1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4   *                        Steven J. Hill <sjhill@realitydiluted.com>
5   *		          Thomas Gleixner <tglx@linutronix.de>
6   *
7   * Info:
8   *	Contains standard defines and IDs for NAND flash devices
9   *
10   * Changelog:
11   *	See git changelog.
12   */
13  #ifndef __LINUX_MTD_RAWNAND_H
14  #define __LINUX_MTD_RAWNAND_H
15  
16  #include <linux/mtd/mtd.h>
17  #include <linux/mtd/nand.h>
18  #include <linux/mtd/flashchip.h>
19  #include <linux/mtd/bbm.h>
20  #include <linux/mtd/jedec.h>
21  #include <linux/mtd/onfi.h>
22  #include <linux/mutex.h>
23  #include <linux/of.h>
24  #include <linux/types.h>
25  
26  struct nand_chip;
27  struct gpio_desc;
28  
29  /* The maximum number of NAND chips in an array */
30  #define NAND_MAX_CHIPS		8
31  
32  /*
33   * Constants for hardware specific CLE/ALE/NCE function
34   *
35   * These are bits which can be or'ed to set/clear multiple
36   * bits in one go.
37   */
38  /* Select the chip by setting nCE to low */
39  #define NAND_NCE		0x01
40  /* Select the command latch by setting CLE to high */
41  #define NAND_CLE		0x02
42  /* Select the address latch by setting ALE to high */
43  #define NAND_ALE		0x04
44  
45  #define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
46  #define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
47  #define NAND_CTRL_CHANGE	0x80
48  
49  /*
50   * Standard NAND flash commands
51   */
52  #define NAND_CMD_READ0		0
53  #define NAND_CMD_READ1		1
54  #define NAND_CMD_RNDOUT		5
55  #define NAND_CMD_PAGEPROG	0x10
56  #define NAND_CMD_READOOB	0x50
57  #define NAND_CMD_ERASE1		0x60
58  #define NAND_CMD_STATUS		0x70
59  #define NAND_CMD_SEQIN		0x80
60  #define NAND_CMD_RNDIN		0x85
61  #define NAND_CMD_READID		0x90
62  #define NAND_CMD_ERASE2		0xd0
63  #define NAND_CMD_PARAM		0xec
64  #define NAND_CMD_GET_FEATURES	0xee
65  #define NAND_CMD_SET_FEATURES	0xef
66  #define NAND_CMD_RESET		0xff
67  
68  /* Extended commands for large page devices */
69  #define NAND_CMD_READSTART	0x30
70  #define NAND_CMD_READCACHESEQ	0x31
71  #define NAND_CMD_READCACHEEND	0x3f
72  #define NAND_CMD_RNDOUTSTART	0xE0
73  #define NAND_CMD_CACHEDPROG	0x15
74  
75  #define NAND_CMD_NONE		-1
76  
77  /* Status bits */
78  #define NAND_STATUS_FAIL	0x01
79  #define NAND_STATUS_FAIL_N1	0x02
80  #define NAND_STATUS_TRUE_READY	0x20
81  #define NAND_STATUS_READY	0x40
82  #define NAND_STATUS_WP		0x80
83  
84  #define NAND_DATA_IFACE_CHECK_ONLY	-1
85  
86  /*
87   * Constants for Hardware ECC
88   */
89  /* Reset Hardware ECC for read */
90  #define NAND_ECC_READ		0
91  /* Reset Hardware ECC for write */
92  #define NAND_ECC_WRITE		1
93  /* Enable Hardware ECC before syndrome is read back from flash */
94  #define NAND_ECC_READSYN	2
95  
96  /*
97   * Enable generic NAND 'page erased' check. This check is only done when
98   * ecc.correct() returns -EBADMSG.
99   * Set this flag if your implementation does not fix bitflips in erased
100   * pages and you want to rely on the default implementation.
101   */
102  #define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)
103  
104  /*
105   * Option constants for bizarre disfunctionality and real
106   * features.
107   */
108  
109  /* Buswidth is 16 bit */
110  #define NAND_BUSWIDTH_16	BIT(1)
111  
112  /*
113   * When using software implementation of Hamming, we can specify which byte
114   * ordering should be used.
115   */
116  #define NAND_ECC_SOFT_HAMMING_SM_ORDER	BIT(2)
117  
118  /* Chip has cache program function */
119  #define NAND_CACHEPRG		BIT(3)
120  /* Options valid for Samsung large page devices */
121  #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
122  
123  /*
124   * Chip requires ready check on read (for auto-incremented sequential read).
125   * True only for small page devices; large page devices do not support
126   * autoincrement.
127   */
128  #define NAND_NEED_READRDY	BIT(8)
129  
130  /* Chip does not allow subpage writes */
131  #define NAND_NO_SUBPAGE_WRITE	BIT(9)
132  
133  /* Device is one of 'new' xD cards that expose fake nand command set */
134  #define NAND_BROKEN_XD		BIT(10)
135  
136  /* Device behaves just like nand, but is readonly */
137  #define NAND_ROM		BIT(11)
138  
139  /* Device supports subpage reads */
140  #define NAND_SUBPAGE_READ	BIT(12)
141  /* Macros to identify the above */
142  #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
143  
144  /*
145   * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
146   * patterns.
147   */
148  #define NAND_NEED_SCRAMBLING	BIT(13)
149  
150  /* Device needs 3rd row address cycle */
151  #define NAND_ROW_ADDR_3		BIT(14)
152  
153  /* Non chip related options */
154  /* This option skips the bbt scan during initialization. */
155  #define NAND_SKIP_BBTSCAN	BIT(16)
156  /* Chip may not exist, so silence any errors in scan */
157  #define NAND_SCAN_SILENT_NODEV	BIT(18)
158  
159  /*
160   * Autodetect nand buswidth with readid/onfi.
161   * This suppose the driver will configure the hardware in 8 bits mode
162   * when calling nand_scan_ident, and update its configuration
163   * before calling nand_scan_tail.
164   */
165  #define NAND_BUSWIDTH_AUTO      BIT(19)
166  
167  /*
168   * This option could be defined by controller drivers to protect against
169   * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
170   */
171  #define NAND_USES_DMA		BIT(20)
172  
173  /*
174   * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
175   * on the default ->cmdfunc() implementation, you may want to let the core
176   * handle the tCCS delay which is required when a column change (RNDIN or
177   * RNDOUT) is requested.
178   * If your controller already takes care of this delay, you don't need to set
179   * this flag.
180   */
181  #define NAND_WAIT_TCCS		BIT(21)
182  
183  /*
184   * Whether the NAND chip is a boot medium. Drivers might use this information
185   * to select ECC algorithms supported by the boot ROM or similar restrictions.
186   */
187  #define NAND_IS_BOOT_MEDIUM	BIT(22)
188  
189  /*
190   * Do not try to tweak the timings at runtime. This is needed when the
191   * controller initializes the timings on itself or when it relies on
192   * configuration done by the bootloader.
193   */
194  #define NAND_KEEP_TIMINGS	BIT(23)
195  
196  /*
197   * There are different places where the manufacturer stores the factory bad
198   * block markers.
199   *
200   * Position within the block: Each of these pages needs to be checked for a
201   * bad block marking pattern.
202   */
203  #define NAND_BBM_FIRSTPAGE	BIT(24)
204  #define NAND_BBM_SECONDPAGE	BIT(25)
205  #define NAND_BBM_LASTPAGE	BIT(26)
206  
207  /*
208   * Some controllers with pipelined ECC engines override the BBM marker with
209   * data or ECC bytes, thus making bad block detection through bad block marker
210   * impossible. Let's flag those chips so the core knows it shouldn't check the
211   * BBM and consider all blocks good.
