1  // SPDX-License-Identifier: GPL-2.0
2  
3  #include <linux/blkdev.h>
4  #include <linux/iversion.h>
5  #include "ctree.h"
6  #include "fs.h"
7  #include "messages.h"
8  #include "compression.h"
9  #include "delalloc-space.h"
10  #include "disk-io.h"
11  #include "reflink.h"
12  #include "transaction.h"
13  #include "subpage.h"
14  #include "accessors.h"
15  #include "file-item.h"
16  #include "file.h"
17  #include "super.h"
18  
19  #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
20  
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)21  static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22  				     struct inode *inode,
23  				     u64 endoff,
24  				     const u64 destoff,
25  				     const u64 olen,
26  				     int no_time_update)
27  {
28  	int ret;
29  
30  	inode_inc_iversion(inode);
31  	if (!no_time_update) {
32  		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
33  	}
34  	/*
35  	 * We round up to the block size at eof when determining which
36  	 * extents to clone above, but shouldn't round up the file size.
37  	 */
38  	if (endoff > destoff + olen)
39  		endoff = destoff + olen;
40  	if (endoff > inode->i_size) {
41  		i_size_write(inode, endoff);
42  		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
43  	}
44  
45  	ret = btrfs_update_inode(trans, BTRFS_I(inode));
46  	if (ret) {
47  		btrfs_abort_transaction(trans, ret);
48  		btrfs_end_transaction(trans);
49  		goto out;
50  	}
51  	ret = btrfs_end_transaction(trans);
52  out:
53  	return ret;
54  }
55  
copy_inline_to_page(struct btrfs_inode * inode,const u64 file_offset,char * inline_data,const u64 size,const u64 datal,const u8 comp_type)56  static int copy_inline_to_page(struct btrfs_inode *inode,
57  			       const u64 file_offset,
58  			       char *inline_data,
59  			       const u64 size,
60  			       const u64 datal,
61  			       const u8 comp_type)
62  {
63  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
64  	const u32 block_size = fs_info->sectorsize;
65  	const u64 range_end = file_offset + block_size - 1;
66  	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
67  	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
68  	struct extent_changeset *data_reserved = NULL;
69  	struct folio *folio = NULL;
70  	struct address_space *mapping = inode->vfs_inode.i_mapping;
71  	int ret;
72  
73  	ASSERT(IS_ALIGNED(file_offset, block_size));
74  
75  	/*
76  	 * We have flushed and locked the ranges of the source and destination
77  	 * inodes, we also have locked the inodes, so we are safe to do a
78  	 * reservation here. Also we must not do the reservation while holding
79  	 * a transaction open, otherwise we would deadlock.
80  	 */
81  	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
82  					   block_size);
83  	if (ret)
84  		goto out;
85  
86  	folio = __filemap_get_folio(mapping, file_offset >> PAGE_SHIFT,
87  					FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
88  					btrfs_alloc_write_mask(mapping));
89  	if (IS_ERR(folio)) {
90  		ret = -ENOMEM;
91  		goto out_unlock;
92  	}
93  
94  	ret = set_folio_extent_mapped(folio);
95  	if (ret < 0)
96  		goto out_unlock;
97  
98  	clear_extent_bit(&inode->io_tree, file_offset, range_end,
99  			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
100  			 NULL);
101  	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
102  	if (ret)
103  		goto out_unlock;
104  
105  	/*
106  	 * After dirtying the page our caller will need to start a transaction,
107  	 * and if we are low on metadata free space, that can cause flushing of
108  	 * delalloc for all inodes in order to get metadata space released.
109  	 * However we are holding the range locked for the whole duration of
110  	 * the clone/dedupe operation, so we may deadlock if that happens and no
111  	 * other task releases enough space. So mark this inode as not being
112  	 * possible to flush to avoid such deadlock. We will clear that flag
113  	 * when we finish cloning all extents, since a transaction is started
114  	 * after finding each extent to clone.
