1  /* SPDX-License-Identifier: GPL-2.0-only */
2  #ifndef __KVM_HOST_H
3  #define __KVM_HOST_H
4  
5  
6  #include <linux/types.h>
7  #include <linux/hardirq.h>
8  #include <linux/list.h>
9  #include <linux/mutex.h>
10  #include <linux/spinlock.h>
11  #include <linux/signal.h>
12  #include <linux/sched.h>
13  #include <linux/sched/stat.h>
14  #include <linux/bug.h>
15  #include <linux/minmax.h>
16  #include <linux/mm.h>
17  #include <linux/mmu_notifier.h>
18  #include <linux/preempt.h>
19  #include <linux/msi.h>
20  #include <linux/slab.h>
21  #include <linux/vmalloc.h>
22  #include <linux/rcupdate.h>
23  #include <linux/ratelimit.h>
24  #include <linux/err.h>
25  #include <linux/irqflags.h>
26  #include <linux/context_tracking.h>
27  #include <linux/irqbypass.h>
28  #include <linux/rcuwait.h>
29  #include <linux/refcount.h>
30  #include <linux/nospec.h>
31  #include <linux/notifier.h>
32  #include <linux/ftrace.h>
33  #include <linux/hashtable.h>
34  #include <linux/instrumentation.h>
35  #include <linux/interval_tree.h>
36  #include <linux/rbtree.h>
37  #include <linux/xarray.h>
38  #include <asm/signal.h>
39  
40  #include <linux/kvm.h>
41  #include <linux/kvm_para.h>
42  
43  #include <linux/kvm_types.h>
44  
45  #include <asm/kvm_host.h>
46  #include <linux/kvm_dirty_ring.h>
47  
48  #ifndef KVM_MAX_VCPU_IDS
49  #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50  #endif
51  
52  /*
53   * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54   * used in kvm, other bits are visible for userspace which are defined in
55   * include/linux/kvm_h.
56   */
57  #define KVM_MEMSLOT_INVALID	(1UL << 16)
58  
59  /*
60   * Bit 63 of the memslot generation number is an "update in-progress flag",
61   * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62   * This flag effectively creates a unique generation number that is used to
63   * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64   * i.e. may (or may not) have come from the previous memslots generation.
65   *
66   * This is necessary because the actual memslots update is not atomic with
67   * respect to the generation number update.  Updating the generation number
68   * first would allow a vCPU to cache a spte from the old memslots using the
69   * new generation number, and updating the generation number after switching
70   * to the new memslots would allow cache hits using the old generation number
71   * to reference the defunct memslots.
72   *
73   * This mechanism is used to prevent getting hits in KVM's caches while a
74   * memslot update is in-progress, and to prevent cache hits *after* updating
75   * the actual generation number against accesses that were inserted into the
76   * cache *before* the memslots were updated.
77   */
78  #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79  
80  /* Two fragments for cross MMIO pages. */
81  #define KVM_MAX_MMIO_FRAGMENTS	2
82  
83  #ifndef KVM_MAX_NR_ADDRESS_SPACES
84  #define KVM_MAX_NR_ADDRESS_SPACES	1
85  #endif
86  
87  /*
88   * For the normal pfn, the highest 12 bits should be zero,
89   * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90   * mask bit 63 to indicate the noslot pfn.
91   */
92  #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93  #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94  #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95  
96  #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97  #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98  #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99  #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100  
101  /*
102   * error pfns indicate that the gfn is in slot but faild to
103   * translate it to pfn on host.
104   */
is_error_pfn(kvm_pfn_t pfn)105  static inline bool is_error_pfn(kvm_pfn_t pfn)
106  {
107  	return !!(pfn & KVM_PFN_ERR_MASK);
108  }
109  
110  /*
111   * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112   * by a pending signal.  Note, the signal may or may not be fatal.
113   */
is_sigpending_pfn(kvm_pfn_t pfn)114  static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115  {
116  	return pfn == KVM_PFN_ERR_SIGPENDING;
117  }
118  
119  /*
120   * error_noslot pfns indicate that the gfn can not be
121   * translated to pfn - it is not in slot or failed to
122   * translate it to pfn.
123   */
is_error_noslot_pfn(kvm_pfn_t pfn)124  static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125  {
126  	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127  }
128  
129  /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130  static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131  {
132  	return pfn == KVM_PFN_NOSLOT;
133  }
134  
135  /*
136   * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137   * provide own defines and kvm_is_error_hva
138   */
139  #ifndef KVM_HVA_ERR_BAD
140  
141  #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142  #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143  
kvm_is_error_hva(unsigned long addr)144  static inline bool kvm_is_error_hva(unsigned long addr)
145  {
146  	return addr >= PAGE_OFFSET;
147  }
148  
149  #endif
150  
kvm_is_error_gpa(gpa_t gpa)151  static inline bool kvm_is_error_gpa(gpa_t gpa)
152  {
153  	return gpa == INVALID_GPA;
154  }
155  
156  #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
157  
is_error_page(struct page * page)158  static inline bool is_error_page(struct page *page)
159  {
160  	return IS_ERR(page);
161  }
162  
163  #define KVM_REQUEST_MASK           GENMASK(7,0)
164  #define KVM_REQUEST_NO_WAKEUP      BIT(8)
165  #define KVM_REQUEST_WAIT           BIT(9)
166  #define KVM_REQUEST_NO_ACTION      BIT(10)
167  /*
168   * Architecture-independent vcpu->requests bit members
169   * Bits 3-7 are reserved for more arch-independent bits.
170   */
171  #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172  #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173  #define KVM_REQ_UNBLOCK			2
174  #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
175  #define KVM_REQUEST_ARCH_BASE		8
176  
177  /*
178   * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179   * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180   * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181   * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182   * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183   * guarantee the vCPU received an IPI and has actually exited guest mode.
184   */
185  #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186  
187  #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188  	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189  	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190  })
191  #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192  
193  bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194  				 unsigned long *vcpu_bitmap);
195  bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196  
197  #define KVM_USERSPACE_IRQ_SOURCE_ID		0
198  #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
199  
200  extern struct mutex kvm_lock;
201  extern struct list_head vm_list;
202  
203  struct kvm_io_range {
204  	gpa_t addr;
205  	int len;
206  	struct kvm_io_device *dev;
207  };
208  
209  #define NR_IOBUS_DEVS 1000
210  
211  struct kvm_io_bus {
212  	int dev_count;
213  	int ioeventfd_count;
214  	struct kvm_io_range range[];
215  };
216  
217  enum kvm_bus {
218  	KVM_MMIO_BUS,
219  	KVM_PIO_BUS,
220  	KVM_VIRTIO_CCW_NOTIFY_BUS,
221  	KVM_FAST_MMIO_BUS,
222  	KVM_NR_BUSES
223  };
224  
225  int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226  		     int len, const void *val);
227  int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228  			    gpa_t addr, int len, const void *val, long cookie);
229  int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230  		    int len, void *val);
231  int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232  			    int len, struct kvm_io_device *dev);
233  int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234  			      struct kvm_io_device *dev);
235  struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236  					 gpa_t addr);
237  
238  #ifdef CONFIG_KVM_ASYNC_PF
239  struct kvm_async_pf {
240  	struct work_struct work;
241  	struct list_head link;
242  	struct list_head queue;
243  	struct kvm_vcpu *vcpu;
244  	gpa_t cr2_or_gpa;
245  	unsigned long addr;
246  	struct kvm_arch_async_pf arch;
247  	bool   wakeup_all;
248  	bool notpresent_injected;
249  };
250  
251  void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252  void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253  bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254  			unsigned long hva, struct kvm_arch_async_pf *arch);
255  int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256  #endif
257  
258  #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
259  union kvm_mmu_notifier_arg {
260  	unsigned long attributes;
261  };
262  
263  struct kvm_gfn_range {
264  	struct kvm_memory_slot *slot;
265  	gfn_t start;
266  	gfn_t end;
267  	union kvm_mmu_notifier_arg arg;
268  	bool may_block;
269  };
270  bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271  bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272  bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273  #endif
274  
275  enum {
276  	OUTSIDE_GUEST_MODE,
277  	IN_GUEST_MODE,
278  	EXITING_GUEST_MODE,
279  	READING_SHADOW_PAGE_TABLES,
280  };
281  
282  #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
283  
284  struct kvm_host_map {
285  	/*
286  	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287  	 * a 'struct page' for it. When using mem= kernel parameter some memory
288  	 * can be used as guest memory but they are not managed by host
289  	 * kernel).
290  	 * If 'pfn' is not managed by the host kernel, this field is
291  	 * initialized to KVM_UNMAPPED_PAGE.
292  	 */
293  	struct page *page;
294  	void *hva;
295  	kvm_pfn_t pfn;
296  	kvm_pfn_t gfn;
297  };
298  
299  /*
300   * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301   * directly to check for that.
302   */
kvm_vcpu_mapped(struct kvm_host_map * map)303  static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304  {
305  	return !!map->hva;
306  }
307  
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)308  static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309  {
310  	return single_task_running() && !need_resched() && ktime_before(cur, stop);
311  }
312  
313  /*
314   * Sometimes a large or cross-page mmio needs to be broken up into separate
315   * exits for userspace servicing.
