1  /* SPDX-License-Identifier: GPL-2.0+ */
2  /*
3   * Read-Copy Update mechanism for mutual exclusion
4   *
5   * Copyright IBM Corporation, 2001
6   *
7   * Author: Dipankar Sarma <dipankar@in.ibm.com>
8   *
9   * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10   * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11   * Papers:
12   * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13   * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14   *
15   * For detailed explanation of Read-Copy Update mechanism see -
16   *		http://lse.sourceforge.net/locking/rcupdate.html
17   *
18   */
19  
20  #ifndef __LINUX_RCUPDATE_H
21  #define __LINUX_RCUPDATE_H
22  
23  #include <linux/types.h>
24  #include <linux/compiler.h>
25  #include <linux/atomic.h>
26  #include <linux/irqflags.h>
27  #include <linux/preempt.h>
28  #include <linux/bottom_half.h>
29  #include <linux/lockdep.h>
30  #include <linux/cleanup.h>
31  #include <asm/processor.h>
32  #include <linux/context_tracking_irq.h>
33  
34  #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
35  #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
36  
37  #define RCU_SEQ_CTR_SHIFT    2
38  #define RCU_SEQ_STATE_MASK   ((1 << RCU_SEQ_CTR_SHIFT) - 1)
39  
40  /* Exported common interfaces */
41  void call_rcu(struct rcu_head *head, rcu_callback_t func);
42  void rcu_barrier_tasks(void);
43  void synchronize_rcu(void);
44  
45  struct rcu_gp_oldstate;
46  unsigned long get_completed_synchronize_rcu(void);
47  void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
48  
49  // Maximum number of unsigned long values corresponding to
50  // not-yet-completed RCU grace periods.
51  #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
52  
53  /**
54   * same_state_synchronize_rcu - Are two old-state values identical?
55   * @oldstate1: First old-state value.
56   * @oldstate2: Second old-state value.
57   *
58   * The two old-state values must have been obtained from either
59   * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
60   * get_completed_synchronize_rcu().  Returns @true if the two values are
61   * identical and @false otherwise.  This allows structures whose lifetimes
62   * are tracked by old-state values to push these values to a list header,
63   * allowing those structures to be slightly smaller.
64   */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)65  static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
66  {
67  	return oldstate1 == oldstate2;
68  }
69  
70  #ifdef CONFIG_PREEMPT_RCU
71  
72  void __rcu_read_lock(void);
73  void __rcu_read_unlock(void);
74  
75  /*
76   * Defined as a macro as it is a very low level header included from
77   * areas that don't even know about current.  This gives the rcu_read_lock()
78   * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
79   * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
80   */
81  #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
82  
83  #else /* #ifdef CONFIG_PREEMPT_RCU */
84  
85  #ifdef CONFIG_TINY_RCU
86  #define rcu_read_unlock_strict() do { } while (0)
87  #else
88  void rcu_read_unlock_strict(void);
89  #endif
90  
__rcu_read_lock(void)91  static inline void __rcu_read_lock(void)
92  {
93  	preempt_disable();
94  }
95  
__rcu_read_unlock(void)96  static inline void __rcu_read_unlock(void)
97  {
98  	preempt_enable();
99  	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
100  		rcu_read_unlock_strict();
101  }
102  
rcu_preempt_depth(void)103  static inline int rcu_preempt_depth(void)
104  {
105  	return 0;
106  }
107  
108  #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
109  
110  #ifdef CONFIG_RCU_LAZY
111  void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
112  #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)113  static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
114  {
115  	call_rcu(head, func);
116  }
117  #endif
118  
119  /* Internal to kernel */
120  void rcu_init(void);
121  extern int rcu_scheduler_active;
122  void rcu_sched_clock_irq(int user);
123  
124  #ifdef CONFIG_TASKS_RCU_GENERIC
125  void rcu_init_tasks_generic(void);
126  #else
rcu_init_tasks_generic(void)127  static inline void rcu_init_tasks_generic(void) { }
128  #endif
129  
130  #ifdef CONFIG_RCU_STALL_COMMON
131  void rcu_sysrq_start(void);
132  void rcu_sysrq_end(void);
133  #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)134  static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)135  static inline void rcu_sysrq_end(void) { }
136  #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
137  
138  #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
139  void rcu_irq_work_resched(void);
140  #else
rcu_irq_work_resched(void)141  static inline void rcu_irq_work_resched(void) { }
142  #endif
143  
144  #ifdef CONFIG_RCU_NOCB_CPU
145  void rcu_init_nohz(void);
146  int rcu_nocb_cpu_offload(int cpu);
147  int rcu_nocb_cpu_deoffload(int cpu);
148  void rcu_nocb_flush_deferred_wakeup(void);
149  
150  #define RCU_NOCB_LOCKDEP_WARN(c, s) RCU_LOCKDEP_WARN(c, s)
151  
152  #else /* #ifdef CONFIG_RCU_NOCB_CPU */
153  
rcu_init_nohz(void)154  static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)155  static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)156  static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)157  static inline void rcu_nocb_flush_deferred_wakeup(void) { }
158  
159  #define RCU_NOCB_LOCKDEP_WARN(c, s)
160  
161  #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
162  
163  /*
164   * Note a quasi-voluntary context switch for RCU-tasks's benefit.
