1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
kvm_is_error_gpa(gpa_t gpa)151 static inline bool kvm_is_error_gpa(gpa_t gpa)
152 {
153 	return gpa == INVALID_GPA;
154 }
155 
156 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
157 
is_error_page(struct page * page)158 static inline bool is_error_page(struct page *page)
159 {
160 	return IS_ERR(page);
161 }
162 
163 #define KVM_REQUEST_MASK           GENMASK(7,0)
164 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
165 #define KVM_REQUEST_WAIT           BIT(9)
166 #define KVM_REQUEST_NO_ACTION      BIT(10)
167 /*
168  * Architecture-independent vcpu->requests bit members
169  * Bits 3-7 are reserved for more arch-independent bits.
170  */
171 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173 #define KVM_REQ_UNBLOCK			2
174 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
175 #define KVM_REQUEST_ARCH_BASE		8
176 
177 /*
178  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183  * guarantee the vCPU received an IPI and has actually exited guest mode.
184  */
185 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186 
187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190 })
191 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192 
193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 				 unsigned long *vcpu_bitmap);
195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196 
197 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
199 
200 extern struct mutex kvm_lock;
201 extern struct list_head vm_list;
202 
203 struct kvm_io_range {
204 	gpa_t addr;
205 	int len;
206 	struct kvm_io_device *dev;
207 };
208 
209 #define NR_IOBUS_DEVS 1000
210 
211 struct kvm_io_bus {
212 	int dev_count;
213 	int ioeventfd_count;
214 	struct kvm_io_range range[];
215 };
216 
217 enum kvm_bus {
218 	KVM_MMIO_BUS,
219 	KVM_PIO_BUS,
220 	KVM_VIRTIO_CCW_NOTIFY_BUS,
221 	KVM_FAST_MMIO_BUS,
222 	KVM_NR_BUSES
223 };
224 
225 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
226 		     int len, const void *val);
227 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228 			    gpa_t addr, int len, const void *val, long cookie);
229 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230 		    int len, void *val);
231 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232 			    int len, struct kvm_io_device *dev);
233 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 			      struct kvm_io_device *dev);
235 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236 					 gpa_t addr);
237 
238 #ifdef CONFIG_KVM_ASYNC_PF
239 struct kvm_async_pf {
240 	struct work_struct work;
241 	struct list_head link;
242 	struct list_head queue;
243 	struct kvm_vcpu *vcpu;
244 	gpa_t cr2_or_gpa;
245 	unsigned long addr;
246 	struct kvm_arch_async_pf arch;
247 	bool   wakeup_all;
248 	bool notpresent_injected;
249 };
250 
251 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 			unsigned long hva, struct kvm_arch_async_pf *arch);
255 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256 #endif
257 
258 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
259 union kvm_mmu_notifier_arg {
260 	unsigned long attributes;
261 };
262 
263 struct kvm_gfn_range {
264 	struct kvm_memory_slot *slot;
265 	gfn_t start;
266 	gfn_t end;
267 	union kvm_mmu_notifier_arg arg;
268 	bool may_block;
269 };
270 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
273 #endif
274 
275 enum {
276 	OUTSIDE_GUEST_MODE,
277 	IN_GUEST_MODE,
278 	EXITING_GUEST_MODE,
279 	READING_SHADOW_PAGE_TABLES,
280 };
281 
282 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
283 
284 struct kvm_host_map {
285 	/*
286 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 	 * a 'struct page' for it. When using mem= kernel parameter some memory
288 	 * can be used as guest memory but they are not managed by host
289 	 * kernel).
290 	 * If 'pfn' is not managed by the host kernel, this field is
291 	 * initialized to KVM_UNMAPPED_PAGE.
292 	 */
293 	struct page *page;
294 	void *hva;
295 	kvm_pfn_t pfn;
296 	kvm_pfn_t gfn;
297 };
298 
299 /*
300  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301  * directly to check for that.
302  */
kvm_vcpu_mapped(struct kvm_host_map * map)303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304 {
305 	return !!map->hva;
306 }
307 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 {
310 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
311 }
312 
313 /*
314  * Sometimes a large or cross-page mmio needs to be broken up into separate
315  * exits for userspace servicing.
316  */
317 struct kvm_mmio_fragment {
318 	gpa_t gpa;
319 	void *data;
320 	unsigned len;
321 };
322 
323 struct kvm_vcpu {
324 	struct kvm *kvm;
325 #ifdef CONFIG_PREEMPT_NOTIFIERS
326 	struct preempt_notifier preempt_notifier;
327 #endif
328 	int cpu;
329 	int vcpu_id; /* id given by userspace at creation */
330 	int vcpu_idx; /* index into kvm->vcpu_array */
331 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
332 #ifdef CONFIG_PROVE_RCU
333 	int srcu_depth;
334 #endif
335 	int mode;
336 	u64 requests;
337 	unsigned long guest_debug;
338 
339 	struct mutex mutex;
340 	struct kvm_run *run;
341 
342 #ifndef __KVM_HAVE_ARCH_WQP
343 	struct rcuwait wait;
344 #endif
345 	struct pid __rcu *pid;
346 	int sigset_active;
347 	sigset_t sigset;
348 	unsigned int halt_poll_ns;
349 	bool valid_wakeup;
350 
351 #ifdef CONFIG_HAS_IOMEM
352 	int mmio_needed;
353 	int mmio_read_completed;
354 	int mmio_is_write;
355 	int mmio_cur_fragment;
356 	int mmio_nr_fragments;
357 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
358 #endif
359 
360 #ifdef CONFIG_KVM_ASYNC_PF
361 	struct {
362 		u32 queued;
363 		struct list_head queue;
364 		struct list_head done;
365 		spinlock_t lock;
366 	} async_pf;
367 #endif
368 
369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 	/*
371 	 * Cpu relax intercept or pause loop exit optimization
372 	 * in_spin_loop: set when a vcpu does a pause loop exit
373 	 *  or cpu relax intercepted.
374 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 	 */
376 	struct {
377 		bool in_spin_loop;
378 		bool dy_eligible;
379 	} spin_loop;
380 #endif
381 	bool wants_to_run;
382 	bool preempted;
383 	bool ready;
384 	bool scheduled_out;
385 	struct kvm_vcpu_arch arch;
386 	struct kvm_vcpu_stat stat;
387 	char stats_id[KVM_STATS_NAME_SIZE];
388 	struct kvm_dirty_ring dirty_ring;
389 
390 	/*
391 	 * The most recently used memslot by this vCPU and the slots generation
392 	 * for which it is valid.
393 	 * No wraparound protection is needed since generations won't overflow in
394 	 * thousands of years, even assuming 1M memslot operations per second.
395 	 */
396 	struct kvm_memory_slot *last_used_slot;
397 	u64 last_used_slot_gen;
398 };
399 
400 /*
401  * Start accounting time towards a guest.
402  * Must be called before entering guest context.
403  */
guest_timing_enter_irqoff(void)404 static __always_inline void guest_timing_enter_irqoff(void)
405 {
406 	/*
407 	 * This is running in ioctl context so its safe to assume that it's the
408 	 * stime pending cputime to flush.
409 	 */
410 	instrumentation_begin();
411 	vtime_account_guest_enter();
412 	instrumentation_end();
413 }
414 
415 /*
416  * Enter guest context and enter an RCU extended quiescent state.
417  *
418  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
419  * unsafe to use any code which may directly or indirectly use RCU, tracing
420  * (including IRQ flag tracing), or lockdep. All code in this period must be
421  * non-instrumentable.
422  */
guest_context_enter_irqoff(void)423 static __always_inline void guest_context_enter_irqoff(void)
424 {
425 	/*
426 	 * KVM does not hold any references to rcu protected data when it
427 	 * switches CPU into a guest mode. In fact switching to a guest mode
428 	 * is very similar to exiting to userspace from rcu point of view. In
429 	 * addition CPU may stay in a guest mode for quite a long time (up to
430 	 * one time slice). Lets treat guest mode as quiescent state, just like
431 	 * we do with user-mode execution.