115  	 */
116  	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
117  
118  	if (comp_type == BTRFS_COMPRESS_NONE) {
119  		memcpy_to_folio(folio, offset_in_folio(folio, file_offset), data_start,
120  					datal);
121  	} else {
122  		ret = btrfs_decompress(comp_type, data_start, folio,
123  				       offset_in_folio(folio, file_offset),
124  				       inline_size, datal);
125  		if (ret)
126  			goto out_unlock;
127  		flush_dcache_folio(folio);
128  	}
129  
130  	/*
131  	 * If our inline data is smaller then the block/page size, then the
132  	 * remaining of the block/page is equivalent to zeroes. We had something
133  	 * like the following done:
134  	 *
135  	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
136  	 * $ sync  # (or fsync)
137  	 * $ xfs_io -c "falloc 0 4K" file
138  	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
139  	 *
140  	 * So what's in the range [500, 4095] corresponds to zeroes.
141  	 */
142  	if (datal < block_size)
143  		folio_zero_range(folio, datal, block_size - datal);
144  
145  	btrfs_folio_set_uptodate(fs_info, folio, file_offset, block_size);
146  	btrfs_folio_clear_checked(fs_info, folio, file_offset, block_size);
147  	btrfs_folio_set_dirty(fs_info, folio, file_offset, block_size);
148  out_unlock:
149  	if (!IS_ERR(folio)) {
150  		folio_unlock(folio);
151  		folio_put(folio);
152  	}
153  	if (ret)
154  		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
155  					     block_size, true);
156  	btrfs_delalloc_release_extents(inode, block_size);
157  out:
158  	extent_changeset_free(data_reserved);
159  
160  	return ret;
161  }
162  
163  /*
164   * Deal with cloning of inline extents. We try to copy the inline extent from
165   * the source inode to destination inode when possible. When not possible we
166   * copy the inline extent's data into the respective page of the inode.
167   */
clone_copy_inline_extent(struct inode * dst,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 size,const u8 comp_type,char * inline_data,struct btrfs_trans_handle ** trans_out)168  static int clone_copy_inline_extent(struct inode *dst,
169  				    struct btrfs_path *path,
170  				    struct btrfs_key *new_key,
171  				    const u64 drop_start,
172  				    const u64 datal,
173  				    const u64 size,
174  				    const u8 comp_type,
175  				    char *inline_data,
176  				    struct btrfs_trans_handle **trans_out)
177  {
178  	struct btrfs_fs_info *fs_info = inode_to_fs_info(dst);
179  	struct btrfs_root *root = BTRFS_I(dst)->root;
180  	const u64 aligned_end = ALIGN(new_key->offset + datal,
181  				      fs_info->sectorsize);
182  	struct btrfs_trans_handle *trans = NULL;
183  	struct btrfs_drop_extents_args drop_args = { 0 };
184  	int ret;
185  	struct btrfs_key key;
186  
187  	if (new_key->offset > 0) {
188  		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
189  					  inline_data, size, datal, comp_type);
190  		goto out;
191  	}
192  
193  	key.objectid = btrfs_ino(BTRFS_I(dst));
194  	key.type = BTRFS_EXTENT_DATA_KEY;
195  	key.offset = 0;
196  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
197  	if (ret < 0) {
198  		return ret;
199  	} else if (ret > 0) {
200  		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
201  			ret = btrfs_next_leaf(root, path);
202  			if (ret < 0)
203  				return ret;
204  			else if (ret > 0)
205  				goto copy_inline_extent;
206  		}
207  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
208  		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
209  		    key.type == BTRFS_EXTENT_DATA_KEY) {
210  			/*
211  			 * There's an implicit hole at file offset 0, copy the
212  			 * inline extent's data to the page.
213  			 */
214  			ASSERT(key.offset > 0);
215  			goto copy_to_page;
216  		}
217  	} else if (i_size_read(dst) <= datal) {
218  		struct btrfs_file_extent_item *ei;
219  
220  		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
221  				    struct btrfs_file_extent_item);
222  		/*
223  		 * If it's an inline extent replace it with the source inline
224  		 * extent, otherwise copy the source inline extent data into
225  		 * the respective page at the destination inode.