316   */
317  struct kvm_mmio_fragment {
318  	gpa_t gpa;
319  	void *data;
320  	unsigned len;
321  };
322  
323  struct kvm_vcpu {
324  	struct kvm *kvm;
325  #ifdef CONFIG_PREEMPT_NOTIFIERS
326  	struct preempt_notifier preempt_notifier;
327  #endif
328  	int cpu;
329  	int vcpu_id; /* id given by userspace at creation */
330  	int vcpu_idx; /* index into kvm->vcpu_array */
331  	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332  #ifdef CONFIG_PROVE_RCU
333  	int srcu_depth;
334  #endif
335  	int mode;
336  	u64 requests;
337  	unsigned long guest_debug;
338  
339  	struct mutex mutex;
340  	struct kvm_run *run;
341  
342  #ifndef __KVM_HAVE_ARCH_WQP
343  	struct rcuwait wait;
344  #endif
345  	struct pid __rcu *pid;
346  	int sigset_active;
347  	sigset_t sigset;
348  	unsigned int halt_poll_ns;
349  	bool valid_wakeup;
350  
351  #ifdef CONFIG_HAS_IOMEM
352  	int mmio_needed;
353  	int mmio_read_completed;
354  	int mmio_is_write;
355  	int mmio_cur_fragment;
356  	int mmio_nr_fragments;
357  	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358  #endif
359  
360  #ifdef CONFIG_KVM_ASYNC_PF
361  	struct {
362  		u32 queued;
363  		struct list_head queue;
364  		struct list_head done;
365  		spinlock_t lock;
366  	} async_pf;
367  #endif
368  
369  #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370  	/*
371  	 * Cpu relax intercept or pause loop exit optimization
372  	 * in_spin_loop: set when a vcpu does a pause loop exit
373  	 *  or cpu relax intercepted.
374  	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375  	 */
376  	struct {
377  		bool in_spin_loop;
378  		bool dy_eligible;
379  	} spin_loop;
380  #endif
381  	bool wants_to_run;
382  	bool preempted;
383  	bool ready;
384  	bool scheduled_out;
385  	struct kvm_vcpu_arch arch;
386  	struct kvm_vcpu_stat stat;
387  	char stats_id[KVM_STATS_NAME_SIZE];
388  	struct kvm_dirty_ring dirty_ring;
389  
390  	/*
391  	 * The most recently used memslot by this vCPU and the slots generation
392  	 * for which it is valid.
393  	 * No wraparound protection is needed since generations won't overflow in
394  	 * thousands of years, even assuming 1M memslot operations per second.
395  	 */
396  	struct kvm_memory_slot *last_used_slot;
397  	u64 last_used_slot_gen;
398  };
399  
400  /*
401   * Start accounting time towards a guest.
402   * Must be called before entering guest context.
403   */
guest_timing_enter_irqoff(void)404  static __always_inline void guest_timing_enter_irqoff(void)
405  {
406  	/*
407  	 * This is running in ioctl context so its safe to assume that it's the
408  	 * stime pending cputime to flush.
409  	 */
410  	instrumentation_begin();
411  	vtime_account_guest_enter();
412  	instrumentation_end();
413  }
414  
415  /*
416   * Enter guest context and enter an RCU extended quiescent state.
417   *
418   * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
419   * unsafe to use any code which may directly or indirectly use RCU, tracing
420   * (including IRQ flag tracing), or lockdep. All code in this period must be
421   * non-instrumentable.
422   */
guest_context_enter_irqoff(void)423  static __always_inline void guest_context_enter_irqoff(void)
424  {
425  	/*
426  	 * KVM does not hold any references to rcu protected data when it
427  	 * switches CPU into a guest mode. In fact switching to a guest mode
428  	 * is very similar to exiting to userspace from rcu point of view. In
429  	 * addition CPU may stay in a guest mode for quite a long time (up to
430  	 * one time slice). Lets treat guest mode as quiescent state, just like
431  	 * we do with user-mode execution.
432  	 */
433  	if (!context_tracking_guest_enter()) {
434  		instrumentation_begin();
435  		rcu_virt_note_context_switch();
436  		instrumentation_end();
437  	}
438  }
439  
440  /*
441   * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
442   * guest_state_enter_irqoff().
443   */
guest_enter_irqoff(void)444  static __always_inline void guest_enter_irqoff(void)
445  {
446  	guest_timing_enter_irqoff();
447  	guest_context_enter_irqoff();
448  }
449  
450  /**
451   * guest_state_enter_irqoff - Fixup state when entering a guest
452   *
453   * Entry to a guest will enable interrupts, but the kernel state is interrupts
454   * disabled when this is invoked. Also tell RCU about it.
455   *
456   * 1) Trace interrupts on state
457   * 2) Invoke context tracking if enabled to adjust RCU state
458   * 3) Tell lockdep that interrupts are enabled
459   *
460   * Invoked from architecture specific code before entering a guest.
461   * Must be called with interrupts disabled and the caller must be
462   * non-instrumentable.
463   * The caller has to invoke guest_timing_enter_irqoff() before this.
464   *
465   * Note: this is analogous to exit_to_user_mode().
466   */
guest_state_enter_irqoff(void)467  static __always_inline void guest_state_enter_irqoff(void)
468  {
469  	instrumentation_begin();
470  	trace_hardirqs_on_prepare();
471  	lockdep_hardirqs_on_prepare();
472  	instrumentation_end();
473  
474  	guest_context_enter_irqoff();
475  	lockdep_hardirqs_on(CALLER_ADDR0);
476  }
477  
478  /*
479   * Exit guest context and exit an RCU extended quiescent state.
480   *
481   * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
482   * unsafe to use any code which may directly or indirectly use RCU, tracing
483   * (including IRQ flag tracing), or lockdep. All code in this period must be
484   * non-instrumentable.
485   */
guest_context_exit_irqoff(void)486  static __always_inline void guest_context_exit_irqoff(void)
487  {
488  	/*
489  	 * Guest mode is treated as a quiescent state, see
490  	 * guest_context_enter_irqoff() for more details.
491  	 */
492  	if (!context_tracking_guest_exit()) {
493  		instrumentation_begin();
494  		rcu_virt_note_context_switch();
495  		instrumentation_end();
496  	}
497  }
498  
499  /*
500   * Stop accounting time towards a guest.
501   * Must be called after exiting guest context.
502   */
guest_timing_exit_irqoff(void)503  static __always_inline void guest_timing_exit_irqoff(void)
504  {
505  	instrumentation_begin();
506  	/* Flush the guest cputime we spent on the guest */
507  	vtime_account_guest_exit();
508  	instrumentation_end();
509  }
510  
511  /*
512   * Deprecated. Architectures should move to guest_state_exit_irqoff() and
513   * guest_timing_exit_irqoff().
514   */
guest_exit_irqoff(void)515  static __always_inline void guest_exit_irqoff(void)
516  {
517  	guest_context_exit_irqoff();
518  	guest_timing_exit_irqoff();
519  }
520  
guest_exit(void)521  static inline void guest_exit(void)
522  {
523  	unsigned long flags;
524  
525  	local_irq_save(flags);
526  	guest_exit_irqoff();
527  	local_irq_restore(flags);
528  }
529  
530  /**
531   * guest_state_exit_irqoff - Establish state when returning from guest mode
532   *
533   * Entry from a guest disables interrupts, but guest mode is traced as
534   * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
535   *
536   * 1) Tell lockdep that interrupts are disabled
537   * 2) Invoke context tracking if enabled to reactivate RCU
538   * 3) Trace interrupts off state
539   *
540   * Invoked from architecture specific code after exiting a guest.
541   * Must be invoked with interrupts disabled and the caller must be
542   * non-instrumentable.
543   * The caller has to invoke guest_timing_exit_irqoff() after this.
544   *
545   * Note: this is analogous to enter_from_user_mode().
546   */
guest_state_exit_irqoff(void)547  static __always_inline void guest_state_exit_irqoff(void)
548  {
549  	lockdep_hardirqs_off(CALLER_ADDR0);
550  	guest_context_exit_irqoff();
551  
552  	instrumentation_begin();
553  	trace_hardirqs_off_finish();
554  	instrumentation_end();
555  }
556  
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)557  static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
558  {
559  	/*
560  	 * The memory barrier ensures a previous write to vcpu->requests cannot
561  	 * be reordered with the read of vcpu->mode.  It pairs with the general
562  	 * memory barrier following the write of vcpu->mode in VCPU RUN.
563  	 */
564  	smp_mb__before_atomic();
565  	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
566  }
567  
568  /*
569   * Some of the bitops functions do not support too long bitmaps.
570   * This number must be determined not to exceed such limits.
571   */
572  #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
573  
574  /*
575   * Since at idle each memslot belongs to two memslot sets it has to contain
576   * two embedded nodes for each data structure that it forms a part of.
577   *
578   * Two memslot sets (one active and one inactive) are necessary so the VM
579   * continues to run on one memslot set while the other is being modified.
580   *
581   * These two memslot sets normally point to the same set of memslots.
582   * They can, however, be desynchronized when performing a memslot management
583   * operation by replacing the memslot to be modified by its copy.
