1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * fs/f2fs/data.c
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  #include <linux/fs.h>
9  #include <linux/f2fs_fs.h>
10  #include <linux/sched/mm.h>
11  #include <linux/mpage.h>
12  #include <linux/writeback.h>
13  #include <linux/pagevec.h>
14  #include <linux/blkdev.h>
15  #include <linux/bio.h>
16  #include <linux/blk-crypto.h>
17  #include <linux/swap.h>
18  #include <linux/prefetch.h>
19  #include <linux/uio.h>
20  #include <linux/sched/signal.h>
21  #include <linux/fiemap.h>
22  #include <linux/iomap.h>
23  
24  #include "f2fs.h"
25  #include "node.h"
26  #include "segment.h"
27  #include "iostat.h"
28  #include <trace/events/f2fs.h>
29  
30  #define NUM_PREALLOC_POST_READ_CTXS	128
31  
32  static struct kmem_cache *bio_post_read_ctx_cache;
33  static struct kmem_cache *bio_entry_slab;
34  static mempool_t *bio_post_read_ctx_pool;
35  static struct bio_set f2fs_bioset;
36  
37  #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38  
f2fs_init_bioset(void)39  int __init f2fs_init_bioset(void)
40  {
41  	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42  					0, BIOSET_NEED_BVECS);
43  }
44  
f2fs_destroy_bioset(void)45  void f2fs_destroy_bioset(void)
46  {
47  	bioset_exit(&f2fs_bioset);
48  }
49  
f2fs_is_cp_guaranteed(struct page * page)50  bool f2fs_is_cp_guaranteed(struct page *page)
51  {
52  	struct address_space *mapping = page->mapping;
53  	struct inode *inode;
54  	struct f2fs_sb_info *sbi;
55  
56  	if (!mapping)
57  		return false;
58  
59  	inode = mapping->host;
60  	sbi = F2FS_I_SB(inode);
61  
62  	if (inode->i_ino == F2FS_META_INO(sbi) ||
63  			inode->i_ino == F2FS_NODE_INO(sbi) ||
64  			S_ISDIR(inode->i_mode))
65  		return true;
66  
67  	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68  			page_private_gcing(page))
69  		return true;
70  	return false;
71  }
72  
__read_io_type(struct page * page)73  static enum count_type __read_io_type(struct page *page)
74  {
75  	struct address_space *mapping = page_file_mapping(page);
76  
77  	if (mapping) {
78  		struct inode *inode = mapping->host;
79  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80  
81  		if (inode->i_ino == F2FS_META_INO(sbi))
82  			return F2FS_RD_META;
83  
84  		if (inode->i_ino == F2FS_NODE_INO(sbi))
85  			return F2FS_RD_NODE;
86  	}
87  	return F2FS_RD_DATA;
88  }
89  
90  /* postprocessing steps for read bios */
91  enum bio_post_read_step {
92  #ifdef CONFIG_FS_ENCRYPTION
93  	STEP_DECRYPT	= BIT(0),
94  #else
95  	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
96  #endif
97  #ifdef CONFIG_F2FS_FS_COMPRESSION
98  	STEP_DECOMPRESS	= BIT(1),
99  #else
100  	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
101  #endif
102  #ifdef CONFIG_FS_VERITY
103  	STEP_VERITY	= BIT(2),
104  #else
105  	STEP_VERITY	= 0,	/* compile out the verity-related code */
106  #endif
107  };
108  
109  struct bio_post_read_ctx {
110  	struct bio *bio;
111  	struct f2fs_sb_info *sbi;
112  	struct work_struct work;
113  	unsigned int enabled_steps;
114  	/*
115  	 * decompression_attempted keeps track of whether
116  	 * f2fs_end_read_compressed_page() has been called on the pages in the
117  	 * bio that belong to a compressed cluster yet.
118  	 */
119  	bool decompression_attempted;
120  	block_t fs_blkaddr;
121  };
122  
123  /*
124   * Update and unlock a bio's pages, and free the bio.
125   *
126   * This marks pages up-to-date only if there was no error in the bio (I/O error,
127   * decryption error, or verity error), as indicated by bio->bi_status.
128   *
129   * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130   * aren't marked up-to-date here, as decompression is done on a per-compression-
131   * cluster basis rather than a per-bio basis.  Instead, we only must do two
132   * things for each compressed page here: call f2fs_end_read_compressed_page()
133   * with failed=true if an error occurred before it would have normally gotten
134   * called (i.e., I/O error or decryption error, but *not* verity error), and
135   * release the bio's reference to the decompress_io_ctx of the page's cluster.
136   */
f2fs_finish_read_bio(struct bio * bio,bool in_task)137  static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138  {
139  	struct bio_vec *bv;
140  	struct bvec_iter_all iter_all;
141  	struct bio_post_read_ctx *ctx = bio->bi_private;
142  
143  	bio_for_each_segment_all(bv, bio, iter_all) {
144  		struct page *page = bv->bv_page;
145  
146  		if (f2fs_is_compressed_page(page)) {
147  			if (ctx && !ctx->decompression_attempted)
148  				f2fs_end_read_compressed_page(page, true, 0,
149  							in_task);
150  			f2fs_put_page_dic(page, in_task);
151  			continue;
152  		}
153  
154  		if (bio->bi_status)
155  			ClearPageUptodate(page);
156  		else
157  			SetPageUptodate(page);
158  		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
159  		unlock_page(page);
160  	}
161  
162  	if (ctx)
163  		mempool_free(ctx, bio_post_read_ctx_pool);
164  	bio_put(bio);
165  }
166  
f2fs_verify_bio(struct work_struct * work)167  static void f2fs_verify_bio(struct work_struct *work)
168  {
169  	struct bio_post_read_ctx *ctx =
170  		container_of(work, struct bio_post_read_ctx, work);
171  	struct bio *bio = ctx->bio;
172  	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
173  
174  	/*
175  	 * fsverity_verify_bio() may call readahead() again, and while verity
176  	 * will be disabled for this, decryption and/or decompression may still
177  	 * be needed, resulting in another bio_post_read_ctx being allocated.
178  	 * So to prevent deadlocks we need to release the current ctx to the
179  	 * mempool first.  This assumes that verity is the last post-read step.
180  	 */
181  	mempool_free(ctx, bio_post_read_ctx_pool);
182  	bio->bi_private = NULL;
183  
184  	/*
185  	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
186  	 * as those were handled separately by f2fs_end_read_compressed_page().
187  	 */
188  	if (may_have_compressed_pages) {
189  		struct bio_vec *bv;
190  		struct bvec_iter_all iter_all;
191  
192  		bio_for_each_segment_all(bv, bio, iter_all) {
193  			struct page *page = bv->bv_page;
194  
195  			if (!f2fs_is_compressed_page(page) &&
196  			    !fsverity_verify_page(page)) {
197  				bio->bi_status = BLK_STS_IOERR;
198  				break;
199  			}
200  		}
201  	} else {
202  		fsverity_verify_bio(bio);
203  	}
204  
205  	f2fs_finish_read_bio(bio, true);
206  }
207  
208  /*
209   * If the bio's data needs to be verified with fs-verity, then enqueue the
210   * verity work for the bio.  Otherwise finish the bio now.
211   *
212   * Note that to avoid deadlocks, the verity work can't be done on the
213   * decryption/decompression workqueue.  This is because verifying the data pages
214   * can involve reading verity metadata pages from the file, and these verity
215   * metadata pages may be encrypted and/or compressed.
216   */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)217  static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
218  {
219  	struct bio_post_read_ctx *ctx = bio->bi_private;
220  
221  	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
222  		INIT_WORK(&ctx->work, f2fs_verify_bio);
223  		fsverity_enqueue_verify_work(&ctx->work);
224  	} else {
225  		f2fs_finish_read_bio(bio, in_task);
226  	}
227  }
228  
229  /*
230   * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
231   * remaining page was read by @ctx->bio.
232   *
233   * Note that a bio may span clusters (even a mix of compressed and uncompressed
234   * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
235   * that the bio includes at least one compressed page.  The actual decompression
236   * is done on a per-cluster basis, not a per-bio basis.
237   */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)238  static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
239  		bool in_task)
240  {
241  	struct bio_vec *bv;
242  	struct bvec_iter_all iter_all;
243  	bool all_compressed = true;
244  	block_t blkaddr = ctx->fs_blkaddr;
245  
246  	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
247  		struct page *page = bv->bv_page;
248  
249  		if (f2fs_is_compressed_page(page))
250  			f2fs_end_read_compressed_page(page, false, blkaddr,
251  						      in_task);
252  		else
253  			all_compressed = false;
254  
255  		blkaddr++;
256  	}
257  
258  	ctx->decompression_attempted = true;
259  
260  	/*
261  	 * Optimization: if all the bio's pages are compressed, then scheduling
262  	 * the per-bio verity work is unnecessary, as verity will be fully
263  	 * handled at the compression cluster level.
264  	 */
265  	if (all_compressed)
266  		ctx->enabled_steps &= ~STEP_VERITY;
267  }
268  
f2fs_post_read_work(struct work_struct * work)269  static void f2fs_post_read_work(struct work_struct *work)
270  {
271  	struct bio_post_read_ctx *ctx =
272  		container_of(work, struct bio_post_read_ctx, work);
273  	struct bio *bio = ctx->bio;
274  
275  	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
276  		f2fs_finish_read_bio(bio, true);
277  		return;
278  	}
279  
280  	if (ctx->enabled_steps & STEP_DECOMPRESS)
281  		f2fs_handle_step_decompress(ctx, true);
282  
283  	f2fs_verify_and_finish_bio(bio, true);
284  }
285  
f2fs_read_end_io(struct bio * bio)286  static void f2fs_read_end_io(struct bio *bio)
287  {
288  	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
289  	struct bio_post_read_ctx *ctx;
290  	bool intask = in_task();
291  
292  	iostat_update_and_unbind_ctx(bio);
293  	ctx = bio->bi_private;
294  
295  	if (time_to_inject(sbi, FAULT_READ_IO))
296  		bio->bi_status = BLK_STS_IOERR;
297  
298  	if (bio->bi_status) {
299  		f2fs_finish_read_bio(bio, intask);
300  		return;
301  	}
302  
303  	if (ctx) {
304  		unsigned int enabled_steps = ctx->enabled_steps &
305  					(STEP_DECRYPT | STEP_DECOMPRESS);
306  
307  		/*
308  		 * If we have only decompression step between decompression and
309  		 * decrypt, we don't need post processing for this.
310  		 */
311  		if (enabled_steps == STEP_DECOMPRESS &&
312  				!f2fs_low_mem_mode(sbi)) {
313  			f2fs_handle_step_decompress(ctx, intask);
314  		} else if (enabled_steps) {
315  			INIT_WORK(&ctx->work, f2fs_post_read_work);
316  			queue_work(ctx->sbi->post_read_wq, &ctx->work);
317  			return;
318  		}
319  	}
320  
321  	f2fs_verify_and_finish_bio(bio, intask);
322  }
323  
f2fs_write_end_io(struct bio * bio)324  static void f2fs_write_end_io(struct bio *bio)
325  {
326  	struct f2fs_sb_info *sbi;
327  	struct bio_vec *bvec;
328  	struct bvec_iter_all iter_all;
329  
330  	iostat_update_and_unbind_ctx(bio);
331  	sbi = bio->bi_private;
332  
333  	if (time_to_inject(sbi, FAULT_WRITE_IO))
334  		bio->bi_status = BLK_STS_IOERR;
335  
336  	bio_for_each_segment_all(bvec, bio, iter_all) {
337  		struct page *page = bvec->bv_page;
338  		enum count_type type = WB_DATA_TYPE(page, false);
339  
340  		fscrypt_finalize_bounce_page(&page);
341  
342  #ifdef CONFIG_F2FS_FS_COMPRESSION
343  		if (f2fs_is_compressed_page(page)) {
344  			f2fs_compress_write_end_io(bio, page);
345  			continue;
346  		}
347  #endif
348  
349  		if (unlikely(bio->bi_status)) {
350  			mapping_set_error(page->mapping, -EIO);
351  			if (type == F2FS_WB_CP_DATA)
352  				f2fs_stop_checkpoint(sbi, true,
353  						STOP_CP_REASON_WRITE_FAIL);
354  		}
355  
356  		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
357  				page_folio(page)->index != nid_of_node(page));
358  
359  		dec_page_count(sbi, type);
360  		if (f2fs_in_warm_node_list(sbi, page))
361  			f2fs_del_fsync_node_entry(sbi, page);
362  		clear_page_private_gcing(page);
363  		end_page_writeback(page);
364  	}
365  	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
366  				wq_has_sleeper(&sbi->cp_wait))
367  		wake_up(&sbi->cp_wait);
368  
369  	bio_put(bio);
370  }
371  
372  #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)373  static void f2fs_zone_write_end_io(struct bio *bio)
374  {
375  	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
376  
377  	bio->bi_private = io->bi_private;
378  	complete(&io->zone_wait);
379  	f2fs_write_end_io(bio);
380  }
381  #endif
382  
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)383  struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
384  		block_t blk_addr, sector_t *sector)
385  {
386  	struct block_device *bdev = sbi->sb->s_bdev;
387  	int i;
388  
389  	if (f2fs_is_multi_device(sbi)) {
390  		for (i = 0; i < sbi->s_ndevs; i++) {
391  			if (FDEV(i).start_blk <= blk_addr &&
392  			    FDEV(i).end_blk >= blk_addr) {
393  				blk_addr -= FDEV(i).start_blk;
394  				bdev = FDEV(i).bdev;
395  				break;
396  			}
397  		}
398  	}
399  
400  	if (sector)
401  		*sector = SECTOR_FROM_BLOCK(blk_addr);
402  	return bdev;
403  }
404  
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)405  int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
406  {
407  	int i;
408  
409  	if (!f2fs_is_multi_device(sbi))
410  		return 0;
411  
412  	for (i = 0; i < sbi->s_ndevs; i++)
413  		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
414  			return i;
415  	return 0;
416  }
417  
f2fs_io_flags(struct f2fs_io_info * fio)418  static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
419  {
420  	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
421  	unsigned int fua_flag, meta_flag, io_flag;
422  	blk_opf_t op_flags = 0;
423  
424  	if (fio->op != REQ_OP_WRITE)
425  		return 0;
426  	if (fio->type == DATA)
427  		io_flag = fio->sbi->data_io_flag;
428  	else if (fio->type == NODE)
429  		io_flag = fio->sbi->node_io_flag;
430  	else
431  		return 0;
432  
433  	fua_flag = io_flag & temp_mask;
434  	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
435  
436  	/*
437  	 * data/node io flag bits per temp:
438  	 *      REQ_META     |      REQ_FUA      |
439  	 *    5 |    4 |   3 |    2 |    1 |   0 |
440  	 * Cold | Warm | Hot | Cold | Warm | Hot |
441  	 */
442  	if (BIT(fio->temp) & meta_flag)
443  		op_flags |= REQ_META;
444  	if (BIT(fio->temp) & fua_flag)
445  		op_flags |= REQ_FUA;
446  	return op_flags;
447  }
448  
__bio_alloc(struct f2fs_io_info * fio,int npages)449  static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
450  {
451  	struct f2fs_sb_info *sbi = fio->sbi;
452  	struct block_device *bdev;
453  	sector_t sector;
454  	struct bio *bio;
455  
456  	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
457  	bio = bio_alloc_bioset(bdev, npages,
458  				fio->op | fio->op_flags | f2fs_io_flags(fio),
459  				GFP_NOIO, &f2fs_bioset);
460  	bio->bi_iter.bi_sector = sector;
461  	if (is_read_io(fio->op)) {
462  		bio->bi_end_io = f2fs_read_end_io;
463  		bio->bi_private = NULL;
464  	} else {
465  		bio->bi_end_io = f2fs_write_end_io;
466  		bio->bi_private = sbi;
467  		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
468  						fio->type, fio->temp);
469  	}
470  	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
471  
472  	if (fio->io_wbc)
473  		wbc_init_bio(fio->io_wbc, bio);
474  
475  	return bio;
476  }
477  
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)478  static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
479  				  pgoff_t first_idx,
480  				  const struct f2fs_io_info *fio,
481  				  gfp_t gfp_mask)
482  {
483  	/*
484  	 * The f2fs garbage collector sets ->encrypted_page when it wants to
485  	 * read/write raw data without encryption.
486  	 */
487  	if (!fio || !fio->encrypted_page)
488  		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
489  }
490  
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)491  static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
492  				     pgoff_t next_idx,
493  				     const struct f2fs_io_info *fio)
494  {
495  	/*
496  	 * The f2fs garbage collector sets ->encrypted_page when it wants to
497  	 * read/write raw data without encryption.