226  		 */
227  		if (btrfs_file_extent_type(path->nodes[0], ei) ==
228  		    BTRFS_FILE_EXTENT_INLINE)
229  			goto copy_inline_extent;
230  
231  		goto copy_to_page;
232  	}
233  
234  copy_inline_extent:
235  	/*
236  	 * We have no extent items, or we have an extent at offset 0 which may
237  	 * or may not be inlined. All these cases are dealt the same way.
238  	 */
239  	if (i_size_read(dst) > datal) {
240  		/*
241  		 * At the destination offset 0 we have either a hole, a regular
242  		 * extent or an inline extent larger then the one we want to
243  		 * clone. Deal with all these cases by copying the inline extent
244  		 * data into the respective page at the destination inode.
245  		 */
246  		goto copy_to_page;
247  	}
248  
249  	/*
250  	 * Release path before starting a new transaction so we don't hold locks
251  	 * that would confuse lockdep.
252  	 */
253  	btrfs_release_path(path);
254  	/*
255  	 * If we end up here it means were copy the inline extent into a leaf
256  	 * of the destination inode. We know we will drop or adjust at most one
257  	 * extent item in the destination root.
258  	 *
259  	 * 1 unit - adjusting old extent (we may have to split it)
260  	 * 1 unit - add new extent
261  	 * 1 unit - inode update
262  	 */
263  	trans = btrfs_start_transaction(root, 3);
264  	if (IS_ERR(trans)) {
265  		ret = PTR_ERR(trans);
266  		trans = NULL;
267  		goto out;
268  	}
269  	drop_args.path = path;
270  	drop_args.start = drop_start;
271  	drop_args.end = aligned_end;
272  	drop_args.drop_cache = true;
273  	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
274  	if (ret)
275  		goto out;
276  	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
277  	if (ret)
278  		goto out;
279  
280  	write_extent_buffer(path->nodes[0], inline_data,
281  			    btrfs_item_ptr_offset(path->nodes[0],
282  						  path->slots[0]),
283  			    size);
284  	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
285  	btrfs_set_inode_full_sync(BTRFS_I(dst));
286  	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
287  out:
288  	if (!ret && !trans) {
289  		/*
290  		 * No transaction here means we copied the inline extent into a
291  		 * page of the destination inode.
292  		 *
293  		 * 1 unit to update inode item
294  		 */
295  		trans = btrfs_start_transaction(root, 1);
296  		if (IS_ERR(trans)) {
297  			ret = PTR_ERR(trans);
298  			trans = NULL;
299  		}
300  	}
301  	if (ret && trans) {
302  		btrfs_abort_transaction(trans, ret);
303  		btrfs_end_transaction(trans);
304  	}
305  	if (!ret)
306  		*trans_out = trans;
307  
308  	return ret;
309  
310  copy_to_page:
311  	/*
312  	 * Release our path because we don't need it anymore and also because
313  	 * copy_inline_to_page() needs to reserve data and metadata, which may
314  	 * need to flush delalloc when we are low on available space and
315  	 * therefore cause a deadlock if writeback of an inline extent needs to
316  	 * write to the same leaf or an ordered extent completion needs to write
317  	 * to the same leaf.
318  	 */
319  	btrfs_release_path(path);
320  
321  	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
322  				  inline_data, size, datal, comp_type);
323  	goto out;
324  }
325  
326  /*
327   * Clone a range from inode file to another.
