb(struct wiphy * wiphy,int approxlen)7977 cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
7978 {
7979 	return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
7980 					  NL80211_ATTR_TESTDATA, approxlen);
7981 }
7982 
7983 /**
7984  * cfg80211_testmode_reply - send the reply skb
7985  * @skb: The skb, must have been allocated with
7986  *	cfg80211_testmode_alloc_reply_skb()
7987  *
7988  * Since calling this function will usually be the last thing
7989  * before returning from the @testmode_cmd you should return
7990  * the error code.  Note that this function consumes the skb
7991  * regardless of the return value.
7992  *
7993  * Return: An error code or 0 on success.
7994  */
cfg80211_testmode_reply(struct sk_buff * skb)7995 static inline int cfg80211_testmode_reply(struct sk_buff *skb)
7996 {
7997 	return cfg80211_vendor_cmd_reply(skb);
7998 }
7999 
8000 /**
8001  * cfg80211_testmode_alloc_event_skb - allocate testmode event
8002  * @wiphy: the wiphy
8003  * @approxlen: an upper bound of the length of the data that will
8004  *	be put into the skb
8005  * @gfp: allocation flags
8006  *
8007  * This function allocates and pre-fills an skb for an event on the
8008  * testmode multicast group.
8009  *
8010  * The returned skb is set up in the same way as with
8011  * cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
8012  * there, you should simply add data to it that will then end up in the
8013  * %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
8014  * in any other way.
8015  *
8016  * When done filling the skb, call cfg80211_testmode_event() with the
8017  * skb to send the event.
8018  *
8019  * Return: An allocated and pre-filled skb. %NULL if any errors happen.
8020  */
8021 static inline struct sk_buff *
cfg80211_testmode_alloc_event_skb(struct wiphy * wiphy,int approxlen,gfp_t gfp)8022 cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
8023 {
8024 	return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
8025 					  NL80211_ATTR_TESTDATA, 0, -1,
8026 					  approxlen, gfp);
8027 }
8028 
8029 /**
8030  * cfg80211_testmode_event - send the event
8031  * @skb: The skb, must have been allocated with
8032  *	cfg80211_testmode_alloc_event_skb()
8033  * @gfp: allocation flags
8034  *
8035  * This function sends the given @skb, which must have been allocated
8036  * by cfg80211_testmode_alloc_event_skb(), as an event. It always
8037  * consumes it.
8038  */
cfg80211_testmode_event(struct sk_buff * skb,gfp_t gfp)8039 static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
8040 {
8041 	__cfg80211_send_event_skb(skb, gfp);
8042 }
8043 
8044 #define CFG80211_TESTMODE_CMD(cmd)	.testmode_cmd = (cmd),
8045 #define CFG80211_TESTMODE_DUMP(cmd)	.testmode_dump = (cmd),
8046 #else
8047 #define CFG80211_TESTMODE_CMD(cmd)
8048 #define CFG80211_TESTMODE_DUMP(cmd)
8049 #endif
8050 
8051 /**
8052  * struct cfg80211_fils_resp_params - FILS connection response params
8053  * @kek: KEK derived from a successful FILS connection (may be %NULL)
8054  * @kek_len: Length of @fils_kek in octets
8055  * @update_erp_next_seq_num: Boolean value to specify whether the value in
8056  *	@erp_next_seq_num is valid.
8057  * @erp_next_seq_num: The next sequence number to use in ERP message in
8058  *	FILS Authentication. This value should be specified irrespective of the
8059  *	status for a FILS connection.
8060  * @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
8061  * @pmk_len: Length of @pmk in octets
8062  * @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
8063  *	used for this FILS connection (may be %NULL).
8064  */
8065 struct cfg80211_fils_resp_params {
8066 	const u8 *kek;
8067 	size_t kek_len;
8068 	bool update_erp_next_seq_num;
8069 	u16 erp_next_seq_num;
8070 	const u8 *pmk;
8071 	size_t pmk_len;
8072 	const u8 *pmkid;
8073 };
8074 
8075 /**
8076  * struct cfg80211_connect_resp_params - Connection response params
8077  * @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
8078  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8079  *	the real status code for failures. If this call is used to report a
8080  *	failure due to a timeout (e.g., not receiving an Authentication frame
8081  *	from the AP) instead of an explicit rejection by the AP, -1 is used to
8082  *	indicate that this is a failure, but without a status code.
8083  *	@timeout_reason is used to report the reason for the timeout in that
8084  *	case.
8085  * @req_ie: Association request IEs (may be %NULL)
8086  * @req_ie_len: Association request IEs length
8087  * @resp_ie: Association response IEs (may be %NULL)
8088  * @resp_ie_len: Association response IEs length
8089  * @fils: FILS connection response parameters.
8090  * @timeout_reason: Reason for connection timeout. This is used when the
8091  *	connection fails due to a timeout instead of an explicit rejection from
8092  *	the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8093  *	not known. This value is used only if @status < 0 to indicate that the
8094  *	failure is due to a timeout and not due to explicit rejection by the AP.
8095  *	This value is ignored in other cases (@status >= 0).
8096  * @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
8097  *	zero.
8098  * @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
8099  * @links : For MLO connection, contains link info for the valid links indicated
8100  *	using @valid_links. For non-MLO connection, links[0] contains the
8101  *	connected AP info.
8102  * @links.addr: For MLO connection, MAC address of the STA link. Otherwise
8103  *	%NULL.
8104  * @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
8105  *	connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
8106  * @links.bss: For MLO connection, entry of bss to which STA link is connected.
8107  *	For non-MLO connection, links[0].bss points to entry of bss to which STA
8108  *	is connected. It can be obtained through cfg80211_get_bss() (may be
8109  *	%NULL). It is recommended to store the bss from the connect_request and
8110  *	hold a reference to it and return through this param to avoid a warning
8111  *	if the bss is expired during the connection, esp. for those drivers
8112  *	implementing connect op. Only one parameter among @bssid and @bss needs
8113  *	to be specified.
8114  * @links.status: per-link status code, to report a status code that's not
8115  *	%WLAN_STATUS_SUCCESS for a given link, it must also be in the
8116  *	@valid_links bitmap and may have a BSS pointer (which is then released)
8117  */
8118 struct cfg80211_connect_resp_params {
8119 	int status;
8120 	const u8 *req_ie;
8121 	size_t req_ie_len;
8122 	const u8 *resp_ie;
8123 	size_t resp_ie_len;
8124 	struct cfg80211_fils_resp_params fils;
8125 	enum nl80211_timeout_reason timeout_reason;
8126 
8127 	const u8 *ap_mld_addr;
8128 	u16 valid_links;
8129 	struct {
8130 		const u8 *addr;
8131 		const u8 *bssid;
8132 		struct cfg80211_bss *bss;
8133 		u16 status;
8134 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
8135 };
8136 
8137 /**
8138  * cfg80211_connect_done - notify cfg80211 of connection result
8139  *
8140  * @dev: network device
8141  * @params: connection response parameters
8142  * @gfp: allocation flags
8143  *
8144  * It should be called by the underlying driver once execution of the connection
8145  * request from connect() has been completed. This is similar to
8146  * cfg80211_connect_bss(), but takes a structure pointer for connection response
8147  * parameters. Only one of the functions among cfg80211_connect_bss(),
8148  * cfg80211_connect_result(), cfg80211_connect_timeout(),
8149  * and cfg80211_connect_done() should be called.
8150  */
8151 void cfg80211_connect_done(struct net_device *dev,
8152 			   struct cfg80211_connect_resp_params *params,
8153 			   gfp_t gfp);
8154 
8155 /**
8156  * cfg80211_connect_bss - notify cfg80211 of connection result
8157  *
8158  * @dev: network device
8159  * @bssid: the BSSID of the AP
8160  * @bss: Entry of bss to which STA got connected to, can be obtained through
8161  *	cfg80211_get_bss() (may be %NULL). But it is recommended to store the
8162  *	bss from the connect_request and hold a reference to it and return
8163  *	through this param to avoid a warning if the bss is expired during the
8164  *	connection, esp. for those drivers implementing connect op.
8165  *	Only one parameter among @bssid and @bss needs to be specified.
8166  * @req_ie: association request IEs (maybe be %NULL)
8167  * @req_ie_len: association request IEs length
8168  * @resp_ie: association response IEs (may be %NULL)
8169  * @resp_ie_len: assoc response IEs length
8170  * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8171  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8172  *	the real status code for failures. If this call is used to report a
8173  *	failure due to a timeout (e.g., not receiving an Authentication frame
8174  *	from the AP) instead of an explicit rejection by the AP, -1 is used to
8175  *	indicate that this is a failure, but without a status code.
8176  *	@timeout_reason is used to report the reason for the timeout in that
8177  *	case.
