1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  fs/ext4/extents_status.c
4   *
5   * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6   * Modified by
7   *	Allison Henderson <achender@linux.vnet.ibm.com>
8   *	Hugh Dickins <hughd@google.com>
9   *	Zheng Liu <wenqing.lz@taobao.com>
10   *
11   * Ext4 extents status tree core functions.
12   */
13  #include <linux/list_sort.h>
14  #include <linux/proc_fs.h>
15  #include <linux/seq_file.h>
16  #include "ext4.h"
17  
18  #include <trace/events/ext4.h>
19  
20  /*
21   * According to previous discussion in Ext4 Developer Workshop, we
22   * will introduce a new structure called io tree to track all extent
23   * status in order to solve some problems that we have met
24   * (e.g. Reservation space warning), and provide extent-level locking.
25   * Delay extent tree is the first step to achieve this goal.  It is
26   * original built by Yongqiang Yang.  At that time it is called delay
27   * extent tree, whose goal is only track delayed extents in memory to
28   * simplify the implementation of fiemap and bigalloc, and introduce
29   * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30   * delay extent tree at the first commit.  But for better understand
31   * what it does, it has been rename to extent status tree.
32   *
33   * Step1:
34   * Currently the first step has been done.  All delayed extents are
35   * tracked in the tree.  It maintains the delayed extent when a delayed
36   * allocation is issued, and the delayed extent is written out or
37   * invalidated.  Therefore the implementation of fiemap and bigalloc
38   * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39   *
40   * The following comment describes the implemenmtation of extent
41   * status tree and future works.
42   *
43   * Step2:
44   * In this step all extent status are tracked by extent status tree.
45   * Thus, we can first try to lookup a block mapping in this tree before
46   * finding it in extent tree.  Hence, single extent cache can be removed
47   * because extent status tree can do a better job.  Extents in status
48   * tree are loaded on-demand.  Therefore, the extent status tree may not
49   * contain all of the extents in a file.  Meanwhile we define a shrinker
50   * to reclaim memory from extent status tree because fragmented extent
51   * tree will make status tree cost too much memory.  written/unwritten/-
52   * hole extents in the tree will be reclaimed by this shrinker when we
53   * are under high memory pressure.  Delayed extents will not be
54   * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55   */
56  
57  /*
58   * Extent status tree implementation for ext4.
59   *
60   *
61   * ==========================================================================
62   * Extent status tree tracks all extent status.
63   *
64   * 1. Why we need to implement extent status tree?
65   *
66   * Without extent status tree, ext4 identifies a delayed extent by looking
67   * up page cache, this has several deficiencies - complicated, buggy,
68   * and inefficient code.
69   *
70   * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71   * block or a range of blocks are belonged to a delayed extent.
72   *
73   * Let us have a look at how they do without extent status tree.
74   *   --	FIEMAP
75   *	FIEMAP looks up page cache to identify delayed allocations from holes.
76   *
77   *   --	SEEK_HOLE/DATA
78   *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79   *
80   *   --	bigalloc
81   *	bigalloc looks up page cache to figure out if a block is
82   *	already under delayed allocation or not to determine whether
83   *	quota reserving is needed for the cluster.
84   *
85   *   --	writeout
86   *	Writeout looks up whole page cache to see if a buffer is
87   *	mapped, If there are not very many delayed buffers, then it is
88   *	time consuming.
89   *
90   * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91   * bigalloc and writeout can figure out if a block or a range of
92   * blocks is under delayed allocation(belonged to a delayed extent) or
93   * not by searching the extent tree.
94   *
95   *
96   * ==========================================================================
97   * 2. Ext4 extent status tree impelmentation
98   *
99   *   --	extent
100   *	A extent is a range of blocks which are contiguous logically and
101   *	physically.  Unlike extent in extent tree, this extent in ext4 is
102   *	a in-memory struct, there is no corresponding on-disk data.  There
103   *	is no limit on length of extent, so an extent can contain as many
104   *	blocks as they are contiguous logically and physically.
105   *
106   *   --	extent status tree
107   *	Every inode has an extent status tree and all allocation blocks
108   *	are added to the tree with different status.  The extent in the
109   *	tree are ordered by logical block no.
110   *
111   *   --	operations on a extent status tree
112   *	There are three important operations on a delayed extent tree: find
113   *	next extent, adding a extent(a range of blocks) and removing a extent.
114   *
115   *   --	race on a extent status tree
116   *	Extent status tree is protected by inode->i_es_lock.
117   *
118   *   --	memory consumption
119   *      Fragmented extent tree will make extent status tree cost too much
120   *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121   *      the tree under a heavy memory pressure.
122   *
123   *
124   * ==========================================================================
125   * 3. Performance analysis
126   *
127   *   --	overhead
128   *	1. There is a cache extent for write access, so if writes are
129   *	not very random, adding space operaions are in O(1) time.
130   *
131   *   --	gain
132   *	2. Code is much simpler, more readable, more maintainable and
133   *	more efficient.
134   *
135   *
136   * ==========================================================================
137   * 4. TODO list
138   *
139   *   -- Refactor delayed space reservation
140   *
141   *   -- Extent-level locking
142   */
143  
144  static struct kmem_cache *ext4_es_cachep;
145  static struct kmem_cache *ext4_pending_cachep;
146  
147  static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148  			      struct extent_status *prealloc);
149  static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150  			      ext4_lblk_t end, int *reserved,
151  			      struct extent_status *prealloc);
152  static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153  static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154  		       struct ext4_inode_info *locked_ei);
155  static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156  			    ext4_lblk_t len,
157  			    struct pending_reservation **prealloc);
158  
ext4_init_es(void)159  int __init ext4_init_es(void)
160  {
161  	ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
162  	if (ext4_es_cachep == NULL)
163  		return -ENOMEM;
164  	return 0;
165  }
166  
ext4_exit_es(void)167  void ext4_exit_es(void)
168  {
169  	kmem_cache_destroy(ext4_es_cachep);
170  }
171  
ext4_es_init_tree(struct ext4_es_tree * tree)172  void ext4_es_init_tree(struct ext4_es_tree *tree)
173  {
174  	tree->root = RB_ROOT;
175  	tree->cache_es = NULL;
176  }
177  
178  #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)179  static void ext4_es_print_tree(struct inode *inode)
180  {
181  	struct ext4_es_tree *tree;
182  	struct rb_node *node;
183  
184  	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
185  	tree = &EXT4_I(inode)->i_es_tree;
186  	node = rb_first(&tree->root);
187  	while (node) {
188  		struct extent_status *es;
189  		es = rb_entry(node, struct extent_status, rb_node);
190  		printk(KERN_DEBUG " [%u/%u) %llu %x",
191  		       es->es_lblk, es->es_len,
192  		       ext4_es_pblock(es), ext4_es_status(es));
193  		node = rb_next(node);
194  	}
195  	printk(KERN_DEBUG "\n");
196  }
197  #else
198  #define ext4_es_print_tree(inode)
199  #endif
200  
ext4_es_end(struct extent_status * es)201  static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
202  {
203  	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
204  	return es->es_lblk + es->es_len - 1;
205  }
206  
207  /*
208   * search through the tree for an delayed extent with a given offset.  If
209   * it can't be found, try to find next extent.
210   */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)211  static struct extent_status *__es_tree_search(struct rb_root *root,
212  					      ext4_lblk_t lblk)
213  {
214  	struct rb_node *node = root->rb_node;
215  	struct extent_status *es = NULL;
216  
217  	while (node) {
218  		es = rb_entry(node, struct extent_status, rb_node);
219  		if (lblk < es->es_lblk)
220  			node = node->rb_left;
221  		else if (lblk > ext4_es_end(es))
222  			node = node->rb_right;
223  		else
224  			return es;
225  	}
226  
227  	if (es && lblk < es->es_lblk)
228  		return es;
229  
230  	if (es && lblk > ext4_es_end(es)) {
231  		node = rb_next(&es->rb_node);
232  		return node ? rb_entry(node, struct extent_status, rb_node) :
233  			      NULL;
234  	}
235  
236  	return NULL;
237  }
238  
239  /*
240   * ext4_es_find_extent_range - find extent with specified status within block
241   *                             range or next extent following block range in
242   *                             extents status tree
243   *
244   * @inode - file containing the range
245   * @matching_fn - pointer to function that matches extents with desired status
246   * @lblk - logical block defining start of range
247   * @end - logical block defining end of range
248   * @es - extent found, if any
249   *
250   * Find the first extent within the block range specified by @lblk and @end
251   * in the extents status tree that satisfies @matching_fn.  If a match
252   * is found, it's returned in @es.  If not, and a matching extent is found
253   * beyond the block range, it's returned in @es.  If no match is found, an
254   * extent is returned in @es whose es_lblk, es_len, and es_pblk components
255   * are 0.