432 	 */
433 	if (!context_tracking_guest_enter()) {
434 		instrumentation_begin();
435 		rcu_virt_note_context_switch();
436 		instrumentation_end();
437 	}
438 }
439 
440 /*
441  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
442  * guest_state_enter_irqoff().
443  */
guest_enter_irqoff(void)444 static __always_inline void guest_enter_irqoff(void)
445 {
446 	guest_timing_enter_irqoff();
447 	guest_context_enter_irqoff();
448 }
449 
450 /**
451  * guest_state_enter_irqoff - Fixup state when entering a guest
452  *
453  * Entry to a guest will enable interrupts, but the kernel state is interrupts
454  * disabled when this is invoked. Also tell RCU about it.
455  *
456  * 1) Trace interrupts on state
457  * 2) Invoke context tracking if enabled to adjust RCU state
458  * 3) Tell lockdep that interrupts are enabled
459  *
460  * Invoked from architecture specific code before entering a guest.
461  * Must be called with interrupts disabled and the caller must be
462  * non-instrumentable.
463  * The caller has to invoke guest_timing_enter_irqoff() before this.
464  *
465  * Note: this is analogous to exit_to_user_mode().
466  */
guest_state_enter_irqoff(void)467 static __always_inline void guest_state_enter_irqoff(void)
468 {
469 	instrumentation_begin();
470 	trace_hardirqs_on_prepare();
471 	lockdep_hardirqs_on_prepare();
472 	instrumentation_end();
473 
474 	guest_context_enter_irqoff();
475 	lockdep_hardirqs_on(CALLER_ADDR0);
476 }
477 
478 /*
479  * Exit guest context and exit an RCU extended quiescent state.
480  *
481  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
482  * unsafe to use any code which may directly or indirectly use RCU, tracing
483  * (including IRQ flag tracing), or lockdep. All code in this period must be
484  * non-instrumentable.
485  */
guest_context_exit_irqoff(void)486 static __always_inline void guest_context_exit_irqoff(void)
487 {
488 	/*
489 	 * Guest mode is treated as a quiescent state, see
490 	 * guest_context_enter_irqoff() for more details.
491 	 */
492 	if (!context_tracking_guest_exit()) {
493 		instrumentation_begin();
494 		rcu_virt_note_context_switch();
495 		instrumentation_end();
496 	}
497 }
498 
499 /*
500  * Stop accounting time towards a guest.
501  * Must be called after exiting guest context.
502  */
guest_timing_exit_irqoff(void)503 static __always_inline void guest_timing_exit_irqoff(void)
504 {
505 	instrumentation_begin();
506 	/* Flush the guest cputime we spent on the guest */
507 	vtime_account_guest_exit();
508 	instrumentation_end();
509 }
510 
511 /*
512  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
513  * guest_timing_exit_irqoff().
514  */
guest_exit_irqoff(void)515 static __always_inline void guest_exit_irqoff(void)
516 {
517 	guest_context_exit_irqoff();
518 	guest_timing_exit_irqoff();
519 }
520 
guest_exit(void)521 static inline void guest_exit(void)
522 {
523 	unsigned long flags;
524 
525 	local_irq_save(flags);
526 	guest_exit_irqoff();
527 	local_irq_restore(flags);
528 }
529 
530 /**
531  * guest_state_exit_irqoff - Establish state when returning from guest mode
532  *
533  * Entry from a guest disables interrupts, but guest mode is traced as
534  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
535  *
536  * 1) Tell lockdep that interrupts are disabled
537  * 2) Invoke context tracking if enabled to reactivate RCU
538  * 3) Trace interrupts off state
539  *
540  * Invoked from architecture specific code after exiting a guest.
541  * Must be invoked with interrupts disabled and the caller must be
542  * non-instrumentable.
543  * The caller has to invoke guest_timing_exit_irqoff() after this.
544  *
545  * Note: this is analogous to enter_from_user_mode().
546  */
guest_state_exit_irqoff(void)547 static __always_inline void guest_state_exit_irqoff(void)
548 {
549 	lockdep_hardirqs_off(CALLER_ADDR0);
550 	guest_context_exit_irqoff();
551 
552 	instrumentation_begin();
553 	trace_hardirqs_off_finish();
554 	instrumentation_end();
555 }
556 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)557 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
558 {
559 	/*
560 	 * The memory barrier ensures a previous write to vcpu->requests cannot
561 	 * be reordered with the read of vcpu->mode.  It pairs with the general
562 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
563 	 */
564 	smp_mb__before_atomic();
565 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
566 }
567 
568 /*
569  * Some of the bitops functions do not support too long bitmaps.
570  * This number must be determined not to exceed such limits.
571  */
572 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
573 
574 /*
575  * Since at idle each memslot belongs to two memslot sets it has to contain
576  * two embedded nodes for each data structure that it forms a part of.
577  *
578  * Two memslot sets (one active and one inactive) are necessary so the VM
579  * continues to run on one memslot set while the other is being modified.
580  *
581  * These two memslot sets normally point to the same set of memslots.
582  * They can, however, be desynchronized when performing a memslot management
583  * operation by replacing the memslot to be modified by its copy.
584  * After the operation is complete, both memslot sets once again point to
585  * the same, common set of memslot data.
586  *
587  * The memslots themselves are independent of each other so they can be
588  * individually added or deleted.
589  */
590 struct kvm_memory_slot {
591 	struct hlist_node id_node[2];
592 	struct interval_tree_node hva_node[2];
593 	struct rb_node gfn_node[2];
594 	gfn_t base_gfn;
595 	unsigned long npages;
596 	unsigned long *dirty_bitmap;
597 	struct kvm_arch_memory_slot arch;
598 	unsigned long userspace_addr;
599 	u32 flags;
600 	short id;
601 	u16 as_id;
602 
603 #ifdef CONFIG_KVM_PRIVATE_MEM
604 	struct {
605 		struct file __rcu *file;
606 		pgoff_t pgoff;
607 	} gmem;
608 #endif
609 };
610 
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)611 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
612 {
613 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
614 }
615 
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)616 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
617 {
618 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
619 }
620 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)621 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
622 {
623 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
624 }
625 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)626 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
627 {
628 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
629 
630 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
631 }
632 
633 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
634 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
635 #endif
636 
637 struct kvm_s390_adapter_int {
638 	u64 ind_addr;
639 	u64 summary_addr;
640 	u64 ind_offset;
641 	u32 summary_offset;
642 	u32 adapter_id;
643 };
644 
645 struct kvm_hv_sint {
646 	u32 vcpu;
647 	u32 sint;
648 };
649 
650 struct kvm_xen_evtchn {
651 	u32 port;
652 	u32 vcpu_id;
653 	int vcpu_idx;
654 	u32 priority;
655 };
656 
657 struct kvm_kernel_irq_routing_entry {
658 	u32 gsi;
659 	u32 type;
660 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
661 		   struct kvm *kvm, int irq_source_id, int level,
662 		   bool line_status);
663 	union {
664 		struct {
665 			unsigned irqchip;
666 			unsigned pin;
667 		} irqchip;
668 		struct {
669 			u32 address_lo;
670 			u32 address_hi;
671 			u32 data;
672 			u32 flags;
673 			u32 devid;
674 		} msi;
675 		struct kvm_s390_adapter_int adapter;
676 		struct kvm_hv_sint hv_sint;
677 		struct kvm_xen_evtchn xen_evtchn;
678 	};
679 	struct hlist_node link;
680 };
681 
682 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
683 struct kvm_irq_routing_table {
684 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
685 	u32 nr_rt_entries;
686 	/*
687 	 * Array indexed by gsi. Each entry contains list of irq chips
688 	 * the gsi is connected to.
689 	 */
690 	struct hlist_head map[] __counted_by(nr_rt_entries);
691 };
692 #endif
693 
694 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
695 
696 #ifndef KVM_INTERNAL_MEM_SLOTS
697 #define KVM_INTERNAL_MEM_SLOTS 0
698 #endif
699 
700 #define KVM_MEM_SLOTS_NUM SHRT_MAX
701 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
702 
703 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)704 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
705 {
706 	return KVM_MAX_NR_ADDRESS_SPACES;
707 }
708 
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)709 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
710 {
711 	return 0;
712 }
713 #endif
714 
715 /*
716  * Arch code must define kvm_arch_has_private_mem if support for private memory
717  * is enabled.