165   * This is a macro rather than an inline function to avoid #include hell.
166   */
167  #ifdef CONFIG_TASKS_RCU_GENERIC
168  
169  # ifdef CONFIG_TASKS_RCU
170  # define rcu_tasks_classic_qs(t, preempt)				\
171  	do {								\
172  		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
173  			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
174  	} while (0)
175  void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
176  void synchronize_rcu_tasks(void);
177  void rcu_tasks_torture_stats_print(char *tt, char *tf);
178  # else
179  # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
180  # define call_rcu_tasks call_rcu
181  # define synchronize_rcu_tasks synchronize_rcu
182  # endif
183  
184  # ifdef CONFIG_TASKS_TRACE_RCU
185  // Bits for ->trc_reader_special.b.need_qs field.
186  #define TRC_NEED_QS		0x1  // Task needs a quiescent state.
187  #define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
188  
189  u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
190  void rcu_tasks_trace_qs_blkd(struct task_struct *t);
191  
192  # define rcu_tasks_trace_qs(t)							\
193  	do {									\
194  		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
195  										\
196  		if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) &&	\
197  		    likely(!___rttq_nesting)) {					\
198  			rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED);	\
199  		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
200  			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
201  			rcu_tasks_trace_qs_blkd(t);				\
202  		}								\
203  	} while (0)
204  void rcu_tasks_trace_torture_stats_print(char *tt, char *tf);
205  # else
206  # define rcu_tasks_trace_qs(t) do { } while (0)
207  # endif
208  
209  #define rcu_tasks_qs(t, preempt)					\
210  do {									\
211  	rcu_tasks_classic_qs((t), (preempt));				\
212  	rcu_tasks_trace_qs(t);						\
213  } while (0)
214  
215  # ifdef CONFIG_TASKS_RUDE_RCU
216  void synchronize_rcu_tasks_rude(void);
217  void rcu_tasks_rude_torture_stats_print(char *tt, char *tf);
218  # endif
219  
220  #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
221  void exit_tasks_rcu_start(void);
222  void exit_tasks_rcu_finish(void);
223  #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
224  #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
225  #define rcu_tasks_qs(t, preempt) do { } while (0)
226  #define rcu_note_voluntary_context_switch(t) do { } while (0)
227  #define call_rcu_tasks call_rcu
228  #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)229  static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)230  static inline void exit_tasks_rcu_finish(void) { }
231  #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
232  
233  /**
234   * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
235   *
236   * As an accident of implementation, an RCU Tasks Trace grace period also
237   * acts as an RCU grace period.  However, this could change at any time.
238   * Code relying on this accident must call this function to verify that
239   * this accident is still happening.
240   *
241   * You have been warned!
242   */
rcu_trace_implies_rcu_gp(void)243  static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
244  
245  /**
246   * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
247   *
248   * This macro resembles cond_resched(), except that it is defined to
249   * report potential quiescent states to RCU-tasks even if the cond_resched()
250   * machinery were to be shut off, as some advocate for PREEMPTION kernels.
251   */
252  #define cond_resched_tasks_rcu_qs() \
253  do { \
254  	rcu_tasks_qs(current, false); \
255  	cond_resched(); \
256  } while (0)
257  
258  /**
259   * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
260   * @old_ts: jiffies at start of processing.
261   *
262   * This helper is for long-running softirq handlers, such as NAPI threads in
263   * networking. The caller should initialize the variable passed in as @old_ts
264   * at the beginning of the softirq handler. When invoked frequently, this macro
265   * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
266   * provide both RCU and RCU-Tasks quiescent states. Note that this macro
267   * modifies its old_ts argument.
268   *
269   * Because regions of code that have disabled softirq act as RCU read-side
270   * critical sections, this macro should be invoked with softirq (and
271   * preemption) enabled.
272   *
273   * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
274   * have more chance to invoke schedule() calls and provide necessary quiescent
275   * states. As a contrast, calling cond_resched() only won't achieve the same
276   * effect because cond_resched() does not provide RCU-Tasks quiescent states.
277   */
278  #define rcu_softirq_qs_periodic(old_ts) \
279  do { \
280  	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
281  	    time_after(jiffies, (old_ts) + HZ / 10)) { \
282  		preempt_disable(); \
283  		rcu_softirq_qs(); \
284  		preempt_enable(); \
285  		(old_ts) = jiffies; \
286  	} \
287  } while (0)
288  
289  /*
290   * Infrastructure to implement the synchronize_() primitives in
291   * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
292   */
293  
294  #if defined(CONFIG_TREE_RCU)
295  #include <linux/rcutree.h>
296  #elif defined(CONFIG_TINY_RCU)
297  #include <linux/rcutiny.h>
298  #else
299  #error "Unknown RCU implementation specified to kernel configuration"
300  #endif
301  
302  /*
303   * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
304   * are needed for dynamic initialization and destruction of rcu_head
305   * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
306   * dynamic initialization and destruction of statically allocated rcu_head
307   * structures.  However, rcu_head structures allocated dynamically in the
308   * heap don't need any initialization.