256   */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)257  static void __es_find_extent_range(struct inode *inode,
258  				   int (*matching_fn)(struct extent_status *es),
259  				   ext4_lblk_t lblk, ext4_lblk_t end,
260  				   struct extent_status *es)
261  {
262  	struct ext4_es_tree *tree = NULL;
263  	struct extent_status *es1 = NULL;
264  	struct rb_node *node;
265  
266  	WARN_ON(es == NULL);
267  	WARN_ON(end < lblk);
268  
269  	tree = &EXT4_I(inode)->i_es_tree;
270  
271  	/* see if the extent has been cached */
272  	es->es_lblk = es->es_len = es->es_pblk = 0;
273  	es1 = READ_ONCE(tree->cache_es);
274  	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
275  		es_debug("%u cached by [%u/%u) %llu %x\n",
276  			 lblk, es1->es_lblk, es1->es_len,
277  			 ext4_es_pblock(es1), ext4_es_status(es1));
278  		goto out;
279  	}
280  
281  	es1 = __es_tree_search(&tree->root, lblk);
282  
283  out:
284  	if (es1 && !matching_fn(es1)) {
285  		while ((node = rb_next(&es1->rb_node)) != NULL) {
286  			es1 = rb_entry(node, struct extent_status, rb_node);
287  			if (es1->es_lblk > end) {
288  				es1 = NULL;
289  				break;
290  			}
291  			if (matching_fn(es1))
292  				break;
293  		}
294  	}
295  
296  	if (es1 && matching_fn(es1)) {
297  		WRITE_ONCE(tree->cache_es, es1);
298  		es->es_lblk = es1->es_lblk;
299  		es->es_len = es1->es_len;
300  		es->es_pblk = es1->es_pblk;
301  	}
302  
303  }
304  
305  /*
306   * Locking for __es_find_extent_range() for external use
307   */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)308  void ext4_es_find_extent_range(struct inode *inode,
309  			       int (*matching_fn)(struct extent_status *es),
310  			       ext4_lblk_t lblk, ext4_lblk_t end,
311  			       struct extent_status *es)
312  {
313  	es->es_lblk = es->es_len = es->es_pblk = 0;
314  
315  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
316  		return;
317  
318  	trace_ext4_es_find_extent_range_enter(inode, lblk);
319  
320  	read_lock(&EXT4_I(inode)->i_es_lock);
321  	__es_find_extent_range(inode, matching_fn, lblk, end, es);
322  	read_unlock(&EXT4_I(inode)->i_es_lock);
323  
324  	trace_ext4_es_find_extent_range_exit(inode, es);
325  }
326  
327  /*
328   * __es_scan_range - search block range for block with specified status
329   *                   in extents status tree
330   *
331   * @inode - file containing the range
332   * @matching_fn - pointer to function that matches extents with desired status
333   * @lblk - logical block defining start of range
334   * @end - logical block defining end of range
335   *
336   * Returns true if at least one block in the specified block range satisfies
337   * the criterion specified by @matching_fn, and false if not.  If at least
338   * one extent has the specified status, then there is at least one block
339   * in the cluster with that status.  Should only be called by code that has
340   * taken i_es_lock.
341   */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)342  static bool __es_scan_range(struct inode *inode,
343  			    int (*matching_fn)(struct extent_status *es),
344  			    ext4_lblk_t start, ext4_lblk_t end)
345  {
346  	struct extent_status es;
347  
348  	__es_find_extent_range(inode, matching_fn, start, end, &es);
349  	if (es.es_len == 0)
350  		return false;   /* no matching extent in the tree */
351  	else if (es.es_lblk <= start &&
352  		 start < es.es_lblk + es.es_len)
353  		return true;
354  	else if (start <= es.es_lblk && es.es_lblk <= end)
355  		return true;
356  	else
357  		return false;
358  }
359  /*
360   * Locking for __es_scan_range() for external use
361   */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)362  bool ext4_es_scan_range(struct inode *inode,
363  			int (*matching_fn)(struct extent_status *es),
364  			ext4_lblk_t lblk, ext4_lblk_t end)
365  {
366  	bool ret;
367  
368  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
369  		return false;
370  
371  	read_lock(&EXT4_I(inode)->i_es_lock);
372  	ret = __es_scan_range(inode, matching_fn, lblk, end);
373  	read_unlock(&EXT4_I(inode)->i_es_lock);
374  
375  	return ret;
376  }
377  
378  /*
379   * __es_scan_clu - search cluster for block with specified status in
380   *                 extents status tree
381   *
382   * @inode - file containing the cluster
383   * @matching_fn - pointer to function that matches extents with desired status
384   * @lblk - logical block in cluster to be searched
385   *
386   * Returns true if at least one extent in the cluster containing @lblk
387   * satisfies the criterion specified by @matching_fn, and false if not.  If at
388   * least one extent has the specified status, then there is at least one block
389   * in the cluster with that status.  Should only be called by code that has
390   * taken i_es_lock.
391   */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)392  static bool __es_scan_clu(struct inode *inode,
393  			  int (*matching_fn)(struct extent_status *es),
394  			  ext4_lblk_t lblk)
395  {
396  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
397  	ext4_lblk_t lblk_start, lblk_end;
398  
399  	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
400  	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
401  
402  	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
403  }
404  
405  /*
406   * Locking for __es_scan_clu() for external use
407   */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)408  bool ext4_es_scan_clu(struct inode *inode,
409  		      int (*matching_fn)(struct extent_status *es),
410  		      ext4_lblk_t lblk)
411  {
412  	bool ret;
413  
414  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
415  		return false;
416  
417  	read_lock(&EXT4_I(inode)->i_es_lock);
418  	ret = __es_scan_clu(inode, matching_fn, lblk);
419  	read_unlock(&EXT4_I(inode)->i_es_lock);
420  
421  	return ret;
422  }
423  
ext4_es_list_add(struct inode * inode)424  static void ext4_es_list_add(struct inode *inode)
425  {
426  	struct ext4_inode_info *ei = EXT4_I(inode);
427  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
428  
429  	if (!list_empty(&ei->i_es_list))
430  		return;
431  
432  	spin_lock(&sbi->s_es_lock);
433  	if (list_empty(&ei->i_es_list)) {
434  		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
435  		sbi->s_es_nr_inode++;
436  	}
437  	spin_unlock(&sbi->s_es_lock);
438  }
439  
ext4_es_list_del(struct inode * inode)440  static void ext4_es_list_del(struct inode *inode)
441  {
442  	struct ext4_inode_info *ei = EXT4_I(inode);
443  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
444  
445  	spin_lock(&sbi->s_es_lock);
446  	if (!list_empty(&ei->i_es_list)) {
447  		list_del_init(&ei->i_es_list);
448  		sbi->s_es_nr_inode--;
449  		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
450  	}
451  	spin_unlock(&sbi->s_es_lock);
452  }
453  
__alloc_pending(bool nofail)454  static inline struct pending_reservation *__alloc_pending(bool nofail)
455  {
456  	if (!nofail)
457  		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
458  
459  	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
460  }
461  
__free_pending(struct pending_reservation * pr)462  static inline void __free_pending(struct pending_reservation *pr)
463  {
464  	kmem_cache_free(ext4_pending_cachep, pr);
465  }
466  
467  /*
468   * Returns true if we cannot fail to allocate memory for this extent_status
469   * entry and cannot reclaim it until its status changes.
470   */
ext4_es_must_keep(struct extent_status * es)471  static inline bool ext4_es_must_keep(struct extent_status *es)
472  {
473  	/* fiemap, bigalloc, and seek_data/hole need to use it. */
474  	if (ext4_es_is_delayed(es))
475  		return true;
476  
477  	return false;
478  }
479  
__es_alloc_extent(bool nofail)480  static inline struct extent_status *__es_alloc_extent(bool nofail)
481  {
482  	if (!nofail)
483  		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
484  
485  	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
486  }
487  
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)488  static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
489  		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
490  {
491  	es->es_lblk = lblk;
492  	es->es_len = len;
493  	es->es_pblk = pblk;
494  
495  	/* We never try to reclaim a must kept extent, so we don't count it. */
496  	if (!ext4_es_must_keep(es)) {
497  		if (!EXT4_I(inode)->i_es_shk_nr++)
498  			ext4_es_list_add(inode);
499  		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
500  					s_es_stats.es_stats_shk_cnt);
501  	}
502  
503  	EXT4_I(inode)->i_es_all_nr++;
504  	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
505  }
506  
__es_free_extent(struct extent_status * es)507  static inline void __es_free_extent(struct extent_status *es)
508  {
509  	kmem_cache_free(ext4_es_cachep, es);
510  }
511  
ext4_es_free_extent(struct inode * inode,struct extent_status * es)512  static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
513  {
514  	EXT4_I(inode)->i_es_all_nr--;
515  	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
516  
517  	/* Decrease the shrink counter when we can reclaim the extent. */
518  	if (!ext4_es_must_keep(es)) {
519  		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
520  		if (!--EXT4_I(inode)->i_es_shk_nr)
521  			ext4_es_list_del(inode);
522  		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
523  					s_es_stats.es_stats_shk_cnt);
524  	}
525  
526  	__es_free_extent(es);
527  }
528  
529  /*
530   * Check whether or not two extents can be merged
531   * Condition:
532   *  - logical block number is contiguous
533   *  - physical block number is contiguous
534   *  - status is equal
535   */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)536  static int ext4_es_can_be_merged(struct extent_status *es1,
537  				 struct extent_status *es2)
538  {
539  	if (ext4_es_type(es1) != ext4_es_type(es2))
540  		return 0;
541  
542  	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
543  		pr_warn("ES assertion failed when merging extents. "
544  			"The sum of lengths of es1 (%d) and es2 (%d) "
545  			"is bigger than allowed file size (%d)\n",
546  			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
547  		WARN_ON(1);
548  		return 0;
549  	}
550  
551  	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
552  		return 0;
553  
554  	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
555  	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
556  		return 1;
557  
558  	if (ext4_es_is_hole(es1))
559  		return 1;
560  
561  	/* we need to check delayed extent */
562  	if (ext4_es_is_delayed(es1))
563  		return 1;
564  
565  	return 0;
566  }
567  
568  static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)569  ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
570  {
571  	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
572  	struct extent_status *es1;
573  	struct rb_node *node;
574  
575  	node = rb_prev(&es->rb_node);
576  	if (!node)
577  		return es;
578  
579  	es1 = rb_entry(node, struct extent_status, rb_node);
580  	if (ext4_es_can_be_merged(es1, es)) {
581  		es1->es_len += es->es_len;
582  		if (ext4_es_is_referenced(es))
583  			ext4_es_set_referenced(es1);
584  		rb_erase(&es->rb_node, &tree->root);
585  		ext4_es_free_extent(inode, es);
586  		es = es1;
587  	}
588  
589  	return es;
590  }
591  
592  static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)593  ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
594  {
595  	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
596  	struct extent_status *es1;
597  	struct rb_node *node;
598  
599  	node = rb_next(&es->rb_node);
600  	if (!node)
601  		return es;
602  
603  	es1 = rb_entry(node, struct extent_status, rb_node);
604  	if (ext4_es_can_be_merged(es, es1)) {
605  		es->es_len += es1->es_len;
606  		if (ext4_es_is_referenced(es1))
607  			ext4_es_set_referenced(es);
608  		rb_erase(node, &tree->root);
609  		ext4_es_free_extent(inode, es1);
610  	}
611  
612  	return es;
613  }
614  
615  #ifdef ES_AGGRESSIVE_TEST
616  #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
617  
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)618  static void ext4_es_insert_extent_ext_check(struct inode *inode,
619  					    struct extent_status *es)
620  {
621  	struct ext4_ext_path *path = NULL;
622  	struct ext4_extent *ex;
623  	ext4_lblk_t ee_block;
624  	ext4_fsblk_t ee_start;
625  	unsigned short ee_len;
626  	int depth, ee_status, es_status;
627  
628  	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
629  	if (IS_ERR(path))
630  		return;
631  
632  	depth = ext_depth(inode);
633  	ex = path[depth].p_ext;
634  
635  	if (ex) {
636  
637  		ee_block = le32_to_cpu(ex->ee_block);
638  		ee_start = ext4_ext_pblock(ex);
639  		ee_len = ext4_ext_get_actual_len(ex);
640  
641  		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
642  		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
643  
644  		/*
645  		 * Make sure ex and es are not overlap when we try to insert
646  		 * a delayed/hole extent.