718  */
719 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)720 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
721 {
722 	return false;
723 }
724 #endif
725 
726 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)727 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
728 {
729 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
730 }
731 #endif
732 
733 struct kvm_memslots {
734 	u64 generation;
735 	atomic_long_t last_used_slot;
736 	struct rb_root_cached hva_tree;
737 	struct rb_root gfn_tree;
738 	/*
739 	 * The mapping table from slot id to memslot.
740 	 *
741 	 * 7-bit bucket count matches the size of the old id to index array for
742 	 * 512 slots, while giving good performance with this slot count.
743 	 * Higher bucket counts bring only small performance improvements but
744 	 * always result in higher memory usage (even for lower memslot counts).
745 	 */
746 	DECLARE_HASHTABLE(id_hash, 7);
747 	int node_idx;
748 };
749 
750 struct kvm {
751 #ifdef KVM_HAVE_MMU_RWLOCK
752 	rwlock_t mmu_lock;
753 #else
754 	spinlock_t mmu_lock;
755 #endif /* KVM_HAVE_MMU_RWLOCK */
756 
757 	struct mutex slots_lock;
758 
759 	/*
760 	 * Protects the arch-specific fields of struct kvm_memory_slots in
761 	 * use by the VM. To be used under the slots_lock (above) or in a
762 	 * kvm->srcu critical section where acquiring the slots_lock would
763 	 * lead to deadlock with the synchronize_srcu in
764 	 * kvm_swap_active_memslots().
765 	 */
766 	struct mutex slots_arch_lock;
767 	struct mm_struct *mm; /* userspace tied to this vm */
768 	unsigned long nr_memslot_pages;
769 	/* The two memslot sets - active and inactive (per address space) */
770 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
771 	/* The current active memslot set for each address space */
772 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
773 	struct xarray vcpu_array;
774 	/*
775 	 * Protected by slots_lock, but can be read outside if an
776 	 * incorrect answer is acceptable.
777 	 */
778 	atomic_t nr_memslots_dirty_logging;
779 
780 	/* Used to wait for completion of MMU notifiers.  */
781 	spinlock_t mn_invalidate_lock;
782 	unsigned long mn_active_invalidate_count;
783 	struct rcuwait mn_memslots_update_rcuwait;
784 
785 	/* For management / invalidation of gfn_to_pfn_caches */
786 	spinlock_t gpc_lock;
787 	struct list_head gpc_list;
788 
789 	/*
790 	 * created_vcpus is protected by kvm->lock, and is incremented
791 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
792 	 * incremented after storing the kvm_vcpu pointer in vcpus,
793 	 * and is accessed atomically.
794 	 */
795 	atomic_t online_vcpus;
796 	int max_vcpus;
797 	int created_vcpus;
798 	int last_boosted_vcpu;
799 	struct list_head vm_list;
800 	struct mutex lock;
801 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
802 #ifdef CONFIG_HAVE_KVM_IRQCHIP
803 	struct {
804 		spinlock_t        lock;
805 		struct list_head  items;
806 		/* resampler_list update side is protected by resampler_lock. */
807 		struct list_head  resampler_list;
808 		struct mutex      resampler_lock;
809 	} irqfds;
810 #endif
811 	struct list_head ioeventfds;
812 	struct kvm_vm_stat stat;
813 	struct kvm_arch arch;
814 	refcount_t users_count;
815 #ifdef CONFIG_KVM_MMIO
816 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
817 	spinlock_t ring_lock;
818 	struct list_head coalesced_zones;
819 #endif
820 
821 	struct mutex irq_lock;
822 #ifdef CONFIG_HAVE_KVM_IRQCHIP
823 	/*
824 	 * Update side is protected by irq_lock.
825 	 */
826 	struct kvm_irq_routing_table __rcu *irq_routing;
827 
828 	struct hlist_head irq_ack_notifier_list;
829 #endif
830 
831 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
832 	struct mmu_notifier mmu_notifier;
833 	unsigned long mmu_invalidate_seq;
834 	long mmu_invalidate_in_progress;
835 	gfn_t mmu_invalidate_range_start;
836 	gfn_t mmu_invalidate_range_end;
837 #endif
838 	struct list_head devices;
839 	u64 manual_dirty_log_protect;
840 	struct dentry *debugfs_dentry;
841 	struct kvm_stat_data **debugfs_stat_data;
842 	struct srcu_struct srcu;
843 	struct srcu_struct irq_srcu;
844 	pid_t userspace_pid;
845 	bool override_halt_poll_ns;
846 	unsigned int max_halt_poll_ns;
847 	u32 dirty_ring_size;
848 	bool dirty_ring_with_bitmap;
849 	bool vm_bugged;
850 	bool vm_dead;
851 
852 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
853 	struct notifier_block pm_notifier;
854 #endif
855 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
856 	/* Protected by slots_locks (for writes) and RCU (for reads) */
857 	struct xarray mem_attr_array;
858 #endif
859 	char stats_id[KVM_STATS_NAME_SIZE];
860 };
861 
862 #define kvm_err(fmt, ...) \
863 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
864 #define kvm_info(fmt, ...) \
865 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
866 #define kvm_debug(fmt, ...) \
867 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
868 #define kvm_debug_ratelimited(fmt, ...) \
869 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
870 			     ## __VA_ARGS__)
871 #define kvm_pr_unimpl(fmt, ...) \
872 	pr_err_ratelimited("kvm [%i]: " fmt, \
873 			   task_tgid_nr(current), ## __VA_ARGS__)
874 
875 /* The guest did something we don't support. */
876 #define vcpu_unimpl(vcpu, fmt, ...)					\
877 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
878 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
879 
880 #define vcpu_debug(vcpu, fmt, ...)					\
881 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
882 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
883 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
884 			      ## __VA_ARGS__)
885 #define vcpu_err(vcpu, fmt, ...)					\
886 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
887 
kvm_vm_dead(struct kvm * kvm)888 static inline void kvm_vm_dead(struct kvm *kvm)
889 {
890 	kvm->vm_dead = true;
891 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
892 }
893 
kvm_vm_bugged(struct kvm * kvm)894 static inline void kvm_vm_bugged(struct kvm *kvm)
895 {
896 	kvm->vm_bugged = true;
897 	kvm_vm_dead(kvm);
898 }
899 
900 
901 #define KVM_BUG(cond, kvm, fmt...)				\
902 ({								\
903 	bool __ret = !!(cond);					\
904 								\
905 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
906 		kvm_vm_bugged(kvm);				\
907 	unlikely(__ret);					\
908 })
909 
910 #define KVM_BUG_ON(cond, kvm)					\
911 ({								\
912 	bool __ret = !!(cond);					\
913 								\
914 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
915 		kvm_vm_bugged(kvm);				\
916 	unlikely(__ret);					\
917 })
918 
919 /*
920  * Note, "data corruption" refers to corruption of host kernel data structures,
921  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
922  * and contained to a single VM should *never* BUG() and potentially panic the
923  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
924  * is corrupted and that corruption can have a cascading effect to other parts
925  * of the hosts and/or to other VMs.
