1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/fs.h>
7  #include <linux/blkdev.h>
8  #include <linux/radix-tree.h>
9  #include <linux/writeback.h>
10  #include <linux/workqueue.h>
11  #include <linux/kthread.h>
12  #include <linux/slab.h>
13  #include <linux/migrate.h>
14  #include <linux/ratelimit.h>
15  #include <linux/uuid.h>
16  #include <linux/semaphore.h>
17  #include <linux/error-injection.h>
18  #include <linux/crc32c.h>
19  #include <linux/sched/mm.h>
20  #include <linux/unaligned.h>
21  #include <crypto/hash.h>
22  #include "ctree.h"
23  #include "disk-io.h"
24  #include "transaction.h"
25  #include "btrfs_inode.h"
26  #include "bio.h"
27  #include "print-tree.h"
28  #include "locking.h"
29  #include "tree-log.h"
30  #include "free-space-cache.h"
31  #include "free-space-tree.h"
32  #include "dev-replace.h"
33  #include "raid56.h"
34  #include "sysfs.h"
35  #include "qgroup.h"
36  #include "compression.h"
37  #include "tree-checker.h"
38  #include "ref-verify.h"
39  #include "block-group.h"
40  #include "discard.h"
41  #include "space-info.h"
42  #include "zoned.h"
43  #include "subpage.h"
44  #include "fs.h"
45  #include "accessors.h"
46  #include "extent-tree.h"
47  #include "root-tree.h"
48  #include "defrag.h"
49  #include "uuid-tree.h"
50  #include "relocation.h"
51  #include "scrub.h"
52  #include "super.h"
53  
54  #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55  				 BTRFS_HEADER_FLAG_RELOC |\
56  				 BTRFS_SUPER_FLAG_ERROR |\
57  				 BTRFS_SUPER_FLAG_SEEDING |\
58  				 BTRFS_SUPER_FLAG_METADUMP |\
59  				 BTRFS_SUPER_FLAG_METADUMP_V2)
60  
61  static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62  static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63  
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)64  static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65  {
66  	if (fs_info->csum_shash)
67  		crypto_free_shash(fs_info->csum_shash);
68  }
69  
70  /*
71   * Compute the csum of a btree block and store the result to provided buffer.
72   */
csum_tree_block(struct extent_buffer * buf,u8 * result)73  static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74  {
75  	struct btrfs_fs_info *fs_info = buf->fs_info;
76  	int num_pages;
77  	u32 first_page_part;
78  	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79  	char *kaddr;
80  	int i;
81  
82  	shash->tfm = fs_info->csum_shash;
83  	crypto_shash_init(shash);
84  
85  	if (buf->addr) {
86  		/* Pages are contiguous, handle them as a big one. */
87  		kaddr = buf->addr;
88  		first_page_part = fs_info->nodesize;
89  		num_pages = 1;
90  	} else {
91  		kaddr = folio_address(buf->folios[0]);
92  		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93  		num_pages = num_extent_pages(buf);
94  	}
95  
96  	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97  			    first_page_part - BTRFS_CSUM_SIZE);
98  
99  	/*
100  	 * Multiple single-page folios case would reach here.
101  	 *
102  	 * nodesize <= PAGE_SIZE and large folio all handled by above
103  	 * crypto_shash_update() already.
104  	 */
105  	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106  		kaddr = folio_address(buf->folios[i]);
107  		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108  	}
109  	memset(result, 0, BTRFS_CSUM_SIZE);
110  	crypto_shash_final(shash, result);
111  }
112  
113  /*
114   * we can't consider a given block up to date unless the transid of the
115   * block matches the transid in the parent node's pointer.  This is how we
116   * detect blocks that either didn't get written at all or got written
117   * in the wrong place.
118   */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)119  int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120  {
121  	if (!extent_buffer_uptodate(eb))
122  		return 0;
123  
124  	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125  		return 1;
126  
127  	if (atomic)
128  		return -EAGAIN;
129  
130  	if (!extent_buffer_uptodate(eb) ||
131  	    btrfs_header_generation(eb) != parent_transid) {
132  		btrfs_err_rl(eb->fs_info,
133  "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134  			eb->start, eb->read_mirror,
135  			parent_transid, btrfs_header_generation(eb));
136  		clear_extent_buffer_uptodate(eb);
137  		return 0;
138  	}
139  	return 1;
140  }
141  
btrfs_supported_super_csum(u16 csum_type)142  static bool btrfs_supported_super_csum(u16 csum_type)
143  {
144  	switch (csum_type) {
145  	case BTRFS_CSUM_TYPE_CRC32:
146  	case BTRFS_CSUM_TYPE_XXHASH:
147  	case BTRFS_CSUM_TYPE_SHA256:
148  	case BTRFS_CSUM_TYPE_BLAKE2:
149  		return true;
150  	default:
151  		return false;
152  	}
153  }
154  
155  /*
156   * Return 0 if the superblock checksum type matches the checksum value of that
157   * algorithm. Pass the raw disk superblock data.
158   */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)159  int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160  			   const struct btrfs_super_block *disk_sb)
161  {
162  	char result[BTRFS_CSUM_SIZE];
163  	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164  
165  	shash->tfm = fs_info->csum_shash;
166  
167  	/*
168  	 * The super_block structure does not span the whole
169  	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170  	 * filled with zeros and is included in the checksum.
171  	 */
172  	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173  			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174  
175  	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176  		return 1;
177  
178  	return 0;
179  }
180  
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)181  static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182  				      int mirror_num)
183  {
184  	struct btrfs_fs_info *fs_info = eb->fs_info;
185  	int num_folios = num_extent_folios(eb);
186  	int ret = 0;
187  
188  	if (sb_rdonly(fs_info->sb))
189  		return -EROFS;
190  
191  	for (int i = 0; i < num_folios; i++) {
192  		struct folio *folio = eb->folios[i];
193  		u64 start = max_t(u64, eb->start, folio_pos(folio));
194  		u64 end = min_t(u64, eb->start + eb->len,
195  				folio_pos(folio) + eb->folio_size);
196  		u32 len = end - start;
197  
198  		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199  					      start, folio, offset_in_folio(folio, start),
200  					      mirror_num);
201  		if (ret)
202  			break;
203  	}
204  
205  	return ret;
206  }
207  
208  /*
209   * helper to read a given tree block, doing retries as required when
210   * the checksums don't match and we have alternate mirrors to try.
211   *
212   * @check:		expected tree parentness check, see the comments of the
213   *			structure for details.
214   */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)215  int btrfs_read_extent_buffer(struct extent_buffer *eb,
216  			     const struct btrfs_tree_parent_check *check)
217  {
218  	struct btrfs_fs_info *fs_info = eb->fs_info;
219  	int failed = 0;
220  	int ret;
221  	int num_copies = 0;
222  	int mirror_num = 0;
223  	int failed_mirror = 0;
224  
225  	ASSERT(check);
226  
227  	while (1) {
228  		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229  		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230  		if (!ret)
231  			break;
232  
233  		num_copies = btrfs_num_copies(fs_info,
234  					      eb->start, eb->len);
235  		if (num_copies == 1)
236  			break;
237  
238  		if (!failed_mirror) {
239  			failed = 1;
240  			failed_mirror = eb->read_mirror;
241  		}
242  
243  		mirror_num++;
244  		if (mirror_num == failed_mirror)
245  			mirror_num++;
246  
247  		if (mirror_num > num_copies)
248  			break;
249  	}
250  
251  	if (failed && !ret && failed_mirror)
252  		btrfs_repair_eb_io_failure(eb, failed_mirror);
253  
254  	return ret;
255  }
256  
257  /*
258   * Checksum a dirty tree block before IO.
259   */
btree_csum_one_bio(struct btrfs_bio * bbio)260  blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261  {
262  	struct extent_buffer *eb = bbio->private;
263  	struct btrfs_fs_info *fs_info = eb->fs_info;
264  	u64 found_start = btrfs_header_bytenr(eb);
265  	u64 last_trans;
266  	u8 result[BTRFS_CSUM_SIZE];
267  	int ret;
268  
269  	/* Btree blocks are always contiguous on disk. */
270  	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271  		return BLK_STS_IOERR;
272  	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273  		return BLK_STS_IOERR;
274  
275  	/*
276  	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277  	 * checksum it but zero-out its content. This is done to preserve
278  	 * ordering of I/O without unnecessarily writing out data.
279  	 */
280  	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281  		memzero_extent_buffer(eb, 0, eb->len);
282  		return BLK_STS_OK;
283  	}
284  
285  	if (WARN_ON_ONCE(found_start != eb->start))
286  		return BLK_STS_IOERR;
287  	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288  					       eb->start, eb->len)))
289  		return BLK_STS_IOERR;
290  
291  	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292  				    offsetof(struct btrfs_header, fsid),
293  				    BTRFS_FSID_SIZE) == 0);
294  	csum_tree_block(eb, result);
295  
296  	if (btrfs_header_level(eb))
297  		ret = btrfs_check_node(eb);
298  	else
299  		ret = btrfs_check_leaf(eb);
300  
301  	if (ret < 0)
302  		goto error;
303  
304  	/*
305  	 * Also check the generation, the eb reached here must be newer than
306  	 * last committed. Or something seriously wrong happened.
307  	 */
308  	last_trans = btrfs_get_last_trans_committed(fs_info);
309  	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310  		ret = -EUCLEAN;
311  		btrfs_err(fs_info,
312  			"block=%llu bad generation, have %llu expect > %llu",
313  			  eb->start, btrfs_header_generation(eb), last_trans);
314  		goto error;
315  	}
316  	write_extent_buffer(eb, result, 0, fs_info->csum_size);
317  	return BLK_STS_OK;
318  
319  error:
320  	btrfs_print_tree(eb, 0);
321  	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322  		  eb->start);
323  	/*
324  	 * Be noisy if this is an extent buffer from a log tree. We don't abort
325  	 * a transaction in case there's a bad log tree extent buffer, we just
326  	 * fallback to a transaction commit. Still we want to know when there is
327  	 * a bad log tree extent buffer, as that may signal a bug somewhere.
328  	 */
329  	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330  		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331  	return errno_to_blk_status(ret);
332  }
333  
check_tree_block_fsid(struct extent_buffer * eb)334  static bool check_tree_block_fsid(struct extent_buffer *eb)
335  {
336  	struct btrfs_fs_info *fs_info = eb->fs_info;
337  	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338  	u8 fsid[BTRFS_FSID_SIZE];
339  
340  	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341  			   BTRFS_FSID_SIZE);
342  
343  	/*
344  	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345  	 * This is then overwritten by metadata_uuid if it is present in the
346  	 * device_list_add(). The same true for a seed device as well. So use of
347  	 * fs_devices::metadata_uuid is appropriate here.
348  	 */
349  	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350  		return false;
351  
352  	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353  		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354  			return false;
355  
356  	return true;
357  }
358  
359  /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)360  int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361  				 const struct btrfs_tree_parent_check *check)
362  {
363  	struct btrfs_fs_info *fs_info = eb->fs_info;
364  	u64 found_start;
365  	const u32 csum_size = fs_info->csum_size;
366  	u8 found_level;
367  	u8 result[BTRFS_CSUM_SIZE];
368  	const u8 *header_csum;
369  	int ret = 0;
370  	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
371  
372  	ASSERT(check);
373  
374  	found_start = btrfs_header_bytenr(eb);
375  	if (found_start != eb->start) {
376  		btrfs_err_rl(fs_info,
377  			"bad tree block start, mirror %u want %llu have %llu",
378  			     eb->read_mirror, eb->start, found_start);
379  		ret = -EIO;
380  		goto out;
381  	}
382  	if (check_tree_block_fsid(eb)) {
383  		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384  			     eb->start, eb->read_mirror);
385  		ret = -EIO;
386  		goto out;
387  	}
388  	found_level = btrfs_header_level(eb);
389  	if (found_level >= BTRFS_MAX_LEVEL) {
390  		btrfs_err(fs_info,
391  			"bad tree block level, mirror %u level %d on logical %llu",
392  			eb->read_mirror, btrfs_header_level(eb), eb->start);
393  		ret = -EIO;
394  		goto out;
395  	}
396  
397  	csum_tree_block(eb, result);
398  	header_csum = folio_address(eb->folios[0]) +
399  		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400  
401  	if (memcmp(result, header_csum, csum_size) != 0) {
402  		btrfs_warn_rl(fs_info,
403  "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
404  			      eb->start, eb->read_mirror,
405  			      CSUM_FMT_VALUE(csum_size, header_csum),
406  			      CSUM_FMT_VALUE(csum_size, result),
407  			      btrfs_header_level(eb),
408  			      ignore_csum ? ", ignored" : "");
409  		if (!ignore_csum) {
410  			ret = -EUCLEAN;
411  			goto out;
412  		}
413  	}
414  
415  	if (found_level != check->level) {
416  		btrfs_err(fs_info,
417  		"level verify failed on logical %llu mirror %u wanted %u found %u",
418  			  eb->start, eb->read_mirror, check->level, found_level);
419  		ret = -EIO;
420  		goto out;
421  	}
422  	if (unlikely(check->transid &&
423  		     btrfs_header_generation(eb) != check->transid)) {
424  		btrfs_err_rl(eb->fs_info,
425  "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
426  				eb->start, eb->read_mirror, check->transid,
427  				btrfs_header_generation(eb));
428  		ret = -EIO;
429  		goto out;
430  	}
431  	if (check->has_first_key) {
432  		const struct btrfs_key *expect_key = &check->first_key;
433  		struct btrfs_key found_key;
434  
435  		if (found_level)
436  			btrfs_node_key_to_cpu(eb, &found_key, 0);
437  		else
438  			btrfs_item_key_to_cpu(eb, &found_key, 0);
439  		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
440  			btrfs_err(fs_info,
441  "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442  				  eb->start, check->transid,
443  				  expect_key->objectid,
444  				  expect_key->type, expect_key->offset,
445  				  found_key.objectid, found_key.type,
446  				  found_key.offset);
447  			ret = -EUCLEAN;
448  			goto out;
449  		}
450  	}
451  	if (check->owner_root) {
452  		ret = btrfs_check_eb_owner(eb, check->owner_root);
453  		if (ret < 0)
454  			goto out;
455  	}
456  
457  	/*
458  	 * If this is a leaf block and it is corrupt, set the corrupt bit so
459  	 * that we don't try and read the other copies of this block, just
460  	 * return -EIO.
461  	 */
462  	if (found_level == 0 && btrfs_check_leaf(eb)) {
463  		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
464  		ret = -EIO;
465  	}
466  
467  	if (found_level > 0 && btrfs_check_node(eb))
468  		ret = -EIO;
469  
470  	if (ret)
471  		btrfs_err(fs_info,
472  		"read time tree block corruption detected on logical %llu mirror %u",
473  			  eb->start, eb->read_mirror);
474  out:
475  	return ret;
476  }
477  
478  #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)479  static int btree_migrate_folio(struct address_space *mapping,
480  		struct folio *dst, struct folio *src, enum migrate_mode mode)
481  {
482  	/*
483  	 * we can't safely write a btree page from here,
484  	 * we haven't done the locking hook
485  	 */
486  	if (folio_test_dirty(src))
487  		return -EAGAIN;
488  	/*
489  	 * Buffers may be managed in a filesystem specific way.
490  	 * We must have no buffers or drop them.
491  	 */
492  	if (folio_get_private(src) &&
493  	    !filemap_release_folio(src, GFP_KERNEL))
494  		return -EAGAIN;
495  	return migrate_folio(mapping, dst, src, mode);
496  }
497  #else
498  #define btree_migrate_folio NULL
499  #endif
500  
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)501  static int btree_writepages(struct address_space *mapping,
502  			    struct writeback_control *wbc)
503  {
504  	int ret;
505  
506  	if (wbc->sync_mode == WB_SYNC_NONE) {
507  		struct btrfs_fs_info *fs_info;
508  
509  		if (wbc->for_kupdate)
510  			return 0;
511  
512  		fs_info = inode_to_fs_info(mapping->host);
513  		/* this is a bit racy, but that's ok */
514  		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
515  					     BTRFS_DIRTY_METADATA_THRESH,
516  					     fs_info->dirty_metadata_batch);
517  		if (ret < 0)
518  			return 0;
519  	}
520  	return btree_write_cache_pages(mapping, wbc);
521  }
522  
btree_release_folio(struct folio * folio,gfp_t gfp_flags)523  static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
524  {
525  	if (folio_test_writeback(folio) || folio_test_dirty(folio))
526  		return false;
527  
528  	return try_release_extent_buffer(folio);
529  }
530  
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)531  static void btree_invalidate_folio(struct folio *folio, size_t offset,
532  				 size_t length)
533  {
534  	struct extent_io_tree *tree;
535  
536  	tree = &folio_to_inode(folio)->io_tree;
537  	extent_invalidate_folio(tree, folio, offset);
538  	btree_release_folio(folio, GFP_NOFS);
539  	if (folio_get_private(folio)) {
540  		btrfs_warn(folio_to_fs_info(folio),
541  			   "folio private not zero on folio %llu",
542  			   (unsigned long long)folio_pos(folio));
543  		folio_detach_private(folio);
544  	}
545  }
546  
547  #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)548  static bool btree_dirty_folio(struct address_space *mapping,
549  		struct folio *folio)
550  {
551  	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
552  	struct btrfs_subpage_info *spi = fs_info->subpage_info;
553  	struct btrfs_subpage *subpage;
554  	struct extent_buffer *eb;
555  	int cur_bit = 0;
556  	u64 page_start = folio_pos(folio);
557  
558  	if (fs_info->sectorsize == PAGE_SIZE) {
559  		eb = folio_get_private(folio);
560  		BUG_ON(!eb);
561  		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
562  		BUG_ON(!atomic_read(&eb->refs));
563  		btrfs_assert_tree_write_locked(eb);
564  		return filemap_dirty_folio(mapping, folio);
565  	}
566  
567  	ASSERT(spi);
568  	subpage = folio_get_private(folio);
569  
570  	for (cur_bit = spi->dirty_offset;
571  	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
572  	     cur_bit++) {
573  		unsigned long flags;
574  		u64 cur;
575  
576  		spin_lock_irqsave(&subpage->lock, flags);
577  		if (!test_bit(cur_bit, subpage->bitmaps)) {
578  			spin_unlock_irqrestore(&subpage->lock, flags);
579  			continue;
580  		}
581  		spin_unlock_irqrestore(&subpage->lock, flags);
582  		cur = page_start + cur_bit * fs_info->sectorsize;
583  
584  		eb = find_extent_buffer(fs_info, cur);
585  		ASSERT(eb);
586  		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
587  		ASSERT(atomic_read(&eb->refs));
588  		btrfs_assert_tree_write_locked(eb);
589  		free_extent_buffer(eb);
590  
591  		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
592  	}
593  	return filemap_dirty_folio(mapping, folio);
594  }
595  #else
596  #define btree_dirty_folio filemap_dirty_folio
597  #endif
598  
599  static const struct address_space_operations btree_aops = {
600  	.writepages	= btree_writepages,
601  	.release_folio	= btree_release_folio,
602  	.invalidate_folio = btree_invalidate_folio,
603  	.migrate_folio	= btree_migrate_folio,
604  	.dirty_folio	= btree_dirty_folio,
605  };
606  
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)607  struct extent_buffer *btrfs_find_create_tree_block(
608  						struct btrfs_fs_info *fs_info,
609  						u64 bytenr, u64 owner_root,
610  						int level)
611  {
612  	if (btrfs_is_testing(fs_info))
613  		return alloc_test_extent_buffer(fs_info, bytenr);
614  	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
615  }
616  
617  /*
618   * Read tree block at logical address @bytenr and do variant basic but critical
619   * verification.
620   *
621   * @check:		expected tree parentness check, see comments of the
622   *			structure for details.