647  		 */
648  		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
649  			if (in_range(es->es_lblk, ee_block, ee_len)) {
650  				pr_warn("ES insert assertion failed for "
651  					"inode: %lu we can find an extent "
652  					"at block [%d/%d/%llu/%c], but we "
653  					"want to add a delayed/hole extent "
654  					"[%d/%d/%llu/%x]\n",
655  					inode->i_ino, ee_block, ee_len,
656  					ee_start, ee_status ? 'u' : 'w',
657  					es->es_lblk, es->es_len,
658  					ext4_es_pblock(es), ext4_es_status(es));
659  			}
660  			goto out;
661  		}
662  
663  		/*
664  		 * We don't check ee_block == es->es_lblk, etc. because es
665  		 * might be a part of whole extent, vice versa.
666  		 */
667  		if (es->es_lblk < ee_block ||
668  		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
669  			pr_warn("ES insert assertion failed for inode: %lu "
670  				"ex_status [%d/%d/%llu/%c] != "
671  				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
672  				ee_block, ee_len, ee_start,
673  				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
674  				ext4_es_pblock(es), es_status ? 'u' : 'w');
675  			goto out;
676  		}
677  
678  		if (ee_status ^ es_status) {
679  			pr_warn("ES insert assertion failed for inode: %lu "
680  				"ex_status [%d/%d/%llu/%c] != "
681  				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
682  				ee_block, ee_len, ee_start,
683  				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
684  				ext4_es_pblock(es), es_status ? 'u' : 'w');
685  		}
686  	} else {
687  		/*
688  		 * We can't find an extent on disk.  So we need to make sure
689  		 * that we don't want to add an written/unwritten extent.
690  		 */
691  		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
692  			pr_warn("ES insert assertion failed for inode: %lu "
693  				"can't find an extent at block %d but we want "
694  				"to add a written/unwritten extent "
695  				"[%d/%d/%llu/%x]\n", inode->i_ino,
696  				es->es_lblk, es->es_lblk, es->es_len,
697  				ext4_es_pblock(es), ext4_es_status(es));
698  		}
699  	}
700  out:
701  	ext4_free_ext_path(path);
702  }
703  
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)704  static void ext4_es_insert_extent_ind_check(struct inode *inode,
705  					    struct extent_status *es)
706  {
707  	struct ext4_map_blocks map;
708  	int retval;
709  
710  	/*
711  	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
712  	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
713  	 * access direct/indirect tree from outside.  It is too dirty to define
714  	 * this function in indirect.c file.
715  	 */
716  
717  	map.m_lblk = es->es_lblk;
718  	map.m_len = es->es_len;
719  
720  	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
721  	if (retval > 0) {
722  		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
723  			/*
724  			 * We want to add a delayed/hole extent but this
725  			 * block has been allocated.
726  			 */
727  			pr_warn("ES insert assertion failed for inode: %lu "
728  				"We can find blocks but we want to add a "
729  				"delayed/hole extent [%d/%d/%llu/%x]\n",
730  				inode->i_ino, es->es_lblk, es->es_len,
731  				ext4_es_pblock(es), ext4_es_status(es));
732  			return;
733  		} else if (ext4_es_is_written(es)) {
734  			if (retval != es->es_len) {
735  				pr_warn("ES insert assertion failed for "
736  					"inode: %lu retval %d != es_len %d\n",
737  					inode->i_ino, retval, es->es_len);
738  				return;
739  			}
740  			if (map.m_pblk != ext4_es_pblock(es)) {
741  				pr_warn("ES insert assertion failed for "
742  					"inode: %lu m_pblk %llu != "
743  					"es_pblk %llu\n",
744  					inode->i_ino, map.m_pblk,
745  					ext4_es_pblock(es));
746  				return;
747  			}
748  		} else {
749  			/*
750  			 * We don't need to check unwritten extent because
751  			 * indirect-based file doesn't have it.
752  			 */
753  			BUG();
754  		}
755  	} else if (retval == 0) {
756  		if (ext4_es_is_written(es)) {
757  			pr_warn("ES insert assertion failed for inode: %lu "
758  				"We can't find the block but we want to add "
759  				"a written extent [%d/%d/%llu/%x]\n",
760  				inode->i_ino, es->es_lblk, es->es_len,
761  				ext4_es_pblock(es), ext4_es_status(es));
762  			return;
763  		}
764  	}
765  }
766  
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)767  static inline void ext4_es_insert_extent_check(struct inode *inode,
768  					       struct extent_status *es)
769  {
770  	/*
771  	 * We don't need to worry about the race condition because
772  	 * caller takes i_data_sem locking.
773  	 */
774  	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
775  	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
776  		ext4_es_insert_extent_ext_check(inode, es);
777  	else
778  		ext4_es_insert_extent_ind_check(inode, es);
779  }
780  #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)781  static inline void ext4_es_insert_extent_check(struct inode *inode,
782  					       struct extent_status *es)
783  {
784  }
785  #endif
786  
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)787  static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
788  			      struct extent_status *prealloc)
789  {
790  	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
791  	struct rb_node **p = &tree->root.rb_node;
792  	struct rb_node *parent = NULL;
793  	struct extent_status *es;
794  
795  	while (*p) {
796  		parent = *p;
797  		es = rb_entry(parent, struct extent_status, rb_node);
798  
799  		if (newes->es_lblk < es->es_lblk) {
800  			if (ext4_es_can_be_merged(newes, es)) {
801  				/*
802  				 * Here we can modify es_lblk directly
803  				 * because it isn't overlapped.
804  				 */
805  				es->es_lblk = newes->es_lblk;
806  				es->es_len += newes->es_len;
807  				if (ext4_es_is_written(es) ||
808  				    ext4_es_is_unwritten(es))
809  					ext4_es_store_pblock(es,
810  							     newes->es_pblk);
811  				es = ext4_es_try_to_merge_left(inode, es);
812  				goto out;
813  			}
814  			p = &(*p)->rb_left;
815  		} else if (newes->es_lblk > ext4_es_end(es)) {
816  			if (ext4_es_can_be_merged(es, newes)) {
817  				es->es_len += newes->es_len;
818  				es = ext4_es_try_to_merge_right(inode, es);
819  				goto out;
820  			}
821  			p = &(*p)->rb_right;
822  		} else {
823  			BUG();
824  			return -EINVAL;
825  		}
826  	}
827  
828  	if (prealloc)
829  		es = prealloc;
830  	else
831  		es = __es_alloc_extent(false);
832  	if (!es)
833  		return -ENOMEM;
834  	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
835  			    newes->es_pblk);
836  
837  	rb_link_node(&es->rb_node, parent, p);
838  	rb_insert_color(&es->rb_node, &tree->root);
839  
840  out:
841  	tree->cache_es = es;
842  	return 0;
843  }
844  
845  /*
846   * ext4_es_insert_extent() adds information to an inode's extent
847   * status tree.