8178  * @gfp: allocation flags
8179  * @timeout_reason: reason for connection timeout. This is used when the
8180  *	connection fails due to a timeout instead of an explicit rejection from
8181  *	the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
8182  *	not known. This value is used only if @status < 0 to indicate that the
8183  *	failure is due to a timeout and not due to explicit rejection by the AP.
8184  *	This value is ignored in other cases (@status >= 0).
8185  *
8186  * It should be called by the underlying driver once execution of the connection
8187  * request from connect() has been completed. This is similar to
8188  * cfg80211_connect_result(), but with the option of identifying the exact bss
8189  * entry for the connection. Only one of the functions among
8190  * cfg80211_connect_bss(), cfg80211_connect_result(),
8191  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8192  */
8193 static inline void
cfg80211_connect_bss(struct net_device * dev,const u8 * bssid,struct cfg80211_bss * bss,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,int status,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8194 cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
8195 		     struct cfg80211_bss *bss, const u8 *req_ie,
8196 		     size_t req_ie_len, const u8 *resp_ie,
8197 		     size_t resp_ie_len, int status, gfp_t gfp,
8198 		     enum nl80211_timeout_reason timeout_reason)
8199 {
8200 	struct cfg80211_connect_resp_params params;
8201 
8202 	memset(&params, 0, sizeof(params));
8203 	params.status = status;
8204 	params.links[0].bssid = bssid;
8205 	params.links[0].bss = bss;
8206 	params.req_ie = req_ie;
8207 	params.req_ie_len = req_ie_len;
8208 	params.resp_ie = resp_ie;
8209 	params.resp_ie_len = resp_ie_len;
8210 	params.timeout_reason = timeout_reason;
8211 
8212 	cfg80211_connect_done(dev, &params, gfp);
8213 }
8214 
8215 /**
8216  * cfg80211_connect_result - notify cfg80211 of connection result
8217  *
8218  * @dev: network device
8219  * @bssid: the BSSID of the AP
8220  * @req_ie: association request IEs (maybe be %NULL)
8221  * @req_ie_len: association request IEs length
8222  * @resp_ie: association response IEs (may be %NULL)
8223  * @resp_ie_len: assoc response IEs length
8224  * @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
8225  *	%WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
8226  *	the real status code for failures.
8227  * @gfp: allocation flags
8228  *
8229  * It should be called by the underlying driver once execution of the connection
8230  * request from connect() has been completed. This is similar to
8231  * cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
8232  * one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
8233  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8234  */
8235 static inline void
cfg80211_connect_result(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,const u8 * resp_ie,size_t resp_ie_len,u16 status,gfp_t gfp)8236 cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
8237 			const u8 *req_ie, size_t req_ie_len,
8238 			const u8 *resp_ie, size_t resp_ie_len,
8239 			u16 status, gfp_t gfp)
8240 {
8241 	cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
8242 			     resp_ie_len, status, gfp,
8243 			     NL80211_TIMEOUT_UNSPECIFIED);
8244 }
8245 
8246 /**
8247  * cfg80211_connect_timeout - notify cfg80211 of connection timeout
8248  *
8249  * @dev: network device
8250  * @bssid: the BSSID of the AP
8251  * @req_ie: association request IEs (maybe be %NULL)
8252  * @req_ie_len: association request IEs length
8253  * @gfp: allocation flags
8254  * @timeout_reason: reason for connection timeout.
8255  *
8256  * It should be called by the underlying driver whenever connect() has failed
8257  * in a sequence where no explicit authentication/association rejection was
8258  * received from the AP. This could happen, e.g., due to not being able to send
8259  * out the Authentication or Association Request frame or timing out while
8260  * waiting for the response. Only one of the functions among
8261  * cfg80211_connect_bss(), cfg80211_connect_result(),
8262  * cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
8263  */
8264 static inline void
cfg80211_connect_timeout(struct net_device * dev,const u8 * bssid,const u8 * req_ie,size_t req_ie_len,gfp_t gfp,enum nl80211_timeout_reason timeout_reason)8265 cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
8266 			 const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
8267 			 enum nl80211_timeout_reason timeout_reason)
8268 {
8269 	cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1,
8270 			     gfp, timeout_reason);
8271 }
8272 
8273 /**
8274  * struct cfg80211_roam_info - driver initiated roaming information
8275  *
8276  * @req_ie: association request IEs (maybe be %NULL)
8277  * @req_ie_len: association request IEs length
8278  * @resp_ie: association response IEs (may be %NULL)
8279  * @resp_ie_len: assoc response IEs length
8280  * @fils: FILS related roaming information.
8281  * @valid_links: For MLO roaming, BIT mask of the new valid links is set.
8282  *	Otherwise zero.
8283  * @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
8284  * @links : For MLO roaming, contains new link info for the valid links set in
8285  *	@valid_links. For non-MLO roaming, links[0] contains the new AP info.
8286  * @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
8287  * @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
8288  *	roaming, links[0].bssid points to the BSSID of the new AP. May be
8289  *	%NULL if %links.bss is set.
8290  * @links.channel: the channel of the new AP.
8291  * @links.bss: For MLO roaming, entry of new bss to which STA link got
8292  *	roamed. For non-MLO roaming, links[0].bss points to entry of bss to
8293  *	which STA got roamed (may be %NULL if %links.bssid is set)
8294  */
8295 struct cfg80211_roam_info {
8296 	const u8 *req_ie;
8297 	size_t req_ie_len;
8298 	const u8 *resp_ie;
8299 	size_t resp_ie_len;
8300 	struct cfg80211_fils_resp_params fils;
8301 
8302 	const u8 *ap_mld_addr;
8303 	u16 valid_links;
8304 	struct {
8305 		const u8 *addr;
8306 		const u8 *bssid;
8307 		struct ieee80211_channel *channel;
8308 		struct cfg80211_bss *bss;
8309 	} links[IEEE80211_MLD_MAX_NUM_LINKS];
8310 };
8311 
8312 /**
8313  * cfg80211_roamed - notify cfg80211 of roaming
8314  *
8315  * @dev: network device
8316  * @info: information about the new BSS. struct &cfg80211_roam_info.
8317  * @gfp: allocation flags
8318  *
8319  * This function may be called with the driver passing either the BSSID of the
8320  * new AP or passing the bss entry to avoid a race in timeout of the bss entry.
8321  * It should be called by the underlying driver whenever it roamed from one AP
8322  * to another while connected. Drivers which have roaming implemented in
8323  * firmware should pass the bss entry to avoid a race in bss entry timeout where
8324  * the bss entry of the new AP is seen in the driver, but gets timed out by the
8325  * time it is accessed in __cfg80211_roamed() due to delay in scheduling
8326  * rdev->event_work. In case of any failures, the reference is released
8327  * either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
8328  * released while disconnecting from the current bss.
8329  */
8330 void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
8331 		     gfp_t gfp);
8332 
8333 /**
8334  * cfg80211_port_authorized - notify cfg80211 of successful security association
8335  *
8336  * @dev: network device
8337  * @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address
8338  *	in case of AP/P2P GO
8339  * @td_bitmap: transition disable policy
8340  * @td_bitmap_len: Length of transition disable policy
8341  * @gfp: allocation flags
8342  *
8343  * This function should be called by a driver that supports 4 way handshake
8344  * offload after a security association was successfully established (i.e.,
8345  * the 4 way handshake was completed successfully). The call to this function
8346  * should be preceded with a call to cfg80211_connect_result(),
8347  * cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
8348  * indicate the 802.11 association.
8349  * This function can also be called by AP/P2P GO driver that supports
8350  * authentication offload. In this case the peer_mac passed is that of
8351  * associated STA/GC.
8352  */
8353 void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr,
8354 			      const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
8355 
8356 /**
8357  * cfg80211_disconnected - notify cfg80211 that connection was dropped
8358  *
8359  * @dev: network device
8360  * @ie: information elements of the deauth/disassoc frame (may be %NULL)
8361  * @ie_len: length of IEs
8362  * @reason: reason code for the disconnection, set it to 0 if unknown
8363  * @locally_generated: disconnection was requested locally
8364  * @gfp: allocation flags
8365  *
8366  * After it calls this function, the driver should enter an idle state
8367  * and not try to connect to any AP any more.