623   */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)624  struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
625  				      struct btrfs_tree_parent_check *check)
626  {
627  	struct extent_buffer *buf = NULL;
628  	int ret;
629  
630  	ASSERT(check);
631  
632  	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
633  					   check->level);
634  	if (IS_ERR(buf))
635  		return buf;
636  
637  	ret = btrfs_read_extent_buffer(buf, check);
638  	if (ret) {
639  		free_extent_buffer_stale(buf);
640  		return ERR_PTR(ret);
641  	}
642  	return buf;
643  
644  }
645  
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)646  static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647  			 u64 objectid)
648  {
649  	bool dummy = btrfs_is_testing(fs_info);
650  
651  	memset(&root->root_key, 0, sizeof(root->root_key));
652  	memset(&root->root_item, 0, sizeof(root->root_item));
653  	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654  	root->fs_info = fs_info;
655  	root->root_key.objectid = objectid;
656  	root->node = NULL;
657  	root->commit_root = NULL;
658  	root->state = 0;
659  	RB_CLEAR_NODE(&root->rb_node);
660  
661  	btrfs_set_root_last_trans(root, 0);
662  	root->free_objectid = 0;
663  	root->nr_delalloc_inodes = 0;
664  	root->nr_ordered_extents = 0;
665  	xa_init(&root->inodes);
666  	xa_init(&root->delayed_nodes);
667  
668  	btrfs_init_root_block_rsv(root);
669  
670  	INIT_LIST_HEAD(&root->dirty_list);
671  	INIT_LIST_HEAD(&root->root_list);
672  	INIT_LIST_HEAD(&root->delalloc_inodes);
673  	INIT_LIST_HEAD(&root->delalloc_root);
674  	INIT_LIST_HEAD(&root->ordered_extents);
675  	INIT_LIST_HEAD(&root->ordered_root);
676  	INIT_LIST_HEAD(&root->reloc_dirty_list);
677  	spin_lock_init(&root->delalloc_lock);
678  	spin_lock_init(&root->ordered_extent_lock);
679  	spin_lock_init(&root->accounting_lock);
680  	spin_lock_init(&root->qgroup_meta_rsv_lock);
681  	mutex_init(&root->objectid_mutex);
682  	mutex_init(&root->log_mutex);
683  	mutex_init(&root->ordered_extent_mutex);
684  	mutex_init(&root->delalloc_mutex);
685  	init_waitqueue_head(&root->qgroup_flush_wait);
686  	init_waitqueue_head(&root->log_writer_wait);
687  	init_waitqueue_head(&root->log_commit_wait[0]);
688  	init_waitqueue_head(&root->log_commit_wait[1]);
689  	INIT_LIST_HEAD(&root->log_ctxs[0]);
690  	INIT_LIST_HEAD(&root->log_ctxs[1]);
691  	atomic_set(&root->log_commit[0], 0);
692  	atomic_set(&root->log_commit[1], 0);
693  	atomic_set(&root->log_writers, 0);
694  	atomic_set(&root->log_batch, 0);
695  	refcount_set(&root->refs, 1);
696  	atomic_set(&root->snapshot_force_cow, 0);
697  	atomic_set(&root->nr_swapfiles, 0);
698  	btrfs_set_root_log_transid(root, 0);
699  	root->log_transid_committed = -1;
700  	btrfs_set_root_last_log_commit(root, 0);
701  	root->anon_dev = 0;
702  	if (!dummy) {
703  		extent_io_tree_init(fs_info, &root->dirty_log_pages,
704  				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
705  		extent_io_tree_init(fs_info, &root->log_csum_range,
706  				    IO_TREE_LOG_CSUM_RANGE);
707  	}
708  
709  	spin_lock_init(&root->root_item_lock);
710  	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
711  #ifdef CONFIG_BTRFS_DEBUG
712  	INIT_LIST_HEAD(&root->leak_list);
713  	spin_lock(&fs_info->fs_roots_radix_lock);
714  	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
715  	spin_unlock(&fs_info->fs_roots_radix_lock);
716  #endif
717  }
718  
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)719  static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
720  					   u64 objectid, gfp_t flags)
721  {
722  	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
723  	if (root)
724  		__setup_root(root, fs_info, objectid);
725  	return root;
726  }
727  
728  #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
729  /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)730  struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
731  {
732  	struct btrfs_root *root;
733  
734  	if (!fs_info)
735  		return ERR_PTR(-EINVAL);
736  
737  	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
738  	if (!root)
739  		return ERR_PTR(-ENOMEM);
740  
741  	/* We don't use the stripesize in selftest, set it as sectorsize */
742  	root->alloc_bytenr = 0;
743  
744  	return root;
745  }
746  #endif
747  
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)748  static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
749  {
750  	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
751  	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
752  
753  	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
754  }
755  
global_root_key_cmp(const void * k,const struct rb_node * node)756  static int global_root_key_cmp(const void *k, const struct rb_node *node)
757  {
758  	const struct btrfs_key *key = k;
759  	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
760  
761  	return btrfs_comp_cpu_keys(key, &root->root_key);
762  }
763  
btrfs_global_root_insert(struct btrfs_root * root)764  int btrfs_global_root_insert(struct btrfs_root *root)
765  {
766  	struct btrfs_fs_info *fs_info = root->fs_info;
767  	struct rb_node *tmp;
768  	int ret = 0;
769  
770  	write_lock(&fs_info->global_root_lock);
771  	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
772  	write_unlock(&fs_info->global_root_lock);
773  
774  	if (tmp) {
775  		ret = -EEXIST;
776  		btrfs_warn(fs_info, "global root %llu %llu already exists",
777  			   btrfs_root_id(root), root->root_key.offset);
778  	}
779  	return ret;
780  }
781  
btrfs_global_root_delete(struct btrfs_root * root)782  void btrfs_global_root_delete(struct btrfs_root *root)
783  {
784  	struct btrfs_fs_info *fs_info = root->fs_info;
785  
786  	write_lock(&fs_info->global_root_lock);
787  	rb_erase(&root->rb_node, &fs_info->global_root_tree);
788  	write_unlock(&fs_info->global_root_lock);
789  }
790  
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)791  struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
792  				     struct btrfs_key *key)
793  {
794  	struct rb_node *node;
795  	struct btrfs_root *root = NULL;
796  
797  	read_lock(&fs_info->global_root_lock);
798  	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
799  	if (node)
800  		root = container_of(node, struct btrfs_root, rb_node);
801  	read_unlock(&fs_info->global_root_lock);
802  
803  	return root;
804  }
805  
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)806  static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
807  {
808  	struct btrfs_block_group *block_group;
809  	u64 ret;
810  
811  	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
812  		return 0;
813  
814  	if (bytenr)
815  		block_group = btrfs_lookup_block_group(fs_info, bytenr);
816  	else
817  		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
818  	ASSERT(block_group);
819  	if (!block_group)
820  		return 0;
821  	ret = block_group->global_root_id;
822  	btrfs_put_block_group(block_group);
823  
824  	return ret;
825  }
826  
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)827  struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828  {
829  	struct btrfs_key key = {
830  		.objectid = BTRFS_CSUM_TREE_OBJECTID,
831  		.type = BTRFS_ROOT_ITEM_KEY,
832  		.offset = btrfs_global_root_id(fs_info, bytenr),
833  	};
834  
835  	return btrfs_global_root(fs_info, &key);
836  }
837  
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)838  struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
839  {
840  	struct btrfs_key key = {
841  		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
842  		.type = BTRFS_ROOT_ITEM_KEY,
843  		.offset = btrfs_global_root_id(fs_info, bytenr),
844  	};
845  
846  	return btrfs_global_root(fs_info, &key);
847  }
848  
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)849  struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
850  				     u64 objectid)
851  {
852  	struct btrfs_fs_info *fs_info = trans->fs_info;
853  	struct extent_buffer *leaf;
854  	struct btrfs_root *tree_root = fs_info->tree_root;
855  	struct btrfs_root *root;
856  	struct btrfs_key key;
857  	unsigned int nofs_flag;
858  	int ret = 0;
859  
860  	/*
861  	 * We're holding a transaction handle, so use a NOFS memory allocation
862  	 * context to avoid deadlock if reclaim happens.
863  	 */
864  	nofs_flag = memalloc_nofs_save();
865  	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
866  	memalloc_nofs_restore(nofs_flag);
867  	if (!root)
868  		return ERR_PTR(-ENOMEM);
869  
870  	root->root_key.objectid = objectid;
871  	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
872  	root->root_key.offset = 0;
873  
874  	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
875  				      0, BTRFS_NESTING_NORMAL);
876  	if (IS_ERR(leaf)) {
877  		ret = PTR_ERR(leaf);
878  		leaf = NULL;
879  		goto fail;
880  	}
881  
882  	root->node = leaf;
883  	btrfs_mark_buffer_dirty(trans, leaf);
884  
885  	root->commit_root = btrfs_root_node(root);
886  	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
887  
888  	btrfs_set_root_flags(&root->root_item, 0);
889  	btrfs_set_root_limit(&root->root_item, 0);
890  	btrfs_set_root_bytenr(&root->root_item, leaf->start);
891  	btrfs_set_root_generation(&root->root_item, trans->transid);
892  	btrfs_set_root_level(&root->root_item, 0);
893  	btrfs_set_root_refs(&root->root_item, 1);
894  	btrfs_set_root_used(&root->root_item, leaf->len);
895  	btrfs_set_root_last_snapshot(&root->root_item, 0);
896  	btrfs_set_root_dirid(&root->root_item, 0);
897  	if (is_fstree(objectid))
898  		generate_random_guid(root->root_item.uuid);
899  	else
900  		export_guid(root->root_item.uuid, &guid_null);
901  	btrfs_set_root_drop_level(&root->root_item, 0);
902  
903  	btrfs_tree_unlock(leaf);
904  
905  	key.objectid = objectid;
906  	key.type = BTRFS_ROOT_ITEM_KEY;
907  	key.offset = 0;
908  	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
909  	if (ret)
910  		goto fail;
911  
912  	return root;
913  
914  fail:
915  	btrfs_put_root(root);
916  
917  	return ERR_PTR(ret);
918  }
919  
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)920  static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
921  					 struct btrfs_fs_info *fs_info)
922  {
923  	struct btrfs_root *root;
924  
925  	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
926  	if (!root)
927  		return ERR_PTR(-ENOMEM);
928  
929  	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
930  	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
931  	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
932  
933  	return root;
934  }
935  
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)936  int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
937  			      struct btrfs_root *root)
938  {
939  	struct extent_buffer *leaf;
940  
941  	/*
942  	 * DON'T set SHAREABLE bit for log trees.
943  	 *
944  	 * Log trees are not exposed to user space thus can't be snapshotted,
945  	 * and they go away before a real commit is actually done.
946  	 *
947  	 * They do store pointers to file data extents, and those reference
948  	 * counts still get updated (along with back refs to the log tree).
949  	 */
950  
951  	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
952  			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
953  	if (IS_ERR(leaf))
954  		return PTR_ERR(leaf);
955  
956  	root->node = leaf;
957  
958  	btrfs_mark_buffer_dirty(trans, root->node);
959  	btrfs_tree_unlock(root->node);
960  
961  	return 0;
962  }
963  
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)964  int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
965  			     struct btrfs_fs_info *fs_info)
966  {
967  	struct btrfs_root *log_root;
968  
969  	log_root = alloc_log_tree(trans, fs_info);
970  	if (IS_ERR(log_root))
971  		return PTR_ERR(log_root);
972  
973  	if (!btrfs_is_zoned(fs_info)) {
974  		int ret = btrfs_alloc_log_tree_node(trans, log_root);
975  
976  		if (ret) {
977  			btrfs_put_root(log_root);
978  			return ret;
979  		}
980  	}
981  
982  	WARN_ON(fs_info->log_root_tree);
983  	fs_info->log_root_tree = log_root;
984  	return 0;
985  }
986  
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)987  int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
988  		       struct btrfs_root *root)
989  {
990  	struct btrfs_fs_info *fs_info = root->fs_info;
991  	struct btrfs_root *log_root;
992  	struct btrfs_inode_item *inode_item;
993  	int ret;
994  
995  	log_root = alloc_log_tree(trans, fs_info);
996  	if (IS_ERR(log_root))
997  		return PTR_ERR(log_root);
998  
999  	ret = btrfs_alloc_log_tree_node(trans, log_root);
1000  	if (ret) {
1001  		btrfs_put_root(log_root);
1002  		return ret;
1003  	}
1004  
1005  	btrfs_set_root_last_trans(log_root, trans->transid);
1006  	log_root->root_key.offset = btrfs_root_id(root);
1007  
1008  	inode_item = &log_root->root_item.inode;
1009  	btrfs_set_stack_inode_generation(inode_item, 1);
1010  	btrfs_set_stack_inode_size(inode_item, 3);
1011  	btrfs_set_stack_inode_nlink(inode_item, 1);
1012  	btrfs_set_stack_inode_nbytes(inode_item,
1013  				     fs_info->nodesize);
1014  	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1015  
1016  	btrfs_set_root_node(&log_root->root_item, log_root->node);
1017  
1018  	WARN_ON(root->log_root);
1019  	root->log_root = log_root;
1020  	btrfs_set_root_log_transid(root, 0);
1021  	root->log_transid_committed = -1;
1022  	btrfs_set_root_last_log_commit(root, 0);
1023  	return 0;
1024  }
1025  
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)1026  static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1027  					      struct btrfs_path *path,
1028  					      const struct btrfs_key *key)
1029  {
1030  	struct btrfs_root *root;
1031  	struct btrfs_tree_parent_check check = { 0 };
1032  	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1033  	u64 generation;
1034  	int ret;
1035  	int level;
1036  
1037  	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1038  	if (!root)
1039  		return ERR_PTR(-ENOMEM);
1040  
1041  	ret = btrfs_find_root(tree_root, key, path,
1042  			      &root->root_item, &root->root_key);
1043  	if (ret) {
1044  		if (ret > 0)
1045  			ret = -ENOENT;
1046  		goto fail;
1047  	}
1048  
1049  	generation = btrfs_root_generation(&root->root_item);
1050  	level = btrfs_root_level(&root->root_item);
1051  	check.level = level;
1052  	check.transid = generation;
1053  	check.owner_root = key->objectid;
1054  	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1055  				     &check);
1056  	if (IS_ERR(root->node)) {
1057  		ret = PTR_ERR(root->node);
1058  		root->node = NULL;
1059  		goto fail;
1060  	}
1061  	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1062  		ret = -EIO;
1063  		goto fail;
1064  	}
1065  
1066  	/*
1067  	 * For real fs, and not log/reloc trees, root owner must
1068  	 * match its root node owner
1069  	 */
1070  	if (!btrfs_is_testing(fs_info) &&
1071  	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1072  	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1073  	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1074  		btrfs_crit(fs_info,
1075  "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1076  			   btrfs_root_id(root), root->node->start,
1077  			   btrfs_header_owner(root->node),
1078  			   btrfs_root_id(root));
1079  		ret = -EUCLEAN;
1080  		goto fail;
1081  	}
1082  	root->commit_root = btrfs_root_node(root);
1083  	return root;
1084  fail:
1085  	btrfs_put_root(root);
1086  	return ERR_PTR(ret);
1087  }
1088  
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1089  struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1090  					const struct btrfs_key *key)
1091  {
1092  	struct btrfs_root *root;
1093  	struct btrfs_path *path;
1094  
1095  	path = btrfs_alloc_path();
1096  	if (!path)
1097  		return ERR_PTR(-ENOMEM);
1098  	root = read_tree_root_path(tree_root, path, key);
1099  	btrfs_free_path(path);
1100  
1101  	return root;
1102  }
1103  
1104  /*
1105   * Initialize subvolume root in-memory structure
1106   *
1107   * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1108   */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1109  static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1110  {
1111  	int ret;
1112  
1113  	btrfs_drew_lock_init(&root->snapshot_lock);
1114  
1115  	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1116  	    !btrfs_is_data_reloc_root(root) &&
1117  	    is_fstree(btrfs_root_id(root))) {
1118  		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1119  		btrfs_check_and_init_root_item(&root->root_item);
1120  	}
1121  
1122  	/*
1123  	 * Don't assign anonymous block device to roots that are not exposed to
1124  	 * userspace, the id pool is limited to 1M
1125  	 */
1126  	if (is_fstree(btrfs_root_id(root)) &&
1127  	    btrfs_root_refs(&root->root_item) > 0) {
1128  		if (!anon_dev) {
1129  			ret = get_anon_bdev(&root->anon_dev);
1130  			if (ret)
1131  				goto fail;
1132  		} else {
1133  			root->anon_dev = anon_dev;
1134  		}
1135  	}
1136  
1137  	mutex_lock(&root->objectid_mutex);
1138  	ret = btrfs_init_root_free_objectid(root);
1139  	if (ret) {
1140  		mutex_unlock(&root->objectid_mutex);
1141  		goto fail;
1142  	}
1143  
1144  	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1145  
1146  	mutex_unlock(&root->objectid_mutex);
1147  
1148  	return 0;
1149  fail:
1150  	/* The caller is responsible to call btrfs_free_fs_root */
1151  	return ret;
1152  }
1153  
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1154  static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1155  					       u64 root_id)
1156  {
1157  	struct btrfs_root *root;
1158  
1159  	spin_lock(&fs_info->fs_roots_radix_lock);
1160  	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1161  				 (unsigned long)root_id);
1162  	root = btrfs_grab_root(root);
1163  	spin_unlock(&fs_info->fs_roots_radix_lock);
1164  	return root;
1165  }
1166  
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1167  static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1168  						u64 objectid)
1169  {
1170  	struct btrfs_key key = {
1171  		.objectid = objectid,
1172  		.type = BTRFS_ROOT_ITEM_KEY,
1173  		.offset = 0,
1174  	};
1175  
1176  	switch (objectid) {
1177  	case BTRFS_ROOT_TREE_OBJECTID:
1178  		return btrfs_grab_root(fs_info->tree_root);
1179  	case BTRFS_EXTENT_TREE_OBJECTID:
1180  		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1181  	case BTRFS_CHUNK_TREE_OBJECTID:
1182  		return btrfs_grab_root(fs_info->chunk_root);
1183  	case BTRFS_DEV_TREE_OBJECTID:
1184  		return btrfs_grab_root(fs_info->dev_root);
1185  	case BTRFS_CSUM_TREE_OBJECTID:
1186  		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1187  	case BTRFS_QUOTA_TREE_OBJECTID:
1188  		return btrfs_grab_root(fs_info->quota_root);
1189  	case BTRFS_UUID_TREE_OBJECTID:
1190  		return btrfs_grab_root(fs_info->uuid_root);
1191  	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1192  		return btrfs_grab_root(fs_info->block_group_root);
1193  	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1194  		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1195  	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1196  		return btrfs_grab_root(fs_info->stripe_root);
1197  	default:
1198  		return NULL;
1199  	}
1200  }
1201  
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1202  int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1203  			 struct btrfs_root *root)
1204  {
1205  	int ret;
1206  
1207  	ret = radix_tree_preload(GFP_NOFS);
1208  	if (ret)
1209  		return ret;
1210  
1211  	spin_lock(&fs_info->fs_roots_radix_lock);
1212  	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1213  				(unsigned long)btrfs_root_id(root),
1214  				root);
1215  	if (ret == 0) {
1216  		btrfs_grab_root(root);
1217  		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1218  	}
1219  	spin_unlock(&fs_info->fs_roots_radix_lock);
1220  	radix_tree_preload_end();
1221  
1222  	return ret;
1223  }
1224  
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1225  void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1226  {
1227  #ifdef CONFIG_BTRFS_DEBUG
1228  	struct btrfs_root *root;
1229  
1230  	while (!list_empty(&fs_info->allocated_roots)) {
1231  		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1232  
1233  		root = list_first_entry(&fs_info->allocated_roots,
1234  					struct btrfs_root, leak_list);
1235  		btrfs_err(fs_info, "leaked root %s refcount %d",
1236  			  btrfs_root_name(&root->root_key, buf),
1237  			  refcount_read(&root->refs));
1238  		WARN_ON_ONCE(1);
1239  		while (refcount_read(&root->refs) > 1)
1240  			btrfs_put_root(root);
1241  		btrfs_put_root(root);
1242  	}
1243  #endif
1244  }
1245  
free_global_roots(struct btrfs_fs_info * fs_info)1246  static void free_global_roots(struct btrfs_fs_info *fs_info)
1247  {
1248  	struct btrfs_root *root;
1249  	struct rb_node *node;
1250  
1251  	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1252  		root = rb_entry(node, struct btrfs_root, rb_node);
1253  		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1254  		btrfs_put_root(root);
1255  	}
1256  }
1257  
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1258  void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1259  {
1260  	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1261  
1262  	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1263  	percpu_counter_destroy(&fs_info->delalloc_bytes);
1264  	percpu_counter_destroy(&fs_info->ordered_bytes);
1265  	if (percpu_counter_initialized(em_counter))
1266  		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1267  	percpu_counter_destroy(em_counter);
1268  	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1269  	btrfs_free_csum_hash(fs_info);
1270  	btrfs_free_stripe_hash_table(fs_info);
1271  	btrfs_free_ref_cache(fs_info);
1272  	kfree(fs_info->balance_ctl);
1273  	kfree(fs_info->delayed_root);
1274  	free_global_roots(fs_info);
1275  	btrfs_put_root(fs_info->tree_root);
1276  	btrfs_put_root(fs_info->chunk_root);
1277  	btrfs_put_root(fs_info->dev_root);
1278  	btrfs_put_root(fs_info->quota_root);
1279  	btrfs_put_root(fs_info->uuid_root);
1280  	btrfs_put_root(fs_info->fs_root);
1281  	btrfs_put_root(fs_info->data_reloc_root);
1282  	btrfs_put_root(fs_info->block_group_root);
1283  	btrfs_put_root(fs_info->stripe_root);
1284  	btrfs_check_leaked_roots(fs_info);
1285  	btrfs_extent_buffer_leak_debug_check(fs_info);
1286  	kfree(fs_info->super_copy);
1287  	kfree(fs_info->super_for_commit);
1288  	kvfree(fs_info);
1289  }
1290  
1291  
1292  /*
1293   * Get an in-memory reference of a root structure.