309   */
310  #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
311  void init_rcu_head(struct rcu_head *head);
312  void destroy_rcu_head(struct rcu_head *head);
313  void init_rcu_head_on_stack(struct rcu_head *head);
314  void destroy_rcu_head_on_stack(struct rcu_head *head);
315  #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)316  static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)317  static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)318  static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)319  static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
320  #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
321  
322  #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
323  bool rcu_lockdep_current_cpu_online(void);
324  #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)325  static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
326  #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
327  
328  extern struct lockdep_map rcu_lock_map;
329  extern struct lockdep_map rcu_bh_lock_map;
330  extern struct lockdep_map rcu_sched_lock_map;
331  extern struct lockdep_map rcu_callback_map;
332  
333  #ifdef CONFIG_DEBUG_LOCK_ALLOC
334  
rcu_lock_acquire(struct lockdep_map * map)335  static inline void rcu_lock_acquire(struct lockdep_map *map)
336  {
337  	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
338  }
339  
rcu_try_lock_acquire(struct lockdep_map * map)340  static inline void rcu_try_lock_acquire(struct lockdep_map *map)
341  {
342  	lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
343  }
344  
rcu_lock_release(struct lockdep_map * map)345  static inline void rcu_lock_release(struct lockdep_map *map)
346  {
347  	lock_release(map, _THIS_IP_);
348  }
349  
350  int debug_lockdep_rcu_enabled(void);
351  int rcu_read_lock_held(void);
352  int rcu_read_lock_bh_held(void);
353  int rcu_read_lock_sched_held(void);
354  int rcu_read_lock_any_held(void);
355  
356  #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
357  
358  # define rcu_lock_acquire(a)		do { } while (0)
359  # define rcu_try_lock_acquire(a)	do { } while (0)
360  # define rcu_lock_release(a)		do { } while (0)
361  
rcu_read_lock_held(void)362  static inline int rcu_read_lock_held(void)
363  {
364  	return 1;
365  }
366  
rcu_read_lock_bh_held(void)367  static inline int rcu_read_lock_bh_held(void)
368  {
369  	return 1;
370  }
371  
rcu_read_lock_sched_held(void)372  static inline int rcu_read_lock_sched_held(void)
373  {
374  	return !preemptible();
375  }
376  
rcu_read_lock_any_held(void)377  static inline int rcu_read_lock_any_held(void)
378  {
379  	return !preemptible();
380  }
381  
debug_lockdep_rcu_enabled(void)382  static inline int debug_lockdep_rcu_enabled(void)
383  {
384  	return 0;
385  }
386  
387  #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
388  
389  #ifdef CONFIG_PROVE_RCU
390  
391  /**
392   * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
393   * @c: condition to check
394   * @s: informative message
395   *
396   * This checks debug_lockdep_rcu_enabled() before checking (c) to
397   * prevent early boot splats due to lockdep not yet being initialized,
398   * and rechecks it after checking (c) to prevent false-positive splats
399   * due to races with lockdep being disabled.  See commit 3066820034b5dd
400   * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
401   */
402  #define RCU_LOCKDEP_WARN(c, s)						\
403  	do {								\
404  		static bool __section(".data.unlikely") __warned;	\
405  		if (debug_lockdep_rcu_enabled() && (c) &&		\
406  		    debug_lockdep_rcu_enabled() && !__warned) {		\
407  			__warned = true;				\
408  			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
409  		}							\
410  	} while (0)
411  
412  #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)413  static inline void rcu_preempt_sleep_check(void)
414  {
415  	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
416  			 "Illegal context switch in RCU read-side critical section");
417  }
418  #else // #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)419  static inline void rcu_preempt_sleep_check(void) { }
420  #endif // #else // #ifndef CONFIG_PREEMPT_RCU
421  
422  #define rcu_sleep_check()						\
423  	do {								\
424  		rcu_preempt_sleep_check();				\
425  		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
426  		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
427  				 "Illegal context switch in RCU-bh read-side critical section"); \
428  		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
429  				 "Illegal context switch in RCU-sched read-side critical section"); \
430  	} while (0)
431  
432  // See RCU_LOCKDEP_WARN() for an explanation of the double call to
433  // debug_lockdep_rcu_enabled().
lockdep_assert_rcu_helper(bool c)434  static inline bool lockdep_assert_rcu_helper(bool c)
435  {
436  	return debug_lockdep_rcu_enabled() &&
437  	       (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) &&
438  	       debug_lockdep_rcu_enabled();
439  }
440  
441  /**
442   * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock()
443   *
444   * Splats if lockdep is enabled and there is no rcu_read_lock() in effect.
445   */
446  #define lockdep_assert_in_rcu_read_lock() \
447  	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map)))
448  
449  /**
450   * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh()
451   *
452   * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect.
453   * Note that local_bh_disable() and friends do not suffice here, instead an
454   * actual rcu_read_lock_bh() is required.
455   */
456  #define lockdep_assert_in_rcu_read_lock_bh() \
457  	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map)))
458  
459  /**
460   * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched()
461   *
462   * Splats if lockdep is enabled and there is no rcu_read_lock_sched()
463   * in effect.  Note that preempt_disable() and friends do not suffice here,
464   * instead an actual rcu_read_lock_sched() is required.
465   */
466  #define lockdep_assert_in_rcu_read_lock_sched() \
467  	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map)))
468  
469  /**
470   * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader
471   *
472   * Splats if lockdep is enabled and there is no RCU reader of any
473   * type in effect.  Note that regions of code protected by things like
474   * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify
475   * as RCU readers.