8368  */
8369 void cfg80211_disconnected(struct net_device *dev, u16 reason,
8370 			   const u8 *ie, size_t ie_len,
8371 			   bool locally_generated, gfp_t gfp);
8372 
8373 /**
8374  * cfg80211_ready_on_channel - notification of remain_on_channel start
8375  * @wdev: wireless device
8376  * @cookie: the request cookie
8377  * @chan: The current channel (from remain_on_channel request)
8378  * @duration: Duration in milliseconds that the driver intents to remain on the
8379  *	channel
8380  * @gfp: allocation flags
8381  */
8382 void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
8383 			       struct ieee80211_channel *chan,
8384 			       unsigned int duration, gfp_t gfp);
8385 
8386 /**
8387  * cfg80211_remain_on_channel_expired - remain_on_channel duration expired
8388  * @wdev: wireless device
8389  * @cookie: the request cookie
8390  * @chan: The current channel (from remain_on_channel request)
8391  * @gfp: allocation flags
8392  */
8393 void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
8394 					struct ieee80211_channel *chan,
8395 					gfp_t gfp);
8396 
8397 /**
8398  * cfg80211_tx_mgmt_expired - tx_mgmt duration expired
8399  * @wdev: wireless device
8400  * @cookie: the requested cookie
8401  * @chan: The current channel (from tx_mgmt request)
8402  * @gfp: allocation flags
8403  */
8404 void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
8405 			      struct ieee80211_channel *chan, gfp_t gfp);
8406 
8407 /**
8408  * cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
8409  *
8410  * @sinfo: the station information
8411  * @gfp: allocation flags
8412  *
8413  * Return: 0 on success. Non-zero on error.
8414  */
8415 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
8416 
8417 /**
8418  * cfg80211_sinfo_release_content - release contents of station info
8419  * @sinfo: the station information
8420  *
8421  * Releases any potentially allocated sub-information of the station
8422  * information, but not the struct itself (since it's typically on
8423  * the stack.)
8424  */
cfg80211_sinfo_release_content(struct station_info * sinfo)8425 static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
8426 {
8427 	kfree(sinfo->pertid);
8428 }
8429 
8430 /**
8431  * cfg80211_new_sta - notify userspace about station
8432  *
8433  * @dev: the netdev
8434  * @mac_addr: the station's address
8435  * @sinfo: the station information
8436  * @gfp: allocation flags
8437  */
8438 void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
8439 		      struct station_info *sinfo, gfp_t gfp);
8440 
8441 /**
8442  * cfg80211_del_sta_sinfo - notify userspace about deletion of a station
8443  * @dev: the netdev
8444  * @mac_addr: the station's address. For MLD station, MLD address is used.
8445  * @sinfo: the station information/statistics
8446  * @gfp: allocation flags
8447  */
8448 void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
8449 			    struct station_info *sinfo, gfp_t gfp);
8450 
8451 /**
8452  * cfg80211_del_sta - notify userspace about deletion of a station
8453  *
8454  * @dev: the netdev
8455  * @mac_addr: the station's address. For MLD station, MLD address is used.
8456  * @gfp: allocation flags
8457  */
cfg80211_del_sta(struct net_device * dev,const u8 * mac_addr,gfp_t gfp)8458 static inline void cfg80211_del_sta(struct net_device *dev,
8459 				    const u8 *mac_addr, gfp_t gfp)
8460 {
8461 	cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
8462 }
8463 
8464 /**
8465  * cfg80211_conn_failed - connection request failed notification
8466  *
8467  * @dev: the netdev
8468  * @mac_addr: the station's address
8469  * @reason: the reason for connection failure
8470  * @gfp: allocation flags
8471  *
8472  * Whenever a station tries to connect to an AP and if the station
8473  * could not connect to the AP as the AP has rejected the connection
8474  * for some reasons, this function is called.
8475  *
8476  * The reason for connection failure can be any of the value from
8477  * nl80211_connect_failed_reason enum
8478  */
8479 void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
8480 			  enum nl80211_connect_failed_reason reason,
8481 			  gfp_t gfp);
8482 
8483 /**
8484  * struct cfg80211_rx_info - received management frame info
8485  *
8486  * @freq: Frequency on which the frame was received in kHz
8487  * @sig_dbm: signal strength in dBm, or 0 if unknown
8488  * @have_link_id: indicates the frame was received on a link of
8489  *	an MLD, i.e. the @link_id field is valid
8490  * @link_id: the ID of the link the frame was received	on
8491  * @buf: Management frame (header + body)
8492  * @len: length of the frame data
8493  * @flags: flags, as defined in &enum nl80211_rxmgmt_flags
8494  * @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
8495  * @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
8496  */
8497 struct cfg80211_rx_info {
8498 	int freq;
8499 	int sig_dbm;
8500 	bool have_link_id;
8501 	u8 link_id;
8502 	const u8 *buf;
8503 	size_t len;
8504 	u32 flags;
8505 	u64 rx_tstamp;
8506 	u64 ack_tstamp;
8507 };
8508 
8509 /**
8510  * cfg80211_rx_mgmt_ext - management frame notification with extended info
8511  * @wdev: wireless device receiving the frame
8512  * @info: RX info as defined in struct cfg80211_rx_info
8513  *
8514  * This function is called whenever an Action frame is received for a station
8515  * mode interface, but is not processed in kernel.
8516  *
8517  * Return: %true if a user space application has registered for this frame.
8518  * For action frames, that makes it responsible for rejecting unrecognized
8519  * action frames; %false otherwise, in which case for action frames the
8520  * driver is responsible for rejecting the frame.
8521  */
8522 bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
8523 			  struct cfg80211_rx_info *info);
8524 
8525 /**
8526  * cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
8527  * @wdev: wireless device receiving the frame
8528  * @freq: Frequency on which the frame was received in KHz
8529  * @sig_dbm: signal strength in dBm, or 0 if unknown
8530  * @buf: Management frame (header + body)
8531  * @len: length of the frame data
8532  * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8533  *
8534  * This function is called whenever an Action frame is received for a station
8535  * mode interface, but is not processed in kernel.
8536  *
8537  * Return: %true if a user space application has registered for this frame.
8538  * For action frames, that makes it responsible for rejecting unrecognized
8539  * action frames; %false otherwise, in which case for action frames the
8540  * driver is responsible for rejecting the frame.
8541  */
cfg80211_rx_mgmt_khz(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8542 static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
8543 					int sig_dbm, const u8 *buf, size_t len,
8544 					u32 flags)
8545 {
8546 	struct cfg80211_rx_info info = {
8547 		.freq = freq,
8548 		.sig_dbm = sig_dbm,
8549 		.buf = buf,
8550 		.len = len,
8551 		.flags = flags
8552 	};
8553 
8554 	return cfg80211_rx_mgmt_ext(wdev, &info);
8555 }
8556 
8557 /**
8558  * cfg80211_rx_mgmt - notification of received, unprocessed management frame
8559  * @wdev: wireless device receiving the frame
8560  * @freq: Frequency on which the frame was received in MHz
8561  * @sig_dbm: signal strength in dBm, or 0 if unknown
8562  * @buf: Management frame (header + body)
8563  * @len: length of the frame data
8564  * @flags: flags, as defined in enum nl80211_rxmgmt_flags
8565  *
8566  * This function is called whenever an Action frame is received for a station
8567  * mode interface, but is not processed in kernel.
8568  *
8569  * Return: %true if a user space application has registered for this frame.
8570  * For action frames, that makes it responsible for rejecting unrecognized
8571  * action frames; %false otherwise, in which case for action frames the
8572  * driver is responsible for rejecting the frame.
8573  */
cfg80211_rx_mgmt(struct wireless_dev * wdev,int freq,int sig_dbm,const u8 * buf,size_t len,u32 flags)8574 static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
8575 				    int sig_dbm, const u8 *buf, size_t len,
8576 				    u32 flags)
8577 {
8578 	struct cfg80211_rx_info info = {
8579 		.freq = MHZ_TO_KHZ(freq),
8580 		.sig_dbm = sig_dbm,
8581 		.buf = buf,
8582 		.len = len,
8583 		.flags = flags
8584 	};
8585 
8586 	return cfg80211_rx_mgmt_ext(wdev, &info);
8587 }
8588 
8589 /**
8590  * struct cfg80211_tx_status - TX status for management frame information
8591  *
8592  * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8593  * @tx_tstamp: hardware TX timestamp in nanoseconds
8594  * @ack_tstamp: hardware ack RX timestamp in nanoseconds
8595  * @buf: Management frame (header + body)
8596  * @len: length of the frame data
8597  * @ack: Whether frame was acknowledged
8598  */
8599 struct cfg80211_tx_status {
8600 	u64 cookie;
8601 	u64 tx_tstamp;
8602 	u64 ack_tstamp;
8603 	const u8 *buf;
8604 	size_t len;
8605 	bool ack;
8606 };
8607 
8608 /**
8609  * cfg80211_mgmt_tx_status_ext - TX status notification with extended info
8610  * @wdev: wireless device receiving the frame
8611  * @status: TX status data
8612  * @gfp: context flags
8613  *
8614  * This function is called whenever a management frame was requested to be
8615  * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8616  * transmission attempt with extended info.
