1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/ext4/file.c
4   *
5   * Copyright (C) 1992, 1993, 1994, 1995
6   * Remy Card (card@masi.ibp.fr)
7   * Laboratoire MASI - Institut Blaise Pascal
8   * Universite Pierre et Marie Curie (Paris VI)
9   *
10   *  from
11   *
12   *  linux/fs/minix/file.c
13   *
14   *  Copyright (C) 1991, 1992  Linus Torvalds
15   *
16   *  ext4 fs regular file handling primitives
17   *
18   *  64-bit file support on 64-bit platforms by Jakub Jelinek
19   *	(jj@sunsite.ms.mff.cuni.cz)
20   */
21  
22  #include <linux/time.h>
23  #include <linux/fs.h>
24  #include <linux/iomap.h>
25  #include <linux/mount.h>
26  #include <linux/path.h>
27  #include <linux/dax.h>
28  #include <linux/quotaops.h>
29  #include <linux/pagevec.h>
30  #include <linux/uio.h>
31  #include <linux/mman.h>
32  #include <linux/backing-dev.h>
33  #include "ext4.h"
34  #include "ext4_jbd2.h"
35  #include "xattr.h"
36  #include "acl.h"
37  #include "truncate.h"
38  
39  /*
40   * Returns %true if the given DIO request should be attempted with DIO, or
41   * %false if it should fall back to buffered I/O.
42   *
43   * DIO isn't well specified; when it's unsupported (either due to the request
44   * being misaligned, or due to the file not supporting DIO at all), filesystems
45   * either fall back to buffered I/O or return EINVAL.  For files that don't use
46   * any special features like encryption or verity, ext4 has traditionally
47   * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48   * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49   *
50   * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51   * traditionally falls back to buffered I/O.
52   *
53   * This function implements the traditional ext4 behavior in all these cases.
54   */
ext4_should_use_dio(struct kiocb * iocb,struct iov_iter * iter)55  static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56  {
57  	struct inode *inode = file_inode(iocb->ki_filp);
58  	u32 dio_align = ext4_dio_alignment(inode);
59  
60  	if (dio_align == 0)
61  		return false;
62  
63  	if (dio_align == 1)
64  		return true;
65  
66  	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67  }
68  
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)69  static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70  {
71  	ssize_t ret;
72  	struct inode *inode = file_inode(iocb->ki_filp);
73  
74  	if (iocb->ki_flags & IOCB_NOWAIT) {
75  		if (!inode_trylock_shared(inode))
76  			return -EAGAIN;
77  	} else {
78  		inode_lock_shared(inode);
79  	}
80  
81  	if (!ext4_should_use_dio(iocb, to)) {
82  		inode_unlock_shared(inode);
83  		/*
84  		 * Fallback to buffered I/O if the operation being performed on
85  		 * the inode is not supported by direct I/O. The IOCB_DIRECT
86  		 * flag needs to be cleared here in order to ensure that the
87  		 * direct I/O path within generic_file_read_iter() is not
88  		 * taken.