926  */
927 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
928 ({								\
929 	bool __ret = !!(cond);					\
930 								\
931 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
932 		BUG_ON(__ret);					\
933 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
934 		kvm_vm_bugged(kvm);				\
935 	unlikely(__ret);					\
936 })
937 
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)938 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
939 {
940 #ifdef CONFIG_PROVE_RCU
941 	WARN_ONCE(vcpu->srcu_depth++,
942 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
943 #endif
944 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
945 }
946 
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)947 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
948 {
949 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
950 
951 #ifdef CONFIG_PROVE_RCU
952 	WARN_ONCE(--vcpu->srcu_depth,
953 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
954 #endif
955 }
956 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)957 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
958 {
959 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
960 }
961 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)962 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
963 {
964 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
965 				      lockdep_is_held(&kvm->slots_lock) ||
966 				      !refcount_read(&kvm->users_count));
967 }
968 
kvm_get_vcpu(struct kvm * kvm,int i)969 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
970 {
971 	int num_vcpus = atomic_read(&kvm->online_vcpus);
972 	i = array_index_nospec(i, num_vcpus);
973 
974 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
975 	smp_rmb();
976 	return xa_load(&kvm->vcpu_array, i);
977 }
978 
979 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
980 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
981 			  (atomic_read(&kvm->online_vcpus) - 1))
982 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)983 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
984 {
985 	struct kvm_vcpu *vcpu = NULL;
986 	unsigned long i;
987 
988 	if (id < 0)
989 		return NULL;
990 	if (id < KVM_MAX_VCPUS)
991 		vcpu = kvm_get_vcpu(kvm, id);
992 	if (vcpu && vcpu->vcpu_id == id)
993 		return vcpu;
994 	kvm_for_each_vcpu(i, vcpu, kvm)
995 		if (vcpu->vcpu_id == id)
996 			return vcpu;
997 	return NULL;
998 }
999 
1000 void kvm_destroy_vcpus(struct kvm *kvm);
1001 
1002 void vcpu_load(struct kvm_vcpu *vcpu);
1003 void vcpu_put(struct kvm_vcpu *vcpu);
1004 
1005 #ifdef __KVM_HAVE_IOAPIC
1006 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1007 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1008 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1009 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1010 {
1011 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)1012 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1013 {
1014 }
1015 #endif
1016 
1017 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1018 int kvm_irqfd_init(void);
1019 void kvm_irqfd_exit(void);
1020 #else
kvm_irqfd_init(void)1021 static inline int kvm_irqfd_init(void)
1022 {
1023 	return 0;
1024 }
1025 
kvm_irqfd_exit(void)1026 static inline void kvm_irqfd_exit(void)
1027 {
1028 }
1029 #endif
1030 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1031 void kvm_exit(void);
1032 
1033 void kvm_get_kvm(struct kvm *kvm);
1034 bool kvm_get_kvm_safe(struct kvm *kvm);
1035 void kvm_put_kvm(struct kvm *kvm);
1036 bool file_is_kvm(struct file *file);
1037 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1038 
__kvm_memslots(struct kvm * kvm,int as_id)1039 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1040 {
1041 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1042 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1043 			lockdep_is_held(&kvm->slots_lock) ||
1044 			!refcount_read(&kvm->users_count));
1045 }
1046 
kvm_memslots(struct kvm * kvm)1047 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1048 {
1049 	return __kvm_memslots(kvm, 0);
1050 }
1051 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1052 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1053 {
1054 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1055 
1056 	return __kvm_memslots(vcpu->kvm, as_id);
1057 }
1058 
kvm_memslots_empty(struct kvm_memslots * slots)1059 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1060 {
1061 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1062 }
1063 
1064 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1065 
1066 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1067 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1068 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1069 		} else
1070 
1071 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1072 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1073 {
1074 	struct kvm_memory_slot *slot;
1075 	int idx = slots->node_idx;
1076 
1077 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1078 		if (slot->id == id)
1079 			return slot;
1080 	}
1081 
1082 	return NULL;
1083 }
1084 
1085 /* Iterator used for walking memslots that overlap a gfn range. */
1086 struct kvm_memslot_iter {
1087 	struct kvm_memslots *slots;
1088 	struct rb_node *node;
1089 	struct kvm_memory_slot *slot;
1090 };
1091 
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1092 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1093 {
1094 	iter->node = rb_next(iter->node);
1095 	if (!iter->node)
1096 		return;
1097 
1098 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1099 }
1100 
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1101 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1102 					  struct kvm_memslots *slots,
1103 					  gfn_t start)
1104 {
1105 	int idx = slots->node_idx;
1106 	struct rb_node *tmp;
1107 	struct kvm_memory_slot *slot;
1108 
1109 	iter->slots = slots;
1110 
1111 	/*
1112 	 * Find the so called "upper bound" of a key - the first node that has
1113 	 * its key strictly greater than the searched one (the start gfn in our case).
1114 	 */
1115 	iter->node = NULL;
1116 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1117 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1118 		if (start < slot->base_gfn) {
1119 			iter->node = tmp;
1120 			tmp = tmp->rb_left;
1121 		} else {
1122 			tmp = tmp->rb_right;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * Find the slot with the lowest gfn that can possibly intersect with
1128 	 * the range, so we'll ideally have slot start <= range start
1129 	 */
1130 	if (iter->node) {
1131 		/*
1132 		 * A NULL previous node means that the very first slot
1133 		 * already has a higher start gfn.
1134 		 * In this case slot start > range start.
1135 		 */
1136 		tmp = rb_prev(iter->node);
1137 		if (tmp)
1138 			iter->node = tmp;
1139 	} else {
1140 		/* a NULL node below means no slots */
1141 		iter->node = rb_last(&slots->gfn_tree);
1142 	}
1143 
1144 	if (iter->node) {
1145 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1146 
1147 		/*
1148 		 * It is possible in the slot start < range start case that the
1149 		 * found slot ends before or at range start (slot end <= range start)
1150 		 * and so it does not overlap the requested range.
1151 		 *
1152 		 * In such non-overlapping case the next slot (if it exists) will
1153 		 * already have slot start > range start, otherwise the logic above
1154 		 * would have found it instead of the current slot.
1155 		 */
1156 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1157 			kvm_memslot_iter_next(iter);
1158 	}
1159 }
1160 
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1161 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1162 {
1163 	if (!iter->node)
1164 		return false;
1165 
1166 	/*
1167 	 * If this slot starts beyond or at the end of the range so does
1168 	 * every next one
1169 	 */
1170 	return iter->slot->base_gfn < end;
1171 }
1172 
1173 /* Iterate over each memslot at least partially intersecting [start, end) range */
1174 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1175 	for (kvm_memslot_iter_start(iter, slots, start);		\
1176 	     kvm_memslot_iter_is_valid(iter, end);			\
1177 	     kvm_memslot_iter_next(iter))
1178 
1179 /*
1180  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1181  * - create a new memory slot
1182  * - delete an existing memory slot
1183  * - modify an existing memory slot
1184  *   -- move it in the guest physical memory space
1185  *   -- just change its flags
1186  *
1187  * Since flags can be changed by some of these operations, the following
1188  * differentiation is the best we can do for __kvm_set_memory_region():
1189  */
1190 enum kvm_mr_change {
1191 	KVM_MR_CREATE,
1192 	KVM_MR_DELETE,
1193 	KVM_MR_MOVE,
1194 	KVM_MR_FLAGS_ONLY,
1195 };
1196 
1197 int kvm_set_memory_region(struct kvm *kvm,
1198 			  const struct kvm_userspace_memory_region2 *mem);
1199 int __kvm_set_memory_region(struct kvm *kvm,
1200 			    const struct kvm_userspace_memory_region2 *mem);
1201 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1202 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1203 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1204 				const struct kvm_memory_slot *old,
1205 				struct kvm_memory_slot *new,
1206 				enum kvm_mr_change change);
1207 void kvm_arch_commit_memory_region(struct kvm *kvm,
1208 				struct kvm_memory_slot *old,
1209 				const struct kvm_memory_slot *new,
1210 				enum kvm_mr_change change);
1211 /* flush all memory translations */
1212 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1213 /* flush memory translations pointing to 'slot' */
1214 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1215 				   struct kvm_memory_slot *slot);
1216 
1217 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1218 			    struct page **pages, int nr_pages);
1219 
1220 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1221 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1222 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1223 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1224 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1225 				      bool *writable);
1226 void kvm_release_page_clean(struct page *page);
1227 void kvm_release_page_dirty(struct page *page);
1228 
1229 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1230 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1231 		      bool *writable);
1232 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1233 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1234 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1235 			       bool atomic, bool interruptible, bool *async,
1236 			       bool write_fault, bool *writable, hva_t *hva);
1237 
1238 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1239 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1240 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1241 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1242 
1243 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1244 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1245 			int len);
1246 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1247 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1248 			   void *data, unsigned long len);
1249 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1250 				 void *data, unsigned int offset,
1251 				 unsigned long len);
1252 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1253 			 int offset, int len);
1254 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1255 		    unsigned long len);
1256 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1257 			   void *data, unsigned long len);
1258 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1259 				  void *data, unsigned int offset,
1260 				  unsigned long len);
1261 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1262 			      gpa_t gpa, unsigned long len);
1263 
1264 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1265 ({									\
1266 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1267 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1268 	int __ret = -EFAULT;						\
1269 									\
1270 	if (!kvm_is_error_hva(__addr))					\
1271 		__ret = get_user(v, __uaddr);				\
1272 	__ret;								\
1273 })
1274 
1275 #define kvm_get_guest(kvm, gpa, v)					\
1276 ({									\
1277 	gpa_t __gpa = gpa;						\
1278 	struct kvm *__kvm = kvm;					\
1279 									\
1280 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1281 			offset_in_page(__gpa), v);			\
1282 })
1283 
1284 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1285 ({									\
1286 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1287 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1288 	int __ret = -EFAULT;						\
1289 									\
1290 	if (!kvm_is_error_hva(__addr))					\
1291 		__ret = put_user(v, __uaddr);				\
1292 	if (!__ret)							\
1293 		mark_page_dirty(kvm, gfn);				\
1294 	__ret;								\
1295 })
1296 
1297 #define kvm_put_guest(kvm, gpa, v)					\
1298 ({									\
1299 	gpa_t __gpa = gpa;						\
1300 	struct kvm *__kvm = kvm;					\
1301 									\
1302 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1303 			offset_in_page(__gpa), v);			\
1304 })
1305 
1306 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1308 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1309 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1310 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1311 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1312 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1313 
1314 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1316 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1317 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1318 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1319 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1320 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1321 			     int len);
1322 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1323 			       unsigned long len);
1324 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1325 			unsigned long len);
1326 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1327 			      int offset, int len);
1328 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1329 			 unsigned long len);
1330 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1331 
1332 /**
1333  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1334  *
1335  * @gpc:	   struct gfn_to_pfn_cache object.