8617  */
8618 void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
8619 				 struct cfg80211_tx_status *status, gfp_t gfp);
8620 
8621 /**
8622  * cfg80211_mgmt_tx_status - notification of TX status for management frame
8623  * @wdev: wireless device receiving the frame
8624  * @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
8625  * @buf: Management frame (header + body)
8626  * @len: length of the frame data
8627  * @ack: Whether frame was acknowledged
8628  * @gfp: context flags
8629  *
8630  * This function is called whenever a management frame was requested to be
8631  * transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
8632  * transmission attempt.
8633  */
cfg80211_mgmt_tx_status(struct wireless_dev * wdev,u64 cookie,const u8 * buf,size_t len,bool ack,gfp_t gfp)8634 static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
8635 					   u64 cookie, const u8 *buf,
8636 					   size_t len, bool ack, gfp_t gfp)
8637 {
8638 	struct cfg80211_tx_status status = {
8639 		.cookie = cookie,
8640 		.buf = buf,
8641 		.len = len,
8642 		.ack = ack
8643 	};
8644 
8645 	cfg80211_mgmt_tx_status_ext(wdev, &status, gfp);
8646 }
8647 
8648 /**
8649  * cfg80211_control_port_tx_status - notification of TX status for control
8650  *                                   port frames
8651  * @wdev: wireless device receiving the frame
8652  * @cookie: Cookie returned by cfg80211_ops::tx_control_port()
8653  * @buf: Data frame (header + body)
8654  * @len: length of the frame data
8655  * @ack: Whether frame was acknowledged
8656  * @gfp: context flags
8657  *
8658  * This function is called whenever a control port frame was requested to be
8659  * transmitted with cfg80211_ops::tx_control_port() to report the TX status of
8660  * the transmission attempt.
8661  */
8662 void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
8663 				     const u8 *buf, size_t len, bool ack,
8664 				     gfp_t gfp);
8665 
8666 /**
8667  * cfg80211_rx_control_port - notification about a received control port frame
8668  * @dev: The device the frame matched to
8669  * @skb: The skbuf with the control port frame.  It is assumed that the skbuf
8670  *	is 802.3 formatted (with 802.3 header).  The skb can be non-linear.
8671  *	This function does not take ownership of the skb, so the caller is
8672  *	responsible for any cleanup.  The caller must also ensure that
8673  *	skb->protocol is set appropriately.
8674  * @unencrypted: Whether the frame was received unencrypted
8675  * @link_id: the link the frame was received on, -1 if not applicable or unknown
8676  *
8677  * This function is used to inform userspace about a received control port
8678  * frame.  It should only be used if userspace indicated it wants to receive
8679  * control port frames over nl80211.
8680  *
8681  * The frame is the data portion of the 802.3 or 802.11 data frame with all
8682  * network layer headers removed (e.g. the raw EAPoL frame).
8683  *
8684  * Return: %true if the frame was passed to userspace
8685  */
8686 bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
8687 			      bool unencrypted, int link_id);
8688 
8689 /**
8690  * cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
8691  * @dev: network device
8692  * @rssi_event: the triggered RSSI event
8693  * @rssi_level: new RSSI level value or 0 if not available
8694  * @gfp: context flags
8695  *
8696  * This function is called when a configured connection quality monitoring
8697  * rssi threshold reached event occurs.
8698  */
8699 void cfg80211_cqm_rssi_notify(struct net_device *dev,
8700 			      enum nl80211_cqm_rssi_threshold_event rssi_event,
8701 			      s32 rssi_level, gfp_t gfp);
8702 
8703 /**
8704  * cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
8705  * @dev: network device
8706  * @peer: peer's MAC address
8707  * @num_packets: how many packets were lost -- should be a fixed threshold
8708  *	but probably no less than maybe 50, or maybe a throughput dependent
8709  *	threshold (to account for temporary interference)
8710  * @gfp: context flags
8711  */
8712 void cfg80211_cqm_pktloss_notify(struct net_device *dev,
8713 				 const u8 *peer, u32 num_packets, gfp_t gfp);
8714 
8715 /**
8716  * cfg80211_cqm_txe_notify - TX error rate event
8717  * @dev: network device
8718  * @peer: peer's MAC address
8719  * @num_packets: how many packets were lost
8720  * @rate: % of packets which failed transmission
8721  * @intvl: interval (in s) over which the TX failure threshold was breached.
8722  * @gfp: context flags
8723  *
8724  * Notify userspace when configured % TX failures over number of packets in a
8725  * given interval is exceeded.
8726  */
8727 void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
8728 			     u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
8729 
8730 /**
8731  * cfg80211_cqm_beacon_loss_notify - beacon loss event
8732  * @dev: network device
8733  * @gfp: context flags
8734  *
8735  * Notify userspace about beacon loss from the connected AP.
8736  */
8737 void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
8738 
8739 /**
8740  * __cfg80211_radar_event - radar detection event
8741  * @wiphy: the wiphy
8742  * @chandef: chandef for the current channel
8743  * @offchan: the radar has been detected on the offchannel chain
8744  * @gfp: context flags
8745  *
8746  * This function is called when a radar is detected on the current chanenl.
8747  */
8748 void __cfg80211_radar_event(struct wiphy *wiphy,
8749 			    struct cfg80211_chan_def *chandef,
8750 			    bool offchan, gfp_t gfp);
8751 
8752 static inline void
cfg80211_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)8753 cfg80211_radar_event(struct wiphy *wiphy,
8754 		     struct cfg80211_chan_def *chandef,
8755 		     gfp_t gfp)
8756 {
8757 	__cfg80211_radar_event(wiphy, chandef, false, gfp);
8758 }
8759 
8760 static inline void
cfg80211_background_radar_event(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,gfp_t gfp)8761 cfg80211_background_radar_event(struct wiphy *wiphy,
8762 				struct cfg80211_chan_def *chandef,
8763 				gfp_t gfp)
8764 {
8765 	__cfg80211_radar_event(wiphy, chandef, true, gfp);
8766 }
8767 
8768 /**
8769  * cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
8770  * @dev: network device
8771  * @mac: MAC address of a station which opmode got modified
8772  * @sta_opmode: station's current opmode value
8773  * @gfp: context flags
8774  *
8775  * Driver should call this function when station's opmode modified via action
8776  * frame.
8777  */
8778 void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
8779 				       struct sta_opmode_info *sta_opmode,
8780 				       gfp_t gfp);
8781 
8782 /**
8783  * cfg80211_cac_event - Channel availability check (CAC) event
8784  * @netdev: network device
8785  * @chandef: chandef for the current channel
8786  * @event: type of event
8787  * @gfp: context flags
8788  * @link_id: valid link_id for MLO operation or 0 otherwise.
8789  *
8790  * This function is called when a Channel availability check (CAC) is finished
8791  * or aborted. This must be called to notify the completion of a CAC process,
8792  * also by full-MAC drivers.
8793  */
8794 void cfg80211_cac_event(struct net_device *netdev,
8795 			const struct cfg80211_chan_def *chandef,
8796 			enum nl80211_radar_event event, gfp_t gfp,
8797 			unsigned int link_id);
8798 
8799 /**
8800  * cfg80211_background_cac_abort - Channel Availability Check offchan abort event
8801  * @wiphy: the wiphy
8802  *
8803  * This function is called by the driver when a Channel Availability Check
8804  * (CAC) is aborted by a offchannel dedicated chain.
8805  */
8806 void cfg80211_background_cac_abort(struct wiphy *wiphy);
8807 
8808 /**
8809  * cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
8810  * @dev: network device
8811  * @bssid: BSSID of AP (to avoid races)
8812  * @replay_ctr: new replay counter
8813  * @gfp: allocation flags
8814  */
8815 void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
8816 			       const u8 *replay_ctr, gfp_t gfp);
8817 
8818 /**
8819  * cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
8820  * @dev: network device
8821  * @index: candidate index (the smaller the index, the higher the priority)
8822  * @bssid: BSSID of AP
8823  * @preauth: Whether AP advertises support for RSN pre-authentication
8824  * @gfp: allocation flags
8825  */
8826 void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
8827 				     const u8 *bssid, bool preauth, gfp_t gfp);
8828 
8829 /**
8830  * cfg80211_rx_spurious_frame - inform userspace about a spurious frame
8831  * @dev: The device the frame matched to
8832  * @addr: the transmitter address
8833  * @gfp: context flags
8834  *
8835  * This function is used in AP mode (only!) to inform userspace that
8836  * a spurious class 3 frame was received, to be able to deauth the
8837  * sender.
8838  * Return: %true if the frame was passed to userspace (or this failed
8839  * for a reason other than not having a subscription.)