89  		 */
90  		iocb->ki_flags &= ~IOCB_DIRECT;
91  		return generic_file_read_iter(iocb, to);
92  	}
93  
94  	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95  	inode_unlock_shared(inode);
96  
97  	file_accessed(iocb->ki_filp);
98  	return ret;
99  }
100  
101  #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)102  static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103  {
104  	struct inode *inode = file_inode(iocb->ki_filp);
105  	ssize_t ret;
106  
107  	if (iocb->ki_flags & IOCB_NOWAIT) {
108  		if (!inode_trylock_shared(inode))
109  			return -EAGAIN;
110  	} else {
111  		inode_lock_shared(inode);
112  	}
113  	/*
114  	 * Recheck under inode lock - at this point we are sure it cannot
115  	 * change anymore
116  	 */
117  	if (!IS_DAX(inode)) {
118  		inode_unlock_shared(inode);
119  		/* Fallback to buffered IO in case we cannot support DAX */
120  		return generic_file_read_iter(iocb, to);
121  	}
122  	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123  	inode_unlock_shared(inode);
124  
125  	file_accessed(iocb->ki_filp);
126  	return ret;
127  }
128  #endif
129  
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)130  static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131  {
132  	struct inode *inode = file_inode(iocb->ki_filp);
133  
134  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135  		return -EIO;
136  
137  	if (!iov_iter_count(to))
138  		return 0; /* skip atime */
139  
140  #ifdef CONFIG_FS_DAX
141  	if (IS_DAX(inode))
142  		return ext4_dax_read_iter(iocb, to);
143  #endif
144  	if (iocb->ki_flags & IOCB_DIRECT)
145  		return ext4_dio_read_iter(iocb, to);
146  
147  	return generic_file_read_iter(iocb, to);
148  }
149  
ext4_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)150  static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151  				     struct pipe_inode_info *pipe,
152  				     size_t len, unsigned int flags)
153  {
154  	struct inode *inode = file_inode(in);
155  
156  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157  		return -EIO;
158  	return filemap_splice_read(in, ppos, pipe, len, flags);
159  }
160  
161  /*
162   * Called when an inode is released. Note that this is different
163   * from ext4_file_open: open gets called at every open, but release
164   * gets called only when /all/ the files are closed.
165   */
ext4_release_file(struct inode * inode,struct file * filp)166  static int ext4_release_file(struct inode *inode, struct file *filp)
167  {
168  	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169  		ext4_alloc_da_blocks(inode);
170  		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171  	}
172  	/* if we are the last writer on the inode, drop the block reservation */
173  	if ((filp->f_mode & FMODE_WRITE) &&
174  			(atomic_read(&inode->i_writecount) == 1) &&
175  			!EXT4_I(inode)->i_reserved_data_blocks) {
176  		down_write(&EXT4_I(inode)->i_data_sem);
177  		ext4_discard_preallocations(inode);
178  		up_write(&EXT4_I(inode)->i_data_sem);
179  	}
180  	if (is_dx(inode) && filp->private_data)
181  		ext4_htree_free_dir_info(filp->private_data);
182  
183  	return 0;
184  }
185  
186  /*
187   * This tests whether the IO in question is block-aligned or not.
188   * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189   * are converted to written only after the IO is complete.  Until they are
190   * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191   * it needs to zero out portions of the start and/or end block.  If 2 AIO
192   * threads are at work on the same unwritten block, they must be synchronized
193   * or one thread will zero the other's data, causing corruption.
194   */
195  static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)196  ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197  {
198  	struct super_block *sb = inode->i_sb;
199  	unsigned long blockmask = sb->s_blocksize - 1;
200  
201  	if ((pos | iov_iter_alignment(from)) & blockmask)
202  		return true;
203  
204  	return false;
205  }
206  
207  static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)208  ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209  {
210  	if (offset + len > i_size_read(inode) ||
211  	    offset + len > EXT4_I(inode)->i_disksize)
212  		return true;
213  	return false;
214  }
215  
216  /* Is IO overwriting allocated or initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len,bool * unwritten)217  static bool ext4_overwrite_io(struct inode *inode,
218  			      loff_t pos, loff_t len, bool *unwritten)
219  {
220  	struct ext4_map_blocks map;
221  	unsigned int blkbits = inode->i_blkbits;
222  	int err, blklen;
223  
224  	if (pos + len > i_size_read(inode))
225  		return false;
226  
227  	map.m_lblk = pos >> blkbits;
228  	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229  	blklen = map.m_len;
230  
231  	err = ext4_map_blocks(NULL, inode, &map, 0);
232  	if (err != blklen)
233  		return false;
234  	/*
235  	 * 'err==len' means that all of the blocks have been preallocated,
236  	 * regardless of whether they have been initialized or not. We need to
237  	 * check m_flags to distinguish the unwritten extents.