476   *
477   * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY
478   * kernels that are not also built with PREEMPT_COUNT.  But if you have
479   * lockdep enabled, you might as well also enable PREEMPT_COUNT.
480   */
481  #define lockdep_assert_in_rcu_reader()								\
482  	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) &&			\
483  					       !lock_is_held(&rcu_bh_lock_map) &&		\
484  					       !lock_is_held(&rcu_sched_lock_map) &&		\
485  					       preemptible()))
486  
487  #else /* #ifdef CONFIG_PROVE_RCU */
488  
489  #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
490  #define rcu_sleep_check() do { } while (0)
491  
492  #define lockdep_assert_in_rcu_read_lock() do { } while (0)
493  #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0)
494  #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0)
495  #define lockdep_assert_in_rcu_reader() do { } while (0)
496  
497  #endif /* #else #ifdef CONFIG_PROVE_RCU */
498  
499  /*
500   * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
501   * and rcu_assign_pointer().  Some of these could be folded into their
502   * callers, but they are left separate in order to ease introduction of
503   * multiple pointers markings to match different RCU implementations
504   * (e.g., __srcu), should this make sense in the future.
505   */
506  
507  #ifdef __CHECKER__
508  #define rcu_check_sparse(p, space) \
509  	((void)(((typeof(*p) space *)p) == p))
510  #else /* #ifdef __CHECKER__ */
511  #define rcu_check_sparse(p, space)
512  #endif /* #else #ifdef __CHECKER__ */
513  
514  #define __unrcu_pointer(p, local)					\
515  ({									\
516  	typeof(*p) *local = (typeof(*p) *__force)(p);			\
517  	rcu_check_sparse(p, __rcu);					\
518  	((typeof(*p) __force __kernel *)(local)); 			\
519  })
520  /**
521   * unrcu_pointer - mark a pointer as not being RCU protected
522   * @p: pointer needing to lose its __rcu property
523   *
524   * Converts @p from an __rcu pointer to a __kernel pointer.
525   * This allows an __rcu pointer to be used with xchg() and friends.
526   */
527  #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
528  
529  #define __rcu_access_pointer(p, local, space) \
530  ({ \
531  	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
532  	rcu_check_sparse(p, space); \
533  	((typeof(*p) __force __kernel *)(local)); \
534  })
535  #define __rcu_dereference_check(p, local, c, space) \
536  ({ \
537  	/* Dependency order vs. p above. */ \
538  	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
539  	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
540  	rcu_check_sparse(p, space); \
541  	((typeof(*p) __force __kernel *)(local)); \
542  })
543  #define __rcu_dereference_protected(p, local, c, space) \
544  ({ \
545  	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
546  	rcu_check_sparse(p, space); \
547  	((typeof(*p) __force __kernel *)(p)); \
548  })
549  #define __rcu_dereference_raw(p, local) \
550  ({ \
551  	/* Dependency order vs. p above. */ \
552  	typeof(p) local = READ_ONCE(p); \
553  	((typeof(*p) __force __kernel *)(local)); \
554  })
555  #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
556  
557  /**
558   * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
559   * @v: The value to statically initialize with.
560   */
561  #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
562  
563  /**
564   * rcu_assign_pointer() - assign to RCU-protected pointer
565   * @p: pointer to assign to
566   * @v: value to assign (publish)
567   *
568   * Assigns the specified value to the specified RCU-protected
569   * pointer, ensuring that any concurrent RCU readers will see
570   * any prior initialization.
571   *
572   * Inserts memory barriers on architectures that require them
573   * (which is most of them), and also prevents the compiler from
574   * reordering the code that initializes the structure after the pointer
575   * assignment.  More importantly, this call documents which pointers
576   * will be dereferenced by RCU read-side code.
577   *
578   * In some special cases, you may use RCU_INIT_POINTER() instead
579   * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
580   * to the fact that it does not constrain either the CPU or the compiler.
581   * That said, using RCU_INIT_POINTER() when you should have used
582   * rcu_assign_pointer() is a very bad thing that results in
583   * impossible-to-diagnose memory corruption.  So please be careful.
584   * See the RCU_INIT_POINTER() comment header for details.
585   *
586   * Note that rcu_assign_pointer() evaluates each of its arguments only
587   * once, appearances notwithstanding.  One of the "extra" evaluations
588   * is in typeof() and the other visible only to sparse (__CHECKER__),
589   * neither of which actually execute the argument.  As with most cpp
590   * macros, this execute-arguments-only-once property is important, so
591   * please be careful when making changes to rcu_assign_pointer() and the
592   * other macros that it invokes.