8840  */
8841 bool cfg80211_rx_spurious_frame(struct net_device *dev,
8842 				const u8 *addr, gfp_t gfp);
8843 
8844 /**
8845  * cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
8846  * @dev: The device the frame matched to
8847  * @addr: the transmitter address
8848  * @gfp: context flags
8849  *
8850  * This function is used in AP mode (only!) to inform userspace that
8851  * an associated station sent a 4addr frame but that wasn't expected.
8852  * It is allowed and desirable to send this event only once for each
8853  * station to avoid event flooding.
8854  * Return: %true if the frame was passed to userspace (or this failed
8855  * for a reason other than not having a subscription.)
8856  */
8857 bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev,
8858 					const u8 *addr, gfp_t gfp);
8859 
8860 /**
8861  * cfg80211_probe_status - notify userspace about probe status
8862  * @dev: the device the probe was sent on
8863  * @addr: the address of the peer
8864  * @cookie: the cookie filled in @probe_client previously
8865  * @acked: indicates whether probe was acked or not
8866  * @ack_signal: signal strength (in dBm) of the ACK frame.
8867  * @is_valid_ack_signal: indicates the ack_signal is valid or not.
8868  * @gfp: allocation flags
8869  */
8870 void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
8871 			   u64 cookie, bool acked, s32 ack_signal,
8872 			   bool is_valid_ack_signal, gfp_t gfp);
8873 
8874 /**
8875  * cfg80211_report_obss_beacon_khz - report beacon from other APs
8876  * @wiphy: The wiphy that received the beacon
8877  * @frame: the frame
8878  * @len: length of the frame
8879  * @freq: frequency the frame was received on in KHz
8880  * @sig_dbm: signal strength in dBm, or 0 if unknown
8881  *
8882  * Use this function to report to userspace when a beacon was
8883  * received. It is not useful to call this when there is no
8884  * netdev that is in AP/GO mode.
8885  */
8886 void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
8887 				     size_t len, int freq, int sig_dbm);
8888 
8889 /**
8890  * cfg80211_report_obss_beacon - report beacon from other APs
8891  * @wiphy: The wiphy that received the beacon
8892  * @frame: the frame
8893  * @len: length of the frame
8894  * @freq: frequency the frame was received on
8895  * @sig_dbm: signal strength in dBm, or 0 if unknown
8896  *
8897  * Use this function to report to userspace when a beacon was
8898  * received. It is not useful to call this when there is no
8899  * netdev that is in AP/GO mode.
8900  */
cfg80211_report_obss_beacon(struct wiphy * wiphy,const u8 * frame,size_t len,int freq,int sig_dbm)8901 static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
8902 					       const u8 *frame, size_t len,
8903 					       int freq, int sig_dbm)
8904 {
8905 	cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
8906 					sig_dbm);
8907 }
8908 
8909 /**
8910  * struct cfg80211_beaconing_check_config - beacon check configuration
8911  * @iftype: the interface type to check for
8912  * @relax: allow IR-relaxation conditions to apply (e.g. another
8913  *	interface connected already on the same channel)
8914  *	NOTE: If this is set, wiphy mutex must be held.
8915  * @reg_power: &enum ieee80211_ap_reg_power value indicating the
8916  *	advertised/used 6 GHz regulatory power setting
8917  */
8918 struct cfg80211_beaconing_check_config {
8919 	enum nl80211_iftype iftype;
8920 	enum ieee80211_ap_reg_power reg_power;
8921 	bool relax;
8922 };
8923 
8924 /**
8925  * cfg80211_reg_check_beaconing - check if beaconing is allowed
8926  * @wiphy: the wiphy
8927  * @chandef: the channel definition
8928  * @cfg: additional parameters for the checking
8929  *
8930  * Return: %true if there is no secondary channel or the secondary channel(s)
8931  * can be used for beaconing (i.e. is not a radar channel etc.)
8932  */
8933 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
8934 				  struct cfg80211_chan_def *chandef,
8935 				  struct cfg80211_beaconing_check_config *cfg);
8936 
8937 /**
8938  * cfg80211_reg_can_beacon - check if beaconing is allowed
8939  * @wiphy: the wiphy
8940  * @chandef: the channel definition
8941  * @iftype: interface type
8942  *
8943  * Return: %true if there is no secondary channel or the secondary channel(s)
8944  * can be used for beaconing (i.e. is not a radar channel etc.)
8945  */
8946 static inline bool
cfg80211_reg_can_beacon(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)8947 cfg80211_reg_can_beacon(struct wiphy *wiphy,
8948 			struct cfg80211_chan_def *chandef,
8949 			enum nl80211_iftype iftype)
8950 {
8951 	struct cfg80211_beaconing_check_config config = {
8952 		.iftype = iftype,
8953 	};
8954 
8955 	return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
8956 }
8957 
8958 /**
8959  * cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
8960  * @wiphy: the wiphy
8961  * @chandef: the channel definition
8962  * @iftype: interface type
8963  *
8964  * Return: %true if there is no secondary channel or the secondary channel(s)
8965  * can be used for beaconing (i.e. is not a radar channel etc.). This version
8966  * also checks if IR-relaxation conditions apply, to allow beaconing under
8967  * more permissive conditions.
8968  *
8969  * Context: Requires the wiphy mutex to be held.
8970  */
8971 static inline bool
cfg80211_reg_can_beacon_relax(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)8972 cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
8973 			      struct cfg80211_chan_def *chandef,
8974 			      enum nl80211_iftype iftype)
8975 {
8976 	struct cfg80211_beaconing_check_config config = {
8977 		.iftype = iftype,
8978 		.relax = true,
8979 	};
8980 
8981 	return cfg80211_reg_check_beaconing(wiphy, chandef, &config);
8982 }
8983 
8984 /**
8985  * cfg80211_ch_switch_notify - update wdev channel and notify userspace
8986  * @dev: the device which switched channels
8987  * @chandef: the new channel definition
8988  * @link_id: the link ID for MLO, must be 0 for non-MLO
8989  *
8990  * Caller must hold wiphy mutex, therefore must only be called from sleepable
8991  * driver context!
8992  */
8993 void cfg80211_ch_switch_notify(struct net_device *dev,
8994 			       struct cfg80211_chan_def *chandef,
8995 			       unsigned int link_id);
8996 
8997 /**
8998  * cfg80211_ch_switch_started_notify - notify channel switch start
8999  * @dev: the device on which the channel switch started
9000  * @chandef: the future channel definition
9001  * @link_id: the link ID for MLO, must be 0 for non-MLO
9002  * @count: the number of TBTTs until the channel switch happens
9003  * @quiet: whether or not immediate quiet was requested by the AP
9004  *
9005  * Inform the userspace about the channel switch that has just
9006  * started, so that it can take appropriate actions (eg. starting
9007  * channel switch on other vifs), if necessary.
9008  */
9009 void cfg80211_ch_switch_started_notify(struct net_device *dev,
9010 				       struct cfg80211_chan_def *chandef,
9011 				       unsigned int link_id, u8 count,
9012 				       bool quiet);
9013 
9014 /**
9015  * ieee80211_operating_class_to_band - convert operating class to band
9016  *
9017  * @operating_class: the operating class to convert
9018  * @band: band pointer to fill
9019  *
9020  * Return: %true if the conversion was successful, %false otherwise.
9021  */
9022 bool ieee80211_operating_class_to_band(u8 operating_class,
9023 				       enum nl80211_band *band);
9024 
9025 /**
9026  * ieee80211_operating_class_to_chandef - convert operating class to chandef
9027  *
9028  * @operating_class: the operating class to convert
9029  * @chan: the ieee80211_channel to convert
9030  * @chandef: a pointer to the resulting chandef
9031  *
9032  * Return: %true if the conversion was successful, %false otherwise.
9033  */
9034 bool ieee80211_operating_class_to_chandef(u8 operating_class,
9035 					  struct ieee80211_channel *chan,
9036 					  struct cfg80211_chan_def *chandef);
9037 
9038 /**
9039  * ieee80211_chandef_to_operating_class - convert chandef to operation class
9040  *
9041  * @chandef: the chandef to convert
9042  * @op_class: a pointer to the resulting operating class
9043  *
9044  * Return: %true if the conversion was successful, %false otherwise.
9045  */
9046 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
9047 					  u8 *op_class);
9048 
9049 /**
9050  * ieee80211_chandef_to_khz - convert chandef to frequency in KHz
9051  *
9052  * @chandef: the chandef to convert
9053  *
9054  * Return: the center frequency of chandef (1st segment) in KHz.