1336  * @kvm:	   pointer to kvm instance.
1337  *
1338  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1339  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1340  * the caller before init).
1341  */
1342 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1343 
1344 /**
1345  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1346  *                    physical address.
1347  *
1348  * @gpc:	   struct gfn_to_pfn_cache object.
1349  * @gpa:	   guest physical address to map.
1350  * @len:	   sanity check; the range being access must fit a single page.
1351  *
1352  * @return:	   0 for success.
1353  *		   -EINVAL for a mapping which would cross a page boundary.
1354  *		   -EFAULT for an untranslatable guest physical address.
1355  *
1356  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1357  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1358  * to ensure that the cache is valid before accessing the target page.
1359  */
1360 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1361 
1362 /**
1363  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1364  *
1365  * @gpc:          struct gfn_to_pfn_cache object.
1366  * @hva:          userspace virtual address to map.
1367  * @len:          sanity check; the range being access must fit a single page.
1368  *
1369  * @return:       0 for success.
1370  *                -EINVAL for a mapping which would cross a page boundary.
1371  *                -EFAULT for an untranslatable guest physical address.
1372  *
1373  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1374  * merely bypasses a layer of address translation.
1375  */
1376 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1377 
1378 /**
1379  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1380  *
1381  * @gpc:	   struct gfn_to_pfn_cache object.
1382  * @len:	   sanity check; the range being access must fit a single page.
1383  *
1384  * @return:	   %true if the cache is still valid and the address matches.
1385  *		   %false if the cache is not valid.
1386  *
1387  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1388  * while calling this function, and then continue to hold the lock until the
1389  * access is complete.
1390  *
1391  * Callers in IN_GUEST_MODE may do so without locking, although they should
1392  * still hold a read lock on kvm->scru for the memslot checks.
1393  */
1394 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1395 
1396 /**
1397  * kvm_gpc_refresh - update a previously initialized cache.
1398  *
1399  * @gpc:	   struct gfn_to_pfn_cache object.
1400  * @len:	   sanity check; the range being access must fit a single page.
1401  *
1402  * @return:	   0 for success.
1403  *		   -EINVAL for a mapping which would cross a page boundary.
1404  *		   -EFAULT for an untranslatable guest physical address.
1405  *
1406  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1407  * return from this function does not mean the page can be immediately
1408  * accessed because it may have raced with an invalidation. Callers must
1409  * still lock and check the cache status, as this function does not return
1410  * with the lock still held to permit access.
1411  */
1412 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1413 
1414 /**
1415  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1416  *
1417  * @gpc:	   struct gfn_to_pfn_cache object.
1418  *
1419  * This removes a cache from the VM's list to be processed on MMU notifier
1420  * invocation.
1421  */
1422 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1423 
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1424 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1425 {
1426 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1427 }
1428 
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1429 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1430 {
1431 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1432 }
1433 
1434 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1435 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1436 
1437 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1438 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1439 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1440 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1441 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1442 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1443 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1444 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1445 
1446 void kvm_flush_remote_tlbs(struct kvm *kvm);
1447 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1448 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1449 				   const struct kvm_memory_slot *memslot);
1450 
1451 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1452 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1453 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1454 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1455 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1457 #endif
1458 
1459 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1460 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1461 void kvm_mmu_invalidate_end(struct kvm *kvm);
1462 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1463 
1464 long kvm_arch_dev_ioctl(struct file *filp,
1465 			unsigned int ioctl, unsigned long arg);
1466 long kvm_arch_vcpu_ioctl(struct file *filp,
1467 			 unsigned int ioctl, unsigned long arg);
1468 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1469 
1470 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1471 
1472 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1473 					struct kvm_memory_slot *slot,
1474 					gfn_t gfn_offset,
1475 					unsigned long mask);
1476 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1477 
1478 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1479 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1480 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1481 		      int *is_dirty, struct kvm_memory_slot **memslot);
1482 #endif
1483 
1484 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1485 			bool line_status);
1486 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1487 			    struct kvm_enable_cap *cap);
1488 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1489 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1490 			      unsigned long arg);
1491 
1492 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1493 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1494 
1495 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1496 				    struct kvm_translation *tr);
1497 
1498 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1499 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1500 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1501 				  struct kvm_sregs *sregs);
1502 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1503 				  struct kvm_sregs *sregs);
1504 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1505 				    struct kvm_mp_state *mp_state);
1506 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1507 				    struct kvm_mp_state *mp_state);
1508 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1509 					struct kvm_guest_debug *dbg);
1510 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1511 
1512 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1513 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1514 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1515 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1516 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1517 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1518 
1519 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1520 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1521 #endif
1522 
1523 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1524 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1525 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1526 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1527 #endif
1528 
1529 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1530 /*
1531  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1532  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1533  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1534  * sequence, and at the end of the generic hardware disabling sequence.
1535  */
1536 void kvm_arch_enable_virtualization(void);
1537 void kvm_arch_disable_virtualization(void);
1538 /*
1539  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1540  * do the actual twiddling of hardware bits.  The hooks are called on all
1541  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1542  * when that CPU is onlined/offlined (including for Resume/Suspend).
1543  */
1544 int kvm_arch_enable_virtualization_cpu(void);
1545 void kvm_arch_disable_virtualization_cpu(void);
1546 #endif
1547 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1548 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1549 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1550 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1551 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1552 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1553 int kvm_arch_post_init_vm(struct kvm *kvm);
1554 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1555 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1556 
1557 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1558 /*
1559  * All architectures that want to use vzalloc currently also
1560  * need their own kvm_arch_alloc_vm implementation.