498  	 */
499  	if (fio && fio->encrypted_page)
500  		return !bio_has_crypt_ctx(bio);
501  
502  	return fscrypt_mergeable_bio(bio, inode, next_idx);
503  }
504  
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)505  void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
506  				 enum page_type type)
507  {
508  	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
509  	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
510  
511  	iostat_update_submit_ctx(bio, type);
512  	submit_bio(bio);
513  }
514  
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)515  static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
516  				  enum page_type type)
517  {
518  	WARN_ON_ONCE(is_read_io(bio_op(bio)));
519  
520  	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
521  		blk_finish_plug(current->plug);
522  
523  	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524  	iostat_update_submit_ctx(bio, type);
525  	submit_bio(bio);
526  }
527  
__submit_merged_bio(struct f2fs_bio_info * io)528  static void __submit_merged_bio(struct f2fs_bio_info *io)
529  {
530  	struct f2fs_io_info *fio = &io->fio;
531  
532  	if (!io->bio)
533  		return;
534  
535  	if (is_read_io(fio->op)) {
536  		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
537  		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
538  	} else {
539  		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
540  		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
541  	}
542  	io->bio = NULL;
543  }
544  
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)545  static bool __has_merged_page(struct bio *bio, struct inode *inode,
546  						struct page *page, nid_t ino)
547  {
548  	struct bio_vec *bvec;
549  	struct bvec_iter_all iter_all;
550  
551  	if (!bio)
552  		return false;
553  
554  	if (!inode && !page && !ino)
555  		return true;
556  
557  	bio_for_each_segment_all(bvec, bio, iter_all) {
558  		struct page *target = bvec->bv_page;
559  
560  		if (fscrypt_is_bounce_page(target)) {
561  			target = fscrypt_pagecache_page(target);
562  			if (IS_ERR(target))
563  				continue;
564  		}
565  		if (f2fs_is_compressed_page(target)) {
566  			target = f2fs_compress_control_page(target);
567  			if (IS_ERR(target))
568  				continue;
569  		}
570  
571  		if (inode && inode == target->mapping->host)
572  			return true;
573  		if (page && page == target)
574  			return true;
575  		if (ino && ino == ino_of_node(target))
576  			return true;
577  	}
578  
579  	return false;
580  }
581  
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)582  int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
583  {
584  	int i;
585  
586  	for (i = 0; i < NR_PAGE_TYPE; i++) {
587  		int n = (i == META) ? 1 : NR_TEMP_TYPE;
588  		int j;
589  
590  		sbi->write_io[i] = f2fs_kmalloc(sbi,
591  				array_size(n, sizeof(struct f2fs_bio_info)),
592  				GFP_KERNEL);
593  		if (!sbi->write_io[i])
594  			return -ENOMEM;
595  
596  		for (j = HOT; j < n; j++) {
597  			struct f2fs_bio_info *io = &sbi->write_io[i][j];
598  
599  			init_f2fs_rwsem(&io->io_rwsem);
600  			io->sbi = sbi;
601  			io->bio = NULL;
602  			io->last_block_in_bio = 0;
603  			spin_lock_init(&io->io_lock);
604  			INIT_LIST_HEAD(&io->io_list);
605  			INIT_LIST_HEAD(&io->bio_list);
606  			init_f2fs_rwsem(&io->bio_list_lock);
607  #ifdef CONFIG_BLK_DEV_ZONED
608  			init_completion(&io->zone_wait);
609  			io->zone_pending_bio = NULL;
610  			io->bi_private = NULL;
611  #endif
612  		}
613  	}
614  
615  	return 0;
616  }
617  
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)618  static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
619  				enum page_type type, enum temp_type temp)
620  {
621  	enum page_type btype = PAGE_TYPE_OF_BIO(type);
622  	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
623  
624  	f2fs_down_write(&io->io_rwsem);
625  
626  	if (!io->bio)
627  		goto unlock_out;
628  
629  	/* change META to META_FLUSH in the checkpoint procedure */
630  	if (type >= META_FLUSH) {
631  		io->fio.type = META_FLUSH;
632  		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
633  		if (!test_opt(sbi, NOBARRIER))
634  			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
635  	}
636  	__submit_merged_bio(io);
637  unlock_out:
638  	f2fs_up_write(&io->io_rwsem);
639  }
640  
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)641  static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
642  				struct inode *inode, struct page *page,
643  				nid_t ino, enum page_type type, bool force)
644  {
645  	enum temp_type temp;
646  	bool ret = true;
647  
648  	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
649  		if (!force)	{
650  			enum page_type btype = PAGE_TYPE_OF_BIO(type);
651  			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
652  
653  			f2fs_down_read(&io->io_rwsem);
654  			ret = __has_merged_page(io->bio, inode, page, ino);
655  			f2fs_up_read(&io->io_rwsem);
656  		}
657  		if (ret)
658  			__f2fs_submit_merged_write(sbi, type, temp);
659  
660  		/* TODO: use HOT temp only for meta pages now. */
661  		if (type >= META)
662  			break;
663  	}
664  }
665  
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)666  void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
667  {
668  	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
669  }
670  
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)671  void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
672  				struct inode *inode, struct page *page,
673  				nid_t ino, enum page_type type)
674  {
675  	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
676  }
677  
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)678  void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
679  {
680  	f2fs_submit_merged_write(sbi, DATA);
681  	f2fs_submit_merged_write(sbi, NODE);
682  	f2fs_submit_merged_write(sbi, META);
683  }
684  
685  /*
686   * Fill the locked page with data located in the block address.
687   * A caller needs to unlock the page on failure.
688   */
f2fs_submit_page_bio(struct f2fs_io_info * fio)689  int f2fs_submit_page_bio(struct f2fs_io_info *fio)
690  {
691  	struct bio *bio;
692  	struct page *page = fio->encrypted_page ?
693  			fio->encrypted_page : fio->page;
694  
695  	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
696  			fio->is_por ? META_POR : (__is_meta_io(fio) ?
697  			META_GENERIC : DATA_GENERIC_ENHANCE)))
698  		return -EFSCORRUPTED;
699  
700  	trace_f2fs_submit_page_bio(page, fio);
701  
702  	/* Allocate a new bio */
703  	bio = __bio_alloc(fio, 1);
704  
705  	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
706  			page_folio(fio->page)->index, fio, GFP_NOIO);
707  
708  	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
709  		bio_put(bio);
710  		return -EFAULT;
711  	}
712  
713  	if (fio->io_wbc && !is_read_io(fio->op))
714  		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
715  
716  	inc_page_count(fio->sbi, is_read_io(fio->op) ?
717  			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
718  
719  	if (is_read_io(bio_op(bio)))
720  		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
721  	else
722  		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
723  	return 0;
724  }
725  
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)726  static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
727  				block_t last_blkaddr, block_t cur_blkaddr)
728  {
729  	if (unlikely(sbi->max_io_bytes &&
730  			bio->bi_iter.bi_size >= sbi->max_io_bytes))
731  		return false;
732  	if (last_blkaddr + 1 != cur_blkaddr)
733  		return false;
734  	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
735  }
736  
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)737  static bool io_type_is_mergeable(struct f2fs_bio_info *io,
738  						struct f2fs_io_info *fio)
739  {
740  	if (io->fio.op != fio->op)
741  		return false;
742  	return io->fio.op_flags == fio->op_flags;
743  }
744  
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)745  static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
746  					struct f2fs_bio_info *io,
747  					struct f2fs_io_info *fio,
748  					block_t last_blkaddr,
749  					block_t cur_blkaddr)
750  {
751  	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752  		return false;
753  	return io_type_is_mergeable(io, fio);
754  }
755  
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)756  static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757  				struct page *page, enum temp_type temp)
758  {
759  	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760  	struct bio_entry *be;
761  
762  	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763  	be->bio = bio;
764  	bio_get(bio);
765  
766  	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
767  		f2fs_bug_on(sbi, 1);
768  
769  	f2fs_down_write(&io->bio_list_lock);
770  	list_add_tail(&be->list, &io->bio_list);
771  	f2fs_up_write(&io->bio_list_lock);
772  }
773  
del_bio_entry(struct bio_entry * be)774  static void del_bio_entry(struct bio_entry *be)
775  {
776  	list_del(&be->list);
777  	kmem_cache_free(bio_entry_slab, be);
778  }
779  
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)780  static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
781  							struct page *page)
782  {
783  	struct f2fs_sb_info *sbi = fio->sbi;
784  	enum temp_type temp;
785  	bool found = false;
786  	int ret = -EAGAIN;
787  
788  	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789  		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790  		struct list_head *head = &io->bio_list;
791  		struct bio_entry *be;
792  
793  		f2fs_down_write(&io->bio_list_lock);
794  		list_for_each_entry(be, head, list) {
795  			if (be->bio != *bio)
796  				continue;
797  
798  			found = true;
799  
800  			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801  							    *fio->last_block,
802  							    fio->new_blkaddr));
803  			if (f2fs_crypt_mergeable_bio(*bio,
804  					fio->page->mapping->host,
805  					page_folio(fio->page)->index, fio) &&
806  			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807  					PAGE_SIZE) {
808  				ret = 0;
809  				break;
810  			}
811  
812  			/* page can't be merged into bio; submit the bio */
813  			del_bio_entry(be);
814  			f2fs_submit_write_bio(sbi, *bio, DATA);
815  			break;
816  		}
817  		f2fs_up_write(&io->bio_list_lock);
818  	}
819  
820  	if (ret) {
821  		bio_put(*bio);
822  		*bio = NULL;
823  	}
824  
825  	return ret;
826  }
827  
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)828  void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829  					struct bio **bio, struct page *page)
830  {
831  	enum temp_type temp;
832  	bool found = false;
833  	struct bio *target = bio ? *bio : NULL;
834  
835  	f2fs_bug_on(sbi, !target && !page);
836  
837  	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
838  		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
839  		struct list_head *head = &io->bio_list;
840  		struct bio_entry *be;
841  
842  		if (list_empty(head))
843  			continue;
844  
845  		f2fs_down_read(&io->bio_list_lock);
846  		list_for_each_entry(be, head, list) {
847  			if (target)
848  				found = (target == be->bio);
849  			else
850  				found = __has_merged_page(be->bio, NULL,
851  								page, 0);
852  			if (found)
853  				break;
854  		}
855  		f2fs_up_read(&io->bio_list_lock);
856  
857  		if (!found)
858  			continue;
859  
860  		found = false;
861  
862  		f2fs_down_write(&io->bio_list_lock);
863  		list_for_each_entry(be, head, list) {
864  			if (target)
865  				found = (target == be->bio);
866  			else
867  				found = __has_merged_page(be->bio, NULL,
868  								page, 0);
869  			if (found) {
870  				target = be->bio;
871  				del_bio_entry(be);
872  				break;
873  			}
874  		}
875  		f2fs_up_write(&io->bio_list_lock);
876  	}
877  
878  	if (found)
879  		f2fs_submit_write_bio(sbi, target, DATA);
880  	if (bio && *bio) {
881  		bio_put(*bio);
882  		*bio = NULL;
883  	}
884  }
885  
f2fs_merge_page_bio(struct f2fs_io_info * fio)886  int f2fs_merge_page_bio(struct f2fs_io_info *fio)
887  {
888  	struct bio *bio = *fio->bio;
889  	struct page *page = fio->encrypted_page ?
890  			fio->encrypted_page : fio->page;
891  
892  	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
893  			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
894  		return -EFSCORRUPTED;
895  
896  	trace_f2fs_submit_page_bio(page, fio);
897  
898  	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899  						fio->new_blkaddr))
900  		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901  alloc_new:
902  	if (!bio) {
903  		bio = __bio_alloc(fio, BIO_MAX_VECS);
904  		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
905  				page_folio(fio->page)->index, fio, GFP_NOIO);
906  
907  		add_bio_entry(fio->sbi, bio, page, fio->temp);
908  	} else {
909  		if (add_ipu_page(fio, &bio, page))
910  			goto alloc_new;
911  	}
912  
913  	if (fio->io_wbc)
914  		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
915  
916  	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
917  
918  	*fio->last_block = fio->new_blkaddr;
919  	*fio->bio = bio;
920  
921  	return 0;
922  }
923  
924  #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)925  static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926  {
927  	struct block_device *bdev = sbi->sb->s_bdev;
928  	int devi = 0;
929  
930  	if (f2fs_is_multi_device(sbi)) {
931  		devi = f2fs_target_device_index(sbi, blkaddr);
932  		if (blkaddr < FDEV(devi).start_blk ||
933  		    blkaddr > FDEV(devi).end_blk) {
934  			f2fs_err(sbi, "Invalid block %x", blkaddr);
935  			return false;
936  		}
937  		blkaddr -= FDEV(devi).start_blk;
938  		bdev = FDEV(devi).bdev;
939  	}
940  	return bdev_is_zoned(bdev) &&
941  		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
942  		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
943  }
944  #endif
945  
f2fs_submit_page_write(struct f2fs_io_info * fio)946  void f2fs_submit_page_write(struct f2fs_io_info *fio)
947  {
948  	struct f2fs_sb_info *sbi = fio->sbi;
949  	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950  	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951  	struct page *bio_page;
952  	enum count_type type;
953  
954  	f2fs_bug_on(sbi, is_read_io(fio->op));
955  
956  	f2fs_down_write(&io->io_rwsem);
957  next:
958  #ifdef CONFIG_BLK_DEV_ZONED
959  	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
960  		wait_for_completion_io(&io->zone_wait);
961  		bio_put(io->zone_pending_bio);
962  		io->zone_pending_bio = NULL;
963  		io->bi_private = NULL;
964  	}
965  #endif
966  
967  	if (fio->in_list) {
968  		spin_lock(&io->io_lock);
969  		if (list_empty(&io->io_list)) {
970  			spin_unlock(&io->io_lock);
971  			goto out;
972  		}
973  		fio = list_first_entry(&io->io_list,
974  						struct f2fs_io_info, list);
975  		list_del(&fio->list);
976  		spin_unlock(&io->io_lock);
977  	}
978  
979  	verify_fio_blkaddr(fio);
980  
981  	if (fio->encrypted_page)
982  		bio_page = fio->encrypted_page;
983  	else if (fio->compressed_page)
984  		bio_page = fio->compressed_page;
985  	else
986  		bio_page = fio->page;
987  
988  	/* set submitted = true as a return value */
989  	fio->submitted = 1;
990  
991  	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
992  	inc_page_count(sbi, type);
993  
994  	if (io->bio &&
995  	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
996  			      fio->new_blkaddr) ||
997  	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
998  				page_folio(bio_page)->index, fio)))
999  		__submit_merged_bio(io);
1000  alloc_new:
1001  	if (io->bio == NULL) {
1002  		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1003  		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1004  				page_folio(bio_page)->index, fio, GFP_NOIO);
1005  		io->fio = *fio;
1006  	}
1007  
1008  	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1009  		__submit_merged_bio(io);
1010  		goto alloc_new;
1011  	}
1012  
1013  	if (fio->io_wbc)
1014  		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1015  
1016  	io->last_block_in_bio = fio->new_blkaddr;
1017  
1018  	trace_f2fs_submit_page_write(fio->page, fio);
1019  #ifdef CONFIG_BLK_DEV_ZONED
1020  	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1021  			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1022  		bio_get(io->bio);
1023  		reinit_completion(&io->zone_wait);
1024  		io->bi_private = io->bio->bi_private;
1025  		io->bio->bi_private = io;
1026  		io->bio->bi_end_io = f2fs_zone_write_end_io;
1027  		io->zone_pending_bio = io->bio;
1028  		__submit_merged_bio(io);
1029  	}
1030  #endif
1031  	if (fio->in_list)
1032  		goto next;
1033  out:
1034  	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1035  				!f2fs_is_checkpoint_ready(sbi))
1036  		__submit_merged_bio(io);
1037  	f2fs_up_write(&io->io_rwsem);
1038  }
1039  
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1040  static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1041  				      unsigned nr_pages, blk_opf_t op_flag,
1042  				      pgoff_t first_idx, bool for_write)
1043  {
1044  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045  	struct bio *bio;
1046  	struct bio_post_read_ctx *ctx = NULL;
1047  	unsigned int post_read_steps = 0;
1048  	sector_t sector;
1049  	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1050  
1051  	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1052  			       REQ_OP_READ | op_flag,
1053  			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1054  	if (!bio)
1055  		return ERR_PTR(-ENOMEM);
1056  	bio->bi_iter.bi_sector = sector;
1057  	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058  	bio->bi_end_io = f2fs_read_end_io;
1059  
1060  	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061  		post_read_steps |= STEP_DECRYPT;
1062  
1063  	if (f2fs_need_verity(inode, first_idx))
1064  		post_read_steps |= STEP_VERITY;
1065  
1066  	/*
1067  	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068  	 * contain both compressed and uncompressed clusters.  We'll allocate a
1069  	 * bio_post_read_ctx if the file is compressed, but the caller is
1070  	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071  	 */
1072  
1073  	if (post_read_steps || f2fs_compressed_file(inode)) {
1074  		/* Due to the mempool, this never fails. */
1075  		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076  		ctx->bio = bio;
1077  		ctx->sbi = sbi;
1078  		ctx->enabled_steps = post_read_steps;
1079  		ctx->fs_blkaddr = blkaddr;
1080  		ctx->decompression_attempted = false;
1081  		bio->bi_private = ctx;
1082  	}
1083  	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084  
1085  	return bio;
1086  }
1087  
1088  /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1089  static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1090  				 block_t blkaddr, blk_opf_t op_flags,
1091  				 bool for_write)
1092  {
1093  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094  	struct bio *bio;
1095  
1096  	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097  					folio->index, for_write);
1098  	if (IS_ERR(bio))
1099  		return PTR_ERR(bio);
1100  
1101  	/* wait for GCed page writeback via META_MAPPING */
1102  	f2fs_wait_on_block_writeback(inode, blkaddr);
1103  
1104  	if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1105  		iostat_update_and_unbind_ctx(bio);
1106  		if (bio->bi_private)
1107  			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1108  		bio_put(bio);
1109  		return -EFAULT;
1110  	}
1111  	inc_page_count(sbi, F2FS_RD_DATA);
1112  	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1113  	f2fs_submit_read_bio(sbi, bio, DATA);
1114  	return 0;
1115  }
1116  
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1117  static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1118  {
1119  	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1120  
1121  	dn->data_blkaddr = blkaddr;
1122  	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1123  }
1124  
1125  /*
1126   * Lock ordering for the change of data block address:
1127   * ->data_page
1128   *  ->node_page
1129   *    update block addresses in the node page
1130   */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1131  void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132  {
1133  	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1134  	__set_data_blkaddr(dn, blkaddr);
1135  	if (set_page_dirty(dn->node_page))
1136  		dn->node_changed = true;
1137  }
1138  
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1139  void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1140  {
1141  	f2fs_set_data_blkaddr(dn, blkaddr);
1142  	f2fs_update_read_extent_cache(dn);
1143  }
1144  
1145  /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1146  int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1147  {
1148  	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1149  	int err;
1150  
1151  	if (!count)
1152  		return 0;
1153  
1154  	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1155  		return -EPERM;
1156  	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1157  	if (unlikely(err))
1158  		return err;
1159  
1160  	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1161  						dn->ofs_in_node, count);
1162  
1163  	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1164  
1165  	for (; count > 0; dn->ofs_in_node++) {
1166  		block_t blkaddr = f2fs_data_blkaddr(dn);
1167  
1168  		if (blkaddr == NULL_ADDR) {
1169  			__set_data_blkaddr(dn, NEW_ADDR);
1170  			count--;
1171  		}
1172  	}
1173  
1174  	if (set_page_dirty(dn->node_page))
1175  		dn->node_changed = true;
1176  	return 0;
1177  }
1178  
1179  /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1180  int f2fs_reserve_new_block(struct dnode_of_data *dn)
1181  {
1182  	unsigned int ofs_in_node = dn->ofs_in_node;
1183  	int ret;
1184  
1185  	ret = f2fs_reserve_new_blocks(dn, 1);
1186  	dn->ofs_in_node = ofs_in_node;
1187  	return ret;
1188  }
1189  
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1190  int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1191  {
1192  	bool need_put = dn->inode_page ? false : true;
1193  	int err;
1194  
1195  	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1196  	if (err)
1197  		return err;
1198  
1199  	if (dn->data_blkaddr == NULL_ADDR)
1200  		err = f2fs_reserve_new_block(dn);
1201  	if (err || need_put)
1202  		f2fs_put_dnode(dn);
1203  	return err;
1204  }
1205  
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1206  struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1207  				     blk_opf_t op_flags, bool for_write,
1208  				     pgoff_t *next_pgofs)
1209  {
1210  	struct address_space *mapping = inode->i_mapping;
1211  	struct dnode_of_data dn;
1212  	struct page *page;
1213  	int err;
1214  
1215  	page = f2fs_grab_cache_page(mapping, index, for_write);
1216  	if (!page)
1217  		return ERR_PTR(-ENOMEM);
1218  
1219  	if (f2fs_lookup_read_extent_cache_block(inode, index,
1220  						&dn.data_blkaddr)) {
1221  		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1222  						DATA_GENERIC_ENHANCE_READ)) {
1223  			err = -EFSCORRUPTED;
1224  			goto put_err;
1225  		}
1226  		goto got_it;
1227  	}
1228  
1229  	set_new_dnode(&dn, inode, NULL, NULL, 0);
1230  	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1231  	if (err) {
1232  		if (err == -ENOENT && next_pgofs)
1233  			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1234  		goto put_err;
1235  	}
1236  	f2fs_put_dnode(&dn);
1237  
1238  	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1239  		err = -ENOENT;
1240  		if (next_pgofs)
1241  			*next_pgofs = index + 1;
1242  		goto put_err;
1243  	}
1244  	if (dn.data_blkaddr != NEW_ADDR &&
1245  			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1246  						dn.data_blkaddr,
1247  						DATA_GENERIC_ENHANCE)) {
1248  		err = -EFSCORRUPTED;
1249  		goto put_err;
1250  	}
1251  got_it:
1252  	if (PageUptodate(page)) {
1253  		unlock_page(page);
1254  		return page;
1255  	}
1256  
1257  	/*
1258  	 * A new dentry page is allocated but not able to be written, since its
1259  	 * new inode page couldn't be allocated due to -ENOSPC.
