1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Variant of atomic_t specialized for reference counts.
4   *
5   * The interface matches the atomic_t interface (to aid in porting) but only
6   * provides the few functions one should use for reference counting.
7   *
8   * Saturation semantics
9   * ====================
10   *
11   * refcount_t differs from atomic_t in that the counter saturates at
12   * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the
13   * counter and causing 'spurious' use-after-free issues. In order to avoid the
14   * cost associated with introducing cmpxchg() loops into all of the saturating
15   * operations, we temporarily allow the counter to take on an unchecked value
16   * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow
17   * or overflow has occurred. Although this is racy when multiple threads
18   * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly
19   * equidistant from 0 and INT_MAX we minimise the scope for error:
20   *
21   * 	                           INT_MAX     REFCOUNT_SATURATED   UINT_MAX
22   *   0                          (0x7fff_ffff)    (0xc000_0000)    (0xffff_ffff)
23   *   +--------------------------------+----------------+----------------+
24   *                                     <---------- bad value! ---------->
25   *
26   * (in a signed view of the world, the "bad value" range corresponds to
27   * a negative counter value).
28   *
29   * As an example, consider a refcount_inc() operation that causes the counter
30   * to overflow:
31   *
32   * 	int old = atomic_fetch_add_relaxed(r);
33   *	// old is INT_MAX, refcount now INT_MIN (0x8000_0000)
34   *	if (old < 0)
35   *		atomic_set(r, REFCOUNT_SATURATED);
36   *
37   * If another thread also performs a refcount_inc() operation between the two
38   * atomic operations, then the count will continue to edge closer to 0. If it
39   * reaches a value of 1 before /any/ of the threads reset it to the saturated
40   * value, then a concurrent refcount_dec_and_test() may erroneously free the
41   * underlying object.
42   * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently
43   * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK).
44   * With the current PID limit, if no batched refcounting operations are used and
45   * the attacker can't repeatedly trigger kernel oopses in the middle of refcount
46   * operations, this makes it impossible for a saturated refcount to leave the
47   * saturation range, even if it is possible for multiple uses of the same
48   * refcount to nest in the context of a single task:
49   *
50   *     (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT =
51   *     0x40000000 / 0x400000 = 0x100 = 256
52   *
53   * If hundreds of references are added/removed with a single refcounting
54   * operation, it may potentially be possible to leave the saturation range; but
55   * given the precise timing details involved with the round-robin scheduling of
56   * each thread manipulating the refcount and the need to hit the race multiple
57   * times in succession, there doesn't appear to be a practical avenue of attack
58   * even if using refcount_add() operations with larger increments.
59   *
60   * Memory ordering
61   * ===============
62   *
63   * Memory ordering rules are slightly relaxed wrt regular atomic_t functions
64   * and provide only what is strictly required for refcounts.
65   *
66   * The increments are fully relaxed; these will not provide ordering. The
67   * rationale is that whatever is used to obtain the object we're increasing the
68   * reference count on will provide the ordering. For locked data structures,
69   * its the lock acquire, for RCU/lockless data structures its the dependent
70   * load.
71   *
72   * Do note that inc_not_zero() provides a control dependency which will order
73   * future stores against the inc, this ensures we'll never modify the object
74   * if we did not in fact acquire a reference.
75   *
76   * The decrements will provide release order, such that all the prior loads and
77   * stores will be issued before, it also provides a control dependency, which
78   * will order us against the subsequent free().
79   *
80   * The control dependency is against the load of the cmpxchg (ll/sc) that
81   * succeeded. This means the stores aren't fully ordered, but this is fine
82   * because the 1->0 transition indicates no concurrency.
83   *
84   * Note that the allocator is responsible for ordering things between free()
85   * and alloc().
86   *
87   * The decrements dec_and_test() and sub_and_test() also provide acquire
88   * ordering on success.