1561  */
kvm_arch_alloc_vm(void)1562 static inline struct kvm *kvm_arch_alloc_vm(void)
1563 {
1564 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1565 }
1566 #endif
1567 
__kvm_arch_free_vm(struct kvm * kvm)1568 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1569 {
1570 	kvfree(kvm);
1571 }
1572 
1573 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1574 static inline void kvm_arch_free_vm(struct kvm *kvm)
1575 {
1576 	__kvm_arch_free_vm(kvm);
1577 }
1578 #endif
1579 
1580 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1581 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1582 {
1583 	return -ENOTSUPP;
1584 }
1585 #else
1586 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1587 #endif
1588 
1589 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1590 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1591 						    gfn_t gfn, u64 nr_pages)
1592 {
1593 	return -EOPNOTSUPP;
1594 }
1595 #else
1596 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1597 #endif
1598 
1599 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1600 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1601 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1602 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1603 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1604 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1605 {
1606 }
1607 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1608 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1609 {
1610 }
1611 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1612 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1613 {
1614 	return false;
1615 }
1616 #endif
1617 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1618 void kvm_arch_start_assignment(struct kvm *kvm);
1619 void kvm_arch_end_assignment(struct kvm *kvm);
1620 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1621 #else
kvm_arch_start_assignment(struct kvm * kvm)1622 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1623 {
1624 }
1625 
kvm_arch_end_assignment(struct kvm * kvm)1626 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1627 {
1628 }
1629 
kvm_arch_has_assigned_device(struct kvm * kvm)1630 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1631 {
1632 	return false;
1633 }
1634 #endif
1635 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1636 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1637 {
1638 #ifdef __KVM_HAVE_ARCH_WQP
1639 	return vcpu->arch.waitp;
1640 #else
1641 	return &vcpu->wait;
1642 #endif
1643 }
1644 
1645 /*
1646  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1647  * true if the vCPU was blocking and was awakened, false otherwise.
1648  */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1649 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1650 {
1651 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1652 }
1653 
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1654 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1655 {
1656 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1657 }
1658 
1659 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1660 /*
1661  * returns true if the virtual interrupt controller is initialized and
1662  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1663  * controller is dynamically instantiated and this is not always true.
1664  */
1665 bool kvm_arch_intc_initialized(struct kvm *kvm);
1666 #else
kvm_arch_intc_initialized(struct kvm * kvm)1667 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1668 {
1669 	return true;
1670 }
1671 #endif
1672 
1673 #ifdef CONFIG_GUEST_PERF_EVENTS
1674 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1675 
1676 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1677 void kvm_unregister_perf_callbacks(void);
1678 #else
kvm_register_perf_callbacks(void * ign)1679 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1680 static inline void kvm_unregister_perf_callbacks(void) {}
1681 #endif /* CONFIG_GUEST_PERF_EVENTS */
1682 
1683 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1684 void kvm_arch_destroy_vm(struct kvm *kvm);
1685 void kvm_arch_sync_events(struct kvm *kvm);
1686 
1687 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1688 
1689 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1690 bool kvm_is_zone_device_page(struct page *page);
1691 
1692 struct kvm_irq_ack_notifier {
1693 	struct hlist_node link;
1694 	unsigned gsi;
1695 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1696 };
1697 
1698 int kvm_irq_map_gsi(struct kvm *kvm,
1699 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1700 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1701 
1702 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1703 		bool line_status);
1704 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1705 		int irq_source_id, int level, bool line_status);
1706 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1707 			       struct kvm *kvm, int irq_source_id,
1708 			       int level, bool line_status);
1709 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1710 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1711 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1712 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1713 				   struct kvm_irq_ack_notifier *kian);
1714 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1715 				   struct kvm_irq_ack_notifier *kian);
1716 int kvm_request_irq_source_id(struct kvm *kvm);
1717 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1718 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1719 
1720 /*
1721  * Returns a pointer to the memslot if it contains gfn.
1722  * Otherwise returns NULL.
1723  */
1724 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1725 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1726 {
1727 	if (!slot)
1728 		return NULL;
1729 
1730 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1731 		return slot;
1732 	else
1733 		return NULL;
1734 }
1735 
1736 /*
1737  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1738  *
1739  * With "approx" set returns the memslot also when the address falls
1740  * in a hole. In that case one of the memslots bordering the hole is
1741  * returned.
1742  */
1743 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1744 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1745 {
1746 	struct kvm_memory_slot *slot;
1747 	struct rb_node *node;
1748 	int idx = slots->node_idx;
1749 
1750 	slot = NULL;
1751 	for (node = slots->gfn_tree.rb_node; node; ) {
1752 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1753 		if (gfn >= slot->base_gfn) {
1754 			if (gfn < slot->base_gfn + slot->npages)
1755 				return slot;
1756 			node = node->rb_right;
1757 		} else
1758 			node = node->rb_left;
1759 	}
1760 
1761 	return approx ? slot : NULL;
1762 }
1763 
1764 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1765 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1766 {
1767 	struct kvm_memory_slot *slot;
1768 
1769 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1770 	slot = try_get_memslot(slot, gfn);
1771 	if (slot)
1772 		return slot;
1773 
1774 	slot = search_memslots(slots, gfn, approx);
1775 	if (slot) {
1776 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1777 		return slot;
1778 	}
1779 
1780 	return NULL;
1781 }
1782 
1783 /*
1784  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1785  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1786  * because that would bloat other code too much.
1787  */
1788 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1789 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1790 {
1791 	return ____gfn_to_memslot(slots, gfn, false);
1792 }
1793 
1794 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1795 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1796 {
1797 	/*
1798 	 * The index was checked originally in search_memslots.  To avoid
1799 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1800 	 * table walks, do not let the processor speculate loads outside
1801 	 * the guest's registered memslots.
1802 	 */
1803 	unsigned long offset = gfn - slot->base_gfn;
1804 	offset = array_index_nospec(offset, slot->npages);
1805 	return slot->userspace_addr + offset * PAGE_SIZE;
1806 }
1807 
memslot_id(struct kvm * kvm,gfn_t gfn)1808 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1809 {
1810 	return gfn_to_memslot(kvm, gfn)->id;
1811 }
1812 
1813 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1814 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1815 {
1816 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1817 
1818 	return slot->base_gfn + gfn_offset;
1819 }
1820 
gfn_to_gpa(gfn_t gfn)1821 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1822 {
1823 	return (gpa_t)gfn << PAGE_SHIFT;
1824 }
1825 
gpa_to_gfn(gpa_t gpa)1826 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1827 {
1828 	return (gfn_t)(gpa >> PAGE_SHIFT);
1829 }
1830 
pfn_to_hpa(kvm_pfn_t pfn)1831 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1832 {
1833 	return (hpa_t)pfn << PAGE_SHIFT;
1834 }
1835 
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1836 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1837 {
1838 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1839 
1840 	return !kvm_is_error_hva(hva);
1841 }
1842 
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1843 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1844 {
1845 	lockdep_assert_held(&gpc->lock);
1846 
1847 	if (!gpc->memslot)
1848 		return;
1849 
1850 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1851 }
1852 
1853 enum kvm_stat_kind {
1854 	KVM_STAT_VM,
1855 	KVM_STAT_VCPU,
1856 };
1857 
1858 struct kvm_stat_data {
1859 	struct kvm *kvm;
1860 	const struct _kvm_stats_desc *desc;
1861 	enum kvm_stat_kind kind;
1862 };
1863 
1864 struct _kvm_stats_desc {
1865 	struct kvm_stats_desc desc;
1866 	char name[KVM_STATS_NAME_SIZE];
1867 };
1868 
1869 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1870 	.flags = type | unit | base |					       \
1871 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1872 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1873 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1874 	.exponent = exp,						       \
1875 	.size = sz,							       \
1876 	.bucket_size = bsz
1877 
1878 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1879 	{								       \
1880 		{							       \
1881 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1882 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1883 		},							       \
1884 		.name = #stat,						       \
1885 	}
1886 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1887 	{								       \
1888 		{							       \
1889 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1890 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1891 		},							       \
1892 		.name = #stat,						       \
1893 	}
1894 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1895 	{								       \
1896 		{							       \
1897 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1898 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1899 		},							       \
1900 		.name = #stat,						       \
1901 	}
1902 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1903 	{								       \
1904 		{							       \
1905 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1906 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1907 		},							       \
1908 		.name = #stat,						       \
1909 	}
1910 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1911 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1912 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1913 
1914 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1915 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1916 		unit, base, exponent, 1, 0)
1917 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1918 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1919 		unit, base, exponent, 1, 0)
1920 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1921 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1922 		unit, base, exponent, 1, 0)
1923 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1924 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1925 		unit, base, exponent, sz, bsz)
1926 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1927 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1928 		unit, base, exponent, sz, 0)
1929 
1930 /* Cumulative counter, read/write */
1931 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1932 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1933 		KVM_STATS_BASE_POW10, 0)
1934 /* Instantaneous counter, read only */
1935 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1936 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1937 		KVM_STATS_BASE_POW10, 0)
1938 /* Peak counter, read/write */
1939 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1940 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1941 		KVM_STATS_BASE_POW10, 0)
1942 
1943 /* Instantaneous boolean value, read only */
1944 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1945 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1946 		KVM_STATS_BASE_POW10, 0)
1947 /* Peak (sticky) boolean value, read/write */
1948 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1949 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1950 		KVM_STATS_BASE_POW10, 0)
1951 
1952 /* Cumulative time in nanosecond */
1953 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1954 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1955 		KVM_STATS_BASE_POW10, -9)
1956 /* Linear histogram for time in nanosecond */
1957 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1958 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1959 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1960 /* Logarithmic histogram for time in nanosecond */
1961 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1962 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1963 		KVM_STATS_BASE_POW10, -9, sz)
1964 
1965 #define KVM_GENERIC_VM_STATS()						       \
1966 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1967 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1968 
1969 #define KVM_GENERIC_VCPU_STATS()					       \
1970 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1971 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1972 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1973 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1974 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1975 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1976 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1977 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1978 			HALT_POLL_HIST_COUNT),				       \
1979 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1980 			HALT_POLL_HIST_COUNT),				       \
1981 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1982 			HALT_POLL_HIST_COUNT),				       \
1983 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1984 
1985 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1986 		       const struct _kvm_stats_desc *desc,
1987 		       void *stats, size_t size_stats,
1988 		       char __user *user_buffer, size_t size, loff_t *offset);
1989 
1990 /**
1991  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1992  * statistics data.