238  	 */
239  	*unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240  	return true;
241  }
242  
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)243  static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244  					 struct iov_iter *from)
245  {
246  	struct inode *inode = file_inode(iocb->ki_filp);
247  	ssize_t ret;
248  
249  	if (unlikely(IS_IMMUTABLE(inode)))
250  		return -EPERM;
251  
252  	ret = generic_write_checks(iocb, from);
253  	if (ret <= 0)
254  		return ret;
255  
256  	/*
257  	 * If we have encountered a bitmap-format file, the size limit
258  	 * is smaller than s_maxbytes, which is for extent-mapped files.
259  	 */
260  	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261  		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262  
263  		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264  			return -EFBIG;
265  		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266  	}
267  
268  	return iov_iter_count(from);
269  }
270  
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)271  static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272  {
273  	ssize_t ret, count;
274  
275  	count = ext4_generic_write_checks(iocb, from);
276  	if (count <= 0)
277  		return count;
278  
279  	ret = file_modified(iocb->ki_filp);
280  	if (ret)
281  		return ret;
282  	return count;
283  }
284  
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)285  static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286  					struct iov_iter *from)
287  {
288  	ssize_t ret;
289  	struct inode *inode = file_inode(iocb->ki_filp);
290  
291  	if (iocb->ki_flags & IOCB_NOWAIT)
292  		return -EOPNOTSUPP;
293  
294  	inode_lock(inode);
295  	ret = ext4_write_checks(iocb, from);
296  	if (ret <= 0)
297  		goto out;
298  
299  	ret = generic_perform_write(iocb, from);
300  
301  out:
302  	inode_unlock(inode);
303  	if (unlikely(ret <= 0))
304  		return ret;
305  	return generic_write_sync(iocb, ret);
306  }
307  
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t written,ssize_t count)308  static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309  					   ssize_t written, ssize_t count)
310  {
311  	handle_t *handle;
312  
313  	lockdep_assert_held_write(&inode->i_rwsem);
314  	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
315  	if (IS_ERR(handle))
316  		return PTR_ERR(handle);
317  
318  	if (ext4_update_inode_size(inode, offset + written)) {
319  		int ret = ext4_mark_inode_dirty(handle, inode);
320  		if (unlikely(ret)) {
321  			ext4_journal_stop(handle);
322  			return ret;
323  		}
324  	}
325  
326  	if ((written == count) && inode->i_nlink)
327  		ext4_orphan_del(handle, inode);
328  	ext4_journal_stop(handle);
329  
330  	return written;
331  }
332  
333  /*
334   * Clean up the inode after DIO or DAX extending write has completed and the
335   * inode size has been updated using ext4_handle_inode_extension().
336   */
ext4_inode_extension_cleanup(struct inode * inode,bool need_trunc)337  static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc)
338  {
339  	lockdep_assert_held_write(&inode->i_rwsem);
340  	if (need_trunc) {
341  		ext4_truncate_failed_write(inode);
342  		/*
343  		 * If the truncate operation failed early, then the inode may
344  		 * still be on the orphan list. In that case, we need to try
345  		 * remove the inode from the in-memory linked list.
346  		 */
347  		if (inode->i_nlink)
348  			ext4_orphan_del(NULL, inode);
349  		return;
350  	}
351  	/*
352  	 * If i_disksize got extended either due to writeback of delalloc
353  	 * blocks or extending truncate while the DIO was running we could fail
354  	 * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
355  	 * now.
356  	 */
357  	if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
358  		handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
359  
360  		if (IS_ERR(handle)) {
361  			/*
362  			 * The write has successfully completed. Not much to
363  			 * do with the error here so just cleanup the orphan
364  			 * list and hope for the best.