593   */
594  #define rcu_assign_pointer(p, v)					      \
595  do {									      \
596  	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
597  	rcu_check_sparse(p, __rcu);					      \
598  									      \
599  	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
600  		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
601  	else								      \
602  		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
603  } while (0)
604  
605  /**
606   * rcu_replace_pointer() - replace an RCU pointer, returning its old value
607   * @rcu_ptr: RCU pointer, whose old value is returned
608   * @ptr: regular pointer
609   * @c: the lockdep conditions under which the dereference will take place
610   *
611   * Perform a replacement, where @rcu_ptr is an RCU-annotated
612   * pointer and @c is the lockdep argument that is passed to the
613   * rcu_dereference_protected() call used to read that pointer.  The old
614   * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
615   */
616  #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
617  ({									\
618  	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
619  	rcu_assign_pointer((rcu_ptr), (ptr));				\
620  	__tmp;								\
621  })
622  
623  /**
624   * rcu_access_pointer() - fetch RCU pointer with no dereferencing
625   * @p: The pointer to read
626   *
627   * Return the value of the specified RCU-protected pointer, but omit the
628   * lockdep checks for being in an RCU read-side critical section.  This is
629   * useful when the value of this pointer is accessed, but the pointer is
630   * not dereferenced, for example, when testing an RCU-protected pointer
631   * against NULL.  Although rcu_access_pointer() may also be used in cases
632   * where update-side locks prevent the value of the pointer from changing,
633   * you should instead use rcu_dereference_protected() for this use case.
634   * Within an RCU read-side critical section, there is little reason to
635   * use rcu_access_pointer().
636   *
637   * It is usually best to test the rcu_access_pointer() return value
638   * directly in order to avoid accidental dereferences being introduced
639   * by later inattentive changes.  In other words, assigning the
640   * rcu_access_pointer() return value to a local variable results in an
641   * accident waiting to happen.
642   *
643   * It is also permissible to use rcu_access_pointer() when read-side
644   * access to the pointer was removed at least one grace period ago, as is
645   * the case in the context of the RCU callback that is freeing up the data,
646   * or after a synchronize_rcu() returns.  This can be useful when tearing
647   * down multi-linked structures after a grace period has elapsed.  However,
648   * rcu_dereference_protected() is normally preferred for this use case.
649   */
650  #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
651  
652  /**
653   * rcu_dereference_check() - rcu_dereference with debug checking
654   * @p: The pointer to read, prior to dereferencing
655   * @c: The conditions under which the dereference will take place
656   *
657   * Do an rcu_dereference(), but check that the conditions under which the
658   * dereference will take place are correct.  Typically the conditions
659   * indicate the various locking conditions that should be held at that
660   * point.  The check should return true if the conditions are satisfied.
661   * An implicit check for being in an RCU read-side critical section
662   * (rcu_read_lock()) is included.
663   *
664   * For example:
665   *
666   *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
667   *
668   * could be used to indicate to lockdep that foo->bar may only be dereferenced
669   * if either rcu_read_lock() is held, or that the lock required to replace
670   * the bar struct at foo->bar is held.
671   *
672   * Note that the list of conditions may also include indications of when a lock
673   * need not be held, for example during initialisation or destruction of the
674   * target struct:
675   *
676   *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
677   *					      atomic_read(&foo->usage) == 0);
678   *
679   * Inserts memory barriers on architectures that require them
680   * (currently only the Alpha), prevents the compiler from refetching
681   * (and from merging fetches), and, more importantly, documents exactly
682   * which pointers are protected by RCU and checks that the pointer is
683   * annotated as __rcu.
684   */
685  #define rcu_dereference_check(p, c) \
686  	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
687  				(c) || rcu_read_lock_held(), __rcu)
688  
689  /**
690   * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
691   * @p: The pointer to read, prior to dereferencing
692   * @c: The conditions under which the dereference will take place
693   *
694   * This is the RCU-bh counterpart to rcu_dereference_check().  However,
695   * please note that starting in v5.0 kernels, vanilla RCU grace periods
696   * wait for local_bh_disable() regions of code in addition to regions of
697   * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
698   * that synchronize_rcu(), call_rcu, and friends all take not only
699   * rcu_read_lock() but also rcu_read_lock_bh() into account.
700   */
701  #define rcu_dereference_bh_check(p, c) \
702  	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
703  				(c) || rcu_read_lock_bh_held(), __rcu)
704  
705  /**
706   * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
707   * @p: The pointer to read, prior to dereferencing
708   * @c: The conditions under which the dereference will take place
709   *
710   * This is the RCU-sched counterpart to rcu_dereference_check().
711   * However, please note that starting in v5.0 kernels, vanilla RCU grace
712   * periods wait for preempt_disable() regions of code in addition to
713   * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
714   * This means that synchronize_rcu(), call_rcu, and friends all take not
715   * only rcu_read_lock() but also rcu_read_lock_sched() into account.
716   */
717  #define rcu_dereference_sched_check(p, c) \
718  	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
719  				(c) || rcu_read_lock_sched_held(), \
720  				__rcu)
721  
722  /*
723   * The tracing infrastructure traces RCU (we want that), but unfortunately
724   * some of the RCU checks causes tracing to lock up the system.
725   *
726   * The no-tracing version of rcu_dereference_raw() must not call
727   * rcu_read_lock_held().
728   */
729  #define rcu_dereference_raw_check(p) \
730  	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
731  
732  /**
733   * rcu_dereference_protected() - fetch RCU pointer when updates prevented
734   * @p: The pointer to read, prior to dereferencing
735   * @c: The conditions under which the dereference will take place
736   *
737   * Return the value of the specified RCU-protected pointer, but omit
738   * the READ_ONCE().  This is useful in cases where update-side locks
739   * prevent the value of the pointer from changing.  Please note that this
740   * primitive does *not* prevent the compiler from repeating this reference
741   * or combining it with other references, so it should not be used without
742   * protection of appropriate locks.