328   *
329   * @src:             Inode to clone from
330   * @inode:           Inode to clone to
331   * @off:             Offset within source to start clone from
332   * @olen:            Original length, passed by user, of range to clone
333   * @olen_aligned:    Block-aligned value of olen
334   * @destoff:         Offset within @inode to start clone
335   * @no_time_update:  Whether to update mtime/ctime on the target inode
336   */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)337  static int btrfs_clone(struct inode *src, struct inode *inode,
338  		       const u64 off, const u64 olen, const u64 olen_aligned,
339  		       const u64 destoff, int no_time_update)
340  {
341  	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
342  	struct btrfs_path *path = NULL;
343  	struct extent_buffer *leaf;
344  	struct btrfs_trans_handle *trans;
345  	char *buf = NULL;
346  	struct btrfs_key key;
347  	u32 nritems;
348  	int slot;
349  	int ret;
350  	const u64 len = olen_aligned;
351  	u64 last_dest_end = destoff;
352  	u64 prev_extent_end = off;
353  
354  	ret = -ENOMEM;
355  	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
356  	if (!buf)
357  		return ret;
358  
359  	path = btrfs_alloc_path();
360  	if (!path) {
361  		kvfree(buf);
362  		return ret;
363  	}
364  
365  	path->reada = READA_FORWARD;
366  	/* Clone data */
367  	key.objectid = btrfs_ino(BTRFS_I(src));
368  	key.type = BTRFS_EXTENT_DATA_KEY;
369  	key.offset = off;
370  
371  	while (1) {
372  		struct btrfs_file_extent_item *extent;
373  		u64 extent_gen;
374  		int type;
375  		u32 size;
376  		struct btrfs_key new_key;
377  		u64 disko = 0, diskl = 0;
378  		u64 datao = 0, datal = 0;
379  		u8 comp;
380  		u64 drop_start;
381  
382  		/* Note the key will change type as we walk through the tree */
383  		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
384  				0, 0);
385  		if (ret < 0)
386  			goto out;
387  		/*
388  		 * First search, if no extent item that starts at offset off was
389  		 * found but the previous item is an extent item, it's possible
390  		 * it might overlap our target range, therefore process it.
391  		 */
392  		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
393  			btrfs_item_key_to_cpu(path->nodes[0], &key,
394  					      path->slots[0] - 1);
395  			if (key.type == BTRFS_EXTENT_DATA_KEY)
396  				path->slots[0]--;
397  		}
398  
399  		nritems = btrfs_header_nritems(path->nodes[0]);
400  process_slot:
401  		if (path->slots[0] >= nritems) {
402  			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
403  			if (ret < 0)
404  				goto out;
405  			if (ret > 0)
406  				break;
407  			nritems = btrfs_header_nritems(path->nodes[0]);
408  		}
409  		leaf = path->nodes[0];
410  		slot = path->slots[0];
411  
412  		btrfs_item_key_to_cpu(leaf, &key, slot);
413  		if (key.type > BTRFS_EXTENT_DATA_KEY ||
414  		    key.objectid != btrfs_ino(BTRFS_I(src)))
415  			break;
416  
417  		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
418  
419  		extent = btrfs_item_ptr(leaf, slot,
420  					struct btrfs_file_extent_item);
421  		extent_gen = btrfs_file_extent_generation(leaf, extent);
422  		comp = btrfs_file_extent_compression(leaf, extent);
423  		type = btrfs_file_extent_type(leaf, extent);
424  		if (type == BTRFS_FILE_EXTENT_REG ||
425  		    type == BTRFS_FILE_EXTENT_PREALLOC) {
426  			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
427  			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
428  			datao = btrfs_file_extent_offset(leaf, extent);
429  			datal = btrfs_file_extent_num_bytes(leaf, extent);
430  		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
431  			/* Take upper bound, may be compressed */
432  			datal = btrfs_file_extent_ram_bytes(leaf, extent);
433  		}
434  
435  		/*
436  		 * The first search might have left us at an extent item that
437  		 * ends before our target range's start, can happen if we have
438  		 * holes and NO_HOLES feature enabled.
439  		 *
440  		 * Subsequent searches may leave us on a file range we have
441  		 * processed before - this happens due to a race with ordered
442  		 * extent completion for a file range that is outside our source
443  		 * range, but that range was part of a file extent item that
444  		 * also covered a leading part of our source range.
445  		 */
446  		if (key.offset + datal <= prev_extent_end) {
447  			path->slots[0]++;
448  			goto process_slot;
449  		} else if (key.offset >= off + len) {
450  			break;
451  		}
452  
453  		prev_extent_end = key.offset + datal;
454  		size = btrfs_item_size(leaf, slot);
455  		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
456  				   size);
457  
458  		btrfs_release_path(path);
459  
460  		memcpy(&new_key, &key, sizeof(new_key));
461  		new_key.objectid = btrfs_ino(BTRFS_I(inode));
462  		if (off <= key.offset)
463  			new_key.offset = key.offset + destoff - off;
464  		else
465  			new_key.offset = destoff;
466  
467  		/*
468  		 * Deal with a hole that doesn't have an extent item that
469  		 * represents it (NO_HOLES feature enabled).