365  			 */
366  			ext4_orphan_del(NULL, inode);
367  			return;
368  		}
369  		ext4_orphan_del(handle, inode);
370  		ext4_journal_stop(handle);
371  	}
372  }
373  
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)374  static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
375  				 int error, unsigned int flags)
376  {
377  	loff_t pos = iocb->ki_pos;
378  	struct inode *inode = file_inode(iocb->ki_filp);
379  
380  	if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
381  		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
382  	if (error)
383  		return error;
384  	/*
385  	 * Note that EXT4_I(inode)->i_disksize can get extended up to
386  	 * inode->i_size while the I/O was running due to writeback of delalloc
387  	 * blocks. But the code in ext4_iomap_alloc() is careful to use
388  	 * zeroed/unwritten extents if this is possible; thus we won't leave
389  	 * uninitialized blocks in a file even if we didn't succeed in writing
390  	 * as much as we intended. Also we can race with truncate or write
391  	 * expanding the file so we have to be a bit careful here.
392  	 */
393  	if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
394  	    pos + size <= i_size_read(inode))
395  		return size;
396  	return ext4_handle_inode_extension(inode, pos, size, size);
397  }
398  
399  static const struct iomap_dio_ops ext4_dio_write_ops = {
400  	.end_io = ext4_dio_write_end_io,
401  };
402  
403  /*
404   * The intention here is to start with shared lock acquired then see if any
405   * condition requires an exclusive inode lock. If yes, then we restart the
406   * whole operation by releasing the shared lock and acquiring exclusive lock.
407   *
408   * - For unaligned_io we never take shared lock as it may cause data corruption
409   *   when two unaligned IO tries to modify the same block e.g. while zeroing.
410   *
411   * - For extending writes case we don't take the shared lock, since it requires
412   *   updating inode i_disksize and/or orphan handling with exclusive lock.
413   *
414   * - shared locking will only be true mostly with overwrites, including
415   *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
416   *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
417   *   also release exclusive i_rwsem lock.
418   *
419   * - Otherwise we will switch to exclusive i_rwsem lock.
420   */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend,bool * unwritten,int * dio_flags)421  static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
422  				     bool *ilock_shared, bool *extend,
423  				     bool *unwritten, int *dio_flags)
424  {
425  	struct file *file = iocb->ki_filp;
426  	struct inode *inode = file_inode(file);
427  	loff_t offset;
428  	size_t count;
429  	ssize_t ret;
430  	bool overwrite, unaligned_io;
431  
432  restart:
433  	ret = ext4_generic_write_checks(iocb, from);
434  	if (ret <= 0)
435  		goto out;
436  
437  	offset = iocb->ki_pos;
438  	count = ret;
439  
440  	unaligned_io = ext4_unaligned_io(inode, from, offset);
441  	*extend = ext4_extending_io(inode, offset, count);
442  	overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
443  
444  	/*
445  	 * Determine whether we need to upgrade to an exclusive lock. This is
446  	 * required to change security info in file_modified(), for extending
447  	 * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
448  	 * extents (as partial block zeroing may be required).
449  	 *
450  	 * Note that unaligned writes are allowed under shared lock so long as
451  	 * they are pure overwrites. Otherwise, concurrent unaligned writes risk
452  	 * data corruption due to partial block zeroing in the dio layer, and so
453  	 * the I/O must occur exclusively.
454  	 */
455  	if (*ilock_shared &&
456  	    ((!IS_NOSEC(inode) || *extend || !overwrite ||
457  	     (unaligned_io && *unwritten)))) {
458  		if (iocb->ki_flags & IOCB_NOWAIT) {
459  			ret = -EAGAIN;
460  			goto out;
461  		}
462  		inode_unlock_shared(inode);
463  		*ilock_shared = false;
464  		inode_lock(inode);
465  		goto restart;
466  	}
467  
468  	/*
469  	 * Now that locking is settled, determine dio flags and exclusivity
470  	 * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
471  	 * behavior already. The inode lock is already held exclusive if the
472  	 * write is non-overwrite or extending, so drain all outstanding dio and
473  	 * set the force wait dio flag.