743   *
744   * This function is only for update-side use.  Using this function
745   * when protected only by rcu_read_lock() will result in infrequent
746   * but very ugly failures.
747   */
748  #define rcu_dereference_protected(p, c) \
749  	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
750  
751  
752  /**
753   * rcu_dereference() - fetch RCU-protected pointer for dereferencing
754   * @p: The pointer to read, prior to dereferencing
755   *
756   * This is a simple wrapper around rcu_dereference_check().
757   */
758  #define rcu_dereference(p) rcu_dereference_check(p, 0)
759  
760  /**
761   * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
762   * @p: The pointer to read, prior to dereferencing
763   *
764   * Makes rcu_dereference_check() do the dirty work.
765   */
766  #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
767  
768  /**
769   * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
770   * @p: The pointer to read, prior to dereferencing
771   *
772   * Makes rcu_dereference_check() do the dirty work.
773   */
774  #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
775  
776  /**
777   * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
778   * @p: The pointer to hand off
779   *
780   * This is simply an identity function, but it documents where a pointer
781   * is handed off from RCU to some other synchronization mechanism, for
782   * example, reference counting or locking.  In C11, it would map to
783   * kill_dependency().  It could be used as follows::
784   *
785   *	rcu_read_lock();
786   *	p = rcu_dereference(gp);
787   *	long_lived = is_long_lived(p);
788   *	if (long_lived) {
789   *		if (!atomic_inc_not_zero(p->refcnt))
790   *			long_lived = false;
791   *		else
792   *			p = rcu_pointer_handoff(p);
793   *	}
794   *	rcu_read_unlock();
795   */
796  #define rcu_pointer_handoff(p) (p)
797  
798  /**
799   * rcu_read_lock() - mark the beginning of an RCU read-side critical section
800   *
801   * When synchronize_rcu() is invoked on one CPU while other CPUs
802   * are within RCU read-side critical sections, then the
803   * synchronize_rcu() is guaranteed to block until after all the other
804   * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
805   * on one CPU while other CPUs are within RCU read-side critical
806   * sections, invocation of the corresponding RCU callback is deferred
807   * until after the all the other CPUs exit their critical sections.
808   *
809   * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
810   * wait for regions of code with preemption disabled, including regions of
811   * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
812   * define synchronize_sched(), only code enclosed within rcu_read_lock()
813   * and rcu_read_unlock() are guaranteed to be waited for.
814   *
815   * Note, however, that RCU callbacks are permitted to run concurrently
816   * with new RCU read-side critical sections.  One way that this can happen
817   * is via the following sequence of events: (1) CPU 0 enters an RCU
818   * read-side critical section, (2) CPU 1 invokes call_rcu() to register
819   * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
820   * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
821   * callback is invoked.  This is legal, because the RCU read-side critical
822   * section that was running concurrently with the call_rcu() (and which
823   * therefore might be referencing something that the corresponding RCU
824   * callback would free up) has completed before the corresponding
825   * RCU callback is invoked.
826   *
827   * RCU read-side critical sections may be nested.  Any deferred actions
828   * will be deferred until the outermost RCU read-side critical section
829   * completes.
830   *
831   * You can avoid reading and understanding the next paragraph by
832   * following this rule: don't put anything in an rcu_read_lock() RCU
833   * read-side critical section that would block in a !PREEMPTION kernel.
834   * But if you want the full story, read on!
835   *
836   * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
837   * it is illegal to block while in an RCU read-side critical section.
838   * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
839   * kernel builds, RCU read-side critical sections may be preempted,
840   * but explicit blocking is illegal.  Finally, in preemptible RCU
841   * implementations in real-time (with -rt patchset) kernel builds, RCU
842   * read-side critical sections may be preempted and they may also block, but
843   * only when acquiring spinlocks that are subject to priority inheritance.
844   */
rcu_read_lock(void)845  static __always_inline void rcu_read_lock(void)
846  {
847  	__rcu_read_lock();
848  	__acquire(RCU);
849  	rcu_lock_acquire(&rcu_lock_map);
850  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
851  			 "rcu_read_lock() used illegally while idle");
852  }
853  
854  /*
855   * So where is rcu_write_lock()?  It does not exist, as there is no
856   * way for writers to lock out RCU readers.  This is a feature, not
857   * a bug -- this property is what provides RCU's performance benefits.
858   * Of course, writers must coordinate with each other.  The normal
859   * spinlock primitives work well for this, but any other technique may be
860   * used as well.  RCU does not care how the writers keep out of each
861   * others' way, as long as they do so.
862   */
863  
864  /**
865   * rcu_read_unlock() - marks the end of an RCU read-side critical section.
866   *
867   * In almost all situations, rcu_read_unlock() is immune from deadlock.
868   * In recent kernels that have consolidated synchronize_sched() and
869   * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
870   * also extends to the scheduler's runqueue and priority-inheritance
871   * spinlocks, courtesy of the quiescent-state deferral that is carried
872   * out when rcu_read_unlock() is invoked with interrupts disabled.
873   *
874   * See rcu_read_lock() for more information.
875   */
rcu_read_unlock(void)876  static inline void rcu_read_unlock(void)
877  {
878  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
879  			 "rcu_read_unlock() used illegally while idle");
880  	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
881  	__release(RCU);
882  	__rcu_read_unlock();
883  }
884  
885  /**
886   * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
887   *
888   * This is equivalent to rcu_read_lock(), but also disables softirqs.