1260  	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1261  	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1262  	 * f2fs_init_inode_metadata.
1263  	 */
1264  	if (dn.data_blkaddr == NEW_ADDR) {
1265  		zero_user_segment(page, 0, PAGE_SIZE);
1266  		if (!PageUptodate(page))
1267  			SetPageUptodate(page);
1268  		unlock_page(page);
1269  		return page;
1270  	}
1271  
1272  	err = f2fs_submit_page_read(inode, page_folio(page), dn.data_blkaddr,
1273  						op_flags, for_write);
1274  	if (err)
1275  		goto put_err;
1276  	return page;
1277  
1278  put_err:
1279  	f2fs_put_page(page, 1);
1280  	return ERR_PTR(err);
1281  }
1282  
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1283  struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1284  					pgoff_t *next_pgofs)
1285  {
1286  	struct address_space *mapping = inode->i_mapping;
1287  	struct page *page;
1288  
1289  	page = find_get_page(mapping, index);
1290  	if (page && PageUptodate(page))
1291  		return page;
1292  	f2fs_put_page(page, 0);
1293  
1294  	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1295  	if (IS_ERR(page))
1296  		return page;
1297  
1298  	if (PageUptodate(page))
1299  		return page;
1300  
1301  	wait_on_page_locked(page);
1302  	if (unlikely(!PageUptodate(page))) {
1303  		f2fs_put_page(page, 0);
1304  		return ERR_PTR(-EIO);
1305  	}
1306  	return page;
1307  }
1308  
1309  /*
1310   * If it tries to access a hole, return an error.
1311   * Because, the callers, functions in dir.c and GC, should be able to know
1312   * whether this page exists or not.
1313   */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1314  struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1315  							bool for_write)
1316  {
1317  	struct address_space *mapping = inode->i_mapping;
1318  	struct page *page;
1319  
1320  	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1321  	if (IS_ERR(page))
1322  		return page;
1323  
1324  	/* wait for read completion */
1325  	lock_page(page);
1326  	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1327  		f2fs_put_page(page, 1);
1328  		return ERR_PTR(-EIO);
1329  	}
1330  	return page;
1331  }
1332  
1333  /*
1334   * Caller ensures that this data page is never allocated.
1335   * A new zero-filled data page is allocated in the page cache.
1336   *
1337   * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1338   * f2fs_unlock_op().
1339   * Note that, ipage is set only by make_empty_dir, and if any error occur,
1340   * ipage should be released by this function.
1341   */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1342  struct page *f2fs_get_new_data_page(struct inode *inode,
1343  		struct page *ipage, pgoff_t index, bool new_i_size)
1344  {
1345  	struct address_space *mapping = inode->i_mapping;
1346  	struct page *page;
1347  	struct dnode_of_data dn;
1348  	int err;
1349  
1350  	page = f2fs_grab_cache_page(mapping, index, true);
1351  	if (!page) {
1352  		/*
1353  		 * before exiting, we should make sure ipage will be released
1354  		 * if any error occur.
1355  		 */
1356  		f2fs_put_page(ipage, 1);
1357  		return ERR_PTR(-ENOMEM);
1358  	}
1359  
1360  	set_new_dnode(&dn, inode, ipage, NULL, 0);
1361  	err = f2fs_reserve_block(&dn, index);
1362  	if (err) {
1363  		f2fs_put_page(page, 1);
1364  		return ERR_PTR(err);
1365  	}
1366  	if (!ipage)
1367  		f2fs_put_dnode(&dn);
1368  
1369  	if (PageUptodate(page))
1370  		goto got_it;
1371  
1372  	if (dn.data_blkaddr == NEW_ADDR) {
1373  		zero_user_segment(page, 0, PAGE_SIZE);
1374  		if (!PageUptodate(page))
1375  			SetPageUptodate(page);
1376  	} else {
1377  		f2fs_put_page(page, 1);
1378  
1379  		/* if ipage exists, blkaddr should be NEW_ADDR */
1380  		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1381  		page = f2fs_get_lock_data_page(inode, index, true);
1382  		if (IS_ERR(page))
1383  			return page;
1384  	}
1385  got_it:
1386  	if (new_i_size && i_size_read(inode) <
1387  				((loff_t)(index + 1) << PAGE_SHIFT))
1388  		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1389  	return page;
1390  }
1391  
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1392  static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1393  {
1394  	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1395  	struct f2fs_summary sum;
1396  	struct node_info ni;
1397  	block_t old_blkaddr;
1398  	blkcnt_t count = 1;
1399  	int err;
1400  
1401  	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1402  		return -EPERM;
1403  
1404  	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1405  	if (err)
1406  		return err;
1407  
1408  	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1409  	if (dn->data_blkaddr == NULL_ADDR) {
1410  		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1411  		if (unlikely(err))
1412  			return err;
1413  	}
1414  
1415  	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1416  	old_blkaddr = dn->data_blkaddr;
1417  	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1418  				&dn->data_blkaddr, &sum, seg_type, NULL);
1419  	if (err)
1420  		return err;
1421  
1422  	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1423  		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1424  
1425  	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1426  	return 0;
1427  }
1428  
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1429  static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1430  {
1431  	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1432  		f2fs_down_read(&sbi->node_change);
1433  	else
1434  		f2fs_lock_op(sbi);
1435  }
1436  
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1437  static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1438  {
1439  	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1440  		f2fs_up_read(&sbi->node_change);
1441  	else
1442  		f2fs_unlock_op(sbi);
1443  }
1444  
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1445  int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1446  {
1447  	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1448  	int err = 0;
1449  
1450  	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1451  	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1452  						&dn->data_blkaddr))
1453  		err = f2fs_reserve_block(dn, index);
1454  	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1455  
1456  	return err;
1457  }
1458  
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1459  static int f2fs_map_no_dnode(struct inode *inode,
1460  		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1461  		pgoff_t pgoff)
1462  {
1463  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1464  
1465  	/*
1466  	 * There is one exceptional case that read_node_page() may return
1467  	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1468  	 * -EIO in that case.
1469  	 */
1470  	if (map->m_may_create &&
1471  	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1472  		return -EIO;
1473  
1474  	if (map->m_next_pgofs)
1475  		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1476  	if (map->m_next_extent)
1477  		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1478  	return 0;
1479  }
1480  
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1481  static bool f2fs_map_blocks_cached(struct inode *inode,
1482  		struct f2fs_map_blocks *map, int flag)
1483  {
1484  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1485  	unsigned int maxblocks = map->m_len;
1486  	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1487  	struct extent_info ei = {};
1488  
1489  	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1490  		return false;
1491  
1492  	map->m_pblk = ei.blk + pgoff - ei.fofs;
1493  	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1494  	map->m_flags = F2FS_MAP_MAPPED;
1495  	if (map->m_next_extent)
1496  		*map->m_next_extent = pgoff + map->m_len;
1497  
1498  	/* for hardware encryption, but to avoid potential issue in future */
1499  	if (flag == F2FS_GET_BLOCK_DIO)
1500  		f2fs_wait_on_block_writeback_range(inode,
1501  					map->m_pblk, map->m_len);
1502  
1503  	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1504  		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1505  		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1506  
1507  		map->m_bdev = dev->bdev;
1508  		map->m_pblk -= dev->start_blk;
1509  		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1510  	} else {
1511  		map->m_bdev = inode->i_sb->s_bdev;
1512  	}
1513  	return true;
1514  }
1515  
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1516  static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1517  				struct f2fs_map_blocks *map,
1518  				block_t blkaddr, int flag, int bidx,
1519  				int ofs)
1520  {
1521  	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1522  		return false;
1523  	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1524  		return true;
1525  	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1526  		return true;
1527  	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1528  		return true;
1529  	if (flag == F2FS_GET_BLOCK_DIO &&
1530  		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1531  		return true;
1532  	return false;
1533  }
1534  
1535  /*
1536   * f2fs_map_blocks() tries to find or build mapping relationship which
1537   * maps continuous logical blocks to physical blocks, and return such
1538   * info via f2fs_map_blocks structure.