474  	 */
475  	if (!*ilock_shared && (unaligned_io || *extend)) {
476  		if (iocb->ki_flags & IOCB_NOWAIT) {
477  			ret = -EAGAIN;
478  			goto out;
479  		}
480  		if (unaligned_io && (!overwrite || *unwritten))
481  			inode_dio_wait(inode);
482  		*dio_flags = IOMAP_DIO_FORCE_WAIT;
483  	}
484  
485  	ret = file_modified(file);
486  	if (ret < 0)
487  		goto out;
488  
489  	return count;
490  out:
491  	if (*ilock_shared)
492  		inode_unlock_shared(inode);
493  	else
494  		inode_unlock(inode);
495  	return ret;
496  }
497  
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)498  static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
499  {
500  	ssize_t ret;
501  	handle_t *handle;
502  	struct inode *inode = file_inode(iocb->ki_filp);
503  	loff_t offset = iocb->ki_pos;
504  	size_t count = iov_iter_count(from);
505  	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
506  	bool extend = false, unwritten = false;
507  	bool ilock_shared = true;
508  	int dio_flags = 0;
509  
510  	/*
511  	 * Quick check here without any i_rwsem lock to see if it is extending
512  	 * IO. A more reliable check is done in ext4_dio_write_checks() with
513  	 * proper locking in place.
514  	 */
515  	if (offset + count > i_size_read(inode))
516  		ilock_shared = false;
517  
518  	if (iocb->ki_flags & IOCB_NOWAIT) {
519  		if (ilock_shared) {
520  			if (!inode_trylock_shared(inode))
521  				return -EAGAIN;
522  		} else {
523  			if (!inode_trylock(inode))
524  				return -EAGAIN;
525  		}
526  	} else {
527  		if (ilock_shared)
528  			inode_lock_shared(inode);
529  		else
530  			inode_lock(inode);
531  	}
532  
533  	/* Fallback to buffered I/O if the inode does not support direct I/O. */
534  	if (!ext4_should_use_dio(iocb, from)) {
535  		if (ilock_shared)
536  			inode_unlock_shared(inode);
537  		else
538  			inode_unlock(inode);
539  		return ext4_buffered_write_iter(iocb, from);
540  	}
541  
542  	/*
543  	 * Prevent inline data from being created since we are going to allocate
544  	 * blocks for DIO. We know the inode does not currently have inline data
545  	 * because ext4_should_use_dio() checked for it, but we have to clear
546  	 * the state flag before the write checks because a lock cycle could
547  	 * introduce races with other writers.
548  	 */
549  	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
550  
551  	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
552  				    &unwritten, &dio_flags);
553  	if (ret <= 0)
554  		return ret;
555  
556  	offset = iocb->ki_pos;
557  	count = ret;
558  
559  	if (extend) {
560  		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
561  		if (IS_ERR(handle)) {
562  			ret = PTR_ERR(handle);
563  			goto out;
564  		}
565  
566  		ret = ext4_orphan_add(handle, inode);
567  		if (ret) {
568  			ext4_journal_stop(handle);
569  			goto out;
570  		}
571  
572  		ext4_journal_stop(handle);
573  	}
574  
575  	if (ilock_shared && !unwritten)
576  		iomap_ops = &ext4_iomap_overwrite_ops;
577  	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
578  			   dio_flags, NULL, 0);
579  	if (ret == -ENOTBLK)
580  		ret = 0;
581  	if (extend) {
582  		/*
583  		 * We always perform extending DIO write synchronously so by
584  		 * now the IO is completed and ext4_handle_inode_extension()
585  		 * was called. Cleanup the inode in case of error or race with
586  		 * writeback of delalloc blocks.