584   * After the operation is complete, both memslot sets once again point to
585   * the same, common set of memslot data.
586   *
587   * The memslots themselves are independent of each other so they can be
588   * individually added or deleted.
589   */
590  struct kvm_memory_slot {
591  	struct hlist_node id_node[2];
592  	struct interval_tree_node hva_node[2];
593  	struct rb_node gfn_node[2];
594  	gfn_t base_gfn;
595  	unsigned long npages;
596  	unsigned long *dirty_bitmap;
597  	struct kvm_arch_memory_slot arch;
598  	unsigned long userspace_addr;
599  	u32 flags;
600  	short id;
601  	u16 as_id;
602  
603  #ifdef CONFIG_KVM_PRIVATE_MEM
604  	struct {
605  		struct file __rcu *file;
606  		pgoff_t pgoff;
607  	} gmem;
608  #endif
609  };
610  
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)611  static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
612  {
613  	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
614  }
615  
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)616  static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
617  {
618  	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
619  }
620  
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)621  static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
622  {
623  	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
624  }
625  
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)626  static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
627  {
628  	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
629  
630  	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
631  }
632  
633  #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
634  #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
635  #endif
636  
637  struct kvm_s390_adapter_int {
638  	u64 ind_addr;
639  	u64 summary_addr;
640  	u64 ind_offset;
641  	u32 summary_offset;
642  	u32 adapter_id;
643  };
644  
645  struct kvm_hv_sint {
646  	u32 vcpu;
647  	u32 sint;
648  };
649  
650  struct kvm_xen_evtchn {
651  	u32 port;
652  	u32 vcpu_id;
653  	int vcpu_idx;
654  	u32 priority;
655  };
656  
657  struct kvm_kernel_irq_routing_entry {
658  	u32 gsi;
659  	u32 type;
660  	int (*set)(struct kvm_kernel_irq_routing_entry *e,
661  		   struct kvm *kvm, int irq_source_id, int level,
662  		   bool line_status);
663  	union {
664  		struct {
665  			unsigned irqchip;
666  			unsigned pin;
667  		} irqchip;
668  		struct {
669  			u32 address_lo;
670  			u32 address_hi;
671  			u32 data;
672  			u32 flags;
673  			u32 devid;
674  		} msi;
675  		struct kvm_s390_adapter_int adapter;
676  		struct kvm_hv_sint hv_sint;
677  		struct kvm_xen_evtchn xen_evtchn;
678  	};
679  	struct hlist_node link;
680  };
681  
682  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
683  struct kvm_irq_routing_table {
684  	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
685  	u32 nr_rt_entries;
686  	/*
687  	 * Array indexed by gsi. Each entry contains list of irq chips
688  	 * the gsi is connected to.
689  	 */
690  	struct hlist_head map[] __counted_by(nr_rt_entries);
691  };
692  #endif
693  
694  bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
695  
696  #ifndef KVM_INTERNAL_MEM_SLOTS
697  #define KVM_INTERNAL_MEM_SLOTS 0
698  #endif
699  
700  #define KVM_MEM_SLOTS_NUM SHRT_MAX
701  #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
702  
703  #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)704  static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
705  {
706  	return KVM_MAX_NR_ADDRESS_SPACES;
707  }
708  
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)709  static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
710  {
711  	return 0;
712  }
713  #endif
714  
715  /*
716   * Arch code must define kvm_arch_has_private_mem if support for private memory
717   * is enabled.
718   */
719  #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)720  static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
721  {
722  	return false;
723  }
724  #endif
725  
726  #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)727  static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
728  {
729  	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
730  }
731  #endif
732  
733  struct kvm_memslots {
734  	u64 generation;
735  	atomic_long_t last_used_slot;
736  	struct rb_root_cached hva_tree;
737  	struct rb_root gfn_tree;
738  	/*
739  	 * The mapping table from slot id to memslot.
740  	 *
741  	 * 7-bit bucket count matches the size of the old id to index array for
742  	 * 512 slots, while giving good performance with this slot count.
743  	 * Higher bucket counts bring only small performance improvements but
744  	 * always result in higher memory usage (even for lower memslot counts).
745  	 */
746  	DECLARE_HASHTABLE(id_hash, 7);
747  	int node_idx;
748  };
749  
750  struct kvm {
751  #ifdef KVM_HAVE_MMU_RWLOCK
752  	rwlock_t mmu_lock;
753  #else
754  	spinlock_t mmu_lock;
755  #endif /* KVM_HAVE_MMU_RWLOCK */
756  
757  	struct mutex slots_lock;
758  
759  	/*
760  	 * Protects the arch-specific fields of struct kvm_memory_slots in
761  	 * use by the VM. To be used under the slots_lock (above) or in a
762  	 * kvm->srcu critical section where acquiring the slots_lock would
763  	 * lead to deadlock with the synchronize_srcu in
764  	 * kvm_swap_active_memslots().
765  	 */
766  	struct mutex slots_arch_lock;
767  	struct mm_struct *mm; /* userspace tied to this vm */
768  	unsigned long nr_memslot_pages;
769  	/* The two memslot sets - active and inactive (per address space) */
770  	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
771  	/* The current active memslot set for each address space */
772  	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
773  	struct xarray vcpu_array;
774  	/*
775  	 * Protected by slots_lock, but can be read outside if an
776  	 * incorrect answer is acceptable.
777  	 */
778  	atomic_t nr_memslots_dirty_logging;
779  
780  	/* Used to wait for completion of MMU notifiers.  */
781  	spinlock_t mn_invalidate_lock;
782  	unsigned long mn_active_invalidate_count;
783  	struct rcuwait mn_memslots_update_rcuwait;
784  
785  	/* For management / invalidation of gfn_to_pfn_caches */
786  	spinlock_t gpc_lock;
787  	struct list_head gpc_list;
788  
789  	/*
790  	 * created_vcpus is protected by kvm->lock, and is incremented
791  	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
792  	 * incremented after storing the kvm_vcpu pointer in vcpus,
793  	 * and is accessed atomically.
794  	 */
795  	atomic_t online_vcpus;
796  	int max_vcpus;
797  	int created_vcpus;
798  	int last_boosted_vcpu;
799  	struct list_head vm_list;
800  	struct mutex lock;
801  	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
802  #ifdef CONFIG_HAVE_KVM_IRQCHIP
803  	struct {
804  		spinlock_t        lock;
805  		struct list_head  items;
806  		/* resampler_list update side is protected by resampler_lock. */
807  		struct list_head  resampler_list;
808  		struct mutex      resampler_lock;
809  	} irqfds;
810  #endif
811  	struct list_head ioeventfds;
812  	struct kvm_vm_stat stat;
813  	struct kvm_arch arch;
814  	refcount_t users_count;
815  #ifdef CONFIG_KVM_MMIO
816  	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
817  	spinlock_t ring_lock;
818  	struct list_head coalesced_zones;
819  #endif
820  
821  	struct mutex irq_lock;
822  #ifdef CONFIG_HAVE_KVM_IRQCHIP
823  	/*
824  	 * Update side is protected by irq_lock.
825  	 */
826  	struct kvm_irq_routing_table __rcu *irq_routing;
827  
828  	struct hlist_head irq_ack_notifier_list;
829  #endif
830  
831  #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
832  	struct mmu_notifier mmu_notifier;
833  	unsigned long mmu_invalidate_seq;
834  	long mmu_invalidate_in_progress;
835  	gfn_t mmu_invalidate_range_start;
836  	gfn_t mmu_invalidate_range_end;
837  #endif
838  	struct list_head devices;
839  	u64 manual_dirty_log_protect;
840  	struct dentry *debugfs_dentry;
841  	struct kvm_stat_data **debugfs_stat_data;
842  	struct srcu_struct srcu;
843  	struct srcu_struct irq_srcu;
844  	pid_t userspace_pid;
845  	bool override_halt_poll_ns;
846  	unsigned int max_halt_poll_ns;
847  	u32 dirty_ring_size;
848  	bool dirty_ring_with_bitmap;
849  	bool vm_bugged;
850  	bool vm_dead;
851  
852  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
853  	struct notifier_block pm_notifier;
854  #endif
855  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
856  	/* Protected by slots_locks (for writes) and RCU (for reads) */
857  	struct xarray mem_attr_array;
858  #endif
859  	char stats_id[KVM_STATS_NAME_SIZE];
860  };
861  
862  #define kvm_err(fmt, ...) \
863  	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
864  #define kvm_info(fmt, ...) \
865  	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
866  #define kvm_debug(fmt, ...) \
867  	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
868  #define kvm_debug_ratelimited(fmt, ...) \
869  	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
870  			     ## __VA_ARGS__)
871  #define kvm_pr_unimpl(fmt, ...) \
872  	pr_err_ratelimited("kvm [%i]: " fmt, \
873  			   task_tgid_nr(current), ## __VA_ARGS__)
874  
875  /* The guest did something we don't support. */
876  #define vcpu_unimpl(vcpu, fmt, ...)					\
877  	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
878  			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
879  
880  #define vcpu_debug(vcpu, fmt, ...)					\
881  	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
882  #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
883  	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
884  			      ## __VA_ARGS__)
885  #define vcpu_err(vcpu, fmt, ...)					\
886  	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
887  
kvm_vm_dead(struct kvm * kvm)888  static inline void kvm_vm_dead(struct kvm *kvm)
889  {
890  	kvm->vm_dead = true;
891  	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
892  }
893  
kvm_vm_bugged(struct kvm * kvm)894  static inline void kvm_vm_bugged(struct kvm *kvm)
895  {
896  	kvm->vm_bugged = true;
897  	kvm_vm_dead(kvm);
898  }
899  
900  
901  #define KVM_BUG(cond, kvm, fmt...)				\
902  ({								\
903  	bool __ret = !!(cond);					\
904  								\
905  	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
906  		kvm_vm_bugged(kvm);				\
907  	unlikely(__ret);					\
908  })
909  
910  #define KVM_BUG_ON(cond, kvm)					\
911  ({								\
912  	bool __ret = !!(cond);					\
913  								\
914  	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
915  		kvm_vm_bugged(kvm);				\
916  	unlikely(__ret);					\
917  })
918  
919  /*
920   * Note, "data corruption" refers to corruption of host kernel data structures,
921   * not guest data.  Guest data corruption, suspected or confirmed, that is tied
922   * and contained to a single VM should *never* BUG() and potentially panic the
923   * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
924   * is corrupted and that corruption can have a cascading effect to other parts
925   * of the hosts and/or to other VMs.
