1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/err.h>
7  #include <linux/uuid.h>
8  #include "ctree.h"
9  #include "fs.h"
10  #include "messages.h"
11  #include "transaction.h"
12  #include "disk-io.h"
13  #include "qgroup.h"
14  #include "space-info.h"
15  #include "accessors.h"
16  #include "root-tree.h"
17  #include "orphan.h"
18  
19  /*
20   * Read a root item from the tree. In case we detect a root item smaller then
21   * sizeof(root_item), we know it's an old version of the root structure and
22   * initialize all new fields to zero. The same happens if we detect mismatching
23   * generation numbers as then we know the root was once mounted with an older
24   * kernel that was not aware of the root item structure change.
25   */
btrfs_read_root_item(struct extent_buffer * eb,int slot,struct btrfs_root_item * item)26  static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
27  				struct btrfs_root_item *item)
28  {
29  	u32 len;
30  	int need_reset = 0;
31  
32  	len = btrfs_item_size(eb, slot);
33  	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
34  			   min_t(u32, len, sizeof(*item)));
35  	if (len < sizeof(*item))
36  		need_reset = 1;
37  	if (!need_reset && btrfs_root_generation(item)
38  		!= btrfs_root_generation_v2(item)) {
39  		if (btrfs_root_generation_v2(item) != 0) {
40  			btrfs_warn(eb->fs_info,
41  					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
42  		}
43  		need_reset = 1;
44  	}
45  	if (need_reset) {
46  		/* Clear all members from generation_v2 onwards. */
47  		memset_startat(item, 0, generation_v2);
48  		generate_random_guid(item->uuid);
49  	}
50  }
51  
52  /*
53   * Lookup the root by the key.
54   *
55   * root: the root of the root tree
56   * search_key: the key to search
57   * path: the path we search
58   * root_item: the root item of the tree we look for
59   * root_key: the root key of the tree we look for
60   *
61   * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62   * of the search key, just lookup the root with the highest offset for a
63   * given objectid.
64   *
65   * If we find something return 0, otherwise > 0, < 0 on error.
66   */
btrfs_find_root(struct btrfs_root * root,const struct btrfs_key * search_key,struct btrfs_path * path,struct btrfs_root_item * root_item,struct btrfs_key * root_key)67  int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
68  		    struct btrfs_path *path, struct btrfs_root_item *root_item,
69  		    struct btrfs_key *root_key)
70  {
71  	struct btrfs_key found_key;
72  	struct extent_buffer *l;
73  	int ret;
74  	int slot;
75  
76  	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
77  	if (ret < 0)
78  		return ret;
79  
80  	if (search_key->offset != -1ULL) {	/* the search key is exact */
81  		if (ret > 0)
82  			goto out;
83  	} else {
84  		/*
85  		 * Key with offset -1 found, there would have to exist a root
86  		 * with such id, but this is out of the valid range.
87  		 */
88  		if (ret == 0) {
89  			ret = -EUCLEAN;
90  			goto out;
91  		}
92  		if (path->slots[0] == 0)
93  			goto out;
94  		path->slots[0]--;
95  		ret = 0;
96  	}
97  
98  	l = path->nodes[0];
99  	slot = path->slots[0];
100  
101  	btrfs_item_key_to_cpu(l, &found_key, slot);
102  	if (found_key.objectid != search_key->objectid ||
103  	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
104  		ret = 1;
105  		goto out;
106  	}
107  
108  	if (root_item)
109  		btrfs_read_root_item(l, slot, root_item);
110  	if (root_key)
111  		memcpy(root_key, &found_key, sizeof(found_key));
112  out:
113  	btrfs_release_path(path);
114  	return ret;
115  }
116  
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)117  void btrfs_set_root_node(struct btrfs_root_item *item,
118  			 struct extent_buffer *node)
119  {
120  	btrfs_set_root_bytenr(item, node->start);
121  	btrfs_set_root_level(item, btrfs_header_level(node));
122  	btrfs_set_root_generation(item, btrfs_header_generation(node));
123  }
124  
125  /*
126   * copy the data in 'item' into the btree
127   */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)128  int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
129  		      *root, struct btrfs_key *key, struct btrfs_root_item
130  		      *item)
131  {
132  	struct btrfs_fs_info *fs_info = root->fs_info;
133  	struct btrfs_path *path;
134  	struct extent_buffer *l;
135  	int ret;
136  	int slot;
137  	unsigned long ptr;
138  	u32 old_len;
139  
140  	path = btrfs_alloc_path();
141  	if (!path)
142  		return -ENOMEM;
143  
144  	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
145  	if (ret < 0)
146  		goto out;
147  
148  	if (ret > 0) {
149  		btrfs_crit(fs_info,
150  			"unable to find root key (%llu %u %llu) in tree %llu",
151  			key->objectid, key->type, key->offset, btrfs_root_id(root));
152  		ret = -EUCLEAN;
153  		btrfs_abort_transaction(trans, ret);
154  		goto out;
155  	}
156  
157  	l = path->nodes[0];
158  	slot = path->slots[0];
159  	ptr = btrfs_item_ptr_offset(l, slot);
160  	old_len = btrfs_item_size(l, slot);
161  
162  	/*
163  	 * If this is the first time we update the root item which originated
164  	 * from an older kernel, we need to enlarge the item size to make room
165  	 * for the added fields.