848   */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status,int flags)849  void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
850  			   ext4_lblk_t len, ext4_fsblk_t pblk,
851  			   unsigned int status, int flags)
852  {
853  	struct extent_status newes;
854  	ext4_lblk_t end = lblk + len - 1;
855  	int err1 = 0, err2 = 0, err3 = 0;
856  	int resv_used = 0, pending = 0;
857  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
858  	struct extent_status *es1 = NULL;
859  	struct extent_status *es2 = NULL;
860  	struct pending_reservation *pr = NULL;
861  	bool revise_pending = false;
862  
863  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
864  		return;
865  
866  	es_debug("add [%u/%u) %llu %x %x to extent status tree of inode %lu\n",
867  		 lblk, len, pblk, status, flags, inode->i_ino);
868  
869  	if (!len)
870  		return;
871  
872  	BUG_ON(end < lblk);
873  	WARN_ON_ONCE(status & EXTENT_STATUS_DELAYED);
874  
875  	newes.es_lblk = lblk;
876  	newes.es_len = len;
877  	ext4_es_store_pblock_status(&newes, pblk, status);
878  	trace_ext4_es_insert_extent(inode, &newes);
879  
880  	ext4_es_insert_extent_check(inode, &newes);
881  
882  	revise_pending = sbi->s_cluster_ratio > 1 &&
883  			 test_opt(inode->i_sb, DELALLOC) &&
884  			 (status & (EXTENT_STATUS_WRITTEN |
885  				    EXTENT_STATUS_UNWRITTEN));
886  retry:
887  	if (err1 && !es1)
888  		es1 = __es_alloc_extent(true);
889  	if ((err1 || err2) && !es2)
890  		es2 = __es_alloc_extent(true);
891  	if ((err1 || err2 || err3 < 0) && revise_pending && !pr)
892  		pr = __alloc_pending(true);
893  	write_lock(&EXT4_I(inode)->i_es_lock);
894  
895  	err1 = __es_remove_extent(inode, lblk, end, &resv_used, es1);
896  	if (err1 != 0)
897  		goto error;
898  	/* Free preallocated extent if it didn't get used. */
899  	if (es1) {
900  		if (!es1->es_len)
901  			__es_free_extent(es1);
902  		es1 = NULL;
903  	}
904  
905  	err2 = __es_insert_extent(inode, &newes, es2);
906  	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
907  		err2 = 0;
908  	if (err2 != 0)
909  		goto error;
910  	/* Free preallocated extent if it didn't get used. */
911  	if (es2) {
912  		if (!es2->es_len)
913  			__es_free_extent(es2);
914  		es2 = NULL;
915  	}
916  
917  	if (revise_pending) {
918  		err3 = __revise_pending(inode, lblk, len, &pr);
919  		if (err3 < 0)
920  			goto error;
921  		if (pr) {
922  			__free_pending(pr);
923  			pr = NULL;
924  		}
925  		pending = err3;
926  	}
927  error:
928  	write_unlock(&EXT4_I(inode)->i_es_lock);
929  	/*
930  	 * Reduce the reserved cluster count to reflect successful deferred
931  	 * allocation of delayed allocated clusters or direct allocation of
932  	 * clusters discovered to be delayed allocated.  Once allocated, a
933  	 * cluster is not included in the reserved count.
934  	 *
935  	 * When direct allocating (from fallocate, filemap, DIO, or clusters
936  	 * allocated when delalloc has been disabled by ext4_nonda_switch())
937  	 * an extent either 1) contains delayed blocks but start with
938  	 * non-delayed allocated blocks (e.g. hole) or 2) contains non-delayed
939  	 * allocated blocks which belong to delayed allocated clusters when
940  	 * bigalloc feature is enabled, quota has already been claimed by
941  	 * ext4_mb_new_blocks(), so release the quota reservations made for
942  	 * any previously delayed allocated clusters instead of claim them
943  	 * again.
944  	 */
945  	resv_used += pending;
946  	if (resv_used)
947  		ext4_da_update_reserve_space(inode, resv_used,
948  				flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
949  
950  	if (err1 || err2 || err3 < 0)
951  		goto retry;
952  
953  	ext4_es_print_tree(inode);
954  	return;
955  }
956  
957  /*
958   * ext4_es_cache_extent() inserts information into the extent status
959   * tree if and only if there isn't information about the range in
960   * question already.
961   */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)962  void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
963  			  ext4_lblk_t len, ext4_fsblk_t pblk,
964  			  unsigned int status)
965  {
966  	struct extent_status *es;
967  	struct extent_status newes;
968  	ext4_lblk_t end = lblk + len - 1;
969  
970  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
971  		return;
972  
973  	newes.es_lblk = lblk;
974  	newes.es_len = len;
975  	ext4_es_store_pblock_status(&newes, pblk, status);
976  	trace_ext4_es_cache_extent(inode, &newes);
977  
978  	if (!len)
979  		return;
980  
981  	BUG_ON(end < lblk);
982  
983  	write_lock(&EXT4_I(inode)->i_es_lock);
984  
985  	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
986  	if (!es || es->es_lblk > end)
987  		__es_insert_extent(inode, &newes, NULL);
988  	write_unlock(&EXT4_I(inode)->i_es_lock);
989  }
990  
991  /*
992   * ext4_es_lookup_extent() looks up an extent in extent status tree.
993   *
994   * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
995   *
996   * Return: 1 on found, 0 on not
997   */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)998  int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
999  			  ext4_lblk_t *next_lblk,
1000  			  struct extent_status *es)
1001  {
1002  	struct ext4_es_tree *tree;
1003  	struct ext4_es_stats *stats;
1004  	struct extent_status *es1 = NULL;
1005  	struct rb_node *node;
1006  	int found = 0;
1007  
1008  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1009  		return 0;
1010  
1011  	trace_ext4_es_lookup_extent_enter(inode, lblk);
1012  	es_debug("lookup extent in block %u\n", lblk);
1013  
1014  	tree = &EXT4_I(inode)->i_es_tree;
1015  	read_lock(&EXT4_I(inode)->i_es_lock);
1016  
1017  	/* find extent in cache firstly */
1018  	es->es_lblk = es->es_len = es->es_pblk = 0;
1019  	es1 = READ_ONCE(tree->cache_es);
1020  	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1021  		es_debug("%u cached by [%u/%u)\n",
1022  			 lblk, es1->es_lblk, es1->es_len);
1023  		found = 1;
1024  		goto out;
1025  	}
1026  
1027  	node = tree->root.rb_node;
1028  	while (node) {
1029  		es1 = rb_entry(node, struct extent_status, rb_node);
1030  		if (lblk < es1->es_lblk)
1031  			node = node->rb_left;
1032  		else if (lblk > ext4_es_end(es1))
1033  			node = node->rb_right;
1034  		else {
1035  			found = 1;
1036  			break;
1037  		}
1038  	}
1039  
1040  out:
1041  	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1042  	if (found) {
1043  		BUG_ON(!es1);
1044  		es->es_lblk = es1->es_lblk;
1045  		es->es_len = es1->es_len;
1046  		es->es_pblk = es1->es_pblk;
1047  		if (!ext4_es_is_referenced(es1))
1048  			ext4_es_set_referenced(es1);
1049  		percpu_counter_inc(&stats->es_stats_cache_hits);
1050  		if (next_lblk) {
1051  			node = rb_next(&es1->rb_node);
1052  			if (node) {
1053  				es1 = rb_entry(node, struct extent_status,
1054  					       rb_node);
1055  				*next_lblk = es1->es_lblk;
1056  			} else
1057  				*next_lblk = 0;
1058  		}
1059  	} else {
1060  		percpu_counter_inc(&stats->es_stats_cache_misses);
1061  	}
1062  
1063  	read_unlock(&EXT4_I(inode)->i_es_lock);
1064  
1065  	trace_ext4_es_lookup_extent_exit(inode, es, found);
1066  	return found;
1067  }
1068  
1069  struct rsvd_count {
1070  	int ndelayed;
1071  	bool first_do_lblk_found;
1072  	ext4_lblk_t first_do_lblk;
1073  	ext4_lblk_t last_do_lblk;
1074  	struct extent_status *left_es;
1075  	bool partial;
1076  	ext4_lblk_t lclu;
1077  };
1078  
1079  /*
1080   * init_rsvd - initialize reserved count data before removing block range
1081   *	       in file from extent status tree
1082   *
1083   * @inode - file containing range
1084   * @lblk - first block in range
1085   * @es - pointer to first extent in range
1086   * @rc - pointer to reserved count data
1087   *
1088   * Assumes es is not NULL
1089   */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1090  static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1091  		      struct extent_status *es, struct rsvd_count *rc)
1092  {
1093  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1094  	struct rb_node *node;
1095  
1096  	rc->ndelayed = 0;
1097  
1098  	/*
1099  	 * for bigalloc, note the first delayed block in the range has not
1100  	 * been found, record the extent containing the block to the left of
1101  	 * the region to be removed, if any, and note that there's no partial
1102  	 * cluster to track
1103  	 */
1104  	if (sbi->s_cluster_ratio > 1) {
1105  		rc->first_do_lblk_found = false;
1106  		if (lblk > es->es_lblk) {
1107  			rc->left_es = es;
1108  		} else {
1109  			node = rb_prev(&es->rb_node);
1110  			rc->left_es = node ? rb_entry(node,
1111  						      struct extent_status,
1112  						      rb_node) : NULL;
1113  		}
1114  		rc->partial = false;
1115  	}
1116  }
1117  
1118  /*
1119   * count_rsvd - count the clusters containing delayed blocks in a range
1120   *	        within an extent and add to the running tally in rsvd_count
1121   *
1122   * @inode - file containing extent
1123   * @lblk - first block in range
1124   * @len - length of range in blocks
1125   * @es - pointer to extent containing clusters to be counted
1126   * @rc - pointer to reserved count data
1127   *
1128   * Tracks partial clusters found at the beginning and end of extents so
1129   * they aren't overcounted when they span adjacent extents
1130   */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1131  static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1132  		       struct extent_status *es, struct rsvd_count *rc)
1133  {
1134  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1135  	ext4_lblk_t i, end, nclu;
1136  
1137  	if (!ext4_es_is_delayed(es))
1138  		return;
1139  
1140  	WARN_ON(len <= 0);
1141  
1142  	if (sbi->s_cluster_ratio == 1) {
1143  		rc->ndelayed += (int) len;
1144  		return;
1145  	}
1146  
1147  	/* bigalloc */
1148  
1149  	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1150  	end = lblk + (ext4_lblk_t) len - 1;
1151  	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1152  
1153  	/* record the first block of the first delayed extent seen */
1154  	if (!rc->first_do_lblk_found) {
1155  		rc->first_do_lblk = i;
1156  		rc->first_do_lblk_found = true;
1157  	}
1158  
1159  	/* update the last lblk in the region seen so far */
1160  	rc->last_do_lblk = end;
1161  
1162  	/*
1163  	 * if we're tracking a partial cluster and the current extent
1164  	 * doesn't start with it, count it and stop tracking
1165  	 */
1166  	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1167  		rc->ndelayed++;
1168  		rc->partial = false;
1169  	}
1170  
1171  	/*
1172  	 * if the first cluster doesn't start on a cluster boundary but
1173  	 * ends on one, count it
1174  	 */
1175  	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1176  		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1177  			rc->ndelayed++;
1178  			rc->partial = false;
1179  			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1180  		}
1181  	}
1182  
1183  	/*
1184  	 * if the current cluster starts on a cluster boundary, count the
1185  	 * number of whole delayed clusters in the extent
1186  	 */
1187  	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1188  		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1189  		rc->ndelayed += nclu;
1190  		i += nclu << sbi->s_cluster_bits;
1191  	}
1192  
1193  	/*
1194  	 * start tracking a partial cluster if there's a partial at the end
1195  	 * of the current extent and we're not already tracking one
1196  	 */
1197  	if (!rc->partial && i <= end) {
1198  		rc->partial = true;
1199  		rc->lclu = EXT4_B2C(sbi, i);
1200  	}
1201  }
1202  
1203  /*
1204   * __pr_tree_search - search for a pending cluster reservation
1205   *
1206   * @root - root of pending reservation tree
1207   * @lclu - logical cluster to search for
1208   *
1209   * Returns the pending reservation for the cluster identified by @lclu
1210   * if found.  If not, returns a reservation for the next cluster if any,
1211   * and if not, returns NULL.