926   */
927  #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
928  ({								\
929  	bool __ret = !!(cond);					\
930  								\
931  	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
932  		BUG_ON(__ret);					\
933  	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
934  		kvm_vm_bugged(kvm);				\
935  	unlikely(__ret);					\
936  })
937  
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)938  static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
939  {
940  #ifdef CONFIG_PROVE_RCU
941  	WARN_ONCE(vcpu->srcu_depth++,
942  		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
943  #endif
944  	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
945  }
946  
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)947  static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
948  {
949  	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
950  
951  #ifdef CONFIG_PROVE_RCU
952  	WARN_ONCE(--vcpu->srcu_depth,
953  		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
954  #endif
955  }
956  
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)957  static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
958  {
959  	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
960  }
961  
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)962  static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
963  {
964  	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
965  				      lockdep_is_held(&kvm->slots_lock) ||
966  				      !refcount_read(&kvm->users_count));
967  }
968  
kvm_get_vcpu(struct kvm * kvm,int i)969  static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
970  {
971  	int num_vcpus = atomic_read(&kvm->online_vcpus);
972  	i = array_index_nospec(i, num_vcpus);
973  
974  	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
975  	smp_rmb();
976  	return xa_load(&kvm->vcpu_array, i);
977  }
978  
979  #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
980  	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
981  			  (atomic_read(&kvm->online_vcpus) - 1))
982  
kvm_get_vcpu_by_id(struct kvm * kvm,int id)983  static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
984  {
985  	struct kvm_vcpu *vcpu = NULL;
986  	unsigned long i;
987  
988  	if (id < 0)
989  		return NULL;
990  	if (id < KVM_MAX_VCPUS)
991  		vcpu = kvm_get_vcpu(kvm, id);
992  	if (vcpu && vcpu->vcpu_id == id)
993  		return vcpu;
994  	kvm_for_each_vcpu(i, vcpu, kvm)
995  		if (vcpu->vcpu_id == id)
996  			return vcpu;
997  	return NULL;
998  }
999  
1000  void kvm_destroy_vcpus(struct kvm *kvm);
1001  
1002  void vcpu_load(struct kvm_vcpu *vcpu);
1003  void vcpu_put(struct kvm_vcpu *vcpu);
1004  
1005  #ifdef __KVM_HAVE_IOAPIC
1006  void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1007  void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1008  #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1009  static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1010  {
1011  }
kvm_arch_post_irq_routing_update(struct kvm * kvm)1012  static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1013  {
1014  }
1015  #endif
1016  
1017  #ifdef CONFIG_HAVE_KVM_IRQCHIP
1018  int kvm_irqfd_init(void);
1019  void kvm_irqfd_exit(void);
1020  #else
kvm_irqfd_init(void)1021  static inline int kvm_irqfd_init(void)
1022  {
1023  	return 0;
1024  }
1025  
kvm_irqfd_exit(void)1026  static inline void kvm_irqfd_exit(void)
1027  {
1028  }
1029  #endif
1030  int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1031  void kvm_exit(void);
1032  
1033  void kvm_get_kvm(struct kvm *kvm);
1034  bool kvm_get_kvm_safe(struct kvm *kvm);
1035  void kvm_put_kvm(struct kvm *kvm);
1036  bool file_is_kvm(struct file *file);
1037  void kvm_put_kvm_no_destroy(struct kvm *kvm);
1038  
__kvm_memslots(struct kvm * kvm,int as_id)1039  static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1040  {
1041  	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1042  	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1043  			lockdep_is_held(&kvm->slots_lock) ||
1044  			!refcount_read(&kvm->users_count));
1045  }
1046  
kvm_memslots(struct kvm * kvm)1047  static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1048  {
1049  	return __kvm_memslots(kvm, 0);
1050  }
1051  
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1052  static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1053  {
1054  	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1055  
1056  	return __kvm_memslots(vcpu->kvm, as_id);
1057  }
1058  
kvm_memslots_empty(struct kvm_memslots * slots)1059  static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1060  {
1061  	return RB_EMPTY_ROOT(&slots->gfn_tree);
1062  }
1063  
1064  bool kvm_are_all_memslots_empty(struct kvm *kvm);
1065  
1066  #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1067  	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1068  		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1069  		} else
1070  
1071  static inline
id_to_memslot(struct kvm_memslots * slots,int id)1072  struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1073  {
1074  	struct kvm_memory_slot *slot;
1075  	int idx = slots->node_idx;
1076  
1077  	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1078  		if (slot->id == id)
1079  			return slot;
1080  	}
1081  
1082  	return NULL;
1083  }
1084  
1085  /* Iterator used for walking memslots that overlap a gfn range. */
1086  struct kvm_memslot_iter {
1087  	struct kvm_memslots *slots;
1088  	struct rb_node *node;
1089  	struct kvm_memory_slot *slot;
1090  };
1091  
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1092  static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1093  {
1094  	iter->node = rb_next(iter->node);
1095  	if (!iter->node)
1096  		return;
1097  
1098  	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1099  }
1100  
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1101  static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1102  					  struct kvm_memslots *slots,
1103  					  gfn_t start)
1104  {
1105  	int idx = slots->node_idx;
1106  	struct rb_node *tmp;
1107  	struct kvm_memory_slot *slot;
1108  
1109  	iter->slots = slots;
1110  
1111  	/*
1112  	 * Find the so called "upper bound" of a key - the first node that has
1113  	 * its key strictly greater than the searched one (the start gfn in our case).
1114  	 */
1115  	iter->node = NULL;
1116  	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1117  		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1118  		if (start < slot->base_gfn) {
1119  			iter->node = tmp;
1120  			tmp = tmp->rb_left;
1121  		} else {
1122  			tmp = tmp->rb_right;
1123  		}
1124  	}
1125  
1126  	/*
1127  	 * Find the slot with the lowest gfn that can possibly intersect with
1128  	 * the range, so we'll ideally have slot start <= range start
1129  	 */
1130  	if (iter->node) {
1131  		/*
1132  		 * A NULL previous node means that the very first slot
1133  		 * already has a higher start gfn.
1134  		 * In this case slot start > range start.
1135  		 */
1136  		tmp = rb_prev(iter->node);
1137  		if (tmp)
1138  			iter->node = tmp;
1139  	} else {
1140  		/* a NULL node below means no slots */
1141  		iter->node = rb_last(&slots->gfn_tree);
1142  	}
1143  
1144  	if (iter->node) {
1145  		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1146  
1147  		/*
1148  		 * It is possible in the slot start < range start case that the
1149  		 * found slot ends before or at range start (slot end <= range start)
1150  		 * and so it does not overlap the requested range.
1151  		 *
1152  		 * In such non-overlapping case the next slot (if it exists) will
1153  		 * already have slot start > range start, otherwise the logic above
1154  		 * would have found it instead of the current slot.