166  	 */
167  	if (old_len < sizeof(*item)) {
168  		btrfs_release_path(path);
169  		ret = btrfs_search_slot(trans, root, key, path,
170  				-1, 1);
171  		if (ret < 0) {
172  			btrfs_abort_transaction(trans, ret);
173  			goto out;
174  		}
175  
176  		ret = btrfs_del_item(trans, root, path);
177  		if (ret < 0) {
178  			btrfs_abort_transaction(trans, ret);
179  			goto out;
180  		}
181  		btrfs_release_path(path);
182  		ret = btrfs_insert_empty_item(trans, root, path,
183  				key, sizeof(*item));
184  		if (ret < 0) {
185  			btrfs_abort_transaction(trans, ret);
186  			goto out;
187  		}
188  		l = path->nodes[0];
189  		slot = path->slots[0];
190  		ptr = btrfs_item_ptr_offset(l, slot);
191  	}
192  
193  	/*
194  	 * Update generation_v2 so at the next mount we know the new root
195  	 * fields are valid.
196  	 */
197  	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
198  
199  	write_extent_buffer(l, item, ptr, sizeof(*item));
200  	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
201  out:
202  	btrfs_free_path(path);
203  	return ret;
204  }
205  
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_root_item * item)206  int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
207  		      const struct btrfs_key *key, struct btrfs_root_item *item)
208  {
209  	/*
210  	 * Make sure generation v1 and v2 match. See update_root for details.
211  	 */
212  	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
213  	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
214  }
215  
btrfs_find_orphan_roots(struct btrfs_fs_info * fs_info)216  int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
217  {
218  	struct btrfs_root *tree_root = fs_info->tree_root;
219  	struct extent_buffer *leaf;
220  	struct btrfs_path *path;
221  	struct btrfs_key key;
222  	struct btrfs_root *root;
223  	int err = 0;
224  	int ret;
225  
226  	path = btrfs_alloc_path();
227  	if (!path)
228  		return -ENOMEM;
229  
230  	key.objectid = BTRFS_ORPHAN_OBJECTID;
231  	key.type = BTRFS_ORPHAN_ITEM_KEY;
232  	key.offset = 0;
233  
234  	while (1) {
235  		u64 root_objectid;
236  
237  		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
238  		if (ret < 0) {
239  			err = ret;
240  			break;
241  		}
242  
243  		leaf = path->nodes[0];
244  		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
245  			ret = btrfs_next_leaf(tree_root, path);
246  			if (ret < 0)
247  				err = ret;
248  			if (ret != 0)
249  				break;
250  			leaf = path->nodes[0];
251  		}
252  
253  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
254  		btrfs_release_path(path);
255  
256  		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
257  		    key.type != BTRFS_ORPHAN_ITEM_KEY)
258  			break;
259  
260  		root_objectid = key.offset;
261  		key.offset++;
262  
263  		root = btrfs_get_fs_root(fs_info, root_objectid, false);
264  		err = PTR_ERR_OR_ZERO(root);
265  		if (err && err != -ENOENT) {
266  			break;
267  		} else if (err == -ENOENT) {
268  			struct btrfs_trans_handle *trans;
269  
270  			btrfs_release_path(path);
271  
272  			trans = btrfs_join_transaction(tree_root);
273  			if (IS_ERR(trans)) {
274  				err = PTR_ERR(trans);
275  				btrfs_handle_fs_error(fs_info, err,
276  					    "Failed to start trans to delete orphan item");
277  				break;
278  			}
279  			err = btrfs_del_orphan_item(trans, tree_root,
280  						    root_objectid);
281  			btrfs_end_transaction(trans);
282  			if (err) {
283  				btrfs_handle_fs_error(fs_info, err,
284  					    "Failed to delete root orphan item");
285  				break;
286  			}
287  			continue;
288  		}
289  
290  		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
291  		if (btrfs_root_refs(&root->root_item) == 0) {
292  			struct btrfs_key drop_key;
293  
294  			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
295  			/*
296  			 * If we have a non-zero drop_progress then we know we
297  			 * made it partly through deleting this snapshot, and
298  			 * thus we need to make sure we block any balance from
299  			 * happening until this snapshot is completely dropped.