1539   */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1540  int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1541  {
1542  	unsigned int maxblocks = map->m_len;
1543  	struct dnode_of_data dn;
1544  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1545  	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1546  	pgoff_t pgofs, end_offset, end;
1547  	int err = 0, ofs = 1;
1548  	unsigned int ofs_in_node, last_ofs_in_node;
1549  	blkcnt_t prealloc;
1550  	block_t blkaddr;
1551  	unsigned int start_pgofs;
1552  	int bidx = 0;
1553  	bool is_hole;
1554  
1555  	if (!maxblocks)
1556  		return 0;
1557  
1558  	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1559  		goto out;
1560  
1561  	map->m_bdev = inode->i_sb->s_bdev;
1562  	map->m_multidev_dio =
1563  		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1564  
1565  	map->m_len = 0;
1566  	map->m_flags = 0;
1567  
1568  	/* it only supports block size == page size */
1569  	pgofs =	(pgoff_t)map->m_lblk;
1570  	end = pgofs + maxblocks;
1571  
1572  next_dnode:
1573  	if (map->m_may_create)
1574  		f2fs_map_lock(sbi, flag);
1575  
1576  	/* When reading holes, we need its node page */
1577  	set_new_dnode(&dn, inode, NULL, NULL, 0);
1578  	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1579  	if (err) {
1580  		if (flag == F2FS_GET_BLOCK_BMAP)
1581  			map->m_pblk = 0;
1582  		if (err == -ENOENT)
1583  			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1584  		goto unlock_out;
1585  	}
1586  
1587  	start_pgofs = pgofs;
1588  	prealloc = 0;
1589  	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1590  	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1591  
1592  next_block:
1593  	blkaddr = f2fs_data_blkaddr(&dn);
1594  	is_hole = !__is_valid_data_blkaddr(blkaddr);
1595  	if (!is_hole &&
1596  	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1597  		err = -EFSCORRUPTED;
1598  		goto sync_out;
1599  	}
1600  
1601  	/* use out-place-update for direct IO under LFS mode */
1602  	if (map->m_may_create && (is_hole ||
1603  		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1604  		!f2fs_is_pinned_file(inode)))) {
1605  		if (unlikely(f2fs_cp_error(sbi))) {
1606  			err = -EIO;
1607  			goto sync_out;
1608  		}
1609  
1610  		switch (flag) {
1611  		case F2FS_GET_BLOCK_PRE_AIO:
1612  			if (blkaddr == NULL_ADDR) {
1613  				prealloc++;
1614  				last_ofs_in_node = dn.ofs_in_node;
1615  			}
1616  			break;
1617  		case F2FS_GET_BLOCK_PRE_DIO:
1618  		case F2FS_GET_BLOCK_DIO:
1619  			err = __allocate_data_block(&dn, map->m_seg_type);
1620  			if (err)
1621  				goto sync_out;
1622  			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1623  				file_need_truncate(inode);
1624  			set_inode_flag(inode, FI_APPEND_WRITE);
1625  			break;
1626  		default:
1627  			WARN_ON_ONCE(1);
1628  			err = -EIO;
1629  			goto sync_out;
1630  		}
1631  
1632  		blkaddr = dn.data_blkaddr;
1633  		if (is_hole)
1634  			map->m_flags |= F2FS_MAP_NEW;
1635  	} else if (is_hole) {
1636  		if (f2fs_compressed_file(inode) &&
1637  		    f2fs_sanity_check_cluster(&dn)) {
1638  			err = -EFSCORRUPTED;
1639  			f2fs_handle_error(sbi,
1640  					ERROR_CORRUPTED_CLUSTER);
1641  			goto sync_out;
1642  		}
1643  
1644  		switch (flag) {
1645  		case F2FS_GET_BLOCK_PRECACHE:
1646  			goto sync_out;
1647  		case F2FS_GET_BLOCK_BMAP:
1648  			map->m_pblk = 0;
1649  			goto sync_out;
1650  		case F2FS_GET_BLOCK_FIEMAP:
1651  			if (blkaddr == NULL_ADDR) {
1652  				if (map->m_next_pgofs)
1653  					*map->m_next_pgofs = pgofs + 1;
1654  				goto sync_out;
1655  			}
1656  			break;
1657  		case F2FS_GET_BLOCK_DIO:
1658  			if (map->m_next_pgofs)
1659  				*map->m_next_pgofs = pgofs + 1;
1660  			break;
1661  		default:
1662  			/* for defragment case */
1663  			if (map->m_next_pgofs)
1664  				*map->m_next_pgofs = pgofs + 1;
1665  			goto sync_out;
1666  		}
1667  	}
1668  
1669  	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1670  		goto skip;
1671  
1672  	if (map->m_multidev_dio)
1673  		bidx = f2fs_target_device_index(sbi, blkaddr);
1674  
1675  	if (map->m_len == 0) {
1676  		/* reserved delalloc block should be mapped for fiemap. */
1677  		if (blkaddr == NEW_ADDR)
1678  			map->m_flags |= F2FS_MAP_DELALLOC;
1679  		if (flag != F2FS_GET_BLOCK_DIO || !is_hole)
1680  			map->m_flags |= F2FS_MAP_MAPPED;
1681  
1682  		map->m_pblk = blkaddr;
1683  		map->m_len = 1;
1684  
1685  		if (map->m_multidev_dio)
1686  			map->m_bdev = FDEV(bidx).bdev;
1687  	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1688  		ofs++;
1689  		map->m_len++;
1690  	} else {
1691  		goto sync_out;
1692  	}
1693  
1694  skip:
1695  	dn.ofs_in_node++;
1696  	pgofs++;
1697  
1698  	/* preallocate blocks in batch for one dnode page */
1699  	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1700  			(pgofs == end || dn.ofs_in_node == end_offset)) {
1701  
1702  		dn.ofs_in_node = ofs_in_node;
1703  		err = f2fs_reserve_new_blocks(&dn, prealloc);
1704  		if (err)
1705  			goto sync_out;
1706  
1707  		map->m_len += dn.ofs_in_node - ofs_in_node;
1708  		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1709  			err = -ENOSPC;
1710  			goto sync_out;
1711  		}
1712  		dn.ofs_in_node = end_offset;
1713  	}
1714  
1715  	if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1716  	    map->m_may_create) {
1717  		/* the next block to be allocated may not be contiguous. */
1718  		if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1719  		    CAP_BLKS_PER_SEC(sbi) - 1)
1720  			goto sync_out;
1721  	}
1722  
1723  	if (pgofs >= end)
1724  		goto sync_out;
1725  	else if (dn.ofs_in_node < end_offset)
1726  		goto next_block;
1727  
1728  	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1729  		if (map->m_flags & F2FS_MAP_MAPPED) {
1730  			unsigned int ofs = start_pgofs - map->m_lblk;
1731  
1732  			f2fs_update_read_extent_cache_range(&dn,
1733  				start_pgofs, map->m_pblk + ofs,
1734  				map->m_len - ofs);
1735  		}
1736  	}
1737  
1738  	f2fs_put_dnode(&dn);
1739  
1740  	if (map->m_may_create) {
1741  		f2fs_map_unlock(sbi, flag);
1742  		f2fs_balance_fs(sbi, dn.node_changed);
1743  	}
1744  	goto next_dnode;
1745  
1746  sync_out:
1747  
1748  	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1749  		/*
1750  		 * for hardware encryption, but to avoid potential issue
1751  		 * in future
1752  		 */
1753  		f2fs_wait_on_block_writeback_range(inode,
1754  						map->m_pblk, map->m_len);
1755  
1756  		if (map->m_multidev_dio) {
1757  			block_t blk_addr = map->m_pblk;
1758  
1759  			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1760  
1761  			map->m_bdev = FDEV(bidx).bdev;
1762  			map->m_pblk -= FDEV(bidx).start_blk;
1763  
1764  			if (map->m_may_create)
1765  				f2fs_update_device_state(sbi, inode->i_ino,
1766  							blk_addr, map->m_len);
1767  
1768  			f2fs_bug_on(sbi, blk_addr + map->m_len >
1769  						FDEV(bidx).end_blk + 1);
1770  		}
1771  	}
1772  
1773  	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1774  		if (map->m_flags & F2FS_MAP_MAPPED) {
1775  			unsigned int ofs = start_pgofs - map->m_lblk;
1776  
1777  			f2fs_update_read_extent_cache_range(&dn,
1778  				start_pgofs, map->m_pblk + ofs,
1779  				map->m_len - ofs);
1780  		}
1781  		if (map->m_next_extent)
1782  			*map->m_next_extent = pgofs + 1;
1783  	}
1784  	f2fs_put_dnode(&dn);
1785  unlock_out:
1786  	if (map->m_may_create) {
1787  		f2fs_map_unlock(sbi, flag);
1788  		f2fs_balance_fs(sbi, dn.node_changed);
1789  	}
1790  out:
1791  	trace_f2fs_map_blocks(inode, map, flag, err);
1792  	return err;
1793  }
1794  
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1795  bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1796  {
1797  	struct f2fs_map_blocks map;
1798  	block_t last_lblk;
1799  	int err;
1800  
1801  	if (pos + len > i_size_read(inode))
1802  		return false;
1803  
1804  	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1805  	map.m_next_pgofs = NULL;
1806  	map.m_next_extent = NULL;
1807  	map.m_seg_type = NO_CHECK_TYPE;
1808  	map.m_may_create = false;
1809  	last_lblk = F2FS_BLK_ALIGN(pos + len);
1810  
1811  	while (map.m_lblk < last_lblk) {
1812  		map.m_len = last_lblk - map.m_lblk;
1813  		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1814  		if (err || map.m_len == 0)
1815  			return false;
1816  		map.m_lblk += map.m_len;
1817  	}
1818  	return true;
1819  }
1820  
bytes_to_blks(struct inode * inode,u64 bytes)1821  static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1822  {
1823  	return (bytes >> inode->i_blkbits);
1824  }
1825  
blks_to_bytes(struct inode * inode,u64 blks)1826  static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1827  {
1828  	return (blks << inode->i_blkbits);
1829  }
1830  
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1831  static int f2fs_xattr_fiemap(struct inode *inode,
1832  				struct fiemap_extent_info *fieinfo)
1833  {
1834  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1835  	struct page *page;
1836  	struct node_info ni;
1837  	__u64 phys = 0, len;
1838  	__u32 flags;
1839  	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1840  	int err = 0;
1841  
1842  	if (f2fs_has_inline_xattr(inode)) {
1843  		int offset;
1844  
1845  		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1846  						inode->i_ino, false);
1847  		if (!page)
1848  			return -ENOMEM;
1849  
1850  		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1851  		if (err) {
1852  			f2fs_put_page(page, 1);
1853  			return err;
1854  		}
1855  
1856  		phys = blks_to_bytes(inode, ni.blk_addr);
1857  		offset = offsetof(struct f2fs_inode, i_addr) +
1858  					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1859  					get_inline_xattr_addrs(inode));
1860  
1861  		phys += offset;
1862  		len = inline_xattr_size(inode);
1863  
1864  		f2fs_put_page(page, 1);
1865  
1866  		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1867  
1868  		if (!xnid)
1869  			flags |= FIEMAP_EXTENT_LAST;
1870  
1871  		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1872  		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1873  		if (err)
1874  			return err;
1875  	}
1876  
1877  	if (xnid) {
1878  		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1879  		if (!page)
1880  			return -ENOMEM;
1881  
1882  		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1883  		if (err) {
1884  			f2fs_put_page(page, 1);
1885  			return err;
1886  		}
1887  
1888  		phys = blks_to_bytes(inode, ni.blk_addr);
1889  		len = inode->i_sb->s_blocksize;
1890  
1891  		f2fs_put_page(page, 1);
1892  
1893  		flags = FIEMAP_EXTENT_LAST;
1894  	}
1895  
1896  	if (phys) {
1897  		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1898  		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1899  	}
1900  
1901  	return (err < 0 ? err : 0);
1902  }
1903  
max_inode_blocks(struct inode * inode)1904  static loff_t max_inode_blocks(struct inode *inode)
1905  {
1906  	loff_t result = ADDRS_PER_INODE(inode);
1907  	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1908  
1909  	/* two direct node blocks */
1910  	result += (leaf_count * 2);
1911  
1912  	/* two indirect node blocks */
1913  	leaf_count *= NIDS_PER_BLOCK;
1914  	result += (leaf_count * 2);
1915  
1916  	/* one double indirect node block */
1917  	leaf_count *= NIDS_PER_BLOCK;
1918  	result += leaf_count;
1919  
1920  	return result;
1921  }
1922  
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1923  int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1924  		u64 start, u64 len)
1925  {
1926  	struct f2fs_map_blocks map;
1927  	sector_t start_blk, last_blk;
1928  	pgoff_t next_pgofs;
1929  	u64 logical = 0, phys = 0, size = 0;
1930  	u32 flags = 0;
1931  	int ret = 0;
1932  	bool compr_cluster = false, compr_appended;
1933  	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1934  	unsigned int count_in_cluster = 0;
1935  	loff_t maxbytes;
1936  
1937  	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1938  		ret = f2fs_precache_extents(inode);
1939  		if (ret)
1940  			return ret;
1941  	}
1942  
1943  	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1944  	if (ret)
1945  		return ret;
1946  
1947  	inode_lock_shared(inode);
1948  
1949  	maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1950  	if (start > maxbytes) {
1951  		ret = -EFBIG;
1952  		goto out;
1953  	}
1954  
1955  	if (len > maxbytes || (maxbytes - len) < start)
1956  		len = maxbytes - start;
1957  
1958  	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1959  		ret = f2fs_xattr_fiemap(inode, fieinfo);
1960  		goto out;
1961  	}
1962  
1963  	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1964  		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1965  		if (ret != -EAGAIN)
1966  			goto out;
1967  	}
1968  
1969  	if (bytes_to_blks(inode, len) == 0)
1970  		len = blks_to_bytes(inode, 1);
1971  
1972  	start_blk = bytes_to_blks(inode, start);
1973  	last_blk = bytes_to_blks(inode, start + len - 1);
1974  
1975  next:
1976  	memset(&map, 0, sizeof(map));
1977  	map.m_lblk = start_blk;
1978  	map.m_len = bytes_to_blks(inode, len);
1979  	map.m_next_pgofs = &next_pgofs;
1980  	map.m_seg_type = NO_CHECK_TYPE;
1981  
1982  	if (compr_cluster) {
1983  		map.m_lblk += 1;
1984  		map.m_len = cluster_size - count_in_cluster;
1985  	}
1986  
1987  	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1988  	if (ret)
1989  		goto out;
1990  
1991  	/* HOLE */
1992  	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1993  		start_blk = next_pgofs;
1994  
1995  		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1996  						max_inode_blocks(inode)))
1997  			goto prep_next;
1998  
1999  		flags |= FIEMAP_EXTENT_LAST;
2000  	}
2001  
2002  	compr_appended = false;
2003  	/* In a case of compressed cluster, append this to the last extent */
2004  	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2005  			!(map.m_flags & F2FS_MAP_FLAGS))) {
2006  		compr_appended = true;
2007  		goto skip_fill;
2008  	}
2009  
2010  	if (size) {
2011  		flags |= FIEMAP_EXTENT_MERGED;
2012  		if (IS_ENCRYPTED(inode))
2013  			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2014  
2015  		ret = fiemap_fill_next_extent(fieinfo, logical,
2016  				phys, size, flags);
2017  		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2018  		if (ret)
2019  			goto out;
2020  		size = 0;
2021  	}
2022  
2023  	if (start_blk > last_blk)
2024  		goto out;
2025  
2026  skip_fill:
2027  	if (map.m_pblk == COMPRESS_ADDR) {
2028  		compr_cluster = true;
2029  		count_in_cluster = 1;
2030  	} else if (compr_appended) {
2031  		unsigned int appended_blks = cluster_size -
2032  						count_in_cluster + 1;
2033  		size += blks_to_bytes(inode, appended_blks);
2034  		start_blk += appended_blks;
2035  		compr_cluster = false;
2036  	} else {
2037  		logical = blks_to_bytes(inode, start_blk);
2038  		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2039  			blks_to_bytes(inode, map.m_pblk) : 0;
2040  		size = blks_to_bytes(inode, map.m_len);
2041  		flags = 0;
2042  
2043  		if (compr_cluster) {
2044  			flags = FIEMAP_EXTENT_ENCODED;
2045  			count_in_cluster += map.m_len;
2046  			if (count_in_cluster == cluster_size) {
2047  				compr_cluster = false;
2048  				size += blks_to_bytes(inode, 1);
2049  			}
2050  		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2051  			flags = FIEMAP_EXTENT_UNWRITTEN;
2052  		}
2053  
2054  		start_blk += bytes_to_blks(inode, size);
2055  	}
2056  
2057  prep_next:
2058  	cond_resched();
2059  	if (fatal_signal_pending(current))
2060  		ret = -EINTR;
2061  	else
2062  		goto next;
2063  out:
2064  	if (ret == 1)
2065  		ret = 0;
2066  
2067  	inode_unlock_shared(inode);
2068  	return ret;
2069  }
2070  
f2fs_readpage_limit(struct inode * inode)2071  static inline loff_t f2fs_readpage_limit(struct inode *inode)
2072  {
2073  	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2074  		return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2075  
2076  	return i_size_read(inode);
2077  }
2078  
f2fs_ra_op_flags(struct readahead_control * rac)2079  static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2080  {
2081  	return rac ? REQ_RAHEAD : 0;
2082  }
2083  
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2084  static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2085  					unsigned nr_pages,
2086  					struct f2fs_map_blocks *map,
2087  					struct bio **bio_ret,
2088  					sector_t *last_block_in_bio,
2089  					struct readahead_control *rac)
2090  {
2091  	struct bio *bio = *bio_ret;
2092  	const unsigned blocksize = blks_to_bytes(inode, 1);
2093  	sector_t block_in_file;
2094  	sector_t last_block;
2095  	sector_t last_block_in_file;
2096  	sector_t block_nr;
2097  	pgoff_t index = folio_index(folio);
2098  	int ret = 0;
2099  
2100  	block_in_file = (sector_t)index;
2101  	last_block = block_in_file + nr_pages;
2102  	last_block_in_file = bytes_to_blks(inode,
2103  			f2fs_readpage_limit(inode) + blocksize - 1);
2104  	if (last_block > last_block_in_file)
2105  		last_block = last_block_in_file;
2106  
2107  	/* just zeroing out page which is beyond EOF */
2108  	if (block_in_file >= last_block)
2109  		goto zero_out;
2110  	/*
2111  	 * Map blocks using the previous result first.
2112  	 */
2113  	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2114  			block_in_file > map->m_lblk &&
2115  			block_in_file < (map->m_lblk + map->m_len))
2116  		goto got_it;
2117  
2118  	/*
2119  	 * Then do more f2fs_map_blocks() calls until we are
2120  	 * done with this page.
2121  	 */
2122  	map->m_lblk = block_in_file;
2123  	map->m_len = last_block - block_in_file;
2124  
2125  	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2126  	if (ret)
2127  		goto out;
2128  got_it:
2129  	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2130  		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2131  		folio_set_mappedtodisk(folio);
2132  
2133  		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2134  						DATA_GENERIC_ENHANCE_READ)) {
2135  			ret = -EFSCORRUPTED;
2136  			goto out;
2137  		}
2138  	} else {
2139  zero_out:
2140  		folio_zero_segment(folio, 0, folio_size(folio));
2141  		if (f2fs_need_verity(inode, index) &&
2142  		    !fsverity_verify_folio(folio)) {
2143  			ret = -EIO;
2144  			goto out;
2145  		}
2146  		if (!folio_test_uptodate(folio))
2147  			folio_mark_uptodate(folio);
2148  		folio_unlock(folio);
2149  		goto out;
2150  	}
2151  
2152  	/*
2153  	 * This page will go to BIO.  Do we need to send this
2154  	 * BIO off first?
2155  	 */
2156  	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2157  				       *last_block_in_bio, block_nr) ||
2158  		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2159  submit_and_realloc:
2160  		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2161  		bio = NULL;
2162  	}
2163  	if (bio == NULL) {
2164  		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2165  				f2fs_ra_op_flags(rac), index,
2166  				false);
2167  		if (IS_ERR(bio)) {
2168  			ret = PTR_ERR(bio);
2169  			bio = NULL;
2170  			goto out;
2171  		}
2172  	}
2173  
2174  	/*
2175  	 * If the page is under writeback, we need to wait for
2176  	 * its completion to see the correct decrypted data.