1294   *
1295   * For essential trees like root/extent tree, we grab it from fs_info directly.
1296   * For subvolume trees, we check the cached filesystem roots first. If not
1297   * found, then read it from disk and add it to cached fs roots.
1298   *
1299   * Caller should release the root by calling btrfs_put_root() after the usage.
1300   *
1301   * NOTE: Reloc and log trees can't be read by this function as they share the
1302   *	 same root objectid.
1303   *
1304   * @objectid:	root id
1305   * @anon_dev:	preallocated anonymous block device number for new roots,
1306   *		pass NULL for a new allocation.
1307   * @check_ref:	whether to check root item references, If true, return -ENOENT
1308   *		for orphan roots
1309   */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1310  static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1311  					     u64 objectid, dev_t *anon_dev,
1312  					     bool check_ref)
1313  {
1314  	struct btrfs_root *root;
1315  	struct btrfs_path *path;
1316  	struct btrfs_key key;
1317  	int ret;
1318  
1319  	root = btrfs_get_global_root(fs_info, objectid);
1320  	if (root)
1321  		return root;
1322  
1323  	/*
1324  	 * If we're called for non-subvolume trees, and above function didn't
1325  	 * find one, do not try to read it from disk.
1326  	 *
1327  	 * This is namely for free-space-tree and quota tree, which can change
1328  	 * at runtime and should only be grabbed from fs_info.
1329  	 */
1330  	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1331  		return ERR_PTR(-ENOENT);
1332  again:
1333  	root = btrfs_lookup_fs_root(fs_info, objectid);
1334  	if (root) {
1335  		/*
1336  		 * Some other caller may have read out the newly inserted
1337  		 * subvolume already (for things like backref walk etc).  Not
1338  		 * that common but still possible.  In that case, we just need
1339  		 * to free the anon_dev.
1340  		 */
1341  		if (unlikely(anon_dev && *anon_dev)) {
1342  			free_anon_bdev(*anon_dev);
1343  			*anon_dev = 0;
1344  		}
1345  
1346  		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1347  			btrfs_put_root(root);
1348  			return ERR_PTR(-ENOENT);
1349  		}
1350  		return root;
1351  	}
1352  
1353  	key.objectid = objectid;
1354  	key.type = BTRFS_ROOT_ITEM_KEY;
1355  	key.offset = (u64)-1;
1356  	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1357  	if (IS_ERR(root))
1358  		return root;
1359  
1360  	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1361  		ret = -ENOENT;
1362  		goto fail;
1363  	}
1364  
1365  	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1366  	if (ret)
1367  		goto fail;
1368  
1369  	path = btrfs_alloc_path();
1370  	if (!path) {
1371  		ret = -ENOMEM;
1372  		goto fail;
1373  	}
1374  	key.objectid = BTRFS_ORPHAN_OBJECTID;
1375  	key.type = BTRFS_ORPHAN_ITEM_KEY;
1376  	key.offset = objectid;
1377  
1378  	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1379  	btrfs_free_path(path);
1380  	if (ret < 0)
1381  		goto fail;
1382  	if (ret == 0)
1383  		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1384  
1385  	ret = btrfs_insert_fs_root(fs_info, root);
1386  	if (ret) {
1387  		if (ret == -EEXIST) {
1388  			btrfs_put_root(root);
1389  			goto again;
1390  		}
1391  		goto fail;
1392  	}
1393  	return root;
1394  fail:
1395  	/*
1396  	 * If our caller provided us an anonymous device, then it's his
1397  	 * responsibility to free it in case we fail. So we have to set our
1398  	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1399  	 * and once again by our caller.
1400  	 */
1401  	if (anon_dev && *anon_dev)
1402  		root->anon_dev = 0;
1403  	btrfs_put_root(root);
1404  	return ERR_PTR(ret);
1405  }
1406  
1407  /*
1408   * Get in-memory reference of a root structure
1409   *
1410   * @objectid:	tree objectid
1411   * @check_ref:	if set, verify that the tree exists and the item has at least
1412   *		one reference
1413   */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1414  struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1415  				     u64 objectid, bool check_ref)
1416  {
1417  	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1418  }
1419  
1420  /*
1421   * Get in-memory reference of a root structure, created as new, optionally pass
1422   * the anonymous block device id
1423   *
1424   * @objectid:	tree objectid
1425   * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1426   *		parameter value if not NULL
1427   */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1428  struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1429  					 u64 objectid, dev_t *anon_dev)
1430  {
1431  	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1432  }
1433  
1434  /*
1435   * Return a root for the given objectid.
1436   *
1437   * @fs_info:	the fs_info
1438   * @objectid:	the objectid we need to lookup
1439   *
1440   * This is exclusively used for backref walking, and exists specifically because
1441   * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1442   * creation time, which means we may have to read the tree_root in order to look
1443   * up a fs root that is not in memory.  If the root is not in memory we will
1444   * read the tree root commit root and look up the fs root from there.  This is a
1445   * temporary root, it will not be inserted into the radix tree as it doesn't
1446   * have the most uptodate information, it'll simply be discarded once the
1447   * backref code is finished using the root.
1448   */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1449  struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1450  						 struct btrfs_path *path,
1451  						 u64 objectid)
1452  {
1453  	struct btrfs_root *root;
1454  	struct btrfs_key key;
1455  
1456  	ASSERT(path->search_commit_root && path->skip_locking);
1457  
1458  	/*
1459  	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1460  	 * since this is called via the backref walking code we won't be looking
1461  	 * up a root that doesn't exist, unless there's corruption.  So if root
1462  	 * != NULL just return it.
1463  	 */
1464  	root = btrfs_get_global_root(fs_info, objectid);
1465  	if (root)
1466  		return root;
1467  
1468  	root = btrfs_lookup_fs_root(fs_info, objectid);
1469  	if (root)
1470  		return root;
1471  
1472  	key.objectid = objectid;
1473  	key.type = BTRFS_ROOT_ITEM_KEY;
1474  	key.offset = (u64)-1;
1475  	root = read_tree_root_path(fs_info->tree_root, path, &key);
1476  	btrfs_release_path(path);
1477  
1478  	return root;
1479  }
1480  
cleaner_kthread(void * arg)1481  static int cleaner_kthread(void *arg)
1482  {
1483  	struct btrfs_fs_info *fs_info = arg;
1484  	int again;
1485  
1486  	while (1) {
1487  		again = 0;
1488  
1489  		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1490  
1491  		/* Make the cleaner go to sleep early. */
1492  		if (btrfs_need_cleaner_sleep(fs_info))
1493  			goto sleep;
1494  
1495  		/*
1496  		 * Do not do anything if we might cause open_ctree() to block
1497  		 * before we have finished mounting the filesystem.
1498  		 */
1499  		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1500  			goto sleep;
1501  
1502  		if (!mutex_trylock(&fs_info->cleaner_mutex))
1503  			goto sleep;
1504  
1505  		/*
1506  		 * Avoid the problem that we change the status of the fs
1507  		 * during the above check and trylock.
1508  		 */
1509  		if (btrfs_need_cleaner_sleep(fs_info)) {
1510  			mutex_unlock(&fs_info->cleaner_mutex);
1511  			goto sleep;
1512  		}
1513  
1514  		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1515  			btrfs_sysfs_feature_update(fs_info);
1516  
1517  		btrfs_run_delayed_iputs(fs_info);
1518  
1519  		again = btrfs_clean_one_deleted_snapshot(fs_info);
1520  		mutex_unlock(&fs_info->cleaner_mutex);
1521  
1522  		/*
1523  		 * The defragger has dealt with the R/O remount and umount,
1524  		 * needn't do anything special here.
1525  		 */
1526  		btrfs_run_defrag_inodes(fs_info);
1527  
1528  		/*
1529  		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1530  		 * with relocation (btrfs_relocate_chunk) and relocation
1531  		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1532  		 * after acquiring fs_info->reclaim_bgs_lock. So we
1533  		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1534  		 * unused block groups.
1535  		 */
1536  		btrfs_delete_unused_bgs(fs_info);
1537  
1538  		/*
1539  		 * Reclaim block groups in the reclaim_bgs list after we deleted
1540  		 * all unused block_groups. This possibly gives us some more free
1541  		 * space.
1542  		 */
1543  		btrfs_reclaim_bgs(fs_info);
1544  sleep:
1545  		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1546  		if (kthread_should_park())
1547  			kthread_parkme();
1548  		if (kthread_should_stop())
1549  			return 0;
1550  		if (!again) {
1551  			set_current_state(TASK_INTERRUPTIBLE);
1552  			schedule();
1553  			__set_current_state(TASK_RUNNING);
1554  		}
1555  	}
1556  }
1557  
transaction_kthread(void * arg)1558  static int transaction_kthread(void *arg)
1559  {
1560  	struct btrfs_root *root = arg;
1561  	struct btrfs_fs_info *fs_info = root->fs_info;
1562  	struct btrfs_trans_handle *trans;
1563  	struct btrfs_transaction *cur;
1564  	u64 transid;
1565  	time64_t delta;
1566  	unsigned long delay;
1567  	bool cannot_commit;
1568  
1569  	do {
1570  		cannot_commit = false;
1571  		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1572  		mutex_lock(&fs_info->transaction_kthread_mutex);
1573  
1574  		spin_lock(&fs_info->trans_lock);
1575  		cur = fs_info->running_transaction;
1576  		if (!cur) {
1577  			spin_unlock(&fs_info->trans_lock);
1578  			goto sleep;
1579  		}
1580  
1581  		delta = ktime_get_seconds() - cur->start_time;
1582  		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1583  		    cur->state < TRANS_STATE_COMMIT_PREP &&
1584  		    delta < fs_info->commit_interval) {
1585  			spin_unlock(&fs_info->trans_lock);
1586  			delay -= msecs_to_jiffies((delta - 1) * 1000);
1587  			delay = min(delay,
1588  				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1589  			goto sleep;
1590  		}
1591  		transid = cur->transid;
1592  		spin_unlock(&fs_info->trans_lock);
1593  
1594  		/* If the file system is aborted, this will always fail. */
1595  		trans = btrfs_attach_transaction(root);
1596  		if (IS_ERR(trans)) {
1597  			if (PTR_ERR(trans) != -ENOENT)
1598  				cannot_commit = true;
1599  			goto sleep;
1600  		}
1601  		if (transid == trans->transid) {
1602  			btrfs_commit_transaction(trans);
1603  		} else {
1604  			btrfs_end_transaction(trans);
1605  		}
1606  sleep:
1607  		wake_up_process(fs_info->cleaner_kthread);
1608  		mutex_unlock(&fs_info->transaction_kthread_mutex);
1609  
1610  		if (BTRFS_FS_ERROR(fs_info))
1611  			btrfs_cleanup_transaction(fs_info);
1612  		if (!kthread_should_stop() &&
1613  				(!btrfs_transaction_blocked(fs_info) ||
1614  				 cannot_commit))
1615  			schedule_timeout_interruptible(delay);
1616  	} while (!kthread_should_stop());
1617  	return 0;
1618  }
1619  
1620  /*
1621   * This will find the highest generation in the array of root backups.  The
1622   * index of the highest array is returned, or -EINVAL if we can't find
1623   * anything.
1624   *
1625   * We check to make sure the array is valid by comparing the
1626   * generation of the latest  root in the array with the generation
1627   * in the super block.  If they don't match we pitch it.
1628   */
find_newest_super_backup(struct btrfs_fs_info * info)1629  static int find_newest_super_backup(struct btrfs_fs_info *info)
1630  {
1631  	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1632  	u64 cur;
1633  	struct btrfs_root_backup *root_backup;
1634  	int i;
1635  
1636  	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1637  		root_backup = info->super_copy->super_roots + i;
1638  		cur = btrfs_backup_tree_root_gen(root_backup);
1639  		if (cur == newest_gen)
1640  			return i;
1641  	}
1642  
1643  	return -EINVAL;
1644  }
1645  
1646  /*
1647   * copy all the root pointers into the super backup array.
1648   * this will bump the backup pointer by one when it is
1649   * done
1650   */
backup_super_roots(struct btrfs_fs_info * info)1651  static void backup_super_roots(struct btrfs_fs_info *info)
1652  {
1653  	const int next_backup = info->backup_root_index;
1654  	struct btrfs_root_backup *root_backup;
1655  
1656  	root_backup = info->super_for_commit->super_roots + next_backup;
1657  
1658  	/*
1659  	 * make sure all of our padding and empty slots get zero filled
1660  	 * regardless of which ones we use today
1661  	 */
1662  	memset(root_backup, 0, sizeof(*root_backup));
1663  
1664  	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1665  
1666  	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1667  	btrfs_set_backup_tree_root_gen(root_backup,
1668  			       btrfs_header_generation(info->tree_root->node));
1669  
1670  	btrfs_set_backup_tree_root_level(root_backup,
1671  			       btrfs_header_level(info->tree_root->node));
1672  
1673  	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1674  	btrfs_set_backup_chunk_root_gen(root_backup,
1675  			       btrfs_header_generation(info->chunk_root->node));
1676  	btrfs_set_backup_chunk_root_level(root_backup,
1677  			       btrfs_header_level(info->chunk_root->node));
1678  
1679  	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1680  		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1681  		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1682  
1683  		btrfs_set_backup_extent_root(root_backup,
1684  					     extent_root->node->start);
1685  		btrfs_set_backup_extent_root_gen(root_backup,
1686  				btrfs_header_generation(extent_root->node));
1687  		btrfs_set_backup_extent_root_level(root_backup,
1688  					btrfs_header_level(extent_root->node));
1689  
1690  		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1691  		btrfs_set_backup_csum_root_gen(root_backup,
1692  					       btrfs_header_generation(csum_root->node));
1693  		btrfs_set_backup_csum_root_level(root_backup,
1694  						 btrfs_header_level(csum_root->node));
1695  	}
1696  
1697  	/*
1698  	 * we might commit during log recovery, which happens before we set
1699  	 * the fs_root.  Make sure it is valid before we fill it in.
1700  	 */
1701  	if (info->fs_root && info->fs_root->node) {
1702  		btrfs_set_backup_fs_root(root_backup,
1703  					 info->fs_root->node->start);
1704  		btrfs_set_backup_fs_root_gen(root_backup,
1705  			       btrfs_header_generation(info->fs_root->node));
1706  		btrfs_set_backup_fs_root_level(root_backup,
1707  			       btrfs_header_level(info->fs_root->node));
1708  	}
1709  
1710  	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1711  	btrfs_set_backup_dev_root_gen(root_backup,
1712  			       btrfs_header_generation(info->dev_root->node));
1713  	btrfs_set_backup_dev_root_level(root_backup,
1714  				       btrfs_header_level(info->dev_root->node));
1715  
1716  	btrfs_set_backup_total_bytes(root_backup,
1717  			     btrfs_super_total_bytes(info->super_copy));
1718  	btrfs_set_backup_bytes_used(root_backup,
1719  			     btrfs_super_bytes_used(info->super_copy));
1720  	btrfs_set_backup_num_devices(root_backup,
1721  			     btrfs_super_num_devices(info->super_copy));
1722  
1723  	/*
1724  	 * if we don't copy this out to the super_copy, it won't get remembered
1725  	 * for the next commit
1726  	 */
1727  	memcpy(&info->super_copy->super_roots,
1728  	       &info->super_for_commit->super_roots,
1729  	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1730  }
1731  
1732  /*
1733   * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1734   * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1735   *
1736   * @fs_info:  filesystem whose backup roots need to be read
1737   * @priority: priority of backup root required
1738   *
1739   * Returns backup root index on success and -EINVAL otherwise.
1740   */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1741  static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1742  {
1743  	int backup_index = find_newest_super_backup(fs_info);
1744  	struct btrfs_super_block *super = fs_info->super_copy;
1745  	struct btrfs_root_backup *root_backup;
1746  
1747  	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1748  		if (priority == 0)
1749  			return backup_index;
1750  
1751  		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1752  		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1753  	} else {
1754  		return -EINVAL;
1755  	}
1756  
1757  	root_backup = super->super_roots + backup_index;
1758  
1759  	btrfs_set_super_generation(super,
1760  				   btrfs_backup_tree_root_gen(root_backup));
1761  	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1762  	btrfs_set_super_root_level(super,
1763  				   btrfs_backup_tree_root_level(root_backup));
1764  	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1765  
1766  	/*
1767  	 * Fixme: the total bytes and num_devices need to match or we should
1768  	 * need a fsck
1769  	 */
1770  	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1771  	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1772  
1773  	return backup_index;
1774  }
1775  
1776  /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1777  static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1778  {
1779  	btrfs_destroy_workqueue(fs_info->fixup_workers);
1780  	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1781  	btrfs_destroy_workqueue(fs_info->workers);
1782  	if (fs_info->endio_workers)
1783  		destroy_workqueue(fs_info->endio_workers);
1784  	if (fs_info->rmw_workers)
1785  		destroy_workqueue(fs_info->rmw_workers);
1786  	if (fs_info->compressed_write_workers)
1787  		destroy_workqueue(fs_info->compressed_write_workers);
1788  	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1789  	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1790  	btrfs_destroy_workqueue(fs_info->delayed_workers);
1791  	btrfs_destroy_workqueue(fs_info->caching_workers);
1792  	btrfs_destroy_workqueue(fs_info->flush_workers);
1793  	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1794  	if (fs_info->discard_ctl.discard_workers)
1795  		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1796  	/*
1797  	 * Now that all other work queues are destroyed, we can safely destroy
1798  	 * the queues used for metadata I/O, since tasks from those other work
1799  	 * queues can do metadata I/O operations.