212   */
213  #define NAND_NO_BBM_QUIRK	BIT(27)
214  
215  /* Cell info constants */
216  #define NAND_CI_CHIPNR_MSK	0x03
217  #define NAND_CI_CELLTYPE_MSK	0x0C
218  #define NAND_CI_CELLTYPE_SHIFT	2
219  
220  /* Position within the OOB data of the page */
221  #define NAND_BBM_POS_SMALL		5
222  #define NAND_BBM_POS_LARGE		0
223  
224  /**
225   * struct nand_parameters - NAND generic parameters from the parameter page
226   * @model: Model name
227   * @supports_set_get_features: The NAND chip supports setting/getting features
228   * @supports_read_cache: The NAND chip supports read cache operations
229   * @set_feature_list: Bitmap of features that can be set
230   * @get_feature_list: Bitmap of features that can be get
231   * @onfi: ONFI specific parameters
232   */
233  struct nand_parameters {
234  	/* Generic parameters */
235  	const char *model;
236  	bool supports_set_get_features;
237  	bool supports_read_cache;
238  	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
239  	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
240  
241  	/* ONFI parameters */
242  	struct onfi_params *onfi;
243  };
244  
245  /* The maximum expected count of bytes in the NAND ID sequence */
246  #define NAND_MAX_ID_LEN 8
247  
248  /**
249   * struct nand_id - NAND id structure
250   * @data: buffer containing the id bytes.
251   * @len: ID length.
252   */
253  struct nand_id {
254  	u8 data[NAND_MAX_ID_LEN];
255  	int len;
256  };
257  
258  /**
259   * struct nand_ecc_step_info - ECC step information of ECC engine
260   * @stepsize: data bytes per ECC step
261   * @strengths: array of supported strengths
262   * @nstrengths: number of supported strengths
263   */
264  struct nand_ecc_step_info {
265  	int stepsize;
266  	const int *strengths;
267  	int nstrengths;
268  };
269  
270  /**
271   * struct nand_ecc_caps - capability of ECC engine
272   * @stepinfos: array of ECC step information
273   * @nstepinfos: number of ECC step information
274   * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
275   */
276  struct nand_ecc_caps {
277  	const struct nand_ecc_step_info *stepinfos;
278  	int nstepinfos;
279  	int (*calc_ecc_bytes)(int step_size, int strength);
280  };
281  
282  /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
283  #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
284  static const int __name##_strengths[] = { __VA_ARGS__ };	\
285  static const struct nand_ecc_step_info __name##_stepinfo = {	\
286  	.stepsize = __step,					\
287  	.strengths = __name##_strengths,			\
288  	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
289  };								\
290  static const struct nand_ecc_caps __name = {			\
291  	.stepinfos = &__name##_stepinfo,			\
292  	.nstepinfos = 1,					\
293  	.calc_ecc_bytes = __calc,				\
294  }
295  
296  /**
297   * struct nand_ecc_ctrl - Control structure for ECC
298   * @engine_type: ECC engine type
299   * @placement:	OOB bytes placement
300   * @algo:	ECC algorithm
301   * @steps:	number of ECC steps per page
302   * @size:	data bytes per ECC step
303   * @bytes:	ECC bytes per step
304   * @strength:	max number of correctible bits per ECC step
305   * @total:	total number of ECC bytes per page
306   * @prepad:	padding information for syndrome based ECC generators
307   * @postpad:	padding information for syndrome based ECC generators
308   * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
309   * @calc_buf:	buffer for calculated ECC, size is oobsize.
310   * @code_buf:	buffer for ECC read from flash, size is oobsize.
311   * @hwctl:	function to control hardware ECC generator. Must only
312   *		be provided if an hardware ECC is available
313   * @calculate:	function for ECC calculation or readback from ECC hardware
314   * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
315   *		Should return a positive number representing the number of
316   *		corrected bitflips, -EBADMSG if the number of bitflips exceed
317   *		ECC strength, or any other error code if the error is not
318   *		directly related to correction.
319   *		If -EBADMSG is returned the input buffers should be left
320   *		untouched.
321   * @read_page_raw:	function to read a raw page without ECC. This function
322   *			should hide the specific layout used by the ECC
323   *			controller and always return contiguous in-band and
324   *			out-of-band data even if they're not stored
325   *			contiguously on the NAND chip (e.g.
326   *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
327   *			out-of-band data).
328   * @write_page_raw:	function to write a raw page without ECC. This function
329   *			should hide the specific layout used by the ECC
330   *			controller and consider the passed data as contiguous
331   *			in-band and out-of-band data. ECC controller is
332   *			responsible for doing the appropriate transformations
333   *			to adapt to its specific layout (e.g.
334   *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
335   *			out-of-band data).
336   * @read_page:	function to read a page according to the ECC generator
337   *		requirements; returns maximum number of bitflips corrected in
338   *		any single ECC step, -EIO hw error
339   * @read_subpage:	function to read parts of the page covered by ECC;
340   *			returns same as read_page()
341   * @write_subpage:	function to write parts of the page covered by ECC.
342   * @write_page:	function to write a page according to the ECC generator
343   *		requirements.
344   * @write_oob_raw:	function to write chip OOB data without ECC
345   * @read_oob_raw:	function to read chip OOB data without ECC
346   * @read_oob:	function to read chip OOB data
347   * @write_oob:	function to write chip OOB data
348   */
349  struct nand_ecc_ctrl {
350  	enum nand_ecc_engine_type engine_type;
351  	enum nand_ecc_placement placement;
352  	enum nand_ecc_algo algo;
353  	int steps;
354  	int size;
355  	int bytes;
356  	int total;
357  	int strength;
358  	int prepad;
359  	int postpad;
360  	unsigned int options;
361  	u8 *calc_buf;
362  	u8 *code_buf;
363  	void (*hwctl)(struct nand_chip *chip, int mode);
364  	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
365  			 uint8_t *ecc_code);
366  	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
367  		       uint8_t *calc_ecc);
368  	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
369  			     int oob_required, int page);
370  	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
371  			      int oob_required, int page);
372  	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
373  			 int oob_required, int page);
374  	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
375  			    uint32_t len, uint8_t *buf, int page);
376  	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
377  			     uint32_t data_len, const uint8_t *data_buf,
378  			     int oob_required, int page);
379  	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
380  			  int oob_required, int page);
381  	int (*write_oob_raw)(struct nand_chip *chip, int page);
382  	int (*read_oob_raw)(struct nand_chip *chip, int page);
383  	int (*read_oob)(struct nand_chip *chip, int page);
384  	int (*write_oob)(struct nand_chip *chip, int page);
385  };
386  
387  /**
388   * struct nand_sdr_timings - SDR NAND chip timings
389   *
390   * This struct defines the timing requirements of a SDR NAND chip.
391   * These information can be found in every NAND datasheets and the timings
392   * meaning are described in the ONFI specifications:
393   * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
394   * (chapter 4.15 Timing Parameters)
395   *
396   * All these timings are expressed in picoseconds.