1212   */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1213  static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1214  						    ext4_lblk_t lclu)
1215  {
1216  	struct rb_node *node = root->rb_node;
1217  	struct pending_reservation *pr = NULL;
1218  
1219  	while (node) {
1220  		pr = rb_entry(node, struct pending_reservation, rb_node);
1221  		if (lclu < pr->lclu)
1222  			node = node->rb_left;
1223  		else if (lclu > pr->lclu)
1224  			node = node->rb_right;
1225  		else
1226  			return pr;
1227  	}
1228  	if (pr && lclu < pr->lclu)
1229  		return pr;
1230  	if (pr && lclu > pr->lclu) {
1231  		node = rb_next(&pr->rb_node);
1232  		return node ? rb_entry(node, struct pending_reservation,
1233  				       rb_node) : NULL;
1234  	}
1235  	return NULL;
1236  }
1237  
1238  /*
1239   * get_rsvd - calculates and returns the number of cluster reservations to be
1240   *	      released when removing a block range from the extent status tree
1241   *	      and releases any pending reservations within the range
1242   *
1243   * @inode - file containing block range
1244   * @end - last block in range
1245   * @right_es - pointer to extent containing next block beyond end or NULL
1246   * @rc - pointer to reserved count data
1247   *
1248   * The number of reservations to be released is equal to the number of
1249   * clusters containing delayed blocks within the range, minus the number of
1250   * clusters still containing delayed blocks at the ends of the range, and
1251   * minus the number of pending reservations within the range.
1252   */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1253  static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1254  			     struct extent_status *right_es,
1255  			     struct rsvd_count *rc)
1256  {
1257  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1258  	struct pending_reservation *pr;
1259  	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1260  	struct rb_node *node;
1261  	ext4_lblk_t first_lclu, last_lclu;
1262  	bool left_delayed, right_delayed, count_pending;
1263  	struct extent_status *es;
1264  
1265  	if (sbi->s_cluster_ratio > 1) {
1266  		/* count any remaining partial cluster */
1267  		if (rc->partial)
1268  			rc->ndelayed++;
1269  
1270  		if (rc->ndelayed == 0)
1271  			return 0;
1272  
1273  		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1274  		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1275  
1276  		/*
1277  		 * decrease the delayed count by the number of clusters at the
1278  		 * ends of the range that still contain delayed blocks -
1279  		 * these clusters still need to be reserved
1280  		 */
1281  		left_delayed = right_delayed = false;
1282  
1283  		es = rc->left_es;
1284  		while (es && ext4_es_end(es) >=
1285  		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1286  			if (ext4_es_is_delayed(es)) {
1287  				rc->ndelayed--;
1288  				left_delayed = true;
1289  				break;
1290  			}
1291  			node = rb_prev(&es->rb_node);
1292  			if (!node)
1293  				break;
1294  			es = rb_entry(node, struct extent_status, rb_node);
1295  		}
1296  		if (right_es && (!left_delayed || first_lclu != last_lclu)) {
1297  			if (end < ext4_es_end(right_es)) {
1298  				es = right_es;
1299  			} else {
1300  				node = rb_next(&right_es->rb_node);
1301  				es = node ? rb_entry(node, struct extent_status,
1302  						     rb_node) : NULL;
1303  			}
1304  			while (es && es->es_lblk <=
1305  			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1306  				if (ext4_es_is_delayed(es)) {
1307  					rc->ndelayed--;
1308  					right_delayed = true;
1309  					break;
1310  				}
1311  				node = rb_next(&es->rb_node);
1312  				if (!node)
1313  					break;
1314  				es = rb_entry(node, struct extent_status,
1315  					      rb_node);
1316  			}
1317  		}
1318  
1319  		/*
1320  		 * Determine the block range that should be searched for
1321  		 * pending reservations, if any.  Clusters on the ends of the
1322  		 * original removed range containing delayed blocks are
1323  		 * excluded.  They've already been accounted for and it's not
1324  		 * possible to determine if an associated pending reservation
1325  		 * should be released with the information available in the
1326  		 * extents status tree.
1327  		 */
1328  		if (first_lclu == last_lclu) {
1329  			if (left_delayed | right_delayed)
1330  				count_pending = false;
1331  			else
1332  				count_pending = true;
1333  		} else {
1334  			if (left_delayed)
1335  				first_lclu++;
1336  			if (right_delayed)
1337  				last_lclu--;
1338  			if (first_lclu <= last_lclu)
1339  				count_pending = true;
1340  			else
1341  				count_pending = false;
1342  		}
1343  
1344  		/*
1345  		 * a pending reservation found between first_lclu and last_lclu
1346  		 * represents an allocated cluster that contained at least one
1347  		 * delayed block, so the delayed total must be reduced by one
1348  		 * for each pending reservation found and released
1349  		 */
1350  		if (count_pending) {
1351  			pr = __pr_tree_search(&tree->root, first_lclu);
1352  			while (pr && pr->lclu <= last_lclu) {
1353  				rc->ndelayed--;
1354  				node = rb_next(&pr->rb_node);
1355  				rb_erase(&pr->rb_node, &tree->root);
1356  				__free_pending(pr);
1357  				if (!node)
1358  					break;
1359  				pr = rb_entry(node, struct pending_reservation,
1360  					      rb_node);
1361  			}
1362  		}
1363  	}
1364  	return rc->ndelayed;
1365  }
1366  
1367  
1368  /*
1369   * __es_remove_extent - removes block range from extent status tree
1370   *
1371   * @inode - file containing range
1372   * @lblk - first block in range
1373   * @end - last block in range
1374   * @reserved - number of cluster reservations released
1375   * @prealloc - pre-allocated es to avoid memory allocation failures
1376   *
1377   * If @reserved is not NULL and delayed allocation is enabled, counts
1378   * block/cluster reservations freed by removing range and if bigalloc
1379   * enabled cancels pending reservations as needed. Returns 0 on success,
1380   * error code on failure.