1155  		 */
1156  		if (iter->slot->base_gfn + iter->slot->npages <= start)
1157  			kvm_memslot_iter_next(iter);
1158  	}
1159  }
1160  
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1161  static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1162  {
1163  	if (!iter->node)
1164  		return false;
1165  
1166  	/*
1167  	 * If this slot starts beyond or at the end of the range so does
1168  	 * every next one
1169  	 */
1170  	return iter->slot->base_gfn < end;
1171  }
1172  
1173  /* Iterate over each memslot at least partially intersecting [start, end) range */
1174  #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1175  	for (kvm_memslot_iter_start(iter, slots, start);		\
1176  	     kvm_memslot_iter_is_valid(iter, end);			\
1177  	     kvm_memslot_iter_next(iter))
1178  
1179  /*
1180   * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1181   * - create a new memory slot
1182   * - delete an existing memory slot
1183   * - modify an existing memory slot
1184   *   -- move it in the guest physical memory space
1185   *   -- just change its flags
1186   *
1187   * Since flags can be changed by some of these operations, the following
1188   * differentiation is the best we can do for __kvm_set_memory_region():
1189   */
1190  enum kvm_mr_change {
1191  	KVM_MR_CREATE,
1192  	KVM_MR_DELETE,
1193  	KVM_MR_MOVE,
1194  	KVM_MR_FLAGS_ONLY,
1195  };
1196  
1197  int kvm_set_memory_region(struct kvm *kvm,
1198  			  const struct kvm_userspace_memory_region2 *mem);
1199  int __kvm_set_memory_region(struct kvm *kvm,
1200  			    const struct kvm_userspace_memory_region2 *mem);
1201  void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1202  void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1203  int kvm_arch_prepare_memory_region(struct kvm *kvm,
1204  				const struct kvm_memory_slot *old,
1205  				struct kvm_memory_slot *new,
1206  				enum kvm_mr_change change);
1207  void kvm_arch_commit_memory_region(struct kvm *kvm,
1208  				struct kvm_memory_slot *old,
1209  				const struct kvm_memory_slot *new,
1210  				enum kvm_mr_change change);
1211  /* flush all memory translations */
1212  void kvm_arch_flush_shadow_all(struct kvm *kvm);
1213  /* flush memory translations pointing to 'slot' */
1214  void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1215  				   struct kvm_memory_slot *slot);
1216  
1217  int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1218  			    struct page **pages, int nr_pages);
1219  
1220  struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1221  unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1222  unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1223  unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1224  unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1225  				      bool *writable);
1226  void kvm_release_page_clean(struct page *page);
1227  void kvm_release_page_dirty(struct page *page);
1228  
1229  kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1230  kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1231  		      bool *writable);
1232  kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1233  kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1234  kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1235  			       bool atomic, bool interruptible, bool *async,
1236  			       bool write_fault, bool *writable, hva_t *hva);
1237  
1238  void kvm_release_pfn_clean(kvm_pfn_t pfn);
1239  void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1240  void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1241  void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1242  
1243  void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1244  int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1245  			int len);
1246  int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1247  int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1248  			   void *data, unsigned long len);
1249  int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1250  				 void *data, unsigned int offset,
1251  				 unsigned long len);
1252  int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1253  			 int offset, int len);
1254  int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1255  		    unsigned long len);
1256  int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1257  			   void *data, unsigned long len);
1258  int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1259  				  void *data, unsigned int offset,
1260  				  unsigned long len);
1261  int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1262  			      gpa_t gpa, unsigned long len);
1263  
1264  #define __kvm_get_guest(kvm, gfn, offset, v)				\
1265  ({									\
1266  	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1267  	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1268  	int __ret = -EFAULT;						\
1269  									\
1270  	if (!kvm_is_error_hva(__addr))					\
1271  		__ret = get_user(v, __uaddr);				\
1272  	__ret;								\
1273  })
1274  
1275  #define kvm_get_guest(kvm, gpa, v)					\
1276  ({									\
1277  	gpa_t __gpa = gpa;						\
1278  	struct kvm *__kvm = kvm;					\
1279  									\
1280  	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1281  			offset_in_page(__gpa), v);			\
1282  })
1283  
1284  #define __kvm_put_guest(kvm, gfn, offset, v)				\
1285  ({									\
1286  	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1287  	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1288  	int __ret = -EFAULT;						\
1289  									\
1290  	if (!kvm_is_error_hva(__addr))					\
1291  		__ret = put_user(v, __uaddr);				\
1292  	if (!__ret)							\
1293  		mark_page_dirty(kvm, gfn);				\
1294  	__ret;								\
1295  })
1296  
1297  #define kvm_put_guest(kvm, gpa, v)					\
1298  ({									\
1299  	gpa_t __gpa = gpa;						\
1300  	struct kvm *__kvm = kvm;					\
1301  									\
1302  	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1303  			offset_in_page(__gpa), v);			\
1304  })
1305  
1306  int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1307  struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1308  bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1309  bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1310  unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1311  void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1312  void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1313  
1314  struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1315  struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1316  int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1317  void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1318  unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1319  unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1320  int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1321  			     int len);
1322  int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1323  			       unsigned long len);
1324  int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1325  			unsigned long len);
1326  int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1327  			      int offset, int len);
1328  int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1329  			 unsigned long len);
1330  void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1331  
1332  /**
1333   * kvm_gpc_init - initialize gfn_to_pfn_cache.
1334   *
1335   * @gpc:	   struct gfn_to_pfn_cache object.
1336   * @kvm:	   pointer to kvm instance.
1337   *
1338   * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1339   * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1340   * the caller before init).
1341   */
1342  void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1343  
1344  /**
1345   * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1346   *                    physical address.
1347   *
1348   * @gpc:	   struct gfn_to_pfn_cache object.
1349   * @gpa:	   guest physical address to map.
1350   * @len:	   sanity check; the range being access must fit a single page.
1351   *
1352   * @return:	   0 for success.
1353   *		   -EINVAL for a mapping which would cross a page boundary.
1354   *		   -EFAULT for an untranslatable guest physical address.
1355   *
1356   * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1357   * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1358   * to ensure that the cache is valid before accessing the target page.
1359   */
1360  int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1361  
1362  /**
1363   * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1364   *
1365   * @gpc:          struct gfn_to_pfn_cache object.
1366   * @hva:          userspace virtual address to map.
1367   * @len:          sanity check; the range being access must fit a single page.
1368   *
1369   * @return:       0 for success.
1370   *                -EINVAL for a mapping which would cross a page boundary.
1371   *                -EFAULT for an untranslatable guest physical address.
1372   *
1373   * The semantics of this function are the same as those of kvm_gpc_activate(). It
1374   * merely bypasses a layer of address translation.
1375   */
1376  int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1377  
1378  /**
1379   * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1380   *
1381   * @gpc:	   struct gfn_to_pfn_cache object.
1382   * @len:	   sanity check; the range being access must fit a single page.
1383   *
1384   * @return:	   %true if the cache is still valid and the address matches.
1385   *		   %false if the cache is not valid.
1386   *
1387   * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1388   * while calling this function, and then continue to hold the lock until the
1389   * access is complete.
1390   *
1391   * Callers in IN_GUEST_MODE may do so without locking, although they should
1392   * still hold a read lock on kvm->scru for the memslot checks.
1393   */
1394  bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1395  
1396  /**
1397   * kvm_gpc_refresh - update a previously initialized cache.
1398   *
1399   * @gpc:	   struct gfn_to_pfn_cache object.
1400   * @len:	   sanity check; the range being access must fit a single page.
1401   *
1402   * @return:	   0 for success.
1403   *		   -EINVAL for a mapping which would cross a page boundary.
1404   *		   -EFAULT for an untranslatable guest physical address.
1405   *
1406   * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1407   * return from this function does not mean the page can be immediately
1408   * accessed because it may have raced with an invalidation. Callers must
1409   * still lock and check the cache status, as this function does not return
1410   * with the lock still held to permit access.
1411   */
1412  int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1413  
1414  /**
1415   * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1416   *
1417   * @gpc:	   struct gfn_to_pfn_cache object.
1418   *
1419   * This removes a cache from the VM's list to be processed on MMU notifier
1420   * invocation.
1421   */
1422  void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1423  
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1424  static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1425  {
1426  	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1427  }
1428  
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1429  static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1430  {
1431  	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1432  }
1433  
1434  void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1435  void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1436  
1437  void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1438  bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1439  void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1440  void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1441  bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1442  void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1443  int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1444  void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1445  
1446  void kvm_flush_remote_tlbs(struct kvm *kvm);
1447  void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1448  void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1449  				   const struct kvm_memory_slot *memslot);
1450  
1451  #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1452  int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1453  int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1454  int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1455  void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1456  void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1457  #endif
1458  
1459  void kvm_mmu_invalidate_begin(struct kvm *kvm);
1460  void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1461  void kvm_mmu_invalidate_end(struct kvm *kvm);
1462  bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1463  
1464  long kvm_arch_dev_ioctl(struct file *filp,
1465  			unsigned int ioctl, unsigned long arg);
1466  long kvm_arch_vcpu_ioctl(struct file *filp,
1467  			 unsigned int ioctl, unsigned long arg);
1468  vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1469  
1470  int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1471  
1472  void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1473  					struct kvm_memory_slot *slot,
1474  					gfn_t gfn_offset,
1475  					unsigned long mask);
1476  void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1477  
1478  #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1479  int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1480  int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1481  		      int *is_dirty, struct kvm_memory_slot **memslot);
1482  #endif
1483  
1484  int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1485  			bool line_status);
1486  int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1487  			    struct kvm_enable_cap *cap);
1488  int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1489  long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1490  			      unsigned long arg);
1491  
1492  int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1493  int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1494  
1495  int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1496  				    struct kvm_translation *tr);
1497  
1498  int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1499  int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1500  int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1501  				  struct kvm_sregs *sregs);
1502  int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1503  				  struct kvm_sregs *sregs);
1504  int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1505  				    struct kvm_mp_state *mp_state);
1506  int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1507  				    struct kvm_mp_state *mp_state);
1508  int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1509  					struct kvm_guest_debug *dbg);
1510  int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1511  
1512  void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1513  void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1514  int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1515  int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1516  void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1517  void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1518  
1519  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1520  int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1521  #endif
1522  
1523  #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1524  void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1525  #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1526  static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1527  #endif
1528  
1529  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1530  /*
1531   * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1532   * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1533   * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1534   * sequence, and at the end of the generic hardware disabling sequence.