397   *
398   * @tBERS_max: Block erase time
399   * @tCCS_min: Change column setup time
400   * @tPROG_max: Page program time
401   * @tR_max: Page read time
402   * @tALH_min: ALE hold time
403   * @tADL_min: ALE to data loading time
404   * @tALS_min: ALE setup time
405   * @tAR_min: ALE to RE# delay
406   * @tCEA_max: CE# access time
407   * @tCEH_min: CE# high hold time
408   * @tCH_min:  CE# hold time
409   * @tCHZ_max: CE# high to output hi-Z
410   * @tCLH_min: CLE hold time
411   * @tCLR_min: CLE to RE# delay
412   * @tCLS_min: CLE setup time
413   * @tCOH_min: CE# high to output hold
414   * @tCS_min: CE# setup time
415   * @tDH_min: Data hold time
416   * @tDS_min: Data setup time
417   * @tFEAT_max: Busy time for Set Features and Get Features
418   * @tIR_min: Output hi-Z to RE# low
419   * @tITC_max: Interface and Timing Mode Change time
420   * @tRC_min: RE# cycle time
421   * @tREA_max: RE# access time
422   * @tREH_min: RE# high hold time
423   * @tRHOH_min: RE# high to output hold
424   * @tRHW_min: RE# high to WE# low
425   * @tRHZ_max: RE# high to output hi-Z
426   * @tRLOH_min: RE# low to output hold
427   * @tRP_min: RE# pulse width
428   * @tRR_min: Ready to RE# low (data only)
429   * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
430   *	      rising edge of R/B#.
431   * @tWB_max: WE# high to SR[6] low
432   * @tWC_min: WE# cycle time
433   * @tWH_min: WE# high hold time
434   * @tWHR_min: WE# high to RE# low
435   * @tWP_min: WE# pulse width
436   * @tWW_min: WP# transition to WE# low
437   */
438  struct nand_sdr_timings {
439  	u64 tBERS_max;
440  	u32 tCCS_min;
441  	u64 tPROG_max;
442  	u64 tR_max;
443  	u32 tALH_min;
444  	u32 tADL_min;
445  	u32 tALS_min;
446  	u32 tAR_min;
447  	u32 tCEA_max;
448  	u32 tCEH_min;
449  	u32 tCH_min;
450  	u32 tCHZ_max;
451  	u32 tCLH_min;
452  	u32 tCLR_min;
453  	u32 tCLS_min;
454  	u32 tCOH_min;
455  	u32 tCS_min;
456  	u32 tDH_min;
457  	u32 tDS_min;
458  	u32 tFEAT_max;
459  	u32 tIR_min;
460  	u32 tITC_max;
461  	u32 tRC_min;
462  	u32 tREA_max;
463  	u32 tREH_min;
464  	u32 tRHOH_min;
465  	u32 tRHW_min;
466  	u32 tRHZ_max;
467  	u32 tRLOH_min;
468  	u32 tRP_min;
469  	u32 tRR_min;
470  	u64 tRST_max;
471  	u32 tWB_max;
472  	u32 tWC_min;
473  	u32 tWH_min;
474  	u32 tWHR_min;
475  	u32 tWP_min;
476  	u32 tWW_min;
477  };
478  
479  /**
480   * struct nand_nvddr_timings - NV-DDR NAND chip timings
481   *
482   * This struct defines the timing requirements of a NV-DDR NAND data interface.
483   * These information can be found in every NAND datasheets and the timings
484   * meaning are described in the ONFI specifications:
485   * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
486   * (chapter 4.18.2 NV-DDR)
487   *
488   * All these timings are expressed in picoseconds.
489   *
490   * @tBERS_max: Block erase time
491   * @tCCS_min: Change column setup time
492   * @tPROG_max: Page program time
493   * @tR_max: Page read time
494   * @tAC_min: Access window of DQ[7:0] from CLK
495   * @tAC_max: Access window of DQ[7:0] from CLK
496   * @tADL_min: ALE to data loading time
497   * @tCAD_min: Command, Address, Data delay
498   * @tCAH_min: Command/Address DQ hold time
499   * @tCALH_min: W/R_n, CLE and ALE hold time
500   * @tCALS_min: W/R_n, CLE and ALE setup time
501   * @tCAS_min: Command/address DQ setup time
502   * @tCEH_min: CE# high hold time
503   * @tCH_min:  CE# hold time
504   * @tCK_min: Average clock cycle time
505   * @tCS_min: CE# setup time
506   * @tDH_min: Data hold time
507   * @tDQSCK_min: Start of the access window of DQS from CLK
508   * @tDQSCK_max: End of the access window of DQS from CLK
509   * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
510   * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
511   * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
512   * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
513   * @tDS_min: Data setup time
514   * @tDSC_min: DQS cycle time
515   * @tFEAT_max: Busy time for Set Features and Get Features
516   * @tITC_max: Interface and Timing Mode Change time
517   * @tQHS_max: Data hold skew factor
518   * @tRHW_min: Data output cycle to command, address, or data input cycle
519   * @tRR_min: Ready to RE# low (data only)
520   * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
521   *	      rising edge of R/B#.
522   * @tWB_max: WE# high to SR[6] low
523   * @tWHR_min: WE# high to RE# low
524   * @tWRCK_min: W/R_n low to data output cycle
525   * @tWW_min: WP# transition to WE# low
526   */
527  struct nand_nvddr_timings {
528  	u64 tBERS_max;
529  	u32 tCCS_min;
530  	u64 tPROG_max;
531  	u64 tR_max;
532  	u32 tAC_min;
533  	u32 tAC_max;
534  	u32 tADL_min;
535  	u32 tCAD_min;
536  	u32 tCAH_min;
537  	u32 tCALH_min;
538  	u32 tCALS_min;
539  	u32 tCAS_min;
540  	u32 tCEH_min;
541  	u32 tCH_min;
542  	u32 tCK_min;
543  	u32 tCS_min;
544  	u32 tDH_min;
545  	u32 tDQSCK_min;
546  	u32 tDQSCK_max;
547  	u32 tDQSD_min;
548  	u32 tDQSD_max;
549  	u32 tDQSHZ_max;
550  	u32 tDQSQ_max;
551  	u32 tDS_min;
552  	u32 tDSC_min;
553  	u32 tFEAT_max;
554  	u32 tITC_max;
555  	u32 tQHS_max;
556  	u32 tRHW_min;
557  	u32 tRR_min;
558  	u32 tRST_max;
559  	u32 tWB_max;
560  	u32 tWHR_min;
561  	u32 tWRCK_min;
562  	u32 tWW_min;
563  };
564  
565  /*
566   * While timings related to the data interface itself are mostly different
567   * between SDR and NV-DDR, timings related to the internal chip behavior are
568   * common. IOW, the following entries which describe the internal delays have
569   * the same definition and are shared in both SDR and NV-DDR timing structures:
570   * - tADL_min
571   * - tBERS_max
572   * - tCCS_min
573   * - tFEAT_max
574   * - tPROG_max
575   * - tR_max
576   * - tRR_min
577   * - tRST_max
578   * - tWB_max
579   *
580   * The below macros return the value of a given timing, no matter the interface.