1381   */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1382  static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1383  			      ext4_lblk_t end, int *reserved,
1384  			      struct extent_status *prealloc)
1385  {
1386  	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1387  	struct rb_node *node;
1388  	struct extent_status *es;
1389  	struct extent_status orig_es;
1390  	ext4_lblk_t len1, len2;
1391  	ext4_fsblk_t block;
1392  	int err = 0;
1393  	bool count_reserved = true;
1394  	struct rsvd_count rc;
1395  
1396  	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1397  		count_reserved = false;
1398  
1399  	es = __es_tree_search(&tree->root, lblk);
1400  	if (!es)
1401  		goto out;
1402  	if (es->es_lblk > end)
1403  		goto out;
1404  
1405  	/* Simply invalidate cache_es. */
1406  	tree->cache_es = NULL;
1407  	if (count_reserved)
1408  		init_rsvd(inode, lblk, es, &rc);
1409  
1410  	orig_es.es_lblk = es->es_lblk;
1411  	orig_es.es_len = es->es_len;
1412  	orig_es.es_pblk = es->es_pblk;
1413  
1414  	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1415  	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1416  	if (len1 > 0)
1417  		es->es_len = len1;
1418  	if (len2 > 0) {
1419  		if (len1 > 0) {
1420  			struct extent_status newes;
1421  
1422  			newes.es_lblk = end + 1;
1423  			newes.es_len = len2;
1424  			block = 0x7FDEADBEEFULL;
1425  			if (ext4_es_is_written(&orig_es) ||
1426  			    ext4_es_is_unwritten(&orig_es))
1427  				block = ext4_es_pblock(&orig_es) +
1428  					orig_es.es_len - len2;
1429  			ext4_es_store_pblock_status(&newes, block,
1430  						    ext4_es_status(&orig_es));
1431  			err = __es_insert_extent(inode, &newes, prealloc);
1432  			if (err) {
1433  				if (!ext4_es_must_keep(&newes))
1434  					return 0;
1435  
1436  				es->es_lblk = orig_es.es_lblk;
1437  				es->es_len = orig_es.es_len;
1438  				goto out;
1439  			}
1440  		} else {
1441  			es->es_lblk = end + 1;
1442  			es->es_len = len2;
1443  			if (ext4_es_is_written(es) ||
1444  			    ext4_es_is_unwritten(es)) {
1445  				block = orig_es.es_pblk + orig_es.es_len - len2;
1446  				ext4_es_store_pblock(es, block);
1447  			}
1448  		}
1449  		if (count_reserved)
1450  			count_rsvd(inode, orig_es.es_lblk + len1,
1451  				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1452  		goto out_get_reserved;
1453  	}
1454  
1455  	if (len1 > 0) {
1456  		if (count_reserved)
1457  			count_rsvd(inode, lblk, orig_es.es_len - len1,
1458  				   &orig_es, &rc);
1459  		node = rb_next(&es->rb_node);
1460  		if (node)
1461  			es = rb_entry(node, struct extent_status, rb_node);
1462  		else
1463  			es = NULL;
1464  	}
1465  
1466  	while (es && ext4_es_end(es) <= end) {
1467  		if (count_reserved)
1468  			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1469  		node = rb_next(&es->rb_node);
1470  		rb_erase(&es->rb_node, &tree->root);
1471  		ext4_es_free_extent(inode, es);
1472  		if (!node) {
1473  			es = NULL;
1474  			break;
1475  		}
1476  		es = rb_entry(node, struct extent_status, rb_node);
1477  	}
1478  
1479  	if (es && es->es_lblk < end + 1) {
1480  		ext4_lblk_t orig_len = es->es_len;
1481  
1482  		len1 = ext4_es_end(es) - end;
1483  		if (count_reserved)
1484  			count_rsvd(inode, es->es_lblk, orig_len - len1,
1485  				   es, &rc);
1486  		es->es_lblk = end + 1;
1487  		es->es_len = len1;
1488  		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1489  			block = es->es_pblk + orig_len - len1;
1490  			ext4_es_store_pblock(es, block);
1491  		}
1492  	}
1493  
1494  out_get_reserved:
1495  	if (count_reserved)
1496  		*reserved = get_rsvd(inode, end, es, &rc);
1497  out:
1498  	return err;
1499  }
1500  
1501  /*
1502   * ext4_es_remove_extent - removes block range from extent status tree
1503   *
1504   * @inode - file containing range
1505   * @lblk - first block in range
1506   * @len - number of blocks to remove
1507   *
1508   * Reduces block/cluster reservation count and for bigalloc cancels pending
1509   * reservations as needed.
1510   */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1511  void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1512  			   ext4_lblk_t len)
1513  {
1514  	ext4_lblk_t end;
1515  	int err = 0;
1516  	int reserved = 0;
1517  	struct extent_status *es = NULL;
1518  
1519  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1520  		return;
1521  
1522  	trace_ext4_es_remove_extent(inode, lblk, len);
1523  	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1524  		 lblk, len, inode->i_ino);
1525  
1526  	if (!len)
1527  		return;
1528  
1529  	end = lblk + len - 1;
1530  	BUG_ON(end < lblk);
1531  
1532  retry:
1533  	if (err && !es)
1534  		es = __es_alloc_extent(true);
1535  	/*
1536  	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1537  	 * so that we are sure __es_shrink() is done with the inode before it
1538  	 * is reclaimed.
1539  	 */
1540  	write_lock(&EXT4_I(inode)->i_es_lock);
1541  	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1542  	/* Free preallocated extent if it didn't get used. */
1543  	if (es) {
1544  		if (!es->es_len)
1545  			__es_free_extent(es);
1546  		es = NULL;
1547  	}
1548  	write_unlock(&EXT4_I(inode)->i_es_lock);
1549  	if (err)
1550  		goto retry;
1551  
1552  	ext4_es_print_tree(inode);
1553  	ext4_da_release_space(inode, reserved);
1554  	return;
1555  }
1556  
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1557  static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1558  		       struct ext4_inode_info *locked_ei)
1559  {
1560  	struct ext4_inode_info *ei;
1561  	struct ext4_es_stats *es_stats;
1562  	ktime_t start_time;
1563  	u64 scan_time;
1564  	int nr_to_walk;
1565  	int nr_shrunk = 0;
1566  	int retried = 0, nr_skipped = 0;
1567  
1568  	es_stats = &sbi->s_es_stats;
1569  	start_time = ktime_get();
1570  
1571  retry:
1572  	spin_lock(&sbi->s_es_lock);
1573  	nr_to_walk = sbi->s_es_nr_inode;
1574  	while (nr_to_walk-- > 0) {
1575  		if (list_empty(&sbi->s_es_list)) {
1576  			spin_unlock(&sbi->s_es_lock);
1577  			goto out;
1578  		}
1579  		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1580  				      i_es_list);
1581  		/* Move the inode to the tail */
1582  		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1583  
1584  		/*
1585  		 * Normally we try hard to avoid shrinking precached inodes,
1586  		 * but we will as a last resort.
1587  		 */
1588  		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1589  						EXT4_STATE_EXT_PRECACHED)) {
1590  			nr_skipped++;
1591  			continue;
1592  		}
1593  
1594  		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1595  			nr_skipped++;
1596  			continue;
1597  		}
1598  		/*
1599  		 * Now we hold i_es_lock which protects us from inode reclaim
1600  		 * freeing inode under us
1601  		 */
1602  		spin_unlock(&sbi->s_es_lock);
1603  
1604  		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1605  		write_unlock(&ei->i_es_lock);
1606  
1607  		if (nr_to_scan <= 0)
1608  			goto out;
1609  		spin_lock(&sbi->s_es_lock);
1610  	}
1611  	spin_unlock(&sbi->s_es_lock);
1612  
1613  	/*
1614  	 * If we skipped any inodes, and we weren't able to make any
1615  	 * forward progress, try again to scan precached inodes.
1616  	 */
1617  	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1618  		retried++;
1619  		goto retry;
1620  	}
1621  
1622  	if (locked_ei && nr_shrunk == 0)
1623  		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1624  
1625  out:
1626  	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1627  	if (likely(es_stats->es_stats_scan_time))
1628  		es_stats->es_stats_scan_time = (scan_time +
1629  				es_stats->es_stats_scan_time*3) / 4;
1630  	else
1631  		es_stats->es_stats_scan_time = scan_time;
1632  	if (scan_time > es_stats->es_stats_max_scan_time)
1633  		es_stats->es_stats_max_scan_time = scan_time;
1634  	if (likely(es_stats->es_stats_shrunk))
1635  		es_stats->es_stats_shrunk = (nr_shrunk +
1636  				es_stats->es_stats_shrunk*3) / 4;
1637  	else
1638  		es_stats->es_stats_shrunk = nr_shrunk;
1639  
1640  	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1641  			     nr_skipped, retried);
1642  	return nr_shrunk;
1643  }
1644  
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1645  static unsigned long ext4_es_count(struct shrinker *shrink,
1646  				   struct shrink_control *sc)
1647  {
1648  	unsigned long nr;
1649  	struct ext4_sb_info *sbi;
1650  
1651  	sbi = shrink->private_data;
1652  	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1653  	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1654  	return nr;
1655  }
1656  
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1657  static unsigned long ext4_es_scan(struct shrinker *shrink,
1658  				  struct shrink_control *sc)
1659  {
1660  	struct ext4_sb_info *sbi = shrink->private_data;
1661  	int nr_to_scan = sc->nr_to_scan;
1662  	int ret, nr_shrunk;
1663  
1664  	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1665  	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1666  
1667  	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1668  
1669  	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1670  	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1671  	return nr_shrunk;
1672  }
1673  
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1674  int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1675  {
1676  	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1677  	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1678  	struct ext4_inode_info *ei, *max = NULL;
1679  	unsigned int inode_cnt = 0;
1680  
1681  	if (v != SEQ_START_TOKEN)
1682  		return 0;
1683  
1684  	/* here we just find an inode that has the max nr. of objects */
1685  	spin_lock(&sbi->s_es_lock);
1686  	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1687  		inode_cnt++;
1688  		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1689  			max = ei;
1690  		else if (!max)
1691  			max = ei;
1692  	}
1693  	spin_unlock(&sbi->s_es_lock);
1694  
1695  	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1696  		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1697  		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1698  	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1699  		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1700  		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1701  	if (inode_cnt)
1702  		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1703  
1704  	seq_printf(seq, "average:\n  %llu us scan time\n",
1705  	    div_u64(es_stats->es_stats_scan_time, 1000));
1706  	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1707  	if (inode_cnt)
1708  		seq_printf(seq,
1709  		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1710  		    "  %llu us max scan time\n",
1711  		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1712  		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1713  
1714  	return 0;
1715  }
1716  
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1717  int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1718  {
1719  	int err;
1720  
1721  	/* Make sure we have enough bits for physical block number */
1722  	BUILD_BUG_ON(ES_SHIFT < 48);
1723  	INIT_LIST_HEAD(&sbi->s_es_list);
1724  	sbi->s_es_nr_inode = 0;
1725  	spin_lock_init(&sbi->s_es_lock);
1726  	sbi->s_es_stats.es_stats_shrunk = 0;
1727  	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1728  				  GFP_KERNEL);
1729  	if (err)
1730  		return err;
1731  	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1732  				  GFP_KERNEL);
1733  	if (err)
1734  		goto err1;
1735  	sbi->s_es_stats.es_stats_scan_time = 0;
1736  	sbi->s_es_stats.es_stats_max_scan_time = 0;
1737  	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1738  	if (err)
1739  		goto err2;
1740  	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1741  	if (err)
1742  		goto err3;
1743  
1744  	sbi->s_es_shrinker = shrinker_alloc(0, "ext4-es:%s", sbi->s_sb->s_id);
1745  	if (!sbi->s_es_shrinker) {
1746  		err = -ENOMEM;
1747  		goto err4;
1748  	}
1749  
1750  	sbi->s_es_shrinker->scan_objects = ext4_es_scan;
1751  	sbi->s_es_shrinker->count_objects = ext4_es_count;
1752  	sbi->s_es_shrinker->private_data = sbi;
1753  
1754  	shrinker_register(sbi->s_es_shrinker);
1755  
1756  	return 0;
1757  err4:
1758  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1759  err3:
1760  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1761  err2:
1762  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1763  err1:
1764  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1765  	return err;
1766  }
1767  
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1768  void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1769  {
1770  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1771  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1772  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1773  	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1774  	shrinker_free(sbi->s_es_shrinker);
1775  }
1776  
1777  /*
1778   * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1779   * most *nr_to_scan extents, update *nr_to_scan accordingly.