2177  	 */
2178  	f2fs_wait_on_block_writeback(inode, block_nr);
2179  
2180  	if (!bio_add_folio(bio, folio, blocksize, 0))
2181  		goto submit_and_realloc;
2182  
2183  	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2184  	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2185  							F2FS_BLKSIZE);
2186  	*last_block_in_bio = block_nr;
2187  out:
2188  	*bio_ret = bio;
2189  	return ret;
2190  }
2191  
2192  #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2193  int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2194  				unsigned nr_pages, sector_t *last_block_in_bio,
2195  				struct readahead_control *rac, bool for_write)
2196  {
2197  	struct dnode_of_data dn;
2198  	struct inode *inode = cc->inode;
2199  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2200  	struct bio *bio = *bio_ret;
2201  	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2202  	sector_t last_block_in_file;
2203  	const unsigned blocksize = blks_to_bytes(inode, 1);
2204  	struct decompress_io_ctx *dic = NULL;
2205  	struct extent_info ei = {};
2206  	bool from_dnode = true;
2207  	int i;
2208  	int ret = 0;
2209  
2210  	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2211  
2212  	last_block_in_file = bytes_to_blks(inode,
2213  			f2fs_readpage_limit(inode) + blocksize - 1);
2214  
2215  	/* get rid of pages beyond EOF */
2216  	for (i = 0; i < cc->cluster_size; i++) {
2217  		struct page *page = cc->rpages[i];
2218  		struct folio *folio;
2219  
2220  		if (!page)
2221  			continue;
2222  
2223  		folio = page_folio(page);
2224  		if ((sector_t)folio->index >= last_block_in_file) {
2225  			folio_zero_segment(folio, 0, folio_size(folio));
2226  			if (!folio_test_uptodate(folio))
2227  				folio_mark_uptodate(folio);
2228  		} else if (!folio_test_uptodate(folio)) {
2229  			continue;
2230  		}
2231  		folio_unlock(folio);
2232  		if (for_write)
2233  			folio_put(folio);
2234  		cc->rpages[i] = NULL;
2235  		cc->nr_rpages--;
2236  	}
2237  
2238  	/* we are done since all pages are beyond EOF */
2239  	if (f2fs_cluster_is_empty(cc))
2240  		goto out;
2241  
2242  	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2243  		from_dnode = false;
2244  
2245  	if (!from_dnode)
2246  		goto skip_reading_dnode;
2247  
2248  	set_new_dnode(&dn, inode, NULL, NULL, 0);
2249  	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2250  	if (ret)
2251  		goto out;
2252  
2253  	if (unlikely(f2fs_cp_error(sbi))) {
2254  		ret = -EIO;
2255  		goto out_put_dnode;
2256  	}
2257  	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2258  
2259  skip_reading_dnode:
2260  	for (i = 1; i < cc->cluster_size; i++) {
2261  		block_t blkaddr;
2262  
2263  		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2264  					dn.ofs_in_node + i) :
2265  					ei.blk + i - 1;
2266  
2267  		if (!__is_valid_data_blkaddr(blkaddr))
2268  			break;
2269  
2270  		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2271  			ret = -EFAULT;
2272  			goto out_put_dnode;
2273  		}
2274  		cc->nr_cpages++;
2275  
2276  		if (!from_dnode && i >= ei.c_len)
2277  			break;
2278  	}
2279  
2280  	/* nothing to decompress */
2281  	if (cc->nr_cpages == 0) {
2282  		ret = 0;
2283  		goto out_put_dnode;
2284  	}
2285  
2286  	dic = f2fs_alloc_dic(cc);
2287  	if (IS_ERR(dic)) {
2288  		ret = PTR_ERR(dic);
2289  		goto out_put_dnode;
2290  	}
2291  
2292  	for (i = 0; i < cc->nr_cpages; i++) {
2293  		struct folio *folio = page_folio(dic->cpages[i]);
2294  		block_t blkaddr;
2295  		struct bio_post_read_ctx *ctx;
2296  
2297  		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2298  					dn.ofs_in_node + i + 1) :
2299  					ei.blk + i;
2300  
2301  		f2fs_wait_on_block_writeback(inode, blkaddr);
2302  
2303  		if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2304  								blkaddr)) {
2305  			if (atomic_dec_and_test(&dic->remaining_pages)) {
2306  				f2fs_decompress_cluster(dic, true);
2307  				break;
2308  			}
2309  			continue;
2310  		}
2311  
2312  		if (bio && (!page_is_mergeable(sbi, bio,
2313  					*last_block_in_bio, blkaddr) ||
2314  		    !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2315  submit_and_realloc:
2316  			f2fs_submit_read_bio(sbi, bio, DATA);
2317  			bio = NULL;
2318  		}
2319  
2320  		if (!bio) {
2321  			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2322  					f2fs_ra_op_flags(rac),
2323  					folio->index, for_write);
2324  			if (IS_ERR(bio)) {
2325  				ret = PTR_ERR(bio);
2326  				f2fs_decompress_end_io(dic, ret, true);
2327  				f2fs_put_dnode(&dn);
2328  				*bio_ret = NULL;
2329  				return ret;
2330  			}
2331  		}
2332  
2333  		if (!bio_add_folio(bio, folio, blocksize, 0))
2334  			goto submit_and_realloc;
2335  
2336  		ctx = get_post_read_ctx(bio);
2337  		ctx->enabled_steps |= STEP_DECOMPRESS;
2338  		refcount_inc(&dic->refcnt);
2339  
2340  		inc_page_count(sbi, F2FS_RD_DATA);
2341  		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2342  		*last_block_in_bio = blkaddr;
2343  	}
2344  
2345  	if (from_dnode)
2346  		f2fs_put_dnode(&dn);
2347  
2348  	*bio_ret = bio;
2349  	return 0;
2350  
2351  out_put_dnode:
2352  	if (from_dnode)
2353  		f2fs_put_dnode(&dn);
2354  out:
2355  	for (i = 0; i < cc->cluster_size; i++) {
2356  		if (cc->rpages[i]) {
2357  			ClearPageUptodate(cc->rpages[i]);
2358  			unlock_page(cc->rpages[i]);
2359  		}
2360  	}
2361  	*bio_ret = bio;
2362  	return ret;
2363  }
2364  #endif
2365  
2366  /*
2367   * This function was originally taken from fs/mpage.c, and customized for f2fs.
2368   * Major change was from block_size == page_size in f2fs by default.
2369   */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2370  static int f2fs_mpage_readpages(struct inode *inode,
2371  		struct readahead_control *rac, struct folio *folio)
2372  {
2373  	struct bio *bio = NULL;
2374  	sector_t last_block_in_bio = 0;
2375  	struct f2fs_map_blocks map;
2376  #ifdef CONFIG_F2FS_FS_COMPRESSION
2377  	struct compress_ctx cc = {
2378  		.inode = inode,
2379  		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2380  		.cluster_size = F2FS_I(inode)->i_cluster_size,
2381  		.cluster_idx = NULL_CLUSTER,
2382  		.rpages = NULL,
2383  		.cpages = NULL,
2384  		.nr_rpages = 0,
2385  		.nr_cpages = 0,
2386  	};
2387  	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2388  #endif
2389  	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2390  	unsigned max_nr_pages = nr_pages;
2391  	pgoff_t index;
2392  	int ret = 0;
2393  
2394  	map.m_pblk = 0;
2395  	map.m_lblk = 0;
2396  	map.m_len = 0;
2397  	map.m_flags = 0;
2398  	map.m_next_pgofs = NULL;
2399  	map.m_next_extent = NULL;
2400  	map.m_seg_type = NO_CHECK_TYPE;
2401  	map.m_may_create = false;
2402  
2403  	for (; nr_pages; nr_pages--) {
2404  		if (rac) {
2405  			folio = readahead_folio(rac);
2406  			prefetchw(&folio->flags);
2407  		}
2408  
2409  		index = folio_index(folio);
2410  
2411  #ifdef CONFIG_F2FS_FS_COMPRESSION
2412  		if (!f2fs_compressed_file(inode))
2413  			goto read_single_page;
2414  
2415  		/* there are remained compressed pages, submit them */
2416  		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2417  			ret = f2fs_read_multi_pages(&cc, &bio,
2418  						max_nr_pages,
2419  						&last_block_in_bio,
2420  						rac, false);
2421  			f2fs_destroy_compress_ctx(&cc, false);
2422  			if (ret)
2423  				goto set_error_page;
2424  		}
2425  		if (cc.cluster_idx == NULL_CLUSTER) {
2426  			if (nc_cluster_idx == index >> cc.log_cluster_size)
2427  				goto read_single_page;
2428  
2429  			ret = f2fs_is_compressed_cluster(inode, index);
2430  			if (ret < 0)
2431  				goto set_error_page;
2432  			else if (!ret) {
2433  				nc_cluster_idx =
2434  					index >> cc.log_cluster_size;
2435  				goto read_single_page;
2436  			}
2437  
2438  			nc_cluster_idx = NULL_CLUSTER;
2439  		}
2440  		ret = f2fs_init_compress_ctx(&cc);
2441  		if (ret)
2442  			goto set_error_page;
2443  
2444  		f2fs_compress_ctx_add_page(&cc, folio);
2445  
2446  		goto next_page;
2447  read_single_page:
2448  #endif
2449  
2450  		ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2451  					&bio, &last_block_in_bio, rac);
2452  		if (ret) {
2453  #ifdef CONFIG_F2FS_FS_COMPRESSION
2454  set_error_page:
2455  #endif
2456  			folio_zero_segment(folio, 0, folio_size(folio));
2457  			folio_unlock(folio);
2458  		}
2459  #ifdef CONFIG_F2FS_FS_COMPRESSION
2460  next_page:
2461  #endif
2462  
2463  #ifdef CONFIG_F2FS_FS_COMPRESSION
2464  		if (f2fs_compressed_file(inode)) {
2465  			/* last page */
2466  			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2467  				ret = f2fs_read_multi_pages(&cc, &bio,
2468  							max_nr_pages,
2469  							&last_block_in_bio,
2470  							rac, false);
2471  				f2fs_destroy_compress_ctx(&cc, false);
2472  			}
2473  		}
2474  #endif
2475  	}
2476  	if (bio)
2477  		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2478  	return ret;
2479  }
2480  
f2fs_read_data_folio(struct file * file,struct folio * folio)2481  static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2482  {
2483  	struct inode *inode = folio_file_mapping(folio)->host;
2484  	int ret = -EAGAIN;
2485  
2486  	trace_f2fs_readpage(folio, DATA);
2487  
2488  	if (!f2fs_is_compress_backend_ready(inode)) {
2489  		folio_unlock(folio);
2490  		return -EOPNOTSUPP;
2491  	}
2492  
2493  	/* If the file has inline data, try to read it directly */
2494  	if (f2fs_has_inline_data(inode))
2495  		ret = f2fs_read_inline_data(inode, folio);
2496  	if (ret == -EAGAIN)
2497  		ret = f2fs_mpage_readpages(inode, NULL, folio);
2498  	return ret;
2499  }
2500  
f2fs_readahead(struct readahead_control * rac)2501  static void f2fs_readahead(struct readahead_control *rac)
2502  {
2503  	struct inode *inode = rac->mapping->host;
2504  
2505  	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2506  
2507  	if (!f2fs_is_compress_backend_ready(inode))
2508  		return;
2509  
2510  	/* If the file has inline data, skip readahead */
2511  	if (f2fs_has_inline_data(inode))
2512  		return;
2513  
2514  	f2fs_mpage_readpages(inode, rac, NULL);
2515  }
2516  
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2517  int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2518  {
2519  	struct inode *inode = fio->page->mapping->host;
2520  	struct page *mpage, *page;
2521  	gfp_t gfp_flags = GFP_NOFS;
2522  
2523  	if (!f2fs_encrypted_file(inode))
2524  		return 0;
2525  
2526  	page = fio->compressed_page ? fio->compressed_page : fio->page;
2527  
2528  	if (fscrypt_inode_uses_inline_crypto(inode))
2529  		return 0;
2530  
2531  retry_encrypt:
2532  	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2533  					PAGE_SIZE, 0, gfp_flags);
2534  	if (IS_ERR(fio->encrypted_page)) {
2535  		/* flush pending IOs and wait for a while in the ENOMEM case */
2536  		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2537  			f2fs_flush_merged_writes(fio->sbi);
2538  			memalloc_retry_wait(GFP_NOFS);
2539  			gfp_flags |= __GFP_NOFAIL;
2540  			goto retry_encrypt;
2541  		}
2542  		return PTR_ERR(fio->encrypted_page);
2543  	}
2544  
2545  	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2546  	if (mpage) {
2547  		if (PageUptodate(mpage))
2548  			memcpy(page_address(mpage),
2549  				page_address(fio->encrypted_page), PAGE_SIZE);
2550  		f2fs_put_page(mpage, 1);
2551  	}
2552  	return 0;
2553  }
2554  
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2555  static inline bool check_inplace_update_policy(struct inode *inode,
2556  				struct f2fs_io_info *fio)
2557  {
2558  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2559  
2560  	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2561  	    is_inode_flag_set(inode, FI_OPU_WRITE))
2562  		return false;
2563  	if (IS_F2FS_IPU_FORCE(sbi))
2564  		return true;
2565  	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2566  		return true;
2567  	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2568  		return true;
2569  	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2570  	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2571  		return true;
2572  
2573  	/*
2574  	 * IPU for rewrite async pages
2575  	 */
2576  	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2577  	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2578  		return true;
2579  
2580  	/* this is only set during fdatasync */
2581  	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2582  		return true;
2583  
2584  	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2585  			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2586  		return true;
2587  
2588  	return false;
2589  }
2590  
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2591  bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2592  {
2593  	/* swap file is migrating in aligned write mode */
2594  	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2595  		return false;
2596  
2597  	if (f2fs_is_pinned_file(inode))
2598  		return true;
2599  
2600  	/* if this is cold file, we should overwrite to avoid fragmentation */
2601  	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2602  		return true;
2603  
2604  	return check_inplace_update_policy(inode, fio);
2605  }
2606  
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2607  bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2608  {
2609  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2610  
2611  	/* The below cases were checked when setting it. */
2612  	if (f2fs_is_pinned_file(inode))
2613  		return false;
2614  	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2615  		return true;
2616  	if (f2fs_lfs_mode(sbi))
2617  		return true;
2618  	if (S_ISDIR(inode->i_mode))
2619  		return true;
2620  	if (IS_NOQUOTA(inode))
2621  		return true;
2622  	if (f2fs_used_in_atomic_write(inode))
2623  		return true;
2624  	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2625  	if (f2fs_compressed_file(inode) &&
2626  		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2627  		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2628  		return true;
2629  
2630  	/* swap file is migrating in aligned write mode */
2631  	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2632  		return true;
2633  
2634  	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2635  		return true;
2636  
2637  	if (fio) {
2638  		if (page_private_gcing(fio->page))
2639  			return true;
2640  		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2641  			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2642  			return true;
2643  	}
2644  	return false;
2645  }
2646  
need_inplace_update(struct f2fs_io_info * fio)2647  static inline bool need_inplace_update(struct f2fs_io_info *fio)
2648  {
2649  	struct inode *inode = fio->page->mapping->host;
2650  
2651  	if (f2fs_should_update_outplace(inode, fio))
2652  		return false;
2653  
2654  	return f2fs_should_update_inplace(inode, fio);
2655  }
2656  
f2fs_do_write_data_page(struct f2fs_io_info * fio)2657  int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2658  {
2659  	struct folio *folio = page_folio(fio->page);
2660  	struct inode *inode = folio->mapping->host;
2661  	struct dnode_of_data dn;
2662  	struct node_info ni;
2663  	bool ipu_force = false;
2664  	bool atomic_commit;
2665  	int err = 0;
2666  
2667  	/* Use COW inode to make dnode_of_data for atomic write */
2668  	atomic_commit = f2fs_is_atomic_file(inode) &&
2669  				page_private_atomic(folio_page(folio, 0));
2670  	if (atomic_commit)
2671  		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2672  	else
2673  		set_new_dnode(&dn, inode, NULL, NULL, 0);
2674  
2675  	if (need_inplace_update(fio) &&
2676  	    f2fs_lookup_read_extent_cache_block(inode, folio->index,
2677  						&fio->old_blkaddr)) {
2678  		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2679  						DATA_GENERIC_ENHANCE))
2680  			return -EFSCORRUPTED;
2681  
2682  		ipu_force = true;
2683  		fio->need_lock = LOCK_DONE;
2684  		goto got_it;
2685  	}
2686  
2687  	/* Deadlock due to between page->lock and f2fs_lock_op */
2688  	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2689  		return -EAGAIN;
2690  
2691  	err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2692  	if (err)
2693  		goto out;
2694  
2695  	fio->old_blkaddr = dn.data_blkaddr;
2696  
2697  	/* This page is already truncated */
2698  	if (fio->old_blkaddr == NULL_ADDR) {
2699  		folio_clear_uptodate(folio);
2700  		clear_page_private_gcing(folio_page(folio, 0));
2701  		goto out_writepage;
2702  	}
2703  got_it:
2704  	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2705  		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2706  						DATA_GENERIC_ENHANCE)) {
2707  		err = -EFSCORRUPTED;
2708  		goto out_writepage;
2709  	}
2710  
2711  	/* wait for GCed page writeback via META_MAPPING */
2712  	if (fio->meta_gc)
2713  		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2714  
2715  	/*
2716  	 * If current allocation needs SSR,
2717  	 * it had better in-place writes for updated data.