470  		 * This hole is either in the middle of the cloning range or at
471  		 * the beginning (fully overlaps it or partially overlaps it).
472  		 */
473  		if (new_key.offset != last_dest_end)
474  			drop_start = last_dest_end;
475  		else
476  			drop_start = new_key.offset;
477  
478  		if (type == BTRFS_FILE_EXTENT_REG ||
479  		    type == BTRFS_FILE_EXTENT_PREALLOC) {
480  			struct btrfs_replace_extent_info clone_info;
481  
482  			/*
483  			 *    a  | --- range to clone ---|  b
484  			 * | ------------- extent ------------- |
485  			 */
486  
487  			/* Subtract range b */
488  			if (key.offset + datal > off + len)
489  				datal = off + len - key.offset;
490  
491  			/* Subtract range a */
492  			if (off > key.offset) {
493  				datao += off - key.offset;
494  				datal -= off - key.offset;
495  			}
496  
497  			clone_info.disk_offset = disko;
498  			clone_info.disk_len = diskl;
499  			clone_info.data_offset = datao;
500  			clone_info.data_len = datal;
501  			clone_info.file_offset = new_key.offset;
502  			clone_info.extent_buf = buf;
503  			clone_info.is_new_extent = false;
504  			clone_info.update_times = !no_time_update;
505  			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
506  					drop_start, new_key.offset + datal - 1,
507  					&clone_info, &trans);
508  			if (ret)
509  				goto out;
510  		} else {
511  			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
512  			/*
513  			 * Inline extents always have to start at file offset 0
514  			 * and can never be bigger then the sector size. We can
515  			 * never clone only parts of an inline extent, since all
516  			 * reflink operations must start at a sector size aligned
517  			 * offset, and the length must be aligned too or end at
518  			 * the i_size (which implies the whole inlined data).
519  			 */
520  			ASSERT(key.offset == 0);
521  			ASSERT(datal <= fs_info->sectorsize);
522  			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
523  			    WARN_ON(key.offset != 0) ||
524  			    WARN_ON(datal > fs_info->sectorsize)) {
525  				ret = -EUCLEAN;
526  				goto out;
527  			}
528  
529  			ret = clone_copy_inline_extent(inode, path, &new_key,
530  						       drop_start, datal, size,
531  						       comp, buf, &trans);
532  			if (ret)
533  				goto out;
534  		}
535  
536  		btrfs_release_path(path);
537  
538  		/*
539  		 * Whenever we share an extent we update the last_reflink_trans
540  		 * of each inode to the current transaction. This is needed to
541  		 * make sure fsync does not log multiple checksum items with
542  		 * overlapping ranges (because some extent items might refer
543  		 * only to sections of the original extent). For the destination
544  		 * inode we do this regardless of the generation of the extents
545  		 * or even if they are inline extents or explicit holes, to make
546  		 * sure a full fsync does not skip them. For the source inode,
547  		 * we only need to update last_reflink_trans in case it's a new
548  		 * extent that is not a hole or an inline extent, to deal with
549  		 * the checksums problem on fsync.
550  		 */
551  		if (extent_gen == trans->transid && disko > 0)
552  			BTRFS_I(src)->last_reflink_trans = trans->transid;
553  
554  		BTRFS_I(inode)->last_reflink_trans = trans->transid;
555  
556  		last_dest_end = ALIGN(new_key.offset + datal,
557  				      fs_info->sectorsize);
558  		ret = clone_finish_inode_update(trans, inode, last_dest_end,
559  						destoff, olen, no_time_update);
560  		if (ret)
561  			goto out;
562  		if (new_key.offset + datal >= destoff + len)
563  			break;
564  
565  		btrfs_release_path(path);
566  		key.offset = prev_extent_end;
567  
568  		if (fatal_signal_pending(current)) {
569  			ret = -EINTR;
570  			goto out;
571  		}
572  
573  		cond_resched();
574  	}
575  	ret = 0;
576  
577  	if (last_dest_end < destoff + len) {
578  		/*
579  		 * We have an implicit hole that fully or partially overlaps our
580  		 * cloning range at its end. This means that we either have the
581  		 * NO_HOLES feature enabled or the implicit hole happened due to
582  		 * mixing buffered and direct IO writes against this file.