581   */
582  #define NAND_COMMON_TIMING_PS(conf, timing_name)		\
583  	nand_interface_is_sdr(conf) ?				\
584  		nand_get_sdr_timings(conf)->timing_name :	\
585  		nand_get_nvddr_timings(conf)->timing_name
586  
587  #define NAND_COMMON_TIMING_MS(conf, timing_name) \
588  	PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
589  
590  #define NAND_COMMON_TIMING_NS(conf, timing_name) \
591  	PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
592  
593  /**
594   * enum nand_interface_type - NAND interface type
595   * @NAND_SDR_IFACE:	Single Data Rate interface
596   * @NAND_NVDDR_IFACE:	Double Data Rate interface
597   */
598  enum nand_interface_type {
599  	NAND_SDR_IFACE,
600  	NAND_NVDDR_IFACE,
601  };
602  
603  /**
604   * struct nand_interface_config - NAND interface timing
605   * @type:	 type of the timing
606   * @timings:	 The timing information
607   * @timings.mode: Timing mode as defined in the specification
608   * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
609   * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
610   */
611  struct nand_interface_config {
612  	enum nand_interface_type type;
613  	struct nand_timings {
614  		unsigned int mode;
615  		union {
616  			struct nand_sdr_timings sdr;
617  			struct nand_nvddr_timings nvddr;
618  		};
619  	} timings;
620  };
621  
622  /**
623   * nand_interface_is_sdr - get the interface type
624   * @conf:	The data interface
625   */
nand_interface_is_sdr(const struct nand_interface_config * conf)626  static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
627  {
628  	return conf->type == NAND_SDR_IFACE;
629  }
630  
631  /**
632   * nand_interface_is_nvddr - get the interface type
633   * @conf:	The data interface
634   */
nand_interface_is_nvddr(const struct nand_interface_config * conf)635  static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
636  {
637  	return conf->type == NAND_NVDDR_IFACE;
638  }
639  
640  /**
641   * nand_get_sdr_timings - get SDR timing from data interface
642   * @conf:	The data interface
643   */
644  static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_interface_config * conf)645  nand_get_sdr_timings(const struct nand_interface_config *conf)
646  {
647  	if (!nand_interface_is_sdr(conf))
648  		return ERR_PTR(-EINVAL);
649  
650  	return &conf->timings.sdr;
651  }
652  
653  /**
654   * nand_get_nvddr_timings - get NV-DDR timing from data interface
655   * @conf:	The data interface
656   */
657  static inline const struct nand_nvddr_timings *
nand_get_nvddr_timings(const struct nand_interface_config * conf)658  nand_get_nvddr_timings(const struct nand_interface_config *conf)
659  {
660  	if (!nand_interface_is_nvddr(conf))
661  		return ERR_PTR(-EINVAL);
662  
663  	return &conf->timings.nvddr;
664  }
665  
666  /**
667   * struct nand_op_cmd_instr - Definition of a command instruction
668   * @opcode: the command to issue in one cycle
669   */
670  struct nand_op_cmd_instr {
671  	u8 opcode;
672  };
673  
674  /**
675   * struct nand_op_addr_instr - Definition of an address instruction
676   * @naddrs: length of the @addrs array
677   * @addrs: array containing the address cycles to issue
678   */
679  struct nand_op_addr_instr {
680  	unsigned int naddrs;
681  	const u8 *addrs;
682  };
683  
684  /**
685   * struct nand_op_data_instr - Definition of a data instruction
686   * @len: number of data bytes to move
687   * @buf: buffer to fill
688   * @buf.in: buffer to fill when reading from the NAND chip
689   * @buf.out: buffer to read from when writing to the NAND chip
690   * @force_8bit: force 8-bit access
691   *
692   * Please note that "in" and "out" are inverted from the ONFI specification
693   * and are from the controller perspective, so a "in" is a read from the NAND
694   * chip while a "out" is a write to the NAND chip.
695   */
696  struct nand_op_data_instr {
697  	unsigned int len;
698  	union {
699  		void *in;
700  		const void *out;
701  	} buf;
702  	bool force_8bit;
703  };
704  
705  /**
706   * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
707   * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
708   */
709  struct nand_op_waitrdy_instr {
710  	unsigned int timeout_ms;
711  };
712  
713  /**
714   * enum nand_op_instr_type - Definition of all instruction types
715   * @NAND_OP_CMD_INSTR: command instruction
716   * @NAND_OP_ADDR_INSTR: address instruction
717   * @NAND_OP_DATA_IN_INSTR: data in instruction
718   * @NAND_OP_DATA_OUT_INSTR: data out instruction
719   * @NAND_OP_WAITRDY_INSTR: wait ready instruction
720   */
721  enum nand_op_instr_type {
722  	NAND_OP_CMD_INSTR,
723  	NAND_OP_ADDR_INSTR,
724  	NAND_OP_DATA_IN_INSTR,
725  	NAND_OP_DATA_OUT_INSTR,
726  	NAND_OP_WAITRDY_INSTR,
727  };
728  
729  /**
730   * struct nand_op_instr - Instruction object
731   * @type: the instruction type
732   * @ctx:  extra data associated to the instruction. You'll have to use the
733   *        appropriate element depending on @type
734   * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
735   * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
736   * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
737   *	      or %NAND_OP_DATA_OUT_INSTR
738   * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
739   * @delay_ns: delay the controller should apply after the instruction has been
740   *	      issued on the bus. Most modern controllers have internal timings
741   *	      control logic, and in this case, the controller driver can ignore
742   *	      this field.
743   */
744  struct nand_op_instr {
745  	enum nand_op_instr_type type;
746  	union {
747  		struct nand_op_cmd_instr cmd;
748  		struct nand_op_addr_instr addr;
749  		struct nand_op_data_instr data;
750  		struct nand_op_waitrdy_instr waitrdy;
751  	} ctx;
752  	unsigned int delay_ns;
753  };
754  
755  /*
756   * Special handling must be done for the WAITRDY timeout parameter as it usually
757   * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
758   * tBERS (during an erase) which all of them are u64 values that cannot be
759   * divided by usual kernel macros and must be handled with the special
760   * DIV_ROUND_UP_ULL() macro.
761   *
762   * Cast to type of dividend is needed here to guarantee that the result won't
763   * be an unsigned long long when the dividend is an unsigned long (or smaller),
764   * which is what the compiler does when it sees ternary operator with 2
765   * different return types (picks the largest type to make sure there's no
766   * loss).
767   */
768  #define __DIVIDE(dividend, divisor) ({						\
769  	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
770  			       DIV_ROUND_UP(dividend, divisor) :		\
771  			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
772  	})
773  #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
774  #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
775  
776  #define NAND_OP_CMD(id, ns)						\
777  	{								\
778  		.type = NAND_OP_CMD_INSTR,				\
779  		.ctx.cmd.opcode = id,					\
780  		.delay_ns = ns,						\
781  	}
782  
783  #define NAND_OP_ADDR(ncycles, cycles, ns)				\
784  	{								\
785  		.type = NAND_OP_ADDR_INSTR,				\
786  		.ctx.addr = {						\
787  			.naddrs = ncycles,				\
788  			.addrs = cycles,				\
789  		},							\
790  		.delay_ns = ns,						\
791  	}
792  
793  #define NAND_OP_DATA_IN(l, b, ns)					\
794  	{								\
795  		.type = NAND_OP_DATA_IN_INSTR,				\
796  		.ctx.data = {						\
797  			.len = l,					\
798  			.buf.in = b,					\
799  			.force_8bit = false,				\
800  		},							\
801  		.delay_ns = ns,						\
802  	}
803  
804  #define NAND_OP_DATA_OUT(l, b, ns)					\
805  	{								\
806  		.type = NAND_OP_DATA_OUT_INSTR,				\
807  		.ctx.data = {						\
808  			.len = l,					\
809  			.buf.out = b,					\
810  			.force_8bit = false,				\
811  		},							\
812  		.delay_ns = ns,						\
813  	}
814  
815  #define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
816  	{								\
817  		.type = NAND_OP_DATA_IN_INSTR,				\
818  		.ctx.data = {						\
819  			.len = l,					\
820  			.buf.in = b,					\
821  			.force_8bit = true,				\
822  		},							\
823  		.delay_ns = ns,						\
824  	}
825  
826  #define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
827  	{								\
828  		.type = NAND_OP_DATA_OUT_INSTR,				\
829  		.ctx.data = {						\
830  			.len = l,					\
831  			.buf.out = b,					\
832  			.force_8bit = true,				\
833  		},							\
834  		.delay_ns = ns,						\
835  	}
836  
837  #define NAND_OP_WAIT_RDY(tout_ms, ns)					\
838  	{								\
839  		.type = NAND_OP_WAITRDY_INSTR,				\
840  		.ctx.waitrdy.timeout_ms = tout_ms,			\
841  		.delay_ns = ns,						\
842  	}
843  
844  /**
845   * struct nand_subop - a sub operation
846   * @cs: the CS line to select for this NAND sub-operation
847   * @instrs: array of instructions
848   * @ninstrs: length of the @instrs array
849   * @first_instr_start_off: offset to start from for the first instruction
850   *			   of the sub-operation
851   * @last_instr_end_off: offset to end at (excluded) for the last instruction
852   *			of the sub-operation
853   *
854   * Both @first_instr_start_off and @last_instr_end_off only apply to data or
855   * address instructions.