587  		 */
588  		WARN_ON_ONCE(ret == -EIOCBQUEUED);
589  		ext4_inode_extension_cleanup(inode, ret < 0);
590  	}
591  
592  out:
593  	if (ilock_shared)
594  		inode_unlock_shared(inode);
595  	else
596  		inode_unlock(inode);
597  
598  	if (ret >= 0 && iov_iter_count(from)) {
599  		ssize_t err;
600  		loff_t endbyte;
601  
602  		offset = iocb->ki_pos;
603  		err = ext4_buffered_write_iter(iocb, from);
604  		if (err < 0)
605  			return err;
606  
607  		/*
608  		 * We need to ensure that the pages within the page cache for
609  		 * the range covered by this I/O are written to disk and
610  		 * invalidated. This is in attempt to preserve the expected
611  		 * direct I/O semantics in the case we fallback to buffered I/O
612  		 * to complete off the I/O request.
613  		 */
614  		ret += err;
615  		endbyte = offset + err - 1;
616  		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
617  						   offset, endbyte);
618  		if (!err)
619  			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
620  						 offset >> PAGE_SHIFT,
621  						 endbyte >> PAGE_SHIFT);
622  	}
623  
624  	return ret;
625  }
626  
627  #ifdef CONFIG_FS_DAX
628  static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)629  ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
630  {
631  	ssize_t ret;
632  	size_t count;
633  	loff_t offset;
634  	handle_t *handle;
635  	bool extend = false;
636  	struct inode *inode = file_inode(iocb->ki_filp);
637  
638  	if (iocb->ki_flags & IOCB_NOWAIT) {
639  		if (!inode_trylock(inode))
640  			return -EAGAIN;
641  	} else {
642  		inode_lock(inode);
643  	}
644  
645  	ret = ext4_write_checks(iocb, from);
646  	if (ret <= 0)
647  		goto out;
648  
649  	offset = iocb->ki_pos;
650  	count = iov_iter_count(from);
651  
652  	if (offset + count > EXT4_I(inode)->i_disksize) {
653  		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
654  		if (IS_ERR(handle)) {
655  			ret = PTR_ERR(handle);
656  			goto out;
657  		}
658  
659  		ret = ext4_orphan_add(handle, inode);
660  		if (ret) {
661  			ext4_journal_stop(handle);
662  			goto out;
663  		}
664  
665  		extend = true;
666  		ext4_journal_stop(handle);
667  	}
668  
669  	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
670  
671  	if (extend) {
672  		ret = ext4_handle_inode_extension(inode, offset, ret, count);
673  		ext4_inode_extension_cleanup(inode, ret < (ssize_t)count);
674  	}
675  out:
676  	inode_unlock(inode);
677  	if (ret > 0)
678  		ret = generic_write_sync(iocb, ret);
679  	return ret;
680  }
681  #endif
682  
683  static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)684  ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
685  {
686  	struct inode *inode = file_inode(iocb->ki_filp);
687  
688  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
689  		return -EIO;
690  
691  #ifdef CONFIG_FS_DAX
692  	if (IS_DAX(inode))
693  		return ext4_dax_write_iter(iocb, from);
694  #endif
695  	if (iocb->ki_flags & IOCB_DIRECT)
696  		return ext4_dio_write_iter(iocb, from);
697  	else
698  		return ext4_buffered_write_iter(iocb, from);
699  }
700  
701  #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,unsigned int order)702  static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
703  {
704  	int error = 0;
705  	vm_fault_t result;
706  	int retries = 0;
707  	handle_t *handle = NULL;
708  	struct inode *inode = file_inode(vmf->vma->vm_file);
709  	struct super_block *sb = inode->i_sb;
710  
711  	/*
712  	 * We have to distinguish real writes from writes which will result in a
713  	 * COW page; COW writes should *not* poke the journal (the file will not
714  	 * be changed). Doing so would cause unintended failures when mounted
715  	 * read-only.
716  	 *
717  	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
718  	 * unset for order != 0 (i.e. only in do_cow_fault); for
719  	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
720  	 * we eventually come back with a COW page.