583  		 */
584  		btrfs_release_path(path);
585  
586  		/*
587  		 * When using NO_HOLES and we are cloning a range that covers
588  		 * only a hole (no extents) into a range beyond the current
589  		 * i_size, punching a hole in the target range will not create
590  		 * an extent map defining a hole, because the range starts at or
591  		 * beyond current i_size. If the file previously had an i_size
592  		 * greater than the new i_size set by this clone operation, we
593  		 * need to make sure the next fsync is a full fsync, so that it
594  		 * detects and logs a hole covering a range from the current
595  		 * i_size to the new i_size. If the clone range covers extents,
596  		 * besides a hole, then we know the full sync flag was already
597  		 * set by previous calls to btrfs_replace_file_extents() that
598  		 * replaced file extent items.
599  		 */
600  		if (last_dest_end >= i_size_read(inode))
601  			btrfs_set_inode_full_sync(BTRFS_I(inode));
602  
603  		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
604  				last_dest_end, destoff + len - 1, NULL, &trans);
605  		if (ret)
606  			goto out;
607  
608  		ret = clone_finish_inode_update(trans, inode, destoff + len,
609  						destoff, olen, no_time_update);
610  	}
611  
612  out:
613  	btrfs_free_path(path);
614  	kvfree(buf);
615  	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
616  
617  	return ret;
618  }
619  
btrfs_double_mmap_lock(struct inode * inode1,struct inode * inode2)620  static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
621  {
622  	if (inode1 < inode2)
623  		swap(inode1, inode2);
624  	down_write(&BTRFS_I(inode1)->i_mmap_lock);
625  	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
626  }
627  
btrfs_double_mmap_unlock(struct inode * inode1,struct inode * inode2)628  static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
629  {
630  	up_write(&BTRFS_I(inode1)->i_mmap_lock);
631  	up_write(&BTRFS_I(inode2)->i_mmap_lock);
632  }
633  
btrfs_extent_same_range(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)634  static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
635  				   struct inode *dst, u64 dst_loff)
636  {
637  	const u64 end = dst_loff + len - 1;
638  	struct extent_state *cached_state = NULL;
639  	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
640  	const u64 bs = fs_info->sectorsize;
641  	int ret;
642  
643  	/*
644  	 * Lock destination range to serialize with concurrent readahead(), and
645  	 * we are safe from concurrency with relocation of source extents
646  	 * because we have already locked the inode's i_mmap_lock in exclusive
647  	 * mode.