1800  	 */
1801  	if (fs_info->endio_meta_workers)
1802  		destroy_workqueue(fs_info->endio_meta_workers);
1803  }
1804  
free_root_extent_buffers(struct btrfs_root * root)1805  static void free_root_extent_buffers(struct btrfs_root *root)
1806  {
1807  	if (root) {
1808  		free_extent_buffer(root->node);
1809  		free_extent_buffer(root->commit_root);
1810  		root->node = NULL;
1811  		root->commit_root = NULL;
1812  	}
1813  }
1814  
free_global_root_pointers(struct btrfs_fs_info * fs_info)1815  static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1816  {
1817  	struct btrfs_root *root, *tmp;
1818  
1819  	rbtree_postorder_for_each_entry_safe(root, tmp,
1820  					     &fs_info->global_root_tree,
1821  					     rb_node)
1822  		free_root_extent_buffers(root);
1823  }
1824  
1825  /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1826  static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1827  {
1828  	free_root_extent_buffers(info->tree_root);
1829  
1830  	free_global_root_pointers(info);
1831  	free_root_extent_buffers(info->dev_root);
1832  	free_root_extent_buffers(info->quota_root);
1833  	free_root_extent_buffers(info->uuid_root);
1834  	free_root_extent_buffers(info->fs_root);
1835  	free_root_extent_buffers(info->data_reloc_root);
1836  	free_root_extent_buffers(info->block_group_root);
1837  	free_root_extent_buffers(info->stripe_root);
1838  	if (free_chunk_root)
1839  		free_root_extent_buffers(info->chunk_root);
1840  }
1841  
btrfs_put_root(struct btrfs_root * root)1842  void btrfs_put_root(struct btrfs_root *root)
1843  {
1844  	if (!root)
1845  		return;
1846  
1847  	if (refcount_dec_and_test(&root->refs)) {
1848  		if (WARN_ON(!xa_empty(&root->inodes)))
1849  			xa_destroy(&root->inodes);
1850  		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1851  		if (root->anon_dev)
1852  			free_anon_bdev(root->anon_dev);
1853  		free_root_extent_buffers(root);
1854  #ifdef CONFIG_BTRFS_DEBUG
1855  		spin_lock(&root->fs_info->fs_roots_radix_lock);
1856  		list_del_init(&root->leak_list);
1857  		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1858  #endif
1859  		kfree(root);
1860  	}
1861  }
1862  
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1863  void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1864  {
1865  	int ret;
1866  	struct btrfs_root *gang[8];
1867  	int i;
1868  
1869  	while (!list_empty(&fs_info->dead_roots)) {
1870  		gang[0] = list_entry(fs_info->dead_roots.next,
1871  				     struct btrfs_root, root_list);
1872  		list_del(&gang[0]->root_list);
1873  
1874  		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1875  			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1876  		btrfs_put_root(gang[0]);
1877  	}
1878  
1879  	while (1) {
1880  		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1881  					     (void **)gang, 0,
1882  					     ARRAY_SIZE(gang));
1883  		if (!ret)
1884  			break;
1885  		for (i = 0; i < ret; i++)
1886  			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1887  	}
1888  }
1889  
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1890  static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1891  {
1892  	mutex_init(&fs_info->scrub_lock);
1893  	atomic_set(&fs_info->scrubs_running, 0);
1894  	atomic_set(&fs_info->scrub_pause_req, 0);
1895  	atomic_set(&fs_info->scrubs_paused, 0);
1896  	atomic_set(&fs_info->scrub_cancel_req, 0);
1897  	init_waitqueue_head(&fs_info->scrub_pause_wait);
1898  	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1899  }
1900  
btrfs_init_balance(struct btrfs_fs_info * fs_info)1901  static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1902  {
1903  	spin_lock_init(&fs_info->balance_lock);
1904  	mutex_init(&fs_info->balance_mutex);
1905  	atomic_set(&fs_info->balance_pause_req, 0);
1906  	atomic_set(&fs_info->balance_cancel_req, 0);
1907  	fs_info->balance_ctl = NULL;
1908  	init_waitqueue_head(&fs_info->balance_wait_q);
1909  	atomic_set(&fs_info->reloc_cancel_req, 0);
1910  }
1911  
btrfs_init_btree_inode(struct super_block * sb)1912  static int btrfs_init_btree_inode(struct super_block *sb)
1913  {
1914  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1915  	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1916  					      fs_info->tree_root);
1917  	struct inode *inode;
1918  
1919  	inode = new_inode(sb);
1920  	if (!inode)
1921  		return -ENOMEM;
1922  
1923  	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1924  	set_nlink(inode, 1);
1925  	/*
1926  	 * we set the i_size on the btree inode to the max possible int.
1927  	 * the real end of the address space is determined by all of
1928  	 * the devices in the system
1929  	 */
1930  	inode->i_size = OFFSET_MAX;
1931  	inode->i_mapping->a_ops = &btree_aops;
1932  	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1933  
1934  	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1935  			    IO_TREE_BTREE_INODE_IO);
1936  	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1937  
1938  	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1939  	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1940  	__insert_inode_hash(inode, hash);
1941  	fs_info->btree_inode = inode;
1942  
1943  	return 0;
1944  }
1945  
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1946  static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1947  {
1948  	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1949  	init_rwsem(&fs_info->dev_replace.rwsem);
1950  	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1951  }
1952  
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1953  static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1954  {
1955  	spin_lock_init(&fs_info->qgroup_lock);
1956  	mutex_init(&fs_info->qgroup_ioctl_lock);
1957  	fs_info->qgroup_tree = RB_ROOT;
1958  	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1959  	fs_info->qgroup_seq = 1;
1960  	fs_info->qgroup_ulist = NULL;
1961  	fs_info->qgroup_rescan_running = false;
1962  	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1963  	mutex_init(&fs_info->qgroup_rescan_lock);
1964  }
1965  
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1966  static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1967  {
1968  	u32 max_active = fs_info->thread_pool_size;
1969  	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1970  	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1971  
1972  	fs_info->workers =
1973  		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1974  
1975  	fs_info->delalloc_workers =
1976  		btrfs_alloc_workqueue(fs_info, "delalloc",
1977  				      flags, max_active, 2);
1978  
1979  	fs_info->flush_workers =
1980  		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1981  				      flags, max_active, 0);
1982  
1983  	fs_info->caching_workers =
1984  		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1985  
1986  	fs_info->fixup_workers =
1987  		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1988  
1989  	fs_info->endio_workers =
1990  		alloc_workqueue("btrfs-endio", flags, max_active);
1991  	fs_info->endio_meta_workers =
1992  		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1993  	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1994  	fs_info->endio_write_workers =
1995  		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1996  				      max_active, 2);
1997  	fs_info->compressed_write_workers =
1998  		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1999  	fs_info->endio_freespace_worker =
2000  		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2001  				      max_active, 0);
2002  	fs_info->delayed_workers =
2003  		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2004  				      max_active, 0);
2005  	fs_info->qgroup_rescan_workers =
2006  		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2007  					      ordered_flags);
2008  	fs_info->discard_ctl.discard_workers =
2009  		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2010  
2011  	if (!(fs_info->workers &&
2012  	      fs_info->delalloc_workers && fs_info->flush_workers &&
2013  	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2014  	      fs_info->compressed_write_workers &&
2015  	      fs_info->endio_write_workers &&
2016  	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2017  	      fs_info->caching_workers && fs_info->fixup_workers &&
2018  	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2019  	      fs_info->discard_ctl.discard_workers)) {
2020  		return -ENOMEM;
2021  	}
2022  
2023  	return 0;
2024  }
2025  
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2026  static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2027  {
2028  	struct crypto_shash *csum_shash;
2029  	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2030  
2031  	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2032  
2033  	if (IS_ERR(csum_shash)) {
2034  		btrfs_err(fs_info, "error allocating %s hash for checksum",
2035  			  csum_driver);
2036  		return PTR_ERR(csum_shash);
2037  	}
2038  
2039  	fs_info->csum_shash = csum_shash;
2040  
2041  	/*
2042  	 * Check if the checksum implementation is a fast accelerated one.
2043  	 * As-is this is a bit of a hack and should be replaced once the csum
2044  	 * implementations provide that information themselves.
2045  	 */
2046  	switch (csum_type) {
2047  	case BTRFS_CSUM_TYPE_CRC32:
2048  		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2049  			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2050  		break;
2051  	case BTRFS_CSUM_TYPE_XXHASH:
2052  		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2053  		break;
2054  	default:
2055  		break;
2056  	}
2057  
2058  	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2059  			btrfs_super_csum_name(csum_type),
2060  			crypto_shash_driver_name(csum_shash));
2061  	return 0;
2062  }
2063  
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2064  static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2065  			    struct btrfs_fs_devices *fs_devices)
2066  {
2067  	int ret;
2068  	struct btrfs_tree_parent_check check = { 0 };
2069  	struct btrfs_root *log_tree_root;
2070  	struct btrfs_super_block *disk_super = fs_info->super_copy;
2071  	u64 bytenr = btrfs_super_log_root(disk_super);
2072  	int level = btrfs_super_log_root_level(disk_super);
2073  
2074  	if (fs_devices->rw_devices == 0) {
2075  		btrfs_warn(fs_info, "log replay required on RO media");
2076  		return -EIO;
2077  	}
2078  
2079  	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2080  					 GFP_KERNEL);
2081  	if (!log_tree_root)
2082  		return -ENOMEM;
2083  
2084  	check.level = level;
2085  	check.transid = fs_info->generation + 1;
2086  	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2087  	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2088  	if (IS_ERR(log_tree_root->node)) {
2089  		btrfs_warn(fs_info, "failed to read log tree");
2090  		ret = PTR_ERR(log_tree_root->node);
2091  		log_tree_root->node = NULL;
2092  		btrfs_put_root(log_tree_root);
2093  		return ret;
2094  	}
2095  	if (!extent_buffer_uptodate(log_tree_root->node)) {
2096  		btrfs_err(fs_info, "failed to read log tree");
2097  		btrfs_put_root(log_tree_root);
2098  		return -EIO;
2099  	}
2100  
2101  	/* returns with log_tree_root freed on success */
2102  	ret = btrfs_recover_log_trees(log_tree_root);
2103  	if (ret) {
2104  		btrfs_handle_fs_error(fs_info, ret,
2105  				      "Failed to recover log tree");
2106  		btrfs_put_root(log_tree_root);
2107  		return ret;
2108  	}
2109  
2110  	if (sb_rdonly(fs_info->sb)) {
2111  		ret = btrfs_commit_super(fs_info);
2112  		if (ret)
2113  			return ret;
2114  	}
2115  
2116  	return 0;
2117  }
2118  
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2119  static int load_global_roots_objectid(struct btrfs_root *tree_root,
2120  				      struct btrfs_path *path, u64 objectid,
2121  				      const char *name)
2122  {
2123  	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2124  	struct btrfs_root *root;
2125  	u64 max_global_id = 0;
2126  	int ret;
2127  	struct btrfs_key key = {
2128  		.objectid = objectid,
2129  		.type = BTRFS_ROOT_ITEM_KEY,
2130  		.offset = 0,
2131  	};
2132  	bool found = false;
2133  
2134  	/* If we have IGNOREDATACSUMS skip loading these roots. */
2135  	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2136  	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2137  		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2138  		return 0;
2139  	}
2140  
2141  	while (1) {
2142  		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2143  		if (ret < 0)
2144  			break;
2145  
2146  		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2147  			ret = btrfs_next_leaf(tree_root, path);
2148  			if (ret) {
2149  				if (ret > 0)
2150  					ret = 0;
2151  				break;
2152  			}
2153  		}
2154  		ret = 0;
2155  
2156  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2157  		if (key.objectid != objectid)
2158  			break;
2159  		btrfs_release_path(path);
2160  
2161  		/*
2162  		 * Just worry about this for extent tree, it'll be the same for
2163  		 * everybody.
2164  		 */
2165  		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2166  			max_global_id = max(max_global_id, key.offset);
2167  
2168  		found = true;
2169  		root = read_tree_root_path(tree_root, path, &key);
2170  		if (IS_ERR(root)) {
2171  			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2172  				ret = PTR_ERR(root);
2173  			break;
2174  		}
2175  		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2176  		ret = btrfs_global_root_insert(root);
2177  		if (ret) {
2178  			btrfs_put_root(root);
2179  			break;
2180  		}
2181  		key.offset++;
2182  	}
2183  	btrfs_release_path(path);
2184  
2185  	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2186  		fs_info->nr_global_roots = max_global_id + 1;
2187  
2188  	if (!found || ret) {
2189  		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2190  			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2191  
2192  		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2193  			ret = ret ? ret : -ENOENT;
2194  		else
2195  			ret = 0;
2196  		btrfs_err(fs_info, "failed to load root %s", name);
2197  	}
2198  	return ret;
2199  }
2200  
load_global_roots(struct btrfs_root * tree_root)2201  static int load_global_roots(struct btrfs_root *tree_root)
2202  {
2203  	struct btrfs_path *path;
2204  	int ret = 0;
2205  
2206  	path = btrfs_alloc_path();
2207  	if (!path)
2208  		return -ENOMEM;
2209  
2210  	ret = load_global_roots_objectid(tree_root, path,
2211  					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2212  	if (ret)
2213  		goto out;
2214  	ret = load_global_roots_objectid(tree_root, path,
2215  					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2216  	if (ret)
2217  		goto out;
2218  	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2219  		goto out;
2220  	ret = load_global_roots_objectid(tree_root, path,
2221  					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2222  					 "free space");
2223  out:
2224  	btrfs_free_path(path);
2225  	return ret;
2226  }
2227  
btrfs_read_roots(struct btrfs_fs_info * fs_info)2228  static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2229  {
2230  	struct btrfs_root *tree_root = fs_info->tree_root;
2231  	struct btrfs_root *root;
2232  	struct btrfs_key location;
2233  	int ret;
2234  
2235  	ASSERT(fs_info->tree_root);
2236  
2237  	ret = load_global_roots(tree_root);
2238  	if (ret)
2239  		return ret;
2240  
2241  	location.type = BTRFS_ROOT_ITEM_KEY;
2242  	location.offset = 0;
2243  
2244  	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2245  		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2246  		root = btrfs_read_tree_root(tree_root, &location);
2247  		if (IS_ERR(root)) {
2248  			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2249  				ret = PTR_ERR(root);
2250  				goto out;
2251  			}
2252  		} else {
2253  			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2254  			fs_info->block_group_root = root;
2255  		}
2256  	}
2257  
2258  	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2259  	root = btrfs_read_tree_root(tree_root, &location);
2260  	if (IS_ERR(root)) {
2261  		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2262  			ret = PTR_ERR(root);
2263  			goto out;
2264  		}
2265  	} else {
2266  		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2267  		fs_info->dev_root = root;
2268  	}
2269  	/* Initialize fs_info for all devices in any case */
2270  	ret = btrfs_init_devices_late(fs_info);
2271  	if (ret)
2272  		goto out;
2273  
2274  	/*
2275  	 * This tree can share blocks with some other fs tree during relocation
2276  	 * and we need a proper setup by btrfs_get_fs_root
2277  	 */
2278  	root = btrfs_get_fs_root(tree_root->fs_info,
2279  				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2280  	if (IS_ERR(root)) {
2281  		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2282  			ret = PTR_ERR(root);
2283  			goto out;
2284  		}
2285  	} else {
2286  		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2287  		fs_info->data_reloc_root = root;
2288  	}
2289  
2290  	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2291  	root = btrfs_read_tree_root(tree_root, &location);
2292  	if (!IS_ERR(root)) {
2293  		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294  		fs_info->quota_root = root;
2295  	}
2296  
2297  	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2298  	root = btrfs_read_tree_root(tree_root, &location);
2299  	if (IS_ERR(root)) {
2300  		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2301  			ret = PTR_ERR(root);
2302  			if (ret != -ENOENT)
2303  				goto out;
2304  		}
2305  	} else {
2306  		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2307  		fs_info->uuid_root = root;
2308  	}
2309  
2310  	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2311  		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2312  		root = btrfs_read_tree_root(tree_root, &location);
2313  		if (IS_ERR(root)) {
2314  			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2315  				ret = PTR_ERR(root);
2316  				goto out;
2317  			}
2318  		} else {
2319  			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320  			fs_info->stripe_root = root;
2321  		}
2322  	}
2323  
2324  	return 0;
2325  out:
2326  	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2327  		   location.objectid, ret);
2328  	return ret;
2329  }
2330  
2331  /*
2332   * Real super block validation
2333   * NOTE: super csum type and incompat features will not be checked here.
2334   *
2335   * @sb:		super block to check
2336   * @mirror_num:	the super block number to check its bytenr:
2337   * 		0	the primary (1st) sb
2338   * 		1, 2	2nd and 3rd backup copy
2339   * 	       -1	skip bytenr check
2340   */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2341  int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2342  			 const struct btrfs_super_block *sb, int mirror_num)
2343  {
2344  	u64 nodesize = btrfs_super_nodesize(sb);
2345  	u64 sectorsize = btrfs_super_sectorsize(sb);
2346  	int ret = 0;
2347  	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2348  
2349  	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2350  		btrfs_err(fs_info, "no valid FS found");
2351  		ret = -EINVAL;
2352  	}
2353  	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2354  		if (!ignore_flags) {
2355  			btrfs_err(fs_info,
2356  			"unrecognized or unsupported super flag 0x%llx",
2357  				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2358  			ret = -EINVAL;
2359  		} else {
2360  			btrfs_info(fs_info,
2361  			"unrecognized or unsupported super flags: 0x%llx, ignored",
2362  				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2363  		}
2364  	}
2365  	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366  		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2367  				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2368  		ret = -EINVAL;
2369  	}
2370  	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2371  		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2372  				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2373  		ret = -EINVAL;
2374  	}
2375  	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2376  		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2377  				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2378  		ret = -EINVAL;
2379  	}
2380  
2381  	/*
2382  	 * Check sectorsize and nodesize first, other check will need it.
2383  	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2384  	 */
2385  	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2386  	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387  		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2388  		ret = -EINVAL;
2389  	}
2390  
2391  	/*
2392  	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2393  	 *
2394  	 * We can support 16K sectorsize with 64K page size without problem,
2395  	 * but such sectorsize/pagesize combination doesn't make much sense.
2396  	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2397  	 * beginning.
2398  	 */
2399  	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2400  		btrfs_err(fs_info,
2401  			"sectorsize %llu not yet supported for page size %lu",
2402  			sectorsize, PAGE_SIZE);
2403  		ret = -EINVAL;
2404  	}
2405  
2406  	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2407  	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408  		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2409  		ret = -EINVAL;
2410  	}
2411  	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2412  		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2413  			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2414  		ret = -EINVAL;
2415  	}
2416  
2417  	/* Root alignment check */
2418  	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2419  		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2420  			   btrfs_super_root(sb));
2421  		ret = -EINVAL;
2422  	}
2423  	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2424  		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2425  			   btrfs_super_chunk_root(sb));
2426  		ret = -EINVAL;
2427  	}
2428  	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2429  		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2430  			   btrfs_super_log_root(sb));
2431  		ret = -EINVAL;
2432  	}
2433  
2434  	if (!fs_info->fs_devices->temp_fsid &&
2435  	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2436  		btrfs_err(fs_info,
2437  		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2438  			  sb->fsid, fs_info->fs_devices->fsid);
2439  		ret = -EINVAL;
2440  	}
2441  
2442  	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2443  		   BTRFS_FSID_SIZE) != 0) {
2444  		btrfs_err(fs_info,
2445  "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2446  			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2447  		ret = -EINVAL;
2448  	}
2449  
2450  	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2451  		   BTRFS_FSID_SIZE) != 0) {
2452  		btrfs_err(fs_info,
2453  			"dev_item UUID does not match metadata fsid: %pU != %pU",
2454  			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2455  		ret = -EINVAL;
2456  	}
2457  
2458  	/*
2459  	 * Artificial requirement for block-group-tree to force newer features
2460  	 * (free-space-tree, no-holes) so the test matrix is smaller.
2461  	 */
2462  	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2463  	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2464  	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2465  		btrfs_err(fs_info,
2466  		"block-group-tree feature requires free-space-tree and no-holes");
2467  		ret = -EINVAL;
2468  	}
2469  
2470  	/*
2471  	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2472  	 * done later
2473  	 */
2474  	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2475  		btrfs_err(fs_info, "bytes_used is too small %llu",
2476  			  btrfs_super_bytes_used(sb));
2477  		ret = -EINVAL;
2478  	}
2479  	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2480  		btrfs_err(fs_info, "invalid stripesize %u",
2481  			  btrfs_super_stripesize(sb));
2482  		ret = -EINVAL;
2483  	}
2484  	if (btrfs_super_num_devices(sb) > (1UL << 31))
2485  		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2486  			   btrfs_super_num_devices(sb));
2487  	if (btrfs_super_num_devices(sb) == 0) {
2488  		btrfs_err(fs_info, "number of devices is 0");
2489  		ret = -EINVAL;
2490  	}
2491  
2492  	if (mirror_num >= 0 &&
2493  	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2494  		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2495  			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2496  		ret = -EINVAL;
2497  	}
2498  
2499  	/*
2500  	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2501  	 * and one chunk
2502  	 */
2503  	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2504  		btrfs_err(fs_info, "system chunk array too big %u > %u",
2505  			  btrfs_super_sys_array_size(sb),
2506  			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2507  		ret = -EINVAL;
2508  	}
2509  	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2510  			+ sizeof(struct btrfs_chunk)) {
2511  		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2512  			  btrfs_super_sys_array_size(sb),
2513  			  sizeof(struct btrfs_disk_key)
2514  			  + sizeof(struct btrfs_chunk));
2515  		ret = -EINVAL;
2516  	}
2517  
2518  	/*
2519  	 * The generation is a global counter, we'll trust it more than the others
2520  	 * but it's still possible that it's the one that's wrong.