721  	 */
722  	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
723  		(vmf->vma->vm_flags & VM_SHARED);
724  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
725  	pfn_t pfn;
726  
727  	if (write) {
728  		sb_start_pagefault(sb);
729  		file_update_time(vmf->vma->vm_file);
730  		filemap_invalidate_lock_shared(mapping);
731  retry:
732  		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
733  					       EXT4_DATA_TRANS_BLOCKS(sb));
734  		if (IS_ERR(handle)) {
735  			filemap_invalidate_unlock_shared(mapping);
736  			sb_end_pagefault(sb);
737  			return VM_FAULT_SIGBUS;
738  		}
739  	} else {
740  		filemap_invalidate_lock_shared(mapping);
741  	}
742  	result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
743  	if (write) {
744  		ext4_journal_stop(handle);
745  
746  		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
747  		    ext4_should_retry_alloc(sb, &retries))
748  			goto retry;
749  		/* Handling synchronous page fault? */
750  		if (result & VM_FAULT_NEEDDSYNC)
751  			result = dax_finish_sync_fault(vmf, order, pfn);
752  		filemap_invalidate_unlock_shared(mapping);
753  		sb_end_pagefault(sb);
754  	} else {
755  		filemap_invalidate_unlock_shared(mapping);
756  	}
757  
758  	return result;
759  }
760  
ext4_dax_fault(struct vm_fault * vmf)761  static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
762  {
763  	return ext4_dax_huge_fault(vmf, 0);
764  }
765  
766  static const struct vm_operations_struct ext4_dax_vm_ops = {
767  	.fault		= ext4_dax_fault,
768  	.huge_fault	= ext4_dax_huge_fault,
769  	.page_mkwrite	= ext4_dax_fault,
770  	.pfn_mkwrite	= ext4_dax_fault,
771  };
772  #else
773  #define ext4_dax_vm_ops	ext4_file_vm_ops
774  #endif
775  
776  static const struct vm_operations_struct ext4_file_vm_ops = {
777  	.fault		= filemap_fault,
778  	.map_pages	= filemap_map_pages,
779  	.page_mkwrite   = ext4_page_mkwrite,
780  };
781  
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)782  static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
783  {
784  	struct inode *inode = file->f_mapping->host;
785  	struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
786  
787  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
788  		return -EIO;
789  
790  	/*
791  	 * We don't support synchronous mappings for non-DAX files and
792  	 * for DAX files if underneath dax_device is not synchronous.
793  	 */
794  	if (!daxdev_mapping_supported(vma, dax_dev))
795  		return -EOPNOTSUPP;
796  
797  	file_accessed(file);
798  	if (IS_DAX(file_inode(file))) {
799  		vma->vm_ops = &ext4_dax_vm_ops;
800  		vm_flags_set(vma, VM_HUGEPAGE);
801  	} else {
802  		vma->vm_ops = &ext4_file_vm_ops;
803  	}
804  	return 0;
805  }
806  
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)807  static int ext4_sample_last_mounted(struct super_block *sb,
808  				    struct vfsmount *mnt)
809  {
810  	struct ext4_sb_info *sbi = EXT4_SB(sb);
811  	struct path path;
812  	char buf[64], *cp;
813  	handle_t *handle;
814  	int err;
815  
816  	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
817  		return 0;
818  
819  	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
820  		return 0;
821  
822  	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
823  	/*
824  	 * Sample where the filesystem has been mounted and
825  	 * store it in the superblock for sysadmin convenience
826  	 * when trying to sort through large numbers of block
827  	 * devices or filesystem images.