648  	 */
649  	lock_extent(&BTRFS_I(dst)->io_tree, dst_loff, end, &cached_state);
650  	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
651  	unlock_extent(&BTRFS_I(dst)->io_tree, dst_loff, end, &cached_state);
652  
653  	btrfs_btree_balance_dirty(fs_info);
654  
655  	return ret;
656  }
657  
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)658  static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
659  			     struct inode *dst, u64 dst_loff)
660  {
661  	int ret = 0;
662  	u64 i, tail_len, chunk_count;
663  	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
664  
665  	spin_lock(&root_dst->root_item_lock);
666  	if (root_dst->send_in_progress) {
667  		btrfs_warn_rl(root_dst->fs_info,
668  "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
669  			      btrfs_root_id(root_dst),
670  			      root_dst->send_in_progress);
671  		spin_unlock(&root_dst->root_item_lock);
672  		return -EAGAIN;
673  	}
674  	root_dst->dedupe_in_progress++;
675  	spin_unlock(&root_dst->root_item_lock);
676  
677  	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
678  	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
679  
680  	for (i = 0; i < chunk_count; i++) {
681  		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
682  					      dst, dst_loff);
683  		if (ret)
684  			goto out;
685  
686  		loff += BTRFS_MAX_DEDUPE_LEN;
687  		dst_loff += BTRFS_MAX_DEDUPE_LEN;
688  	}
689  
690  	if (tail_len > 0)
691  		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
692  out:
693  	spin_lock(&root_dst->root_item_lock);
694  	root_dst->dedupe_in_progress--;
695  	spin_unlock(&root_dst->root_item_lock);
696  
697  	return ret;
698  }
699  
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)700  static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
701  					u64 off, u64 olen, u64 destoff)
702  {
703  	struct extent_state *cached_state = NULL;
704  	struct inode *inode = file_inode(file);
705  	struct inode *src = file_inode(file_src);
706  	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
707  	int ret;
708  	int wb_ret;
709  	u64 len = olen;
710  	u64 bs = fs_info->sectorsize;
711  	u64 end;
712  
713  	/*
714  	 * VFS's generic_remap_file_range_prep() protects us from cloning the
715  	 * eof block into the middle of a file, which would result in corruption
716  	 * if the file size is not blocksize aligned. So we don't need to check
717  	 * for that case here.
718  	 */
719  	if (off + len == src->i_size)
720  		len = ALIGN(src->i_size, bs) - off;
721  
722  	if (destoff > inode->i_size) {
723  		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
724  
725  		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
726  		if (ret)
727  			return ret;
728  		/*
729  		 * We may have truncated the last block if the inode's size is
730  		 * not sector size aligned, so we need to wait for writeback to
731  		 * complete before proceeding further, otherwise we can race
732  		 * with cloning and attempt to increment a reference to an
733  		 * extent that no longer exists (writeback completed right after
734  		 * we found the previous extent covering eof and before we
735  		 * attempted to increment its reference count).
736  		 */
737  		ret = btrfs_wait_ordered_range(BTRFS_I(inode), wb_start,
738  					       destoff - wb_start);
739  		if (ret)
740  			return ret;
741  	}
742  
743  	/*
744  	 * Lock destination range to serialize with concurrent readahead(), and
745  	 * we are safe from concurrency with relocation of source extents
746  	 * because we have already locked the inode's i_mmap_lock in exclusive
747  	 * mode.
748  	 */
749  	end = destoff + len - 1;
750  	lock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
751  	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
752  	unlock_extent(&BTRFS_I(inode)->io_tree, destoff, end, &cached_state);
753  
754  	/*
755  	 * We may have copied an inline extent into a page of the destination
756  	 * range, so wait for writeback to complete before truncating pages
757  	 * from the page cache. This is a rare case.
758  	 */
759  	wb_ret = btrfs_wait_ordered_range(BTRFS_I(inode), destoff, len);
760  	ret = ret ? ret : wb_ret;
761  	/*
762  	 * Truncate page cache pages so that future reads will see the cloned
763  	 * data immediately and not the previous data.
764  	 */
765  	truncate_inode_pages_range(&inode->i_data,
766  				round_down(destoff, PAGE_SIZE),
767  				round_up(destoff + len, PAGE_SIZE) - 1);
768  
769  	btrfs_btree_balance_dirty(fs_info);
770  
771  	return ret;
772  }
773  
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)774  static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
775  				       struct file *file_out, loff_t pos_out,
776  				       loff_t *len, unsigned int remap_flags)
777  {
778  	struct inode *inode_in = file_inode(file_in);
779  	struct inode *inode_out = file_inode(file_out);
780  	u64 bs = BTRFS_I(inode_out)->root->fs_info->sectorsize;
781  	u64 wb_len;
782  	int ret;
783  
784  	if (!(remap_flags & REMAP_FILE_DEDUP)) {
785  		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
786  
787  		if (btrfs_root_readonly(root_out))
788  			return -EROFS;
789  
790  		ASSERT(inode_in->i_sb == inode_out->i_sb);
791  	}
792  
793  	/* Don't make the dst file partly checksummed */
794  	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
795  	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
796  		return -EINVAL;
797  	}
798  
799  	/*
800  	 * Now that the inodes are locked, we need to start writeback ourselves
801  	 * and can not rely on the writeback from the VFS's generic helper
802  	 * generic_remap_file_range_prep() because:
803  	 *
804  	 * 1) For compression we must call filemap_fdatawrite_range() range
805  	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
806  	 *    helper only calls it once;
807  	 *
808  	 * 2) filemap_fdatawrite_range(), called by the generic helper only
809  	 *    waits for the writeback to complete, i.e. for IO to be done, and
810  	 *    not for the ordered extents to complete. We need to wait for them
811  	 *    to complete so that new file extent items are in the fs tree.