300  			 */
301  			if (drop_key.objectid != 0 || drop_key.type != 0 ||
302  			    drop_key.offset != 0) {
303  				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
304  				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
305  			}
306  
307  			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
308  			btrfs_add_dead_root(root);
309  		}
310  		btrfs_put_root(root);
311  	}
312  
313  	btrfs_free_path(path);
314  	return err;
315  }
316  
317  /* drop the root item for 'key' from the tree root */
btrfs_del_root(struct btrfs_trans_handle * trans,const struct btrfs_key * key)318  int btrfs_del_root(struct btrfs_trans_handle *trans,
319  		   const struct btrfs_key *key)
320  {
321  	struct btrfs_root *root = trans->fs_info->tree_root;
322  	struct btrfs_path *path;
323  	int ret;
324  
325  	path = btrfs_alloc_path();
326  	if (!path)
327  		return -ENOMEM;
328  	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
329  	if (ret < 0)
330  		goto out;
331  	if (ret != 0) {
332  		/* The root must exist but we did not find it by the key. */
333  		ret = -EUCLEAN;
334  		goto out;
335  	}
336  
337  	ret = btrfs_del_item(trans, root, path);
338  out:
339  	btrfs_free_path(path);
340  	return ret;
341  }
342  
btrfs_del_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const struct fscrypt_str * name)343  int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
344  		       u64 ref_id, u64 dirid, u64 *sequence,
345  		       const struct fscrypt_str *name)
346  {
347  	struct btrfs_root *tree_root = trans->fs_info->tree_root;
348  	struct btrfs_path *path;
349  	struct btrfs_root_ref *ref;
350  	struct extent_buffer *leaf;
351  	struct btrfs_key key;
352  	unsigned long ptr;
353  	int ret;
354  
355  	path = btrfs_alloc_path();
356  	if (!path)
357  		return -ENOMEM;
358  
359  	key.objectid = root_id;
360  	key.type = BTRFS_ROOT_BACKREF_KEY;
361  	key.offset = ref_id;
362  again:
363  	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
364  	if (ret < 0) {
365  		goto out;
366  	} else if (ret == 0) {
367  		leaf = path->nodes[0];
368  		ref = btrfs_item_ptr(leaf, path->slots[0],
369  				     struct btrfs_root_ref);
370  		ptr = (unsigned long)(ref + 1);
371  		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
372  		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
373  		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
374  			ret = -ENOENT;
375  			goto out;
376  		}
377  		*sequence = btrfs_root_ref_sequence(leaf, ref);
378  
379  		ret = btrfs_del_item(trans, tree_root, path);
380  		if (ret)
381  			goto out;
382  	} else {
383  		ret = -ENOENT;
384  		goto out;
385  	}
386  
387  	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
388  		btrfs_release_path(path);
389  		key.objectid = ref_id;
390  		key.type = BTRFS_ROOT_REF_KEY;
391  		key.offset = root_id;
392  		goto again;
393  	}
394  
395  out:
396  	btrfs_free_path(path);
397  	return ret;
398  }
399  
400  /*
401   * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
402   * or BTRFS_ROOT_BACKREF_KEY.
403   *
404   * The dirid, sequence, name and name_len refer to the directory entry
405   * that is referencing the root.
406   *
407   * For a forward ref, the root_id is the id of the tree referencing
408   * the root and ref_id is the id of the subvol  or snapshot.
409   *
410   * For a back ref the root_id is the id of the subvol or snapshot and
411   * ref_id is the id of the tree referencing it.