89   *
90   */
91  
92  #ifndef _LINUX_REFCOUNT_H
93  #define _LINUX_REFCOUNT_H
94  
95  #include <linux/atomic.h>
96  #include <linux/bug.h>
97  #include <linux/compiler.h>
98  #include <linux/limits.h>
99  #include <linux/refcount_types.h>
100  #include <linux/spinlock_types.h>
101  
102  struct mutex;
103  
104  #define REFCOUNT_INIT(n)	{ .refs = ATOMIC_INIT(n), }
105  #define REFCOUNT_MAX		INT_MAX
106  #define REFCOUNT_SATURATED	(INT_MIN / 2)
107  
108  enum refcount_saturation_type {
109  	REFCOUNT_ADD_NOT_ZERO_OVF,
110  	REFCOUNT_ADD_OVF,
111  	REFCOUNT_ADD_UAF,
112  	REFCOUNT_SUB_UAF,
113  	REFCOUNT_DEC_LEAK,
114  };
115  
116  void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t);
117  
118  /**
119   * refcount_set - set a refcount's value
120   * @r: the refcount
121   * @n: value to which the refcount will be set
122   */
refcount_set(refcount_t * r,int n)123  static inline void refcount_set(refcount_t *r, int n)
124  {
125  	atomic_set(&r->refs, n);
126  }
127  
128  /**
129   * refcount_read - get a refcount's value
130   * @r: the refcount
131   *
132   * Return: the refcount's value
133   */
refcount_read(const refcount_t * r)134  static inline unsigned int refcount_read(const refcount_t *r)
135  {
136  	return atomic_read(&r->refs);
137  }
138  
139  static inline __must_check __signed_wrap
__refcount_add_not_zero(int i,refcount_t * r,int * oldp)140  bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp)
141  {
142  	int old = refcount_read(r);
143  
144  	do {
145  		if (!old)
146  			break;
147  	} while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i));
148  
149  	if (oldp)
150  		*oldp = old;
151  
152  	if (unlikely(old < 0 || old + i < 0))
153  		refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF);
154  
155  	return old;
156  }
157  
158  /**
159   * refcount_add_not_zero - add a value to a refcount unless it is 0
160   * @i: the value to add to the refcount
161   * @r: the refcount
162   *
163   * Will saturate at REFCOUNT_SATURATED and WARN.
164   *
165   * Provides no memory ordering, it is assumed the caller has guaranteed the
166   * object memory to be stable (RCU, etc.). It does provide a control dependency
167   * and thereby orders future stores. See the comment on top.
168   *
169   * Use of this function is not recommended for the normal reference counting
170   * use case in which references are taken and released one at a time.  In these
171   * cases, refcount_inc(), or one of its variants, should instead be used to
172   * increment a reference count.
173   *
174   * Return: false if the passed refcount is 0, true otherwise
175   */
refcount_add_not_zero(int i,refcount_t * r)176  static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
177  {
178  	return __refcount_add_not_zero(i, r, NULL);
179  }
180  
181  static inline __signed_wrap
__refcount_add(int i,refcount_t * r,int * oldp)182  void __refcount_add(int i, refcount_t *r, int *oldp)
183  {
184  	int old = atomic_fetch_add_relaxed(i, &r->refs);
185  
186  	if (oldp)
187  		*oldp = old;
188  
189  	if (unlikely(!old))
190  		refcount_warn_saturate(r, REFCOUNT_ADD_UAF);
191  	else if (unlikely(old < 0 || old + i < 0))
192  		refcount_warn_saturate(r, REFCOUNT_ADD_OVF);
193  }
194  
195  /**
196   * refcount_add - add a value to a refcount
197   * @i: the value to add to the refcount
198   * @r: the refcount
199   *
200   * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
201   *
202   * Provides no memory ordering, it is assumed the caller has guaranteed the
203   * object memory to be stable (RCU, etc.). It does provide a control dependency
204   * and thereby orders future stores. See the comment on top.
205   *
206   * Use of this function is not recommended for the normal reference counting
207   * use case in which references are taken and released one at a time.  In these
208   * cases, refcount_inc(), or one of its variants, should instead be used to
209   * increment a reference count.
210   */
refcount_add(int i,refcount_t * r)211  static inline void refcount_add(int i, refcount_t *r)
212  {
213  	__refcount_add(i, r, NULL);
214  }
215  
__refcount_inc_not_zero(refcount_t * r,int * oldp)216  static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp)
217  {
218  	return __refcount_add_not_zero(1, r, oldp);
219  }
220  
221  /**
222   * refcount_inc_not_zero - increment a refcount unless it is 0
223   * @r: the refcount to increment
224   *
225   * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
226   * and WARN.
227   *
228   * Provides no memory ordering, it is assumed the caller has guaranteed the
229   * object memory to be stable (RCU, etc.). It does provide a control dependency
230   * and thereby orders future stores. See the comment on top.