812  	 */
813  	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
814  		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
815  	else
816  		wb_len = ALIGN(*len, bs);
817  
818  	/*
819  	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
820  	 *
821  	 * Btrfs' back references do not have a block level granularity, they
822  	 * work at the whole extent level.
823  	 * NOCOW buffered write without data space reserved may not be able
824  	 * to fall back to CoW due to lack of data space, thus could cause
825  	 * data loss.
826  	 *
827  	 * Here we take a shortcut by flushing the whole inode, so that all
828  	 * nocow write should reach disk as nocow before we increase the
829  	 * reference of the extent. We could do better by only flushing NOCOW
830  	 * data, but that needs extra accounting.
831  	 *
832  	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
833  	 * CoWed anyway, not affecting nocow part.
834  	 */
835  	ret = filemap_flush(inode_in->i_mapping);
836  	if (ret < 0)
837  		return ret;
838  
839  	ret = btrfs_wait_ordered_range(BTRFS_I(inode_in), ALIGN_DOWN(pos_in, bs),
840  				       wb_len);
841  	if (ret < 0)
842  		return ret;
843  	ret = btrfs_wait_ordered_range(BTRFS_I(inode_out), ALIGN_DOWN(pos_out, bs),
844  				       wb_len);
845  	if (ret < 0)
846  		return ret;
847  
848  	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
849  					    len, remap_flags);
850  }
851  
file_sync_write(const struct file * file)852  static bool file_sync_write(const struct file *file)
853  {
854  	if (file->f_flags & (__O_SYNC | O_DSYNC))
855  		return true;
856  	if (IS_SYNC(file_inode(file)))
857  		return true;
858  
859  	return false;
860  }
861  
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)862  loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
863  		struct file *dst_file, loff_t destoff, loff_t len,
864  		unsigned int remap_flags)
865  {
866  	struct inode *src_inode = file_inode(src_file);
867  	struct inode *dst_inode = file_inode(dst_file);
868  	bool same_inode = dst_inode == src_inode;
869  	int ret;
870  
871  	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
872  		return -EINVAL;
873  
874  	if (same_inode) {
875  		btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
876  	} else {
877  		lock_two_nondirectories(src_inode, dst_inode);
878  		btrfs_double_mmap_lock(src_inode, dst_inode);
879  	}
880  
881  	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
882  					  &len, remap_flags);
883  	if (ret < 0 || len == 0)
884  		goto out_unlock;
885  
886  	if (remap_flags & REMAP_FILE_DEDUP)
887  		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
888  	else
889  		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
890  
891  out_unlock:
892  	if (same_inode) {
893  		btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
894  	} else {
895  		btrfs_double_mmap_unlock(src_inode, dst_inode);
896  		unlock_two_nondirectories(src_inode, dst_inode);
897  	}
898  
899  	/*
900  	 * If either the source or the destination file was opened with O_SYNC,
901  	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
902  	 * source files/ranges, so that after a successful return (0) followed
903  	 * by a power failure results in the reflinked data to be readable from
904  	 * both files/ranges.
905  	 */
906  	if (ret == 0 && len > 0 &&
907  	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
908  		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
909  		if (ret == 0)
910  			ret = btrfs_sync_file(dst_file, destoff,
911  					      destoff + len - 1, 0);
912  	}
913  
914  	return ret < 0 ? ret : len;
915  }
916