2718  	 */
2719  	if (ipu_force ||
2720  		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2721  					need_inplace_update(fio))) {
2722  		err = f2fs_encrypt_one_page(fio);
2723  		if (err)
2724  			goto out_writepage;
2725  
2726  		folio_start_writeback(folio);
2727  		f2fs_put_dnode(&dn);
2728  		if (fio->need_lock == LOCK_REQ)
2729  			f2fs_unlock_op(fio->sbi);
2730  		err = f2fs_inplace_write_data(fio);
2731  		if (err) {
2732  			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2733  				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2734  			folio_end_writeback(folio);
2735  		} else {
2736  			set_inode_flag(inode, FI_UPDATE_WRITE);
2737  		}
2738  		trace_f2fs_do_write_data_page(folio, IPU);
2739  		return err;
2740  	}
2741  
2742  	if (fio->need_lock == LOCK_RETRY) {
2743  		if (!f2fs_trylock_op(fio->sbi)) {
2744  			err = -EAGAIN;
2745  			goto out_writepage;
2746  		}
2747  		fio->need_lock = LOCK_REQ;
2748  	}
2749  
2750  	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2751  	if (err)
2752  		goto out_writepage;
2753  
2754  	fio->version = ni.version;
2755  
2756  	err = f2fs_encrypt_one_page(fio);
2757  	if (err)
2758  		goto out_writepage;
2759  
2760  	folio_start_writeback(folio);
2761  
2762  	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2763  		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2764  
2765  	/* LFS mode write path */
2766  	f2fs_outplace_write_data(&dn, fio);
2767  	trace_f2fs_do_write_data_page(folio, OPU);
2768  	set_inode_flag(inode, FI_APPEND_WRITE);
2769  	if (atomic_commit)
2770  		clear_page_private_atomic(folio_page(folio, 0));
2771  out_writepage:
2772  	f2fs_put_dnode(&dn);
2773  out:
2774  	if (fio->need_lock == LOCK_REQ)
2775  		f2fs_unlock_op(fio->sbi);
2776  	return err;
2777  }
2778  
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2779  int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2780  				struct bio **bio,
2781  				sector_t *last_block,
2782  				struct writeback_control *wbc,
2783  				enum iostat_type io_type,
2784  				int compr_blocks,
2785  				bool allow_balance)
2786  {
2787  	struct inode *inode = folio->mapping->host;
2788  	struct page *page = folio_page(folio, 0);
2789  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2790  	loff_t i_size = i_size_read(inode);
2791  	const pgoff_t end_index = ((unsigned long long)i_size)
2792  							>> PAGE_SHIFT;
2793  	loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2794  	unsigned offset = 0;
2795  	bool need_balance_fs = false;
2796  	bool quota_inode = IS_NOQUOTA(inode);
2797  	int err = 0;
2798  	struct f2fs_io_info fio = {
2799  		.sbi = sbi,
2800  		.ino = inode->i_ino,
2801  		.type = DATA,
2802  		.op = REQ_OP_WRITE,
2803  		.op_flags = wbc_to_write_flags(wbc),
2804  		.old_blkaddr = NULL_ADDR,
2805  		.page = page,
2806  		.encrypted_page = NULL,
2807  		.submitted = 0,
2808  		.compr_blocks = compr_blocks,
2809  		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2810  		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2811  		.io_type = io_type,
2812  		.io_wbc = wbc,
2813  		.bio = bio,
2814  		.last_block = last_block,
2815  	};
2816  
2817  	trace_f2fs_writepage(folio, DATA);
2818  
2819  	/* we should bypass data pages to proceed the kworker jobs */
2820  	if (unlikely(f2fs_cp_error(sbi))) {
2821  		mapping_set_error(folio->mapping, -EIO);
2822  		/*
2823  		 * don't drop any dirty dentry pages for keeping lastest
2824  		 * directory structure.
2825  		 */
2826  		if (S_ISDIR(inode->i_mode) &&
2827  				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2828  			goto redirty_out;
2829  
2830  		/* keep data pages in remount-ro mode */
2831  		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2832  			goto redirty_out;
2833  		goto out;
2834  	}
2835  
2836  	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2837  		goto redirty_out;
2838  
2839  	if (folio->index < end_index ||
2840  			f2fs_verity_in_progress(inode) ||
2841  			compr_blocks)
2842  		goto write;
2843  
2844  	/*
2845  	 * If the offset is out-of-range of file size,
2846  	 * this page does not have to be written to disk.
2847  	 */
2848  	offset = i_size & (PAGE_SIZE - 1);
2849  	if ((folio->index >= end_index + 1) || !offset)
2850  		goto out;
2851  
2852  	folio_zero_segment(folio, offset, folio_size(folio));
2853  write:
2854  	/* Dentry/quota blocks are controlled by checkpoint */
2855  	if (S_ISDIR(inode->i_mode) || quota_inode) {
2856  		/*
2857  		 * We need to wait for node_write to avoid block allocation during
2858  		 * checkpoint. This can only happen to quota writes which can cause
2859  		 * the below discard race condition.
2860  		 */
2861  		if (quota_inode)
2862  			f2fs_down_read(&sbi->node_write);
2863  
2864  		fio.need_lock = LOCK_DONE;
2865  		err = f2fs_do_write_data_page(&fio);
2866  
2867  		if (quota_inode)
2868  			f2fs_up_read(&sbi->node_write);
2869  
2870  		goto done;
2871  	}
2872  
2873  	if (!wbc->for_reclaim)
2874  		need_balance_fs = true;
2875  	else if (has_not_enough_free_secs(sbi, 0, 0))
2876  		goto redirty_out;
2877  	else
2878  		set_inode_flag(inode, FI_HOT_DATA);
2879  
2880  	err = -EAGAIN;
2881  	if (f2fs_has_inline_data(inode)) {
2882  		err = f2fs_write_inline_data(inode, folio);
2883  		if (!err)
2884  			goto out;
2885  	}
2886  
2887  	if (err == -EAGAIN) {
2888  		err = f2fs_do_write_data_page(&fio);
2889  		if (err == -EAGAIN) {
2890  			f2fs_bug_on(sbi, compr_blocks);
2891  			fio.need_lock = LOCK_REQ;
2892  			err = f2fs_do_write_data_page(&fio);
2893  		}
2894  	}
2895  
2896  	if (err) {
2897  		file_set_keep_isize(inode);
2898  	} else {
2899  		spin_lock(&F2FS_I(inode)->i_size_lock);
2900  		if (F2FS_I(inode)->last_disk_size < psize)
2901  			F2FS_I(inode)->last_disk_size = psize;
2902  		spin_unlock(&F2FS_I(inode)->i_size_lock);
2903  	}
2904  
2905  done:
2906  	if (err && err != -ENOENT)
2907  		goto redirty_out;
2908  
2909  out:
2910  	inode_dec_dirty_pages(inode);
2911  	if (err) {
2912  		folio_clear_uptodate(folio);
2913  		clear_page_private_gcing(page);
2914  	}
2915  
2916  	if (wbc->for_reclaim) {
2917  		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2918  		clear_inode_flag(inode, FI_HOT_DATA);
2919  		f2fs_remove_dirty_inode(inode);
2920  		submitted = NULL;
2921  	}
2922  	folio_unlock(folio);
2923  	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2924  			!F2FS_I(inode)->wb_task && allow_balance)
2925  		f2fs_balance_fs(sbi, need_balance_fs);
2926  
2927  	if (unlikely(f2fs_cp_error(sbi))) {
2928  		f2fs_submit_merged_write(sbi, DATA);
2929  		if (bio && *bio)
2930  			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2931  		submitted = NULL;
2932  	}
2933  
2934  	if (submitted)
2935  		*submitted = fio.submitted;
2936  
2937  	return 0;
2938  
2939  redirty_out:
2940  	folio_redirty_for_writepage(wbc, folio);
2941  	/*
2942  	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2943  	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2944  	 * file_write_and_wait_range() will see EIO error, which is critical
2945  	 * to return value of fsync() followed by atomic_write failure to user.
2946  	 */
2947  	if (!err || wbc->for_reclaim)
2948  		return AOP_WRITEPAGE_ACTIVATE;
2949  	folio_unlock(folio);
2950  	return err;
2951  }
2952  
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2953  static int f2fs_write_data_page(struct page *page,
2954  					struct writeback_control *wbc)
2955  {
2956  	struct folio *folio = page_folio(page);
2957  #ifdef CONFIG_F2FS_FS_COMPRESSION
2958  	struct inode *inode = folio->mapping->host;
2959  
2960  	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2961  		goto out;
2962  
2963  	if (f2fs_compressed_file(inode)) {
2964  		if (f2fs_is_compressed_cluster(inode, folio->index)) {
2965  			folio_redirty_for_writepage(wbc, folio);
2966  			return AOP_WRITEPAGE_ACTIVATE;
2967  		}
2968  	}
2969  out:
2970  #endif
2971  
2972  	return f2fs_write_single_data_page(folio, NULL, NULL, NULL,
2973  						wbc, FS_DATA_IO, 0, true);
2974  }
2975  
2976  /*
2977   * This function was copied from write_cache_pages from mm/page-writeback.c.
2978   * The major change is making write step of cold data page separately from
2979   * warm/hot data page.
2980   */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2981  static int f2fs_write_cache_pages(struct address_space *mapping,
2982  					struct writeback_control *wbc,
2983  					enum iostat_type io_type)
2984  {
2985  	int ret = 0;
2986  	int done = 0, retry = 0;
2987  	struct page *pages_local[F2FS_ONSTACK_PAGES];
2988  	struct page **pages = pages_local;
2989  	struct folio_batch fbatch;
2990  	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2991  	struct bio *bio = NULL;
2992  	sector_t last_block;
2993  #ifdef CONFIG_F2FS_FS_COMPRESSION
2994  	struct inode *inode = mapping->host;
2995  	struct compress_ctx cc = {
2996  		.inode = inode,
2997  		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2998  		.cluster_size = F2FS_I(inode)->i_cluster_size,
2999  		.cluster_idx = NULL_CLUSTER,
3000  		.rpages = NULL,
3001  		.nr_rpages = 0,
3002  		.cpages = NULL,
3003  		.valid_nr_cpages = 0,
3004  		.rbuf = NULL,
3005  		.cbuf = NULL,
3006  		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3007  		.private = NULL,
3008  	};
3009  #endif
3010  	int nr_folios, p, idx;
3011  	int nr_pages;
3012  	unsigned int max_pages = F2FS_ONSTACK_PAGES;
3013  	pgoff_t index;
3014  	pgoff_t end;		/* Inclusive */
3015  	pgoff_t done_index;
3016  	int range_whole = 0;
3017  	xa_mark_t tag;
3018  	int nwritten = 0;
3019  	int submitted = 0;
3020  	int i;
3021  
3022  #ifdef CONFIG_F2FS_FS_COMPRESSION
3023  	if (f2fs_compressed_file(inode) &&
3024  		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3025  		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3026  				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3027  		max_pages = 1 << cc.log_cluster_size;
3028  	}
3029  #endif
3030  
3031  	folio_batch_init(&fbatch);
3032  
3033  	if (get_dirty_pages(mapping->host) <=
3034  				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3035  		set_inode_flag(mapping->host, FI_HOT_DATA);
3036  	else
3037  		clear_inode_flag(mapping->host, FI_HOT_DATA);
3038  
3039  	if (wbc->range_cyclic) {
3040  		index = mapping->writeback_index; /* prev offset */
3041  		end = -1;
3042  	} else {
3043  		index = wbc->range_start >> PAGE_SHIFT;
3044  		end = wbc->range_end >> PAGE_SHIFT;
3045  		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3046  			range_whole = 1;
3047  	}
3048  	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3049  		tag = PAGECACHE_TAG_TOWRITE;
3050  	else
3051  		tag = PAGECACHE_TAG_DIRTY;
3052  retry:
3053  	retry = 0;
3054  	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3055  		tag_pages_for_writeback(mapping, index, end);
3056  	done_index = index;
3057  	while (!done && !retry && (index <= end)) {
3058  		nr_pages = 0;
3059  again:
3060  		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3061  				tag, &fbatch);
3062  		if (nr_folios == 0) {
3063  			if (nr_pages)
3064  				goto write;
3065  			break;
3066  		}
3067  
3068  		for (i = 0; i < nr_folios; i++) {
3069  			struct folio *folio = fbatch.folios[i];
3070  
3071  			idx = 0;
3072  			p = folio_nr_pages(folio);
3073  add_more:
3074  			pages[nr_pages] = folio_page(folio, idx);
3075  			folio_get(folio);
3076  			if (++nr_pages == max_pages) {
3077  				index = folio->index + idx + 1;
3078  				folio_batch_release(&fbatch);
3079  				goto write;
3080  			}
3081  			if (++idx < p)
3082  				goto add_more;
3083  		}
3084  		folio_batch_release(&fbatch);
3085  		goto again;
3086  write:
3087  		for (i = 0; i < nr_pages; i++) {
3088  			struct page *page = pages[i];
3089  			struct folio *folio = page_folio(page);
3090  			bool need_readd;
3091  readd:
3092  			need_readd = false;
3093  #ifdef CONFIG_F2FS_FS_COMPRESSION
3094  			if (f2fs_compressed_file(inode)) {
3095  				void *fsdata = NULL;
3096  				struct page *pagep;
3097  				int ret2;
3098  
3099  				ret = f2fs_init_compress_ctx(&cc);
3100  				if (ret) {
3101  					done = 1;
3102  					break;
3103  				}
3104  
3105  				if (!f2fs_cluster_can_merge_page(&cc,
3106  								folio->index)) {
3107  					ret = f2fs_write_multi_pages(&cc,
3108  						&submitted, wbc, io_type);
3109  					if (!ret)
3110  						need_readd = true;
3111  					goto result;
3112  				}
3113  
3114  				if (unlikely(f2fs_cp_error(sbi)))
3115  					goto lock_folio;
3116  
3117  				if (!f2fs_cluster_is_empty(&cc))
3118  					goto lock_folio;
3119  
3120  				if (f2fs_all_cluster_page_ready(&cc,
3121  					pages, i, nr_pages, true))
3122  					goto lock_folio;
3123  
3124  				ret2 = f2fs_prepare_compress_overwrite(
3125  							inode, &pagep,
3126  							folio->index, &fsdata);
3127  				if (ret2 < 0) {
3128  					ret = ret2;
3129  					done = 1;
3130  					break;
3131  				} else if (ret2 &&
3132  					(!f2fs_compress_write_end(inode,
3133  						fsdata, folio->index, 1) ||
3134  					 !f2fs_all_cluster_page_ready(&cc,
3135  						pages, i, nr_pages,
3136  						false))) {
3137  					retry = 1;
3138  					break;
3139  				}
3140  			}
3141  #endif
3142  			/* give a priority to WB_SYNC threads */
3143  			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3144  					wbc->sync_mode == WB_SYNC_NONE) {
3145  				done = 1;
3146  				break;
3147  			}
3148  #ifdef CONFIG_F2FS_FS_COMPRESSION
3149  lock_folio:
3150  #endif
3151  			done_index = folio->index;
3152  retry_write:
3153  			folio_lock(folio);
3154  
3155  			if (unlikely(folio->mapping != mapping)) {
3156  continue_unlock:
3157  				folio_unlock(folio);
3158  				continue;
3159  			}
3160  
3161  			if (!folio_test_dirty(folio)) {
3162  				/* someone wrote it for us */
3163  				goto continue_unlock;
3164  			}
3165  
3166  			if (folio_test_writeback(folio)) {
3167  				if (wbc->sync_mode == WB_SYNC_NONE)
3168  					goto continue_unlock;
3169  				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3170  			}
3171  
3172  			if (!folio_clear_dirty_for_io(folio))
3173  				goto continue_unlock;
3174  
3175  #ifdef CONFIG_F2FS_FS_COMPRESSION
3176  			if (f2fs_compressed_file(inode)) {
3177  				folio_get(folio);
3178  				f2fs_compress_ctx_add_page(&cc, folio);
3179  				continue;
3180  			}
3181  #endif
3182  			ret = f2fs_write_single_data_page(folio,
3183  					&submitted, &bio, &last_block,
3184  					wbc, io_type, 0, true);
3185  			if (ret == AOP_WRITEPAGE_ACTIVATE)
3186  				folio_unlock(folio);
3187  #ifdef CONFIG_F2FS_FS_COMPRESSION
3188  result:
3189  #endif
3190  			nwritten += submitted;
3191  			wbc->nr_to_write -= submitted;
3192  
3193  			if (unlikely(ret)) {
3194  				/*
3195  				 * keep nr_to_write, since vfs uses this to
3196  				 * get # of written pages.