1993  *
1994  * @data: start address of the stats data
1995  * @size: the number of bucket of the stats data
1996  * @value: the new value used to update the linear histogram's bucket
1997  * @bucket_size: the size (width) of a bucket
1998  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1999 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2000 						u64 value, size_t bucket_size)
2001 {
2002 	size_t index = div64_u64(value, bucket_size);
2003 
2004 	index = min(index, size - 1);
2005 	++data[index];
2006 }
2007 
2008 /**
2009  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2010  * statistics data.
2011  *
2012  * @data: start address of the stats data
2013  * @size: the number of bucket of the stats data
2014  * @value: the new value used to update the logarithmic histogram's bucket
2015  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2016 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2017 {
2018 	size_t index = fls64(value);
2019 
2020 	index = min(index, size - 1);
2021 	++data[index];
2022 }
2023 
2024 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2025 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2026 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2027 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2028 
2029 
2030 extern const struct kvm_stats_header kvm_vm_stats_header;
2031 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2032 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2033 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2034 
2035 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2036 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2037 {
2038 	if (unlikely(kvm->mmu_invalidate_in_progress))
2039 		return 1;
2040 	/*
2041 	 * Ensure the read of mmu_invalidate_in_progress happens before
2042 	 * the read of mmu_invalidate_seq.  This interacts with the
2043 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2044 	 * that the caller either sees the old (non-zero) value of
2045 	 * mmu_invalidate_in_progress or the new (incremented) value of
2046 	 * mmu_invalidate_seq.
2047 	 *
2048 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2049 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2050 	 * kvm->mmu_lock to keep things ordered.
2051 	 */
2052 	smp_rmb();
2053 	if (kvm->mmu_invalidate_seq != mmu_seq)
2054 		return 1;
2055 	return 0;
2056 }
2057 
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2058 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2059 					   unsigned long mmu_seq,
2060 					   gfn_t gfn)
2061 {
2062 	lockdep_assert_held(&kvm->mmu_lock);
2063 	/*
2064 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2065 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2066 	 * that might be being invalidated. Note that it may include some false
2067 	 * positives, due to shortcuts when handing concurrent invalidations.
2068 	 */
2069 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2070 		/*
2071 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2072 		 * but before updating the range is a KVM bug.
2073 		 */
2074 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2075 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2076 			return 1;
2077 
2078 		if (gfn >= kvm->mmu_invalidate_range_start &&
2079 		    gfn < kvm->mmu_invalidate_range_end)
2080 			return 1;
2081 	}
2082 
2083 	if (kvm->mmu_invalidate_seq != mmu_seq)
2084 		return 1;
2085 	return 0;
2086 }
2087 
2088 /*
2089  * This lockless version of the range-based retry check *must* be paired with a
2090  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2091  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2092  * get false negatives and false positives.
2093  */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2094 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2095 						   unsigned long mmu_seq,
2096 						   gfn_t gfn)
2097 {
2098 	/*
2099 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2100 	 * are always read from memory, e.g. so that checking for retry in a
2101 	 * loop won't result in an infinite retry loop.  Don't force loads for
2102 	 * start+end, as the key to avoiding infinite retry loops is observing
2103 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2104 	 * due to stale start+end values is acceptable.
2105 	 */
2106 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2107 	    gfn >= kvm->mmu_invalidate_range_start &&
2108 	    gfn < kvm->mmu_invalidate_range_end)
2109 		return true;
2110 
2111 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2112 }
2113 #endif
2114 
2115 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2116 
2117 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2118 
2119 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2120 int kvm_set_irq_routing(struct kvm *kvm,
2121 			const struct kvm_irq_routing_entry *entries,
2122 			unsigned nr,
2123 			unsigned flags);
2124 int kvm_init_irq_routing(struct kvm *kvm);
2125 int kvm_set_routing_entry(struct kvm *kvm,
2126 			  struct kvm_kernel_irq_routing_entry *e,
2127 			  const struct kvm_irq_routing_entry *ue);
2128 void kvm_free_irq_routing(struct kvm *kvm);
2129 
2130 #else
2131 
kvm_free_irq_routing(struct kvm * kvm)2132 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2133 
kvm_init_irq_routing(struct kvm * kvm)2134 static inline int kvm_init_irq_routing(struct kvm *kvm)
2135 {
2136 	return 0;
2137 }
2138 
2139 #endif
2140 
2141 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2142 
2143 void kvm_eventfd_init(struct kvm *kvm);
2144 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2145 
2146 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2147 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2148 void kvm_irqfd_release(struct kvm *kvm);
2149 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2150 				unsigned int irqchip,
2151 				unsigned int pin);
2152 void kvm_irq_routing_update(struct kvm *);
2153 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2154 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2155 {
2156 	return -EINVAL;
2157 }
2158 
kvm_irqfd_release(struct kvm * kvm)2159 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2160 
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2161 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2162 					      unsigned int irqchip,
2163 					      unsigned int pin)
2164 {
2165 	return false;
2166 }
2167 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2168 
2169 void kvm_arch_irq_routing_update(struct kvm *kvm);
2170 
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2171 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2172 {
2173 	/*
2174 	 * Ensure the rest of the request is published to kvm_check_request's
2175 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2176 	 */
2177 	smp_wmb();
2178 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2179 }
2180 
kvm_make_request(int req,struct kvm_vcpu * vcpu)2181 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2182 {
2183 	/*
2184 	 * Request that don't require vCPU action should never be logged in
2185 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2186 	 * logged indefinitely and prevent the vCPU from entering the guest.