412   *
413   * Will return 0, -ENOMEM, or anything from the CoW path
414   */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const struct fscrypt_str * name)415  int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
416  		       u64 ref_id, u64 dirid, u64 sequence,
417  		       const struct fscrypt_str *name)
418  {
419  	struct btrfs_root *tree_root = trans->fs_info->tree_root;
420  	struct btrfs_key key;
421  	int ret;
422  	struct btrfs_path *path;
423  	struct btrfs_root_ref *ref;
424  	struct extent_buffer *leaf;
425  	unsigned long ptr;
426  
427  	path = btrfs_alloc_path();
428  	if (!path)
429  		return -ENOMEM;
430  
431  	key.objectid = root_id;
432  	key.type = BTRFS_ROOT_BACKREF_KEY;
433  	key.offset = ref_id;
434  again:
435  	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
436  				      sizeof(*ref) + name->len);
437  	if (ret) {
438  		btrfs_abort_transaction(trans, ret);
439  		btrfs_free_path(path);
440  		return ret;
441  	}
442  
443  	leaf = path->nodes[0];
444  	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
445  	btrfs_set_root_ref_dirid(leaf, ref, dirid);
446  	btrfs_set_root_ref_sequence(leaf, ref, sequence);
447  	btrfs_set_root_ref_name_len(leaf, ref, name->len);
448  	ptr = (unsigned long)(ref + 1);
449  	write_extent_buffer(leaf, name->name, ptr, name->len);
450  	btrfs_mark_buffer_dirty(trans, leaf);
451  
452  	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
453  		btrfs_release_path(path);
454  		key.objectid = ref_id;
455  		key.type = BTRFS_ROOT_REF_KEY;
456  		key.offset = root_id;
457  		goto again;
458  	}
459  
460  	btrfs_free_path(path);
461  	return 0;
462  }
463  
464  /*
465   * Old btrfs forgets to init root_item->flags and root_item->byte_limit
466   * for subvolumes. To work around this problem, we steal a bit from
467   * root_item->inode_item->flags, and use it to indicate if those fields
468   * have been properly initialized.
469   */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)470  void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
471  {
472  	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
473  
474  	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
475  		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
476  		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
477  		btrfs_set_root_flags(root_item, 0);
478  		btrfs_set_root_limit(root_item, 0);
479  	}
480  }
481  
btrfs_update_root_times(struct btrfs_trans_handle * trans,struct btrfs_root * root)482  void btrfs_update_root_times(struct btrfs_trans_handle *trans,
483  			     struct btrfs_root *root)
484  {
485  	struct btrfs_root_item *item = &root->root_item;
486  	struct timespec64 ct;
487  
488  	ktime_get_real_ts64(&ct);
489  	spin_lock(&root->root_item_lock);
490  	btrfs_set_root_ctransid(item, trans->transid);
491  	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
492  	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
493  	spin_unlock(&root->root_item_lock);
494  }
495  
496  /*
497   * Reserve space for subvolume operation.
498   *
499   * root: the root of the parent directory
500   * rsv: block reservation
501   * items: the number of items that we need do reservation
502   * use_global_rsv: allow fallback to the global block reservation
503   *
504   * This function is used to reserve the space for snapshot/subvolume
505   * creation and deletion. Those operations are different with the
506   * common file/directory operations, they change two fs/file trees
507   * and root tree, the number of items that the qgroup reserves is
508   * different with the free space reservation. So we can not use
509   * the space reservation mechanism in start_transaction().
510   */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)511  int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
512  				     struct btrfs_block_rsv *rsv, int items,
513  				     bool use_global_rsv)
514  {
515  	u64 qgroup_num_bytes = 0;
516  	u64 num_bytes;
517  	int ret;
518  	struct btrfs_fs_info *fs_info = root->fs_info;
519  	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
520  
521  	if (btrfs_qgroup_enabled(fs_info)) {
522  		/* One for parent inode, two for dir entries */
523  		qgroup_num_bytes = 3 * fs_info->nodesize;
524  		ret = btrfs_qgroup_reserve_meta_prealloc(root,
525  							 qgroup_num_bytes, true,
526  							 false);
527  		if (ret)
528  			return ret;
529  	}
530  
531  	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
532  	rsv->space_info = btrfs_find_space_info(fs_info,
533  					    BTRFS_BLOCK_GROUP_METADATA);
534  	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
535  				  BTRFS_RESERVE_FLUSH_ALL);
536  
537  	if (ret == -ENOSPC && use_global_rsv)
538  		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
539  
540  	if (ret && qgroup_num_bytes)
541  		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
542  
543  	if (!ret) {
544  		spin_lock(&rsv->lock);
545  		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
546  		spin_unlock(&rsv->lock);
547  	}
548  	return ret;
549  }
550