889   * Note that anything else that disables softirqs can also serve as an RCU
890   * read-side critical section.  However, please note that this equivalence
891   * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
892   * rcu_read_lock_bh() were unrelated.
893   *
894   * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
895   * must occur in the same context, for example, it is illegal to invoke
896   * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
897   * was invoked from some other task.
898   */
rcu_read_lock_bh(void)899  static inline void rcu_read_lock_bh(void)
900  {
901  	local_bh_disable();
902  	__acquire(RCU_BH);
903  	rcu_lock_acquire(&rcu_bh_lock_map);
904  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
905  			 "rcu_read_lock_bh() used illegally while idle");
906  }
907  
908  /**
909   * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
910   *
911   * See rcu_read_lock_bh() for more information.
912   */
rcu_read_unlock_bh(void)913  static inline void rcu_read_unlock_bh(void)
914  {
915  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
916  			 "rcu_read_unlock_bh() used illegally while idle");
917  	rcu_lock_release(&rcu_bh_lock_map);
918  	__release(RCU_BH);
919  	local_bh_enable();
920  }
921  
922  /**
923   * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
924   *
925   * This is equivalent to rcu_read_lock(), but also disables preemption.
926   * Read-side critical sections can also be introduced by anything else that
927   * disables preemption, including local_irq_disable() and friends.  However,
928   * please note that the equivalence to rcu_read_lock() applies only to
929   * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
930   * were unrelated.
931   *
932   * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
933   * must occur in the same context, for example, it is illegal to invoke
934   * rcu_read_unlock_sched() from process context if the matching
935   * rcu_read_lock_sched() was invoked from an NMI handler.
936   */
rcu_read_lock_sched(void)937  static inline void rcu_read_lock_sched(void)
938  {
939  	preempt_disable();
940  	__acquire(RCU_SCHED);
941  	rcu_lock_acquire(&rcu_sched_lock_map);
942  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
943  			 "rcu_read_lock_sched() used illegally while idle");
944  }
945  
946  /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)947  static inline notrace void rcu_read_lock_sched_notrace(void)
948  {
949  	preempt_disable_notrace();
950  	__acquire(RCU_SCHED);
951  }
952  
953  /**
954   * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
955   *
956   * See rcu_read_lock_sched() for more information.
957   */
rcu_read_unlock_sched(void)958  static inline void rcu_read_unlock_sched(void)
959  {
960  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
961  			 "rcu_read_unlock_sched() used illegally while idle");
962  	rcu_lock_release(&rcu_sched_lock_map);
963  	__release(RCU_SCHED);
964  	preempt_enable();
965  }
966  
967  /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)968  static inline notrace void rcu_read_unlock_sched_notrace(void)
969  {
970  	__release(RCU_SCHED);
971  	preempt_enable_notrace();
972  }
973  
974  /**
975   * RCU_INIT_POINTER() - initialize an RCU protected pointer
976   * @p: The pointer to be initialized.
977   * @v: The value to initialized the pointer to.
978   *
979   * Initialize an RCU-protected pointer in special cases where readers
980   * do not need ordering constraints on the CPU or the compiler.  These
981   * special cases are:
982   *
983   * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
984   * 2.	The caller has taken whatever steps are required to prevent
985   *	RCU readers from concurrently accessing this pointer *or*
986   * 3.	The referenced data structure has already been exposed to
987   *	readers either at compile time or via rcu_assign_pointer() *and*
988   *
989   *	a.	You have not made *any* reader-visible changes to
990   *		this structure since then *or*
991   *	b.	It is OK for readers accessing this structure from its
992   *		new location to see the old state of the structure.  (For
993   *		example, the changes were to statistical counters or to
994   *		other state where exact synchronization is not required.)
995   *
996   * Failure to follow these rules governing use of RCU_INIT_POINTER() will
997   * result in impossible-to-diagnose memory corruption.  As in the structures
998   * will look OK in crash dumps, but any concurrent RCU readers might
999   * see pre-initialized values of the referenced data structure.  So
1000   * please be very careful how you use RCU_INIT_POINTER()!!!
1001   *
1002   * If you are creating an RCU-protected linked structure that is accessed
1003   * by a single external-to-structure RCU-protected pointer, then you may
1004   * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1005   * pointers, but you must use rcu_assign_pointer() to initialize the
1006   * external-to-structure pointer *after* you have completely initialized
1007   * the reader-accessible portions of the linked structure.
1008   *
1009   * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1010   * ordering guarantees for either the CPU or the compiler.
1011   */
1012  #define RCU_INIT_POINTER(p, v) \
1013  	do { \
1014  		rcu_check_sparse(p, __rcu); \
1015  		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1016  	} while (0)
1017  
1018  /**
1019   * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1020   * @p: The pointer to be initialized.
1021   * @v: The value to initialized the pointer to.
1022   *
1023   * GCC-style initialization for an RCU-protected pointer in a structure field.
1024   */
1025  #define RCU_POINTER_INITIALIZER(p, v) \
1026  		.p = RCU_INITIALIZER(v)
1027  
1028  /*
1029   * Does the specified offset indicate that the corresponding rcu_head
1030   * structure can be handled by kvfree_rcu()?