1780   *
1781   * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1782   * Increment *nr_shrunk by the number of reclaimed extents. Also update
1783   * ei->i_es_shrink_lblk to where we should continue scanning.
1784   */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1785  static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1786  				 int *nr_to_scan, int *nr_shrunk)
1787  {
1788  	struct inode *inode = &ei->vfs_inode;
1789  	struct ext4_es_tree *tree = &ei->i_es_tree;
1790  	struct extent_status *es;
1791  	struct rb_node *node;
1792  
1793  	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1794  	if (!es)
1795  		goto out_wrap;
1796  
1797  	while (*nr_to_scan > 0) {
1798  		if (es->es_lblk > end) {
1799  			ei->i_es_shrink_lblk = end + 1;
1800  			return 0;
1801  		}
1802  
1803  		(*nr_to_scan)--;
1804  		node = rb_next(&es->rb_node);
1805  
1806  		if (ext4_es_must_keep(es))
1807  			goto next;
1808  		if (ext4_es_is_referenced(es)) {
1809  			ext4_es_clear_referenced(es);
1810  			goto next;
1811  		}
1812  
1813  		rb_erase(&es->rb_node, &tree->root);
1814  		ext4_es_free_extent(inode, es);
1815  		(*nr_shrunk)++;
1816  next:
1817  		if (!node)
1818  			goto out_wrap;
1819  		es = rb_entry(node, struct extent_status, rb_node);
1820  	}
1821  	ei->i_es_shrink_lblk = es->es_lblk;
1822  	return 1;
1823  out_wrap:
1824  	ei->i_es_shrink_lblk = 0;
1825  	return 0;
1826  }
1827  
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1828  static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1829  {
1830  	struct inode *inode = &ei->vfs_inode;
1831  	int nr_shrunk = 0;
1832  	ext4_lblk_t start = ei->i_es_shrink_lblk;
1833  	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1834  				      DEFAULT_RATELIMIT_BURST);
1835  
1836  	if (ei->i_es_shk_nr == 0)
1837  		return 0;
1838  
1839  	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1840  	    __ratelimit(&_rs))
1841  		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1842  
1843  	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1844  	    start != 0)
1845  		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1846  
1847  	ei->i_es_tree.cache_es = NULL;
1848  	return nr_shrunk;
1849  }
1850  
1851  /*
1852   * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1853   * discretionary entries from the extent status cache.  (Some entries
1854   * must be present for proper operations.)
1855   */
ext4_clear_inode_es(struct inode * inode)1856  void ext4_clear_inode_es(struct inode *inode)
1857  {
1858  	struct ext4_inode_info *ei = EXT4_I(inode);
1859  	struct extent_status *es;
1860  	struct ext4_es_tree *tree;
1861  	struct rb_node *node;
1862  
1863  	write_lock(&ei->i_es_lock);
1864  	tree = &EXT4_I(inode)->i_es_tree;
1865  	tree->cache_es = NULL;
1866  	node = rb_first(&tree->root);
1867  	while (node) {
1868  		es = rb_entry(node, struct extent_status, rb_node);
1869  		node = rb_next(node);
1870  		if (!ext4_es_must_keep(es)) {
1871  			rb_erase(&es->rb_node, &tree->root);
1872  			ext4_es_free_extent(inode, es);
1873  		}
1874  	}
1875  	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1876  	write_unlock(&ei->i_es_lock);
1877  }
1878  
1879  #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1880  static void ext4_print_pending_tree(struct inode *inode)
1881  {
1882  	struct ext4_pending_tree *tree;
1883  	struct rb_node *node;
1884  	struct pending_reservation *pr;
1885  
1886  	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1887  	tree = &EXT4_I(inode)->i_pending_tree;
1888  	node = rb_first(&tree->root);
1889  	while (node) {
1890  		pr = rb_entry(node, struct pending_reservation, rb_node);
1891  		printk(KERN_DEBUG " %u", pr->lclu);
1892  		node = rb_next(node);
1893  	}
1894  	printk(KERN_DEBUG "\n");
1895  }
1896  #else
1897  #define ext4_print_pending_tree(inode)
1898  #endif
1899  
ext4_init_pending(void)1900  int __init ext4_init_pending(void)
1901  {
1902  	ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1903  	if (ext4_pending_cachep == NULL)
1904  		return -ENOMEM;
1905  	return 0;
1906  }
1907  
ext4_exit_pending(void)1908  void ext4_exit_pending(void)
1909  {
1910  	kmem_cache_destroy(ext4_pending_cachep);
1911  }
1912  
ext4_init_pending_tree(struct ext4_pending_tree * tree)1913  void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1914  {
1915  	tree->root = RB_ROOT;
1916  }
1917  
1918  /*
1919   * __get_pending - retrieve a pointer to a pending reservation
1920   *
1921   * @inode - file containing the pending cluster reservation
1922   * @lclu - logical cluster of interest
1923   *
1924   * Returns a pointer to a pending reservation if it's a member of
1925   * the set, and NULL if not.  Must be called holding i_es_lock.
1926   */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1927  static struct pending_reservation *__get_pending(struct inode *inode,
1928  						 ext4_lblk_t lclu)
1929  {
1930  	struct ext4_pending_tree *tree;
1931  	struct rb_node *node;
1932  	struct pending_reservation *pr = NULL;
1933  
1934  	tree = &EXT4_I(inode)->i_pending_tree;
1935  	node = (&tree->root)->rb_node;
1936  
1937  	while (node) {
1938  		pr = rb_entry(node, struct pending_reservation, rb_node);
1939  		if (lclu < pr->lclu)
1940  			node = node->rb_left;
1941  		else if (lclu > pr->lclu)
1942  			node = node->rb_right;
1943  		else if (lclu == pr->lclu)
1944  			return pr;
1945  	}
1946  	return NULL;
1947  }
1948  
1949  /*
1950   * __insert_pending - adds a pending cluster reservation to the set of
1951   *                    pending reservations
1952   *
1953   * @inode - file containing the cluster
1954   * @lblk - logical block in the cluster to be added
1955   * @prealloc - preallocated pending entry
1956   *
1957   * Returns 1 on successful insertion and -ENOMEM on failure.  If the
1958   * pending reservation is already in the set, returns successfully.
1959   */
__insert_pending(struct inode * inode,ext4_lblk_t lblk,struct pending_reservation ** prealloc)1960  static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1961  			    struct pending_reservation **prealloc)
1962  {
1963  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1964  	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1965  	struct rb_node **p = &tree->root.rb_node;
1966  	struct rb_node *parent = NULL;
1967  	struct pending_reservation *pr;
1968  	ext4_lblk_t lclu;
1969  	int ret = 0;
1970  
1971  	lclu = EXT4_B2C(sbi, lblk);
1972  	/* search to find parent for insertion */
1973  	while (*p) {
1974  		parent = *p;
1975  		pr = rb_entry(parent, struct pending_reservation, rb_node);
1976  
1977  		if (lclu < pr->lclu) {
1978  			p = &(*p)->rb_left;
1979  		} else if (lclu > pr->lclu) {
1980  			p = &(*p)->rb_right;
1981  		} else {
1982  			/* pending reservation already inserted */
1983  			goto out;
1984  		}
1985  	}
1986  
1987  	if (likely(*prealloc == NULL)) {
1988  		pr = __alloc_pending(false);
1989  		if (!pr) {
1990  			ret = -ENOMEM;
1991  			goto out;
1992  		}
1993  	} else {
1994  		pr = *prealloc;
1995  		*prealloc = NULL;
1996  	}
1997  	pr->lclu = lclu;
1998  
1999  	rb_link_node(&pr->rb_node, parent, p);
2000  	rb_insert_color(&pr->rb_node, &tree->root);
2001  	ret = 1;
2002  
2003  out:
2004  	return ret;
2005  }
2006  
2007  /*
2008   * __remove_pending - removes a pending cluster reservation from the set
2009   *                    of pending reservations
2010   *
2011   * @inode - file containing the cluster
2012   * @lblk - logical block in the pending cluster reservation to be removed
2013   *
2014   * Returns successfully if pending reservation is not a member of the set.