2187 	 */
2188 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2189 		     (req & KVM_REQUEST_NO_ACTION));
2190 
2191 	__kvm_make_request(req, vcpu);
2192 }
2193 
kvm_request_pending(struct kvm_vcpu * vcpu)2194 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2195 {
2196 	return READ_ONCE(vcpu->requests);
2197 }
2198 
kvm_test_request(int req,struct kvm_vcpu * vcpu)2199 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2200 {
2201 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2202 }
2203 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2204 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2205 {
2206 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2207 }
2208 
kvm_check_request(int req,struct kvm_vcpu * vcpu)2209 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2210 {
2211 	if (kvm_test_request(req, vcpu)) {
2212 		kvm_clear_request(req, vcpu);
2213 
2214 		/*
2215 		 * Ensure the rest of the request is visible to kvm_check_request's
2216 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2217 		 */
2218 		smp_mb__after_atomic();
2219 		return true;
2220 	} else {
2221 		return false;
2222 	}
2223 }
2224 
2225 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2226 extern bool kvm_rebooting;
2227 #endif
2228 
2229 extern unsigned int halt_poll_ns;
2230 extern unsigned int halt_poll_ns_grow;
2231 extern unsigned int halt_poll_ns_grow_start;
2232 extern unsigned int halt_poll_ns_shrink;
2233 
2234 struct kvm_device {
2235 	const struct kvm_device_ops *ops;
2236 	struct kvm *kvm;
2237 	void *private;
2238 	struct list_head vm_node;
2239 };
2240 
2241 /* create, destroy, and name are mandatory */
2242 struct kvm_device_ops {
2243 	const char *name;
2244 
2245 	/*
2246 	 * create is called holding kvm->lock and any operations not suitable
2247 	 * to do while holding the lock should be deferred to init (see
2248 	 * below).
2249 	 */
2250 	int (*create)(struct kvm_device *dev, u32 type);
2251 
2252 	/*
2253 	 * init is called after create if create is successful and is called
2254 	 * outside of holding kvm->lock.
2255 	 */
2256 	void (*init)(struct kvm_device *dev);
2257 
2258 	/*
2259 	 * Destroy is responsible for freeing dev.
2260 	 *
2261 	 * Destroy may be called before or after destructors are called
2262 	 * on emulated I/O regions, depending on whether a reference is
2263 	 * held by a vcpu or other kvm component that gets destroyed
2264 	 * after the emulated I/O.
2265 	 */
2266 	void (*destroy)(struct kvm_device *dev);
2267 
2268 	/*
2269 	 * Release is an alternative method to free the device. It is
2270 	 * called when the device file descriptor is closed. Once
2271 	 * release is called, the destroy method will not be called
2272 	 * anymore as the device is removed from the device list of
2273 	 * the VM. kvm->lock is held.
2274 	 */
2275 	void (*release)(struct kvm_device *dev);
2276 
2277 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2278 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2279 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2280 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2281 		      unsigned long arg);
2282 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2283 };
2284 
2285 struct kvm_device *kvm_device_from_filp(struct file *filp);
2286 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2287 void kvm_unregister_device_ops(u32 type);
2288 
2289 extern struct kvm_device_ops kvm_mpic_ops;
2290 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2291 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2292 
2293 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2294 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2295 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2296 {
2297 	vcpu->spin_loop.in_spin_loop = val;
2298 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2299 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2300 {
2301 	vcpu->spin_loop.dy_eligible = val;
2302 }
2303 
2304 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2305 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2306 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2307 {
2308 }
2309 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2310 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2311 {
2312 }
2313 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2314 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2315 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2316 {
2317 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2318 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2319 }
2320 
2321 struct kvm_vcpu *kvm_get_running_vcpu(void);
2322 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2323 
2324 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2325 bool kvm_arch_has_irq_bypass(void);
2326 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2327 			   struct irq_bypass_producer *);
2328 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2329 			   struct irq_bypass_producer *);
2330 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2331 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2332 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2333 				  uint32_t guest_irq, bool set);
2334 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2335 				  struct kvm_kernel_irq_routing_entry *);
2336 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2337 
2338 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2339 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2340 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2341 {
2342 	return vcpu->valid_wakeup;
2343 }
2344 
2345 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2346 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2347 {
2348 	return true;
2349 }
2350 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2351 
2352 #ifdef CONFIG_HAVE_KVM_NO_POLL
2353 /* Callback that tells if we must not poll */
2354 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2355 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2356 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2357 {
2358 	return false;
2359 }
2360 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2361 
2362 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2363 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2364 			       unsigned int ioctl, unsigned long arg);
2365 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2366 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2367 					     unsigned int ioctl,
2368 					     unsigned long arg)
2369 {
2370 	return -ENOIOCTLCMD;
2371 }
2372 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2373 
2374 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2375 
2376 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2377 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2378 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2379 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2380 {
2381 	return 0;
2382 }
2383 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2384 
2385 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2386 
2387 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2388 				uintptr_t data, const char *name,
2389 				struct task_struct **thread_ptr);
2390 
2391 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2392 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2393 {
2394 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2395 	vcpu->stat.signal_exits++;
2396 }
2397 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2398 
2399 /*
2400  * If more than one page is being (un)accounted, @virt must be the address of
2401  * the first page of a block of pages what were allocated together (i.e
2402  * accounted together).
2403  *
2404  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2405  * is thread-safe.
2406  */
kvm_account_pgtable_pages(void * virt,int nr)2407 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2408 {
2409 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2410 }
2411 
2412 /*
2413  * This defines how many reserved entries we want to keep before we
2414  * kick the vcpu to the userspace to avoid dirty ring full.  This
2415  * value can be tuned to higher if e.g. PML is enabled on the host.
2416  */
2417 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2418 
2419 /* Max number of entries allowed for each kvm dirty ring */
2420 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2421 
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2422 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2423 						 gpa_t gpa, gpa_t size,
2424 						 bool is_write, bool is_exec,
2425 						 bool is_private)
2426 {
2427 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2428 	vcpu->run->memory_fault.gpa = gpa;
2429 	vcpu->run->memory_fault.size = size;
2430 
2431 	/* RWX flags are not (yet) defined or communicated to userspace. */
2432 	vcpu->run->memory_fault.flags = 0;
2433 	if (is_private)
2434 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2435 }
2436 
2437 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2438 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2439 {
2440 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2441 }
2442 
2443 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2444 				     unsigned long mask, unsigned long attrs);
2445 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2446 					struct kvm_gfn_range *range);
2447 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2448 					 struct kvm_gfn_range *range);
2449 
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2450 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2451 {
2452 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2453 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2454 }
2455 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2456 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2457 {
2458 	return false;
2459 }
2460 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2461 
2462 #ifdef CONFIG_KVM_PRIVATE_MEM
2463 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2464 		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2465 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,int * max_order)2466 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2467 				   struct kvm_memory_slot *slot, gfn_t gfn,
2468 				   kvm_pfn_t *pfn, int *max_order)
2469 {
2470 	KVM_BUG_ON(1, kvm);
2471 	return -EIO;
2472 }
2473 #endif /* CONFIG_KVM_PRIVATE_MEM */
2474 
2475 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2476 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2477 #endif
2478 
2479 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2480 /**
2481  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2482  *
2483  * @kvm: KVM instance
2484  * @gfn: starting GFN to be populated
2485  * @src: userspace-provided buffer containing data to copy into GFN range
2486  *       (passed to @post_populate, and incremented on each iteration
2487  *       if not NULL)
2488  * @npages: number of pages to copy from userspace-buffer
2489  * @post_populate: callback to issue for each gmem page that backs the GPA
2490  *                 range
2491  * @opaque: opaque data to pass to @post_populate callback
2492  *
2493  * This is primarily intended for cases where a gmem-backed GPA range needs
2494  * to be initialized with userspace-provided data prior to being mapped into
2495  * the guest as a private page. This should be called with the slots->lock
2496  * held so that caller-enforced invariants regarding the expected memory
2497  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2498  *
2499  * Returns the number of pages that were populated.
2500  */
2501 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2502 				    void __user *src, int order, void *opaque);
2503 
2504 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2505 		       kvm_gmem_populate_cb post_populate, void *opaque);
2506 #endif
2507 
2508 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2509 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2510 #endif
2511 
2512 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2513 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2514 				    struct kvm_pre_fault_memory *range);
2515 #endif
2516 
2517 #endif
2518