828  	 */
829  	memset(buf, 0, sizeof(buf));
830  	path.mnt = mnt;
831  	path.dentry = mnt->mnt_root;
832  	cp = d_path(&path, buf, sizeof(buf));
833  	err = 0;
834  	if (IS_ERR(cp))
835  		goto out;
836  
837  	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
838  	err = PTR_ERR(handle);
839  	if (IS_ERR(handle))
840  		goto out;
841  	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
842  	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
843  					    EXT4_JTR_NONE);
844  	if (err)
845  		goto out_journal;
846  	lock_buffer(sbi->s_sbh);
847  	strtomem_pad(sbi->s_es->s_last_mounted, cp, 0);
848  	ext4_superblock_csum_set(sb);
849  	unlock_buffer(sbi->s_sbh);
850  	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
851  out_journal:
852  	ext4_journal_stop(handle);
853  out:
854  	sb_end_intwrite(sb);
855  	return err;
856  }
857  
ext4_file_open(struct inode * inode,struct file * filp)858  static int ext4_file_open(struct inode *inode, struct file *filp)
859  {
860  	int ret;
861  
862  	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
863  		return -EIO;
864  
865  	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
866  	if (ret)
867  		return ret;
868  
869  	ret = fscrypt_file_open(inode, filp);
870  	if (ret)
871  		return ret;
872  
873  	ret = fsverity_file_open(inode, filp);
874  	if (ret)
875  		return ret;
876  
877  	/*
878  	 * Set up the jbd2_inode if we are opening the inode for
879  	 * writing and the journal is present
880  	 */
881  	if (filp->f_mode & FMODE_WRITE) {
882  		ret = ext4_inode_attach_jinode(inode);
883  		if (ret < 0)
884  			return ret;
885  	}
886  
887  	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
888  	return dquot_file_open(inode, filp);
889  }
890  
891  /*
892   * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
893   * by calling generic_file_llseek_size() with the appropriate maxbytes
894   * value for each.
895   */
ext4_llseek(struct file * file,loff_t offset,int whence)896  loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
897  {
898  	struct inode *inode = file->f_mapping->host;
899  	loff_t maxbytes;
900  
901  	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
902  		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
903  	else
904  		maxbytes = inode->i_sb->s_maxbytes;
905  
906  	switch (whence) {
907  	default:
908  		return generic_file_llseek_size(file, offset, whence,
909  						maxbytes, i_size_read(inode));
910  	case SEEK_HOLE:
911  		inode_lock_shared(inode);
912  		offset = iomap_seek_hole(inode, offset,
913  					 &ext4_iomap_report_ops);
914  		inode_unlock_shared(inode);
915  		break;
916  	case SEEK_DATA:
917  		inode_lock_shared(inode);
918  		offset = iomap_seek_data(inode, offset,
919  					 &ext4_iomap_report_ops);
920  		inode_unlock_shared(inode);
921  		break;
922  	}
923  
924  	if (offset < 0)
925  		return offset;
926  	return vfs_setpos(file, offset, maxbytes);
927  }
928  
929  const struct file_operations ext4_file_operations = {
930  	.llseek		= ext4_llseek,
931  	.read_iter	= ext4_file_read_iter,
932  	.write_iter	= ext4_file_write_iter,
933  	.iopoll		= iocb_bio_iopoll,
934  	.unlocked_ioctl = ext4_ioctl,
935  #ifdef CONFIG_COMPAT
936  	.compat_ioctl	= ext4_compat_ioctl,
937  #endif
938  	.mmap		= ext4_file_mmap,
939  	.open		= ext4_file_open,
940  	.release	= ext4_release_file,
941  	.fsync		= ext4_sync_file,
942  	.get_unmapped_area = thp_get_unmapped_area,
943  	.splice_read	= ext4_file_splice_read,
944  	.splice_write	= iter_file_splice_write,
945  	.fallocate	= ext4_fallocate,
946  	.fop_flags	= FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
947  			  FOP_DIO_PARALLEL_WRITE,
948  };
949  
950  const struct inode_operations ext4_file_inode_operations = {
951  	.setattr	= ext4_setattr,
952  	.getattr	= ext4_file_getattr,
953  	.listxattr	= ext4_listxattr,
954  	.get_inode_acl	= ext4_get_acl,
955  	.set_acl	= ext4_set_acl,
956  	.fiemap		= ext4_fiemap,
957  	.fileattr_get	= ext4_fileattr_get,
958  	.fileattr_set	= ext4_fileattr_set,
959  };
960  
961