231   *
232   * Return: true if the increment was successful, false otherwise
233   */
refcount_inc_not_zero(refcount_t * r)234  static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
235  {
236  	return __refcount_inc_not_zero(r, NULL);
237  }
238  
__refcount_inc(refcount_t * r,int * oldp)239  static inline void __refcount_inc(refcount_t *r, int *oldp)
240  {
241  	__refcount_add(1, r, oldp);
242  }
243  
244  /**
245   * refcount_inc - increment a refcount
246   * @r: the refcount to increment
247   *
248   * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
249   *
250   * Provides no memory ordering, it is assumed the caller already has a
251   * reference on the object.
252   *
253   * Will WARN if the refcount is 0, as this represents a possible use-after-free
254   * condition.
255   */
refcount_inc(refcount_t * r)256  static inline void refcount_inc(refcount_t *r)
257  {
258  	__refcount_inc(r, NULL);
259  }
260  
261  static inline __must_check __signed_wrap
__refcount_sub_and_test(int i,refcount_t * r,int * oldp)262  bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp)
263  {
264  	int old = atomic_fetch_sub_release(i, &r->refs);
265  
266  	if (oldp)
267  		*oldp = old;
268  
269  	if (old > 0 && old == i) {
270  		smp_acquire__after_ctrl_dep();
271  		return true;
272  	}
273  
274  	if (unlikely(old <= 0 || old - i < 0))
275  		refcount_warn_saturate(r, REFCOUNT_SUB_UAF);
276  
277  	return false;
278  }
279  
280  /**
281   * refcount_sub_and_test - subtract from a refcount and test if it is 0
282   * @i: amount to subtract from the refcount
283   * @r: the refcount
284   *
285   * Similar to atomic_dec_and_test(), but it will WARN, return false and
286   * ultimately leak on underflow and will fail to decrement when saturated
287   * at REFCOUNT_SATURATED.
288   *
289   * Provides release memory ordering, such that prior loads and stores are done
290   * before, and provides an acquire ordering on success such that free()
291   * must come after.
292   *
293   * Use of this function is not recommended for the normal reference counting
294   * use case in which references are taken and released one at a time.  In these
295   * cases, refcount_dec(), or one of its variants, should instead be used to
296   * decrement a reference count.
297   *
298   * Return: true if the resulting refcount is 0, false otherwise
299   */
refcount_sub_and_test(int i,refcount_t * r)300  static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
301  {
302  	return __refcount_sub_and_test(i, r, NULL);
303  }
304  
__refcount_dec_and_test(refcount_t * r,int * oldp)305  static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp)
306  {
307  	return __refcount_sub_and_test(1, r, oldp);
308  }
309  
310  /**
311   * refcount_dec_and_test - decrement a refcount and test if it is 0
312   * @r: the refcount
313   *
314   * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
315   * decrement when saturated at REFCOUNT_SATURATED.
316   *
317   * Provides release memory ordering, such that prior loads and stores are done
318   * before, and provides an acquire ordering on success such that free()
319   * must come after.
320   *
321   * Return: true if the resulting refcount is 0, false otherwise
322   */
refcount_dec_and_test(refcount_t * r)323  static inline __must_check bool refcount_dec_and_test(refcount_t *r)
324  {
325  	return __refcount_dec_and_test(r, NULL);
326  }
327  
__refcount_dec(refcount_t * r,int * oldp)328  static inline void __refcount_dec(refcount_t *r, int *oldp)
329  {
330  	int old = atomic_fetch_sub_release(1, &r->refs);
331  
332  	if (oldp)
333  		*oldp = old;
334  
335  	if (unlikely(old <= 1))
336  		refcount_warn_saturate(r, REFCOUNT_DEC_LEAK);
337  }
338  
339  /**
340   * refcount_dec - decrement a refcount
341   * @r: the refcount
342   *
343   * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
344   * when saturated at REFCOUNT_SATURATED.
345   *
346   * Provides release memory ordering, such that prior loads and stores are done
347   * before.
348   */
refcount_dec(refcount_t * r)349  static inline void refcount_dec(refcount_t *r)
350  {
351  	__refcount_dec(r, NULL);
352  }
353  
354  extern __must_check bool refcount_dec_if_one(refcount_t *r);
355  extern __must_check bool refcount_dec_not_one(refcount_t *r);
356  extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) __cond_acquires(lock);
357  extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) __cond_acquires(lock);
358  extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r,
359  						       spinlock_t *lock,
360  						       unsigned long *flags) __cond_acquires(lock);
361  #endif /* _LINUX_REFCOUNT_H */
362