2521  	 */
2522  	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2523  		btrfs_warn(fs_info,
2524  			"suspicious: generation < chunk_root_generation: %llu < %llu",
2525  			btrfs_super_generation(sb),
2526  			btrfs_super_chunk_root_generation(sb));
2527  	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2528  	    && btrfs_super_cache_generation(sb) != (u64)-1)
2529  		btrfs_warn(fs_info,
2530  			"suspicious: generation < cache_generation: %llu < %llu",
2531  			btrfs_super_generation(sb),
2532  			btrfs_super_cache_generation(sb));
2533  
2534  	return ret;
2535  }
2536  
2537  /*
2538   * Validation of super block at mount time.
2539   * Some checks already done early at mount time, like csum type and incompat
2540   * flags will be skipped.
2541   */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2542  static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2543  {
2544  	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2545  }
2546  
2547  /*
2548   * Validation of super block at write time.
2549   * Some checks like bytenr check will be skipped as their values will be
2550   * overwritten soon.
2551   * Extra checks like csum type and incompat flags will be done here.
2552   */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2553  static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2554  				      struct btrfs_super_block *sb)
2555  {
2556  	int ret;
2557  
2558  	ret = btrfs_validate_super(fs_info, sb, -1);
2559  	if (ret < 0)
2560  		goto out;
2561  	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2562  		ret = -EUCLEAN;
2563  		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2564  			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2565  		goto out;
2566  	}
2567  	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2568  		ret = -EUCLEAN;
2569  		btrfs_err(fs_info,
2570  		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2571  			  btrfs_super_incompat_flags(sb),
2572  			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2573  		goto out;
2574  	}
2575  out:
2576  	if (ret < 0)
2577  		btrfs_err(fs_info,
2578  		"super block corruption detected before writing it to disk");
2579  	return ret;
2580  }
2581  
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2582  static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2583  {
2584  	struct btrfs_tree_parent_check check = {
2585  		.level = level,
2586  		.transid = gen,
2587  		.owner_root = btrfs_root_id(root)
2588  	};
2589  	int ret = 0;
2590  
2591  	root->node = read_tree_block(root->fs_info, bytenr, &check);
2592  	if (IS_ERR(root->node)) {
2593  		ret = PTR_ERR(root->node);
2594  		root->node = NULL;
2595  		return ret;
2596  	}
2597  	if (!extent_buffer_uptodate(root->node)) {
2598  		free_extent_buffer(root->node);
2599  		root->node = NULL;
2600  		return -EIO;
2601  	}
2602  
2603  	btrfs_set_root_node(&root->root_item, root->node);
2604  	root->commit_root = btrfs_root_node(root);
2605  	btrfs_set_root_refs(&root->root_item, 1);
2606  	return ret;
2607  }
2608  
load_important_roots(struct btrfs_fs_info * fs_info)2609  static int load_important_roots(struct btrfs_fs_info *fs_info)
2610  {
2611  	struct btrfs_super_block *sb = fs_info->super_copy;
2612  	u64 gen, bytenr;
2613  	int level, ret;
2614  
2615  	bytenr = btrfs_super_root(sb);
2616  	gen = btrfs_super_generation(sb);
2617  	level = btrfs_super_root_level(sb);
2618  	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2619  	if (ret) {
2620  		btrfs_warn(fs_info, "couldn't read tree root");
2621  		return ret;
2622  	}
2623  	return 0;
2624  }
2625  
init_tree_roots(struct btrfs_fs_info * fs_info)2626  static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2627  {
2628  	int backup_index = find_newest_super_backup(fs_info);
2629  	struct btrfs_super_block *sb = fs_info->super_copy;
2630  	struct btrfs_root *tree_root = fs_info->tree_root;
2631  	bool handle_error = false;
2632  	int ret = 0;
2633  	int i;
2634  
2635  	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2636  		if (handle_error) {
2637  			if (!IS_ERR(tree_root->node))
2638  				free_extent_buffer(tree_root->node);
2639  			tree_root->node = NULL;
2640  
2641  			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2642  				break;
2643  
2644  			free_root_pointers(fs_info, 0);
2645  
2646  			/*
2647  			 * Don't use the log in recovery mode, it won't be
2648  			 * valid
2649  			 */
2650  			btrfs_set_super_log_root(sb, 0);
2651  
2652  			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2653  			ret = read_backup_root(fs_info, i);
2654  			backup_index = ret;
2655  			if (ret < 0)
2656  				return ret;
2657  		}
2658  
2659  		ret = load_important_roots(fs_info);
2660  		if (ret) {
2661  			handle_error = true;
2662  			continue;
2663  		}
2664  
2665  		/*
2666  		 * No need to hold btrfs_root::objectid_mutex since the fs
2667  		 * hasn't been fully initialised and we are the only user
2668  		 */
2669  		ret = btrfs_init_root_free_objectid(tree_root);
2670  		if (ret < 0) {
2671  			handle_error = true;
2672  			continue;
2673  		}
2674  
2675  		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2676  
2677  		ret = btrfs_read_roots(fs_info);
2678  		if (ret < 0) {
2679  			handle_error = true;
2680  			continue;
2681  		}
2682  
2683  		/* All successful */
2684  		fs_info->generation = btrfs_header_generation(tree_root->node);
2685  		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2686  		fs_info->last_reloc_trans = 0;
2687  
2688  		/* Always begin writing backup roots after the one being used */
2689  		if (backup_index < 0) {
2690  			fs_info->backup_root_index = 0;
2691  		} else {
2692  			fs_info->backup_root_index = backup_index + 1;
2693  			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2694  		}
2695  		break;
2696  	}
2697  
2698  	return ret;
2699  }
2700  
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2701  void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2702  {
2703  	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2704  	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2705  	INIT_LIST_HEAD(&fs_info->trans_list);
2706  	INIT_LIST_HEAD(&fs_info->dead_roots);
2707  	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2708  	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2709  	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2710  	spin_lock_init(&fs_info->delalloc_root_lock);
2711  	spin_lock_init(&fs_info->trans_lock);
2712  	spin_lock_init(&fs_info->fs_roots_radix_lock);
2713  	spin_lock_init(&fs_info->delayed_iput_lock);
2714  	spin_lock_init(&fs_info->defrag_inodes_lock);
2715  	spin_lock_init(&fs_info->super_lock);
2716  	spin_lock_init(&fs_info->buffer_lock);
2717  	spin_lock_init(&fs_info->unused_bgs_lock);
2718  	spin_lock_init(&fs_info->treelog_bg_lock);
2719  	spin_lock_init(&fs_info->zone_active_bgs_lock);
2720  	spin_lock_init(&fs_info->relocation_bg_lock);
2721  	rwlock_init(&fs_info->tree_mod_log_lock);
2722  	rwlock_init(&fs_info->global_root_lock);
2723  	mutex_init(&fs_info->unused_bg_unpin_mutex);
2724  	mutex_init(&fs_info->reclaim_bgs_lock);
2725  	mutex_init(&fs_info->reloc_mutex);
2726  	mutex_init(&fs_info->delalloc_root_mutex);
2727  	mutex_init(&fs_info->zoned_meta_io_lock);
2728  	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2729  	seqlock_init(&fs_info->profiles_lock);
2730  
2731  	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2732  	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2733  	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2734  	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2735  	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2736  				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2737  	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2738  				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2739  	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2740  				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2741  	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2742  				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2743  
2744  	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2745  	INIT_LIST_HEAD(&fs_info->space_info);
2746  	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2747  	INIT_LIST_HEAD(&fs_info->unused_bgs);
2748  	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2749  	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2750  #ifdef CONFIG_BTRFS_DEBUG
2751  	INIT_LIST_HEAD(&fs_info->allocated_roots);
2752  	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2753  	spin_lock_init(&fs_info->eb_leak_lock);
2754  #endif
2755  	fs_info->mapping_tree = RB_ROOT_CACHED;
2756  	rwlock_init(&fs_info->mapping_tree_lock);
2757  	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2758  			     BTRFS_BLOCK_RSV_GLOBAL);
2759  	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2760  	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2761  	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2762  	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2763  			     BTRFS_BLOCK_RSV_DELOPS);
2764  	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2765  			     BTRFS_BLOCK_RSV_DELREFS);
2766  
2767  	atomic_set(&fs_info->async_delalloc_pages, 0);
2768  	atomic_set(&fs_info->defrag_running, 0);
2769  	atomic_set(&fs_info->nr_delayed_iputs, 0);
2770  	atomic64_set(&fs_info->tree_mod_seq, 0);
2771  	fs_info->global_root_tree = RB_ROOT;
2772  	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2773  	fs_info->metadata_ratio = 0;
2774  	fs_info->defrag_inodes = RB_ROOT;
2775  	atomic64_set(&fs_info->free_chunk_space, 0);
2776  	fs_info->tree_mod_log = RB_ROOT;
2777  	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2778  	btrfs_init_ref_verify(fs_info);
2779  
2780  	fs_info->thread_pool_size = min_t(unsigned long,
2781  					  num_online_cpus() + 2, 8);
2782  
2783  	INIT_LIST_HEAD(&fs_info->ordered_roots);
2784  	spin_lock_init(&fs_info->ordered_root_lock);
2785  
2786  	btrfs_init_scrub(fs_info);
2787  	btrfs_init_balance(fs_info);
2788  	btrfs_init_async_reclaim_work(fs_info);
2789  
2790  	rwlock_init(&fs_info->block_group_cache_lock);
2791  	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2792  
2793  	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794  			    IO_TREE_FS_EXCLUDED_EXTENTS);
2795  
2796  	mutex_init(&fs_info->ordered_operations_mutex);
2797  	mutex_init(&fs_info->tree_log_mutex);
2798  	mutex_init(&fs_info->chunk_mutex);
2799  	mutex_init(&fs_info->transaction_kthread_mutex);
2800  	mutex_init(&fs_info->cleaner_mutex);
2801  	mutex_init(&fs_info->ro_block_group_mutex);
2802  	init_rwsem(&fs_info->commit_root_sem);
2803  	init_rwsem(&fs_info->cleanup_work_sem);
2804  	init_rwsem(&fs_info->subvol_sem);
2805  	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806  
2807  	btrfs_init_dev_replace_locks(fs_info);
2808  	btrfs_init_qgroup(fs_info);
2809  	btrfs_discard_init(fs_info);
2810  
2811  	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812  	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813  
2814  	init_waitqueue_head(&fs_info->transaction_throttle);
2815  	init_waitqueue_head(&fs_info->transaction_wait);
2816  	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817  	init_waitqueue_head(&fs_info->async_submit_wait);
2818  	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819  
2820  	/* Usable values until the real ones are cached from the superblock */
2821  	fs_info->nodesize = 4096;
2822  	fs_info->sectorsize = 4096;
2823  	fs_info->sectorsize_bits = ilog2(4096);
2824  	fs_info->stripesize = 4096;
2825  
2826  	/* Default compress algorithm when user does -o compress */
2827  	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828  
2829  	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830  
2831  	spin_lock_init(&fs_info->swapfile_pins_lock);
2832  	fs_info->swapfile_pins = RB_ROOT;
2833  
2834  	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835  	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836  }
2837  
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2838  static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839  {
2840  	int ret;
2841  
2842  	fs_info->sb = sb;
2843  	/* Temporary fixed values for block size until we read the superblock. */
2844  	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845  	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846  
2847  	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848  	if (ret)
2849  		return ret;
2850  
2851  	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2852  	if (ret)
2853  		return ret;
2854  
2855  	spin_lock_init(&fs_info->extent_map_shrinker_lock);
2856  
2857  	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2858  	if (ret)
2859  		return ret;
2860  
2861  	fs_info->dirty_metadata_batch = PAGE_SIZE *
2862  					(1 + ilog2(nr_cpu_ids));
2863  
2864  	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2865  	if (ret)
2866  		return ret;
2867  
2868  	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2869  			GFP_KERNEL);
2870  	if (ret)
2871  		return ret;
2872  
2873  	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2874  					GFP_KERNEL);
2875  	if (!fs_info->delayed_root)
2876  		return -ENOMEM;
2877  	btrfs_init_delayed_root(fs_info->delayed_root);
2878  
2879  	if (sb_rdonly(sb))
2880  		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2881  	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2882  		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2883  
2884  	return btrfs_alloc_stripe_hash_table(fs_info);
2885  }
2886  
btrfs_uuid_rescan_kthread(void * data)2887  static int btrfs_uuid_rescan_kthread(void *data)
2888  {
2889  	struct btrfs_fs_info *fs_info = data;
2890  	int ret;
2891  
2892  	/*
2893  	 * 1st step is to iterate through the existing UUID tree and
2894  	 * to delete all entries that contain outdated data.
2895  	 * 2nd step is to add all missing entries to the UUID tree.
2896  	 */
2897  	ret = btrfs_uuid_tree_iterate(fs_info);
2898  	if (ret < 0) {
2899  		if (ret != -EINTR)
2900  			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2901  				   ret);
2902  		up(&fs_info->uuid_tree_rescan_sem);
2903  		return ret;
2904  	}
2905  	return btrfs_uuid_scan_kthread(data);
2906  }
2907  
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2908  static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2909  {
2910  	struct task_struct *task;
2911  
2912  	down(&fs_info->uuid_tree_rescan_sem);
2913  	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2914  	if (IS_ERR(task)) {
2915  		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2916  		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2917  		up(&fs_info->uuid_tree_rescan_sem);
2918  		return PTR_ERR(task);
2919  	}
2920  
2921  	return 0;
2922  }
2923  
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2924  static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2925  {
2926  	u64 root_objectid = 0;
2927  	struct btrfs_root *gang[8];
2928  	int ret = 0;
2929  
2930  	while (1) {
2931  		unsigned int found;
2932  
2933  		spin_lock(&fs_info->fs_roots_radix_lock);
2934  		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2935  					     (void **)gang, root_objectid,
2936  					     ARRAY_SIZE(gang));
2937  		if (!found) {
2938  			spin_unlock(&fs_info->fs_roots_radix_lock);
2939  			break;
2940  		}
2941  		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2942  
2943  		for (int i = 0; i < found; i++) {
2944  			/* Avoid to grab roots in dead_roots. */
2945  			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2946  				gang[i] = NULL;
2947  				continue;
2948  			}
2949  			/* Grab all the search result for later use. */
2950  			gang[i] = btrfs_grab_root(gang[i]);
2951  		}
2952  		spin_unlock(&fs_info->fs_roots_radix_lock);
2953  
2954  		for (int i = 0; i < found; i++) {
2955  			if (!gang[i])
2956  				continue;
2957  			root_objectid = btrfs_root_id(gang[i]);
2958  			/*
2959  			 * Continue to release the remaining roots after the first
2960  			 * error without cleanup and preserve the first error
2961  			 * for the return.
2962  			 */
2963  			if (!ret)
2964  				ret = btrfs_orphan_cleanup(gang[i]);
2965  			btrfs_put_root(gang[i]);
2966  		}
2967  		if (ret)
2968  			break;
2969  
2970  		root_objectid++;
2971  	}
2972  	return ret;
2973  }
2974  
2975  /*
2976   * Mounting logic specific to read-write file systems. Shared by open_ctree
2977   * and btrfs_remount when remounting from read-only to read-write.
2978   */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)2979  int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2980  {
2981  	int ret;
2982  	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2983  	bool rebuild_free_space_tree = false;
2984  
2985  	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2986  	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2987  		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2988  			btrfs_warn(fs_info,
2989  				   "'clear_cache' option is ignored with extent tree v2");
2990  		else
2991  			rebuild_free_space_tree = true;
2992  	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2993  		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2994  		btrfs_warn(fs_info, "free space tree is invalid");
2995  		rebuild_free_space_tree = true;
2996  	}
2997  
2998  	if (rebuild_free_space_tree) {
2999  		btrfs_info(fs_info, "rebuilding free space tree");
3000  		ret = btrfs_rebuild_free_space_tree(fs_info);
3001  		if (ret) {
3002  			btrfs_warn(fs_info,
3003  				   "failed to rebuild free space tree: %d", ret);
3004  			goto out;
3005  		}
3006  	}
3007  
3008  	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3009  	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3010  		btrfs_info(fs_info, "disabling free space tree");
3011  		ret = btrfs_delete_free_space_tree(fs_info);
3012  		if (ret) {
3013  			btrfs_warn(fs_info,
3014  				   "failed to disable free space tree: %d", ret);
3015  			goto out;
3016  		}
3017  	}
3018  
3019  	/*
3020  	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3021  	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3022  	 * them into the fs_info->fs_roots_radix tree. This must be done before
3023  	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3024  	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3025  	 * item before the root's tree is deleted - this means that if we unmount
3026  	 * or crash before the deletion completes, on the next mount we will not
3027  	 * delete what remains of the tree because the orphan item does not
3028  	 * exists anymore, which is what tells us we have a pending deletion.
3029  	 */
3030  	ret = btrfs_find_orphan_roots(fs_info);
3031  	if (ret)
3032  		goto out;
3033  
3034  	ret = btrfs_cleanup_fs_roots(fs_info);
3035  	if (ret)
3036  		goto out;
3037  
3038  	down_read(&fs_info->cleanup_work_sem);
3039  	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3040  	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3041  		up_read(&fs_info->cleanup_work_sem);
3042  		goto out;
3043  	}
3044  	up_read(&fs_info->cleanup_work_sem);
3045  
3046  	mutex_lock(&fs_info->cleaner_mutex);
3047  	ret = btrfs_recover_relocation(fs_info);
3048  	mutex_unlock(&fs_info->cleaner_mutex);
3049  	if (ret < 0) {
3050  		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3051  		goto out;
3052  	}
3053  
3054  	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3055  	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3056  		btrfs_info(fs_info, "creating free space tree");
3057  		ret = btrfs_create_free_space_tree(fs_info);
3058  		if (ret) {
3059  			btrfs_warn(fs_info,
3060  				"failed to create free space tree: %d", ret);
3061  			goto out;
3062  		}
3063  	}
3064  
3065  	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3066  		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3067  		if (ret)
3068  			goto out;
3069  	}
3070  
3071  	ret = btrfs_resume_balance_async(fs_info);
3072  	if (ret)
3073  		goto out;
3074  
3075  	ret = btrfs_resume_dev_replace_async(fs_info);
3076  	if (ret) {
3077  		btrfs_warn(fs_info, "failed to resume dev_replace");
3078  		goto out;
3079  	}
3080  
3081  	btrfs_qgroup_rescan_resume(fs_info);
3082  
3083  	if (!fs_info->uuid_root) {
3084  		btrfs_info(fs_info, "creating UUID tree");
3085  		ret = btrfs_create_uuid_tree(fs_info);
3086  		if (ret) {
3087  			btrfs_warn(fs_info,
3088  				   "failed to create the UUID tree %d", ret);
3089  			goto out;
3090  		}
3091  	}
3092  
3093  out:
3094  	return ret;
3095  }
3096  
3097  /*
3098   * Do various sanity and dependency checks of different features.
3099   *
3100   * @is_rw_mount:	If the mount is read-write.
3101   *
3102   * This is the place for less strict checks (like for subpage or artificial
3103   * feature dependencies).
3104   *
3105   * For strict checks or possible corruption detection, see
3106   * btrfs_validate_super().
3107   *
3108   * This should be called after btrfs_parse_options(), as some mount options
3109   * (space cache related) can modify on-disk format like free space tree and
3110   * screw up certain feature dependencies.
3111   */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3112  int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3113  {
3114  	struct btrfs_super_block *disk_super = fs_info->super_copy;
3115  	u64 incompat = btrfs_super_incompat_flags(disk_super);
3116  	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3117  	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3118  
3119  	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3120  		btrfs_err(fs_info,
3121  		"cannot mount because of unknown incompat features (0x%llx)",
3122  		    incompat);
3123  		return -EINVAL;
3124  	}
3125  
3126  	/* Runtime limitation for mixed block groups. */
3127  	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3128  	    (fs_info->sectorsize != fs_info->nodesize)) {
3129  		btrfs_err(fs_info,
3130  "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3131  			fs_info->nodesize, fs_info->sectorsize);
3132  		return -EINVAL;
3133  	}
3134  
3135  	/* Mixed backref is an always-enabled feature. */
3136  	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3137  
3138  	/* Set compression related flags just in case. */
3139  	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3140  		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3141  	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3142  		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3143  
3144  	/*
3145  	 * An ancient flag, which should really be marked deprecated.
3146  	 * Such runtime limitation doesn't really need a incompat flag.