1535   */
1536  void kvm_arch_enable_virtualization(void);
1537  void kvm_arch_disable_virtualization(void);
1538  /*
1539   * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1540   * do the actual twiddling of hardware bits.  The hooks are called on all
1541   * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1542   * when that CPU is onlined/offlined (including for Resume/Suspend).
1543   */
1544  int kvm_arch_enable_virtualization_cpu(void);
1545  void kvm_arch_disable_virtualization_cpu(void);
1546  #endif
1547  int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1548  bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1549  int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1550  bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1551  bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1552  bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1553  int kvm_arch_post_init_vm(struct kvm *kvm);
1554  void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1555  void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1556  
1557  #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1558  /*
1559   * All architectures that want to use vzalloc currently also
1560   * need their own kvm_arch_alloc_vm implementation.
1561   */
kvm_arch_alloc_vm(void)1562  static inline struct kvm *kvm_arch_alloc_vm(void)
1563  {
1564  	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1565  }
1566  #endif
1567  
__kvm_arch_free_vm(struct kvm * kvm)1568  static inline void __kvm_arch_free_vm(struct kvm *kvm)
1569  {
1570  	kvfree(kvm);
1571  }
1572  
1573  #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1574  static inline void kvm_arch_free_vm(struct kvm *kvm)
1575  {
1576  	__kvm_arch_free_vm(kvm);
1577  }
1578  #endif
1579  
1580  #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1581  static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1582  {
1583  	return -ENOTSUPP;
1584  }
1585  #else
1586  int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1587  #endif
1588  
1589  #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1590  static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1591  						    gfn_t gfn, u64 nr_pages)
1592  {
1593  	return -EOPNOTSUPP;
1594  }
1595  #else
1596  int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1597  #endif
1598  
1599  #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1600  void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1601  void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1602  bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1603  #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1604  static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1605  {
1606  }
1607  
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1608  static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1609  {
1610  }
1611  
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1612  static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1613  {
1614  	return false;
1615  }
1616  #endif
1617  #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1618  void kvm_arch_start_assignment(struct kvm *kvm);
1619  void kvm_arch_end_assignment(struct kvm *kvm);
1620  bool kvm_arch_has_assigned_device(struct kvm *kvm);
1621  #else
kvm_arch_start_assignment(struct kvm * kvm)1622  static inline void kvm_arch_start_assignment(struct kvm *kvm)
1623  {
1624  }
1625  
kvm_arch_end_assignment(struct kvm * kvm)1626  static inline void kvm_arch_end_assignment(struct kvm *kvm)
1627  {
1628  }
1629  
kvm_arch_has_assigned_device(struct kvm * kvm)1630  static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1631  {
1632  	return false;
1633  }
1634  #endif
1635  
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1636  static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1637  {
1638  #ifdef __KVM_HAVE_ARCH_WQP
1639  	return vcpu->arch.waitp;
1640  #else
1641  	return &vcpu->wait;
1642  #endif
1643  }
1644  
1645  /*
1646   * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1647   * true if the vCPU was blocking and was awakened, false otherwise.
1648   */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1649  static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1650  {
1651  	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1652  }
1653  
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1654  static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1655  {
1656  	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1657  }
1658  
1659  #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1660  /*
1661   * returns true if the virtual interrupt controller is initialized and
1662   * ready to accept virtual IRQ. On some architectures the virtual interrupt
1663   * controller is dynamically instantiated and this is not always true.
1664   */
1665  bool kvm_arch_intc_initialized(struct kvm *kvm);
1666  #else
kvm_arch_intc_initialized(struct kvm * kvm)1667  static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1668  {
1669  	return true;
1670  }
1671  #endif
1672  
1673  #ifdef CONFIG_GUEST_PERF_EVENTS
1674  unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1675  
1676  void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1677  void kvm_unregister_perf_callbacks(void);
1678  #else
kvm_register_perf_callbacks(void * ign)1679  static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1680  static inline void kvm_unregister_perf_callbacks(void) {}
1681  #endif /* CONFIG_GUEST_PERF_EVENTS */
1682  
1683  int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1684  void kvm_arch_destroy_vm(struct kvm *kvm);
1685  void kvm_arch_sync_events(struct kvm *kvm);
1686  
1687  int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1688  
1689  struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1690  bool kvm_is_zone_device_page(struct page *page);
1691  
1692  struct kvm_irq_ack_notifier {
1693  	struct hlist_node link;
1694  	unsigned gsi;
1695  	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1696  };
1697  
1698  int kvm_irq_map_gsi(struct kvm *kvm,
1699  		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1700  int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1701  
1702  int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1703  		bool line_status);
1704  int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1705  		int irq_source_id, int level, bool line_status);
1706  int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1707  			       struct kvm *kvm, int irq_source_id,
1708  			       int level, bool line_status);
1709  bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1710  void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1711  void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1712  void kvm_register_irq_ack_notifier(struct kvm *kvm,
1713  				   struct kvm_irq_ack_notifier *kian);
1714  void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1715  				   struct kvm_irq_ack_notifier *kian);
1716  int kvm_request_irq_source_id(struct kvm *kvm);
1717  void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1718  bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1719  
1720  /*
1721   * Returns a pointer to the memslot if it contains gfn.
1722   * Otherwise returns NULL.
1723   */
1724  static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1725  try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1726  {
1727  	if (!slot)
1728  		return NULL;
1729  
1730  	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1731  		return slot;
1732  	else
1733  		return NULL;
1734  }
1735  
1736  /*
1737   * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1738   *
1739   * With "approx" set returns the memslot also when the address falls
1740   * in a hole. In that case one of the memslots bordering the hole is
1741   * returned.
1742   */
1743  static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1744  search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1745  {
1746  	struct kvm_memory_slot *slot;
1747  	struct rb_node *node;
1748  	int idx = slots->node_idx;
1749  
1750  	slot = NULL;
1751  	for (node = slots->gfn_tree.rb_node; node; ) {
1752  		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1753  		if (gfn >= slot->base_gfn) {
1754  			if (gfn < slot->base_gfn + slot->npages)
1755  				return slot;
1756  			node = node->rb_right;
1757  		} else
1758  			node = node->rb_left;
1759  	}
1760  
1761  	return approx ? slot : NULL;
1762  }
1763  
1764  static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1765  ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1766  {
1767  	struct kvm_memory_slot *slot;
1768  
1769  	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1770  	slot = try_get_memslot(slot, gfn);
1771  	if (slot)
1772  		return slot;
1773  
1774  	slot = search_memslots(slots, gfn, approx);
1775  	if (slot) {
1776  		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1777  		return slot;
1778  	}
1779  
1780  	return NULL;
1781  }
1782  
1783  /*
1784   * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1785   * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1786   * because that would bloat other code too much.
1787   */
1788  static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1789  __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1790  {
1791  	return ____gfn_to_memslot(slots, gfn, false);
1792  }
1793  
1794  static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1795  __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1796  {
1797  	/*
1798  	 * The index was checked originally in search_memslots.  To avoid
1799  	 * that a malicious guest builds a Spectre gadget out of e.g. page
1800  	 * table walks, do not let the processor speculate loads outside
1801  	 * the guest's registered memslots.