856   *
857   * When an operation cannot be handled as is by the NAND controller, it will
858   * be split by the parser into sub-operations which will be passed to the
859   * controller driver.
860   */
861  struct nand_subop {
862  	unsigned int cs;
863  	const struct nand_op_instr *instrs;
864  	unsigned int ninstrs;
865  	unsigned int first_instr_start_off;
866  	unsigned int last_instr_end_off;
867  };
868  
869  unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
870  					   unsigned int op_id);
871  unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
872  					 unsigned int op_id);
873  unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
874  					   unsigned int op_id);
875  unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
876  				     unsigned int op_id);
877  
878  /**
879   * struct nand_op_parser_addr_constraints - Constraints for address instructions
880   * @maxcycles: maximum number of address cycles the controller can issue in a
881   *	       single step
882   */
883  struct nand_op_parser_addr_constraints {
884  	unsigned int maxcycles;
885  };
886  
887  /**
888   * struct nand_op_parser_data_constraints - Constraints for data instructions
889   * @maxlen: maximum data length that the controller can handle in a single step
890   */
891  struct nand_op_parser_data_constraints {
892  	unsigned int maxlen;
893  };
894  
895  /**
896   * struct nand_op_parser_pattern_elem - One element of a pattern
897   * @type: the instructuction type
898   * @optional: whether this element of the pattern is optional or mandatory
899   * @ctx: address or data constraint
900   * @ctx.addr: address constraint (number of cycles)
901   * @ctx.data: data constraint (data length)
902   */
903  struct nand_op_parser_pattern_elem {
904  	enum nand_op_instr_type type;
905  	bool optional;
906  	union {
907  		struct nand_op_parser_addr_constraints addr;
908  		struct nand_op_parser_data_constraints data;
909  	} ctx;
910  };
911  
912  #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
913  	{							\
914  		.type = NAND_OP_CMD_INSTR,			\
915  		.optional = _opt,				\
916  	}
917  
918  #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
919  	{							\
920  		.type = NAND_OP_ADDR_INSTR,			\
921  		.optional = _opt,				\
922  		.ctx.addr.maxcycles = _maxcycles,		\
923  	}
924  
925  #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
926  	{							\
927  		.type = NAND_OP_DATA_IN_INSTR,			\
928  		.optional = _opt,				\
929  		.ctx.data.maxlen = _maxlen,			\
930  	}
931  
932  #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
933  	{							\
934  		.type = NAND_OP_DATA_OUT_INSTR,			\
935  		.optional = _opt,				\
936  		.ctx.data.maxlen = _maxlen,			\
937  	}
938  
939  #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
940  	{							\
941  		.type = NAND_OP_WAITRDY_INSTR,			\
942  		.optional = _opt,				\
943  	}
944  
945  /**
946   * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
947   * @elems: array of pattern elements
948   * @nelems: number of pattern elements in @elems array
949   * @exec: the function that will issue a sub-operation
950   *
951   * A pattern is a list of elements, each element reprensenting one instruction
952   * with its constraints. The pattern itself is used by the core to match NAND
953   * chip operation with NAND controller operations.
954   * Once a match between a NAND controller operation pattern and a NAND chip
955   * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
956   * hook is called so that the controller driver can issue the operation on the
957   * bus.
958   *
959   * Controller drivers should declare as many patterns as they support and pass
960   * this list of patterns (created with the help of the following macro) to
961   * the nand_op_parser_exec_op() helper.
962   */
963  struct nand_op_parser_pattern {
964  	const struct nand_op_parser_pattern_elem *elems;
965  	unsigned int nelems;
966  	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
967  };
968  
969  #define NAND_OP_PARSER_PATTERN(_exec, ...)							\
970  	{											\
971  		.exec = _exec,									\
972  		.elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
973  		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
974  			  sizeof(struct nand_op_parser_pattern_elem),				\
975  	}
976  
977  /**
978   * struct nand_op_parser - NAND controller operation parser descriptor
979   * @patterns: array of supported patterns
980   * @npatterns: length of the @patterns array
981   *
982   * The parser descriptor is just an array of supported patterns which will be
983   * iterated by nand_op_parser_exec_op() everytime it tries to execute an
984   * NAND operation (or tries to determine if a specific operation is supported).
985   *
986   * It is worth mentioning that patterns will be tested in their declaration
987   * order, and the first match will be taken, so it's important to order patterns
988   * appropriately so that simple/inefficient patterns are placed at the end of
989   * the list. Usually, this is where you put single instruction patterns.
990   */
991  struct nand_op_parser {
992  	const struct nand_op_parser_pattern *patterns;
993  	unsigned int npatterns;
994  };
995  
996  #define NAND_OP_PARSER(...)									\
997  	{											\
998  		.patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },		\
999  		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
1000  			     sizeof(struct nand_op_parser_pattern),				\
1001  	}
1002  
1003  /**
1004   * struct nand_operation - NAND operation descriptor
1005   * @cs: the CS line to select for this NAND operation
1006   * @deassert_wp: set to true when the operation requires the WP pin to be
1007   *		 de-asserted (ERASE, PROG, ...)
1008   * @instrs: array of instructions to execute
1009   * @ninstrs: length of the @instrs array
1010   *
1011   * The actual operation structure that will be passed to chip->exec_op().
1012   */
1013  struct nand_operation {
1014  	unsigned int cs;
1015  	bool deassert_wp;
1016  	const struct nand_op_instr *instrs;
1017  	unsigned int ninstrs;
1018  };
1019  
1020  #define NAND_OPERATION(_cs, _instrs)				\
1021  	{							\
1022  		.cs = _cs,					\
1023  		.instrs = _instrs,				\
1024  		.ninstrs = ARRAY_SIZE(_instrs),			\
1025  	}
1026  
1027  #define NAND_DESTRUCTIVE_OPERATION(_cs, _instrs)		\
1028  	{							\
1029  		.cs = _cs,					\
1030  		.deassert_wp = true,				\
1031  		.instrs = _instrs,				\
1032  		.ninstrs = ARRAY_SIZE(_instrs),			\
1033  	}
1034  
1035  int nand_op_parser_exec_op(struct nand_chip *chip,
1036  			   const struct nand_op_parser *parser,
1037  			   const struct nand_operation *op, bool check_only);
1038  
nand_op_trace(const char * prefix,const struct nand_op_instr * instr)1039  static inline void nand_op_trace(const char *prefix,
1040  				 const struct nand_op_instr *instr)
1041  {
1042  #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
1043  	switch (instr->type) {
1044  	case NAND_OP_CMD_INSTR:
1045  		pr_debug("%sCMD      [0x%02x]\n", prefix,
1046  			 instr->ctx.cmd.opcode);
1047  		break;
1048  	case NAND_OP_ADDR_INSTR:
1049  		pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
1050  			 instr->ctx.addr.naddrs,
1051  			 instr->ctx.addr.naddrs < 64 ?
1052  			 instr->ctx.addr.naddrs : 64,
1053  			 instr->ctx.addr.addrs);
1054  		break;
1055  	case NAND_OP_DATA_IN_INSTR:
1056  		pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
1057  			 instr->ctx.data.len,
1058  			 instr->ctx.data.force_8bit ?