1031   */
1032  #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
1033  
1034  /**
1035   * kfree_rcu() - kfree an object after a grace period.
1036   * @ptr: pointer to kfree for double-argument invocations.
1037   * @rhf: the name of the struct rcu_head within the type of @ptr.
1038   *
1039   * Many rcu callbacks functions just call kfree() on the base structure.
1040   * These functions are trivial, but their size adds up, and furthermore
1041   * when they are used in a kernel module, that module must invoke the
1042   * high-latency rcu_barrier() function at module-unload time.
1043   *
1044   * The kfree_rcu() function handles this issue.  Rather than encoding a
1045   * function address in the embedded rcu_head structure, kfree_rcu() instead
1046   * encodes the offset of the rcu_head structure within the base structure.
1047   * Because the functions are not allowed in the low-order 4096 bytes of
1048   * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1049   * If the offset is larger than 4095 bytes, a compile-time error will
1050   * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
1051   * either fall back to use of call_rcu() or rearrange the structure to
1052   * position the rcu_head structure into the first 4096 bytes.
1053   *
1054   * The object to be freed can be allocated either by kmalloc() or
1055   * kmem_cache_alloc().
1056   *
1057   * Note that the allowable offset might decrease in the future.
1058   *
1059   * The BUILD_BUG_ON check must not involve any function calls, hence the
1060   * checks are done in macros here.
1061   */
1062  #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1063  #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1064  
1065  /**
1066   * kfree_rcu_mightsleep() - kfree an object after a grace period.
1067   * @ptr: pointer to kfree for single-argument invocations.
1068   *
1069   * When it comes to head-less variant, only one argument
1070   * is passed and that is just a pointer which has to be
1071   * freed after a grace period. Therefore the semantic is
1072   *
1073   *     kfree_rcu_mightsleep(ptr);
1074   *
1075   * where @ptr is the pointer to be freed by kvfree().
1076   *
1077   * Please note, head-less way of freeing is permitted to
1078   * use from a context that has to follow might_sleep()
1079   * annotation. Otherwise, please switch and embed the
1080   * rcu_head structure within the type of @ptr.
1081   */
1082  #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1083  #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1084  
1085  #define kvfree_rcu_arg_2(ptr, rhf)					\
1086  do {									\
1087  	typeof (ptr) ___p = (ptr);					\
1088  									\
1089  	if (___p) {									\
1090  		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));	\
1091  		kvfree_call_rcu(&((___p)->rhf), (void *) (___p));			\
1092  	}										\
1093  } while (0)
1094  
1095  #define kvfree_rcu_arg_1(ptr)					\
1096  do {								\
1097  	typeof(ptr) ___p = (ptr);				\
1098  								\
1099  	if (___p)						\
1100  		kvfree_call_rcu(NULL, (void *) (___p));		\
1101  } while (0)
1102  
1103  /*
1104   * Place this after a lock-acquisition primitive to guarantee that
1105   * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1106   * if the UNLOCK and LOCK are executed by the same CPU or if the
1107   * UNLOCK and LOCK operate on the same lock variable.
1108   */
1109  #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1110  #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1111  #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1112  #define smp_mb__after_unlock_lock()	do { } while (0)
1113  #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1114  
1115  
1116  /* Has the specified rcu_head structure been handed to call_rcu()? */
1117  
1118  /**
1119   * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1120   * @rhp: The rcu_head structure to initialize.
1121   *
1122   * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1123   * given rcu_head structure has already been passed to call_rcu(), then
1124   * you must also invoke this rcu_head_init() function on it just after
1125   * allocating that structure.  Calls to this function must not race with
1126   * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1127   */
rcu_head_init(struct rcu_head * rhp)1128  static inline void rcu_head_init(struct rcu_head *rhp)
1129  {
1130  	rhp->func = (rcu_callback_t)~0L;
1131  }
1132  
1133  /**
1134   * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1135   * @rhp: The rcu_head structure to test.
1136   * @f: The function passed to call_rcu() along with @rhp.
1137   *
1138   * Returns @true if the @rhp has been passed to call_rcu() with @func,
1139   * and @false otherwise.  Emits a warning in any other case, including
1140   * the case where @rhp has already been invoked after a grace period.
1141   * Calls to this function must not race with callback invocation.  One way
1142   * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1143   * in an RCU read-side critical section that includes a read-side fetch
1144   * of the pointer to the structure containing @rhp.
1145   */
1146  static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1147  rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1148  {
1149  	rcu_callback_t func = READ_ONCE(rhp->func);
1150  
1151  	if (func == f)
1152  		return true;
1153  	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1154  	return false;
1155  }
1156  
1157  /* kernel/ksysfs.c definitions */
1158  extern int rcu_expedited;
1159  extern int rcu_normal;
1160  
1161  DEFINE_LOCK_GUARD_0(rcu,
1162  	do {
1163  		rcu_read_lock();
1164  		/*
1165  		 * sparse doesn't call the cleanup function,
1166  		 * so just release immediately and don't track
1167  		 * the context. We don't need to anyway, since
1168  		 * the whole point of the guard is to not need
1169  		 * the explicit unlock.
1170  		 */
1171  		__release(RCU);
1172  	} while (0),
1173  	rcu_read_unlock())
1174  
1175  #endif /* __LINUX_RCUPDATE_H */
1176