1802  	 */
1803  	unsigned long offset = gfn - slot->base_gfn;
1804  	offset = array_index_nospec(offset, slot->npages);
1805  	return slot->userspace_addr + offset * PAGE_SIZE;
1806  }
1807  
memslot_id(struct kvm * kvm,gfn_t gfn)1808  static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1809  {
1810  	return gfn_to_memslot(kvm, gfn)->id;
1811  }
1812  
1813  static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1814  hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1815  {
1816  	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1817  
1818  	return slot->base_gfn + gfn_offset;
1819  }
1820  
gfn_to_gpa(gfn_t gfn)1821  static inline gpa_t gfn_to_gpa(gfn_t gfn)
1822  {
1823  	return (gpa_t)gfn << PAGE_SHIFT;
1824  }
1825  
gpa_to_gfn(gpa_t gpa)1826  static inline gfn_t gpa_to_gfn(gpa_t gpa)
1827  {
1828  	return (gfn_t)(gpa >> PAGE_SHIFT);
1829  }
1830  
pfn_to_hpa(kvm_pfn_t pfn)1831  static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1832  {
1833  	return (hpa_t)pfn << PAGE_SHIFT;
1834  }
1835  
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1836  static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1837  {
1838  	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1839  
1840  	return !kvm_is_error_hva(hva);
1841  }
1842  
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1843  static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1844  {
1845  	lockdep_assert_held(&gpc->lock);
1846  
1847  	if (!gpc->memslot)
1848  		return;
1849  
1850  	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1851  }
1852  
1853  enum kvm_stat_kind {
1854  	KVM_STAT_VM,
1855  	KVM_STAT_VCPU,
1856  };
1857  
1858  struct kvm_stat_data {
1859  	struct kvm *kvm;
1860  	const struct _kvm_stats_desc *desc;
1861  	enum kvm_stat_kind kind;
1862  };
1863  
1864  struct _kvm_stats_desc {
1865  	struct kvm_stats_desc desc;
1866  	char name[KVM_STATS_NAME_SIZE];
1867  };
1868  
1869  #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1870  	.flags = type | unit | base |					       \
1871  		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1872  		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1873  		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1874  	.exponent = exp,						       \
1875  	.size = sz,							       \
1876  	.bucket_size = bsz
1877  
1878  #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1879  	{								       \
1880  		{							       \
1881  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1882  			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1883  		},							       \
1884  		.name = #stat,						       \
1885  	}
1886  #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1887  	{								       \
1888  		{							       \
1889  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1890  			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1891  		},							       \
1892  		.name = #stat,						       \
1893  	}
1894  #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1895  	{								       \
1896  		{							       \
1897  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1898  			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1899  		},							       \
1900  		.name = #stat,						       \
1901  	}
1902  #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1903  	{								       \
1904  		{							       \
1905  			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1906  			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1907  		},							       \
1908  		.name = #stat,						       \
1909  	}
1910  /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1911  #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1912  	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1913  
1914  #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1915  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1916  		unit, base, exponent, 1, 0)
1917  #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1918  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1919  		unit, base, exponent, 1, 0)
1920  #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1921  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1922  		unit, base, exponent, 1, 0)
1923  #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1924  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1925  		unit, base, exponent, sz, bsz)
1926  #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1927  	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1928  		unit, base, exponent, sz, 0)
1929  
1930  /* Cumulative counter, read/write */
1931  #define STATS_DESC_COUNTER(SCOPE, name)					       \
1932  	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1933  		KVM_STATS_BASE_POW10, 0)
1934  /* Instantaneous counter, read only */
1935  #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1936  	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1937  		KVM_STATS_BASE_POW10, 0)
1938  /* Peak counter, read/write */
1939  #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1940  	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1941  		KVM_STATS_BASE_POW10, 0)
1942  
1943  /* Instantaneous boolean value, read only */
1944  #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1945  	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1946  		KVM_STATS_BASE_POW10, 0)
1947  /* Peak (sticky) boolean value, read/write */
1948  #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1949  	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1950  		KVM_STATS_BASE_POW10, 0)
1951  
1952  /* Cumulative time in nanosecond */
1953  #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1954  	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1955  		KVM_STATS_BASE_POW10, -9)
1956  /* Linear histogram for time in nanosecond */
1957  #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1958  	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1959  		KVM_STATS_BASE_POW10, -9, sz, bsz)
1960  /* Logarithmic histogram for time in nanosecond */
1961  #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1962  	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1963  		KVM_STATS_BASE_POW10, -9, sz)
1964  
1965  #define KVM_GENERIC_VM_STATS()						       \
1966  	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1967  	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1968  
1969  #define KVM_GENERIC_VCPU_STATS()					       \
1970  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1971  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1972  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1973  	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1974  	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1975  	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1976  	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1977  	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1978  			HALT_POLL_HIST_COUNT),				       \
1979  	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1980  			HALT_POLL_HIST_COUNT),				       \
1981  	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1982  			HALT_POLL_HIST_COUNT),				       \
1983  	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1984  
1985  ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1986  		       const struct _kvm_stats_desc *desc,
1987  		       void *stats, size_t size_stats,
1988  		       char __user *user_buffer, size_t size, loff_t *offset);
1989  
1990  /**
1991   * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1992   * statistics data.
1993   *
1994   * @data: start address of the stats data
1995   * @size: the number of bucket of the stats data
1996   * @value: the new value used to update the linear histogram's bucket
1997   * @bucket_size: the size (width) of a bucket
1998   */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1999  static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2000  						u64 value, size_t bucket_size)
2001  {
2002  	size_t index = div64_u64(value, bucket_size);
2003  
2004  	index = min(index, size - 1);
2005  	++data[index];
2006  }
2007  
2008  /**
2009   * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2010   * statistics data.
2011   *
2012   * @data: start address of the stats data
2013   * @size: the number of bucket of the stats data
2014   * @value: the new value used to update the logarithmic histogram's bucket
2015   */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2016  static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2017  {
2018  	size_t index = fls64(value);
2019  
2020  	index = min(index, size - 1);
2021  	++data[index];
2022  }
2023  
2024  #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2025  	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2026  #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2027  	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2028  
2029  
2030  extern const struct kvm_stats_header kvm_vm_stats_header;
2031  extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2032  extern const struct kvm_stats_header kvm_vcpu_stats_header;
2033  extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2034  
2035  #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2036  static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2037  {
2038  	if (unlikely(kvm->mmu_invalidate_in_progress))
2039  		return 1;
2040  	/*
2041  	 * Ensure the read of mmu_invalidate_in_progress happens before
2042  	 * the read of mmu_invalidate_seq.  This interacts with the
2043  	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2044  	 * that the caller either sees the old (non-zero) value of
2045  	 * mmu_invalidate_in_progress or the new (incremented) value of
2046  	 * mmu_invalidate_seq.
2047  	 *
2048  	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2049  	 * than under kvm->mmu_lock, for scalability, so can't rely on
2050  	 * kvm->mmu_lock to keep things ordered.
2051  	 */
2052  	smp_rmb();
2053  	if (kvm->mmu_invalidate_seq != mmu_seq)
2054  		return 1;
2055  	return 0;
2056  }
2057  
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2058  static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2059  					   unsigned long mmu_seq,
2060  					   gfn_t gfn)
2061  {
2062  	lockdep_assert_held(&kvm->mmu_lock);
2063  	/*
2064  	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2065  	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2066  	 * that might be being invalidated. Note that it may include some false
2067  	 * positives, due to shortcuts when handing concurrent invalidations.
2068  	 */
2069  	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2070  		/*
2071  		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2072  		 * but before updating the range is a KVM bug.
2073  		 */
2074  		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2075  				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2076  			return 1;
2077  
2078  		if (gfn >= kvm->mmu_invalidate_range_start &&
2079  		    gfn < kvm->mmu_invalidate_range_end)
2080  			return 1;
2081  	}
2082  
2083  	if (kvm->mmu_invalidate_seq != mmu_seq)
2084  		return 1;
2085  	return 0;
2086  }
2087  
2088  /*
2089   * This lockless version of the range-based retry check *must* be paired with a
2090   * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2091   * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2092   * get false negatives and false positives.
2093   */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2094  static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2095  						   unsigned long mmu_seq,
2096  						   gfn_t gfn)
2097  {
2098  	/*
2099  	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2100  	 * are always read from memory, e.g. so that checking for retry in a
2101  	 * loop won't result in an infinite retry loop.  Don't force loads for
2102  	 * start+end, as the key to avoiding infinite retry loops is observing
2103  	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2104  	 * due to stale start+end values is acceptable.
2105  	 */
2106  	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2107  	    gfn >= kvm->mmu_invalidate_range_start &&
2108  	    gfn < kvm->mmu_invalidate_range_end)
2109  		return true;
2110  
2111  	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2112  }
2113  #endif
2114  
2115  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2116  
2117  #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2118  
2119  bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2120  int kvm_set_irq_routing(struct kvm *kvm,
2121  			const struct kvm_irq_routing_entry *entries,
2122  			unsigned nr,
2123  			unsigned flags);
2124  int kvm_init_irq_routing(struct kvm *kvm);
2125  int kvm_set_routing_entry(struct kvm *kvm,
2126  			  struct kvm_kernel_irq_routing_entry *e,
2127  			  const struct kvm_irq_routing_entry *ue);
2128  void kvm_free_irq_routing(struct kvm *kvm);
2129  
2130  #else
2131  
kvm_free_irq_routing(struct kvm * kvm)2132  static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2133  
kvm_init_irq_routing(struct kvm * kvm)2134  static inline int kvm_init_irq_routing(struct kvm *kvm)
2135  {
2136  	return 0;
2137  }
2138  
2139  #endif
2140  
2141  int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2142  
2143  void kvm_eventfd_init(struct kvm *kvm);
2144  int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2145  
2146  #ifdef CONFIG_HAVE_KVM_IRQCHIP
2147  int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2148  void kvm_irqfd_release(struct kvm *kvm);
2149  bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2150  				unsigned int irqchip,
2151  				unsigned int pin);
2152  void kvm_irq_routing_update(struct kvm *);
2153  #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2154  static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2155  {
2156  	return -EINVAL;
2157  }
2158  
kvm_irqfd_release(struct kvm * kvm)2159  static inline void kvm_irqfd_release(struct kvm *kvm) {}
2160  
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2161  static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2162  					      unsigned int irqchip,
2163  					      unsigned int pin)
2164  {
2165  	return false;
2166  }
2167  #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2168  
2169  void kvm_arch_irq_routing_update(struct kvm *kvm);
2170  
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2171  static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2172  {
2173  	/*
2174  	 * Ensure the rest of the request is published to kvm_check_request's
2175  	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2176  	 */
2177  	smp_wmb();
2178  	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2179  }
2180  
kvm_make_request(int req,struct kvm_vcpu * vcpu)2181  static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2182  {
2183  	/*
2184  	 * Request that don't require vCPU action should never be logged in
2185  	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2186  	 * logged indefinitely and prevent the vCPU from entering the guest.