1059  			 ", force 8-bit" : "");
1060  		break;
1061  	case NAND_OP_DATA_OUT_INSTR:
1062  		pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
1063  			 instr->ctx.data.len,
1064  			 instr->ctx.data.force_8bit ?
1065  			 ", force 8-bit" : "");
1066  		break;
1067  	case NAND_OP_WAITRDY_INSTR:
1068  		pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
1069  			 instr->ctx.waitrdy.timeout_ms);
1070  		break;
1071  	}
1072  #endif
1073  }
1074  
1075  /**
1076   * struct nand_controller_ops - Controller operations
1077   *
1078   * @attach_chip: this method is called after the NAND detection phase after
1079   *		 flash ID and MTD fields such as erase size, page size and OOB
1080   *		 size have been set up. ECC requirements are available if
1081   *		 provided by the NAND chip or device tree. Typically used to
1082   *		 choose the appropriate ECC configuration and allocate
1083   *		 associated resources.
1084   *		 This hook is optional.
1085   * @detach_chip: free all resources allocated/claimed in
1086   *		 nand_controller_ops->attach_chip().
1087   *		 This hook is optional.
1088   * @exec_op:	 controller specific method to execute NAND operations.
1089   *		 This method replaces chip->legacy.cmdfunc(),
1090   *		 chip->legacy.{read,write}_{buf,byte,word}(),
1091   *		 chip->legacy.dev_ready() and chip->legacy.waitfunc().
1092   * @setup_interface: setup the data interface and timing. If chipnr is set to
1093   *		     %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
1094   *		     should not be applied but only checked.
1095   *		     This hook is optional.
1096   */
1097  struct nand_controller_ops {
1098  	int (*attach_chip)(struct nand_chip *chip);
1099  	void (*detach_chip)(struct nand_chip *chip);
1100  	int (*exec_op)(struct nand_chip *chip,
1101  		       const struct nand_operation *op,
1102  		       bool check_only);
1103  	int (*setup_interface)(struct nand_chip *chip, int chipnr,
1104  			       const struct nand_interface_config *conf);
1105  };
1106  
1107  /**
1108   * struct nand_controller - Structure used to describe a NAND controller
1109   *
1110   * @lock:		lock used to serialize accesses to the NAND controller
1111   * @ops:		NAND controller operations.
1112   * @supported_op:	NAND controller known-to-be-supported operations,
1113   *			only writable by the core after initial checking.
1114   * @supported_op.data_only_read: The controller supports reading more data from
1115   *			the bus without restarting an entire read operation nor
1116   *			changing the column.
1117   * @supported_op.cont_read: The controller supports sequential cache reads.
1118   * @controller_wp:	the controller is in charge of handling the WP pin.
1119   */
1120  struct nand_controller {
1121  	struct mutex lock;
1122  	const struct nand_controller_ops *ops;
1123  	struct {
1124  		unsigned int data_only_read: 1;
1125  		unsigned int cont_read: 1;
1126  	} supported_op;
1127  	bool controller_wp;
1128  };
1129  
nand_controller_init(struct nand_controller * nfc)1130  static inline void nand_controller_init(struct nand_controller *nfc)
1131  {
1132  	mutex_init(&nfc->lock);
1133  }
1134  
1135  /**
1136   * struct nand_legacy - NAND chip legacy fields/hooks
1137   * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
1138   * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
1139   * @select_chip: select/deselect a specific target/die
1140   * @read_byte: read one byte from the chip
1141   * @write_byte: write a single byte to the chip on the low 8 I/O lines
1142   * @write_buf: write data from the buffer to the chip
1143   * @read_buf: read data from the chip into the buffer
1144   * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
1145   *	      to write command and address
1146   * @cmdfunc: hardware specific function for writing commands to the chip.
1147   * @dev_ready: hardware specific function for accessing device ready/busy line.
1148   *	       If set to NULL no access to ready/busy is available and the
1149   *	       ready/busy information is read from the chip status register.
1150   * @waitfunc: hardware specific function for wait on ready.
1151   * @block_bad: check if a block is bad, using OOB markers
1152   * @block_markbad: mark a block bad
1153   * @set_features: set the NAND chip features
1154   * @get_features: get the NAND chip features
1155   * @chip_delay: chip dependent delay for transferring data from array to read
1156   *		regs (tR).
1157   * @dummy_controller: dummy controller implementation for drivers that can
1158   *		      only control a single chip
1159   *
1160   * If you look at this structure you're already wrong. These fields/hooks are
1161   * all deprecated.
1162   */
1163  struct nand_legacy {
1164  	void __iomem *IO_ADDR_R;
1165  	void __iomem *IO_ADDR_W;
1166  	void (*select_chip)(struct nand_chip *chip, int cs);
1167  	u8 (*read_byte)(struct nand_chip *chip);
1168  	void (*write_byte)(struct nand_chip *chip, u8 byte);
1169  	void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
1170  	void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
1171  	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
1172  	void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1173  			int page_addr);
1174  	int (*dev_ready)(struct nand_chip *chip);
1175  	int (*waitfunc)(struct nand_chip *chip);
1176  	int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1177  	int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1178  	int (*set_features)(struct nand_chip *chip, int feature_addr,
1179  			    u8 *subfeature_para);
1180  	int (*get_features)(struct nand_chip *chip, int feature_addr,
1181  			    u8 *subfeature_para);
1182  	int chip_delay;
1183  	struct nand_controller dummy_controller;
1184  };
1185  
1186  /**
1187   * struct nand_chip_ops - NAND chip operations
1188   * @suspend: Suspend operation
1189   * @resume: Resume operation
1190   * @lock_area: Lock operation
1191   * @unlock_area: Unlock operation
1192   * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1193   * @choose_interface_config: Choose the best interface configuration
1194   */
1195  struct nand_chip_ops {
1196  	int (*suspend)(struct nand_chip *chip);
1197  	void (*resume)(struct nand_chip *chip);
1198  	int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1199  	int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1200  	int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1201  	int (*choose_interface_config)(struct nand_chip *chip,
1202  				       struct nand_interface_config *iface);
1203  };
1204  
1205  /**
1206   * struct nand_manufacturer - NAND manufacturer structure
1207   * @desc: The manufacturer description
1208   * @priv: Private information for the manufacturer driver
1209   */
1210  struct nand_manufacturer {
1211  	const struct nand_manufacturer_desc *desc;
1212  	void *priv;
1213  };
1214  
1215  /**
1216   * struct nand_secure_region - NAND secure region structure
1217   * @offset: Offset of the start of the secure region
1218   * @size: Size of the secure region
1219   */
1220  struct nand_secure_region {
1221  	u64 offset;
1222  	u64 size;
1223  };
1224  
1225  /**
1226   * struct nand_chip - NAND Private Flash Chip Data
1227   * @base: Inherit from the generic NAND device
1228   * @id: Holds NAND ID
1229   * @parameters: Holds generic parameters under an easily readable form
1230   * @manufacturer: Manufacturer information
1231   * @ops: NAND chip operations
1232   * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1233   *          to use any of these fields/hooks, and if you're modifying an
1234   *          existing driver that is using those fields/hooks, you should
1235   *          consider reworking the driver and avoid using them.
1236   * @options: Various chip options. They can partly be set to inform nand_scan
1237   *           about special functionality. See the defines for further
1238   *           explanation.
1239   * @current_interface_config: The currently used NAND interface configuration
1240   * @best_interface_config: The best NAND interface configuration which fits both
1241   *                         the NAND chip and NAND controller constraints. If
1242   *                         unset, the default reset interface configuration must
1243   *                         be used.