3147  	 */
3148  	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3149  		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3150  
3151  	if (compat_ro_unsupp && is_rw_mount) {
3152  		btrfs_err(fs_info,
3153  	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3154  		       compat_ro);
3155  		return -EINVAL;
3156  	}
3157  
3158  	/*
3159  	 * We have unsupported RO compat features, although RO mounted, we
3160  	 * should not cause any metadata writes, including log replay.
3161  	 * Or we could screw up whatever the new feature requires.
3162  	 */
3163  	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3164  	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3165  		btrfs_err(fs_info,
3166  "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3167  			  compat_ro);
3168  		return -EINVAL;
3169  	}
3170  
3171  	/*
3172  	 * Artificial limitations for block group tree, to force
3173  	 * block-group-tree to rely on no-holes and free-space-tree.
3174  	 */
3175  	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3176  	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3177  	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3178  		btrfs_err(fs_info,
3179  "block-group-tree feature requires no-holes and free-space-tree features");
3180  		return -EINVAL;
3181  	}
3182  
3183  	/*
3184  	 * Subpage runtime limitation on v1 cache.
3185  	 *
3186  	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3187  	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3188  	 * going to be deprecated anyway.
3189  	 */
3190  	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3191  		btrfs_warn(fs_info,
3192  	"v1 space cache is not supported for page size %lu with sectorsize %u",
3193  			   PAGE_SIZE, fs_info->sectorsize);
3194  		return -EINVAL;
3195  	}
3196  
3197  	/* This can be called by remount, we need to protect the super block. */
3198  	spin_lock(&fs_info->super_lock);
3199  	btrfs_set_super_incompat_flags(disk_super, incompat);
3200  	spin_unlock(&fs_info->super_lock);
3201  
3202  	return 0;
3203  }
3204  
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,const char * options)3205  int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3206  		      const char *options)
3207  {
3208  	u32 sectorsize;
3209  	u32 nodesize;
3210  	u32 stripesize;
3211  	u64 generation;
3212  	u16 csum_type;
3213  	struct btrfs_super_block *disk_super;
3214  	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3215  	struct btrfs_root *tree_root;
3216  	struct btrfs_root *chunk_root;
3217  	int ret;
3218  	int level;
3219  
3220  	ret = init_mount_fs_info(fs_info, sb);
3221  	if (ret)
3222  		goto fail;
3223  
3224  	/* These need to be init'ed before we start creating inodes and such. */
3225  	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3226  				     GFP_KERNEL);
3227  	fs_info->tree_root = tree_root;
3228  	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3229  				      GFP_KERNEL);
3230  	fs_info->chunk_root = chunk_root;
3231  	if (!tree_root || !chunk_root) {
3232  		ret = -ENOMEM;
3233  		goto fail;
3234  	}
3235  
3236  	ret = btrfs_init_btree_inode(sb);
3237  	if (ret)
3238  		goto fail;
3239  
3240  	invalidate_bdev(fs_devices->latest_dev->bdev);
3241  
3242  	/*
3243  	 * Read super block and check the signature bytes only
3244  	 */
3245  	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3246  	if (IS_ERR(disk_super)) {
3247  		ret = PTR_ERR(disk_super);
3248  		goto fail_alloc;
3249  	}
3250  
3251  	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3252  	/*
3253  	 * Verify the type first, if that or the checksum value are
3254  	 * corrupted, we'll find out
3255  	 */
3256  	csum_type = btrfs_super_csum_type(disk_super);
3257  	if (!btrfs_supported_super_csum(csum_type)) {
3258  		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3259  			  csum_type);
3260  		ret = -EINVAL;
3261  		btrfs_release_disk_super(disk_super);
3262  		goto fail_alloc;
3263  	}
3264  
3265  	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3266  
3267  	ret = btrfs_init_csum_hash(fs_info, csum_type);
3268  	if (ret) {
3269  		btrfs_release_disk_super(disk_super);
3270  		goto fail_alloc;
3271  	}
3272  
3273  	/*
3274  	 * We want to check superblock checksum, the type is stored inside.
3275  	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3276  	 */
3277  	if (btrfs_check_super_csum(fs_info, disk_super)) {
3278  		btrfs_err(fs_info, "superblock checksum mismatch");
3279  		ret = -EINVAL;
3280  		btrfs_release_disk_super(disk_super);
3281  		goto fail_alloc;
3282  	}
3283  
3284  	/*
3285  	 * super_copy is zeroed at allocation time and we never touch the
3286  	 * following bytes up to INFO_SIZE, the checksum is calculated from
3287  	 * the whole block of INFO_SIZE
3288  	 */
3289  	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3290  	btrfs_release_disk_super(disk_super);
3291  
3292  	disk_super = fs_info->super_copy;
3293  
3294  	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3295  	       sizeof(*fs_info->super_for_commit));
3296  
3297  	ret = btrfs_validate_mount_super(fs_info);
3298  	if (ret) {
3299  		btrfs_err(fs_info, "superblock contains fatal errors");
3300  		ret = -EINVAL;
3301  		goto fail_alloc;
3302  	}
3303  
3304  	if (!btrfs_super_root(disk_super)) {
3305  		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3306  		ret = -EINVAL;
3307  		goto fail_alloc;
3308  	}
3309  
3310  	/* check FS state, whether FS is broken. */
3311  	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3312  		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3313  
3314  	/* Set up fs_info before parsing mount options */
3315  	nodesize = btrfs_super_nodesize(disk_super);
3316  	sectorsize = btrfs_super_sectorsize(disk_super);
3317  	stripesize = sectorsize;
3318  	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3319  	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3320  
3321  	fs_info->nodesize = nodesize;
3322  	fs_info->sectorsize = sectorsize;
3323  	fs_info->sectorsize_bits = ilog2(sectorsize);
3324  	fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits);
3325  	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3326  	fs_info->stripesize = stripesize;
3327  
3328  	/*
3329  	 * Handle the space caching options appropriately now that we have the
3330  	 * super block loaded and validated.
3331  	 */
3332  	btrfs_set_free_space_cache_settings(fs_info);
3333  
3334  	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3335  		ret = -EINVAL;
3336  		goto fail_alloc;
3337  	}
3338  
3339  	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3340  	if (ret < 0)
3341  		goto fail_alloc;
3342  
3343  	/*
3344  	 * At this point our mount options are validated, if we set ->max_inline
3345  	 * to something non-standard make sure we truncate it to sectorsize.
3346  	 */
3347  	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3348  
3349  	if (sectorsize < PAGE_SIZE)
3350  		btrfs_warn(fs_info,
3351  		"read-write for sector size %u with page size %lu is experimental",
3352  			   sectorsize, PAGE_SIZE);
3353  
3354  	ret = btrfs_init_workqueues(fs_info);
3355  	if (ret)
3356  		goto fail_sb_buffer;
3357  
3358  	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3359  	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3360  
3361  	/* Update the values for the current filesystem. */
3362  	sb->s_blocksize = sectorsize;
3363  	sb->s_blocksize_bits = blksize_bits(sectorsize);
3364  	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3365  
3366  	mutex_lock(&fs_info->chunk_mutex);
3367  	ret = btrfs_read_sys_array(fs_info);
3368  	mutex_unlock(&fs_info->chunk_mutex);
3369  	if (ret) {
3370  		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3371  		goto fail_sb_buffer;
3372  	}
3373  
3374  	generation = btrfs_super_chunk_root_generation(disk_super);
3375  	level = btrfs_super_chunk_root_level(disk_super);
3376  	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3377  			      generation, level);
3378  	if (ret) {
3379  		btrfs_err(fs_info, "failed to read chunk root");
3380  		goto fail_tree_roots;
3381  	}
3382  
3383  	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3384  			   offsetof(struct btrfs_header, chunk_tree_uuid),
3385  			   BTRFS_UUID_SIZE);
3386  
3387  	ret = btrfs_read_chunk_tree(fs_info);
3388  	if (ret) {
3389  		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3390  		goto fail_tree_roots;
3391  	}
3392  
3393  	/*
3394  	 * At this point we know all the devices that make this filesystem,
3395  	 * including the seed devices but we don't know yet if the replace
3396  	 * target is required. So free devices that are not part of this
3397  	 * filesystem but skip the replace target device which is checked
3398  	 * below in btrfs_init_dev_replace().
3399  	 */
3400  	btrfs_free_extra_devids(fs_devices);
3401  	if (!fs_devices->latest_dev->bdev) {
3402  		btrfs_err(fs_info, "failed to read devices");
3403  		ret = -EIO;
3404  		goto fail_tree_roots;
3405  	}
3406  
3407  	ret = init_tree_roots(fs_info);
3408  	if (ret)
3409  		goto fail_tree_roots;
3410  
3411  	/*
3412  	 * Get zone type information of zoned block devices. This will also
3413  	 * handle emulation of a zoned filesystem if a regular device has the
3414  	 * zoned incompat feature flag set.
3415  	 */
3416  	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3417  	if (ret) {
3418  		btrfs_err(fs_info,
3419  			  "zoned: failed to read device zone info: %d", ret);
3420  		goto fail_block_groups;
3421  	}
3422  
3423  	/*
3424  	 * If we have a uuid root and we're not being told to rescan we need to
3425  	 * check the generation here so we can set the
3426  	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3427  	 * transaction during a balance or the log replay without updating the
3428  	 * uuid generation, and then if we crash we would rescan the uuid tree,
3429  	 * even though it was perfectly fine.
3430  	 */
3431  	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3432  	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3433  		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3434  
3435  	ret = btrfs_verify_dev_extents(fs_info);
3436  	if (ret) {
3437  		btrfs_err(fs_info,
3438  			  "failed to verify dev extents against chunks: %d",
3439  			  ret);
3440  		goto fail_block_groups;
3441  	}
3442  	ret = btrfs_recover_balance(fs_info);
3443  	if (ret) {
3444  		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3445  		goto fail_block_groups;
3446  	}
3447  
3448  	ret = btrfs_init_dev_stats(fs_info);
3449  	if (ret) {
3450  		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3451  		goto fail_block_groups;
3452  	}
3453  
3454  	ret = btrfs_init_dev_replace(fs_info);
3455  	if (ret) {
3456  		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3457  		goto fail_block_groups;
3458  	}
3459  
3460  	ret = btrfs_check_zoned_mode(fs_info);
3461  	if (ret) {
3462  		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3463  			  ret);
3464  		goto fail_block_groups;
3465  	}
3466  
3467  	ret = btrfs_sysfs_add_fsid(fs_devices);
3468  	if (ret) {
3469  		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3470  				ret);
3471  		goto fail_block_groups;
3472  	}
3473  
3474  	ret = btrfs_sysfs_add_mounted(fs_info);
3475  	if (ret) {
3476  		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3477  		goto fail_fsdev_sysfs;
3478  	}
3479  
3480  	ret = btrfs_init_space_info(fs_info);
3481  	if (ret) {
3482  		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3483  		goto fail_sysfs;
3484  	}
3485  
3486  	ret = btrfs_read_block_groups(fs_info);
3487  	if (ret) {
3488  		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3489  		goto fail_sysfs;
3490  	}
3491  
3492  	btrfs_free_zone_cache(fs_info);
3493  
3494  	btrfs_check_active_zone_reservation(fs_info);
3495  
3496  	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3497  	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3498  		btrfs_warn(fs_info,
3499  		"writable mount is not allowed due to too many missing devices");
3500  		ret = -EINVAL;
3501  		goto fail_sysfs;
3502  	}
3503  
3504  	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3505  					       "btrfs-cleaner");
3506  	if (IS_ERR(fs_info->cleaner_kthread)) {
3507  		ret = PTR_ERR(fs_info->cleaner_kthread);
3508  		goto fail_sysfs;
3509  	}
3510  
3511  	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3512  						   tree_root,
3513  						   "btrfs-transaction");
3514  	if (IS_ERR(fs_info->transaction_kthread)) {
3515  		ret = PTR_ERR(fs_info->transaction_kthread);
3516  		goto fail_cleaner;
3517  	}
3518  
3519  	ret = btrfs_read_qgroup_config(fs_info);
3520  	if (ret)
3521  		goto fail_trans_kthread;
3522  
3523  	if (btrfs_build_ref_tree(fs_info))
3524  		btrfs_err(fs_info, "couldn't build ref tree");
3525  
3526  	/* do not make disk changes in broken FS or nologreplay is given */
3527  	if (btrfs_super_log_root(disk_super) != 0 &&
3528  	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3529  		btrfs_info(fs_info, "start tree-log replay");
3530  		ret = btrfs_replay_log(fs_info, fs_devices);
3531  		if (ret)
3532  			goto fail_qgroup;
3533  	}
3534  
3535  	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3536  	if (IS_ERR(fs_info->fs_root)) {
3537  		ret = PTR_ERR(fs_info->fs_root);
3538  		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3539  		fs_info->fs_root = NULL;
3540  		goto fail_qgroup;
3541  	}
3542  
3543  	if (sb_rdonly(sb))
3544  		return 0;
3545  
3546  	ret = btrfs_start_pre_rw_mount(fs_info);
3547  	if (ret) {
3548  		close_ctree(fs_info);
3549  		return ret;
3550  	}
3551  	btrfs_discard_resume(fs_info);
3552  
3553  	if (fs_info->uuid_root &&
3554  	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3555  	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3556  		btrfs_info(fs_info, "checking UUID tree");
3557  		ret = btrfs_check_uuid_tree(fs_info);
3558  		if (ret) {
3559  			btrfs_warn(fs_info,
3560  				"failed to check the UUID tree: %d", ret);
3561  			close_ctree(fs_info);
3562  			return ret;
3563  		}
3564  	}
3565  
3566  	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3567  
3568  	/* Kick the cleaner thread so it'll start deleting snapshots. */
3569  	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3570  		wake_up_process(fs_info->cleaner_kthread);
3571  
3572  	return 0;
3573  
3574  fail_qgroup:
3575  	btrfs_free_qgroup_config(fs_info);
3576  fail_trans_kthread:
3577  	kthread_stop(fs_info->transaction_kthread);
3578  	btrfs_cleanup_transaction(fs_info);
3579  	btrfs_free_fs_roots(fs_info);
3580  fail_cleaner:
3581  	kthread_stop(fs_info->cleaner_kthread);
3582  
3583  	/*
3584  	 * make sure we're done with the btree inode before we stop our
3585  	 * kthreads
3586  	 */
3587  	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3588  
3589  fail_sysfs:
3590  	btrfs_sysfs_remove_mounted(fs_info);
3591  
3592  fail_fsdev_sysfs:
3593  	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3594  
3595  fail_block_groups:
3596  	btrfs_put_block_group_cache(fs_info);
3597  
3598  fail_tree_roots:
3599  	if (fs_info->data_reloc_root)
3600  		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3601  	free_root_pointers(fs_info, true);
3602  	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3603  
3604  fail_sb_buffer:
3605  	btrfs_stop_all_workers(fs_info);
3606  	btrfs_free_block_groups(fs_info);
3607  fail_alloc:
3608  	btrfs_mapping_tree_free(fs_info);
3609  
3610  	iput(fs_info->btree_inode);
3611  fail:
3612  	btrfs_close_devices(fs_info->fs_devices);
3613  	ASSERT(ret < 0);
3614  	return ret;
3615  }
3616  ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3617  
btrfs_end_super_write(struct bio * bio)3618  static void btrfs_end_super_write(struct bio *bio)
3619  {
3620  	struct btrfs_device *device = bio->bi_private;
3621  	struct folio_iter fi;
3622  
3623  	bio_for_each_folio_all(fi, bio) {
3624  		if (bio->bi_status) {
3625  			btrfs_warn_rl_in_rcu(device->fs_info,
3626  				"lost super block write due to IO error on %s (%d)",
3627  				btrfs_dev_name(device),
3628  				blk_status_to_errno(bio->bi_status));
3629  			btrfs_dev_stat_inc_and_print(device,
3630  						     BTRFS_DEV_STAT_WRITE_ERRS);
3631  			/* Ensure failure if the primary sb fails. */
3632  			if (bio->bi_opf & REQ_FUA)
3633  				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3634  					   &device->sb_write_errors);
3635  			else
3636  				atomic_inc(&device->sb_write_errors);
3637  		}
3638  		folio_unlock(fi.folio);
3639  		folio_put(fi.folio);
3640  	}
3641  
3642  	bio_put(bio);
3643  }
3644  
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3645  struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3646  						   int copy_num, bool drop_cache)
3647  {
3648  	struct btrfs_super_block *super;
3649  	struct page *page;
3650  	u64 bytenr, bytenr_orig;
3651  	struct address_space *mapping = bdev->bd_mapping;
3652  	int ret;
3653  
3654  	bytenr_orig = btrfs_sb_offset(copy_num);
3655  	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3656  	if (ret == -ENOENT)
3657  		return ERR_PTR(-EINVAL);
3658  	else if (ret)
3659  		return ERR_PTR(ret);
3660  
3661  	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3662  		return ERR_PTR(-EINVAL);
3663  
3664  	if (drop_cache) {
3665  		/* This should only be called with the primary sb. */
3666  		ASSERT(copy_num == 0);
3667  
3668  		/*
3669  		 * Drop the page of the primary superblock, so later read will
3670  		 * always read from the device.
3671  		 */
3672  		invalidate_inode_pages2_range(mapping,
3673  				bytenr >> PAGE_SHIFT,
3674  				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3675  	}
3676  
3677  	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3678  	if (IS_ERR(page))
3679  		return ERR_CAST(page);
3680  
3681  	super = page_address(page);
3682  	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3683  		btrfs_release_disk_super(super);
3684  		return ERR_PTR(-ENODATA);
3685  	}
3686  
3687  	if (btrfs_super_bytenr(super) != bytenr_orig) {
3688  		btrfs_release_disk_super(super);
3689  		return ERR_PTR(-EINVAL);
3690  	}
3691  
3692  	return super;
3693  }
3694  
3695  
btrfs_read_dev_super(struct block_device * bdev)3696  struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3697  {
3698  	struct btrfs_super_block *super, *latest = NULL;
3699  	int i;
3700  	u64 transid = 0;
3701  
3702  	/* we would like to check all the supers, but that would make
3703  	 * a btrfs mount succeed after a mkfs from a different FS.
3704  	 * So, we need to add a special mount option to scan for
3705  	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3706  	 */
3707  	for (i = 0; i < 1; i++) {
3708  		super = btrfs_read_dev_one_super(bdev, i, false);
3709  		if (IS_ERR(super))
3710  			continue;
3711  
3712  		if (!latest || btrfs_super_generation(super) > transid) {
3713  			if (latest)
3714  				btrfs_release_disk_super(super);
3715  
3716  			latest = super;
3717  			transid = btrfs_super_generation(super);
3718  		}
3719  	}
3720  
3721  	return super;
3722  }
3723  
3724  /*
3725   * Write superblock @sb to the @device. Do not wait for completion, all the
3726   * folios we use for writing are locked.
3727   *
3728   * Write @max_mirrors copies of the superblock, where 0 means default that fit
3729   * the expected device size at commit time. Note that max_mirrors must be
3730   * same for write and wait phases.
3731   *
3732   * Return number of errors when folio is not found or submission fails.
3733   */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3734  static int write_dev_supers(struct btrfs_device *device,
3735  			    struct btrfs_super_block *sb, int max_mirrors)
3736  {
3737  	struct btrfs_fs_info *fs_info = device->fs_info;
3738  	struct address_space *mapping = device->bdev->bd_mapping;
3739  	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3740  	int i;
3741  	int ret;
3742  	u64 bytenr, bytenr_orig;
3743  
3744  	atomic_set(&device->sb_write_errors, 0);
3745  
3746  	if (max_mirrors == 0)
3747  		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3748  
3749  	shash->tfm = fs_info->csum_shash;
3750  
3751  	for (i = 0; i < max_mirrors; i++) {
3752  		struct folio *folio;
3753  		struct bio *bio;
3754  		struct btrfs_super_block *disk_super;
3755  		size_t offset;
3756  
3757  		bytenr_orig = btrfs_sb_offset(i);
3758  		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3759  		if (ret == -ENOENT) {
3760  			continue;
3761  		} else if (ret < 0) {
3762  			btrfs_err(device->fs_info,
3763  				"couldn't get super block location for mirror %d",
3764  				i);
3765  			atomic_inc(&device->sb_write_errors);
3766  			continue;
3767  		}
3768  		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3769  		    device->commit_total_bytes)
3770  			break;
3771  
3772  		btrfs_set_super_bytenr(sb, bytenr_orig);
3773  
3774  		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3775  				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3776  				    sb->csum);
3777  
3778  		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3779  					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3780  					    GFP_NOFS);
3781  		if (IS_ERR(folio)) {
3782  			btrfs_err(device->fs_info,
3783  			    "couldn't get super block page for bytenr %llu",
3784  			    bytenr);
3785  			atomic_inc(&device->sb_write_errors);
3786  			continue;
3787  		}
3788  		ASSERT(folio_order(folio) == 0);
3789  
3790  		offset = offset_in_folio(folio, bytenr);
3791  		disk_super = folio_address(folio) + offset;
3792  		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3793  
3794  		/*
3795  		 * Directly use bios here instead of relying on the page cache
3796  		 * to do I/O, so we don't lose the ability to do integrity
3797  		 * checking.