9055  */
9056 static inline u32
ieee80211_chandef_to_khz(const struct cfg80211_chan_def * chandef)9057 ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
9058 {
9059 	return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
9060 }
9061 
9062 /**
9063  * cfg80211_tdls_oper_request - request userspace to perform TDLS operation
9064  * @dev: the device on which the operation is requested
9065  * @peer: the MAC address of the peer device
9066  * @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
9067  *	NL80211_TDLS_TEARDOWN)
9068  * @reason_code: the reason code for teardown request
9069  * @gfp: allocation flags
9070  *
9071  * This function is used to request userspace to perform TDLS operation that
9072  * requires knowledge of keys, i.e., link setup or teardown when the AP
9073  * connection uses encryption. This is optional mechanism for the driver to use
9074  * if it can automatically determine when a TDLS link could be useful (e.g.,
9075  * based on traffic and signal strength for a peer).
9076  */
9077 void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
9078 				enum nl80211_tdls_operation oper,
9079 				u16 reason_code, gfp_t gfp);
9080 
9081 /**
9082  * cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
9083  * @rate: given rate_info to calculate bitrate from
9084  *
9085  * Return: calculated bitrate
9086  */
9087 u32 cfg80211_calculate_bitrate(struct rate_info *rate);
9088 
9089 /**
9090  * cfg80211_unregister_wdev - remove the given wdev
9091  * @wdev: struct wireless_dev to remove
9092  *
9093  * This function removes the device so it can no longer be used. It is necessary
9094  * to call this function even when cfg80211 requests the removal of the device
9095  * by calling the del_virtual_intf() callback. The function must also be called
9096  * when the driver wishes to unregister the wdev, e.g. when the hardware device
9097  * is unbound from the driver.
9098  *
9099  * Context: Requires the RTNL and wiphy mutex to be held.
9100  */
9101 void cfg80211_unregister_wdev(struct wireless_dev *wdev);
9102 
9103 /**
9104  * cfg80211_register_netdevice - register the given netdev
9105  * @dev: the netdev to register
9106  *
9107  * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9108  * than register_netdevice(), unregister_netdev() is impossible as the RTNL is
9109  * held. Otherwise, both register_netdevice() and register_netdev() are usable
9110  * instead as well.
9111  *
9112  * Context: Requires the RTNL and wiphy mutex to be held.
9113  *
9114  * Return: 0 on success. Non-zero on error.
9115  */
9116 int cfg80211_register_netdevice(struct net_device *dev);
9117 
9118 /**
9119  * cfg80211_unregister_netdevice - unregister the given netdev
9120  * @dev: the netdev to register
9121  *
9122  * Note: In contexts coming from cfg80211 callbacks, you must call this rather
9123  * than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
9124  * is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
9125  * usable instead as well.
9126  *
9127  * Context: Requires the RTNL and wiphy mutex to be held.
9128  */
cfg80211_unregister_netdevice(struct net_device * dev)9129 static inline void cfg80211_unregister_netdevice(struct net_device *dev)
9130 {
9131 #if IS_ENABLED(CONFIG_CFG80211)
9132 	cfg80211_unregister_wdev(dev->ieee80211_ptr);
9133 #endif
9134 }
9135 
9136 /**
9137  * struct cfg80211_ft_event_params - FT Information Elements
9138  * @ies: FT IEs
9139  * @ies_len: length of the FT IE in bytes
9140  * @target_ap: target AP's MAC address
9141  * @ric_ies: RIC IE
9142  * @ric_ies_len: length of the RIC IE in bytes
9143  */
9144 struct cfg80211_ft_event_params {
9145 	const u8 *ies;
9146 	size_t ies_len;
9147 	const u8 *target_ap;
9148 	const u8 *ric_ies;
9149 	size_t ric_ies_len;
9150 };
9151 
9152 /**
9153  * cfg80211_ft_event - notify userspace about FT IE and RIC IE
9154  * @netdev: network device
9155  * @ft_event: IE information
9156  */
9157 void cfg80211_ft_event(struct net_device *netdev,
9158 		       struct cfg80211_ft_event_params *ft_event);
9159 
9160 /**
9161  * cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
9162  * @ies: the input IE buffer
9163  * @len: the input length
9164  * @attr: the attribute ID to find
9165  * @buf: output buffer, can be %NULL if the data isn't needed, e.g.
9166  *	if the function is only called to get the needed buffer size
9167  * @bufsize: size of the output buffer
9168  *
9169  * The function finds a given P2P attribute in the (vendor) IEs and
9170  * copies its contents to the given buffer.
9171  *
9172  * Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
9173  * malformed or the attribute can't be found (respectively), or the
9174  * length of the found attribute (which can be zero).
9175  */
9176 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
9177 			  enum ieee80211_p2p_attr_id attr,
9178 			  u8 *buf, unsigned int bufsize);
9179 
9180 /**
9181  * ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
9182  * @ies: the IE buffer
9183  * @ielen: the length of the IE buffer
9184  * @ids: an array with element IDs that are allowed before
9185  *	the split. A WLAN_EID_EXTENSION value means that the next
9186  *	EID in the list is a sub-element of the EXTENSION IE.
9187  * @n_ids: the size of the element ID array
9188  * @after_ric: array IE types that come after the RIC element
9189  * @n_after_ric: size of the @after_ric array
9190  * @offset: offset where to start splitting in the buffer
9191  *
9192  * This function splits an IE buffer by updating the @offset
9193  * variable to point to the location where the buffer should be
9194  * split.
9195  *
9196  * It assumes that the given IE buffer is well-formed, this
9197  * has to be guaranteed by the caller!
9198  *
9199  * It also assumes that the IEs in the buffer are ordered
9200  * correctly, if not the result of using this function will not
9201  * be ordered correctly either, i.e. it does no reordering.
9202  *
9203  * Return: The offset where the next part of the buffer starts, which
9204  * may be @ielen if the entire (remainder) of the buffer should be
9205  * used.
9206  */
9207 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
9208 			      const u8 *ids, int n_ids,
9209 			      const u8 *after_ric, int n_after_ric,
9210 			      size_t offset);
9211 
9212 /**
9213  * ieee80211_ie_split - split an IE buffer according to ordering
9214  * @ies: the IE buffer
9215  * @ielen: the length of the IE buffer
9216  * @ids: an array with element IDs that are allowed before
9217  *	the split. A WLAN_EID_EXTENSION value means that the next
9218  *	EID in the list is a sub-element of the EXTENSION IE.
9219  * @n_ids: the size of the element ID array
9220  * @offset: offset where to start splitting in the buffer
9221  *
9222  * This function splits an IE buffer by updating the @offset
9223  * variable to point to the location where the buffer should be
9224  * split.
9225  *
9226  * It assumes that the given IE buffer is well-formed, this
9227  * has to be guaranteed by the caller!
9228  *
9229  * It also assumes that the IEs in the buffer are ordered
9230  * correctly, if not the result of using this function will not
9231  * be ordered correctly either, i.e. it does no reordering.
9232  *
9233  * Return: The offset where the next part of the buffer starts, which
9234  * may be @ielen if the entire (remainder) of the buffer should be
9235  * used.
9236  */
ieee80211_ie_split(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,size_t offset)9237 static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
9238 					const u8 *ids, int n_ids, size_t offset)
9239 {
9240 	return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
9241 }
9242 
9243 /**
9244  * ieee80211_fragment_element - fragment the last element in skb
9245  * @skb: The skbuf that the element was added to
9246  * @len_pos: Pointer to length of the element to fragment
9247  * @frag_id: The element ID to use for fragments
9248  *
9249  * This function fragments all data after @len_pos, adding fragmentation
9250  * elements with the given ID as appropriate. The SKB will grow in size
9251  * accordingly.
9252  */
9253 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id);
9254 
9255 /**
9256  * cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
9257  * @wdev: the wireless device reporting the wakeup
9258  * @wakeup: the wakeup report
9259  * @gfp: allocation flags
9260  *
9261  * This function reports that the given device woke up. If it
9262  * caused the wakeup, report the reason(s), otherwise you may
9263  * pass %NULL as the @wakeup parameter to advertise that something
9264  * else caused the wakeup.
9265  */
9266 void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
9267 				   struct cfg80211_wowlan_wakeup *wakeup,
9268 				   gfp_t gfp);
9269 
9270 /**
9271  * cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
9272  *
9273  * @wdev: the wireless device for which critical protocol is stopped.
9274  * @gfp: allocation flags
9275  *
9276  * This function can be called by the driver to indicate it has reverted
9277  * operation back to normal. One reason could be that the duration given
9278  * by .crit_proto_start() has expired.
9279  */
9280 void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
9281 
9282 /**
9283  * ieee80211_get_num_supported_channels - get number of channels device has
9284  * @wiphy: the wiphy
9285  *
9286  * Return: the number of channels supported by the device.