3197  				 */
3198  				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3199  					ret = 0;
3200  					goto next;
3201  				} else if (ret == -EAGAIN) {
3202  					ret = 0;
3203  					if (wbc->sync_mode == WB_SYNC_ALL) {
3204  						f2fs_io_schedule_timeout(
3205  							DEFAULT_IO_TIMEOUT);
3206  						goto retry_write;
3207  					}
3208  					goto next;
3209  				}
3210  				done_index = folio_next_index(folio);
3211  				done = 1;
3212  				break;
3213  			}
3214  
3215  			if (wbc->nr_to_write <= 0 &&
3216  					wbc->sync_mode == WB_SYNC_NONE) {
3217  				done = 1;
3218  				break;
3219  			}
3220  next:
3221  			if (need_readd)
3222  				goto readd;
3223  		}
3224  		release_pages(pages, nr_pages);
3225  		cond_resched();
3226  	}
3227  #ifdef CONFIG_F2FS_FS_COMPRESSION
3228  	/* flush remained pages in compress cluster */
3229  	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3230  		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3231  		nwritten += submitted;
3232  		wbc->nr_to_write -= submitted;
3233  		if (ret) {
3234  			done = 1;
3235  			retry = 0;
3236  		}
3237  	}
3238  	if (f2fs_compressed_file(inode))
3239  		f2fs_destroy_compress_ctx(&cc, false);
3240  #endif
3241  	if (retry) {
3242  		index = 0;
3243  		end = -1;
3244  		goto retry;
3245  	}
3246  	if (wbc->range_cyclic && !done)
3247  		done_index = 0;
3248  	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3249  		mapping->writeback_index = done_index;
3250  
3251  	if (nwritten)
3252  		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3253  								NULL, 0, DATA);
3254  	/* submit cached bio of IPU write */
3255  	if (bio)
3256  		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3257  
3258  #ifdef CONFIG_F2FS_FS_COMPRESSION
3259  	if (pages != pages_local)
3260  		kfree(pages);
3261  #endif
3262  
3263  	return ret;
3264  }
3265  
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3266  static inline bool __should_serialize_io(struct inode *inode,
3267  					struct writeback_control *wbc)
3268  {
3269  	/* to avoid deadlock in path of data flush */
3270  	if (F2FS_I(inode)->wb_task)
3271  		return false;
3272  
3273  	if (!S_ISREG(inode->i_mode))
3274  		return false;
3275  	if (IS_NOQUOTA(inode))
3276  		return false;
3277  
3278  	if (f2fs_need_compress_data(inode))
3279  		return true;
3280  	if (wbc->sync_mode != WB_SYNC_ALL)
3281  		return true;
3282  	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3283  		return true;
3284  	return false;
3285  }
3286  
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3287  static int __f2fs_write_data_pages(struct address_space *mapping,
3288  						struct writeback_control *wbc,
3289  						enum iostat_type io_type)
3290  {
3291  	struct inode *inode = mapping->host;
3292  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3293  	struct blk_plug plug;
3294  	int ret;
3295  	bool locked = false;
3296  
3297  	/* deal with chardevs and other special file */
3298  	if (!mapping->a_ops->writepage)
3299  		return 0;
3300  
3301  	/* skip writing if there is no dirty page in this inode */
3302  	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3303  		return 0;
3304  
3305  	/* during POR, we don't need to trigger writepage at all. */
3306  	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3307  		goto skip_write;
3308  
3309  	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3310  			wbc->sync_mode == WB_SYNC_NONE &&
3311  			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3312  			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3313  		goto skip_write;
3314  
3315  	/* skip writing in file defragment preparing stage */
3316  	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3317  		goto skip_write;
3318  
3319  	trace_f2fs_writepages(mapping->host, wbc, DATA);
3320  
3321  	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3322  	if (wbc->sync_mode == WB_SYNC_ALL)
3323  		atomic_inc(&sbi->wb_sync_req[DATA]);
3324  	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3325  		/* to avoid potential deadlock */
3326  		if (current->plug)
3327  			blk_finish_plug(current->plug);
3328  		goto skip_write;
3329  	}
3330  
3331  	if (__should_serialize_io(inode, wbc)) {
3332  		mutex_lock(&sbi->writepages);
3333  		locked = true;
3334  	}
3335  
3336  	blk_start_plug(&plug);
3337  	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3338  	blk_finish_plug(&plug);
3339  
3340  	if (locked)
3341  		mutex_unlock(&sbi->writepages);
3342  
3343  	if (wbc->sync_mode == WB_SYNC_ALL)
3344  		atomic_dec(&sbi->wb_sync_req[DATA]);
3345  	/*
3346  	 * if some pages were truncated, we cannot guarantee its mapping->host
3347  	 * to detect pending bios.
3348  	 */
3349  
3350  	f2fs_remove_dirty_inode(inode);
3351  	return ret;
3352  
3353  skip_write:
3354  	wbc->pages_skipped += get_dirty_pages(inode);
3355  	trace_f2fs_writepages(mapping->host, wbc, DATA);
3356  	return 0;
3357  }
3358  
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3359  static int f2fs_write_data_pages(struct address_space *mapping,
3360  			    struct writeback_control *wbc)
3361  {
3362  	struct inode *inode = mapping->host;
3363  
3364  	return __f2fs_write_data_pages(mapping, wbc,
3365  			F2FS_I(inode)->cp_task == current ?
3366  			FS_CP_DATA_IO : FS_DATA_IO);
3367  }
3368  
f2fs_write_failed(struct inode * inode,loff_t to)3369  void f2fs_write_failed(struct inode *inode, loff_t to)
3370  {
3371  	loff_t i_size = i_size_read(inode);
3372  
3373  	if (IS_NOQUOTA(inode))
3374  		return;
3375  
3376  	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3377  	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3378  		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3379  		filemap_invalidate_lock(inode->i_mapping);
3380  
3381  		truncate_pagecache(inode, i_size);
3382  		f2fs_truncate_blocks(inode, i_size, true);
3383  
3384  		filemap_invalidate_unlock(inode->i_mapping);
3385  		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3386  	}
3387  }
3388  
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3389  static int prepare_write_begin(struct f2fs_sb_info *sbi,
3390  			struct folio *folio, loff_t pos, unsigned int len,
3391  			block_t *blk_addr, bool *node_changed)
3392  {
3393  	struct inode *inode = folio->mapping->host;
3394  	pgoff_t index = folio->index;
3395  	struct dnode_of_data dn;
3396  	struct page *ipage;
3397  	bool locked = false;
3398  	int flag = F2FS_GET_BLOCK_PRE_AIO;
3399  	int err = 0;
3400  
3401  	/*
3402  	 * If a whole page is being written and we already preallocated all the
3403  	 * blocks, then there is no need to get a block address now.
3404  	 */
3405  	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3406  		return 0;
3407  
3408  	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3409  	if (f2fs_has_inline_data(inode)) {
3410  		if (pos + len > MAX_INLINE_DATA(inode))
3411  			flag = F2FS_GET_BLOCK_DEFAULT;
3412  		f2fs_map_lock(sbi, flag);
3413  		locked = true;
3414  	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3415  		f2fs_map_lock(sbi, flag);
3416  		locked = true;
3417  	}
3418  
3419  restart:
3420  	/* check inline_data */
3421  	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3422  	if (IS_ERR(ipage)) {
3423  		err = PTR_ERR(ipage);
3424  		goto unlock_out;
3425  	}
3426  
3427  	set_new_dnode(&dn, inode, ipage, ipage, 0);
3428  
3429  	if (f2fs_has_inline_data(inode)) {
3430  		if (pos + len <= MAX_INLINE_DATA(inode)) {
3431  			f2fs_do_read_inline_data(folio, ipage);
3432  			set_inode_flag(inode, FI_DATA_EXIST);
3433  			if (inode->i_nlink)
3434  				set_page_private_inline(ipage);
3435  			goto out;
3436  		}
3437  		err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3438  		if (err || dn.data_blkaddr != NULL_ADDR)
3439  			goto out;
3440  	}
3441  
3442  	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3443  						 &dn.data_blkaddr)) {
3444  		if (locked) {
3445  			err = f2fs_reserve_block(&dn, index);
3446  			goto out;
3447  		}
3448  
3449  		/* hole case */
3450  		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3451  		if (!err && dn.data_blkaddr != NULL_ADDR)
3452  			goto out;
3453  		f2fs_put_dnode(&dn);
3454  		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3455  		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3456  		locked = true;
3457  		goto restart;
3458  	}
3459  out:
3460  	if (!err) {
3461  		/* convert_inline_page can make node_changed */
3462  		*blk_addr = dn.data_blkaddr;
3463  		*node_changed = dn.node_changed;
3464  	}
3465  	f2fs_put_dnode(&dn);
3466  unlock_out:
3467  	if (locked)
3468  		f2fs_map_unlock(sbi, flag);
3469  	return err;
3470  }
3471  
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3472  static int __find_data_block(struct inode *inode, pgoff_t index,
3473  				block_t *blk_addr)
3474  {
3475  	struct dnode_of_data dn;
3476  	struct page *ipage;
3477  	int err = 0;
3478  
3479  	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3480  	if (IS_ERR(ipage))
3481  		return PTR_ERR(ipage);
3482  
3483  	set_new_dnode(&dn, inode, ipage, ipage, 0);
3484  
3485  	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3486  						 &dn.data_blkaddr)) {
3487  		/* hole case */
3488  		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3489  		if (err) {
3490  			dn.data_blkaddr = NULL_ADDR;
3491  			err = 0;
3492  		}
3493  	}
3494  	*blk_addr = dn.data_blkaddr;
3495  	f2fs_put_dnode(&dn);
3496  	return err;
3497  }
3498  
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3499  static int __reserve_data_block(struct inode *inode, pgoff_t index,
3500  				block_t *blk_addr, bool *node_changed)
3501  {
3502  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3503  	struct dnode_of_data dn;
3504  	struct page *ipage;
3505  	int err = 0;
3506  
3507  	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3508  
3509  	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3510  	if (IS_ERR(ipage)) {
3511  		err = PTR_ERR(ipage);
3512  		goto unlock_out;
3513  	}
3514  	set_new_dnode(&dn, inode, ipage, ipage, 0);
3515  
3516  	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3517  						&dn.data_blkaddr))
3518  		err = f2fs_reserve_block(&dn, index);
3519  
3520  	*blk_addr = dn.data_blkaddr;
3521  	*node_changed = dn.node_changed;
3522  	f2fs_put_dnode(&dn);
3523  
3524  unlock_out:
3525  	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3526  	return err;
3527  }
3528  
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3529  static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3530  			struct folio *folio, loff_t pos, unsigned int len,
3531  			block_t *blk_addr, bool *node_changed, bool *use_cow)
3532  {
3533  	struct inode *inode = folio->mapping->host;
3534  	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3535  	pgoff_t index = folio->index;
3536  	int err = 0;
3537  	block_t ori_blk_addr = NULL_ADDR;
3538  
3539  	/* If pos is beyond the end of file, reserve a new block in COW inode */
3540  	if ((pos & PAGE_MASK) >= i_size_read(inode))
3541  		goto reserve_block;
3542  
3543  	/* Look for the block in COW inode first */
3544  	err = __find_data_block(cow_inode, index, blk_addr);
3545  	if (err) {
3546  		return err;
3547  	} else if (*blk_addr != NULL_ADDR) {
3548  		*use_cow = true;
3549  		return 0;
3550  	}
3551  
3552  	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3553  		goto reserve_block;
3554  
3555  	/* Look for the block in the original inode */
3556  	err = __find_data_block(inode, index, &ori_blk_addr);
3557  	if (err)
3558  		return err;
3559  
3560  reserve_block:
3561  	/* Finally, we should reserve a new block in COW inode for the update */
3562  	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3563  	if (err)
3564  		return err;
3565  	inc_atomic_write_cnt(inode);
3566  
3567  	if (ori_blk_addr != NULL_ADDR)
3568  		*blk_addr = ori_blk_addr;
3569  	return 0;
3570  }
3571  
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3572  static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3573  		loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3574  {
3575  	struct inode *inode = mapping->host;
3576  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3577  	struct folio *folio;
3578  	pgoff_t index = pos >> PAGE_SHIFT;
3579  	bool need_balance = false;
3580  	bool use_cow = false;
3581  	block_t blkaddr = NULL_ADDR;
3582  	int err = 0;
3583  
3584  	trace_f2fs_write_begin(inode, pos, len);
3585  
3586  	if (!f2fs_is_checkpoint_ready(sbi)) {
3587  		err = -ENOSPC;
3588  		goto fail;
3589  	}
3590  
3591  	/*
3592  	 * We should check this at this moment to avoid deadlock on inode page
3593  	 * and #0 page. The locking rule for inline_data conversion should be:
3594  	 * folio_lock(folio #0) -> folio_lock(inode_page)
3595  	 */
3596  	if (index != 0) {
3597  		err = f2fs_convert_inline_inode(inode);
3598  		if (err)
3599  			goto fail;
3600  	}
3601  
3602  #ifdef CONFIG_F2FS_FS_COMPRESSION
3603  	if (f2fs_compressed_file(inode)) {
3604  		int ret;
3605  		struct page *page;
3606  
3607  		*fsdata = NULL;
3608  
3609  		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3610  			goto repeat;
3611  
3612  		ret = f2fs_prepare_compress_overwrite(inode, &page,
3613  							index, fsdata);
3614  		if (ret < 0) {
3615  			err = ret;
3616  			goto fail;
3617  		} else if (ret) {
3618  			*foliop = page_folio(page);
3619  			return 0;
3620  		}
3621  	}
3622  #endif
3623  
3624  repeat:
3625  	/*
3626  	 * Do not use FGP_STABLE to avoid deadlock.
3627  	 * Will wait that below with our IO control.
3628  	 */
3629  	folio = __filemap_get_folio(mapping, index,
3630  				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3631  	if (IS_ERR(folio)) {
3632  		err = PTR_ERR(folio);
3633  		goto fail;
3634  	}
3635  
3636  	/* TODO: cluster can be compressed due to race with .writepage */
3637  
3638  	*foliop = folio;
3639  
3640  	if (f2fs_is_atomic_file(inode))
3641  		err = prepare_atomic_write_begin(sbi, folio, pos, len,
3642  					&blkaddr, &need_balance, &use_cow);
3643  	else
3644  		err = prepare_write_begin(sbi, folio, pos, len,
3645  					&blkaddr, &need_balance);
3646  	if (err)
3647  		goto put_folio;
3648  
3649  	if (need_balance && !IS_NOQUOTA(inode) &&
3650  			has_not_enough_free_secs(sbi, 0, 0)) {
3651  		folio_unlock(folio);
3652  		f2fs_balance_fs(sbi, true);
3653  		folio_lock(folio);
3654  		if (folio->mapping != mapping) {
3655  			/* The folio got truncated from under us */
3656  			folio_unlock(folio);
3657  			folio_put(folio);
3658  			goto repeat;
3659  		}
3660  	}
3661  
3662  	f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3663  
3664  	if (len == folio_size(folio) || folio_test_uptodate(folio))
3665  		return 0;
3666  
3667  	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3668  	    !f2fs_verity_in_progress(inode)) {
3669  		folio_zero_segment(folio, len, folio_size(folio));
3670  		return 0;
3671  	}
3672  
3673  	if (blkaddr == NEW_ADDR) {
3674  		folio_zero_segment(folio, 0, folio_size(folio));
3675  		folio_mark_uptodate(folio);
3676  	} else {
3677  		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3678  				DATA_GENERIC_ENHANCE_READ)) {
3679  			err = -EFSCORRUPTED;
3680  			goto put_folio;
3681  		}
3682  		err = f2fs_submit_page_read(use_cow ?
3683  				F2FS_I(inode)->cow_inode : inode,
3684  				folio, blkaddr, 0, true);
3685  		if (err)
3686  			goto put_folio;
3687  
3688  		folio_lock(folio);
3689  		if (unlikely(folio->mapping != mapping)) {
3690  			folio_unlock(folio);
3691  			folio_put(folio);
3692  			goto repeat;
3693  		}
3694  		if (unlikely(!folio_test_uptodate(folio))) {
3695  			err = -EIO;
3696  			goto put_folio;
3697  		}
3698  	}
3699  	return 0;
3700  
3701  put_folio:
3702  	folio_unlock(folio);
3703  	folio_put(folio);
3704  fail:
3705  	f2fs_write_failed(inode, pos + len);
3706  	return err;
3707  }
3708  
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3709  static int f2fs_write_end(struct file *file,
3710  			struct address_space *mapping,
3711  			loff_t pos, unsigned len, unsigned copied,
3712  			struct folio *folio, void *fsdata)
3713  {
3714  	struct inode *inode = folio->mapping->host;
3715  
3716  	trace_f2fs_write_end(inode, pos, len, copied);
3717  
3718  	/*
3719  	 * This should be come from len == PAGE_SIZE, and we expect copied
3720  	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3721  	 * let generic_perform_write() try to copy data again through copied=0.