1244   * @bbt_erase_shift: Number of address bits in a bbt entry
1245   * @bbt_options: Bad block table specific options. All options used here must
1246   *               come from bbm.h. By default, these options will be copied to
1247   *               the appropriate nand_bbt_descr's.
1248   * @badblockpos: Bad block marker position in the oob area
1249   * @badblockbits: Minimum number of set bits in a good block's bad block marker
1250   *                position; i.e., BBM = 11110111b is good when badblockbits = 7
1251   * @bbt_td: Bad block table descriptor for flash lookup
1252   * @bbt_md: Bad block table mirror descriptor
1253   * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1254   * @bbt: Bad block table pointer
1255   * @page_shift: Number of address bits in a page (column address bits)
1256   * @phys_erase_shift: Number of address bits in a physical eraseblock
1257   * @chip_shift: Number of address bits in one chip
1258   * @pagemask: Page number mask = number of (pages / chip) - 1
1259   * @subpagesize: Holds the subpagesize
1260   * @data_buf: Buffer for data, size is (page size + oobsize)
1261   * @oob_poi: pointer on the OOB area covered by data_buf
1262   * @pagecache: Structure containing page cache related fields
1263   * @pagecache.bitflips: Number of bitflips of the cached page
1264   * @pagecache.page: Page number currently in the cache. -1 means no page is
1265   *                  currently cached
1266   * @buf_align: Minimum buffer alignment required by a platform
1267   * @lock: Lock protecting the suspended field. Also used to serialize accesses
1268   *        to the NAND device
1269   * @suspended: Set to 1 when the device is suspended, 0 when it's not
1270   * @resume_wq: wait queue to sleep if rawnand is in suspended state.
1271   * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1272   *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1273   *          NAND Controller drivers should not modify this value, but they're
1274   *          allowed to read it.
1275   * @read_retries: The number of read retry modes supported
1276   * @secure_regions: Structure containing the secure regions info
1277   * @nr_secure_regions: Number of secure regions
1278   * @cont_read: Sequential page read internals
1279   * @cont_read.ongoing: Whether a continuous read is ongoing or not
1280   * @cont_read.first_page: Start of the continuous read operation
1281   * @cont_read.pause_page: End of the current sequential cache read operation
1282   * @cont_read.last_page: End of the continuous read operation
1283   * @controller: The hardware controller	structure which is shared among multiple
1284   *              independent devices
1285   * @ecc: The ECC controller structure
1286   * @priv: Chip private data
1287   */
1288  struct nand_chip {
1289  	struct nand_device base;
1290  	struct nand_id id;
1291  	struct nand_parameters parameters;
1292  	struct nand_manufacturer manufacturer;
1293  	struct nand_chip_ops ops;
1294  	struct nand_legacy legacy;
1295  	unsigned int options;
1296  
1297  	/* Data interface */
1298  	const struct nand_interface_config *current_interface_config;
1299  	struct nand_interface_config *best_interface_config;
1300  
1301  	/* Bad block information */
1302  	unsigned int bbt_erase_shift;
1303  	unsigned int bbt_options;
1304  	unsigned int badblockpos;
1305  	unsigned int badblockbits;
1306  	struct nand_bbt_descr *bbt_td;
1307  	struct nand_bbt_descr *bbt_md;
1308  	struct nand_bbt_descr *badblock_pattern;
1309  	u8 *bbt;
1310  
1311  	/* Device internal layout */
1312  	unsigned int page_shift;
1313  	unsigned int phys_erase_shift;
1314  	unsigned int chip_shift;
1315  	unsigned int pagemask;
1316  	unsigned int subpagesize;
1317  
1318  	/* Buffers */
1319  	u8 *data_buf;
1320  	u8 *oob_poi;
1321  	struct {
1322  		unsigned int bitflips;
1323  		int page;
1324  	} pagecache;
1325  	unsigned long buf_align;
1326  
1327  	/* Internals */
1328  	struct mutex lock;
1329  	unsigned int suspended : 1;
1330  	wait_queue_head_t resume_wq;
1331  	int cur_cs;
1332  	int read_retries;
1333  	struct nand_secure_region *secure_regions;
1334  	u8 nr_secure_regions;
1335  	struct {
1336  		bool ongoing;
1337  		unsigned int first_page;
1338  		unsigned int pause_page;
1339  		unsigned int last_page;
1340  	} cont_read;
1341  
1342  	/* Externals */
1343  	struct nand_controller *controller;
1344  	struct nand_ecc_ctrl ecc;
1345  	void *priv;
1346  };
1347  
mtd_to_nand(struct mtd_info * mtd)1348  static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1349  {
1350  	return container_of(mtd, struct nand_chip, base.mtd);
1351  }
1352  
nand_to_mtd(struct nand_chip * chip)1353  static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1354  {
1355  	return &chip->base.mtd;
1356  }
1357  
nand_get_controller_data(struct nand_chip * chip)1358  static inline void *nand_get_controller_data(struct nand_chip *chip)
1359  {
1360  	return chip->priv;
1361  }
1362  
nand_set_controller_data(struct nand_chip * chip,void * priv)1363  static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1364  {
1365  	chip->priv = priv;
1366  }
1367  
nand_set_manufacturer_data(struct nand_chip * chip,void * priv)1368  static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1369  					      void *priv)
1370  {
1371  	chip->manufacturer.priv = priv;
1372  }
1373  
nand_get_manufacturer_data(struct nand_chip * chip)1374  static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1375  {
1376  	return chip->manufacturer.priv;
1377  }
1378  
nand_set_flash_node(struct nand_chip * chip,struct device_node * np)1379  static inline void nand_set_flash_node(struct nand_chip *chip,
1380  				       struct device_node *np)
1381  {
1382  	mtd_set_of_node(nand_to_mtd(chip), np);
1383  }
1384  
nand_get_flash_node(struct nand_chip * chip)1385  static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1386  {
1387  	return mtd_get_of_node(nand_to_mtd(chip));
1388  }
1389  
1390  /**
1391   * nand_get_interface_config - Retrieve the current interface configuration
1392   *                             of a NAND chip
1393   * @chip: The NAND chip
1394   */
1395  static inline const struct nand_interface_config *
nand_get_interface_config(struct nand_chip * chip)1396  nand_get_interface_config(struct nand_chip *chip)
1397  {
1398  	return chip->current_interface_config;
1399  }
1400  
1401  /*
1402   * A helper for defining older NAND chips where the second ID byte fully
1403   * defined the chip, including the geometry (chip size, eraseblock size, page
1404   * size). All these chips have 512 bytes NAND page size.
1405   */
1406  #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1407  	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1408  	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1409  
1410  /*
1411   * A helper for defining newer chips which report their page size and
1412   * eraseblock size via the extended ID bytes.
1413   *
1414   * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1415   * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1416   * device ID now only represented a particular total chip size (and voltage,
1417   * buswidth), and the page size, eraseblock size, and OOB size could vary while
1418   * using the same device ID.
1419   */
1420  #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1421  	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1422  	  .options = (opts) }
1423  
1424  #define NAND_ECC_INFO(_strength, _step)	\
1425  			{ .strength_ds = (_strength), .step_ds = (_step) }
1426  #define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
1427  #define NAND_ECC_STEP(type)		((type)->ecc.step_ds)
1428  
1429  /**
1430   * struct nand_flash_dev - NAND Flash Device ID Structure
1431   * @name: a human-readable name of the NAND chip
1432   * @dev_id: the device ID (the second byte of the full chip ID array)
1433   * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1434   *          memory address as ``id[0]``)
1435   * @dev_id: device ID part of the full chip ID array (refers the same memory
1436   *          address as ``id[1]``)
1437   * @id: full device ID array
1438   * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1439   *            well as the eraseblock size) is determined from the extended NAND
1440   *            chip ID array)
1441   * @chipsize: total chip size in MiB
1442   * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1443   * @options: stores various chip bit options
1444   * @id_len: The valid length of the @id.