9287  */
9288 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
9289 
9290 /**
9291  * cfg80211_check_combinations - check interface combinations
9292  *
9293  * @wiphy: the wiphy
9294  * @params: the interface combinations parameter
9295  *
9296  * This function can be called by the driver to check whether a
9297  * combination of interfaces and their types are allowed according to
9298  * the interface combinations.
9299  *
9300  * Return: 0 if combinations are allowed. Non-zero on error.
9301  */
9302 int cfg80211_check_combinations(struct wiphy *wiphy,
9303 				struct iface_combination_params *params);
9304 
9305 /**
9306  * cfg80211_iter_combinations - iterate over matching combinations
9307  *
9308  * @wiphy: the wiphy
9309  * @params: the interface combinations parameter
9310  * @iter: function to call for each matching combination
9311  * @data: pointer to pass to iter function
9312  *
9313  * This function can be called by the driver to check what possible
9314  * combinations it fits in at a given moment, e.g. for channel switching
9315  * purposes.
9316  *
9317  * Return: 0 on success. Non-zero on error.
9318  */
9319 int cfg80211_iter_combinations(struct wiphy *wiphy,
9320 			       struct iface_combination_params *params,
9321 			       void (*iter)(const struct ieee80211_iface_combination *c,
9322 					    void *data),
9323 			       void *data);
9324 
9325 /**
9326  * cfg80211_stop_iface - trigger interface disconnection
9327  *
9328  * @wiphy: the wiphy
9329  * @wdev: wireless device
9330  * @gfp: context flags
9331  *
9332  * Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
9333  * disconnected.
9334  *
9335  * Note: This doesn't need any locks and is asynchronous.
9336  */
9337 void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
9338 			 gfp_t gfp);
9339 
9340 /**
9341  * cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
9342  * @wiphy: the wiphy to shut down
9343  *
9344  * This function shuts down all interfaces belonging to this wiphy by
9345  * calling dev_close() (and treating non-netdev interfaces as needed).
9346  * It shouldn't really be used unless there are some fatal device errors
9347  * that really can't be recovered in any other way.
9348  *
9349  * Callers must hold the RTNL and be able to deal with callbacks into
9350  * the driver while the function is running.
9351  */
9352 void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
9353 
9354 /**
9355  * wiphy_ext_feature_set - set the extended feature flag
9356  *
9357  * @wiphy: the wiphy to modify.
9358  * @ftidx: extended feature bit index.
9359  *
9360  * The extended features are flagged in multiple bytes (see
9361  * &struct wiphy.@ext_features)
9362  */
wiphy_ext_feature_set(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9363 static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
9364 					 enum nl80211_ext_feature_index ftidx)
9365 {
9366 	u8 *ft_byte;
9367 
9368 	ft_byte = &wiphy->ext_features[ftidx / 8];
9369 	*ft_byte |= BIT(ftidx % 8);
9370 }
9371 
9372 /**
9373  * wiphy_ext_feature_isset - check the extended feature flag
9374  *
9375  * @wiphy: the wiphy to modify.
9376  * @ftidx: extended feature bit index.
9377  *
9378  * The extended features are flagged in multiple bytes (see
9379  * &struct wiphy.@ext_features)
9380  *
9381  * Return: %true if extended feature flag is set, %false otherwise
9382  */
9383 static inline bool
wiphy_ext_feature_isset(struct wiphy * wiphy,enum nl80211_ext_feature_index ftidx)9384 wiphy_ext_feature_isset(struct wiphy *wiphy,
9385 			enum nl80211_ext_feature_index ftidx)
9386 {
9387 	u8 ft_byte;
9388 
9389 	ft_byte = wiphy->ext_features[ftidx / 8];
9390 	return (ft_byte & BIT(ftidx % 8)) != 0;
9391 }
9392 
9393 /**
9394  * cfg80211_free_nan_func - free NAN function
9395  * @f: NAN function that should be freed
9396  *
9397  * Frees all the NAN function and all it's allocated members.
9398  */
9399 void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
9400 
9401 /**
9402  * struct cfg80211_nan_match_params - NAN match parameters
9403  * @type: the type of the function that triggered a match. If it is
9404  *	 %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
9405  *	 If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
9406  *	 result.
9407  *	 If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
9408  * @inst_id: the local instance id
9409  * @peer_inst_id: the instance id of the peer's function
9410  * @addr: the MAC address of the peer
9411  * @info_len: the length of the &info
9412  * @info: the Service Specific Info from the peer (if any)
9413  * @cookie: unique identifier of the corresponding function
9414  */
9415 struct cfg80211_nan_match_params {
9416 	enum nl80211_nan_function_type type;
9417 	u8 inst_id;
9418 	u8 peer_inst_id;
9419 	const u8 *addr;
9420 	u8 info_len;
9421 	const u8 *info;
9422 	u64 cookie;
9423 };
9424 
9425 /**
9426  * cfg80211_nan_match - report a match for a NAN function.
9427  * @wdev: the wireless device reporting the match
9428  * @match: match notification parameters
9429  * @gfp: allocation flags
9430  *
9431  * This function reports that the a NAN function had a match. This
9432  * can be a subscribe that had a match or a solicited publish that
9433  * was sent. It can also be a follow up that was received.
9434  */
9435 void cfg80211_nan_match(struct wireless_dev *wdev,
9436 			struct cfg80211_nan_match_params *match, gfp_t gfp);
9437 
9438 /**
9439  * cfg80211_nan_func_terminated - notify about NAN function termination.
9440  *
9441  * @wdev: the wireless device reporting the match
9442  * @inst_id: the local instance id
9443  * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
9444  * @cookie: unique NAN function identifier
9445  * @gfp: allocation flags
9446  *
9447  * This function reports that the a NAN function is terminated.
9448  */
9449 void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
9450 				  u8 inst_id,
9451 				  enum nl80211_nan_func_term_reason reason,
9452 				  u64 cookie, gfp_t gfp);
9453 
9454 /* ethtool helper */
9455 void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
9456 
9457 /**
9458  * cfg80211_external_auth_request - userspace request for authentication
9459  * @netdev: network device
9460  * @params: External authentication parameters
9461  * @gfp: allocation flags
9462  * Returns: 0 on success, < 0 on error
9463  */
9464 int cfg80211_external_auth_request(struct net_device *netdev,
9465 				   struct cfg80211_external_auth_params *params,
9466 				   gfp_t gfp);
9467 
9468 /**
9469  * cfg80211_pmsr_report - report peer measurement result data
9470  * @wdev: the wireless device reporting the measurement
9471  * @req: the original measurement request
9472  * @result: the result data
9473  * @gfp: allocation flags
9474  */
9475 void cfg80211_pmsr_report(struct wireless_dev *wdev,
9476 			  struct cfg80211_pmsr_request *req,
9477 			  struct cfg80211_pmsr_result *result,
9478 			  gfp_t gfp);
9479 
9480 /**
9481  * cfg80211_pmsr_complete - report peer measurement completed
9482  * @wdev: the wireless device reporting the measurement
9483  * @req: the original measurement request
9484  * @gfp: allocation flags
9485  *
9486  * Report that the entire measurement completed, after this
9487  * the request pointer will no longer be valid.
9488  */
9489 void cfg80211_pmsr_complete(struct wireless_dev *wdev,
9490 			    struct cfg80211_pmsr_request *req,
9491 			    gfp_t gfp);
9492 
9493 /**
9494  * cfg80211_iftype_allowed - check whether the interface can be allowed
9495  * @wiphy: the wiphy
9496  * @iftype: interface type
9497  * @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
9498  * @check_swif: check iftype against software interfaces
9499  *
9500  * Check whether the interface is allowed to operate; additionally, this API
9501  * can be used to check iftype against the software interfaces when
9502  * check_swif is '1'.
9503  *
9504  * Return: %true if allowed, %false otherwise
9505  */
9506 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
9507 			     bool is_4addr, u8 check_swif);
9508 
9509 
9510 /**
9511  * cfg80211_assoc_comeback - notification of association that was
9512  * temporarily rejected with a comeback
9513  * @netdev: network device
9514  * @ap_addr: AP (MLD) address that rejected the association
9515  * @timeout: timeout interval value TUs.
9516  *
9517  * this function may sleep. the caller must hold the corresponding wdev's mutex.