3798  		 */
3799  		bio = bio_alloc(device->bdev, 1,
3800  				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3801  				GFP_NOFS);
3802  		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3803  		bio->bi_private = device;
3804  		bio->bi_end_io = btrfs_end_super_write;
3805  		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3806  
3807  		/*
3808  		 * We FUA only the first super block.  The others we allow to
3809  		 * go down lazy and there's a short window where the on-disk
3810  		 * copies might still contain the older version.
3811  		 */
3812  		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3813  			bio->bi_opf |= REQ_FUA;
3814  		submit_bio(bio);
3815  
3816  		if (btrfs_advance_sb_log(device, i))
3817  			atomic_inc(&device->sb_write_errors);
3818  	}
3819  	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3820  }
3821  
3822  /*
3823   * Wait for write completion of superblocks done by write_dev_supers,
3824   * @max_mirrors same for write and wait phases.
3825   *
3826   * Return -1 if primary super block write failed or when there were no super block
3827   * copies written. Otherwise 0.
3828   */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3829  static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3830  {
3831  	int i;
3832  	int errors = 0;
3833  	bool primary_failed = false;
3834  	int ret;
3835  	u64 bytenr;
3836  
3837  	if (max_mirrors == 0)
3838  		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3839  
3840  	for (i = 0; i < max_mirrors; i++) {
3841  		struct folio *folio;
3842  
3843  		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3844  		if (ret == -ENOENT) {
3845  			break;
3846  		} else if (ret < 0) {
3847  			errors++;
3848  			if (i == 0)
3849  				primary_failed = true;
3850  			continue;
3851  		}
3852  		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3853  		    device->commit_total_bytes)
3854  			break;
3855  
3856  		folio = filemap_get_folio(device->bdev->bd_mapping,
3857  					  bytenr >> PAGE_SHIFT);
3858  		/* If the folio has been removed, then we know it completed. */
3859  		if (IS_ERR(folio))
3860  			continue;
3861  		ASSERT(folio_order(folio) == 0);
3862  
3863  		/* Folio will be unlocked once the write completes. */
3864  		folio_wait_locked(folio);
3865  		folio_put(folio);
3866  	}
3867  
3868  	errors += atomic_read(&device->sb_write_errors);
3869  	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3870  		primary_failed = true;
3871  	if (primary_failed) {
3872  		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3873  			  device->devid);
3874  		return -1;
3875  	}
3876  
3877  	return errors < i ? 0 : -1;
3878  }
3879  
3880  /*
3881   * endio for the write_dev_flush, this will wake anyone waiting
3882   * for the barrier when it is done
3883   */
btrfs_end_empty_barrier(struct bio * bio)3884  static void btrfs_end_empty_barrier(struct bio *bio)
3885  {
3886  	bio_uninit(bio);
3887  	complete(bio->bi_private);
3888  }
3889  
3890  /*
3891   * Submit a flush request to the device if it supports it. Error handling is
3892   * done in the waiting counterpart.
3893   */
write_dev_flush(struct btrfs_device * device)3894  static void write_dev_flush(struct btrfs_device *device)
3895  {
3896  	struct bio *bio = &device->flush_bio;
3897  
3898  	device->last_flush_error = BLK_STS_OK;
3899  
3900  	bio_init(bio, device->bdev, NULL, 0,
3901  		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3902  	bio->bi_end_io = btrfs_end_empty_barrier;
3903  	init_completion(&device->flush_wait);
3904  	bio->bi_private = &device->flush_wait;
3905  	submit_bio(bio);
3906  	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3907  }
3908  
3909  /*
3910   * If the flush bio has been submitted by write_dev_flush, wait for it.
3911   * Return true for any error, and false otherwise.
3912   */
wait_dev_flush(struct btrfs_device * device)3913  static bool wait_dev_flush(struct btrfs_device *device)
3914  {
3915  	struct bio *bio = &device->flush_bio;
3916  
3917  	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3918  		return false;
3919  
3920  	wait_for_completion_io(&device->flush_wait);
3921  
3922  	if (bio->bi_status) {
3923  		device->last_flush_error = bio->bi_status;
3924  		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3925  		return true;
3926  	}
3927  
3928  	return false;
3929  }
3930  
3931  /*
3932   * send an empty flush down to each device in parallel,
3933   * then wait for them
3934   */
barrier_all_devices(struct btrfs_fs_info * info)3935  static int barrier_all_devices(struct btrfs_fs_info *info)
3936  {
3937  	struct list_head *head;
3938  	struct btrfs_device *dev;
3939  	int errors_wait = 0;
3940  
3941  	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3942  	/* send down all the barriers */
3943  	head = &info->fs_devices->devices;
3944  	list_for_each_entry(dev, head, dev_list) {
3945  		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3946  			continue;
3947  		if (!dev->bdev)
3948  			continue;
3949  		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3950  		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3951  			continue;
3952  
3953  		write_dev_flush(dev);
3954  	}
3955  
3956  	/* wait for all the barriers */
3957  	list_for_each_entry(dev, head, dev_list) {
3958  		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3959  			continue;
3960  		if (!dev->bdev) {
3961  			errors_wait++;
3962  			continue;
3963  		}
3964  		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3965  		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3966  			continue;
3967  
3968  		if (wait_dev_flush(dev))
3969  			errors_wait++;
3970  	}
3971  
3972  	/*
3973  	 * Checks last_flush_error of disks in order to determine the device
3974  	 * state.
3975  	 */
3976  	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3977  		return -EIO;
3978  
3979  	return 0;
3980  }
3981  
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3982  int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3983  {
3984  	int raid_type;
3985  	int min_tolerated = INT_MAX;
3986  
3987  	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3988  	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3989  		min_tolerated = min_t(int, min_tolerated,
3990  				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3991  				    tolerated_failures);
3992  
3993  	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3994  		if (raid_type == BTRFS_RAID_SINGLE)
3995  			continue;
3996  		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3997  			continue;
3998  		min_tolerated = min_t(int, min_tolerated,
3999  				    btrfs_raid_array[raid_type].
4000  				    tolerated_failures);
4001  	}
4002  
4003  	if (min_tolerated == INT_MAX) {
4004  		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4005  		min_tolerated = 0;
4006  	}
4007  
4008  	return min_tolerated;
4009  }
4010  
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4011  int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4012  {
4013  	struct list_head *head;
4014  	struct btrfs_device *dev;
4015  	struct btrfs_super_block *sb;
4016  	struct btrfs_dev_item *dev_item;
4017  	int ret;
4018  	int do_barriers;
4019  	int max_errors;
4020  	int total_errors = 0;
4021  	u64 flags;
4022  
4023  	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4024  
4025  	/*
4026  	 * max_mirrors == 0 indicates we're from commit_transaction,
4027  	 * not from fsync where the tree roots in fs_info have not
4028  	 * been consistent on disk.
4029  	 */
4030  	if (max_mirrors == 0)
4031  		backup_super_roots(fs_info);
4032  
4033  	sb = fs_info->super_for_commit;
4034  	dev_item = &sb->dev_item;
4035  
4036  	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4037  	head = &fs_info->fs_devices->devices;
4038  	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4039  
4040  	if (do_barriers) {
4041  		ret = barrier_all_devices(fs_info);
4042  		if (ret) {
4043  			mutex_unlock(
4044  				&fs_info->fs_devices->device_list_mutex);
4045  			btrfs_handle_fs_error(fs_info, ret,
4046  					      "errors while submitting device barriers.");
4047  			return ret;
4048  		}
4049  	}
4050  
4051  	list_for_each_entry(dev, head, dev_list) {
4052  		if (!dev->bdev) {
4053  			total_errors++;
4054  			continue;
4055  		}
4056  		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4057  		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4058  			continue;
4059  
4060  		btrfs_set_stack_device_generation(dev_item, 0);
4061  		btrfs_set_stack_device_type(dev_item, dev->type);
4062  		btrfs_set_stack_device_id(dev_item, dev->devid);
4063  		btrfs_set_stack_device_total_bytes(dev_item,
4064  						   dev->commit_total_bytes);
4065  		btrfs_set_stack_device_bytes_used(dev_item,
4066  						  dev->commit_bytes_used);
4067  		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4068  		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4069  		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4070  		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4071  		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4072  		       BTRFS_FSID_SIZE);
4073  
4074  		flags = btrfs_super_flags(sb);
4075  		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4076  
4077  		ret = btrfs_validate_write_super(fs_info, sb);
4078  		if (ret < 0) {
4079  			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4080  			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4081  				"unexpected superblock corruption detected");
4082  			return -EUCLEAN;
4083  		}
4084  
4085  		ret = write_dev_supers(dev, sb, max_mirrors);
4086  		if (ret)
4087  			total_errors++;
4088  	}
4089  	if (total_errors > max_errors) {
4090  		btrfs_err(fs_info, "%d errors while writing supers",
4091  			  total_errors);
4092  		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4093  
4094  		/* FUA is masked off if unsupported and can't be the reason */
4095  		btrfs_handle_fs_error(fs_info, -EIO,
4096  				      "%d errors while writing supers",
4097  				      total_errors);
4098  		return -EIO;
4099  	}
4100  
4101  	total_errors = 0;
4102  	list_for_each_entry(dev, head, dev_list) {
4103  		if (!dev->bdev)
4104  			continue;
4105  		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4106  		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4107  			continue;
4108  
4109  		ret = wait_dev_supers(dev, max_mirrors);
4110  		if (ret)
4111  			total_errors++;
4112  	}
4113  	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4114  	if (total_errors > max_errors) {
4115  		btrfs_handle_fs_error(fs_info, -EIO,
4116  				      "%d errors while writing supers",
4117  				      total_errors);
4118  		return -EIO;
4119  	}
4120  	return 0;
4121  }
4122  
4123  /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4124  void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4125  				  struct btrfs_root *root)
4126  {
4127  	bool drop_ref = false;
4128  
4129  	spin_lock(&fs_info->fs_roots_radix_lock);
4130  	radix_tree_delete(&fs_info->fs_roots_radix,
4131  			  (unsigned long)btrfs_root_id(root));
4132  	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4133  		drop_ref = true;
4134  	spin_unlock(&fs_info->fs_roots_radix_lock);
4135  
4136  	if (BTRFS_FS_ERROR(fs_info)) {
4137  		ASSERT(root->log_root == NULL);
4138  		if (root->reloc_root) {
4139  			btrfs_put_root(root->reloc_root);
4140  			root->reloc_root = NULL;
4141  		}
4142  	}
4143  
4144  	if (drop_ref)
4145  		btrfs_put_root(root);
4146  }
4147  
btrfs_commit_super(struct btrfs_fs_info * fs_info)4148  int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4149  {
4150  	mutex_lock(&fs_info->cleaner_mutex);
4151  	btrfs_run_delayed_iputs(fs_info);
4152  	mutex_unlock(&fs_info->cleaner_mutex);
4153  	wake_up_process(fs_info->cleaner_kthread);
4154  
4155  	/* wait until ongoing cleanup work done */
4156  	down_write(&fs_info->cleanup_work_sem);
4157  	up_write(&fs_info->cleanup_work_sem);
4158  
4159  	return btrfs_commit_current_transaction(fs_info->tree_root);
4160  }
4161  
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4162  static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4163  {
4164  	struct btrfs_transaction *trans;
4165  	struct btrfs_transaction *tmp;
4166  	bool found = false;
4167  
4168  	/*
4169  	 * This function is only called at the very end of close_ctree(),
4170  	 * thus no other running transaction, no need to take trans_lock.
4171  	 */
4172  	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4173  	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4174  		struct extent_state *cached = NULL;
4175  		u64 dirty_bytes = 0;
4176  		u64 cur = 0;
4177  		u64 found_start;
4178  		u64 found_end;
4179  
4180  		found = true;
4181  		while (find_first_extent_bit(&trans->dirty_pages, cur,
4182  			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4183  			dirty_bytes += found_end + 1 - found_start;
4184  			cur = found_end + 1;
4185  		}
4186  		btrfs_warn(fs_info,
4187  	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4188  			   trans->transid, dirty_bytes);
4189  		btrfs_cleanup_one_transaction(trans, fs_info);
4190  
4191  		if (trans == fs_info->running_transaction)
4192  			fs_info->running_transaction = NULL;
4193  		list_del_init(&trans->list);
4194  
4195  		btrfs_put_transaction(trans);
4196  		trace_btrfs_transaction_commit(fs_info);
4197  	}
4198  	ASSERT(!found);
4199  }
4200  
close_ctree(struct btrfs_fs_info * fs_info)4201  void __cold close_ctree(struct btrfs_fs_info *fs_info)
4202  {
4203  	int ret;
4204  
4205  	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4206  
4207  	/*
4208  	 * If we had UNFINISHED_DROPS we could still be processing them, so
4209  	 * clear that bit and wake up relocation so it can stop.
4210  	 * We must do this before stopping the block group reclaim task, because
4211  	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4212  	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4213  	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4214  	 * return 1.
4215  	 */
4216  	btrfs_wake_unfinished_drop(fs_info);
4217  
4218  	/*
4219  	 * We may have the reclaim task running and relocating a data block group,
4220  	 * in which case it may create delayed iputs. So stop it before we park
4221  	 * the cleaner kthread otherwise we can get new delayed iputs after
4222  	 * parking the cleaner, and that can make the async reclaim task to hang
4223  	 * if it's waiting for delayed iputs to complete, since the cleaner is
4224  	 * parked and can not run delayed iputs - this will make us hang when
4225  	 * trying to stop the async reclaim task.
4226  	 */
4227  	cancel_work_sync(&fs_info->reclaim_bgs_work);
4228  	/*
4229  	 * We don't want the cleaner to start new transactions, add more delayed
4230  	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4231  	 * because that frees the task_struct, and the transaction kthread might
4232  	 * still try to wake up the cleaner.
4233  	 */
4234  	kthread_park(fs_info->cleaner_kthread);
4235  
4236  	/* wait for the qgroup rescan worker to stop */
4237  	btrfs_qgroup_wait_for_completion(fs_info, false);
4238  
4239  	/* wait for the uuid_scan task to finish */
4240  	down(&fs_info->uuid_tree_rescan_sem);
4241  	/* avoid complains from lockdep et al., set sem back to initial state */
4242  	up(&fs_info->uuid_tree_rescan_sem);
4243  
4244  	/* pause restriper - we want to resume on mount */
4245  	btrfs_pause_balance(fs_info);
4246  
4247  	btrfs_dev_replace_suspend_for_unmount(fs_info);
4248  
4249  	btrfs_scrub_cancel(fs_info);
4250  
4251  	/* wait for any defraggers to finish */
4252  	wait_event(fs_info->transaction_wait,
4253  		   (atomic_read(&fs_info->defrag_running) == 0));
4254  
4255  	/* clear out the rbtree of defraggable inodes */
4256  	btrfs_cleanup_defrag_inodes(fs_info);
4257  
4258  	/*
4259  	 * Wait for any fixup workers to complete.
4260  	 * If we don't wait for them here and they are still running by the time
4261  	 * we call kthread_stop() against the cleaner kthread further below, we
4262  	 * get an use-after-free on the cleaner because the fixup worker adds an
4263  	 * inode to the list of delayed iputs and then attempts to wakeup the
4264  	 * cleaner kthread, which was already stopped and destroyed. We parked
4265  	 * already the cleaner, but below we run all pending delayed iputs.
4266  	 */
4267  	btrfs_flush_workqueue(fs_info->fixup_workers);
4268  
4269  	/*
4270  	 * After we parked the cleaner kthread, ordered extents may have
4271  	 * completed and created new delayed iputs. If one of the async reclaim
4272  	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4273  	 * can hang forever trying to stop it, because if a delayed iput is
4274  	 * added after it ran btrfs_run_delayed_iputs() and before it called
4275  	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4276  	 * no one else to run iputs.
4277  	 *
4278  	 * So wait for all ongoing ordered extents to complete and then run
4279  	 * delayed iputs. This works because once we reach this point no one
4280  	 * can either create new ordered extents nor create delayed iputs
4281  	 * through some other means.
4282  	 *
4283  	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4284  	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4285  	 * but the delayed iput for the respective inode is made only when doing
4286  	 * the final btrfs_put_ordered_extent() (which must happen at
4287  	 * btrfs_finish_ordered_io() when we are unmounting).
4288  	 */
4289  	btrfs_flush_workqueue(fs_info->endio_write_workers);
4290  	/* Ordered extents for free space inodes. */
4291  	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4292  	btrfs_run_delayed_iputs(fs_info);
4293  
4294  	cancel_work_sync(&fs_info->async_reclaim_work);
4295  	cancel_work_sync(&fs_info->async_data_reclaim_work);
4296  	cancel_work_sync(&fs_info->preempt_reclaim_work);
4297  
4298  	/* Cancel or finish ongoing discard work */
4299  	btrfs_discard_cleanup(fs_info);
4300  
4301  	if (!sb_rdonly(fs_info->sb)) {
4302  		/*
4303  		 * The cleaner kthread is stopped, so do one final pass over
4304  		 * unused block groups.
4305  		 */
4306  		btrfs_delete_unused_bgs(fs_info);
4307  
4308  		/*
4309  		 * There might be existing delayed inode workers still running
4310  		 * and holding an empty delayed inode item. We must wait for
4311  		 * them to complete first because they can create a transaction.
4312  		 * This happens when someone calls btrfs_balance_delayed_items()
4313  		 * and then a transaction commit runs the same delayed nodes
4314  		 * before any delayed worker has done something with the nodes.
4315  		 * We must wait for any worker here and not at transaction
4316  		 * commit time since that could cause a deadlock.
4317  		 * This is a very rare case.
4318  		 */
4319  		btrfs_flush_workqueue(fs_info->delayed_workers);
4320  
4321  		ret = btrfs_commit_super(fs_info);
4322  		if (ret)
4323  			btrfs_err(fs_info, "commit super ret %d", ret);
4324  	}
4325  
4326  	if (BTRFS_FS_ERROR(fs_info))
4327  		btrfs_error_commit_super(fs_info);
4328  
4329  	kthread_stop(fs_info->transaction_kthread);
4330  	kthread_stop(fs_info->cleaner_kthread);
4331  
4332  	ASSERT(list_empty(&fs_info->delayed_iputs));
4333  	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4334  
4335  	if (btrfs_check_quota_leak(fs_info)) {
4336  		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4337  		btrfs_err(fs_info, "qgroup reserved space leaked");
4338  	}
4339  
4340  	btrfs_free_qgroup_config(fs_info);
4341  	ASSERT(list_empty(&fs_info->delalloc_roots));
4342  
4343  	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4344  		btrfs_info(fs_info, "at unmount delalloc count %lld",
4345  		       percpu_counter_sum(&fs_info->delalloc_bytes));
4346  	}
4347  
4348  	if (percpu_counter_sum(&fs_info->ordered_bytes))
4349  		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4350  			   percpu_counter_sum(&fs_info->ordered_bytes));
4351  
4352  	btrfs_sysfs_remove_mounted(fs_info);
4353  	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4354  
4355  	btrfs_put_block_group_cache(fs_info);
4356  
4357  	/*
4358  	 * we must make sure there is not any read request to
4359  	 * submit after we stopping all workers.
4360  	 */
4361  	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4362  	btrfs_stop_all_workers(fs_info);
4363  
4364  	/* We shouldn't have any transaction open at this point */
4365  	warn_about_uncommitted_trans(fs_info);
4366  
4367  	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4368  	free_root_pointers(fs_info, true);
4369  	btrfs_free_fs_roots(fs_info);
4370  
4371  	/*
4372  	 * We must free the block groups after dropping the fs_roots as we could
4373  	 * have had an IO error and have left over tree log blocks that aren't
4374  	 * cleaned up until the fs roots are freed.  This makes the block group
4375  	 * accounting appear to be wrong because there's pending reserved bytes,
4376  	 * so make sure we do the block group cleanup afterwards.