2187  	 */
2188  	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2189  		     (req & KVM_REQUEST_NO_ACTION));
2190  
2191  	__kvm_make_request(req, vcpu);
2192  }
2193  
kvm_request_pending(struct kvm_vcpu * vcpu)2194  static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2195  {
2196  	return READ_ONCE(vcpu->requests);
2197  }
2198  
kvm_test_request(int req,struct kvm_vcpu * vcpu)2199  static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2200  {
2201  	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2202  }
2203  
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2204  static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2205  {
2206  	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2207  }
2208  
kvm_check_request(int req,struct kvm_vcpu * vcpu)2209  static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2210  {
2211  	if (kvm_test_request(req, vcpu)) {
2212  		kvm_clear_request(req, vcpu);
2213  
2214  		/*
2215  		 * Ensure the rest of the request is visible to kvm_check_request's
2216  		 * caller.  Paired with the smp_wmb in kvm_make_request.
2217  		 */
2218  		smp_mb__after_atomic();
2219  		return true;
2220  	} else {
2221  		return false;
2222  	}
2223  }
2224  
2225  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2226  extern bool kvm_rebooting;
2227  #endif
2228  
2229  extern unsigned int halt_poll_ns;
2230  extern unsigned int halt_poll_ns_grow;
2231  extern unsigned int halt_poll_ns_grow_start;
2232  extern unsigned int halt_poll_ns_shrink;
2233  
2234  struct kvm_device {
2235  	const struct kvm_device_ops *ops;
2236  	struct kvm *kvm;
2237  	void *private;
2238  	struct list_head vm_node;
2239  };
2240  
2241  /* create, destroy, and name are mandatory */
2242  struct kvm_device_ops {
2243  	const char *name;
2244  
2245  	/*
2246  	 * create is called holding kvm->lock and any operations not suitable
2247  	 * to do while holding the lock should be deferred to init (see
2248  	 * below).
2249  	 */
2250  	int (*create)(struct kvm_device *dev, u32 type);
2251  
2252  	/*
2253  	 * init is called after create if create is successful and is called
2254  	 * outside of holding kvm->lock.
2255  	 */
2256  	void (*init)(struct kvm_device *dev);
2257  
2258  	/*
2259  	 * Destroy is responsible for freeing dev.
2260  	 *
2261  	 * Destroy may be called before or after destructors are called
2262  	 * on emulated I/O regions, depending on whether a reference is
2263  	 * held by a vcpu or other kvm component that gets destroyed
2264  	 * after the emulated I/O.
2265  	 */
2266  	void (*destroy)(struct kvm_device *dev);
2267  
2268  	/*
2269  	 * Release is an alternative method to free the device. It is
2270  	 * called when the device file descriptor is closed. Once
2271  	 * release is called, the destroy method will not be called
2272  	 * anymore as the device is removed from the device list of
2273  	 * the VM. kvm->lock is held.
2274  	 */
2275  	void (*release)(struct kvm_device *dev);
2276  
2277  	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2278  	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2279  	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2280  	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2281  		      unsigned long arg);
2282  	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2283  };
2284  
2285  struct kvm_device *kvm_device_from_filp(struct file *filp);
2286  int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2287  void kvm_unregister_device_ops(u32 type);
2288  
2289  extern struct kvm_device_ops kvm_mpic_ops;
2290  extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2291  extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2292  
2293  #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2294  
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2295  static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2296  {
2297  	vcpu->spin_loop.in_spin_loop = val;
2298  }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2299  static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2300  {
2301  	vcpu->spin_loop.dy_eligible = val;
2302  }
2303  
2304  #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2305  
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2306  static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2307  {
2308  }
2309  
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2310  static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2311  {
2312  }
2313  #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2314  
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2315  static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2316  {
2317  	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2318  		!(memslot->flags & KVM_MEMSLOT_INVALID));
2319  }
2320  
2321  struct kvm_vcpu *kvm_get_running_vcpu(void);
2322  struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2323  
2324  #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2325  bool kvm_arch_has_irq_bypass(void);
2326  int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2327  			   struct irq_bypass_producer *);
2328  void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2329  			   struct irq_bypass_producer *);
2330  void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2331  void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2332  int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2333  				  uint32_t guest_irq, bool set);
2334  bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2335  				  struct kvm_kernel_irq_routing_entry *);
2336  #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2337  
2338  #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2339  /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2340  static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2341  {
2342  	return vcpu->valid_wakeup;
2343  }
2344  
2345  #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2346  static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2347  {
2348  	return true;
2349  }
2350  #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2351  
2352  #ifdef CONFIG_HAVE_KVM_NO_POLL
2353  /* Callback that tells if we must not poll */
2354  bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2355  #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2356  static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2357  {
2358  	return false;
2359  }
2360  #endif /* CONFIG_HAVE_KVM_NO_POLL */
2361  
2362  #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2363  long kvm_arch_vcpu_async_ioctl(struct file *filp,
2364  			       unsigned int ioctl, unsigned long arg);
2365  #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2366  static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2367  					     unsigned int ioctl,
2368  					     unsigned long arg)
2369  {
2370  	return -ENOIOCTLCMD;
2371  }
2372  #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2373  
2374  void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2375  
2376  #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2377  int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2378  #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2379  static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2380  {
2381  	return 0;
2382  }
2383  #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2384  
2385  typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2386  
2387  int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2388  				uintptr_t data, const char *name,
2389  				struct task_struct **thread_ptr);
2390  
2391  #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2392  static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2393  {
2394  	vcpu->run->exit_reason = KVM_EXIT_INTR;
2395  	vcpu->stat.signal_exits++;
2396  }
2397  #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2398  
2399  /*
2400   * If more than one page is being (un)accounted, @virt must be the address of
2401   * the first page of a block of pages what were allocated together (i.e
2402   * accounted together).
2403   *
2404   * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2405   * is thread-safe.
2406   */
kvm_account_pgtable_pages(void * virt,int nr)2407  static inline void kvm_account_pgtable_pages(void *virt, int nr)
2408  {
2409  	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2410  }
2411  
2412  /*
2413   * This defines how many reserved entries we want to keep before we
2414   * kick the vcpu to the userspace to avoid dirty ring full.  This
2415   * value can be tuned to higher if e.g. PML is enabled on the host.
2416   */
2417  #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2418  
2419  /* Max number of entries allowed for each kvm dirty ring */
2420  #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2421  
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2422  static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2423  						 gpa_t gpa, gpa_t size,
2424  						 bool is_write, bool is_exec,
2425  						 bool is_private)
2426  {
2427  	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2428  	vcpu->run->memory_fault.gpa = gpa;
2429  	vcpu->run->memory_fault.size = size;
2430  
2431  	/* RWX flags are not (yet) defined or communicated to userspace. */
2432  	vcpu->run->memory_fault.flags = 0;
2433  	if (is_private)
2434  		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2435  }
2436  
2437  #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2438  static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2439  {
2440  	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2441  }
2442  
2443  bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2444  				     unsigned long mask, unsigned long attrs);
2445  bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2446  					struct kvm_gfn_range *range);
2447  bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2448  					 struct kvm_gfn_range *range);
2449  
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2450  static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2451  {
2452  	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2453  	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2454  }
2455  #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2456  static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2457  {
2458  	return false;
2459  }
2460  #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2461  
2462  #ifdef CONFIG_KVM_PRIVATE_MEM
2463  int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2464  		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2465  #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,int * max_order)2466  static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2467  				   struct kvm_memory_slot *slot, gfn_t gfn,
2468  				   kvm_pfn_t *pfn, int *max_order)
2469  {
2470  	KVM_BUG_ON(1, kvm);
2471  	return -EIO;
2472  }
2473  #endif /* CONFIG_KVM_PRIVATE_MEM */
2474  
2475  #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2476  int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2477  #endif
2478  
2479  #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2480  /**
2481   * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2482   *
2483   * @kvm: KVM instance
2484   * @gfn: starting GFN to be populated
2485   * @src: userspace-provided buffer containing data to copy into GFN range
2486   *       (passed to @post_populate, and incremented on each iteration
2487   *       if not NULL)
2488   * @npages: number of pages to copy from userspace-buffer
2489   * @post_populate: callback to issue for each gmem page that backs the GPA
2490   *                 range
2491   * @opaque: opaque data to pass to @post_populate callback
2492   *
2493   * This is primarily intended for cases where a gmem-backed GPA range needs
2494   * to be initialized with userspace-provided data prior to being mapped into
2495   * the guest as a private page. This should be called with the slots->lock
2496   * held so that caller-enforced invariants regarding the expected memory
2497   * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2498   *
2499   * Returns the number of pages that were populated.
2500   */
2501  typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2502  				    void __user *src, int order, void *opaque);
2503  
2504  long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2505  		       kvm_gmem_populate_cb post_populate, void *opaque);
2506  #endif
2507  
2508  #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2509  void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2510  #endif
2511  
2512  #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2513  long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2514  				    struct kvm_pre_fault_memory *range);
2515  #endif
2516  
2517  #endif
2518