9518  */
9519 void cfg80211_assoc_comeback(struct net_device *netdev,
9520 			     const u8 *ap_addr, u32 timeout);
9521 
9522 /* Logging, debugging and troubleshooting/diagnostic helpers. */
9523 
9524 /* wiphy_printk helpers, similar to dev_printk */
9525 
9526 #define wiphy_printk(level, wiphy, format, args...)		\
9527 	dev_printk(level, &(wiphy)->dev, format, ##args)
9528 #define wiphy_emerg(wiphy, format, args...)			\
9529 	dev_emerg(&(wiphy)->dev, format, ##args)
9530 #define wiphy_alert(wiphy, format, args...)			\
9531 	dev_alert(&(wiphy)->dev, format, ##args)
9532 #define wiphy_crit(wiphy, format, args...)			\
9533 	dev_crit(&(wiphy)->dev, format, ##args)
9534 #define wiphy_err(wiphy, format, args...)			\
9535 	dev_err(&(wiphy)->dev, format, ##args)
9536 #define wiphy_warn(wiphy, format, args...)			\
9537 	dev_warn(&(wiphy)->dev, format, ##args)
9538 #define wiphy_notice(wiphy, format, args...)			\
9539 	dev_notice(&(wiphy)->dev, format, ##args)
9540 #define wiphy_info(wiphy, format, args...)			\
9541 	dev_info(&(wiphy)->dev, format, ##args)
9542 #define wiphy_info_once(wiphy, format, args...)			\
9543 	dev_info_once(&(wiphy)->dev, format, ##args)
9544 
9545 #define wiphy_err_ratelimited(wiphy, format, args...)		\
9546 	dev_err_ratelimited(&(wiphy)->dev, format, ##args)
9547 #define wiphy_warn_ratelimited(wiphy, format, args...)		\
9548 	dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
9549 
9550 #define wiphy_debug(wiphy, format, args...)			\
9551 	wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
9552 
9553 #define wiphy_dbg(wiphy, format, args...)			\
9554 	dev_dbg(&(wiphy)->dev, format, ##args)
9555 
9556 #if defined(VERBOSE_DEBUG)
9557 #define wiphy_vdbg	wiphy_dbg
9558 #else
9559 #define wiphy_vdbg(wiphy, format, args...)				\
9560 ({									\
9561 	if (0)								\
9562 		wiphy_printk(KERN_DEBUG, wiphy, format, ##args);	\
9563 	0;								\
9564 })
9565 #endif
9566 
9567 /*
9568  * wiphy_WARN() acts like wiphy_printk(), but with the key difference
9569  * of using a WARN/WARN_ON to get the message out, including the
9570  * file/line information and a backtrace.
9571  */
9572 #define wiphy_WARN(wiphy, format, args...)			\
9573 	WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
9574 
9575 /**
9576  * cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
9577  * @netdev: network device
9578  * @owe_info: peer's owe info
9579  * @gfp: allocation flags
9580  */
9581 void cfg80211_update_owe_info_event(struct net_device *netdev,
9582 				    struct cfg80211_update_owe_info *owe_info,
9583 				    gfp_t gfp);
9584 
9585 /**
9586  * cfg80211_bss_flush - resets all the scan entries
9587  * @wiphy: the wiphy
9588  */
9589 void cfg80211_bss_flush(struct wiphy *wiphy);
9590 
9591 /**
9592  * cfg80211_bss_color_notify - notify about bss color event
9593  * @dev: network device
9594  * @cmd: the actual event we want to notify
9595  * @count: the number of TBTTs until the color change happens
9596  * @color_bitmap: representations of the colors that the local BSS is aware of
9597  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9598  *
9599  * Return: 0 on success. Non-zero on error.
9600  */
9601 int cfg80211_bss_color_notify(struct net_device *dev,
9602 			      enum nl80211_commands cmd, u8 count,
9603 			      u64 color_bitmap, u8 link_id);
9604 
9605 /**
9606  * cfg80211_obss_color_collision_notify - notify about bss color collision
9607  * @dev: network device
9608  * @color_bitmap: representations of the colors that the local BSS is aware of
9609  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9610  *
9611  * Return: 0 on success. Non-zero on error.
9612  */
cfg80211_obss_color_collision_notify(struct net_device * dev,u64 color_bitmap,u8 link_id)9613 static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
9614 						       u64 color_bitmap,
9615 						       u8 link_id)
9616 {
9617 	return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION,
9618 					 0, color_bitmap, link_id);
9619 }
9620 
9621 /**
9622  * cfg80211_color_change_started_notify - notify color change start
9623  * @dev: the device on which the color is switched
9624  * @count: the number of TBTTs until the color change happens
9625  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9626  *
9627  * Inform the userspace about the color change that has started.
9628  *
9629  * Return: 0 on success. Non-zero on error.
9630  */
cfg80211_color_change_started_notify(struct net_device * dev,u8 count,u8 link_id)9631 static inline int cfg80211_color_change_started_notify(struct net_device *dev,
9632 						       u8 count, u8 link_id)
9633 {
9634 	return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED,
9635 					 count, 0, link_id);
9636 }
9637 
9638 /**
9639  * cfg80211_color_change_aborted_notify - notify color change abort
9640  * @dev: the device on which the color is switched
9641  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9642  *
9643  * Inform the userspace about the color change that has aborted.
9644  *
9645  * Return: 0 on success. Non-zero on error.
9646  */
cfg80211_color_change_aborted_notify(struct net_device * dev,u8 link_id)9647 static inline int cfg80211_color_change_aborted_notify(struct net_device *dev,
9648 						       u8 link_id)
9649 {
9650 	return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED,
9651 					 0, 0, link_id);
9652 }
9653 
9654 /**
9655  * cfg80211_color_change_notify - notify color change completion
9656  * @dev: the device on which the color was switched
9657  * @link_id: valid link_id in case of MLO or 0 for non-MLO.
9658  *
9659  * Inform the userspace about the color change that has completed.
9660  *
9661  * Return: 0 on success. Non-zero on error.
9662  */
cfg80211_color_change_notify(struct net_device * dev,u8 link_id)9663 static inline int cfg80211_color_change_notify(struct net_device *dev,
9664 					       u8 link_id)
9665 {
9666 	return cfg80211_bss_color_notify(dev,
9667 					 NL80211_CMD_COLOR_CHANGE_COMPLETED,
9668 					 0, 0, link_id);
9669 }
9670 
9671 /**
9672  * cfg80211_links_removed - Notify about removed STA MLD setup links.
9673  * @dev: network device.
9674  * @link_mask: BIT mask of removed STA MLD setup link IDs.
9675  *
9676  * Inform cfg80211 and the userspace about removed STA MLD setup links due to
9677  * AP MLD removing the corresponding affiliated APs with Multi-Link
9678  * reconfiguration. Note that it's not valid to remove all links, in this
9679  * case disconnect instead.
9680  * Also note that the wdev mutex must be held.
9681  */
9682 void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
9683 
9684 /**
9685  * cfg80211_schedule_channels_check - schedule regulatory check if needed
9686  * @wdev: the wireless device to check
9687  *
9688  * In case the device supports NO_IR or DFS relaxations, schedule regulatory
9689  * channels check, as previous concurrent operation conditions may not
9690  * hold anymore.
9691  */
9692 void cfg80211_schedule_channels_check(struct wireless_dev *wdev);
9693 
9694 #ifdef CONFIG_CFG80211_DEBUGFS
9695 /**
9696  * wiphy_locked_debugfs_read - do a locked read in debugfs
9697  * @wiphy: the wiphy to use
9698  * @file: the file being read
9699  * @buf: the buffer to fill and then read from
9700  * @bufsize: size of the buffer
9701  * @userbuf: the user buffer to copy to
9702  * @count: read count
9703  * @ppos: read position
9704  * @handler: the read handler to call (under wiphy lock)
9705  * @data: additional data to pass to the read handler
9706  *
9707  * Return: the number of characters read, or a negative errno
9708  */
9709 ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file,
9710 				  char *buf, size_t bufsize,
9711 				  char __user *userbuf, size_t count,
9712 				  loff_t *ppos,
9713 				  ssize_t (*handler)(struct wiphy *wiphy,
9714 						     struct file *file,
9715 						     char *buf,
9716 						     size_t bufsize,
9717 						     void *data),
9718 				  void *data);
9719 
9720 /**
9721  * wiphy_locked_debugfs_write - do a locked write in debugfs
9722  * @wiphy: the wiphy to use
9723  * @file: the file being written to
9724  * @buf: the buffer to copy the user data to
9725  * @bufsize: size of the buffer
9726  * @userbuf: the user buffer to copy from
9727  * @count: read count
9728  * @handler: the write handler to call (under wiphy lock)
9729  * @data: additional data to pass to the write handler
9730  *
9731  * Return: the number of characters written, or a negative errno
9732  */
9733 ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file,
9734 				   char *buf, size_t bufsize,
9735 				   const char __user *userbuf, size_t count,
9736 				   ssize_t (*handler)(struct wiphy *wiphy,
9737 						      struct file *file,
9738 						      char *buf,
9739 						      size_t count,
9740 						      void *data),
9741 				   void *data);
9742 #endif
9743 
9744 #endif /* __NET_CFG80211_H */
9745