4377  	 */
4378  	btrfs_free_block_groups(fs_info);
4379  
4380  	iput(fs_info->btree_inode);
4381  
4382  	btrfs_mapping_tree_free(fs_info);
4383  	btrfs_close_devices(fs_info->fs_devices);
4384  }
4385  
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4386  void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4387  			     struct extent_buffer *buf)
4388  {
4389  	struct btrfs_fs_info *fs_info = buf->fs_info;
4390  	u64 transid = btrfs_header_generation(buf);
4391  
4392  #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4393  	/*
4394  	 * This is a fast path so only do this check if we have sanity tests
4395  	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4396  	 * outside of the sanity tests.
4397  	 */
4398  	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4399  		return;
4400  #endif
4401  	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4402  	ASSERT(trans->transid == fs_info->generation);
4403  	btrfs_assert_tree_write_locked(buf);
4404  	if (unlikely(transid != fs_info->generation)) {
4405  		btrfs_abort_transaction(trans, -EUCLEAN);
4406  		btrfs_crit(fs_info,
4407  "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4408  			   buf->start, transid, fs_info->generation);
4409  	}
4410  	set_extent_buffer_dirty(buf);
4411  }
4412  
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4413  static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4414  					int flush_delayed)
4415  {
4416  	/*
4417  	 * looks as though older kernels can get into trouble with
4418  	 * this code, they end up stuck in balance_dirty_pages forever
4419  	 */
4420  	int ret;
4421  
4422  	if (current->flags & PF_MEMALLOC)
4423  		return;
4424  
4425  	if (flush_delayed)
4426  		btrfs_balance_delayed_items(fs_info);
4427  
4428  	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4429  				     BTRFS_DIRTY_METADATA_THRESH,
4430  				     fs_info->dirty_metadata_batch);
4431  	if (ret > 0) {
4432  		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4433  	}
4434  }
4435  
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4436  void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4437  {
4438  	__btrfs_btree_balance_dirty(fs_info, 1);
4439  }
4440  
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4441  void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4442  {
4443  	__btrfs_btree_balance_dirty(fs_info, 0);
4444  }
4445  
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4446  static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4447  {
4448  	/* cleanup FS via transaction */
4449  	btrfs_cleanup_transaction(fs_info);
4450  
4451  	mutex_lock(&fs_info->cleaner_mutex);
4452  	btrfs_run_delayed_iputs(fs_info);
4453  	mutex_unlock(&fs_info->cleaner_mutex);
4454  
4455  	down_write(&fs_info->cleanup_work_sem);
4456  	up_write(&fs_info->cleanup_work_sem);
4457  }
4458  
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4459  static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4460  {
4461  	struct btrfs_root *gang[8];
4462  	u64 root_objectid = 0;
4463  	int ret;
4464  
4465  	spin_lock(&fs_info->fs_roots_radix_lock);
4466  	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4467  					     (void **)gang, root_objectid,
4468  					     ARRAY_SIZE(gang))) != 0) {
4469  		int i;
4470  
4471  		for (i = 0; i < ret; i++)
4472  			gang[i] = btrfs_grab_root(gang[i]);
4473  		spin_unlock(&fs_info->fs_roots_radix_lock);
4474  
4475  		for (i = 0; i < ret; i++) {
4476  			if (!gang[i])
4477  				continue;
4478  			root_objectid = btrfs_root_id(gang[i]);
4479  			btrfs_free_log(NULL, gang[i]);
4480  			btrfs_put_root(gang[i]);
4481  		}
4482  		root_objectid++;
4483  		spin_lock(&fs_info->fs_roots_radix_lock);
4484  	}
4485  	spin_unlock(&fs_info->fs_roots_radix_lock);
4486  	btrfs_free_log_root_tree(NULL, fs_info);
4487  }
4488  
btrfs_destroy_ordered_extents(struct btrfs_root * root)4489  static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4490  {
4491  	struct btrfs_ordered_extent *ordered;
4492  
4493  	spin_lock(&root->ordered_extent_lock);
4494  	/*
4495  	 * This will just short circuit the ordered completion stuff which will
4496  	 * make sure the ordered extent gets properly cleaned up.
4497  	 */
4498  	list_for_each_entry(ordered, &root->ordered_extents,
4499  			    root_extent_list)
4500  		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4501  	spin_unlock(&root->ordered_extent_lock);
4502  }
4503  
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4504  static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4505  {
4506  	struct btrfs_root *root;
4507  	LIST_HEAD(splice);
4508  
4509  	spin_lock(&fs_info->ordered_root_lock);
4510  	list_splice_init(&fs_info->ordered_roots, &splice);
4511  	while (!list_empty(&splice)) {
4512  		root = list_first_entry(&splice, struct btrfs_root,
4513  					ordered_root);
4514  		list_move_tail(&root->ordered_root,
4515  			       &fs_info->ordered_roots);
4516  
4517  		spin_unlock(&fs_info->ordered_root_lock);
4518  		btrfs_destroy_ordered_extents(root);
4519  
4520  		cond_resched();
4521  		spin_lock(&fs_info->ordered_root_lock);
4522  	}
4523  	spin_unlock(&fs_info->ordered_root_lock);
4524  
4525  	/*
4526  	 * We need this here because if we've been flipped read-only we won't
4527  	 * get sync() from the umount, so we need to make sure any ordered
4528  	 * extents that haven't had their dirty pages IO start writeout yet
4529  	 * actually get run and error out properly.
4530  	 */
4531  	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4532  }
4533  
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4534  static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4535  				       struct btrfs_fs_info *fs_info)
4536  {
4537  	struct rb_node *node;
4538  	struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
4539  	struct btrfs_delayed_ref_node *ref;
4540  
4541  	spin_lock(&delayed_refs->lock);
4542  	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4543  		struct btrfs_delayed_ref_head *head;
4544  		struct rb_node *n;
4545  		bool pin_bytes = false;
4546  
4547  		head = rb_entry(node, struct btrfs_delayed_ref_head,
4548  				href_node);
4549  		if (btrfs_delayed_ref_lock(delayed_refs, head))
4550  			continue;
4551  
4552  		spin_lock(&head->lock);
4553  		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4554  			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4555  				       ref_node);
4556  			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4557  			RB_CLEAR_NODE(&ref->ref_node);
4558  			if (!list_empty(&ref->add_list))
4559  				list_del(&ref->add_list);
4560  			atomic_dec(&delayed_refs->num_entries);
4561  			btrfs_put_delayed_ref(ref);
4562  			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4563  		}
4564  		if (head->must_insert_reserved)
4565  			pin_bytes = true;
4566  		btrfs_free_delayed_extent_op(head->extent_op);
4567  		btrfs_delete_ref_head(delayed_refs, head);
4568  		spin_unlock(&head->lock);
4569  		spin_unlock(&delayed_refs->lock);
4570  		mutex_unlock(&head->mutex);
4571  
4572  		if (pin_bytes) {
4573  			struct btrfs_block_group *cache;
4574  
4575  			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4576  			BUG_ON(!cache);
4577  
4578  			spin_lock(&cache->space_info->lock);
4579  			spin_lock(&cache->lock);
4580  			cache->pinned += head->num_bytes;
4581  			btrfs_space_info_update_bytes_pinned(fs_info,
4582  				cache->space_info, head->num_bytes);
4583  			cache->reserved -= head->num_bytes;
4584  			cache->space_info->bytes_reserved -= head->num_bytes;
4585  			spin_unlock(&cache->lock);
4586  			spin_unlock(&cache->space_info->lock);
4587  
4588  			btrfs_put_block_group(cache);
4589  
4590  			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4591  				head->bytenr + head->num_bytes - 1);
4592  		}
4593  		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4594  		btrfs_put_delayed_ref_head(head);
4595  		cond_resched();
4596  		spin_lock(&delayed_refs->lock);
4597  	}
4598  	btrfs_qgroup_destroy_extent_records(trans);
4599  
4600  	spin_unlock(&delayed_refs->lock);
4601  }
4602  
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4603  static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4604  {
4605  	struct btrfs_inode *btrfs_inode;
4606  	LIST_HEAD(splice);
4607  
4608  	spin_lock(&root->delalloc_lock);
4609  	list_splice_init(&root->delalloc_inodes, &splice);
4610  
4611  	while (!list_empty(&splice)) {
4612  		struct inode *inode = NULL;
4613  		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4614  					       delalloc_inodes);
4615  		btrfs_del_delalloc_inode(btrfs_inode);
4616  		spin_unlock(&root->delalloc_lock);
4617  
4618  		/*
4619  		 * Make sure we get a live inode and that it'll not disappear
4620  		 * meanwhile.
4621  		 */
4622  		inode = igrab(&btrfs_inode->vfs_inode);
4623  		if (inode) {
4624  			unsigned int nofs_flag;
4625  
4626  			nofs_flag = memalloc_nofs_save();
4627  			invalidate_inode_pages2(inode->i_mapping);
4628  			memalloc_nofs_restore(nofs_flag);
4629  			iput(inode);
4630  		}
4631  		spin_lock(&root->delalloc_lock);
4632  	}
4633  	spin_unlock(&root->delalloc_lock);
4634  }
4635  
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4636  static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4637  {
4638  	struct btrfs_root *root;
4639  	LIST_HEAD(splice);
4640  
4641  	spin_lock(&fs_info->delalloc_root_lock);
4642  	list_splice_init(&fs_info->delalloc_roots, &splice);
4643  	while (!list_empty(&splice)) {
4644  		root = list_first_entry(&splice, struct btrfs_root,
4645  					 delalloc_root);
4646  		root = btrfs_grab_root(root);
4647  		BUG_ON(!root);
4648  		spin_unlock(&fs_info->delalloc_root_lock);
4649  
4650  		btrfs_destroy_delalloc_inodes(root);
4651  		btrfs_put_root(root);
4652  
4653  		spin_lock(&fs_info->delalloc_root_lock);
4654  	}
4655  	spin_unlock(&fs_info->delalloc_root_lock);
4656  }
4657  
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4658  static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4659  					 struct extent_io_tree *dirty_pages,
4660  					 int mark)
4661  {
4662  	struct extent_buffer *eb;
4663  	u64 start = 0;
4664  	u64 end;
4665  
4666  	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4667  				     mark, NULL)) {
4668  		clear_extent_bits(dirty_pages, start, end, mark);
4669  		while (start <= end) {
4670  			eb = find_extent_buffer(fs_info, start);
4671  			start += fs_info->nodesize;
4672  			if (!eb)
4673  				continue;
4674  
4675  			btrfs_tree_lock(eb);
4676  			wait_on_extent_buffer_writeback(eb);
4677  			btrfs_clear_buffer_dirty(NULL, eb);
4678  			btrfs_tree_unlock(eb);
4679  
4680  			free_extent_buffer_stale(eb);
4681  		}
4682  	}
4683  }
4684  
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4685  static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4686  					struct extent_io_tree *unpin)
4687  {
4688  	u64 start;
4689  	u64 end;
4690  
4691  	while (1) {
4692  		struct extent_state *cached_state = NULL;
4693  
4694  		/*
4695  		 * The btrfs_finish_extent_commit() may get the same range as
4696  		 * ours between find_first_extent_bit and clear_extent_dirty.
4697  		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4698  		 * the same extent range.
4699  		 */
4700  		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4701  		if (!find_first_extent_bit(unpin, 0, &start, &end,
4702  					   EXTENT_DIRTY, &cached_state)) {
4703  			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4704  			break;
4705  		}
4706  
4707  		clear_extent_dirty(unpin, start, end, &cached_state);
4708  		free_extent_state(cached_state);
4709  		btrfs_error_unpin_extent_range(fs_info, start, end);
4710  		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4711  		cond_resched();
4712  	}
4713  }
4714  
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4715  static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4716  {
4717  	struct inode *inode;
4718  
4719  	inode = cache->io_ctl.inode;
4720  	if (inode) {
4721  		unsigned int nofs_flag;
4722  
4723  		nofs_flag = memalloc_nofs_save();
4724  		invalidate_inode_pages2(inode->i_mapping);
4725  		memalloc_nofs_restore(nofs_flag);
4726  
4727  		BTRFS_I(inode)->generation = 0;
4728  		cache->io_ctl.inode = NULL;
4729  		iput(inode);
4730  	}
4731  	ASSERT(cache->io_ctl.pages == NULL);
4732  	btrfs_put_block_group(cache);
4733  }
4734  
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4735  void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4736  			     struct btrfs_fs_info *fs_info)
4737  {
4738  	struct btrfs_block_group *cache;
4739  
4740  	spin_lock(&cur_trans->dirty_bgs_lock);
4741  	while (!list_empty(&cur_trans->dirty_bgs)) {
4742  		cache = list_first_entry(&cur_trans->dirty_bgs,
4743  					 struct btrfs_block_group,
4744  					 dirty_list);
4745  
4746  		if (!list_empty(&cache->io_list)) {
4747  			spin_unlock(&cur_trans->dirty_bgs_lock);
4748  			list_del_init(&cache->io_list);
4749  			btrfs_cleanup_bg_io(cache);
4750  			spin_lock(&cur_trans->dirty_bgs_lock);
4751  		}
4752  
4753  		list_del_init(&cache->dirty_list);
4754  		spin_lock(&cache->lock);
4755  		cache->disk_cache_state = BTRFS_DC_ERROR;
4756  		spin_unlock(&cache->lock);
4757  
4758  		spin_unlock(&cur_trans->dirty_bgs_lock);
4759  		btrfs_put_block_group(cache);
4760  		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4761  		spin_lock(&cur_trans->dirty_bgs_lock);
4762  	}
4763  	spin_unlock(&cur_trans->dirty_bgs_lock);
4764  
4765  	/*
4766  	 * Refer to the definition of io_bgs member for details why it's safe
4767  	 * to use it without any locking
4768  	 */
4769  	while (!list_empty(&cur_trans->io_bgs)) {
4770  		cache = list_first_entry(&cur_trans->io_bgs,
4771  					 struct btrfs_block_group,
4772  					 io_list);
4773  
4774  		list_del_init(&cache->io_list);
4775  		spin_lock(&cache->lock);
4776  		cache->disk_cache_state = BTRFS_DC_ERROR;
4777  		spin_unlock(&cache->lock);
4778  		btrfs_cleanup_bg_io(cache);
4779  	}
4780  }
4781  
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4782  static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4783  {
4784  	struct btrfs_root *gang[8];
4785  	int i;
4786  	int ret;
4787  
4788  	spin_lock(&fs_info->fs_roots_radix_lock);
4789  	while (1) {
4790  		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4791  						 (void **)gang, 0,
4792  						 ARRAY_SIZE(gang),
4793  						 BTRFS_ROOT_TRANS_TAG);
4794  		if (ret == 0)
4795  			break;
4796  		for (i = 0; i < ret; i++) {
4797  			struct btrfs_root *root = gang[i];
4798  
4799  			btrfs_qgroup_free_meta_all_pertrans(root);
4800  			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4801  					(unsigned long)btrfs_root_id(root),
4802  					BTRFS_ROOT_TRANS_TAG);
4803  		}
4804  	}
4805  	spin_unlock(&fs_info->fs_roots_radix_lock);
4806  }
4807  
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4808  void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4809  				   struct btrfs_fs_info *fs_info)
4810  {
4811  	struct btrfs_device *dev, *tmp;
4812  
4813  	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4814  	ASSERT(list_empty(&cur_trans->dirty_bgs));
4815  	ASSERT(list_empty(&cur_trans->io_bgs));
4816  
4817  	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4818  				 post_commit_list) {
4819  		list_del_init(&dev->post_commit_list);
4820  	}
4821  
4822  	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4823  
4824  	cur_trans->state = TRANS_STATE_COMMIT_START;
4825  	wake_up(&fs_info->transaction_blocked_wait);
4826  
4827  	cur_trans->state = TRANS_STATE_UNBLOCKED;
4828  	wake_up(&fs_info->transaction_wait);
4829  
4830  	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4831  				     EXTENT_DIRTY);
4832  	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4833  
4834  	cur_trans->state =TRANS_STATE_COMPLETED;
4835  	wake_up(&cur_trans->commit_wait);
4836  }
4837  
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4838  static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4839  {
4840  	struct btrfs_transaction *t;
4841  
4842  	mutex_lock(&fs_info->transaction_kthread_mutex);
4843  
4844  	spin_lock(&fs_info->trans_lock);
4845  	while (!list_empty(&fs_info->trans_list)) {
4846  		t = list_first_entry(&fs_info->trans_list,
4847  				     struct btrfs_transaction, list);
4848  		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4849  			refcount_inc(&t->use_count);
4850  			spin_unlock(&fs_info->trans_lock);
4851  			btrfs_wait_for_commit(fs_info, t->transid);
4852  			btrfs_put_transaction(t);
4853  			spin_lock(&fs_info->trans_lock);
4854  			continue;
4855  		}
4856  		if (t == fs_info->running_transaction) {
4857  			t->state = TRANS_STATE_COMMIT_DOING;
4858  			spin_unlock(&fs_info->trans_lock);
4859  			/*
4860  			 * We wait for 0 num_writers since we don't hold a trans
4861  			 * handle open currently for this transaction.
4862  			 */
4863  			wait_event(t->writer_wait,
4864  				   atomic_read(&t->num_writers) == 0);
4865  		} else {
4866  			spin_unlock(&fs_info->trans_lock);
4867  		}
4868  		btrfs_cleanup_one_transaction(t, fs_info);
4869  
4870  		spin_lock(&fs_info->trans_lock);
4871  		if (t == fs_info->running_transaction)
4872  			fs_info->running_transaction = NULL;
4873  		list_del_init(&t->list);
4874  		spin_unlock(&fs_info->trans_lock);
4875  
4876  		btrfs_put_transaction(t);
4877  		trace_btrfs_transaction_commit(fs_info);
4878  		spin_lock(&fs_info->trans_lock);
4879  	}
4880  	spin_unlock(&fs_info->trans_lock);
4881  	btrfs_destroy_all_ordered_extents(fs_info);
4882  	btrfs_destroy_delayed_inodes(fs_info);
4883  	btrfs_assert_delayed_root_empty(fs_info);
4884  	btrfs_destroy_all_delalloc_inodes(fs_info);
4885  	btrfs_drop_all_logs(fs_info);
4886  	btrfs_free_all_qgroup_pertrans(fs_info);
4887  	mutex_unlock(&fs_info->transaction_kthread_mutex);
4888  
4889  	return 0;
4890  }
4891  
btrfs_init_root_free_objectid(struct btrfs_root * root)4892  int btrfs_init_root_free_objectid(struct btrfs_root *root)
4893  {
4894  	struct btrfs_path *path;
4895  	int ret;
4896  	struct extent_buffer *l;
4897  	struct btrfs_key search_key;
4898  	struct btrfs_key found_key;
4899  	int slot;
4900  
4901  	path = btrfs_alloc_path();
4902  	if (!path)
4903  		return -ENOMEM;
4904  
4905  	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4906  	search_key.type = -1;
4907  	search_key.offset = (u64)-1;
4908  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4909  	if (ret < 0)
4910  		goto error;
4911  	if (ret == 0) {
4912  		/*
4913  		 * Key with offset -1 found, there would have to exist a root
4914  		 * with such id, but this is out of valid range.
4915  		 */
4916  		ret = -EUCLEAN;
4917  		goto error;
4918  	}
4919  	if (path->slots[0] > 0) {
4920  		slot = path->slots[0] - 1;
4921  		l = path->nodes[0];
4922  		btrfs_item_key_to_cpu(l, &found_key, slot);
4923  		root->free_objectid = max_t(u64, found_key.objectid + 1,
4924  					    BTRFS_FIRST_FREE_OBJECTID);
4925  	} else {
4926  		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4927  	}
4928  	ret = 0;
4929  error:
4930  	btrfs_free_path(path);
4931  	return ret;
4932  }
4933  
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4934  int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4935  {
4936  	int ret;
4937  	mutex_lock(&root->objectid_mutex);
4938  
4939  	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4940  		btrfs_warn(root->fs_info,
4941  			   "the objectid of root %llu reaches its highest value",
4942  			   btrfs_root_id(root));
4943  		ret = -ENOSPC;
4944  		goto out;
4945  	}
4946  
4947  	*objectid = root->free_objectid++;
4948  	ret = 0;
4949  out:
4950  	mutex_unlock(&root->objectid_mutex);
4951  	return ret;
4952  }
4953