2015   */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)2016  static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2017  {
2018  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2019  	struct pending_reservation *pr;
2020  	struct ext4_pending_tree *tree;
2021  
2022  	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2023  	if (pr != NULL) {
2024  		tree = &EXT4_I(inode)->i_pending_tree;
2025  		rb_erase(&pr->rb_node, &tree->root);
2026  		__free_pending(pr);
2027  	}
2028  }
2029  
2030  /*
2031   * ext4_remove_pending - removes a pending cluster reservation from the set
2032   *                       of pending reservations
2033   *
2034   * @inode - file containing the cluster
2035   * @lblk - logical block in the pending cluster reservation to be removed
2036   *
2037   * Locking for external use of __remove_pending.
2038   */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)2039  void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2040  {
2041  	struct ext4_inode_info *ei = EXT4_I(inode);
2042  
2043  	write_lock(&ei->i_es_lock);
2044  	__remove_pending(inode, lblk);
2045  	write_unlock(&ei->i_es_lock);
2046  }
2047  
2048  /*
2049   * ext4_is_pending - determine whether a cluster has a pending reservation
2050   *                   on it
2051   *
2052   * @inode - file containing the cluster
2053   * @lblk - logical block in the cluster
2054   *
2055   * Returns true if there's a pending reservation for the cluster in the
2056   * set of pending reservations, and false if not.
2057   */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2058  bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2059  {
2060  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2061  	struct ext4_inode_info *ei = EXT4_I(inode);
2062  	bool ret;
2063  
2064  	read_lock(&ei->i_es_lock);
2065  	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2066  	read_unlock(&ei->i_es_lock);
2067  
2068  	return ret;
2069  }
2070  
2071  /*
2072   * ext4_es_insert_delayed_extent - adds some delayed blocks to the extents
2073   *                                 status tree, adding a pending reservation
2074   *                                 where needed
2075   *
2076   * @inode - file containing the newly added block
2077   * @lblk - start logical block to be added
2078   * @len - length of blocks to be added
2079   * @lclu_allocated/end_allocated - indicates whether a physical cluster has
2080   *                                 been allocated for the logical cluster
2081   *                                 that contains the start/end block. Note that
2082   *                                 end_allocated should always be set to false
2083   *                                 if the start and the end block are in the
2084   *                                 same cluster
2085   */
ext4_es_insert_delayed_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,bool lclu_allocated,bool end_allocated)2086  void ext4_es_insert_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
2087  				   ext4_lblk_t len, bool lclu_allocated,
2088  				   bool end_allocated)
2089  {
2090  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2091  	struct extent_status newes;
2092  	ext4_lblk_t end = lblk + len - 1;
2093  	int err1 = 0, err2 = 0, err3 = 0;
2094  	struct extent_status *es1 = NULL;
2095  	struct extent_status *es2 = NULL;
2096  	struct pending_reservation *pr1 = NULL;
2097  	struct pending_reservation *pr2 = NULL;
2098  
2099  	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2100  		return;
2101  
2102  	es_debug("add [%u/%u) delayed to extent status tree of inode %lu\n",
2103  		 lblk, len, inode->i_ino);
2104  	if (!len)
2105  		return;
2106  
2107  	WARN_ON_ONCE((EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) &&
2108  		     end_allocated);
2109  
2110  	newes.es_lblk = lblk;
2111  	newes.es_len = len;
2112  	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2113  	trace_ext4_es_insert_delayed_extent(inode, &newes, lclu_allocated,
2114  					    end_allocated);
2115  
2116  	ext4_es_insert_extent_check(inode, &newes);
2117  
2118  retry:
2119  	if (err1 && !es1)
2120  		es1 = __es_alloc_extent(true);
2121  	if ((err1 || err2) && !es2)
2122  		es2 = __es_alloc_extent(true);
2123  	if (err1 || err2 || err3 < 0) {
2124  		if (lclu_allocated && !pr1)
2125  			pr1 = __alloc_pending(true);
2126  		if (end_allocated && !pr2)
2127  			pr2 = __alloc_pending(true);
2128  	}
2129  	write_lock(&EXT4_I(inode)->i_es_lock);
2130  
2131  	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
2132  	if (err1 != 0)
2133  		goto error;
2134  	/* Free preallocated extent if it didn't get used. */
2135  	if (es1) {
2136  		if (!es1->es_len)
2137  			__es_free_extent(es1);
2138  		es1 = NULL;
2139  	}
2140  
2141  	err2 = __es_insert_extent(inode, &newes, es2);
2142  	if (err2 != 0)
2143  		goto error;
2144  	/* Free preallocated extent if it didn't get used. */
2145  	if (es2) {
2146  		if (!es2->es_len)
2147  			__es_free_extent(es2);
2148  		es2 = NULL;
2149  	}
2150  
2151  	if (lclu_allocated) {
2152  		err3 = __insert_pending(inode, lblk, &pr1);
2153  		if (err3 < 0)
2154  			goto error;
2155  		if (pr1) {
2156  			__free_pending(pr1);
2157  			pr1 = NULL;
2158  		}
2159  	}
2160  	if (end_allocated) {
2161  		err3 = __insert_pending(inode, end, &pr2);
2162  		if (err3 < 0)
2163  			goto error;
2164  		if (pr2) {
2165  			__free_pending(pr2);
2166  			pr2 = NULL;
2167  		}
2168  	}
2169  error:
2170  	write_unlock(&EXT4_I(inode)->i_es_lock);
2171  	if (err1 || err2 || err3 < 0)
2172  		goto retry;
2173  
2174  	ext4_es_print_tree(inode);
2175  	ext4_print_pending_tree(inode);
2176  	return;
2177  }
2178  
2179  /*
2180   * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2181   *                    reservations for a specified block range depending
2182   *                    upon the presence or absence of delayed blocks
2183   *                    outside the range within clusters at the ends of the
2184   *                    range
2185   *
2186   * @inode - file containing the range
2187   * @lblk - logical block defining the start of range
2188   * @len  - length of range in blocks
2189   * @prealloc - preallocated pending entry
2190   *
2191   * Used after a newly allocated extent is added to the extents status tree.
2192   * Requires that the extents in the range have either written or unwritten
2193   * status.  Must be called while holding i_es_lock. Returns number of new
2194   * inserts pending cluster on insert pendings, returns 0 on remove pendings,
2195   * return -ENOMEM on failure.
2196   */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,struct pending_reservation ** prealloc)2197  static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2198  			    ext4_lblk_t len,
2199  			    struct pending_reservation **prealloc)
2200  {
2201  	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2202  	ext4_lblk_t end = lblk + len - 1;
2203  	ext4_lblk_t first, last;
2204  	bool f_del = false, l_del = false;
2205  	int pendings = 0;
2206  	int ret = 0;
2207  
2208  	if (len == 0)
2209  		return 0;
2210  
2211  	/*
2212  	 * Two cases - block range within single cluster and block range
2213  	 * spanning two or more clusters.  Note that a cluster belonging
2214  	 * to a range starting and/or ending on a cluster boundary is treated
2215  	 * as if it does not contain a delayed extent.  The new range may
2216  	 * have allocated space for previously delayed blocks out to the
2217  	 * cluster boundary, requiring that any pre-existing pending
2218  	 * reservation be canceled.  Because this code only looks at blocks
2219  	 * outside the range, it should revise pending reservations
2220  	 * correctly even if the extent represented by the range can't be
2221  	 * inserted in the extents status tree due to ENOSPC.
2222  	 */
2223  
2224  	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2225  		first = EXT4_LBLK_CMASK(sbi, lblk);
2226  		if (first != lblk)
2227  			f_del = __es_scan_range(inode, &ext4_es_is_delayed,
2228  						first, lblk - 1);
2229  		if (f_del) {
2230  			ret = __insert_pending(inode, first, prealloc);
2231  			if (ret < 0)
2232  				goto out;
2233  			pendings += ret;
2234  		} else {
2235  			last = EXT4_LBLK_CMASK(sbi, end) +
2236  			       sbi->s_cluster_ratio - 1;
2237  			if (last != end)
2238  				l_del = __es_scan_range(inode,
2239  							&ext4_es_is_delayed,
2240  							end + 1, last);
2241  			if (l_del) {
2242  				ret = __insert_pending(inode, last, prealloc);
2243  				if (ret < 0)
2244  					goto out;
2245  				pendings += ret;
2246  			} else
2247  				__remove_pending(inode, last);
2248  		}
2249  	} else {
2250  		first = EXT4_LBLK_CMASK(sbi, lblk);
2251  		if (first != lblk)
2252  			f_del = __es_scan_range(inode, &ext4_es_is_delayed,
2253  						first, lblk - 1);
2254  		if (f_del) {
2255  			ret = __insert_pending(inode, first, prealloc);
2256  			if (ret < 0)
2257  				goto out;
2258  			pendings += ret;
2259  		} else
2260  			__remove_pending(inode, first);
2261  
2262  		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2263  		if (last != end)
2264  			l_del = __es_scan_range(inode, &ext4_es_is_delayed,
2265  						end + 1, last);
2266  		if (l_del) {
2267  			ret = __insert_pending(inode, last, prealloc);
2268  			if (ret < 0)
2269  				goto out;
2270  			pendings += ret;
2271  		} else
2272  			__remove_pending(inode, last);
2273  	}
2274  out:
2275  	return (ret < 0) ? ret : pendings;
2276  }
2277