1445   * @oobsize: OOB size
1446   * @ecc: ECC correctability and step information from the datasheet.
1447   * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1448   *                   @ecc_strength_ds in nand_chip{}.
1449   * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1450   *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1451   *               For example, the "4bit ECC for each 512Byte" can be set with
1452   *               NAND_ECC_INFO(4, 512).
1453   */
1454  struct nand_flash_dev {
1455  	char *name;
1456  	union {
1457  		struct {
1458  			uint8_t mfr_id;
1459  			uint8_t dev_id;
1460  		};
1461  		uint8_t id[NAND_MAX_ID_LEN];
1462  	};
1463  	unsigned int pagesize;
1464  	unsigned int chipsize;
1465  	unsigned int erasesize;
1466  	unsigned int options;
1467  	uint16_t id_len;
1468  	uint16_t oobsize;
1469  	struct {
1470  		uint16_t strength_ds;
1471  		uint16_t step_ds;
1472  	} ecc;
1473  };
1474  
1475  int nand_create_bbt(struct nand_chip *chip);
1476  
1477  /*
1478   * Check if it is a SLC nand.
1479   * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1480   * We do not distinguish the MLC and TLC now.
1481   */
nand_is_slc(struct nand_chip * chip)1482  static inline bool nand_is_slc(struct nand_chip *chip)
1483  {
1484  	WARN(nanddev_bits_per_cell(&chip->base) == 0,
1485  	     "chip->bits_per_cell is used uninitialized\n");
1486  	return nanddev_bits_per_cell(&chip->base) == 1;
1487  }
1488  
1489  /**
1490   * nand_opcode_8bits - Check if the opcode's address should be sent only on the
1491   *	lower 8 bits
1492   * @command: opcode to check
1493   */
nand_opcode_8bits(unsigned int command)1494  static inline int nand_opcode_8bits(unsigned int command)
1495  {
1496  	switch (command) {
1497  	case NAND_CMD_READID:
1498  	case NAND_CMD_PARAM:
1499  	case NAND_CMD_GET_FEATURES:
1500  	case NAND_CMD_SET_FEATURES:
1501  		return 1;
1502  	default:
1503  		break;
1504  	}
1505  	return 0;
1506  }
1507  
1508  int rawnand_sw_hamming_init(struct nand_chip *chip);
1509  int rawnand_sw_hamming_calculate(struct nand_chip *chip,
1510  				 const unsigned char *buf,
1511  				 unsigned char *code);
1512  int rawnand_sw_hamming_correct(struct nand_chip *chip,
1513  			       unsigned char *buf,
1514  			       unsigned char *read_ecc,
1515  			       unsigned char *calc_ecc);
1516  void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
1517  int rawnand_sw_bch_init(struct nand_chip *chip);
1518  int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
1519  			   unsigned char *read_ecc, unsigned char *calc_ecc);
1520  void rawnand_sw_bch_cleanup(struct nand_chip *chip);
1521  
1522  int nand_check_erased_ecc_chunk(void *data, int datalen,
1523  				void *ecc, int ecclen,
1524  				void *extraoob, int extraooblen,
1525  				int threshold);
1526  
1527  int nand_ecc_choose_conf(struct nand_chip *chip,
1528  			 const struct nand_ecc_caps *caps, int oobavail);
1529  
1530  /* Default write_oob implementation */
1531  int nand_write_oob_std(struct nand_chip *chip, int page);
1532  
1533  /* Default read_oob implementation */
1534  int nand_read_oob_std(struct nand_chip *chip, int page);
1535  
1536  /* Stub used by drivers that do not support GET/SET FEATURES operations */
1537  int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1538  				  u8 *subfeature_param);
1539  
1540  /* read_page_raw implementations */
1541  int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1542  		       int page);
1543  int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1544  				  int oob_required, int page);
1545  
1546  /* write_page_raw implementations */
1547  int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1548  			int oob_required, int page);
1549  int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1550  				   int oob_required, int page);
1551  
1552  /* Reset and initialize a NAND device */
1553  int nand_reset(struct nand_chip *chip, int chipnr);
1554  
1555  /* NAND operation helpers */
1556  int nand_reset_op(struct nand_chip *chip);
1557  int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1558  		   unsigned int len);
1559  int nand_status_op(struct nand_chip *chip, u8 *status);
1560  int nand_exit_status_op(struct nand_chip *chip);
1561  int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1562  int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1563  		      unsigned int offset_in_page, void *buf, unsigned int len);
1564  int nand_change_read_column_op(struct nand_chip *chip,
1565  			       unsigned int offset_in_page, void *buf,
1566  			       unsigned int len, bool force_8bit);
1567  int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1568  		     unsigned int offset_in_page, void *buf, unsigned int len);
1569  int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1570  			    unsigned int offset_in_page, const void *buf,
1571  			    unsigned int len);
1572  int nand_prog_page_end_op(struct nand_chip *chip);
1573  int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1574  		      unsigned int offset_in_page, const void *buf,
1575  		      unsigned int len);
1576  int nand_change_write_column_op(struct nand_chip *chip,
1577  				unsigned int offset_in_page, const void *buf,
1578  				unsigned int len, bool force_8bit);
1579  int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1580  		      bool force_8bit, bool check_only);
1581  int nand_write_data_op(struct nand_chip *chip, const void *buf,
1582  		       unsigned int len, bool force_8bit);
1583  int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
1584  				   int oob_required, int page);
1585  
1586  /* Scan and identify a NAND device */
1587  int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1588  		       struct nand_flash_dev *ids);
1589  
nand_scan(struct nand_chip * chip,unsigned int max_chips)1590  static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1591  {
1592  	return nand_scan_with_ids(chip, max_chips, NULL);
1593  }
1594  
1595  /* Internal helper for board drivers which need to override command function */
1596  void nand_wait_ready(struct nand_chip *chip);
1597  
1598  /*
1599   * Free resources held by the NAND device, must be called on error after a
1600   * sucessful nand_scan().
1601   */
1602  void nand_cleanup(struct nand_chip *chip);
1603  
1604  /*
1605   * External helper for controller drivers that have to implement the WAITRDY
1606   * instruction and have no physical pin to check it.
1607   */
1608  int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1609  int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1610  		      unsigned long timeout_ms);
1611  
1612  /* Select/deselect a NAND target. */
1613  void nand_select_target(struct nand_chip *chip, unsigned int cs);
1614  void nand_deselect_target(struct nand_chip *chip);
1615  
1616  /* Bitops */
1617  void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1618  		       unsigned int src_off, unsigned int nbits);
1619  
1620  /**
1621   * nand_get_data_buf() - Get the internal page buffer
1622   * @chip: NAND chip object
1623   *
1624   * Returns the pre-allocated page buffer after invalidating the cache. This
1625   * function should be used by drivers that do not want to allocate their own
1626   * bounce buffer and still need such a buffer for specific operations (most
1627   * commonly when reading OOB data only).
1628   *
1629   * Be careful to never call this function in the write/write_oob path, because
1630   * the core may have placed the data to be written out in this buffer.
1631   *
1632   * Return: pointer to the page cache buffer
1633   */
nand_get_data_buf(struct nand_chip * chip)1634  static inline void *nand_get_data_buf(struct nand_chip *chip)
1635  {
1636  	chip->pagecache.page = -1;
1637  
1638  	return chip->data_buf;
1639  }
1640  
1641  /* Parse the gpio-cs property */
1642  int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
1643  			     unsigned int *ncs_array);
1644  
1645  #endif /* __LINUX_MTD_RAWNAND_H */
1646