3722  	 */
3723  	if (!folio_test_uptodate(folio)) {
3724  		if (unlikely(copied != len))
3725  			copied = 0;
3726  		else
3727  			folio_mark_uptodate(folio);
3728  	}
3729  
3730  #ifdef CONFIG_F2FS_FS_COMPRESSION
3731  	/* overwrite compressed file */
3732  	if (f2fs_compressed_file(inode) && fsdata) {
3733  		f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3734  		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3735  
3736  		if (pos + copied > i_size_read(inode) &&
3737  				!f2fs_verity_in_progress(inode))
3738  			f2fs_i_size_write(inode, pos + copied);
3739  		return copied;
3740  	}
3741  #endif
3742  
3743  	if (!copied)
3744  		goto unlock_out;
3745  
3746  	folio_mark_dirty(folio);
3747  
3748  	if (f2fs_is_atomic_file(inode))
3749  		set_page_private_atomic(folio_page(folio, 0));
3750  
3751  	if (pos + copied > i_size_read(inode) &&
3752  	    !f2fs_verity_in_progress(inode)) {
3753  		f2fs_i_size_write(inode, pos + copied);
3754  		if (f2fs_is_atomic_file(inode))
3755  			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3756  					pos + copied);
3757  	}
3758  unlock_out:
3759  	folio_unlock(folio);
3760  	folio_put(folio);
3761  	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3762  	return copied;
3763  }
3764  
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3765  void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3766  {
3767  	struct inode *inode = folio->mapping->host;
3768  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3769  
3770  	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3771  				(offset || length != folio_size(folio)))
3772  		return;
3773  
3774  	if (folio_test_dirty(folio)) {
3775  		if (inode->i_ino == F2FS_META_INO(sbi)) {
3776  			dec_page_count(sbi, F2FS_DIRTY_META);
3777  		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3778  			dec_page_count(sbi, F2FS_DIRTY_NODES);
3779  		} else {
3780  			inode_dec_dirty_pages(inode);
3781  			f2fs_remove_dirty_inode(inode);
3782  		}
3783  	}
3784  	clear_page_private_all(&folio->page);
3785  }
3786  
f2fs_release_folio(struct folio * folio,gfp_t wait)3787  bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3788  {
3789  	/* If this is dirty folio, keep private data */
3790  	if (folio_test_dirty(folio))
3791  		return false;
3792  
3793  	clear_page_private_all(&folio->page);
3794  	return true;
3795  }
3796  
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3797  static bool f2fs_dirty_data_folio(struct address_space *mapping,
3798  		struct folio *folio)
3799  {
3800  	struct inode *inode = mapping->host;
3801  
3802  	trace_f2fs_set_page_dirty(folio, DATA);
3803  
3804  	if (!folio_test_uptodate(folio))
3805  		folio_mark_uptodate(folio);
3806  	BUG_ON(folio_test_swapcache(folio));
3807  
3808  	if (filemap_dirty_folio(mapping, folio)) {
3809  		f2fs_update_dirty_folio(inode, folio);
3810  		return true;
3811  	}
3812  	return false;
3813  }
3814  
3815  
f2fs_bmap_compress(struct inode * inode,sector_t block)3816  static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3817  {
3818  #ifdef CONFIG_F2FS_FS_COMPRESSION
3819  	struct dnode_of_data dn;
3820  	sector_t start_idx, blknr = 0;
3821  	int ret;
3822  
3823  	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3824  
3825  	set_new_dnode(&dn, inode, NULL, NULL, 0);
3826  	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3827  	if (ret)
3828  		return 0;
3829  
3830  	if (dn.data_blkaddr != COMPRESS_ADDR) {
3831  		dn.ofs_in_node += block - start_idx;
3832  		blknr = f2fs_data_blkaddr(&dn);
3833  		if (!__is_valid_data_blkaddr(blknr))
3834  			blknr = 0;
3835  	}
3836  
3837  	f2fs_put_dnode(&dn);
3838  	return blknr;
3839  #else
3840  	return 0;
3841  #endif
3842  }
3843  
3844  
f2fs_bmap(struct address_space * mapping,sector_t block)3845  static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3846  {
3847  	struct inode *inode = mapping->host;
3848  	sector_t blknr = 0;
3849  
3850  	if (f2fs_has_inline_data(inode))
3851  		goto out;
3852  
3853  	/* make sure allocating whole blocks */
3854  	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3855  		filemap_write_and_wait(mapping);
3856  
3857  	/* Block number less than F2FS MAX BLOCKS */
3858  	if (unlikely(block >= max_file_blocks(inode)))
3859  		goto out;
3860  
3861  	if (f2fs_compressed_file(inode)) {
3862  		blknr = f2fs_bmap_compress(inode, block);
3863  	} else {
3864  		struct f2fs_map_blocks map;
3865  
3866  		memset(&map, 0, sizeof(map));
3867  		map.m_lblk = block;
3868  		map.m_len = 1;
3869  		map.m_next_pgofs = NULL;
3870  		map.m_seg_type = NO_CHECK_TYPE;
3871  
3872  		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3873  			blknr = map.m_pblk;
3874  	}
3875  out:
3876  	trace_f2fs_bmap(inode, block, blknr);
3877  	return blknr;
3878  }
3879  
3880  #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3881  static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3882  							unsigned int blkcnt)
3883  {
3884  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3885  	unsigned int blkofs;
3886  	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3887  	unsigned int end_blk = start_blk + blkcnt - 1;
3888  	unsigned int secidx = start_blk / blk_per_sec;
3889  	unsigned int end_sec;
3890  	int ret = 0;
3891  
3892  	if (!blkcnt)
3893  		return 0;
3894  	end_sec = end_blk / blk_per_sec;
3895  
3896  	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3897  	filemap_invalidate_lock(inode->i_mapping);
3898  
3899  	set_inode_flag(inode, FI_ALIGNED_WRITE);
3900  	set_inode_flag(inode, FI_OPU_WRITE);
3901  
3902  	for (; secidx <= end_sec; secidx++) {
3903  		unsigned int blkofs_end = secidx == end_sec ?
3904  				end_blk % blk_per_sec : blk_per_sec - 1;
3905  
3906  		f2fs_down_write(&sbi->pin_sem);
3907  
3908  		ret = f2fs_allocate_pinning_section(sbi);
3909  		if (ret) {
3910  			f2fs_up_write(&sbi->pin_sem);
3911  			break;
3912  		}
3913  
3914  		set_inode_flag(inode, FI_SKIP_WRITES);
3915  
3916  		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3917  			struct page *page;
3918  			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3919  
3920  			page = f2fs_get_lock_data_page(inode, blkidx, true);
3921  			if (IS_ERR(page)) {
3922  				f2fs_up_write(&sbi->pin_sem);
3923  				ret = PTR_ERR(page);
3924  				goto done;
3925  			}
3926  
3927  			set_page_dirty(page);
3928  			f2fs_put_page(page, 1);
3929  		}
3930  
3931  		clear_inode_flag(inode, FI_SKIP_WRITES);
3932  
3933  		ret = filemap_fdatawrite(inode->i_mapping);
3934  
3935  		f2fs_up_write(&sbi->pin_sem);
3936  
3937  		if (ret)
3938  			break;
3939  	}
3940  
3941  done:
3942  	clear_inode_flag(inode, FI_SKIP_WRITES);
3943  	clear_inode_flag(inode, FI_OPU_WRITE);
3944  	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3945  
3946  	filemap_invalidate_unlock(inode->i_mapping);
3947  	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3948  
3949  	return ret;
3950  }
3951  
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3952  static int check_swap_activate(struct swap_info_struct *sis,
3953  				struct file *swap_file, sector_t *span)
3954  {
3955  	struct address_space *mapping = swap_file->f_mapping;
3956  	struct inode *inode = mapping->host;
3957  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3958  	block_t cur_lblock;
3959  	block_t last_lblock;
3960  	block_t pblock;
3961  	block_t lowest_pblock = -1;
3962  	block_t highest_pblock = 0;
3963  	int nr_extents = 0;
3964  	unsigned int nr_pblocks;
3965  	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3966  	unsigned int not_aligned = 0;
3967  	int ret = 0;
3968  
3969  	/*
3970  	 * Map all the blocks into the extent list.  This code doesn't try
3971  	 * to be very smart.
3972  	 */
3973  	cur_lblock = 0;
3974  	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3975  
3976  	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3977  		struct f2fs_map_blocks map;
3978  retry:
3979  		cond_resched();
3980  
3981  		memset(&map, 0, sizeof(map));
3982  		map.m_lblk = cur_lblock;
3983  		map.m_len = last_lblock - cur_lblock;
3984  		map.m_next_pgofs = NULL;
3985  		map.m_next_extent = NULL;
3986  		map.m_seg_type = NO_CHECK_TYPE;
3987  		map.m_may_create = false;
3988  
3989  		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3990  		if (ret)
3991  			goto out;
3992  
3993  		/* hole */
3994  		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3995  			f2fs_err(sbi, "Swapfile has holes");
3996  			ret = -EINVAL;
3997  			goto out;
3998  		}
3999  
4000  		pblock = map.m_pblk;
4001  		nr_pblocks = map.m_len;
4002  
4003  		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
4004  				nr_pblocks % blks_per_sec ||
4005  				!f2fs_valid_pinned_area(sbi, pblock)) {
4006  			bool last_extent = false;
4007  
4008  			not_aligned++;
4009  
4010  			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4011  			if (cur_lblock + nr_pblocks > sis->max)
4012  				nr_pblocks -= blks_per_sec;
4013  
4014  			/* this extent is last one */
4015  			if (!nr_pblocks) {
4016  				nr_pblocks = last_lblock - cur_lblock;
4017  				last_extent = true;
4018  			}
4019  
4020  			ret = f2fs_migrate_blocks(inode, cur_lblock,
4021  							nr_pblocks);
4022  			if (ret) {
4023  				if (ret == -ENOENT)
4024  					ret = -EINVAL;
4025  				goto out;
4026  			}
4027  
4028  			if (!last_extent)
4029  				goto retry;
4030  		}
4031  
4032  		if (cur_lblock + nr_pblocks >= sis->max)
4033  			nr_pblocks = sis->max - cur_lblock;
4034  
4035  		if (cur_lblock) {	/* exclude the header page */
4036  			if (pblock < lowest_pblock)
4037  				lowest_pblock = pblock;
4038  			if (pblock + nr_pblocks - 1 > highest_pblock)
4039  				highest_pblock = pblock + nr_pblocks - 1;
4040  		}
4041  
4042  		/*
4043  		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4044  		 */
4045  		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4046  		if (ret < 0)
4047  			goto out;
4048  		nr_extents += ret;
4049  		cur_lblock += nr_pblocks;
4050  	}
4051  	ret = nr_extents;
4052  	*span = 1 + highest_pblock - lowest_pblock;
4053  	if (cur_lblock == 0)
4054  		cur_lblock = 1;	/* force Empty message */
4055  	sis->max = cur_lblock;
4056  	sis->pages = cur_lblock - 1;
4057  	sis->highest_bit = cur_lblock - 1;
4058  out:
4059  	if (not_aligned)
4060  		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4061  			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4062  	return ret;
4063  }
4064  
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4065  static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4066  				sector_t *span)
4067  {
4068  	struct inode *inode = file_inode(file);
4069  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4070  	int ret;
4071  
4072  	if (!S_ISREG(inode->i_mode))
4073  		return -EINVAL;
4074  
4075  	if (f2fs_readonly(sbi->sb))
4076  		return -EROFS;
4077  
4078  	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4079  		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4080  		return -EINVAL;
4081  	}
4082  
4083  	ret = f2fs_convert_inline_inode(inode);
4084  	if (ret)
4085  		return ret;
4086  
4087  	if (!f2fs_disable_compressed_file(inode))
4088  		return -EINVAL;
4089  
4090  	ret = filemap_fdatawrite(inode->i_mapping);
4091  	if (ret < 0)
4092  		return ret;
4093  
4094  	f2fs_precache_extents(inode);
4095  
4096  	ret = check_swap_activate(sis, file, span);
4097  	if (ret < 0)
4098  		return ret;
4099  
4100  	stat_inc_swapfile_inode(inode);
4101  	set_inode_flag(inode, FI_PIN_FILE);
4102  	f2fs_update_time(sbi, REQ_TIME);
4103  	return ret;
4104  }
4105  
f2fs_swap_deactivate(struct file * file)4106  static void f2fs_swap_deactivate(struct file *file)
4107  {
4108  	struct inode *inode = file_inode(file);
4109  
4110  	stat_dec_swapfile_inode(inode);
4111  	clear_inode_flag(inode, FI_PIN_FILE);
4112  }
4113  #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4114  static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4115  				sector_t *span)
4116  {
4117  	return -EOPNOTSUPP;
4118  }
4119  
f2fs_swap_deactivate(struct file * file)4120  static void f2fs_swap_deactivate(struct file *file)
4121  {
4122  }
4123  #endif
4124  
4125  const struct address_space_operations f2fs_dblock_aops = {
4126  	.read_folio	= f2fs_read_data_folio,
4127  	.readahead	= f2fs_readahead,
4128  	.writepage	= f2fs_write_data_page,
4129  	.writepages	= f2fs_write_data_pages,
4130  	.write_begin	= f2fs_write_begin,
4131  	.write_end	= f2fs_write_end,
4132  	.dirty_folio	= f2fs_dirty_data_folio,
4133  	.migrate_folio	= filemap_migrate_folio,
4134  	.invalidate_folio = f2fs_invalidate_folio,
4135  	.release_folio	= f2fs_release_folio,
4136  	.bmap		= f2fs_bmap,
4137  	.swap_activate  = f2fs_swap_activate,
4138  	.swap_deactivate = f2fs_swap_deactivate,
4139  };
4140  
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4141  void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4142  {
4143  	struct address_space *mapping = folio->mapping;
4144  	unsigned long flags;
4145  
4146  	xa_lock_irqsave(&mapping->i_pages, flags);
4147  	__xa_clear_mark(&mapping->i_pages, folio->index,
4148  						PAGECACHE_TAG_DIRTY);
4149  	xa_unlock_irqrestore(&mapping->i_pages, flags);
4150  }
4151  
f2fs_init_post_read_processing(void)4152  int __init f2fs_init_post_read_processing(void)
4153  {
4154  	bio_post_read_ctx_cache =
4155  		kmem_cache_create("f2fs_bio_post_read_ctx",
4156  				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4157  	if (!bio_post_read_ctx_cache)
4158  		goto fail;
4159  	bio_post_read_ctx_pool =
4160  		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4161  					 bio_post_read_ctx_cache);
4162  	if (!bio_post_read_ctx_pool)
4163  		goto fail_free_cache;
4164  	return 0;
4165  
4166  fail_free_cache:
4167  	kmem_cache_destroy(bio_post_read_ctx_cache);
4168  fail:
4169  	return -ENOMEM;
4170  }
4171  
f2fs_destroy_post_read_processing(void)4172  void f2fs_destroy_post_read_processing(void)
4173  {
4174  	mempool_destroy(bio_post_read_ctx_pool);
4175  	kmem_cache_destroy(bio_post_read_ctx_cache);
4176  }
4177  
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4178  int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4179  {
4180  	if (!f2fs_sb_has_encrypt(sbi) &&
4181  		!f2fs_sb_has_verity(sbi) &&
4182  		!f2fs_sb_has_compression(sbi))
4183  		return 0;
4184  
4185  	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4186  						 WQ_UNBOUND | WQ_HIGHPRI,
4187  						 num_online_cpus());
4188  	return sbi->post_read_wq ? 0 : -ENOMEM;
4189  }
4190  
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4191  void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4192  {
4193  	if (sbi->post_read_wq)
4194  		destroy_workqueue(sbi->post_read_wq);
4195  }
4196  
f2fs_init_bio_entry_cache(void)4197  int __init f2fs_init_bio_entry_cache(void)
4198  {
4199  	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4200  			sizeof(struct bio_entry));
4201  	return bio_entry_slab ? 0 : -ENOMEM;
4202  }
4203  
f2fs_destroy_bio_entry_cache(void)4204  void f2fs_destroy_bio_entry_cache(void)
4205  {
4206  	kmem_cache_destroy(bio_entry_slab);
4207  }
4208  
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4209  static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4210  			    unsigned int flags, struct iomap *iomap,
4211  			    struct iomap *srcmap)
4212  {
4213  	struct f2fs_map_blocks map = {};
4214  	pgoff_t next_pgofs = 0;
4215  	int err;
4216  
4217  	map.m_lblk = bytes_to_blks(inode, offset);
4218  	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4219  	map.m_next_pgofs = &next_pgofs;
4220  	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4221  						inode->i_write_hint);
4222  	if (flags & IOMAP_WRITE)
4223  		map.m_may_create = true;
4224  
4225  	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4226  	if (err)
4227  		return err;
4228  
4229  	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4230  
4231  	/*
4232  	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4233  	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4234  	 * limiting the length of the mapping returned.
4235  	 */
4236  	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4237  
4238  	/*
4239  	 * We should never see delalloc or compressed extents here based on
4240  	 * prior flushing and checks.
4241  	 */
4242  	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4243  		return -EINVAL;
4244  
4245  	if (map.m_flags & F2FS_MAP_MAPPED) {
4246  		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4247  			return -EINVAL;
4248  
4249  		iomap->length = blks_to_bytes(inode, map.m_len);
4250  		iomap->type = IOMAP_MAPPED;
4251  		iomap->flags |= IOMAP_F_MERGED;
4252  		iomap->bdev = map.m_bdev;
4253  		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4254  	} else {
4255  		if (flags & IOMAP_WRITE)
4256  			return -ENOTBLK;
4257  
4258  		if (map.m_pblk == NULL_ADDR) {
4259  			iomap->length = blks_to_bytes(inode, next_pgofs) -
4260  								iomap->offset;
4261  			iomap->type = IOMAP_HOLE;
4262  		} else if (map.m_pblk == NEW_ADDR) {
4263  			iomap->length = blks_to_bytes(inode, map.m_len);
4264  			iomap->type = IOMAP_UNWRITTEN;
4265  		} else {
4266  			f2fs_bug_on(F2FS_I_SB(inode), 1);
4267  		}
4268  		iomap->addr = IOMAP_NULL_ADDR;
4269  	}
4270  
4271  	if (map.m_flags & F2FS_MAP_NEW)
4272  		iomap->flags |= IOMAP_F_NEW;
4273  	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4274  	    offset + length > i_size_read(inode))
4275  		iomap->flags |= IOMAP_F_DIRTY;
4276  
4277  	return 0;
4278  }
4279  
4280  const struct iomap_ops f2fs_iomap_ops = {
4281  	.iomap_begin	= f2fs_iomap_begin,
4282  };
4283